SUBCHAPTER D—AIRMEN

PART 60—FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE

Sec.
60.1 Applicability.
60.2 Applicability of sponsor rules to persons who are not sponsors and who are engaged in certain unauthorized activities.
60.3 Definitions.
60.4 Qualification Performance Standards.
60.5 Quality management system.
60.6 Sponsor qualification requirements.
60.9 Additional responsibilities of the sponsor.
60.11 FSTD use.
60.13 FSTD objective data requirements.
60.14 Special equipment and personnel requirements for qualification of the FSTD.
60.15 Initial qualification requirements.
60.16 Additional qualifications for a currently qualified FSTD.
60.17 Previously qualified FSTDs.
60.19 Inspection, continuing qualification evaluation, and maintenance requirements.
60.20 Logging FSTD discrepancies.
60.21 Interim qualification of FSTDs for new aircraft types or models.
60.23 Modifications to FSTDs.
60.25 Operation with missing, malfunctioning, or inoperative components.
60.27 Automatic loss of qualification and procedures for restoration of qualification.
60.29 Other losses of qualification and procedures for restoration of qualification.
60.31 Recordkeeping and reporting.
60.33 Applications, logbooks, reports, and records: Fraud, falsification, or incorrect statements.
60.35 Specific full flight simulator compliance requirements.
60.37 FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).

APPENDIX A TO PART 60—QUALIFICATION PERFORMANCE STANDARDS FOR AIRPLANE FULL FLIGHT SIMULATORS

APPENDIX B TO PART 60—QUALIFICATION PERFORMANCE STANDARDS FOR AIRPLANE FLIGHT TRAINING DEVICES

APPENDIX C TO PART 60—QUALIFICATION PERFORMANCE STANDARDS FOR HELICOPTER FULL FLIGHT SIMULATORS

APPENDIX D TO PART 60—QUALIFICATION PERFORMANCE STANDARDS FOR HELICOPTER FLIGHT TRAINING DEVICES

APPENDIX E TO PART 60—QUALIFICATION PERFORMANCE STANDARDS FOR QUALITY MANAGEMENT SYSTEMS FOR FLIGHT SIMULATION TRAINING DEVICES

APPENDIX F TO PART 60—DEFINITIONS AND ABBREVIATIONS FOR FLIGHT SIMULATION TRAINING DEVICES

AUTHORITY: 49 U.S.C. 106(g), 40113, and 44701.

§ 60.1 Applicability.
(a) This part prescribes the rules governing the initial and continuing qualification and use of all aircraft flight simulation training devices (FSTD) used for meeting training, evaluation, or flight experience requirements of this chapter for flight crewmember certification or qualification.
(b) The rules of this part apply to each person using or applying to use an FSTD to meet any requirement of this chapter.
(c) The requirements of § 60.33 regarding falsification of applications, records, or reports also apply to each person who uses an FSTD for training, evaluation, or obtaining flight experience required for flight crewmember certification or qualification under this chapter.

§ 60.2 Applicability of sponsor rules to persons who are not sponsors and who are engaged in certain unauthorized activities.
(a) The rules of this part that are directed to a sponsor of an FSTD also apply to any person who uses or causes the use of an FSTD when—
(1) That person knows that the FSTD does not have an FAA-approved sponsor; and
(2) The use of the FSTD by that person is nonetheless claimed for purposes of meeting any requirement of this chapter or that person knows or should have known that the person’s acts or omissions would cause another person to mistakenly credit use of the FSTD for purposes of meeting any requirement of this chapter.
(b) A situation in which paragraph (a) of this section would not apply to a
§ 60.3 Definitions.
In addition to the definitions in part 1 of this chapter, other terms and definitions applicable to this part are found in appendix F of this part.

§ 60.4 Qualification Performance Standards.
The Qualification Performance Standards (QPS) are published in appendices to this part as follows:
(a) Appendix A contains the QPS for Airplane Flight Simulators.
(b) Appendix B contains the QPS for Airplane Flight Training Devices.
(c) Appendix C contains the QPS for Helicopter Flight Simulators.
(d) Appendix D contains the QPS for Helicopter Flight Training Devices.
(e) Appendix E contains the QPS for Quality Management Systems for FSTDs.
(f) Appendix F contains the QPS for Definitions and Abbreviations for FSTDs.

§ 60.5 Quality management system.
(a) After May 30, 2010, no sponsor may use or allow the use of or offer the use of an FSTD for flight crewmember training or evaluation or for obtaining flight experience to meet any requirement of this chapter unless the sponsor has established and follows a quality management system (QMS), currently approved by the National Simulator Program Manager (NSPM), for the continuing surveillance and analysis of the sponsor’s performance and effectiveness in providing a satisfactory FSTD for use on a regular basis as described in QPS appendix E of this part.
(b) The QMS program must provide a process for identifying deficiencies in the program and for documenting how the program will be changed to address these deficiencies.
(c) Whenever the NSPM finds that the QMS program does not adequately address the procedures necessary to meet the requirements of this part, the sponsor must, after notification by the NSPM, change the program so the procedures meet the requirements of this part. Each such change must be approved by the NSPM prior to implementation.
(d) Within 30 days after the sponsor receives a notice described in paragraph (c) of this section, the sponsor may file a petition with the Director of Flight Standards Service (the Director) for reconsideration of the NSPM finding. The sponsor must address its petition to the Director, Flight Standards Service, AFS–1, Federal Aviation Administration, 800 Independence Ave., SW., Washington, DC 20591. The filing of such a petition to reconsider stays the notice pending a decision by the Director. However, if the Director finds that there is a situation that requires immediate action in the interest of safety in air commerce, he may, upon a statement of the reasons, require a change effective without stay.

§ 60.7 Sponsor qualification requirements.
(a) A person is eligible to apply to be a sponsor of an FSTD if the following conditions are met:
(1) The person holds, or is an applicant for, a certificate under part 119, 141, or 142 of this chapter; or holds, or is an applicant for, an approved flight engineer course in accordance with part 63 of this chapter.
(2) The FSTD will be used, or will be offered for use, in the sponsor’s FAA-approved flight training program for...
§ 60.9 Additional responsibilities of the sponsor.

(a) The sponsor must allow the NSPM upon request to inspect the FSTD as soon as practicable. This inspection may include all records and documents relating to the FSTD, to determine its compliance with this part.

(b) The sponsor must do the following for each FSTD:

(1) Establish a mechanism to receive written comments regarding the FSTD and its operation in accordance with the QPS appendix E of this part.

(2) Post in or adjacent to the FSTD the Statement of Qualification issued by the NSPM. An electronic copy of the Statement of Qualification that may be accessed by an appropriate terminal or display in or adjacent to the FSTD is satisfactory.

the aircraft being simulated as evidenced in a request for evaluation submitted to the NSPM.

(b) A person is a sponsor if the following conditions are met:

(1) The person is a certificate holder under part 119, 141, or 142 of this chapter or has an approved flight engineer course in accordance with part 63 of this chapter.

(2) The person has—

(i) Operations specifications authorizing the use of the specific aircraft or set of aircraft and has an FAA-approved training program under which at least one FSTD, simulating the aircraft or set of aircraft and for which the person is the sponsor, is used by the sponsor as described in paragraphs (b)(5) or (b)(6) of this section; or

(ii) Training specifications or an FAA-approved course of training under which at least one FSTD, simulating that aircraft or set of aircraft and for which the person is the sponsor, is used by the sponsor as described in paragraphs (b)(5) or (b)(6) of this section.

(3) The person has a quality management system currently approved by the NSPM in accordance with § 60.5.

(4) The NSPM has accepted the person as the sponsor of the FSTD and that acceptance has not been withdrawn by the FAA.

(5) At least one FSTD (as referenced in paragraph (b)(2)(i) or (b)(2)(ii) of this section) that is initially qualified on or after May 30, 2008, is used within the sponsor’s FAA-approved flight training program for the aircraft or set of aircraft at least once within the 12-month period following the initial/upgrade evaluation, and at least once within each subsequent 12-month period thereafter.

(6) At least one FSTD (as referenced in paragraph (b)(2)(i) or (b)(2)(ii) of this section) that was qualified before May 30, 2008, is used within the sponsor’s FAA-approved flight training program for the aircraft or set of aircraft at least once within the 12-month period following the first continuing qualification evaluation conducted by the NSPM after May 30, 2008 and at least once within each subsequent 12-month period thereafter.

If the use requirements of paragraphs (b)(2) and either (b)(5) or (b)(6) of this section are not met, the person will forfeit the right to sponsor that FSTD and that person will not be eligible to apply to sponsor that FSTD for at least 12 calendar months following the expiration of the qualification status.

(d) In addition to the FSTD described in paragraph (b) of this section, an FSTD sponsor may sponsor any number of other FSTDs regardless of specific aircraft or set of aircraft provided either—

(1) During the preceding 12-month period, all of the other FSTDs are used within the sponsor’s or another certificate holder’s FAA-approved flight training program for the aircraft or set of aircraft simulated; or

(2) The sponsor obtains a written statement at least annually from a qualified pilot who has flown the aircraft or set of aircraft (as appropriate) during the preceding 12-month period stating that the subject FSTD’s performance and handling qualities, within the normal operating envelope, represent the aircraft or set of aircraft described in the FAA Type Certificate and the type data sheet, if appropriate. The sponsor must retain the two most current written statements for review by the NSPM.
§ 60.11 FSTD use.

No person may use or allow the use of an FSTD for flight crewmember training or evaluation or for obtaining flight experience to meet any of the requirements under this chapter unless, in accordance with the QPS for the specific device, the FSTD meets all of the following:

(a) Has a single sponsor who is qualified under §60.7. The sponsor may arrange with another person for services of document preparation and presentation, as well as FSTD inspection, maintenance, repair, and servicing; however, the sponsor remains responsible for ensuring that these functions are conducted in a manner and with a result of continually meeting the requirements of this part.

(b) Is qualified as described in the Statement of Qualification.

(c) Remains qualified, through satisfactory inspection, continuing qualification evaluations, appropriate maintenance, and use requirements in accordance with this part and the applicable QPS.

(d) Functions during day-to-day training, evaluation, or flight experience activities with the software and hardware that was evaluated as satisfactory by the NSPM and, if modified, modified only in accordance with the provisions of this part. However, this section does not apply to routine software or hardware changes that do not fall under the requirements of §60.23.

(e) Is operated in accordance with the provisions and limitations of §60.25.

§ 60.13 FSTD objective data requirements.

(a) Except as provided in paragraph (b) and (c) of this section, for the purposes of validating FSTD performance and handling qualities during evaluation for qualification, the data made available to the NSPM (the validation data package) must include the aircraft manufacturer’s flight test data and all relevant data developed after the type certificate was issued (e.g., data developed in response to an airworthiness directive) if such data results from a change in performance, handling qualities, functions, or other characteristics of the aircraft that must be considered for flight crewmember training, evaluation, or for meeting experience requirements of this chapter.

(b) The validation data package may contain flight test data from a source in addition to or independent of the aircraft manufacturer’s data in support of an FSTD qualification, but only if this data is gathered and developed by that source in accordance with flight test methods, including a flight test plan, as described in the applicable QPS.

(c) The validation data package may also contain predicted data, engineering simulation data, data from pilot owner or pilot operating manuals, or data from public domain sources, provided this data is acceptable to the NSPM. If found acceptable the data may then be used in particular applications for FSTD qualification.
Federal Aviation Administration, DOT § 60.15

(d) Data or other material or elements must be submitted in a form and manner acceptable to the NSPM.

(e) The NSPM may require additional objective data, which may include flight testing if necessary, if the validation data package does not support FSTD qualification requirements as described in this part and the applicable QPS appendix.

(f) When an FSTD sponsor learns, or is advised by an aircraft manufacturer or other data provider, that an addition to, an amendment to, or a revision of data that may relate to FSTD performance or handling characteristics is available, the sponsor must notify the NSPM as described in the applicable QPS.

§ 60.14 Special equipment and personnel requirements for qualification of the FSTD.

When notified by the NSPM, the sponsor must make available all special equipment and qualified personnel needed to accomplish or assist in the accomplishment of tests during initial qualification, continuing qualification, or special evaluations.

§ 60.15 Initial qualification requirements.

(a) For each FSTD, the sponsor must submit a request to the NSPM to evaluate the FSTD for initial qualification at a specific level and simultaneously request the Training Program Approval Authority (TPAA) forward a concurring letter to the NSPM. The request must be submitted in the form and manner described in the applicable QPS.

(b) The management representative described in § 60.9(c) must sign a statement (electronic signature is acceptable for electronic transmissions) after confirming the following:

(1) The performance and handling qualities of the FSTD represent those of the aircraft or set of aircraft within the normal operating envelope. This determination must be made by a pilot(s) meeting the requirements of paragraph (d) of this section after having flown all of the Operations Tasks listed in the applicable QPS appendix relevant to the qualification level of the FSTD. Exceptions, if any, must be noted. The name of the person(s) making this determination must be available to the NSPM upon request.

(2) The FSTD systems and sub-systems (including the simulated aircraft systems) functionally represent those in the aircraft or set of aircraft. This determination must be made by the pilot(s) described in paragraph (b)(1) of this section, or by a person(s) trained on simulator systems/sub-systems and trained on the operation of the simulated aircraft systems, after having exercised the operation of the FSTD and the pertinent functions available through the Instructor Operating Station(s). Exceptions, if any, must be noted. The name of the person(s) making this determination must be available to the NSPM upon request.

(3) The cockpit represents the configuration of the specific type; or aircraft make, model, and series aircraft being simulated, as appropriate. This determination must be made by the pilot(s) described in paragraph (b)(1) of this section, or by a person(s) trained on the configuration and operation of the aircraft simulated. Exceptions, if any, must be noted. The name of the person(s) making this determination must be available to the NSPM upon request.

(c) Except for those FSTDs previously qualified and described in § 60.17, each FSTD evaluated for initial qualification must meet the standard that is in effect at the time of the evaluation. However—

(1) If the FAA publishes a change to the existing standard or publishes a new standard for the evaluation for initial qualification, a sponsor may request that the NSPM apply the standard that was in effect when an FSTD was ordered for delivery if the sponsor—

(i) Within 30 days of the publication of the change to the existing standard or publication of the new standard, notifies the NSPM that an FSTD has been ordered;

(ii) Within 90 days of the NSPM notification described in paragraph (c)(1)(i) of this section, requests that the standard in effect at the time the order was placed be used for the evaluation for initial qualification; and
§ 60.16 Additional qualifications for a currently qualified FSTD.

(a) A currently qualified FSTD is required to undergo an additional qualification process if a user intends to use the FSTD for meeting training, evaluation, or flight experience requirements of this chapter beyond the qualification issued for that FSTD. This process consists of the following:

(1) The sponsor:

(i) Must submit to the NSPM all modifications to the MQTG that are required to support the additional qualification.

(ii) Must describe to the NSPM all modifications to the FSTD that are required to support the additional qualification.

(2) This notification must include a description of the FSTD; the anticipated qualification level of the FSTD; the make, model, and series of aircraft simulated; and any other pertinent information.

(3) Any tests, tolerances, or other requirements that are current at the time of the evaluation may be used during the initial evaluation, at the request of the sponsor, if the sponsor provides acceptable updates to the required qualification test guide.

(4) The standards used for the evaluation for initial qualification will be used for all subsequent evaluations of the FSTD.

(d) The pilot(s) who contributes to the confirmation statement required by paragraph (b) of this section must—

(1) Be designated by the sponsor; and

(2) Be qualified in—

(i) The aircraft or set of aircraft being simulated; or

(ii) For aircraft not yet issued a type certificate, or aircraft not previously operated by the sponsor or not having previous FAA-approved training programs conducted by the sponsor, an aircraft similar in size and configuration.

(e) The subjective tests that form the basis for the statements described in paragraph (b) of this section and the objective tests referenced in paragraph (f) of this section must be accomplished at the sponsor’s training facility, except as provided for in the applicable QPS.

(f) The person seeking to qualify the FSTD must provide the NSPM access to the FSTD for the length of time necessary for the NSPM to complete the required evaluation of the FSTD for initial qualification, which includes the conduct and evaluation of objective and subjective tests, including general FSTD requirements, as described in the applicable QPS, to determine that the FSTD meets the standards in that QPS.

(g) When the FSTD passes an evaluation for initial qualification, the NSPM issues a Statement of Qualification that includes all of the following:

(1) Identification of the sponsor.

(2) Identification of the make, model, and series of the aircraft or set of aircraft being simulated.

(3) Identification of the configuration of the aircraft or set of aircraft being simulated (e.g., engine model or models, flight instruments, or navigation or other systems).

(4) A statement that the FSTD is qualified as either a full flight simulator or a flight training device.

(5) Identification of the qualification level of the FSTD.

(6) A statement that (with the exception of the noted exclusions for which the FSTD has not been subjectively tested by the sponsor or the NSPM and for which qualification is not sought) the qualification of the FSTD includes the tasks set out in the applicable QPS appendix relevant to the qualification level of the FSTD.

(h) After the NSPM completes the evaluation for initial qualification, the sponsor must update the Qualification Test Guide (QTG), with the results of the FAA-witnessed tests together with the results of all the objective tests described in the applicable QPS.

(i) Upon issuance of the Statement of Qualification the updated QTG becomes the Master Qualification Test Guide (MQTG). The MQTG must be made available to the NSPM upon request.
(iii) Must submit to the NSPM a confirmation statement as described in §60.15(c) that a pilot, designated by the sponsor in accordance with §60.15(d), has subjectively evaluated the FSTD in those areas not previously evaluated.

(2) The FSTD must successfully pass an evaluation—

(i) Consisting of all the elements of an initial evaluation for qualification in those circumstances where the NSPM has determined that all the elements of an initial evaluation for qualification is necessary; or

(ii) Consisting of those elements of an initial evaluation for qualification designated as necessary by the NSPM.

(b) In making the determinations described in paragraph (a)(2) of this section, the NSPM considers factors including the existing qualification of the FSTD, any modifications to the FSTD hardware or software that are involved, and any additions or modifications to the MQTG.

(c) The FSTD is qualified for the additional uses when the NSPM issues an amended Statement of Qualification in accordance with §60.15(h).

(d) The sponsor may not modify the FSTD except as described in §60.23.

§ 60.17 Previously qualified FSTDs.

(a) Unless otherwise specified by an FSTD Directive, further referenced in the applicable QPS, or as specified in paragraph (e) of this section, an FSTD qualified before May 30, 2008 will retain its qualification basis as long as it continues to meet the standards, including the objective test results recorded in the MQTG and subjective tests, under which it was originally evaluated, regardless of sponsor. The sponsor of such an FSTD must comply with the other applicable provisions of this part.

(b) For each FSTD qualified before May 30, 2008, no sponsor may use or allow the use of or offer the use of such an FSTD after May 30, 2014 for flight crewmember training, evaluation, or flight experience to meet any of the requirements of this chapter, unless that FSTD has been issued a Statement of Qualification, including the Configuration List and the List of Qualified Tasks in accordance with the procedures set out in the applicable QPS.

(c) If the FSTD qualification is lost under §60.27 and—

(i) Restored under §60.27 in less than (2) years, then the qualification basis (in terms of objective tests and subjective tests) for the re-qualification will be those against which the FSTD was originally evaluated and qualified.

(ii) Not restored under §60.27 for two (2) years or more, then the qualification basis (in terms of objective tests and subjective tests) for the re-qualification will be those standards in effect and current at the time of re-qualification application.

(d) Except as provided in paragraph (e) of this section, any change in FSTD qualification level initiated on or after May 30, 2008 requires an evaluation for initial qualification in accordance with this part.

(e) A sponsor may request that an FSTD be permanently downgraded. In such a case, the NSPM may downgrade a qualified FSTD without requiring and without conducting an initial evaluation for the new qualification level. Subsequent continuing qualification evaluations will use the existing MQTG, modified as necessary to reflect the new qualification level.

(f) When the sponsor has appropriate validation data available and receives approval from the NSPM, the sponsor may adopt tests and associated tolerances described in the current qualification standards as the tests and tolerances applicable for the continuing qualification of a previously qualified FSTD. The updated test(s) and tolerance(s) must be made a permanent part of the MQTG.

§ 60.19 Inspection, continuing qualification evaluation, and maintenance requirements.

(a) Inspection. No sponsor may use or allow the use of or offer the use of an FSTD for flight crewmember training, evaluation, or flight experience to meet any of the requirements of this chapter unless the FSTD has been issued a Statement of Qualification, including the Configuration List and the List of Qualified Tasks in accordance with the procedures set out in the applicable QPS.
(2) Completes a functional preflight check within the preceding 24 hours.

(b) Continuing qualification evaluation.
(1) This evaluation consists of objective tests, and subjective tests, including general FSTD requirements, as described in the applicable QPS or as may be amended by an FSTD Directive.

(2) The sponsor must contact the NSPM to schedule the FSTD for continuing qualification evaluations not later than 60 days before the evaluation is due.

(3) The sponsor must provide the NSPM access to the objective test results in the MQTG and access to the FSTD for the length of time necessary for the NSPM to complete the required continuing qualification evaluations.

(4) The frequency of NSPM-conducted continuing qualification evaluations for each FSTD will be established by the NSPM and specified in the MQTG.

(5) Continuing qualification evaluations conducted in the calendar month before or after the calendar month in which these continuing qualification evaluations are required will be considered to have been conducted in the calendar month in which they were required.

(6) No sponsor may use or allow the use of or offer the use of an FSTD for flight crewmember training or evaluation or for obtaining flight experience for the flight crewmember to meet any requirement of this chapter unless the FSTD has passed an NSPM-conducted continuing qualification evaluation within the time frame specified in the MQTG or within the grace period as described in paragraph (b)(5) of this section.

(c) Maintenance. The sponsor is responsible for continuing corrective and preventive maintenance on the FSTD to ensure that it continues to meet the requirements of this part and the applicable QPS appendix. No sponsor may use or allow the use of or offer the use of an FSTD for flight crewmember training, evaluation, or flight experience to meet any of the requirements of this chapter unless the sponsor does the following:

(1) Maintains a discrepancy log.

(2) Ensures that, when a discrepancy is discovered, the following requirements are met:

 (i) A description of each discrepancy is entered in the log and remains in the log until the discrepancy is corrected as specified in §60.25(b).

 (ii) A description of the corrective action taken for each discrepancy, the identity of the individual taking the action, and the date that action is taken is entered in the log.

 (iii) The discrepancy log is kept in a form and manner acceptable to the Administrator and is kept in or adjacent to the FSTD. An electronic log that may be accessed by an appropriate terminal or display in or adjacent to the FSTD is satisfactory.

§ 60.20 Logging FSTD discrepancies.

Each instructor, check airman, or representative of the Administrator conducting training, evaluation, or flight experience, and each person conducting the preflight inspection who discovers a discrepancy, including any missing, malfunctioning, or inoperative components in the FSTD, must write or cause to be written a description of that discrepancy into the discrepancy log at the end of the FSTD preflight or FSTD use session.

§ 60.21 Interim qualification of FSTDs for new aircraft types or models.

(a) A sponsor may apply for and the NSPM may issue an interim qualification level for an FSTD for a new type or model of aircraft, even though the aircraft manufacturer’s aircraft data package is preliminary, if the sponsor provides the following to the satisfaction of the NSPM—

(1) The aircraft manufacturer’s data, which consists of at least predicted data, validated by a limited set of flight test data;

(2) The aircraft manufacturer’s description of the prediction methodology used to develop the predicted data; and

(3) The QTG test results.

(b) An FSTD that has been issued interim qualification is deemed to have been issued initial qualification unless the NSPM rescinds the qualification. Interim qualification terminates two years after its issuance, unless the
Federal Aviation Administration, DOT § 60.25

NSPM determines that specific conditions warrant otherwise.

(c) Within twelve months of the release of the final aircraft data package by the aircraft manufacturer, but no later than two years after the issuance of the interim qualification status, the sponsor must apply for initial qualification in accordance with §60.15 based on the final aircraft data package approved by the aircraft manufacturer, unless the NSPM determines that specific conditions warrant otherwise.

(d) An FSTD with interim qualification may be modified only in accordance with §60.23.

§ 60.23 Modifications to FSTDs.

(a) Description of a modification. For the purposes of this part, an FSTD is said to have been modified when:

(1) Equipment or devices intended to simulate aircraft appliances are added to or removed from FSTD, which change the Statement of Qualification or the MQTG; or

(2) Changes are made to either software or hardware that are intended to impact flight or ground dynamics; changes are made that impact performance or handling characteristics of the FSTD (including motion, visual, control loading, or sound systems for those FSTD levels requiring sound tests and measurements); or changes are made to the MQTG.

(b) FSTD Directive. When the FAA determines that FSTD modification is necessary for safety of flight reasons, the sponsor of each affected FSTD must ensure that the FSTD is modified according to the FSTD Directive regardless of the original qualification standards applicable to any specific FSTD.

(c) Using the modified FSTD. The sponsor may not use, or allow the use of, or offer the use of, the FSTD with the proposed modification for flight crewmember training or evaluation or for obtaining flight experience for the flight crewmember to meet any requirement of this chapter unless:

(1) The sponsor has notified the NSPM and the TPAA of their intent to incorporate the proposed modification, and one of the following has occurred:

(i) Twenty-one days have passed since the sponsor notified the NSPM and the TPAA of the proposed modification and the sponsor has not received any response from either the NSPM or the TPAA;

(ii) Twenty-one days have passed since the sponsor notified the NSPM and the TPAA of the proposed modification and one has approved the proposed modification and the other has not responded;

(iii) Fewer than twenty-one days have passed since the sponsor notified the NSPM and the TPAA of the proposed modification and the NSPM and TPAA both approve the proposed modification;

(iv) The sponsor has successfully completed any evaluation the NSPM and the TPAA of the proposed modification and the NSPM and TPAA both approve the proposed modification;

(2) The notification is submitted with the content as, and in a form and manner as, specified in the applicable QPS.

(d) User notification. When a modification is made to an FSTD that affects the Statement of Qualification, the sponsor must post an addendum to the Statement of Qualification until such time as a permanent, updated statement is posted.

(e) MQTG update. The MQTG must be updated with current objective test results in accordance with §60.15(h) and (i) and appropriate objective data in accordance with §60.13, each time an FSTD is modified and an objective test or other MQTG section is affected by the modification. If an FSTD Directive is the cause of this update, the direction to make the modification and the record of the modification completion must be filed in the MQTG.

§ 60.25 Operation with missing, malfunctioning, or inoperative components.

(a) No person may knowingly use or allow the use of, or misrepresent the capability of an FSTD for any maneuver, procedure, or task that is to be accomplished to meet training, evaluation, or flight experience requirements of this chapter for flight crewmember certification or qualification when there is a
§ 60.27 Automatic loss of qualification and procedures for restoration of qualification.

(a) An FSTD qualification is automatically lost when any of the following occurs:

(1) The FSTD is not used in the sponsor’s FAA-approved flight training program in accordance with §60.7(b)(5) or (b)(6) and the sponsor does not obtain and maintain the written statement as described in §60.7(d)(2).

(2) The FSTD is not inspected in accordance with §60.19.

(3) The FSTD is physically moved from one location and installed in a different location, regardless of distance.

(4) The MQTG is missing or otherwise not available and a replacement is not made within 30 days.

(b) If FSTD qualification is lost under paragraph (a) of this section, qualification is restored when either of the following provisions is met:

(1) The FSTD successfully passes an evaluation:

 (i) For initial qualification, in accordance with §§60.15 and 60.17(c) in those circumstances where the NSPM has determined that a full evaluation for initial qualification is necessary; or

 (ii) For those elements of an evaluation for initial qualification, in accordance with §§60.15 and 60.17(c), as determined to be necessary by the NSPM.

(2) The NSPM advises the sponsor that an evaluation is not necessary.

(c) In making the determinations described in paragraph (b) of this section, the NSPM considers factors including the number of continuing qualification evaluations missed, the number of sponsor-conducted quarterly inspections missed, and the care that had been taken of the device since the last evaluation.

§ 60.29 Other losses of qualification and procedures for restoration of qualification.

(a) Except as provided in paragraph (c) of this section, when the NSPM determines that the FSTD no longer meets qualification standards, the following procedure applies:

(1) The NSPM notifies the sponsor in writing that the FSTD no longer meets some or all of its qualification standards.

(2) The NSPM sets a reasonable period (but not less than 7 days) within which the sponsor may submit written information, views, and arguments on the FSTD qualification.

(3) After considering all material presented, the NSPM notifies the sponsor about the determination with regard to the qualification of the FSTD.

(4) When the NSPM notifies the sponsor that some or all of the FSTD is no longer qualified, the action described in the notification becomes effective not less than 30 days after the sponsor receives that notice unless—

 (i) The NSPM finds under paragraph (c) of this section that there is an emergency requiring immediate action with respect to safety in air commerce; or

 (ii) The sponsor petitions the Director of Flight Standards Service for reconsideration of the NSPM finding under paragraph (b) of this section.

(b) When a sponsor seeks reconsideration of a decision from the NSPM concerning the FSTD qualification, the following procedure applies:

(1) The sponsor must petition for reconsideration of that decision within 30 days of the date that the sponsor receives a notice that some or all of the FSTD is no longer qualified.
(2) The sponsor must address its petition to the Director, Flight Standards Service, AFS-1, Federal Aviation Administration, 800 Independence Ave., SW., Washington, DC 20591.

(3) A petition for reconsideration, if filed within the 30-day period, suspends the effectiveness of the determination by the NSPM that the FSTD is no longer qualified unless the NSPM has found, under paragraph (c) of this section, that an emergency exists requiring immediate action with respect to safety in air commerce.

(c) If the NSPM find that an emergency exists requiring immediate action with respect to safety in air commerce or that makes the procedures set out in this section impracticable or contrary to the public interest:

(1) The NSPM withdraws qualification of some or all of the FSTD and makes the withdrawal of qualification effective on the day the sponsor receives notice of it.

(2) In the notice to the sponsor, the NSPM articulates the reasons for its finding that an emergency exists requiring immediate action with respect to safety in air transportation or air commerce or that makes it impracticable or contrary to the public interest to stay the effectiveness of the finding.

(d) FSTD qualification lost under paragraph (a) or (c) of this section may be restored when either of the following provisions are met:

(1) The FSTD successfully passes an evaluation for initial qualification, in accordance with §§60.15 and 60.17(c) in those circumstances where the NSPM has determined that a full evaluation for initial qualification is necessary; or

(2) The FSTD successfully passes an evaluation for those elements of an initial qualification evaluation, in accordance with §§60.15 and 60.17(c), as determined to be necessary by the NSPM.

(e) In making the determinations described in paragraph (d) of this section, the NSPM considers factors including the reason for the loss of qualification, any repairs or replacements that may have to have been completed, the number of continuing qualification evaluations missed, the number of sponsor-conducted quarterly inspections missed, and the care that had been taken of the device since the loss of qualification.

§ 60.31 Recordkeeping and reporting.

(a) The FSTD sponsor must maintain the following records for each FSTD it sponsors:

(1) The MQTG and each amendment thereto.

(2) A record of all FSTD modifications affected under §60.23 since the issuance of the original Statement of Qualification.

(3) A copy of all of the following:

(i) Results of the qualification evaluations (initial and each upgrade) since the issuance of the original Statement of Qualification.

(ii) Results of the objective tests conducted in accordance with §60.19(a) for a period of 2 years.

(iii) Results of the previous three continuing qualification evaluations, or the continuing qualification evaluations from the previous 2 years, whichever covers a longer period.

(iv) Comments obtained in accordance with §60.9(b) for a period of at least 90 days.

(4) A record of all discrepancies entered in the discrepancy log over the previous 2 years, including the following:

(i) A list of the components or equipment that were or are missing, malfunctioning, or inoperative.

(ii) The action taken to correct the discrepancy.

(iii) The date the corrective action was taken.

(iv) The identity of the person determining that the discrepancy has been corrected.

(b) The records specified in this section must be maintained in plain language form or in coded form if the coded form provides for the preservation and retrieval of information in a manner acceptable to the NSPM.

§ 60.33 Applications, logbooks, reports, and records: Fraud, falsification, or incorrect statements.

(a) No person may make, or cause to be made, any of the following:

(1) A fraudulent or intentionally false statement in any application or any
amendment thereto, or any other report or test result required by this part.

(2) A fraudulent or intentionally false statement in or a known omission from any record or report that is kept, made, or used to show compliance with this part, or to exercise any privileges under this chapter.

(3) Any reproduction or alteration, for fraudulent purpose, of any report, record, or test result required under this part.

(b) The commission by any person of any act prohibited under paragraph (a) of this section is a basis for any one or any combination of the following:

(1) A civil penalty.

(2) Suspension or revocation of any certificate held by that person that was issued under this chapter.

(3) The removal of FSTD qualification and approval for use in a training program.

(c) The following may serve as a basis for removal of qualification of an FSTD including the withdrawal of approval for use of an FSTD; or denying an application for a qualification:

(1) An incorrect statement, upon which the FAA relied or could have relied, made in support of an application for a qualification or a request for approval for use.

(2) An incorrect entry, upon which the FAA relied or could have relied, made in any logbook, record, or report that is kept, made, or used to show compliance with any requirement for an FSTD qualification or an approval for use.

§ 60.35 Specific full flight simulator compliance requirements.

(a) No device will be eligible for initial or upgrade qualification to a FFS at Level C or Level D under this part unless it includes the equipment and appliances installed and operating to the extent necessary for the issuance of an airman certificate or rating.

(b) No device will be eligible for initial or upgrade qualification to a FFS at Level A or Level B under this part unless it includes the equipment and appliances installed and operating to the extent necessary for the training, testing, and/or checking that comprise the simulation portion of the requirements for issuance of an airman certificate or rating.

§ 60.37 FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).

(a) The evaluation and qualification of an FSTD by a contracting State to the Convention on International Civil Aviation for the sponsor of an FSTD located in that contracting State may be used as the basis for issuing a U.S. statement of qualification (see applicable QPS, attachment 4, figure 4) by the NSPM to the sponsor of that FSTD in accordance with—

(1) A BASA between the United States and the Contracting State that issued the original qualification; and

(2) A Simulator Implementation Procedure (SIP) established under the BASA.

(b) The SIP must contain any conditions and limitations on validation and issuance of such qualification by the U.S.

APPENDIX A TO PART 60—QUALIFICATION PERFORMANCE STANDARDS FOR AIRPLANE FULL FLIGHT SIMULATORS

BEGIN INFORMATION

This appendix establishes the standards for Airplane FFS evaluation and qualification. The NSPM is responsible for the development, application, and implementation of the standards contained within this appendix. The procedures and criteria specified in this appendix will be used by the NSPM, or a person assigned by the NSPM, when conducting airplane FFS evaluations.

TABLE OF CONTENTS

1. Introduction.
2. Applicability (§§ 60.1 and 60.2).
3. Definitions (§ 60.3).
4. Qualification Performance Standards (§§ 60.4).
5. Quality Management System (§ 60.5).
6. Sponsor Qualification Requirements (§ 60.7).
7. Additional Responsibilities of the Sponsor (§ 60.9).
8. FFS Use (§ 60.11).
9. FFS Objective Data Requirements (§ 60.13).
10. Special Equipment and Personnel Requirements for Qualification of the FFS (§ 60.14).
11. Initial (and Upgrade) Qualification Requirements (§ 60.15).
12. Additional Qualifications for a Currently Qualified FFS (§ 60.16).
13. Previously Qualified FFSs (§ 60.17).
15. Logging FFS Discrepancies (§ 60.20).
16. Interim Qualification of FFSs for New Airplane Types or Models (§ 60.21).
17. Modifications to FFSs (§ 60.23).
18. Operations With Missing, Malfunctioning, or Inoperative Components (§ 60.25).
19. Automatic Loss of Qualification and Procedures for Restoration of Qualification (§ 60.27).
20. Other Losses of Qualification and Procedures for Restoration of Qualification (§ 60.29).
21. Record Keeping and Reporting (§ 60.31).
22. Applications, Logbooks, Reports, and Records: Fraud, Falsification, or Incorrect Statements (§ 60.33).
23. Specific FFS Compliance Requirements (§ 60.35).
24. [Reserved]
25. FFS Qualification on the Basis of a Bilateral Aviation Safety Agreement (BASA) (§ 60.37).

Attachment 1 to Appendix A to Part 60—General Simulator Requirements.
Attachment 2 to Appendix A to Part 60—FFS Objective Tests.
Attachment 3 to Appendix A to Part 60—Simulator Subjective Evaluation.
Attachment 4 to Appendix A to Part 60—Sample Documents.
Attachment 5 to Appendix A to Part 60—Simulator Qualification Requirements for Windshear Training Program Use.
Attachment 6 to Appendix A to Part 60—FSTD Directives Applicable to Airplane Flight Simulators.

END INFORMATION

1. INTRODUCTION

BEGIN INFORMATION

a. This appendix contains background information as well as regulatory and informative material as described later in this section. To assist the reader in determining what areas are required and what areas are permissive, the text in this appendix is divided into two sections: "Requirements" and "Information." The Requirements sections contain details regarding compliance with the part 60 rule language. These details are regulatory, but are found only in this appendix. The Information sections contain material that is advisory in nature, and designed to give the user general information about the regulation.

b. Questions regarding the contents of this publication should be sent to the U.S. Department of Transportation, Federal Aviation Administration, Flight Standards Service, National Simulator Program Staff, AFS-205, 100 Hartsfield Centre Parkway, Suite 400, Atlanta, Georgia 30334. Telephone contact numbers for the NSP are: Phone, 404-832-4700; fax, 404-761-8906. The general e-mail address for the NSP office is: 9-aso-avr-sim-team@faa.gov. The NSP Internet Web site address is: http://www.faa.gov/safety/programs_initiatives/aircraft aviation/nsp/. On this Web site you will find an NSP personnel list with telephone and e-mail contact information for each NSP staff member, a list of qualified flight simulation devices, advisory circulars (ACs), a description of the qualification process, NSP policy, and an NSP "In-Works" section. Also linked from this site are additional information sources, handbook bulletins, frequently asked questions, a listing and text of the Federal Aviation Regulations, Flight Standards Inspector's handbooks, and other FAA links.

c. The NSPM encourages the use of electronic media for all communication, including any record, report, request, test, or statement required by this appendix. The electronic media used must have adequate security provisions and be acceptable to the NSPM. The NSPM recommends inquiries on system compatibility, and minimum system requirements are also included on the NSP Web site.

d. Related Reading References.

(1) 14 CFR part 60.
(2) 14 CFR part 61.
(3) 14 CFR part 63.
(4) 14 CFR part 119.
(5) 14 CFR part 121.
(6) 14 CFR part 125.
(7) 14 CFR part 135.
(8) 14 CFR part 141.
(9) 14 CFR part 142.
(10) AC 120-28, as amended, Criteria for Approval of Category III Landing Weather Minima.
(11) AC 120-29, as amended, Criteria for Approving Category I and Category II Landing Minima for part 121 operators.
(13) AC 120-40, as amended, Airplane Simulator Qualification.
(14) AC 120-41, as amended, Criteria for Operational Approval of Airborne Wind Shear Alerting and Flight Guidance Systems.
(15) AC 120-57, as amended, Surface Movement Guidance and Control System (SMGCS).
(16) AC 150/5300-13, as amended, Airport Design.
2. APPLICABILITY (§§ 60.1 AND 60.2)

BEGIN INFORMATION

No additional regulatory or informational material applies to §§60.1, Applicability, or to §60.2, Applicability of sponsor rules to persons who are not sponsors and who are engaged in certain unauthorized activities.

END INFORMATION

3. DEFINITIONS (§60.3)

BEGIN INFORMATION

See Appendix F of this part for a list of definitions and abbreviations from part 1 and part 60, including the appropriate appendices of part 60.

END INFORMATION

4. QUALIFICATION PERFORMANCE STANDARDS (§60.4)

BEGIN INFORMATION

No additional regulatory or informational material applies to §60.4, Qualification Performance Standards.

END INFORMATION

5. QUALITY MANAGEMENT SYSTEM (§60.5)

BEGIN INFORMATION

See Appendix E of this part for additional regulatory and informational material regarding Quality Management Systems.

END INFORMATION

6. SPONSOR QUALIFICATION REQUIREMENTS (§60.7)

BEGIN INFORMATION

a. The intent of the language in §60.7(b) is to have a specific FFS, identified by the sponsor, used at least once in an FAA-approved flight training program for the airplane simulated during the 12-month period described. The identification of the specific FFS may change from one 12-month period to the next 12-month period as long as the sponsor sponsors and uses at least one FFS at least once during the prescribed period. No minimum number of hours or minimum FFS periods are required.

b. The following examples describe acceptable operational practices:

(1) Example One.

(a) A sponsor is sponsoring a single, specific FFS for its own use, in its own facility or elsewhere—this single FFS forms the basis for the sponsorship. The sponsor uses that FFS at least once in each 12-month period in the sponsor’s FAA-approved flight training program for the airplane simulated. This 12-month period is established according to the following schedule:

(i) If the FFS was qualified prior to May 30, 2008, the 12-month period begins on the date of the first continuing qualification evaluation conducted in accordance with §60.19 after May 30, 2008, and continues for each subsequent 12-month period;
(ii) A device qualified on or after May 30, 2008, will be required to undergo an initial or upgrade evaluation in accordance with §60.15. Once the initial or upgrade evaluation is complete, the first continuing qualification evaluation will be conducted within 6 months. The 12-month continuing qualification evaluation cycle begins on that date and continues for each subsequent 12-month period.

(b) There is no minimum number of hours of FFS use required.

(c) The identification of the specific FFS may change from one 12-month period to the next 12-month period as long as the sponsor sponsors and uses at least one FFS at least once during the prescribed period.

(2) Example Two.
(a) A sponsor sponsors an additional number of FFSs, in its facility or elsewhere. Each additionally sponsored FFS must be—
(i) Used by the sponsor in the sponsor’s FAA-approved flight training program for the airplane simulated (as described in §60.7(d)(1));
OR
(ii) Used by another FAA certificate holder in that other certificate holder’s FAA-approved flight training program for the airplane simulated (as described in §60.7(d)(1)).

This 12-month period is established in the same manner as in example one;
OR
(iii) Provided a statement each year from a qualified pilot (after having flown the airplane, not the subject FFS or another FFS, during the preceding 12-month period), stating that the performance and handling qualities of each FFS in the Chicago and Moscow centers represent the airplane (as described in §60.7(d)(2)).

(b) No minimum number of hours of FFS use is required.

(3) Example Three.
(a) A sponsor in New York (in this example, a Part 142 certificate holder) establishes “satellite” training centers in Chicago and Moscow.
(b) The satellite function means that the Chicago and Moscow centers must operate under the New York center’s certificate (in accordance with all of the New York center’s practices, procedures, and policies; e.g., instructor and/or technician training/checking requirements, record keeping, QMS program).
(c) All of the FFSs in the Chicago and Moscow centers could be dry-leased (i.e., the certificate holder does not have and use FAA-approved flight training programs for the FFSs in the Chicago and Moscow centers) because—
(i) Each FFS in the Chicago center and each FFS in the Moscow center is used at least once each 12-month period by another FAA certificate holder in that other certificate holder’s FAA-approved flight training program for the airplane (as described in §60.7(d)(1));
OR
(ii) A statement is obtained from a qualified pilot (having flown the airplane, not the subject FFS or another FFS, during the preceding 12-month period) stating that the performance and handling qualities of each FFS in the Chicago and Moscow centers represent the airplane (as described in §60.7(d)(2)).

The phrase “as soon as practicable” in §60.9(a) means without unnecessarily disrupting or delaying beyond a reasonable time the training, evaluation, or experience being conducted in the FFS.

8. FFS Use (§60.11)

No additional regulatory or informational material applies to §60.11, Simulator Use.

9. FFS Objective Data Requirements (§60.13)

a. Flight test data used to validate FFS performance and handling qualities must have been gathered in accordance with a flight test program containing the following:
(1) A flight test plan consisting of:
(a) The maneuvers and procedures required for aircraft certification and simulation programming and validation.
(b) For each maneuver or procedure—
(i) The procedures and control input the flight test pilot and/or engineer used.
(ii) The atmospheric and environmental conditions.
(iii) The initial flight conditions.
(iv) The airplane configuration, including weight and center of gravity.
(v) The data to be gathered.
(vi) All other information necessary to recreate the flight test conditions in the FFS.

(2) Appropriately qualified flight test personnel.

(3) An understanding of the accuracy of the data to be gathered using appropriate alternative data sources, procedures, and instrumentation that is traceable to a recognized standard as described in Attachment 2, Table A2E of this appendix.

(4) Appropriate and sufficient data acquisition equipment or system(s), including appropriate data reduction and analysis methods and techniques, as would be acceptable to the FAA’s Aircraft Certification Service.

b. The data, regardless of source, must be presented as follows:

(1) In a format that supports the FFS validation process.

(2) In a manner that is clearly readable and annotated correctly and completely.

(3) With resolution sufficient to determine compliance with the tolerances set forth in Attachment 2, Table A2A of this appendix.

(4) With any necessary instructions or other details provided, such as yaw damper or throttle position.

(5) Without alteration, adjustments, or bias. Data may be corrected to address known data calibration errors provided that an explanation of the methods used to correct the errors appears in the QTG. The corrected data may be re-scaled, digitized, or otherwise manipulated to fit the desired presentation.

c. After completion of any additional flight test, a flight test report must be submitted in support of the validation data. The report must contain sufficient data and rationale to support qualification of the FFS at the level requested.

As required by §60.13(f), the sponsor must notify the NSPM when it becomes aware that an addition to, an amendment to, or a revision of data that may relate to FFS performance or handling characteristics is available. The data referred to in this paragraph is data used to validate the performance, handling qualities, or other characteristics of the aircraft, including data related to any relevant changes occurring after the type certificate was issued. The sponsor must:

(1) Within 10 calendar days, notify the NSPM of the existence of this data; and

(2) Within 45 calendar days, notify the NSPM of:

(a) The schedule to incorporate this data into the FFS; or

(b) The reason for not incorporating this data into the FFS.

e. In those cases where the objective test results authorize a “snapshot test” or a “series of snapshot tests” results in lieu of a time-history result, the sponsor or other data provider must ensure that a steady state condition exists at the instant of time captured by the “snapshot.” The steady state condition must exist from 4 seconds prior to, through 1 second following, the instant of time captured by the snapshot.

END QFS REQUIREMENTS

BEGIN INFORMATION

f. The FFS sponsor is encouraged to maintain a liaison with the manufacturer of the aircraft being simulated (or with the holder of the aircraft type certificate for the aircraft being simulated if the manufacturer is no longer in business), and, if appropriate, with the person having supplied the aircraft data package for the FFS in order to facilitate the notification required by §60.13(f).

g. It is the intent of the NSPM that for new aircraft entering service, at a point well in advance of preparation of the Qualification Test Guide (QTG), the sponsor should submit to the NSPM for approval, a descriptive document (see Table A2C, Sample Validation Data Roadmap for Airplanes) containing the plan for acquiring the validation data, including data sources. This document should clearly identify sources of data for all required tests, a description of the validity of these data for a specific engine type and thrust rating configuration, and the revision levels of all avionics affecting the performance or flying qualities of the aircraft. Additionally, this document should provide other information, such as the rationale or explanation for cases where data or data parameters are missing, instances where engineering simulation data are used or where flight test methods require further explanations. It should also provide a brief narrative describing the cause and effect of any deviation from data requirements. The aircraft manufacturer may provide this document.

h. There is no requirement for any flight test data supplier to submit a flight test plan or program prior to gathering flight test data. However, the NSPM notes that inexperienced data gatherers often provide data that is irrelevant, improperly marked, or lacking adequate justification for selection. Other problems include inadequate information regarding initial conditions or test maneuvers. The NSPM has been forced to refuse these data submissions as validation data for an FFS evaluation. It is for this reason that the NSPM recommends that any data supplier not previously experienced in this area review the data necessary for programming and for validating the performance of the FFS, and discuss the flight test plan anticipated for acquiring such data with the NSPM well in advance of commencing the flight tests.

i. The NSPM will consider, on a case-by-case basis, whether to approve supplemental
validation data derived from flight data recording systems, such as a Quick Access Recorder or Flight Data Recorder.

END INFORMATION

10. SPECIAL EQUIPMENT AND PERSONNEL REQUIREMENTS FOR QUALIFICATION OF THE FFSs (§60.14)

BEGIN INFORMATION

a. In the event that the NSPM determines that special equipment or specifically qualified persons will be required to conduct an evaluation, the NSPM will make every attempt to notify the sponsor at least one (1) week, but in no case less than 72 hours, in advance of the evaluation. Examples of special equipment include spot photometers, flight control measurement devices, and sound analyzers. Examples of specially qualified personnel include individuals specifically qualified to install or use any special equipment when its use is required.

b. Examples of a special evaluation include an evaluation conducted after an FFS is moved, at the request of the TPAA, or as a result of comments received from users of the FFS that raise questions about the continued qualification or use of the FFS.

END INFORMATION

11. INITIAL (AND UPGRADE) QUALIFICATION REQUIREMENTS (§60.15)

BEGIN QPS REQUIREMENTS

a. In order to be qualified at a particular qualification level, the FFS must:

(1) Meet the general requirements listed in Attachment 1 of this appendix;

(2) Meet the objective testing requirements listed in Attachment 2 of this appendix; and

(3) Satisfactorily accomplish the subjective tests listed in Attachment 3 of this appendix.

b. The request described in §60.15(a) must include all of the following:

(1) A statement that the FFS meets all of the applicable provisions of this part and all applicable provisions of the QPS.

(2) A confirmation that the sponsor will forward to the NSPM the statement described in §60.15(b) in such time as to be received no later than 5 business days prior to the scheduled evaluation and may be forwarded to the NSPM via traditional or electronic means.

(3) A QTG, acceptable to the NSPM, that includes all of the following:

(a) Objective data obtained from traditional aircraft testing or another approved source.

(b) Correlating objective test results obtained from the performance of the FFS as prescribed in the appropriate QPS.

(c) The result of FFS subjective tests prescribed in the appropriate QPS.

(d) A description of the equipment necessary to perform the evaluation for initial qualification and the continuing qualification evaluations.

(e) The QTG described in paragraph (a)(3) of this section, must provide the documented proof of compliance with the simulator objective tests in Attachment 2, Table A2A of this appendix.

(d) The QTG is prepared and submitted by the sponsor, or the sponsor’s agent on behalf of the sponsor, to the NSPM for review and approval, and must include, for each objective test:

(1) Parameters, tolerances, and flight conditions;

(2) Pertinent and complete instructions for the conduct of automatic and manual tests;

(3) A means of comparing the FFS test results to the objective data;

(4) Any other information as necessary, to assist in the evaluation of the test results;

(5) Other information appropriate to the qualification level of the FFS.

c. The QTG described in paragraph (a)(3) of this section, must include the following:

(1) A QTG cover page with sponsor and FAA approval signature blocks (see Attachment 4, Figure A4C, of this appendix for a sample QTG cover page).

(2) A continuing qualification evaluation requirements page. This page will be used by the NSPM to establish and record the frequency with which continuing qualification evaluations must be conducted and any subsequent changes that may be determined by the NSPM in accordance with §60.19. See Attachment 4, Figure A4G, of this appendix for a sample Continuing Qualification Evaluation Requirements page.

(3) An FFS information page that provides the information listed in this paragraph (see Attachment 4, Figure A4B, of this appendix for a sample FFS information page). For convertible FFSs, the sponsor must submit a separate page for each configuration of the FFS.

(a) The sponsor’s FFS identification number or code.

(b) The airplane model and series being simulated.

(c) The airplane model and series being simulated.

(d) The engine model(s) and its data revision number or reference.

(e) The engine model(s) and its data revision number or reference.
(f) The flight control data revision number or reference.

(g) The flight management system identification and revision level.

(h) The FFS model and manufacturer.

(i) The date of FFS manufacture.

(j) The FFS computer identification.

(k) The visual system model and manufacturer, including degrees of freedom.

(l) The motion system type and manufacturer, or a QTG for the first airplane model, or a QTG for the first airplane type using a convertible FFS, or constrained during the manually conducted test(s).

(i) The sponsor must submit a QTG for each airplane model.

(m) The FFS performance or demonstration results (refor- matted or digitized) as prescribed in this appendix. The eMQTG must also contain the general FFS performance or demonstration results (reformatted or digitized) prescribed in this appendix, and a description of the equipment necessary to perform the initial qualification evaluation and the continuing qualification evaluations. The eMQTG must include the original validation data used to validate FFS performance and handling qualities in either the original digitized format from the data supplier or an electronic scan of the NSPM, that allows easy comparison of the FFS test results to the validation data (e.g., use of a multi-channel recorder, line printer, cross plotting, overlays, transparencies).

(2) FFS results must be labeled using terminology common to airplane parameters as opposed to computer software identifications.

(3) Validation data documents included in a QTG may be photographically reduced only if such reduction will not alter the graphic scaling or cause difficulties in scale interpretation or resolution.

(4) Scaling on graphical presentations must provide the resolution necessary to evaluate the parameters shown in Attachment 2, Table A2A of this appendix.

(5) Tests involving time histories, data sheets (or transparencies thereof) and FFS test results must be clearly marked with appropriate reference points to ensure an accurate comparison between the FFS and the airplane with respect to time. Time histories recorded via a line printer are to be clearly identified for cross plotting on the airplane data. Over-plots must not obscure the reference data.

(h) The sponsor may elect to complete the QTG objective and subjective tests at the manufacturer’s facility or at the sponsor’s training facility. If the tests are conducted at the manufacturer’s facility, the sponsor must repeat at least one-third of the tests at the sponsor’s training facility in order to substantiate FFS performance. The QTG must be clearly annotated to indicate when and where each test was accomplished. Tests conducted at the manufacturer’s facility and at the sponsor’s training facility must be conducted after the FFS is assembled with systems and sub-systems functional and operating in an interactive manner. The test results must be submitted to the NSPM.

(i) The sponsor must maintain a copy of the MQTG at the FFS location.

(j) All FFSs for which the initial qualification is conducted after May 30, 2014, must have an electronic MQTG (eMQTG) including all objective data obtained from airplane testing, or another approved source (reformatted or digitized), together with correlating objective test results obtained from the performance of the FFS (reformatted or digitized) as prescribed in this appendix. The eMQTG must also contain the general FFS performance or demonstration results (reformatted or digitized) prescribed in this appendix, and a description of the equipment necessary to perform the initial qualification evaluation and the continuing qualification evaluations. The eMQTG must include the original validation data used to validate FFS performance and handling qualities in either the original digitized format from the data supplier or an electronic scan of the
original time-history plots that were provided by the data supplier. A copy of the eMQTG must be provided to the NSPM.

k. All other FFSs not covered in subparagraph (g) must have an electronic copy of the MQTG by May 30, 2014. An electronic copy of the MQTG must be provided to the NSPM. This may be provided by an electronic file (PDF), or similar format acceptable to the NSPM.

l. During the initial (or upgrade) qualification evaluation conducted by the NSPM, the sponsor must also provide a person who is a user of the device (e.g., a qualified pilot or instructor) and knowledgeable about the operation of the aircraft and the operation of the FFS.

END QPS REQUIREMENTS

BEGIN INFORMATION

m. Only those FFSs that are sponsored by a certificate holder as defined in Appendix F of this part will be evaluated by the NSPM. However, other FFS evaluations may be conducted on a case-by-case basis as the Administrator deems appropriate, but only in accordance with applicable agreements.

n. The NSPM will conduct an evaluation for each configuration, and each FFS must be evaluated as completely as possible. To ensure a thorough and uniform evaluation, each FFS is subjected to the general simulator requirements in Attachment 1 of this appendix, the objective tests listed in Attachment 2 of this appendix, and the subjective tests listed in Attachment 3 of this appendix. The evaluations described herein will include, but not necessarily be limited to the following:

1. Airplane responses, including longitudinal and lateral-directional control responses (see Attachment 2 of this appendix);
2. Performance in authorized portions of the simulated airplane’s operating envelope, to include tasks evaluated by the NSPM in the areas of surface operations, takeoff, climb, approach, and landing as well as normal and abnormal operations (see Attachment 2 of this appendix);
3. Control checks (see Attachment 1 and Attachment 2 of this appendix);
4. Flight deck configuration (see Attachment 1 of this appendix);
5. Pilot, flight engineer, and instructor station functions checks (see Attachment 1 and Attachment 3 of this appendix);
6. Airplane systems and sub-systems (as appropriate) as compared to the airplane simulated (see Attachment 1 and Attachment 3 of this appendix);
7. FFS systems and sub-systems, including force cueing (motion), visual, and aural (sound) systems, as appropriate (see Attachment 1 and Attachment 2 of this appendix);
8. Certain additional requirements, depending upon the qualification level sought, including equipment or circumstances that may become hazardous to the occupants. The sponsor may be subject to Occupational Safety and Health Administration requirements.
9. The NSPM administers the objective and subjective tests, which includes an examination of functions. The tests include a quantitative assessment of the FFS by an NSP pilot. The NSP evaluation team leader may assign other qualified personnel to assist in accomplishing the functions examination and/or the objective and subjective tests performed during an evaluation when required.

(1) Objective tests provide a basis for measuring and evaluating FFS performance and determining compliance with the requirements of this part.

(2) Subjective tests provide a basis for:
 a. Evaluating the capability of the FFS to perform over a typical utilization period;
 b. Determining that the FFS satisfactorily simulates each required task;
 c. Verifying correct operation of the FFS controls, instruments, and systems; and
 d. Demonstrating compliance with the requirements of this part.

p. The tolerances for the test parameters listed in Attachment 2 of this appendix reflect the range of tolerances acceptable to the NSPM for FFS validation and are not to be confused with design tolerances specified for FFS manufacture. In making decisions regarding tests and test results, the NSPM relies on the use of operational and engineering judgment in the application of data (including consideration of the way in which the flight test was flown and the way the data was gathered and applied), data presentations, and the applicable tolerances for each test.

q. In addition to the scheduled continuing qualification evaluation, each FFS is subject to evaluations conducted by the NSPM at any time without prior notification to the sponsor. Such evaluations would be accomplished in a normal manner (i.e., requiring exclusive use of the FFS for the conduct of objective and subjective tests and an examination of functions) if the FFS is not being used for flight crewmember training, testing, or checking. However, if the FFS were being used, the evaluation would be conducted in a non-exclusive manner. This non-exclusive evaluation will be conducted by the FFS evaluator accompanying the check airman, instructor, Aircrew Program Designee (APD), or FAA inspector aboard the FFS along with the student(s) and observing the operation of the FFS during the training, testing, or checking activities.
windshear training and circling approaches.

If a problem with an objective test result is detected by the NSP evaluation team during an evaluation, the test may be repeated or the QTG may be amended.

If it is determined that the results of an objective test do not support the level requested, but do support a lower level, the NSPM may qualify the FFS at that lower level. For example, if a Level D evaluation is requested and the FFS fails to meet sound test tolerances, it could be qualified at Level C.

After an FFS is successfully evaluated, the NSPM issues a Statement of Qualification (SOQ) to the sponsor. The NSPM recommends the FFS to the TPAA, who will approve the FFS for use in a flight training program. The SOQ will be issued at the satisfactory conclusion of the initial or continuing qualification evaluation and will list the tasks for which the FFS is qualified, referencing the tasks described in Table A1B in Attachment 1 of this appendix. However, it is the sponsor’s responsibility to obtain TPAA approval prior to using the FFS in an FAA-approved flight training program.

Under normal circumstances, the NSPM establishes a date for the initial or upgrade evaluation within ten (10) working days after determining that a complete QTG is acceptable. Unusual circumstances may warrant establishing an evaluation date before this determination is made. A sponsor may schedule an evaluation date as early as 6 months in advance. However, there may be a delay of 45 days or more in rescheduling and completing the evaluation if the sponsor is unable to meet the scheduled date. See Attachment 4 of this appendix, Figure A4A, Sample Request for Initial, Upgrade, or Reinstatement Evaluation.

The numbering system used for objective test results in the QTG should closely follow the numbering system set out in Attachment 2 of this appendix, FFS Objective Tests, Table A2A.

Contact the NSPM or visit the NSPM Web site for additional information regarding the preferred qualifications of pilots used to meet the requirements of §60.15(d).

Examples of the exclusions for which the FFS might not have been subjectively tested by the sponsor or the NSPM and for which qualification might not be sought or granted, as described in §60.15(g)(6), include windshear training and circling approaches.

END INFORMATION

12. ADDITIONAL QUALIFICATIONS FOR A CURRENTLY QUALIFIED FFS (§ 60.16)

END QPS REQUIREMENTS

13. PREVIOUSLY QUALIFIED FFSS (§ 60.17)

END INFORMATION
14. INSPECTION, CONTINUING QUALIFICATION EVALUATION, AND MAINTENANCE REQUIREMENTS (§60.19)

BEGIN QPS REQUIREMENTS

a. The sponsor must conduct a minimum of four evenly spaced inspections throughout the year. The objective test sequence and content of each inspection must be developed by the sponsor and must be acceptable to the NSPM.

b. The description of the functional pre-flight check must be contained in the sponsor’s QMS.

c. Record “functional preflight” in the FFS discrepancy log or on other acceptable location, including any item found to be missing, malfunctioning, or inoperative.

d. During the continuing qualification evaluation conducted by the NSPM, the sponsor must also provide a person knowledgeable about the operation of the aircraft and the operation of the FFS.

e. The NSPM will conduct continuing qualification evaluations every 12 months unless:
 (1) The NSPM becomes aware of discrepancies or performance problems with the device that warrants more frequent evaluations; or
 (2) The sponsor implements a QMS that justifies less frequent evaluations. However, in no case shall the frequency of a continuing qualification evaluation exceed 36 months.

END QPS REQUIREMENTS

BEGIN INFORMATION

f. The sponsor’s test sequence and the content of each quarterly inspection required in §60.19(a)(1) should include a balance and a mix from the objective test requirement areas listed as follows:
 (1) Performance.
 (2) Handling qualities.
 (3) Motion system (where appropriate).
 (4) Visual system (where appropriate).
 (5) Sound system (where appropriate).
 (6) Other FFS systems.

g. If the NSP evaluator plans to accomplish specific tests during a normal continuing qualification evaluation that requires the use of special equipment or technicians, the sponsor will be notified as far in advance of the evaluation as practical; but not less than 72 hours. Examples of such tests include latencies, control dynamics, sounds and vibrations, motion, and/or some visual system tests.

h. The continuing qualification evaluations, described in §60.19(b), will normally require 4 hours of FFS time. However, flexibility is necessary to address abnormal situations or situations involving aircraft with additional levels of complexity (e.g., computer controlled aircraft). The sponsor should anticipate that some tests may require additional time. The continuing qualification evaluations will consist of the following:
 (1) Review of the results of the quarterly inspections conducted by the sponsor since
the last scheduled continuing qualification evaluation.

(2) A selection of approximately 8 to 15 objective tests from the MQTG that provide an adequate opportunity to evaluate the performance of the FFS. The tests chosen will be performed either automatically or manually and should be able to be conducted within approximately one-third (1/3) of the allotted FFS time.

(3) A subjective evaluation of the FFS to perform a representative sampling of the tasks set out in attachment 3 of this appendix. This portion of the evaluation should take approximately two-thirds (2/3) of the allotted FFS time.

(4) An examination of the functions of the FFS may include the motion system, visual system, sound system, instructor operating station, and the normal functions and simulated malfunctions of the airplane systems. This examination is normally accomplished simultaneously with the subjective evaluation requirements.

15. LOGGING FFS DISCREPANCIES (§ 60.20)
BEGIN INFORMATION
No additional regulatory or informational material applies to § 60.20, Logging FFS Discrepancies.
END INFORMATION

16. INTERIM QUALIFICATION OF FFSS FOR NEW AIRPLANE TYPES OR MODELS (§ 60.21)
BEGIN INFORMATION
No additional regulatory or informational material applies to § 60.21, Interim Qualification of FFSS for New Airplane Types or Models.
END INFORMATION

17. MODIFICATIONS TO FFSS (§ 60.23)
BEGIN QPS REQUIREMENTS
a. The notification described in § 60.23(c)(2) must include a complete description of the planned modification, with a description of the operational and engineering effect the proposed modification will have on the operation of the FFS and the results that are expected with the modification incorporated.

b. Prior to using the modified FFS:
 (1) All the applicable objective tests completed with the modification incorporated, including any necessary updates to the MQTG (e.g., accomplishment of FSTD Directives) must be acceptable to the NSPM; and
 (2) The sponsor must provide the NSPM with a statement signed by the MR that the factors listed in § 60.15(b) are addressed by the appropriate personnel as described in that section.
END QPS REQUIREMENTS

18. OPERATION WITH MISSING, MALFUNCTIONING, OR INOPERATIVE COMPONENTS (§ 60.25)
BEGIN INFORMATION
a. The sponsor’s responsibility with respect to § 60.25(a) is satisfied when the sponsor fairly and accurately advises the user of the current status of an FFS, including any missing, malfunctioning, or inoperative (MMI) component(s).

b. It is the responsibility of the instructor, check airman, or representative of the administrator conducting training, testing, or checking to exercise reasonable and prudent judgment to determine if any MMI component is necessary for the satisfactory completion of a specific maneuver, procedure, or task.

c. If the 29th or 30th day of the 30-day period described in § 60.25(b) is on a Saturday, a Sunday, or a holiday, the FAA will extend the deadline until the next business day.

d. In accordance with the authorization described in § 60.25(b), the sponsor may develop a discrepancy prioritizing system to accomplish repairs based on the level of impact on the capability of the FFS. Repairs having a larger impact on FFS capability to provide the required training, evaluation, or flight experience will have a higher priority for repair or replacement.
END INFORMATION

19. AUTOMATIC LOSS OF QUALIFICATION AND PROCEDURES FOR RESTORATION OF QUALIFICATION (§ 60.27)
If the sponsor provides a plan for how the FFS will be maintained during its out-of-service period (e.g., periodic exercise of mechanical, hydraulic, and electrical systems; routine replacement of hydraulic fluid; control of the environmental factors in which the FFS is to be maintained) there is a greater likelihood that the NSPM will be able to determine the amount of testing required for requalification.

BEGIN INFORMATION

20. OTHER LOSSES OF QUALIFICATION AND PROCEDURES FOR RESTORATION OF QUALIFICATION (§ 60.29)

If the sponsor provides a plan for how the FFS will be maintained during its out-of-service period (e.g., periodic exercise of mechanical, hydraulic, and electrical systems; routine replacement of hydraulic fluid; control of the environmental factors in which the FFS is to be maintained) there is a greater likelihood that the NSPM will be able to determine the amount of testing required for requalification.

END INFORMATION

21. RECORDKEEPING AND REPORTING (§ 60.31)

a. FFS modifications can include hardware or software changes. For FFS modifications involving software programming changes, the record required by §60.31(a)(2) must consist of the name of the aircraft system software, aerodynamic model, or engine model change, the date of the change, a summary of the change, and the reason for the change.

b. If a coded form for record keeping is used, it must provide for the preservation and retrieval of information with appropriate security or controls to prevent the inappropriate alteration of such records after the fact.

END QPS REQUIREMENTS

22. APPLICATIONS, LOGBOOKS, REPORTS, AND RECORDS: FRAUD, FALSIFICATION, OR INCORRECT STATEMENTS (§ 60.33)

a. Certain requirements included in this appendix must be supported with an SOC as defined in Appendix F, which may include objective and subjective tests. The requirements for SOCs are indicated in the “General Simulator Requirements” column in Table A1A of this appendix.

b. Table A1A describes the requirements for the indicated level of FFS. Many devices include operational systems or functions that exceed the requirements outlined in this section. However, all systems will be tested and evaluated in accordance with this appendix to ensure proper operation.

END QPS REQUIREMENTS

BEGIN INFORMATION

ATTACHMENT 1 TO APPENDIX A TO PART 60—GENERAL SIMULATOR REQUIREMENTS

1. REQUIREMENTS

a. Certain requirements included in this appendix must be supported with an SOC as defined in Appendix F, which may include objective and subjective tests. The requirements for SOCs are indicated in the “General Simulator Requirements” column in Table A1A of this appendix.

b. Table A1A describes the requirements for the indicated level of FFS. Many devices include operational systems or functions that exceed the requirements outlined in this section. However, all systems will be tested and evaluated in accordance with this appendix to ensure proper operation.

END QPS REQUIREMENTS

2. DISCUSSION

a. This attachment describes the general simulator requirements for qualifying an airplane FFS. The sponsor should also consult the objective tests in Attachment 2 of this appendix and the examination of functions and subjective tests listed in Attachment 3 of this appendix to determine the complete requirements for a specific level simulator.

b. The material contained in this attachment is divided into the following categories:

(1) General flight deck configuration.

(2) Simulator programming.
(3) Equipment operation.
(4) Equipment and facilities for instructor/evaluator functions.
(5) Motion system.
(6) Visual system.
(7) Sound system.

c. Table A1A provides the standards for the General Simulator Requirements.
d. Table A1B provides the tasks that the sponsor will examine to determine whether the FFS satisfactorily meets the requirements for flight crew training, testing, and experience, and provides the tasks for which the simulator may be qualified.
e. Table A1C provides the functions that an instructor/check airman must be able to control in the simulator.
f. It is not required that all of the tasks that appear on the List of Qualified Tasks (part of the SOQ) be accomplished during the initial or continuing qualification evaluation.

d. Table A1B provides the tasks that the sponsor will examine to determine whether the FFS satisfactorily meets the requirements for flight crew training, testing, and experience, and provides the tasks for which the simulator may be qualified.

e. Table A1C provides the functions that an instructor/check airman must be able to control in the simulator.

TABLE A1A—MINIMUM SIMULATOR REQUIREMENTS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General simulator requirements</th>
<th>Simulator levels</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QPS requirements</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1. General Flight deck Configuration.</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.a</td>
<td>The simulator must have a flight deck that is a replica of the airplane simulated with controls, equipment, observable flight deck indicators, circuit breakers, and bulkheads properly located, functionally accurate and replicating the airplane. The direction of movement of controls and switches must be identical to the airplane. Pilot seats must allow the occupant to achieve the design “eye position” established for the airplane being simulated. Equipment for the operation of the flight deck windows must be included, but the actual windows need not be operable. Additional equipment such as fire axes, extinguishers, and spare light bulbs must be available in the FFS but may be relocated to a suitable location as near as practical to the original position. Fire axes, landing gear pins, and any similar purpose instruments need only be represented in silhouette.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.b</td>
<td>Those circuit breakers that affect procedures or result in observable flight deck indications must be properly located and functionally accurate.</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2. Programming.

| 2.a | A flight dynamics model that accounts for various combinations of drag and thrust normally encountered in flight must correspond to actual flight conditions, including the effect of change in airplane attitude, thrust, drag, altitude, temperature, gross weight, moments of inertia, center of gravity location, and configuration. | X | X | X | X | An SOC is required |
| 2.b | The simulator must have the computer capacity, accuracy, resolution, and dynamic response needed to meet the qualification level sought. | X | X | X | X | An SOC is required |
Table A1A—Minimum Simulator Requirements—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General simulator requirements</th>
<th>Simulator levels</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.c.</td>
<td>Surface operations must be represented to the extent that allows turns within the confines of the runway and adequate controls on the landing and roll-out from a crosswind approach to a landing.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.d.</td>
<td>Ground handling and aerodynamic programming must include the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.1</td>
<td>Ground effect</td>
<td>X X X</td>
<td>Ground effect includes modeling that accounts for roundout, flare, touchdown, lift, drag, pitching moment, trim, and power while in ground effect.</td>
</tr>
<tr>
<td>2.d.2</td>
<td>Ground reaction</td>
<td>X X X</td>
<td>Ground reaction includes modeling that accounts for strut deflections, tire friction, and side forces. This is the reaction of the airplane upon contact with the runway during landing, and may differ with changes in factors such as gross weight, airspeed, or rate of descent on touchdown.</td>
</tr>
<tr>
<td>2.d.3</td>
<td>Ground handling characteristics, including aerodynamic and ground reaction modeling including steering inputs, operations with crosswind, braking, thrust reversing, deceleration, and turning radius.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.e.</td>
<td>If the aircraft being simulated is one of the aircraft listed in §121.358, Low-altitude windshear system equipment requirements, the simulator must employ windshear models that provide training for recognition of windshear phenomena and the execution of recovery procedures. Models must be available to the instructor/evaluator for the following critical phases of flight: (1) Prior to takeoff rotation. (2) At liftoff. (3) During initial climb. (4) On final approach, below 500 ft AGL. The QTG must reference the FAA Windshear Training Aid or present alternate airplane related data, including the implementation method(s) used. If the alternate method is selected, wind models from the Royal Aerospace Establishment (RAE), the Joint Airport Weather Studies (JAWS) Project and other recognized sources may be implemented, but must be supported and properly referenced in the QTG. Only those simulators meeting these requirements may be used to satisfy the training requirements of part 121 pertaining to a certificate holder’s approved low-altitude windshear flight training program as described in §121.409.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>General simulator requirements</td>
<td>Simulator levels</td>
<td>Information</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2.f.</td>
<td>The simulator must provide for manual and automatic testing of simulator hardware and software programming to determine compliance with simulator objective tests as prescribed in Attachment 2 of this appendix. An SOC is required.</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>2.g.</td>
<td>Relative responses of the motion system, visual system, and flight deck instruments, measured by latency tests or transport delay tests. Motion onset should occur before the start of the visual scene change (the start of the scan of the first video field containing different information) but must occur before the end of the scan of that video field. Instrument response may not occur prior to motion onset. Test results must be within the following limits:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.g.1.</td>
<td>300 milliseconds of the airplane response.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>2.g.2.</td>
<td>150 milliseconds of the airplane response.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>2.h.</td>
<td>The simulator must accurately reproduce the following runway conditions: (1) Dry. (2) Wet. (3) Icy. (4) Patchy Wet. (5) Patchy Icy. (6) Wet on Rubber Residue in Touchdown Zone. An SOC is required.</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>2.i.</td>
<td>The simulator must simulate: (1) brake and tire failure dynamics, including antiskid failure. (2) decreased brake efficiency due to high brake temperatures, if applicable. An SOC is required.</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>2.j.</td>
<td>The simulator must replicate the effects of airframe and engine icing.</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>2.k.</td>
<td>The aerodynamic modeling in the simulator must include: (1) Low-altitude level-flight ground effect. (2) Mach effect at high altitude. (3) Normal and reverse dynamic thrust effect on control surfaces; (4) Aerelastic representations; and (5) Nonlinearities due to sideslip. An SOC is required and must include references to computations of aerelastic representations and of nonlinearities due to sideslip.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2.l.</td>
<td>The simulator must have aerodynamic and ground reaction modeling for the effects of reverse thrust on directional control, if applicable. An SOC is required.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>General simulator requirements</td>
<td>Simulator levels</td>
<td>Information</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>3. Equipment Operation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.a.</td>
<td>All relevant instrument indications involved in the simulation of the airplane must automatically respond to control movement or external disturbances to the simulated airplane; e.g., turbulence or windshear. Numerical values must be presented in the appropriate units.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.b.</td>
<td>Communications, navigation, caution, and warning equipment must be installed and operate within the tolerances applicable for the airplane.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.c.</td>
<td>Simulated airplane systems must operate as the airplane systems operate under normal, abnormal, and emergency operating conditions on the ground and in flight.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.d.</td>
<td>The simulator must provide pilot controls with control forces and control travel that correspond to the simulated airplane. The simulator must also react in the same manner as in the airplane under the same flight conditions.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.e.</td>
<td>Simulator control feel dynamics must replicate the airplane. This must be determined by comparing a recording of the control feel dynamics of the simulator to airplane measurements.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4. Instructor or Evaluator Facilities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.a.</td>
<td>In addition to the flight crewmember stations, the simulator must have at least two suitable seats for the instructor/check airman and FAA inspector. These seats must provide adequate vision to the pilot’s panel and forward windows. All seats other than flight crew seats need not represent those found in the airplane, but must be adequately secured to the floor and equipped with similar positive restraint devices.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.b.</td>
<td>The simulator must have controls that enable the instructor/evaluator to control all required system variables and insert all abnormal or emergency conditions into the simulated airplane systems as described in the sponsor’s FAA-approved training program; or as described in the relevant operating manual as appropriate.</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
TABLE A1A—MINIMUM SIMULATOR REQUIREMENTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General simulator requirements</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.c.</td>
<td>The simulator must have instructor controls for all environmental effects expected to be available at the IOS; e.g., clouds, visibility, icing, precipitation, temperature, storm cells, and wind speed and direction.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.d.</td>
<td>The simulator must provide the instructor or evaluator the ability to present ground and air hazards.</td>
<td>X</td>
<td>X</td>
<td></td>
<td>For example, another airplane crossing the active runway or converging airborne traffic.</td>
<td></td>
</tr>
<tr>
<td>5. Motion System.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.</td>
<td>The simulator must have motion (force) cues perceptible to the pilot that are representative of the motion in an airplane.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>For example, touchdown cues should be a function of the rate of descent (RoD) of the simulated airplane.</td>
</tr>
<tr>
<td>5.b.</td>
<td>The simulator must have a motion (force cueing) system with a minimum of three degrees of freedom (at least pitch, roll, and heave). An SOC is required.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.c.</td>
<td>The simulator must have a motion (force cueing) system that produces cues at least equivalent to those of a six-degrees-of-freedom, synergistic platform motion system (i.e., pitch, roll, yaw, heave, sway, and surge). An SOC is required.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.d.</td>
<td>The simulator must provide for the recording of the motion system response time. An SOC is required.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.e.</td>
<td>The simulator must provide motion effects programming to include:</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) Thrust effect with brakes set.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) Runway rumble, oleo deflections, effects of ground speed, uneven runway, centerline lights, and taxiway characteristics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) Buffets on the ground due to spoiler/speedbrake extension and thrust reversal.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) Bumps associated with the landing gear.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) O=xi Buffet during extension and retraction of landing gear..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) Buffet in the air due to flap and spoiler/speedbrake extension.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) Approach-to-Stall buffet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) Representative touchdown cues for main and nose gear.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9) Nosewheel scuffing, if applicable.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10) Mach and maneuver buffet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.f.</td>
<td>The simulator must provide characteristic motion vibrations that result from operation of the airplane if the vibration marks an event or airplane state that can be sensed in the flight deck.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>The simulator should be programmed and instrumented in such a manner that the characteristic buffet modes can be measured and compared to airplane data.</td>
</tr>
</tbody>
</table>
TABLE A1A—MINIMUM SIMULATOR REQUIREMENTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General simulator requirements</th>
<th>Simulator levels</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.a.</td>
<td>The simulator must have a visual system providing an out-of-the-flight deck view.</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>6.b.</td>
<td>The simulator must provide a continuous collimated field-of-view of at least 45° horizontally and 30° vertically per pilot seat or the number of degrees necessary to meet the visual ground segment requirement, whichever is greater. Both pilot seat visual systems must be operable simultaneously. The minimum horizontal field-of-view coverage must be plus and minus one-half (1⁄2) of the minimum continuous field-of-view requirement, centered on the zero degree azimuth line relative to the aircraft fuselage. An SOC is required and must explain the system geometry measurements including system linearity and field-of-view.</td>
<td>X X</td>
<td>Additional field-of-view capability may be added at the sponsor’s discretion provided the minimum fields of view are retained.</td>
</tr>
<tr>
<td>6.c.</td>
<td>(Reserved).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.d.</td>
<td>The simulator must provide a continuous collimated visual field-of-view of at least 176° horizontally and 36° vertically or the number of degrees necessary to meet the visual ground segment requirement, whichever is greater. The minimum horizontal field-of-view coverage must be plus and minus one-half (1⁄2) of the minimum continuous field-of-view requirement, centered on the zero degree azimuth line relative to the aircraft fuselage. An SOC is required and must explain the system geometry measurements including system linearity and field-of-view.</td>
<td>X X</td>
<td>The horizontal field-of-view is traditionally described as a 180° field-of-view. However, the field-of-view is technically no less than 176°. Additional field-of-view capability may be added at the sponsor’s discretion provided the minimum fields-of-view are retained.</td>
</tr>
<tr>
<td>6.e.</td>
<td>The visual system must be free from optical discontinuities and artifacts that create non-realistic cues.</td>
<td>X X X</td>
<td>Non-realistic cues might include image "swimming" and image "roll-off," that may lead a pilot to make incorrect assessments of speed, acceleration, or situational awareness.</td>
</tr>
<tr>
<td>6.f.</td>
<td>The simulator must have operational landing lights for night scenes. Where used, dusk (or twilight) scenes require operational landing lights.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.g.</td>
<td>The simulator must have instructor controls for the following: (1) Visibility in statute miles (km) and runway visual range (RVR) in ft. (m). (2) Airport selection. (3) Airport lighting.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.h.</td>
<td>The simulator must provide visual system compatibility with dynamic response programming.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>General simulator requirements</td>
<td>Simulator levels</td>
<td>Information</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>6.i.</td>
<td>The simulator must show that the segment of the ground visible from the simulator flight deck is the same as from the airplane flight deck (within established tolerances) when at the correct airspeed, in the landing configuration, at the appropriate height above the touchdown zone, and with appropriate visibility.</td>
<td>X</td>
<td>This will show the modeling accuracy of RVR, glideslope, and localizer for a given weight, configuration, and speed within the airplane’s operational envelope for a normal approach and landing.</td>
</tr>
<tr>
<td>6.j.</td>
<td>The simulator must provide visual cues necessary to assess sink rates (provide depth perception) during takeoffs and landings, to include: (1) Surface on runways, taxiways, and ramps. (2) Terrain features.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.k.</td>
<td>The simulator must provide for accurate portrayal of the visual environment relating to the simulator attitude.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.l.</td>
<td>The simulator must provide for quick confirmation of visual system color, RVR, focus, and intensity. An SOC is required.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.m.</td>
<td>The simulator must be capable of producing at least 10 levels of occulting.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.n.</td>
<td>Night Visual Scenes. When used in training, testing, or checking activities, the simulator must provide night visual scenes with sufficient scene content to recognize the airport, the terrain, and major landmarks around the airport. The scene content must allow a pilot to successfully accomplish a visual landing. Scenes must include a definable horizon and typical terrain characteristics such as fields, roads and bodies of water and surfaces illuminated by airplane landing lights.</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

TABLE A1A—MINIMUM SIMULATOR REQUIREMENTS—Continued

<table>
<thead>
<tr>
<th>GPS requirements</th>
<th>Simulator levels</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry No.</td>
<td>General simulator requirements</td>
<td>A</td>
</tr>
<tr>
<td>6.i.</td>
<td>The simulator must show that the segment of the ground visible from the simulator flight deck is the same as from the airplane flight deck (within established tolerances) when at the correct airspeed, in the landing configuration, at the appropriate height above the touchdown zone, and with appropriate visibility.</td>
<td>X</td>
</tr>
<tr>
<td>6.j.</td>
<td>The simulator must provide visual cues necessary to assess sink rates (provide depth perception) during takeoffs and landings, to include: (1) Surface on runways, taxiways, and ramps. (2) Terrain features.</td>
<td>X</td>
</tr>
<tr>
<td>6.k.</td>
<td>The simulator must provide for accurate portrayal of the visual environment relating to the simulator attitude.</td>
<td>X</td>
</tr>
<tr>
<td>6.l.</td>
<td>The simulator must provide for quick confirmation of visual system color, RVR, focus, and intensity. An SOC is required.</td>
<td>X</td>
</tr>
<tr>
<td>6.m.</td>
<td>The simulator must be capable of producing at least 10 levels of occulting.</td>
<td>X</td>
</tr>
<tr>
<td>6.n.</td>
<td>Night Visual Scenes. When used in training, testing, or checking activities, the simulator must provide night visual scenes with sufficient scene content to recognize the airport, the terrain, and major landmarks around the airport. The scene content must allow a pilot to successfully accomplish a visual landing. Scenes must include a definable horizon and typical terrain characteristics such as fields, roads and bodies of water and surfaces illuminated by airplane landing lights.</td>
<td>X</td>
</tr>
<tr>
<td>Entry No.</td>
<td>General simulator requirements</td>
<td>Simulator levels</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>6.o.</td>
<td>Dusk (or Twilight) Visual Scenes. When used in training, testing, or checking activities, the simulator must provide dusk (or twilight) visual scenes with sufficient scene content to recognize the airport, the terrain, and major landmarks around the airport. The scene content must allow a pilot to successfully accomplish a visual landing. Dusk (or twilight) scenes, as a minimum, must provide full color presentations of reduced ambient intensity, sufficient surfaces with appropriate textural cues that include self-illuminated objects such as road networks, ramp lighting and airport signage, to conduct a visual approach, landing and airport movement (taxi). Scenes must include a definable horizon and typical terrain characteristics such as fields, roads and bodies of water and surfaces illuminated by airplane landing lights. If provided, directional horizon lighting must have correct orientation and be consistent with surface shading effects. Total night or dusk (twilight) scene content must be comparable in detail to that produced by 10,000 visible textured surfaces and 15,000 visible lights with sufficient system capacity to display 16 simultaneously moving objects. An SOC is required.</td>
<td>X X</td>
</tr>
<tr>
<td>6.p.</td>
<td>Daylight Visual Scenes. The simulator must provide daylight visual scenes with sufficient scene content to recognize the airport, the terrain, and major landmarks around the airport. The scene content must allow a pilot to successfully accomplish a visual landing. Any ambient lighting must not “washout” the displayed visual scene. Total daylight scene content must be comparable in detail to that produced by 10,000 visible textured surfaces and 6,000 visible lights with sufficient system capacity to display 16 simultaneously moving objects. The visual display must be free of apparent and distracting quantization and other distracting visual effects while the simulator is in motion. An SOC is required.</td>
<td>X X</td>
</tr>
<tr>
<td>6.q.</td>
<td>The simulator must provide operational visual scenes that portray physical relationships known to cause landing illusions to pilots. For example: short runways, landing approaches over water, uphill or downhill runways, rising terrain on the approach path, unique topographic features.</td>
<td>X X</td>
</tr>
</tbody>
</table>
Table A1A—Minimum Simulator Requirements—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General simulator requirements</th>
<th>Simulator levels</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.r.</td>
<td>The simulator must provide special weather representations of light, medium, and heavy precipitation near a thunderstorm on takeoff and during approach and landing. Representations need only be presented at and below an altitude of 2,000 ft. (610 m) above the airport surface and within 10 miles (16 km) of the airport.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>6.s.</td>
<td>The simulator must present visual scenes of wet and snow-covered runways, including runway lighting reflections for wet conditions, partially obscured lights for snow conditions, or suitable alternative effects.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>6.t.</td>
<td>The simulator must present realistic color and directionality of all airport lighting.</td>
<td>X X</td>
<td></td>
</tr>
</tbody>
</table>

Table A1B—Table of Tasks vs. Simulator Level

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Simulator levels</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Preflight Procedures</td>
<td>In order to be qualified at the simulator qualification level indicated, the simulator must be able to perform at least the tasks associated with that level of qualification.</td>
<td>A B C D</td>
<td>Notes</td>
</tr>
<tr>
<td>1.a.</td>
<td>Preflight Inspection (flight deck only)</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.b.</td>
<td>Engine Start</td>
<td>X X X</td>
<td></td>
</tr>
</tbody>
</table>

VerDate Mar<15>2010 18:16 Mar 01, 2012 Jkt 226045 PO 00000 Frm 00046 Fmt 8010 Sfmt 8002 Q:\14\14V2 ofr150 PsN: PC150
TABLE A1B—TABLE OF TASKS VS. SIMULATOR LEVEL—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Simulator levels</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In order to be qualified at the simulator qualification level indicated, the simulator must be able to perform at least the tasks associated with that level of qualification.</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1.c.</td>
<td>Taxiing</td>
<td>R</td>
<td>X</td>
</tr>
<tr>
<td>1.d.</td>
<td>Pre-takeoff Checks</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2. Takeoff and Departure Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.</td>
<td>Normal and Crosswind Takeoff</td>
<td>R</td>
<td>X</td>
</tr>
<tr>
<td>2.b.</td>
<td>Instrument Takeoff</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.c.</td>
<td>Engine Failure During Takeoff</td>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>2.d.</td>
<td>Rejected Takeoff</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.e.</td>
<td>Departure Procedure</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3. Inflight Maneuvers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.a.</td>
<td>Steep Turns</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.b.</td>
<td>Approaches to Stalls</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.c.</td>
<td>Engine Failure—Multiengine Airplane</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.e.</td>
<td>Specific Flight Characteristics incorporated into the user’s FAA approved flight training program.</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>3.f.</td>
<td>Recovery From Unusual Attitudes</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4. Instrument Procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.b.</td>
<td>Holding</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.c.</td>
<td>Precision Instrument.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.c.1.</td>
<td>All Engines Operating</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.c.2.</td>
<td>One Engine Inoperative</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.d.</td>
<td>Non-Precision Instrument Approach</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.e.</td>
<td>Circling Approach</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.f.</td>
<td>Missed Approach.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.f.1.</td>
<td>Normal</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.f.2.</td>
<td>One Engine Inoperative</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5. Landings and Approaches to Landings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.</td>
<td>Normal and Crosswind Approaches and Landings</td>
<td>R</td>
<td>X</td>
</tr>
<tr>
<td>5.b.</td>
<td>Landing From a Precision/Non-Precision Approach</td>
<td>R</td>
<td>X</td>
</tr>
</tbody>
</table>
Table A1B—Table of Tasks vs. Simulator Level—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Simulator levels</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.d.</td>
<td>Landing From Circling Approach</td>
<td>R X X</td>
<td></td>
</tr>
<tr>
<td>5.e.</td>
<td>Rejected Landing</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>5.f.</td>
<td>Landing From a No Flap or a Nonstandard Flap Configuration Approach.</td>
<td>R X X</td>
<td></td>
</tr>
</tbody>
</table>

6. Normal and Abnormal Procedures

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Simulator levels</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.a.</td>
<td>Engine (including shutdown and restart)</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>6.b.</td>
<td>Fuel System</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>6.c.</td>
<td>Electrical System</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>6.d.</td>
<td>Hydraulic System</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>6.e.</td>
<td>Environmental and Pressurization Systems</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>6.g.</td>
<td>Navigation and Avionics Systems</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>6.i.</td>
<td>Flight Control Systems</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>6.j.</td>
<td>Anti-ice and Deice Systems</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>6.k.</td>
<td>Aircraft and Personal Emergency Equipment</td>
<td>X X X X</td>
<td></td>
</tr>
</tbody>
</table>

7. Emergency Procedures

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Simulator levels</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.a.</td>
<td>Emergency Descent (Max. Rate)</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>7.b.</td>
<td>Inflight Fire and Smoke Removal</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>7.c.</td>
<td>Rapid Decompression</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>7.d.</td>
<td>Emergency Evacuation</td>
<td>X X X X</td>
<td></td>
</tr>
</tbody>
</table>

8. Postflight Procedures

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Simulator levels</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.a.</td>
<td>After-Landing Procedures</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>8.b.</td>
<td>Parking and Securing</td>
<td>X X X X</td>
<td></td>
</tr>
</tbody>
</table>

A—indicates that the system, task, or procedure may be examined if the appropriate aircraft system or control is simulated in the FSTD and is working properly.

R—indicates that the simulator may be qualified for this task for continuing qualification training.

X—indicates that the simulator must be able to perform this task for this level of qualification.

Table A1C—Table of Simulator System Tasks

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Simulator levels</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Instructor Operating Station (IOS), as appropriate</td>
<td>X X X X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QPS requirements</th>
<th>Information</th>
<th>Simulator levels</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulator levels</td>
<td>A B C D</td>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

VerDate Mar<15>2010 18:16 Mar 01, 2012 Jkt 226045 PO 00000 Frm 00048 Fmt 8010 Sfmt 8002 Q:\14\14V2 ofr150 PsN: PC150
Federal Aviation Administration, DOT
Pt. 60, App. A

TABLE A1C—TABLE OF SIMULATOR SYSTEM TASKS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Simulator levels</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.b.</td>
<td>Airplane conditions</td>
<td>X X X X</td>
<td>e.g., GW, CG, Fuel loading and Systems.</td>
</tr>
<tr>
<td>1.c.</td>
<td>Airports/Runways</td>
<td>X X X X</td>
<td>e.g., Selection, Surface, Presets, Lighting controls.</td>
</tr>
<tr>
<td>1.d.</td>
<td>Environmental controls</td>
<td>X X X X</td>
<td>e.g., Clouds, Visibility, RVR, Temp, Wind, Ice, Snow, Rain, and Windshear.</td>
</tr>
<tr>
<td>1.e.</td>
<td>Airplane system malfunctions (Insertion/deletion)</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>1.f.</td>
<td>Locks, Freezes, and Repositioning</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>2. Sound Controls</td>
<td></td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>3. Motion/Control Loading System</td>
<td></td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>4. Observer Seats/Stations</td>
<td></td>
<td>X X X X</td>
<td></td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS—Continued

<table>
<thead>
<tr>
<th>Paragraph No.</th>
<th>Title</th>
</tr>
</thead>
</table>

BEGIN INFORMATION

1. INTRODUCTION

a. For the purposes of this attachment, the flight conditions specified in the Flight Conditions Column of Table A2A of this appendix, are defined as follows:
 (1) Ground—on ground, independent of airplane configuration;
 (2) Take-off—gear down with flaps/slats in any certified takeoff position;
 (3) First segment climb—gear down with flaps/slats in any certified takeoff position (normally not above 50 ft AGL);
 (4) Second segment climb—gear up with flaps/slats in any certified takeoff position (normally between 50 ft and 400 ft AGL);
 (5) Clean—flaps/slats retracted and gear up;
(6) Cruise—clean configuration at cruise altitude and airspeed;

(7) Approach—gear up or down with flaps/slats at any normal approach position as recommended by the airplane manufacturer; and

(8) Landing—gear down with flaps/slats in any certified landing position.

b. The format for numbering the objective tests in Appendix A, Attachment 2, Table A2A, and the objective tests in Appendix B, Attachment 2, Table B2A, is identical. However, each test required for FFSs is not necessarily required for FTDs. Also, each test required for FTDs is not necessarily required for FFSs. Therefore, when a test number (or series of numbers) is not required, the term “Reserved” is used in the table at that location. Following this numbering format provides a degree of commonality between the two tables and substantially reduces the potential for confusion when referring to objective test numbers for either FFSs or FTDs.

d. If relevant winds are present in the objective data, the wind vector should be clearly noted as part of the data presentation, expressed in conventional terminology, and related to the runway being used for the test.

END INFORMATION

BEGIN QPS REQUIREMENTS

2. TEST REQUIREMENTS

a. The ground and flight tests required for qualification are listed in Table A2A, FFS Objective Tests. Computer generated simulator test results must be provided for each test except where an alternative test is specifically authorized by the NSPM. If a flight condition or operating condition is required for the test but does not apply to the airplane being simulated, or to the qualification level sought, it may be disregarded (e.g., an engine out missed approach for a single-engine airplane or a maneuver using reverse thrust for an airplane without reverse thrust capability). Each test result is compared against the validation data described in §60.13 and in this appendix. Although use of a driver program designed to automatically accomplish the tests is encouraged for all simulators and required for Level C and Level D simulators, it must be possible to conduct each test manually while recording all appropriate parameters. The results must be produced on an appropriate recording device acceptable to the NSPM and must include simulator number, date, time, conditions, tolerances, and appropriate dependent variables portrayed in comparison to the validation data. Time histories are required unless otherwise indicated in Table A2A. All results must be labeled using the tolerances and units given.

b. Table A2A in this attachment sets out the test results required, including the parameters, tolerances, and flight conditions for simulator validation. Tolerances are provided for the listed tests because mathematical modeling and acquisition and development of reference data are often inexact. All tolerances listed in the following tables are applied to simulator performance. When two tolerance values are given for a parameter, the less restrictive may be used unless otherwise indicated. In those cases where a tolerance is expressed only as a percentage, the tolerance percentage applies to the maximum value of that parameter within its normal operating range as measured from the neutral or zero position unless otherwise indicated.

c. Certain tests included in this attachment must be supported with an SOC. In Table A2A, requirements for SOCs are indicated in the “Test Details” column.

d. When operational or engineering judgment is used in making assessments for flight test data applications for simulator validity, such judgment must not be limited to a single parameter. For example, data that exhibit rapid variations of the measured parameters may require interpolations or a “best fit” data selection. All relevant parameters related to a given maneuver or flight condition must be provided to allow overall interpretation. When it is difficult or impossible to match simulator to airplane data throughout a time history, differences must be justified by providing a comparison of other related variables for the condition being assessed.

e. It is not acceptable to program the FFS so that the mathematical modeling is correct only at the validation test points. Unless otherwise noted, simulator tests must represent airplane performance and handling qualities at operating weights and centers of gravity (CG) typical of normal operation. If a test is supported by airplane data at one extreme weight or CG, another test supported by airplane data at mid-conditions or as close as possible to the other extreme must be included. Certain tests that are relevant only at one extreme CG or weight condition need not be repeated at the other extreme. Tests of handling qualities must include validation of augmentation devices.

f. When comparing the parameters listed to those of the airplane, sufficient data must also be provided to verify the correct flight condition and airplane configuration.
changes. For example, to show that control force is within the parameters for a static stability test, data to show the correct airspeed, power, thrust or torque, airplane configuration, altitude, and other appropriate datum identification parameters must also be given. If comparing short period dynamics, normal acceleration may be used to establish a match to the airplane, but airspeed, altitude, control input, airplane configuration, and other appropriate data must also be given. If comparing landing gear change dynamics, pitch, airspeed, and altitude may be used to establish a match to the airplane, but landing gear position must also be provided. All airspeed values must be properly annotated (e.g., indicated versus calibrated).

In addition, the same variables must be used for comparison (e.g., compare inches to inches rather than inches to centimeters). The QTG provided by the sponsor must clearly describe how the simulator will be set up and operated for each test. Each simulator subsystem may be tested independently, but overall integrated testing of the simulator must be accomplished to assure that the total simulator system meets the prescribed standards. A manual test procedure with explicit and detailed steps for completing each test must also be provided.

For previously qualified simulators, the tests and tolerances of this attachment may be used in subsequent continuing qualification evaluations for any given test if the sponsor has submitted a proposed MQTG revision to the NSPM and has received NSPM approval.

1. Simulators are evaluated and qualified with an engine model simulating the airplane data supplier’s flight test engine. For qualification of alternative engine models (either variations of the flight test engines or other manufacturer’s engines) additional tests with the alternative engine models may be required. This attachment contains guidelines for alternative engines.

2. For testing Computer Controlled Aircraft (CCA) simulators, or other highly augmented airplane simulators, flight test data is required for the Normal (N) and Non-normal (NN) control states, as indicated in this attachment. Where test results are independent of control state, Normal or Non-normal control data may be used. All tests in Table A2A require test results in the Normal control state unless specifically noted otherwise in the Test Details section following the CCA designation. The NSPM will determine what tests are appropriate for airplane simulation data. When making this determination, the NSPM may require other levels of control state degradation for specific airplane tests. Where Non-normal control states are required, test data must be provided for one or more Non-normal control states, and must include the least augmented state. Where applicable, flight test data must record Normal and Non-normal states for:

 (1) Pilot controller deflections or electronically generated inputs, including location of input; and

 (2) Flight control surface positions unless test results are not affected by, or are independent of, surface positions.

k. Tests of handling qualities must include validation of augmentation devices. FFSSs for highly augmented airplanes will be validated both in the unaugmented configuration (or failure state with the maximum permitted degradation in handling qualities) and the augmented configuration. Where various levels of handling qualities result from failure states, validation of the effect of the failure is necessary. Requirements for testing will be mutually agreed to between the sponsor and the NSPM on a case-by-case basis.

l. Some tests will not be required for airplanes using airplane hardware in the simulator flight deck (e.g., “side stick controller”). These exceptions are noted in Section 2 “Handling Qualities” in Table A2A of this attachment. However, in these cases, the sponsor must provide a statement that the airplane hardware meets the appropriate manufacturer’s specifications and the sponsor must have supporting information to that fact available for NSPM review.

m. For objective test purposes, see Appendix F of this part for the definitions of “Near maximum,” “Light,” and “Medium” gross weight.

END QPS REQUIREMENTS

BEGIN INFORMATION

n. In those cases where the objective test results authorize a “snapshot test” or a “series of snapshot tests” results in lieu of a time-history result, the sponsor or other data provider must ensure that a steady state condition exists at the instant of time captured by the “snapshot.” The steady state condition should exist for 4 seconds prior to, through 1 second following, the instant of time captured by the snapshot.

o. For references on basic operating weight, see AC 120-27, “Aircraft Weight and Balance;” and FAA–H–8083–1, “Aircraft Weight and Balance Handbook.”

END INFORMATION
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a.</td>
<td>Taxi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a.1.</td>
<td>Minimum Radius Turn.</td>
<td>±3 ft (0.9m) or 20% of airplane turn radius.</td>
<td>Ground</td>
<td>Record both Main and Nose gear turning radius. This test is to be accomplished without the use of brakes and only minimum thrust, except for airplanes requiring asymmetric thrust or braking to turn.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.a.2.</td>
<td>Rate of Turn vs. Nosewheel Steering Angle (NWA).</td>
<td>±10% or ±2°/sec turn rate.</td>
<td>Ground</td>
<td>Record a minimum of two speeds, greater than minimum turning radius speed, with a spread of at least 5 knots ground-speed, in normal taxi speed conditions.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.b.</td>
<td>Takeoff.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.b.1.</td>
<td>Ground Acceleration Time and Distance.</td>
<td>±5% time and distance or ±5% time and ±200 ft (61 m) of distance.</td>
<td>Takeoff</td>
<td>Record acceleration time and distance for a minimum of 80% of the time from brake release to Vfe. Preliminary aircraft certification data may be used.</td>
<td>X X X</td>
<td></td>
</tr>
</tbody>
</table>

May be combined with normal takeoff (1.b.4.) or rejected takeoff (1.b.7.). Plotted data should be shown using appropriate scales for each portion of the maneuver.
TABLE A2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.b.2. ...</td>
<td>Minimum Control Speed—ground ((V_{mcg})) using aerodynamic controls only (per applicable airworthiness standard) or alternative low speed engine inoperative test to demonstrate ground control characteristics.</td>
<td>±25% of maximum airplane lateral deviation or ±5 ft (1.5 m). Additionally, for those simulators of airplanes with reversible flight control systems: Rudder pedal force; ±10% or ±5 lb (2.2 daN).</td>
<td>Takeoff Engine failure speed must be within ±1 knot of airplane engine failure speed. Engine thrust decay must be that resulting from the mathematical model for the engine variant applicable to the FFS under test. If the modeled engine is not the same as the airplane manufacturer’s flight test engine, a further test may be run with the same initial conditions using the thrust from the flight test data as the driving parameter.</td>
<td>X X X X</td>
<td>If a (V_{mcg}) test is not available an acceptable alternative is a flight test snap engine deceleration to idle at a speed between (V_1) and (V_1 \pm 10) knots, followed by control of heading using aerodynamic control only. Recovery should be achieved with the main gear on the ground. To ensure only aerodynamic control is used, nosewheel steering should be disabled (i.e., castored) or the nosewheel held slightly off the ground.</td>
</tr>
<tr>
<td>1.b.3. ...</td>
<td>Minimum Unstick Speed ((V_{mu})) or equivalent test to demonstrate early rotation takeoff characteristics.</td>
<td>±3 kts airspeed (±1.5)° pitch angle.</td>
<td>Takeoff Record main landing gear strut compression or equivalent air/ground signal. Record from 10 kt before start of rotation until at least 5 seconds after the occurrence of main gear lift-off.</td>
<td>X X X X</td>
<td>(V_{mu}) is defined as the minimum speed at which the last main landing gear leaves the ground. Main landing gear strut compression or equivalent air/ground signal should be recorded. If a (V_{mu}) test is not available, alternative acceptable flight tests are a constant high-attitude takeoff run through main gear lift-off or an early rotation takeoff.</td>
</tr>
</tbody>
</table>
TABLE A2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Test Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.b.4. ...</td>
<td>Normal Takeoff.</td>
<td>±3 kts airspeed ±1.5° pitch angle ±1.5° angle of attack ±20 ft (6 m) height. Additionally, for those simulators of airplanes with reversible flight control systems: Stick/Column Force; ±10% or ±5 lb (2.2 daN).</td>
<td>Takeoff Record takeoff profile from brake release to at least 200 ft (61 m) above ground level (AGL). If the airplane has more than one certificated takeoff configurations, a different configuration must be used for each weight. Data are required for a takeoff weight at near maximum takeoff weight with a mid-center of gravity and for a light takeoff weight with an aft center of gravity, as defined in Appendix F of this part.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.b.5. ...</td>
<td>Critical Engine Failure on Takeoff.</td>
<td>±3 kts airspeed ±1.5° pitch angle, ±1.5° angle of attack, ±20 ft (6 m) height, ±3° heading angle, ±2° bank angle, ±2° sideslip angle. Additionally, for those simulators of airplanes with reversible flight control systems: Stick/Column Force; ±10% or ±5 lb (2.2 daN); Wheel Force; ±10% or ±3 lb (1.3 daN); and Rudder Pedal Force; ±10% or ±5 lb (2.2 daN).</td>
<td>Takeoff Record takeoff profile at near maximum takeoff weight from prior to engine failure to at least 200 ft (61 m) AGL. Engine failure speed must be within ±3 kts of airplane data.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

QPS Requirements Information

- **A**: Normal Takeoff
- **B**: Critical Engine Failure on Takeoff
- **C**: Simulator Level
- **D**: Notes
###TABLE A2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.b.6. ...</td>
<td>Crosswind Takeoff.</td>
<td>±3 kts airspeed, ±1.5° pitch angle, ±1.5° angle of attack, ±20 ft (6 m) height, ±2° bank angle, ±2° sideslip angle: ±3° heading angle. Correct trend at groundspeeds below 40 kts. for rudder/pedal and heading. Additionally, for those simulators of airplanes with reversible flight control systems: ±10% or ±5 lb (2.2 daN) stick/column force, ±10% or ±3 lb (1.3 daN) wheel force, ±10% or ±5 lb (2.2 daN) rudder pedal force.</td>
<td>Takeoff.</td>
<td>Record takeoff profile from brake release to at least 200 ft (61 m) AGL. Requires test data, including information on wind profile for a crosswind (expressed as direct head-wind and direct cross-wind components) of at least 60% of the maximum wind measured at 33 ft (10 m) above the runway.</td>
<td>X X X X</td>
<td>In those situations where a maximum crosswind or a maximum demonstrated crosswind is not known, contact the NSPM.</td>
</tr>
<tr>
<td>1.b.7. ...</td>
<td>Rejected Takeoff.</td>
<td>±5% time or ±1.5 sec ±7.5% distance or ±250 ft (±76 m).</td>
<td>Takeoff.</td>
<td>Record time and distance from brake release to full stop. Speed for initiation of the reject must be at least 80% of (V_1) speed. The airplane must be at or near the maximum takeoff gross weight. Use maximum braking effort, auto or manual.</td>
<td>X X X X</td>
<td>Autobrakes will be used where applicable.</td>
</tr>
<tr>
<td>1.b.8. ...</td>
<td>Dynamic Engine Failure After Takeoff.</td>
<td>±20% or ±2°/sec body angular rates.</td>
<td>Takeoff.</td>
<td>Engine failure speed must be within ±3 Kts of airplane data. Record Hands Off from 5 secs. before to at least 5 secs. after engine failure or 30° Bank, whichever occurs first. Engine failure may be a snap deceleration to idle. CCA: Test in Normal and Non-normal control state.</td>
<td>X X</td>
<td>For safety considerations, airplane flight test may be performed out of ground effect at a safe altitude, but with correct airplane configuration and airspeed.</td>
</tr>
<tr>
<td>1.c. ...</td>
<td>Climb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Tolerance</td>
<td>Flight conditions</td>
<td>Test details</td>
<td>Simulator level</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±3 kts airspeed, ±5% or ±100 FPM (0.5 m/Sec.) climb rate.</td>
<td>Clean</td>
<td>Flight test data is preferred, however, airplane performance manual data is an acceptable alternative. Record at nominal climb speed and mid-initial climb altitude. Flight simulator performance must be recorded over an interval of at least 1,000 ft. (300 m).</td>
<td>A X X X</td>
<td></td>
</tr>
<tr>
<td>1.c.1.</td>
<td>Normal Climb, all engines operating.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.c.2.</td>
<td>One engine Inoperative.</td>
<td>±3 kts airspeed, ±5% or ±100 FPM (0.5 m/Sec.) climb rate, but not less than the climb gradient requirements of 14 CFR part 23 or part 25, as appropriate.</td>
<td>For part 23 airplanes, in accordance with part 23. For part 25 airplanes, Second Segment Climb.</td>
<td>Flight test data is preferred, however, airplane performance manual data is an acceptable alternative. Test at weight, altitude, or temperature limiting conditions. Record at nominal climb speed. Flight simulator performance must be recorded over an interval of at least 1,000 ft. (300 m).</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>1.c.3.</td>
<td>One Engine Inoperative En route Climb.</td>
<td>±10% time, ±10% distance, ±10% fuel used.</td>
<td>Clean</td>
<td>Record results for at least a 5000 ft (1550 m) climb segment. Flight test data or airplane performance manual data may be used.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>1.c.4.</td>
<td>One Engine Inoperative Approach Climb (if operations in icing conditions are authorized).</td>
<td>±3 kts airspeed, ±5% or ±100 FPM (0.5 m/Sec.) climb rate, but not less than the climb gradient requirements of 14 CFR parts 23 or 25 climb gradient, as appropriate.</td>
<td>Approach</td>
<td>Record results at near maximum gross landing weight as defined in Appendix F of this part. Flight test data or airplane performance manual data may be used. Flight simulator performance must be recorded over an interval of at least 1,000 ft. (300 m).</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.d.1.</td>
<td>Level flight acceleration.</td>
<td>±5% Time</td>
<td>Cruise</td>
<td>Record results for a minimum of 50 kts speed increase using maximum continuous thrust rating or equivalent.</td>
<td>X X X X</td>
<td></td>
</tr>
</tbody>
</table>

The airplane should be configured with all anti-ice and de-ice systems operating normally, with the gear up and go-around flaps set. All icing accountabilities should be applied in accordance with the aircraft certification or authorization for an approach in icing conditions.
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.d.2.</td>
<td>Level flight deceleration.</td>
<td>±5% Time</td>
<td>Cruise</td>
<td>Record results for a minimum of 50 kts. speed decrease using idle power.</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>1.d.3.</td>
<td>Cruise performance.</td>
<td>±0.05 EPR or ±5% of N₁, or ±5% of Torque, or ±5% of fuel flow.</td>
<td>Cruise</td>
<td>May be a single snapshot showing instantaneous fuel flow or a minimum of 2 consecutive snapshots with a spread of at least 3 minutes in steady flight.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>1.d.4.</td>
<td>Idle descent</td>
<td>±3 kt airspeed, ±5% or ±200 ft/min (1.0m/sec) descent rate.</td>
<td>Clean</td>
<td>Record a stabilized, idle power descent at normal descent speed at mid-altitude. Flight simulator performance must be recorded over an interval of at least 1,000 ft (300 m).</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>1.d.5.</td>
<td>Emergency descent</td>
<td>±5 kt airspeed, ±5% or ±300 ft/min (1.5m/sec) descent rate.</td>
<td>N/A</td>
<td>Performance must be recorded over an interval of at least 3,000 ft (900 m).</td>
<td>X X X X</td>
<td>The stabilized descent should be conducted with speed brakes extended, if applicable, at mid-altitude and near V_{mo} speed or in accordance with emergency descent procedures.</td>
</tr>
<tr>
<td>1.e.</td>
<td>Stopping</td>
<td>±5% of time. For distance up to 4000 ft (1220 m): ±200 ft (61 m) or ±10%, whichever is smaller. For distance greater than 4000 ft (1220 m): ±5% of distance.</td>
<td>Landing</td>
<td>Record time and distance for at least 80% of the total time from touch down to full stop. Data is required for weights at medium and near maximum landing weights. Data for brake system pressure and position of ground spoilers (including method of deployment, if used) must be provided. Engineering data may be used for the medium gross weight condition.</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Tolerance</td>
<td>Flight conditions</td>
<td>Test details</td>
<td>Simulator level</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>1.e.2....</td>
<td>Stopping time and distance, using reverse thrust and no wheel brakes on a dry runway.</td>
<td>±5% time and the smaller of ±10% or ±200 ft (61 m) of distance.</td>
<td>Landing ...</td>
<td>Record time and distance for at least 80% of the total time from initiation of reverse thrust to the minimum operating speed with full reverse thrust. Data is required for medium and near maximum landing gross weights. Data on the position of ground spoilers, (including method of deployment, if used) must be provided. Engineering data may be used for the medium gross weight condition.</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>1.e.3....</td>
<td>Stopping distance, using wheel brakes and no reverse thrust on a wet runway.</td>
<td>±10% of distance or ±200 ft (61 m).</td>
<td>Landing ...</td>
<td>Either flight test data or manufacturer's performance manual data must be used where available. Engineering data based on dry runway flight test stopping distance modified by the effects of contaminated runway braking coefficients are an acceptable alternative.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>1.e.4....</td>
<td>Stopping distance, using wheel brakes and no reverse thrust on an icy runway.</td>
<td>±10% of distance or ±200 ft (61 m).</td>
<td>Landing ...</td>
<td>Either flight test or manufacturer's performance manual data must be used, where available. Engineering data based on dry runway flight test stopping distance modified by the effects of contaminated runway braking coefficients are an acceptable alternative.</td>
<td>X X</td>
<td></td>
</tr>
</tbody>
</table>

2. Handling Qualities.

1.f. Engines.

<p>| 1.f.1.... | Acceleration (±10% T<sub>i</sub> and ±10% T<sub>t</sub>, or ±0.25 sec.). | Approach or landing. | Record engine power (N<sub>e</sub>, N<sub>e</sub>, EPR, Torque) from flight idle to go-around power for a rapid (slam) throttle movement. | X X X | See Appendix F of this part for definitions of T<sub>i</sub> and T<sub>t</sub>. |
| 1.f.2.... | Deceleration (±10% T<sub>i</sub> and ±10% T<sub>t</sub>, or ±0.25 sec.). | Ground | Record engine power (N<sub>e</sub>, N<sub>e</sub>, EPR, Torque) from Max T/O power to 90% decay of Max T/O power for a rapid (slam) throttle movement. | X X X | See Appendix F of this part for definitions of T<sub>i</sub> and T<sub>t</sub>. |</p>
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Test Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level Information</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>For simulators requiring Static or Dynamic tests at the controls (i.e., column, wheel, rudder pedal), special test fixtures will not be required during initial or upgrade evaluations if the sponsor’s QTG/MQTG shows both test fixture results and the results of an alternative approach, such as computer plots produced concurrently, that provide satisfactory agreement. Repeat of the alternative method during the initial or upgrade evaluation satisfies this test requirement. For initial and upgrade evaluations, the control dynamic characteristics must be measured at and recorded directly from the flight deck controls, and must be accomplished in takeoff, cruise, and landing flight conditions and configurations. Testing of position versus force is not applicable if forces are generated solely by use of airplane hardware in the FFS. Contact the NSPM for clarification of any issue regarding airplanes with reversible controls.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.</td>
<td>Static Control Tests.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.1.a.</td>
<td>Pitch Controller Position vs. Force and Surface Position Calibration.</td>
<td>±2 lb (0.9 daN) breakout, ±10% or ±5 lb (2.2 daN) force, 3° elevator.</td>
<td>Ground</td>
<td>Record results for an uninterrupted control sweep to the stops.</td>
<td>X X X</td>
<td>Test results should be validated (where possible) with in-flight data from tests such as longitudinal static stability or stalls. Static and dynamic flight control tests should be accomplished at the same feel or impact pressures.</td>
</tr>
<tr>
<td>2.a.1.b.</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.2.a.</td>
<td>Roll Controller Position vs. Force and Surface Position Calibration.</td>
<td>±2 lb (0.9 daN) breakout, ±10% or ±3 lb (1.3 daN) force, 3° aileron, 3° spoiler angle.</td>
<td>Ground</td>
<td>Record results for an uninterrupted control sweep to the stops.</td>
<td>X X X</td>
<td>Test results should be validated with in-flight data from tests such as engine out trim, or steady state sideslip. Static and dynamic flight control tests should be accomplished at the same feel or impact pressures.</td>
</tr>
<tr>
<td>2.a.2.b.</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A2A—Full Flight Simulator (FFS) Objective Tests—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Test Description</th>
<th>Tolerance</th>
<th>Flight Conditions</th>
<th>Test Details</th>
<th>Simulator Level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a.3.a.</td>
<td>Rudder Pedal Position vs. Force and Surface Position Calibration.</td>
<td>±5 lb (2.2 daN) breakout, ±10% or ±3 lb (2.2 daN) force, ±2° rudder angle.</td>
<td>Ground.....</td>
<td>Record results for an uninterrupted control sweep to the stops.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.a.3.b.</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.4.</td>
<td>Nosewheel Steering Controller Force and Position Calibration.</td>
<td></td>
<td>Ground.....</td>
<td>Record results of an uninterrupted control sweep to the stops.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.a.5.</td>
<td>Rudder Pedal Steering Calibration.</td>
<td>±2° nosewheel angle.</td>
<td>Ground.....</td>
<td>Record results of an uninterrupted control sweep to the stops.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.a.6.</td>
<td>Pitch Trim Indicator vs. Surface Position Calibration.</td>
<td>±0.5° of computed trim surface angle.</td>
<td>Ground.....</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.a.7.</td>
<td>Pitch Trim Rate.</td>
<td>±10% trim rate (/ sec).</td>
<td>Ground and approach.</td>
<td>The trim rate must be checked using the pilot primary trim (ground) and using the autopilot or pilot primary trim in flight at go-around flight conditions.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.a.8.</td>
<td>Alignment of Flight Deck Throttle Lever vs. Selected Engine Parameter.</td>
<td>±5° of throttle lever angle, or ±3% N1, or ±0.03 EPR, or ±3% maximum rated manifold pressure, or ±3% torque. For propeller-driven airplanes where the propeller control levers do not have angular travel, a tolerance of ±0.8 inch (±2 cm.) applies.</td>
<td>Ground.....</td>
<td>Requires simultaneous recording for all engines. The tolerances apply against airplane data and between engines. In the case of propeller powered airplanes, if a propeller lever is present, it must also be checked. For airplanes with throttle “detents,” all detents must be presented. May be a series of snapshot test results.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Test Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.9. ... brake pedal position vs. force and brake system pressure calibration. Ground. Hydraulic system pressure must be related to pedal position through a ground static test. FFS computer output results may be used to show compliance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.b. ... dynamic control tests. Tests 2.b.1., 2.b.2., and 2.b.3. are not applicable if dynamic response is generated solely by use of airplane hardware in the FFS. Power setting is that required for level flight unless otherwise specified.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.b.1. ... pitch control: data must show normal control displacement in both directions. Tolerances apply against the absolute values of each period (considered independently). Normal control displacement for this test is 25% to 50% of full throw or 25% to 50% of the maximum allowable pitch controller deflection for flight conditions limited by the maneuvering load envelope. X X X X FFS computer output results may be used to show compliance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a.9. ... brake pedal position vs. force and brake system pressure calibration. Ground. Hydraulic system pressure must be related to pedal position through a ground static test. FFS computer output results may be used to show compliance.</td>
<td>±5 lb (2.2 daN) or 10% force, ±150 psi (1.0 MPa) or ±10% brake system pressure.</td>
<td>X X X X FFS computer output results may be used to show compliance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.b. ... dynamic control tests. Tests 2.b.1., 2.b.2., and 2.b.3. are not applicable if dynamic response is generated solely by use of airplane hardware in the FFS. Power setting is that required for level flight unless otherwise specified.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.b.1. ... pitch control: data must show normal control displacement in both directions. Tolerances apply against the absolute values of each period (considered independently). Normal control displacement for this test is 25% to 50% of full throw or 25% to 50% of the maximum allowable pitch controller deflection for flight conditions limited by the maneuvering load envelope. X X X X FFS computer output results may be used to show compliance.</td>
<td>±10% of time from 90% of initial displacement (0.9 A₀) to first zero crossing and ±10% (n+1)% of period thereafter. ±10% amplitude of first overshoot applied to all overshoots greater than 5% of initial displacement (.05 A₀). ±1 overshoot (first significant overshoot must be matched). For overdamped systems: ±10% of time from 90% of initial displacement (0.9 A₀) to 10% of initial displacement (0.1 A₀). For the alternate method see paragraph 4 of this attachment. The slow sweep is the equivalent to the static test 2.a.1. For the moderate and rapid sweeps: ±2 lb (0.9 daN) or ±10% dynamic increment above the static force.</td>
<td>X X X X FFS computer output results may be used to show compliance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test No.</td>
<td>Title</td>
<td>Tolerance</td>
<td>Flight conditions</td>
<td>Test details</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>2.b.2.</td>
<td>Roll Control</td>
<td>For underdamped systems: ±10% of time from 90% of initial displacement (0.9 A₀) to first zero crossing, and ±10 (n+1)% of period thereafter. ±10% amplitude of first overshoot, applied to all overshoots greater than 5% of initial displacement (0.05 A₀), ±1 overshoot (first significant overshoot must be matched). For overdamped systems: ±10% of time from 90% of initial displacement (0.9 A₀) to 10% of initial displacement (0.1 A₀). For the alternate method see paragraph 4 of this attachment. The slow sweep is the equivalent to the static test 2.a.2. For the moderate and rapid sweeps: ±2 lb (0.9 daN) or ±10% dynamic increment above the static force.</td>
<td>Takeoff, Cruise, and Landing.</td>
<td>Data must show normal control displacement in both directions. Tolerance applies against the absolute values of each period (considered independently). Normal control displacement for this test is 25% to 50% of the maximum allowable roll controller deflection for flight conditions limited by the maneuvering load envelope.</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Flight conditions</td>
<td>Test details</td>
<td>Simulator level</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>2.b.3.</td>
<td>Yaw Control</td>
<td></td>
<td>Data must show normal control displacement in both directions. Tolerance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>applies against the absolute values of each period (considered independently).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal control displacement for this test is 25% to 50% of the maximum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>allowable yaw controller deflection for flight conditions limited by the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>maneuvering load envelope.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±10% of time from 90% of initial displacement (0.9 A_d) to first zero</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>crossing, and ±10 (n+1)% of period thereafter. ±10% amplitude of first</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>overshoot applied to all overshoots greater than 5% of initial displacement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.05 A_d). ±1 overshoot (first significant overshoot must be matched). For</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>underdamped systems: ±10% of time from 90% of initial displacement (0.9 A_d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to 10% of initial displacement (0.1 A_d). For the alternate method (see</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>paragraph 4 of this attachment). The slow sweep is the equivalent to the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>static test 2.a.3. For the moderate and rapid sweeps: ±0.2 lb (0.9 daN) or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±10% dynamic increment above the static force.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±0.15°/sec body pitch rate or ±20% of peak body pitch rate applied</td>
<td></td>
</tr>
<tr>
<td>2.b.4.</td>
<td>Small Control</td>
<td>Approach or</td>
<td>Control inputs must be typical of minor corrections made while established</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inputs—</td>
<td>landing</td>
<td>on an ILS approach course, using from 0.5° sec to 2°/sec pitch rate. The</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pitch.</td>
<td></td>
<td>test must be in both directions, showing time history data from 5 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>before until at least 5 seconds after initiation of control input. CCA: Test</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in normal and non-normal control states.</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Tolerance</td>
<td>Flight conditions</td>
<td>Test details</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------------------------------------</td>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.15°/sec body roll rate or ±20% of peak body roll rate applied throughout the time history.</td>
<td>Approach or landing.</td>
<td>Control inputs must be typical of minor corrections made while established on an ILS approach course, using from 0.5°/sec to 2°/sec roll rate. The test may be run in only one direction; however, for airplanes that exhibit non-symmetrical behavior, the test must include both directions. Time history data must be recorded from 5 seconds before until at least 5 seconds after initiation of control input. CCA: Test in normal and non-normal control states.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.15°/sec body yaw rate or ±20% of peak body yaw rate applied throughout the time history.</td>
<td>Approach or landing.</td>
<td>Control inputs must be typical of minor corrections made while established on an ILS approach course, using from 0.5°/sec to 2°/sec yaw rate. The test may be run in only one direction; however, for airplanes that exhibit non-symmetrical behavior, the test must include both directions. Time history data must be recorded from 5 seconds before until at least 5 seconds after initiation of control input. CCA: Test in normal and non-normal control states.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±3 kt airspeed, ±100 ft (30 m) altitude, ±20% or ±1.5° pitch angle.</td>
<td>Approach ..</td>
<td>Power is changed from the thrust setting required for approach or level flight to maximum continuous thrust or go-around power setting. Record the uncontrolled free response from at least 5 seconds before the power change is initiated to 15 seconds after the power change is completed. CCA: Test in normal and non-normal control states.</td>
</tr>
</tbody>
</table>
TABLE A2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Test</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2.c.2.</td>
<td>Flap/Slat Change Dynamics.</td>
<td>±3 kt airspeed, ±100 ft (30 m) altitude, ±20% or ±1.5° pitch angle.</td>
<td>Takeoff through initial flap retraction, and approach to landing.</td>
<td>Record the uncontrolled free response from at least 5 seconds before the configuration change is initiated to 15 seconds after the configuration change is completed. CCA: Test in normal and non-normal control states.</td>
<td>X</td>
</tr>
<tr>
<td>2.c.3.</td>
<td>Spoiler/Speedbrake Change Dynamics.</td>
<td>±3 kt airspeed, ±100 ft (30 m) altitude, ±20% or ±1.5° pitch angle.</td>
<td>Cruise</td>
<td>Record the uncontrolled free response from at least 5 seconds before the configuration change is initiated to 15 seconds after the configuration change is completed. Record results for both extension and retraction. CCA: Test in normal and non-normal control states.</td>
<td>X</td>
</tr>
<tr>
<td>2.c.4.</td>
<td>Gear Change Dynamics.</td>
<td>±3 kt airspeed, ±100 ft (30 m) altitude, ±20% or ±1.5° pitch angle.</td>
<td>Takeoff (retraction), and Approach (extension).</td>
<td>Record the time history of uncontrolled free response for a time increment from at least 5 seconds before the configuration change is initiated to 15 seconds after the configuration change is completed. CCA: Test in normal and non-normal control states.</td>
<td>X</td>
</tr>
<tr>
<td>2.c.5.</td>
<td>Longitudinal Trim.</td>
<td>±0.5° trim surface angle, ±1° elevator, ±1° pitch angle, ±5% net thrust or equivalent.</td>
<td>Cruise, Approach, and Landing.</td>
<td>Record steady-state condition with wings level and thrust set for level flight. May be a series of snapshot tests. CCA: Test in normal or non-normal control states.</td>
<td>X</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Tolerance</td>
<td>Flight conditions</td>
<td>Test details</td>
<td>Simulator level</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>2.c.6.</td>
<td>Longitudinal Maneuvering Stability</td>
<td>±5 lb (±2.2 daN) or ±10% pitch controller force. Alternative method: ±1° or ±10% change of elevator.</td>
<td>Cruise, Approach, and Landing.</td>
<td>Continuous time history data or a series of snapshot tests may be used. Record results up to 30° of bank for approach and landing configurations. Record results for up to 45° of bank for the cruise configuration. The force tolerance is not applicable if forces are generated solely by the use of airplane hardware in the FFS. The alternative method applies to airplanes that do not exhibit “stick-force-per-g” characteristics. CCA: Test in normal and non-normal control states.</td>
<td>X X X X</td>
</tr>
<tr>
<td>2.c.7.</td>
<td>Longitudinal Static Stability</td>
<td>±5 lb (±2.2 daN) or ±10% pitch controller force. Alternative method: ±1° or ±10% change of elevator.</td>
<td>Approach.</td>
<td>Record results for at least 2 speeds above and 2 speeds below trim speed. May be a series of snapshot test results. The force tolerance is not applicable if forces are generated solely by the use of airplane hardware in the FFS. The alternative method applies to airplanes that do not exhibit speed stability characteristics. CCA: Test in normal or non-normal control states.</td>
<td>X X X X</td>
</tr>
<tr>
<td>2.c.8.</td>
<td>Stall Characteristics</td>
<td>±3 kt airspeed for initial buffet, stall warning, and stall speeds. ±2° bank for speeds greater than stick shaker or initial buffet. Additionally, for those simulators with reversible flight control systems: ±10% or ±5 lb (2.2 daN) Stick/Column force (prior to “g break” only).</td>
<td>Second Segment Climb, and Approach or Landing.</td>
<td>The stall maneuver must be entered with thrust at or near idle power and wings level (1g). Record the stall warning signal and initial buffet, if applicable. Time history data must be recorded for full stall and initiation of recovery. The stall warning signal must occur in the proper relation to buffet/stall. FFSs of airplanes exhibiting a sudden pitch attitude change or “g break” must demonstrate this characteristic. CCA: Test in normal and non-normal control states.</td>
<td>X X X X</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Tolerance</td>
<td>Flight conditions</td>
<td>Test details</td>
<td>Simulator level</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2.c.9.</td>
<td>Phugoid Dynamics.</td>
<td>±10% period, ±10% of time to 1⁄2 or double amplitude or ±0.02 of damping ratio.</td>
<td>Cruise</td>
<td>The test must include whichever is less of the following: Three full cycles (six overshoots after the input is completed), or the number of cycles sufficient to determine time to 1⁄2 or double amplitude. CCA: Test in Non-normal control states</td>
<td>X X X X</td>
</tr>
<tr>
<td>2.c.10.</td>
<td>Short Period Dynamics.</td>
<td>±1.5° pitch angle or ±2°/sec pitch rate, ±0.10g acceleration.</td>
<td>Cruise</td>
<td>CCA: Test in Normal and Non-normal control states.</td>
<td>X X X X</td>
</tr>
<tr>
<td>2.c.11.</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.</td>
<td>Lateral Directional Tests.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.1.</td>
<td>Minimum Control Speed, Air (V_{mca}) or (V_{mcl}), per Applicable Airworthiness Standard or Low Speed Engine Inoperative Handling Characteristics in the Air.</td>
<td>±3 kt airspeed.</td>
<td></td>
<td>Takeoff or Landing (which-ever is most criti- cal in the airplane). Takeoff thrust must be used on the operating engine(s). A time history or a series of snapshot tests may be used. CCA: Test in Normal or Non-normal control state.</td>
<td>X X X X</td>
</tr>
<tr>
<td>2.d.2.</td>
<td>Roll Response (Rate).</td>
<td>±10% or ±2°/sec roll rate. Additionally, for those simula- tors of airplanes with reversible flight control sys- tems: ±10% or ±3 lb (1.3 daN) wheel force.</td>
<td>Cruise, and Approach or Land- ing.</td>
<td>Record results for normal roll controller deflection (about one-third of max- imum roll controller trav- el). May be combined with step input of flight deck roll controller test (2.d.3.).</td>
<td>X X X X</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Tolerance</td>
<td>Flight conditions</td>
<td>Test details</td>
<td>Simulator level</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>2.d.3.</td>
<td>Roll Response to Flight Deck Roll Controller Step Input.</td>
<td>±10% or ±2° bank angle.</td>
<td>Approach or Landing.</td>
<td>Record from initiation of roll through 10 seconds after control is returned to neutral and released. May be combined with roll response (rate) test (2.d.2). CCA: Test in Normal and Non-normal control states</td>
<td>X X X X</td>
</tr>
<tr>
<td>2.d.4.</td>
<td>Spiral Stability.</td>
<td>Correct trend and ±2° or ±10% bank angle in 20 seconds. Alternate test requires correct trend and ±2° aileron.</td>
<td>Cruise, and Approach or Landing.</td>
<td>Record results for both directions. Airplane data averaged from multiple tests may be used. As an alternate test, demonstrate the lateral control required to maintain a steady turn with a bank angle of 28° to 32°. CCA: Test in Non-normal control state</td>
<td>X X X X</td>
</tr>
<tr>
<td>2.d.5.</td>
<td>Engine Inoperative Trim.</td>
<td>±1° rudder angle or ±1° tab angle or equivalent pedal, ±2° sideslip angle.</td>
<td>Second Segment Climb, and Approach or Landing.</td>
<td>May be a series of snapshot tests.</td>
<td>X X X X</td>
</tr>
<tr>
<td>2.d.6.</td>
<td>Rudder Response.</td>
<td>±2°/sec or ±10% yaw rate.</td>
<td>Approach or Landing.</td>
<td>Record results for stability augmentation system ON and OFF. A rudder step input of 20%–30% rudder pedal throw is used. CCA: Test in Normal and Non-normal control states</td>
<td>X X X X</td>
</tr>
</tbody>
</table>
Table A2A—Full Flight Simulator (FFS) Objective Tests—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.d.7. ...</td>
<td>Dutch Roll, (Yaw Damper OFF).</td>
<td>±0.5 sec or ±10% of period, ±10% of time to ½ or double amplitude or ±0.02 of damping ratio. ±20% or ±1 sec of time difference between peaks of bank and sideslip.</td>
<td>Cruise, and Approach or Landing. Record results for at least 6 complete cycles with stability augmentation OFF. CCA: Test in Non-normal control state.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.d.8. ...</td>
<td>Steady State Sideslip.</td>
<td>For given rudder position ±2° bank angle, ±1° sideslip angle, ±10% or ±2° aileron, ±10% or ±5° spoiler or equivalent roll, controller position or force. Additionally, for those simulators of airplanes with reversible flight control systems: ±10% or ±3 lb (1.3 daN) wheel force ±10% or ±5 lb (2.2 daN) rudder pedal force.</td>
<td>Approach or Landing. Use at least two rudder positions, one of which must be near maximum allowable rudder. Propeller driven airplanes must test in each direction. May be a series of snapshot test results.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.e. ...</td>
<td>Landings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.e.1. ...</td>
<td>Normal Landing.</td>
<td>±3 kt airspeed, ±1.5° pitch angle, ±1.5° angle of attack, ±10% or ±10 ft (3 m) height. Additionally, for those simulators of airplanes with reversible flight control systems: ±10% or ±5 lbs (±2.2 daN) stick/column force.</td>
<td>Landing Record results from a minimum of 200 ft (61 m) AGL to nosewheel touchdown. CCA: Test in Normal and Non-normal control states.</td>
<td>X X X</td>
<td>Tests should be conducted with two normal landing flap settings (if applicable). One should be at or near maximum certificated landing weight. The other should be at light or medium landing weight.</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Tolerance</td>
<td>Flight conditions</td>
<td>Test details</td>
<td>Simulator level</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>2.e.2.</td>
<td>Minimum Flap Landing</td>
<td>±3 kt airspeed, ±1.5° pitch angle, ±1.5° angle of attack, ±10% or ±10 ft (3 m) height. Additionally, for those simulators of airplanes with reversible flight control systems: ±10% or ±5 lbs (2.2 daN) stick/column force.</td>
<td>Minimum Certified Landing Flap Configuration. Record results from a minimum of 200 ft (61 m) AGL to nosewheel touchdown with airplane at near Maximum Landing Weight.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.e.3.</td>
<td>Crosswind Landing</td>
<td>±3 kt airspeed, ±1.5° pitch angle, ±1.5° angle of attack, ±10% or ±10 ft (3 m) height ±2° bank angle, 12° sideslip angle ±3° heading angle. Additionally, for those simulators of airplanes with reversible flight control systems: ±10% or ±3 lb (1.3 daN) wheel force ±10% or ±5 lb (2.2 daN) rudder pedal force.</td>
<td>Landing Record results from a minimum of 200 ft (61 m) AGL, through nosewheel touchdown, to 50% decrease in main landing gear touchdown speed. Test data must include information on wind profile, for a crosswind (expressed as direct headwind and direct crosswind components) of 60% of the maximum wind measured at 33 ft (10 m) above the runway.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.e.4.</td>
<td>One Engine Inoperative Landing</td>
<td>±3 kt airspeed, ±1.5° pitch angle, ±1.5° angle of attack, ±10% height or ±10 ft (3 m); ±2° bank angle, 12° sideslip angle, ±3° heading.</td>
<td>Landing Record results from a minimum of 200 ft (61 m) AGL, through nosewheel touchdown, to 50% decrease in main landing gear touchdown speed or less.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.e.5.</td>
<td>Autopilot landing (if applicable)</td>
<td>±5 ft (1.5 m) flare height, ±0.5 sec T_t, or ±10% T_t, ±140 ft/min (0.7 m/sec) rate of descent at touchdown, ±10 ft (3 m) lateral deviation during rollout.</td>
<td>Landing If autopilot provides rollout guidance, record lateral deviation from touchdown to a 50% decrease in main landing gear touchdown speed or less. Time of autopilot flare mode engage and main gear touchdown must be noted.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Tolerance</td>
<td>Flight conditions</td>
<td>Test details</td>
<td>Simulator level</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2.e.6.</td>
<td>All engines operating, autopilot, go around.</td>
<td>±3 kt airspeed, ±1.5° pitch angle, ±1.5° angle of attack.</td>
<td>Normal, all-engines-operating, go around with the autopilot engaged (if applicable) at medium landing weight. CCA: Test in normal or non-normal control states.</td>
<td>X X X</td>
<td>A B C D</td>
</tr>
<tr>
<td>2.e.7.</td>
<td>One engine inoperative go around.</td>
<td>±3 kt airspeed, ±1.5° pitch angle, ±1.5° angle of attack, ±2° bank angle, ±2° slideslip angle.</td>
<td>The one engine inoperative go around is required at near maximum certificated landing weight with the critical engine inoperative using manual controls. If applicable, an additional engine inoperative go around test must be accomplished with the autopilot engaged. CCA: Non-autopilot test in Non-normal control state.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.e.8.</td>
<td>Directional control (rudder effectiveness) with symmetric reverse thrust.</td>
<td>±2°/sec yaw rate, ±5 kts airspeed.</td>
<td>Landing ... Record results starting from a speed approximating touchdown speed to the minimum thrust reverser operation speed. With full reverse thrust, apply yaw control in both directions until reaching minimum thrust reverser operation speed.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.e.9.</td>
<td>Directional control (rudder effectiveness) with asymmetric reverse thrust.</td>
<td>±5 kt airspeed, ±3° heading angle.</td>
<td>Landing ... Maintain heading with yaw control with full reverse thrust on the operating engine(s). Record results starting from a speed approximating touchdown speed to a speed at which control of yaw cannot be maintained or until reaching minimum thrust reverser operation speed, whichever is higher. The tolerance applies to the low speed end of the data recording.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.f.</td>
<td>Ground Effect.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..........</td>
<td>Test to demonstrate Ground Effect.</td>
<td>±1° elevator, ±0.5° stabilizer angle, ±0.5% net thrust or equivalent, ±1° angle of attack, ±10% height or ±5 ft (1.5 m), ±3 kt airspeed, ±1° pitch angle.</td>
<td>Landing ... The Ground Effect model must be validated by the test selected and a rationale must be provided for selecting the particular test.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>Test Title</td>
<td>Tolerance</td>
<td>Flight Conditions</td>
<td>Test Details</td>
<td>Simulator Level</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2.g.</td>
<td>Windshear.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Four tests, two takeoff and two landing, with one of each conducted in still air and the other with windshear active to demonstrate windshear models.</td>
<td></td>
<td></td>
<td>Requires windshear models that provide training in the specific skills needed to recognize windshear phenomena and to execute recovery procedures. See Attachment 5 of this appendix for tests, tolerances, and procedures.</td>
<td>X X</td>
</tr>
</tbody>
</table>

2.h. Flight Maneuver and Envelope Protection Functions.

2.h.1. ...	Overspeed ...	±5 kt airspeed ...	Cruise ...	X X X
2.h.2. ...	Minimum Speed.	±3 kt airspeed ...	Takeoff, Cruise, and Approach or Landing.	X X X
2.h.3. ...	Load Factor	±0.1 g normal load factor.	Takeoff, Cruise.	X X X
2.h.4. ...	Pitch Angle	±1.5° pitch angle	Cruise, Approach.	X X X
2.h.5. ...	Bank Angle	±2° or ±10% bank angle.	Approach ...	X X X
2.h.6. ...	Angle of Attack	±1.5° angle of attack	Second Segment Climb, and Approach or Landing.	X X X

3. Motion System.

3.a. Frequency response.

| 3.b. | Leg balance. | | | | X X X |

QPS Requirements Information
TABLE A2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Based on Simulator Capability.</td>
<td>N/A</td>
<td>Required as part of the MQTG. The test must demonstrate motion system leg balance as specified by the applicant for flight simulator qualification.</td>
<td>X X X X</td>
<td></td>
</tr>
</tbody>
</table>

3.c. Turn-around check.

| | | Based on Simulator Capability. | N/A | Required as part of the MQTG. The test must demonstrate a smooth turn-around (shift to opposite direction of movement) of the motion system as specified by the applicant for flight simulator qualification. | X X X X |

3.d. Motion system repeatability.

| | | With the same input signal, the test results must be repeatable to within ±0.05 g actual platform linear acceleration. | Accomplished in both the "ground" mode and in the "flight" mode of the motion system operation. | Required as part of the MQTG. The assessment procedures must be designed to ensure that the motion system hardware and software (in normal flight simulator operating mode) continue to perform as originally qualified. | X X X X |

3.e. Motion cueing performance signature. Required as part of MQTG. For the following set of maneuvers record the relevant motion variables.

| 3.e.1. | Takeoff rotation ($V_{to} \rightarrow V_{2}$). | As specified by the sponsor for flight simulator qualification. | Ground | Pitch attitude due to initial climb must dominate over cab tilt due to longitudinal acceleration. | X X X X |

<p>| 3.e.2. | Engine failure between V_{1} and V_{2}. | As specified by the sponsor for flight simulator qualification. | Ground | | X X X X |</p>
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Test Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.e.3.</td>
<td>Pitch change during go-around.</td>
<td>As specified by the sponsor for flight simulator qualification.</td>
<td>Flight</td>
<td>X X X</td>
<td>Associated with test 2.e.6.</td>
<td></td>
</tr>
<tr>
<td>3.e.4.</td>
<td>Configuration changes.</td>
<td>As specified by the sponsor for flight simulator qualification.</td>
<td>Flight</td>
<td>X X X</td>
<td>Associated with tests 2.c.2. and 2.c.4.</td>
<td></td>
</tr>
<tr>
<td>3.e.5.</td>
<td>Power change dynamics.</td>
<td>As specified by the sponsor for flight simulator qualification.</td>
<td>Flight</td>
<td>X X X</td>
<td>Associated with test 2.c.1.</td>
<td></td>
</tr>
<tr>
<td>3.e.6.</td>
<td>Landing flare</td>
<td>As specified by the sponsor for flight simulator qualification.</td>
<td>Flight</td>
<td>X X X</td>
<td>Associated with test 2.e.1.</td>
<td></td>
</tr>
<tr>
<td>3.e.7.</td>
<td>Touchdown bump.</td>
<td>As specified by the sponsor for flight simulator qualification.</td>
<td>Ground</td>
<td>X X</td>
<td>Associated with test 2.e.1.</td>
<td></td>
</tr>
</tbody>
</table>

3.f. Characteristic motion vibrations. The recorded test results for characteristic buffets must allow the comparison of relative amplitude versus frequency.

3.f.1. Thrust effect with brakes set. Simulator test results must exhibit the overall appearance and trends of the airplane data, with at least three (3) of the predominant frequency “spikes” being present within ±2 Hz. Ground The test must be conducted within 5% of the maximum possible thrust with brakes set. X

3.f.2. Buffet with landing gear extended. Simulator test results must exhibit the overall appearance and trends of the airplane data, with at least three (3) of the predominant frequency “spikes” being present within ±2 Hz. Flight The test must be conducted at a nominal, mid-range airspeed; i.e., sufficiently below landing gear limiting airspeed to avoid inadvertently exceeding this limitation. X
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Test</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SIMULATOR level</td>
<td>Flight</td>
<td>The test must be conducted at a nominal, mid-range airspeed; i.e., sufficiently below flap extension limiting airspeed to avoid inadvertently exceeding this limitation.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffet with flaps extended.</td>
<td>Flight</td>
<td>The test must be conducted at a nominal, mid-range airspeed; i.e., sufficiently below flap extension limiting airspeed to avoid inadvertently exceeding this limitation.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffet with speedbrakes deployed.</td>
<td>Flight</td>
<td>The test must be conducted for approach to stall. Post stall characteristics are not required.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffet at approach-to-stall.</td>
<td>Flight</td>
<td>The test must be conducted for approach to stall. Post stall characteristics are not required.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buffet at high airspeeds or high Mach.</td>
<td>Flight</td>
<td>The test may be conducted during either a high speed maneuver (e.g., "wind-up" turn) or at high Mach.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE A2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.f.7.</td>
<td>In-flight vibrations for propeller driven airplanes.</td>
<td>Simulator test results must exhibit the overall appearance and trends of the airplane data, with at least three (3) of the predominant frequency “spikes” being present within ±2 Hz.</td>
<td>Flight (clean configuration).</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

4.a. Visual System Response Time: (Choose either test 4.a.1. or 4.a.2. to satisfy test 4.a., Visual System Response Time Test. This test also suffices for motion system response timing and flight deck instrument response timing. Motion onset should occur before the start of the visual scene change (the start of the scan of the first video field containing different information) but must occur before the end of the scan of that video field. Instrument response may not occur prior to motion onset.)

<table>
<thead>
<tr>
<th>4.a.1.</th>
<th>Latency..</th>
<th>300 ms (or less) after airplane response.</th>
<th>Take-off, cruise, and approach or landing.</th>
<th>One test is required in each axis (pitch, roll and yaw) for each of the three conditions (take-off, cruise, and approach or landing).</th>
<th>X X</th>
<th>The visual scene or test pattern used during the response testing should be representative of the system capacities required to meet the daylight, twilight (dusk/dawn) and/or night visual capability as appropriate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.a.2.</td>
<td>Transport Delay</td>
<td>150 ms (or less) after airplane response.</td>
<td>Take-off, cruise, and approach or landing.</td>
<td>One test is required in each axis (pitch, roll and yaw) for each of the three conditions (take-off, cruise, and approach or landing).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See additional information in this attachment; also see Table A1A, entry 2.g.
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>..........</td>
<td></td>
<td>300 ms (or less) after controller movement.</td>
<td>N/A</td>
<td>A separate test is required in each axis (pitch, roll, and yaw).</td>
<td>X X</td>
<td>If Transport Delay is the chosen method to demonstrate relative responses, the sponsor and the NSPM will use the latency values to ensure proper simulator response when reviewing those existing tests where latency can be identified (e.g., short period, roll response, rudder response).</td>
</tr>
<tr>
<td>..........</td>
<td></td>
<td>150 ms (or less) after controller movement.</td>
<td>N/A</td>
<td>A separate test is required in each axis (pitch, roll, and yaw).</td>
<td>X X</td>
<td></td>
</tr>
</tbody>
</table>

4.b.1. ... Continuous collimated visual field-of-view.

Continuous collimated field-of-view providing at least 45° horizontal and 30° vertical field-of-view for each pilot seat. Both pilot seat visual systems must be operable simultaneously.

N/A Required as part of MQTG but not required as part of continuing evaluations. | X X | A vertical field-of-view of 30° may be insufficient to meet visual ground segment requirements.

4.b.2. ... (Reserved)
TABLE A2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.b.3.</td>
<td>Continuous, collimated, field-of-view.</td>
<td>Continuous field-of-view of at least 176° horizontally and 36° vertically.</td>
<td>N/A</td>
<td>An SOC is required and must explain the geometry of the installation. Horizontal field-of-view must be at least 176° (including not less than 88° either side of the center line of the design eye point). Additional horizontal field-of-view capability may be added at the sponsor’s discretion provided the minimum field-of-view is retained. Vertical field-of-view must be at least 36° from each pilot’s eye point. Required as part of MQTG but not required as part of continuing qualification evaluations.</td>
<td>X X</td>
<td>The horizontal field-of-view is traditionally described as a 180° field-of-view. However, the field-of-view is technically no less than 176°. Field-of-view should be measured using a visual test pattern filling the entire visual scene (all channels) with a matrix of black and white 5° squares. The installed alignment should be addressed in the SOC.</td>
</tr>
<tr>
<td>4.c.</td>
<td>System geometry.</td>
<td>5° even angular spacing within ±1° as measured from either pilot eye point and within 1.5° for adjacent squares.</td>
<td>N/A</td>
<td>The angular spacing of any chosen 5° square and the relative spacing of adjacent squares must be within the stated tolerances.</td>
<td>X X X</td>
<td>The purpose of this test is to evaluate local linearity of the displayed image at either pilot eye point. System geometry should be measured using a visual test pattern filling the entire visual scene (all channels) with a matrix of black and white 5° squares with light points at the intersections.</td>
</tr>
<tr>
<td>4.d.</td>
<td>Surface contrast ratio.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Tolerance</td>
<td>Flight conditions</td>
<td>Test details</td>
<td>Simulator level</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>..........</td>
<td>Not less than 5:1.</td>
<td>N/A</td>
<td>The ratio is calculated by dividing the brightness level of the center, bright square (providing at least 2 foot-lamberts or 7 cd/m²) by the brightness level of any adjacent dark square. This requirement is applicable to any level of simulator equipped with a daylight visual system.</td>
<td>X X Measurements should be made using a 1° spot photometer and a raster drawn test pattern filling the entire visual scene (all channels) with a test pattern of black and white squares, 5° per square, with a white square in the center of each channel. During contrast ratio testing, simulator aft-cab and flight deck ambient light levels should be zero.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.e.</td>
<td>Highlight brightness.</td>
<td>Not less than six (6) foot-lamberts (20 cd/ m²).</td>
<td>N/A</td>
<td>Measure the brightness of a white square while superimposing a highlight on that white square. The use of calligraphic capabilities to enhance the raster brightness is acceptable; however, measuring lightpoints is not acceptable. This requirement is applicable to any level of simulator equipped with a daylight visual system.</td>
<td>X X Measurements should be made using a 1° spot photometer and a raster drawn test pattern filling the entire visual scene (all channels) with a test pattern of black and white squares, 5° per square, with a white square in the center of each channel.</td>
<td></td>
</tr>
<tr>
<td>4.f.</td>
<td>Surface resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>Test Title</td>
<td>Tolerance</td>
<td>Flight Conditions</td>
<td>Test Details</td>
<td>Simulator Level</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>4.g.</td>
<td>Light point size.</td>
<td>Not greater than five (5) arc minutes.</td>
<td>N/A</td>
<td>An SOC is required and must include the relevant calculations and an explanation of those calculations. This requirement is applicable to any level of simulator equipped with a daylight visual system.</td>
<td>X X</td>
<td>Light point size should be measured using a test pattern consisting of a centrally located single row of light points reduced in length until modulation is just discernible in each visual channel. A row of 48 lights will form a 4° angle or less.</td>
</tr>
<tr>
<td>4.h.</td>
<td>Light point contrast ratio.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE A2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.h.1</td>
<td>Not less than 10:1</td>
<td>N/A</td>
<td>An SOC is required and must include the relevant calculations.</td>
<td>X</td>
<td>A 1° spot photometer is used to measure a square of at least 1° filled with light points (where light point modulation is just discernible) and compare the results to the measured adjacent background. During contrast ratio testing, simulator aft-cab and flight deck ambient light levels should be zero.</td>
</tr>
<tr>
<td>4.h.2</td>
<td>Not less than 25:1</td>
<td>N/A</td>
<td>An SOC is required and must include the relevant calculations.</td>
<td>X</td>
<td>A 1° spot photometer is used to measure a square of at least 1° filled with light points (where light point modulation is just discernible) and compare the results to the measured adjacent background. During contrast ratio testing, simulator aft-cab and flight deck ambient light levels should be zero.</td>
</tr>
<tr>
<td>4.i</td>
<td>Visual ground segment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QPS Requirements Information
Table A2A—Full Flight Simulator (FFS) Objective Tests—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>........</td>
<td></td>
<td>A B C D</td>
<td></td>
<td></td>
<td>X X X X</td>
<td>Pre-position for this test is encouraged but may be achieved via manual or autopilot control to the desired position.</td>
</tr>
</tbody>
</table>

5. Sound System.

The visible segment in the simulator must be ±20% of the segment computed to be visible from the airplane flight deck. This tolerance may be applied at the far end of the displayed segment. However, lights and ground objects computed to be visible from the airplane flight deck at the near end of the visible segment must be visible in the simulator.

Landing configuration, with the aircraft trimmed for the appropriate airspeed, where the MLG are at 100 ft (30 m) above the plane of the touchdown zone, while on the electronic glide slope with an RVR value set at 1,200 ft (350 m) RVR. Simulator performance must be measured against the QTG calculations. The data submitted must include at least the following:

1. Static airplane dimensions as follows:
 - Horizontal and vertical distance from main landing gear (MLG) to glideslope reception antenna.
 - Horizontal and vertical distance from MLG to pilot’s eyepoint.
 - Static flight deck cutoff angle.
2. Approach data as follows:
 - Identification of runway.
 - Horizontal distance from runway threshold to glideslope intercept with runway.
 - Glide slope angle.
 - Airplane pitch angle on approach.
3. Airplane data for manual testing:
 - Gross weight.
 - Airplane configuration.
 - Approach airspeed. If non-homogeneous fog is used to obscure visibility, the vertical variation in horizontal visibility must be described and be included in the slant range visibility calculation used in the computations.
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Simulator level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QPS Requirements Test</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Tolerance Flight conditions Test details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.</td>
<td>Turbo-jet airplanes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.1.</td>
<td>Ready for engine start.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±5 dB per 1/3 octave band.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.2.</td>
<td>All engines at idle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±5 dB per 1/3 octave band.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.3.</td>
<td>All engines at maximum allowable thrust with brakes set.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±5 dB per 1/3 octave band.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.4.</td>
<td>Climb</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±5 dB per 1/3 octave band.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.5.</td>
<td>Cruise</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±5 dB per 1/3 octave band.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.6.</td>
<td>Speedbrake / spoilers extended (as appropriate).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±5 dB per 1/3 octave band.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.7.</td>
<td>Initial approach.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±5 dB per 1/3 octave band.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.8.</td>
<td>Final approach.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±5 dB per 1/3 octave band.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.b.</td>
<td>Propeller airplanes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.b.1.</td>
<td>Ready for engine start.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±5 dB per 1/3 octave band.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.b.2.</td>
<td>All propellers feathered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±5 dB per 1/3 octave band.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.b.3.</td>
<td>Ground Idle or equivalent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±5 dB per 1/3 octave band.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The sponsor will not be required to repeat the airplane tests (i.e., tests 5.a.1. through 5.a.6. (or 5.b.1. through 5.b.9.) and 5.c., as appropriate) during continuing qualification evaluations if frequency response and background noise test results are within tolerance when compared to the initial qualification evaluation results, and the sponsor shows that no software changes have occurred that will affect the airplane test results. If the frequency response test method is chosen and fails, the sponsor may elect to fix the frequency response problem and repeat the test or the sponsor may elect to repeat the airplane tests. If the airplane tests are repeated during continuing qualification evaluations, the results may be compared against initial qualification evaluation results or airplane master data. All tests in this section must be presented using an unweighted 1/3-octave band format from band 17 to 42 (50 Hz to 16 kHz). A minimum 20 second average must be taken at the location corresponding to the airplane data set. The airplane and flight simulator results must be produced using comparable data analysis techniques.
TABLE A2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.b.5.</td>
<td>All engines at maximum allowable power with brakes set.</td>
<td>±5 dB per 1/3 octave band.</td>
<td>Ground</td>
<td>Normal condition prior to takeoff.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.b.6.</td>
<td>Climb</td>
<td>±5 dB per 1/3 octave band.</td>
<td>En-route climb.</td>
<td>Medium altitude</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.b.7.</td>
<td>Cruise</td>
<td>±5 dB per 1/3 octave band.</td>
<td>Cruise</td>
<td>Normal cruise configuration.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.b.8.</td>
<td>Initial approach.</td>
<td>±5 dB per 1/3 octave band.</td>
<td>Approach</td>
<td>Constant airspeed, gear up, flaps extended as appropriate, RPM as per operating manual.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.b.9.</td>
<td>Final Approach.</td>
<td>±5 dB per 1/3 octave band.</td>
<td>Landing</td>
<td>Constant airspeed, gear down, full flaps, RPM as per operating manual.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5.c.</td>
<td>Special cases.</td>
<td>±5 dB per 1/3 octave band.</td>
<td>As appropriate.</td>
<td></td>
<td>X</td>
<td>These special cases are identified as particularly significant during critical phases of flight and ground operations for a specific airplane type or model.</td>
</tr>
<tr>
<td>5.d.</td>
<td>Background noise.</td>
<td>±3 dB per 1/3 octave band.</td>
<td>Results of the background noise at initial qualification must be included in the MQTG. Measurements must be made with the simulation running, the sound muted and a "dead" flight deck.</td>
<td></td>
<td>X</td>
<td>The sound in the simulator will be evaluated to ensure that the background noise does not interfere with training, testing, or checking.</td>
</tr>
<tr>
<td>5.e.</td>
<td>Frequency response.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QPS Requirements Information

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>
Federal Aviation Administration, DOT
Pt. 60, App. A

TABLE A2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Test Title</th>
<th>Tolerance</th>
<th>Flight conditions</th>
<th>Test details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>±5 dB on three (3) consecutive bands when compared to initial evaluation; and ±2 dB when comparing the average of the absolute differences between initial and continuing qualification evaluation.</td>
<td>A</td>
<td>Flight details</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Applicable only to Continuing Qualification Evaluations. If frequency response plots are provided for each channel at the initial qualification evaluation, these plots may be repeated at the continuing qualification evaluation with the following tolerances applied: (a) The continuing qualification 1/3 octave band amplitudes must not exceed ±5 dB for three consecutive bands when compared to initial results. (b) The average of the sum of the absolute differences between initial and continuing qualification results must not exceed 2 dB (refer to Table A2B in this attachment).</td>
</tr>
</tbody>
</table>
overshoots since the significance of such
overshoots becomes questionable. Only those
overshoots larger than 5 per cent of the total
initial displacement should be considered.
The residual band, labeled $T(A_d)$ on Figure
A2A is $\pm 5\%$ of the initial displacement
amplitude A_d from the steady state value of
the oscillation. Only oscillations outside the
residual band are considered significant.
When comparing FFS data to airplane data,
the process should begin by overlaying or
aligning the FFS and airplane steady state
values and then comparing amplitudes of os-
cillation peaks, the time of the first zero
crossing and individual periods of oscilla-
tion. The FFS should show the same number
of significant overshoots to within one when
compared against the airplane data. The pro-
cedure for evaluating the response is illus-
trated in Figure A2A.

(b) Critically damped and overdamped re-
response. Due to the nature of critically
damped and overdamped responses (no over-
shoots), the time to reach 90 percent of the
steady state (neutral point) value should be
the same as the airplane within 10 percent.
Figure A2B illustrates the procedure.

(c) Special considerations. Control systems
that exhibit characteristics other than clas-
sical overdamped or underdamped responses
should meet specified tolerances. In addi-
tion, special consideration should be given to
ensure that significant trends are main-
tained.

(2) Tolerances.
(a) The following table summarizes the tol-
erances. T for underdamped systems, and
"n" is the sequential period of a full cycle of
oscillation. See Figure A2A of this attach-
ment for an illustration of the referenced
measurements.

<table>
<thead>
<tr>
<th>T(P_0)</th>
<th>$\pm 10%$ of P_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(P_1)</td>
<td>$\pm 20%$ of P_1</td>
</tr>
<tr>
<td>T(P_2)</td>
<td>$\pm 30%$ of P_2</td>
</tr>
<tr>
<td>T(P_n)</td>
<td>$\pm 10(n+1)%$ of P_n</td>
</tr>
<tr>
<td>T(A_0)</td>
<td>$\pm 10%$ of A_1</td>
</tr>
<tr>
<td>T(A_n)</td>
<td>$\pm 5%$ of A_d = residual band</td>
</tr>
</tbody>
</table>

Significant overshoots. First overshoot
and ± 2 subsequent overshoots.

(b) The following tolerance applies to criti-
cally damped and overdamped systems only.
See Figure A2B for an illustration of the ref-
erence measurements:

| T(P_0) | $\pm 10\%$ of P_0 |

END INFORMATION

BEGIN QPS REQUIREMENT

c. Alternative method for control dynam-
ics evaluation.

(1) An alternative means for validating
control dynamics for aircraft with hydrau-
lically powered flight controls and artificial
Federal Aviation Administration, DOT

feel systems is by the measurement of control force and rate of movement. For each axis of pitch, roll, and yaw, the control must be forced to its maximum extreme position for the following distinct rates. These tests are conducted under normal flight and ground conditions.

(a) Static test—Slowly move the control so that a full sweep is achieved within 95 to 105 seconds. A full sweep is defined as movement of the controller from neutral to the stop, usually aft or right stop, then to the opposite stop, then to the neutral position.

(b) Slow dynamic test—Achieve a full sweep within 8–12 seconds.

(c) Fast dynamic test—Achieve a full sweep within 3–5 seconds.

NOTE: Dynamic sweeps may be limited to forces not exceeding 100 lbs. (44.5 daN).

(d) Tolerances

(i) Static test; see Table A2A, FFS Objective Tests, Entries 2.a.1., 2.a.2., and 2.a.3.

(ii) Dynamic test—± 2 lbs (0.9 daN) or ± 10% on dynamic increment above static test.

END QPS REQUIREMENT

BEGIN INFORMATION

d. The FAA is open to alternative means such as the one described above. The alternatives should be justified and appropriate to the application. For example, the method described here may not apply to all manufacturers’ systems and certainly not to aircraft with reversible control systems. Each case is considered on its own merit on an ad hoc basis. If the FAA finds that alternative methods do not result in satisfactory performance, more conventionally accepted methods will have to be used.
Figure A2A
Underdamped Step Response
5. GROUND EFFECT

a. For an FFS to be used for take-off and landing (not applicable to Level A simulators in that the landing maneuver may not be credited in a Level A simulator) it should reproduce the aerodynamic changes that occur in ground effect. The parameters chosen for FFS validation should indicate these changes.

1. A dedicated test should be provided that will validate the aerodynamic ground effect characteristics.

2. The organization performing the flight tests may select appropriate test methods and procedures to validate ground effect. However, the flight tests should be performed with enough duration near the ground to sufficiently validate the ground-effect model.

b. The NSPM will consider the merits of testing methods based on reliability and consistency. Acceptable methods of validating ground effect are described below. If other methods are proposed, rationale should be provided to conclude that the tests performed validate the ground-effect model. A sponsor using the methods described below to comply with the QPS requirements should perform the tests as follows:

1. Level fly-bys. The level fly-bys should be conducted at a minimum of three altitudes within the ground effect, including one at no more than 10% of the wingspan above the ground, one each at approximately 30% and 50% of the wingspan where height refers to main gear tire above the ground. In addition, one level-flight trim condition should be conducted out of ground effect (e.g., at 150% of wingspan).

2. Shallow approach landing. The shallow approach landing should be performed at a glide slope of approximately one degree with negligible pilot activity until flare.

c. The lateral-directional characteristics are also altered by ground effect. For example, because of changes in lift, roll damping is affected. The change in roll damping will affect other dynamic modes usually evaluated for FFS validation. In fact, Dutch roll dynamics, spiral stability, and roll-rate for a given lateral control input are altered by ground effect. Steady heading sideslips will also be affected. These effects should be accounted for in the FFS modeling. Several tests such as crosswind landing, one engine
inoperative landing, and engine failure on take-off serve to validate lateral-directional ground effect since portions of these tests are accomplished as the aircraft is descending through heights above the runway at which ground effect is an important factor.

6. MOTION SYSTEM
 a. General.
 (1) Pilots use continuous information signals to regulate the state of the airplane. In concert with the instruments and outside-world visual information, whole-body motion feedback is essential in assisting the pilot to control the airplane dynamics, particularly in the presence of external disturbances. The motion system should meet basic objective performance criteria, and should be subjectively tuned at the pilot’s seat position to represent the linear and angular accelerations of the airplane during a prescribed minimum set of maneuvers and conditions. The response of the motion cueing system should also be repeatable.
 (2) The Motion System tests in Section 3 of Table A2A are intended to qualify the FFS motion cueing system from a mechanical performance standpoint. Additionally, the list of motion effects provides a representative sample of dynamic conditions that should be present in the flight simulator. An additional list of representative, training-critical maneuvers, selected from Section 1 (Performance tests), and Section 2 (Handling Qualities tests), in Table A2A, that should be recorded during initial qualification (but without tolerance) to indicate the flight simulator motion cueing performance signature for the initial qualification. These tests are intended to help improve the overall standard of FFS motion cueing.
 b. Motion System Checks. The intent of test 3a, Frequency Response, test 3b, Log Balance, and test 3c, Turn-Around Check, as described in the Table of Objective Tests, is to demonstrate the performance of the motion system hardware, and to check the integrity of the motion set-up with regard to calibration and wear. These tests are independent of the motion cueing software and should be considered robotic tests.
 c. Motion System Repeatability. The intent of this test is to ensure that the motion system software and motion system hardware have not degraded or changed over time. This diagnostic test should be completed during continuing qualification checks in lieu of the robotic tests. This will allow an improved ability to determine changes in the software or determine degradation in the hardware. The following information delineates the methodology that should be used for this test:
 (1) Input: The inputs should be such that rotational accelerations, rotational rates, and linear accelerations are inserted before the transfer from airplane center of gravity to pilot reference point with a minimum amplitude of 5 deg/sec/sec, 10 deg/sec and 0.3 g, respectively, to provide adequate analysis of the output.
 (2) Recommended output:
 (a) Actual platform linear accelerations; the output will comprise accelerations due to both the linear and rotational motion acceleration;
 (b) Motion actuators position.
 d. Motion Cueing Performance Signature.
 (1) Background. The intent of this test is to provide quantitative time history records of motion system response to a selected set of automated QTG maneuvers during initial qualification. This is not intended to be a comparison of the motion platform accelerations against the flight test recorded accelerations (i.e., not to be compared against airplane cueing). If there is a modification to the initially qualified motion software or motion hardware (e.g., motion washout filter, simulator payload change greater than 10%) then a new baseline may need to be established.
 (2) Test Selection. The conditions identified in Section 3.e. in Table A2A are those maneuvers where motion cueing is the most discernible. They are general tests applicable to all types of airplanes and should be completed for motion cueing performance signature at any time acceptable to the NSPM prior to or during the initial qualification evaluation, and the results included in the MQTG.
 (3) Priority. Motion system should be designed with the intent of placing greater importance on those maneuvers that directly influence pilot perception and control of the airplane motions. For the maneuvers identified in Section 3.e. in Table A2A, the flight simulator motion cueing system should have a high tilt co-ordination gain, high rotational gain, and high correlation with respect to the airplane simulation model.
 (4) Data Recording. The minimum list of parameters provided should allow for the determination of the flight simulator’s motion cueing performance signature for the initial qualification evaluation. The following parameters are recommended as being acceptable to perform such a function:
 (a) Flight model acceleration and rotational rate commands at the pilot reference point;
 (b) Motion actuators position;
 (c) Actual platform position;
 (d) Actual platform acceleration at pilot reference point;
 e. Motion Vibrations.
 (1) Presentation of results. The characteristic motion vibrations may be used to verify that the flight simulator can reproduce the frequency content of the airplane when flown in specific conditions. The test results should be presented as a Power Spectral Density (PSD) plot with frequencies on
the horizontal axis and amplitude on the vertical axis. The airplane data and flight simulator data should be presented in the same format with the same scaling. The algorithms used for generating the flight simulator data should be the same as those used for the airplane data. If they are not the same then the algorithms used for the flight simulator data should be proven to be sufficiently comparable. As a minimum, the results along the dominant axes should be presented and a rationale for not presenting the other axes should be provided.

(2) Interpretation of results. The overall trend of the PSD plot should be considered while focusing on the dominant frequencies. Less emphasis should be placed on the differences at the high frequency and low amplitude portions of the PSD plot. During the analysis, certain structural components of the flight simulator have resonant frequencies that are filtered and may not appear in the PSD plot. If filtering is required, the notch filter bandwidth should be limited to 1 Hz to ensure that the buffet feel is not adversely affected. In addition, a rationale should be provided to explain that the characteristic motion vibration is not being adversely affected by the filtering. The amplitude portions of the PSD plot. During the analysis, certain structural components of the flight simulator have resonant frequencies that are filtered and may not appear in the PSD plot. If filtering is required, the notch filter bandwidth should be limited to 1 Hz to ensure that the buffet feel is not adversely affected. In addition, a rationale should be provided to explain that the characteristic motion vibration is not being adversely affected by the filtering. The amplitude should match airplane data as described below. However, if the PSD plot was altered for subjective reasons, a rationale should be provided to justify the change. If the plot is on a logarithmic scale, it may be difficult to interpret the amplitude of the buffet in terms of acceleration. For example, a 1×10^{-2} g-rms2/Hz would describe a heavy buffet and may be seen in the deep stall regime. Alternatively, a 1×10^{-4} g-rms2/Hz buffet is almost not perceivable, but may represent a flap buffet at low speed. The previous two examples differ in magnitude by 100. On a PSD plot this represents three decades (one decade is a change in order of magnitude of 10; and two decades is a change in order of magnitude of 100).

NOTE: In the example, “g-rms” is the mathematical expression for “g” root mean squared.”

7. SOUND SYSTEM

a. General. The total sound environment in the airplane is very complex, and changes with atmospheric conditions, airplane configuration, airspeed, altitude, and power settings. Flight deck sounds are an important component of the flight deck operational environment and provide valuable information to the flight crew. These aural cues can either assist the crew (as an indication of an abnormal situation), or hinder the crew (as a distraction or nuisance). For effective training, the flight simulator should provide flight deck sounds that are perceptible to the pilot during normal and abnormal operations, and comparable to those of the airplane. The flight simulator operator should carefully evaluate background noises in the location where the device will be installed. To demonstrate compliance with the sound requirements, the objective or validation tests in this attachment were selected to provide a representative sample of normal static conditions typically experienced by a pilot.

b. Alternate propulsion. For FFS with multiple propulsion configurations, any condition listed in Table A2A of this attachment should be presented for evaluation as part of the QTG if identified by the airplane manufacturer or other data supplier as significantly different due to a change in propulsion system (engine or propeller).

c. Data and Data Collection System.

(1) Information provided to the flight simulator manufacturer should be presented in the format suggested by the International Air Transport Association (IATA) “Flight Simulator Design and Performance Data Requirements,” as amended. This information should contain calibration and frequency response data.

(2) The system used to perform the tests listed in Table A2A should comply with the following standards:

(a) The specifications for octave, half octave, and third octave band filter sets may be found in American National Standards Institute (ANSI) S1.11–1986;

(b) Measurement microphones should be type WS2 or better, as described in International Electrotechnical Commission (IEC) 1094–4–1995.

(3) Headsets. If headsets are used during normal operation of the airplane they should also be used during the flight simulator evaluation.

(4) Playback equipment. Playback equipment and recordings of the QTG conditions should be provided during initial evaluations.

(5) Background noise.

(a) Background noise is the noise in the flight simulator that is not associated with the airplane, but is caused by the flight simulator’s cooling and hydraulic systems and extraneous noise from other locations in the building. Background noise can seriously impact the correct simulation of airplane sounds and should be kept below the airplane sounds. In some cases, the sound level of the simulation can be increased to compensate for the background noise. However, this approach is limited by the specified tolerances and by the subjective acceptability of the sound environment to the evaluation pilot.

(b) The acceptability of the background noise levels is dependent upon the normal sound levels in the airplane being represented. Background noise levels that fall below the lines defined by the following points, may be acceptable:

(1) 70 dB @ 50 Hz;
(i) 55 dB at 1000 Hz;
(ii) 30 dB at 16 kHz

(Note: These limits are for unweighted 1/3 octave band sound levels. Meeting these limits for background noise does not ensure an acceptable flight simulator. Airplane sounds that fall below this limit require careful review and may require lower limits on background noise.)

(6) Validation testing. Deficiencies in airplane recordings should be considered when applying the specified tolerances to ensure that the simulation is representative of the airplane. Examples of typical deficiencies are:
(a) Variation of data between tail numbers;
(b) Frequency response of microphones;
(c) Repeatability of the measurements.

Table A2B—Example of Continuing Qualification Frequency Response Test Tolerance

<table>
<thead>
<tr>
<th>Band center frequency</th>
<th>Initial results (dBSPL)</th>
<th>Continuing qualification results (dBSPL)</th>
<th>Absolute difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>75.0</td>
<td>73.8</td>
<td>1.2</td>
</tr>
<tr>
<td>63</td>
<td>75.9</td>
<td>75.6</td>
<td>0.3</td>
</tr>
<tr>
<td>80</td>
<td>77.1</td>
<td>76.5</td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>78.0</td>
<td>78.3</td>
<td>0.3</td>
</tr>
<tr>
<td>125</td>
<td>81.9</td>
<td>81.3</td>
<td>0.6</td>
</tr>
<tr>
<td>160</td>
<td>79.8</td>
<td>80.1</td>
<td>0.3</td>
</tr>
<tr>
<td>200</td>
<td>83.1</td>
<td>84.9</td>
<td>1.8</td>
</tr>
<tr>
<td>250</td>
<td>78.6</td>
<td>78.9</td>
<td>0.3</td>
</tr>
<tr>
<td>315</td>
<td>79.5</td>
<td>78.3</td>
<td>1.2</td>
</tr>
<tr>
<td>400</td>
<td>80.1</td>
<td>79.5</td>
<td>0.6</td>
</tr>
<tr>
<td>500</td>
<td>80.7</td>
<td>79.8</td>
<td>0.9</td>
</tr>
<tr>
<td>630</td>
<td>81.9</td>
<td>80.4</td>
<td>1.5</td>
</tr>
<tr>
<td>800</td>
<td>73.2</td>
<td>74.1</td>
<td>0.9</td>
</tr>
<tr>
<td>1000</td>
<td>76.2</td>
<td>80.1</td>
<td>3.9</td>
</tr>
<tr>
<td>1250</td>
<td>80.7</td>
<td>82.8</td>
<td>2.1</td>
</tr>
<tr>
<td>1600</td>
<td>81.6</td>
<td>78.6</td>
<td>3.0</td>
</tr>
<tr>
<td>2000</td>
<td>76.2</td>
<td>74.4</td>
<td>1.8</td>
</tr>
<tr>
<td>2500</td>
<td>79.5</td>
<td>80.7</td>
<td>1.2</td>
</tr>
<tr>
<td>3150</td>
<td>80.1</td>
<td>77.1</td>
<td>3.0</td>
</tr>
<tr>
<td>4000</td>
<td>78.9</td>
<td>78.6</td>
<td>0.3</td>
</tr>
<tr>
<td>5000</td>
<td>80.1</td>
<td>77.1</td>
<td>3.0</td>
</tr>
<tr>
<td>6300</td>
<td>80.7</td>
<td>80.4</td>
<td>0.3</td>
</tr>
<tr>
<td>8000</td>
<td>84.3</td>
<td>85.5</td>
<td>1.2</td>
</tr>
<tr>
<td>10000</td>
<td>81.3</td>
<td>79.8</td>
<td>1.5</td>
</tr>
<tr>
<td>12500</td>
<td>80.7</td>
<td>80.1</td>
<td>0.6</td>
</tr>
<tr>
<td>16000</td>
<td>71.1</td>
<td>71.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Average ... 1.1

8. ADDITIONAL INFORMATION ABOUT FLIGHT SIMULATOR QUALIFICATION FOR NEW OR DERIVATIVE AIRPLANES
a. Typically, an airplane manufacturer’s approved final data for performance, handling qualities, systems or avionics is not available until well after a new or derivative airplane has entered service. However, flight crew training and certification often begins several months prior to the entry of the first airplane into service. Consequently, it may be necessary to use preliminary data provided by the airplane manufacturer for interim qualification of flight simulators.
b. In these cases, the NSPM may accept certain partially validated preliminary airplane and systems data, and early release (“red label”) avionics data in order to permit the necessary program schedule for training, certification, and service introduction.
c. Simulator sponsors seeking qualification based on preliminary data should consult the NSPM to make special arrangements for using preliminary data for flight simulator qualification. The sponsor should also consult the airplane and flight simulator manufacturers to develop a data plan and flight simulator qualification plan.
d. The procedure to be followed to gain NSPM acceptance of preliminary data will vary from case to case and between airplane manufacturers. Each airplane manufacturer’s new airplane development and test program is designed to suit the needs of the particular project and may not contain the same events or sequence of events as another manufacturer’s program, or even the same manufacturer’s program for a different airplane. Therefore, there cannot be a prescribed invariable procedure for acceptance of preliminary data, but instead there should be a statement describing the final sequence of events, data sources, and validation procedures agreed by the simulator sponsor, the airplane manufacturer, the flight simulator manufacturer, and the NSPM.
Federal Aviation Administration, DOT
Pt. 60, App. A

NOTE: A description of airplane manufacturer-provided data needed for flight simulator modeling and validation is to be found in the IATA Document “Flight Simulator Design and Performance Data Requirements,” as amended.

(e) The preliminary data should be the manufacturer’s best representation of the airplane with the assurance that the final data will not significantly deviate from the preliminary estimates. Data derived from these predictive or preliminary techniques should be validated against available sources including, at least, the following:

(1) Manufacturer’s engineering report. The report should explain the predictive method used and illustrate past success of the method on similar projects. For example, the manufacturer could show the application of the method to an earlier airplane model or predict the characteristics of an earlier model and compare the results to final data for that model.

(2) Early flight test results. This data is often derived from airplane certification tests, and should be used to maximum advantage for early flight simulator validation. Certain critical tests that would normally be done early in the airplane certification program should be included to validate essential pilot training and certification maneuvers. These include cases where a pilot is expected to cope with an airplane failure mode or an engine failure. Flight test data that will be available early in the flight test program will depend on the airplane manufacturer’s flight test program design and may not be the same in each case. The flight test program of the airplane manufacturer should include provisions for generation of very early flight test results for flight simulator validation.

(f) The use of preliminary data is not indefinit. The airplane manufacturer’s final data should be available within 12 months after the airplane’s first entry into service or as agreed by the NSPM, the simulator sponsor, and the airplane manufacturer. When applying for interim qualification using preliminary data, the simulator sponsor and the NSPM should agree on the update program. This includes specifying that the final data update will be installed in the flight simulator within a period of 12 months following the final data release, unless special conditions exist and a different schedule is acceptable. The flight simulator performance and handling validation would then be based on data derived from flight tests or from other approved sources. Initial airplane systems data should be updated after engineering tests. Final airplane systems data should also be used for flight simulator programming and validation.

g. Flight simulator avionics should stay essentially in step with airplane avionics (hardware and software) updates. The permitted time lapse between airplane and flight simulator updates should be minimal. It may depend on the magnitude of the update and whether the QTG and pilot training and certification are affected. Differences in airplane and flight simulator avionics versions and the resulting effects on flight simulator qualification should be agreed between the simulator sponsor and the NSPM. Consultation with the flight simulator manufacturer is desirable throughout the qualification process.

h. The following describes an example of the design data and sources that might be used in the development of an interim qualification plan.

(1) The plan should consist of the development of a QTG based upon a mix of flight test and engineering simulation data. For data collected from specific airplane flight tests or other flights, the required design model data or data changes necessary to support an acceptable Proof of Match (POM) should be generated by the airplane manufacturer.

(2) For proper validation of the two sets of data, the airplane manufacturer should compare their simulation model responses against the flight test data, when driven by the same control inputs and subjected to the same atmospheric conditions as recorded in the flight test. The model responses should result from a simulation where the following systems are run in an integrated fashion and are consistent with the design data released to the flight simulator manufacturer:

(a) Propulsion;
(b) Aerodynamics;
(c) Mass properties;
(d) Flight controls;
(e) Stability augmentation; and
(f) Brakes/landing gear.

i. A qualified test pilot should be used to assess handling qualities and performance evaluations for the qualification of flight simulators of new airplane types.

END INFORMATION

BEGIN QPS REQUIREMENT

9. ENGINEERING SIMULATOR—VALIDATION DATA

a. When a fully validated simulation (i.e., validated with flight test results) is modified due to changes to the simulated airplane configuration, the airplane manufacturer or other acceptable data supplier must coordinate with the NSPM if they propose to supply validation data from an “audited” engineering simulator simulation to selectively supplement flight test data. The NSPM must be provided an opportunity to audit the engineering simulation or the engineering simulator used to generate the validation data. Validation data from an audited engineering simulation may be used for changes that are
incremental in nature. Manufacturers or other data suppliers must be able to demonstrate that the predicted changes in aircraft performance are based on acceptable aeronautical principles with proven success history and valid outcomes. This must include comparisons of predicted and flight test validated data.

b. Airplane manufacturers or other acceptable data suppliers seeking to use an engineering simulator for simulation validation data as an alternative to flight-test derived validation data, must contact the NSPM and provide the following:

(1) A description of the proposed aircraft changes, a description of the proposed simulation model modifications that includes a step-by-step description leading from the original model(s) to the current model(s).

(2) A schedule for review by the NSPM of the proposed plan and the subsequent validation data to establish acceptability of the proposal.

(3) Validation data from an audited engineering simulator/simulation to supplement specific segments of the flight test data.

c. To be qualified to supply engineering simulator validation data, for aerodynamic, engine, flight control, or ground handling models, an airplane manufacturer or other acceptable data supplier must:

(1) Be able to verify their ability to:
 (a) Develop and implement high fidelity simulation models; and
 (b) Predict the handling and performance characteristics of an airplane with sufficient accuracy to avoid additional flight test activities for those handling and performance characteristics.

(2) Have an engineering simulator that:
 (a) Is a physical entity, complete with a flight deck representative of the simulated class of airplane;
 (b) Has controls sufficient for manual flight;
 (c) Has models that run in an integrated manner;
 (d) Has fully flight-test validated simulation models as the original or baseline simulation models;
 (e) Has an out-of-the-flight deck visual system;
 (f) Has actual avionics boxes interchangeable with the equivalent software simulations to support validation of released software;
 (g) Uses the same models as released to the training community (which are also used to produce stand-alone proof-of-match and checkout documents);
 (h) Is used to support airplane development and certification; and
 (i) Has been found to be a high fidelity representation of the airplane by the manufacturer's pilots (or other acceptable data supplier), certificate holders, and the NSPM.

(3) Use the engineering simulator/simulation to produce a representative set of integrated proof-of-match cases.

(4) Use a configuration control system covering hardware and software for the operating components of the engineering simulator/simulation.

(5) Demonstrate that the predicted effects of the change(s) are within the provisions of sub-paragraph ‘‘a’’ of this section, and confirm that additional flight test data are not required.

d. Additional Requirements for Validation Data

(1) When used to provide validation data, an engineering simulator must meet the simulator standards currently applicable to training simulators except for the data package.

(2) The data package used must be:
 (a) Comprised of the engineering predictions derived from the airplane design, development, or certification process;
 (b) Based on acceptable aeronautical principles with proven success history and valid outcomes for aerodynamics, engine operations, avionics operations, flight control applications, or ground handling;
 (c) Verified with existing flight-test data; and
 (d) Applicable to the configuration of a production airplane, as opposed to a flight-test airplane.

(3) Where engineering simulator data are used as part of a QTG, an essential match must exist between the training simulator and the validation data.

(4) Training flight simulator(s) using these baseline and modified simulation models must be qualified to at least internationally recognized standards, such as contained in the ICAO Document 9625, the ‘‘Manual of Criteria for the Qualification of Flight Simulators.’’

END QPS REQUIREMENT

10. [RESERVED]

11. VALIDATION TEST TOLERANCES

BEGIN INFORMATION

a. Non-Flight-Test Tolerances

(1) If engineering simulator data or other non-flight-test data are used as an allowable form of reference validation data for the objective tests listed in Table A2A of this attachment, the data provider must supply a well-documented mathematical model and testing procedure that enables a replication of the engineering simulation results within
b. Background

1. The tolerances listed in Table A2A of this attachment are designed to measure the quality of the match using flight-test data as a reference.

2. Good engineering judgment should be applied to all tolerances in any test. A test is failed when the results clearly fall outside of the prescribed tolerance(s).

3. Engineering simulator data are acceptable because the same simulation models used to produce the reference data are also used to test the flight training simulator (i.e., the two sets of results should be “essentially” similar).

4. The results from the two sources may differ for the following reasons:
 a. Hardware (avionics units and flight controls);
 b. Iteration rates;
 c. Execution order;
 d. Integration methods;
 e. Processor architecture;
 f. Digital drift, including:
 i. Interpolation methods;
 ii. Data handling differences; and
 iii. Auto-test trim tolerances.

5. The tolerance limit between the reference data and the flight simulator results is generally 20% of the corresponding “flight-test” tolerances. However, there may be cases where the simulator models used are of higher fidelity, or the manner in which they are cascaded in the integrated testing loop have the effect of a higher fidelity, than those supplied by the data provider. Under these circumstances, it is possible that an error greater than 20% may be generated. An error greater than 20% may be acceptable if simulator sponsor can provide an adequate explanation.

6. Guidelines are needed for the application of tolerances to engineering-simulator-generated validation data because:
 a. Flight-test data are often not available due to technical reasons;
 b. Alternative technical solutions are being advanced; and
 c. High costs.

12. VALIDATION DATA ROADMAP

a. Airplane manufacturers or other data suppliers should supply a validation data roadmap (VDR) document as part of the data package. A VDR document contains guidance material from the airplane validation data supplier recommending the best possible sources of data to be used as validation data in the QTG. A VDR is of special value when requesting interim qualification, qualification of simulators for airplanes certified prior to 1992, and qualification of alternate engine or avionics fits. A sponsor seeking to have a device qualified in accordance with the standards contained in this QPS appendix should submit a VDR to the NSPM as early as possible in the planning stages. The NSPM is the final authority to approve the data to be used as validation material for the QTG. The NSPM and the Joint Aviation Authorities’ Synthetic Training Devices Advisory Board have committed to maintain a list of agreed VDRs.

b. The VDR should identify (in matrix format) sources of data for all required tests. It should also provide guidance regarding the validity of these data for a specific engine type, thrust rating configuration, and the revision levels of all avionics affecting airplane handling qualities and performance. The VDR should include rationale or explanation in cases where data or parameters are missing, engineering simulation data are to be used, flight test methods require explanation, or there is any deviation from data requirements. Additionally, the document should refer to other appropriate sources of validation data (e.g., sound and vibration data documents).

c. The Sample Validation Data Roadmap (VDR) for airplanes, shown in Table A2C, depicts a generic roadmap matrix identifying sources of validation data for an abbreviated list of tests. This document is merely a sample and does not provide actual data. A complete matrix should address all test conditions and provide actual data and data sources.

d. Two examples of rationale pages are presented in Appendix F of the IATA “Flight Simulator Design and Performance Data Requirements.” These illustrate the type of airplane and avionics configuration information and descriptive engineering rationale used to describe data anomalies or provide an acceptable basis for using alternative data for QTG validation requirements.

END INFORMATION
Table A2C - Sample Validation Data Roadmap for Airplanes

<table>
<thead>
<tr>
<th>ICAO or IATA #</th>
<th>Test Description</th>
<th>Validation Source</th>
<th>Validation Document</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CCA Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aircraft Flight Test Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Simulation Data (OES - 737 Engine)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aeronautical POM, Doc. 521, Rev. A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flight Control POM, Doc. 522, Rev. B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ground Handling POM, Doc. 500.543, NEW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propulsion POM, Doc. 500, Rev. C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrated POM, Doc. 740.500, Rev. A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Appendix to this VDR, Doc. 500.500, NEW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- D71 = Engine Type (Thrust Rating of 71.5K)
- D73 = Engine Type (Thrust Rating of 73K)

Bold upper case = primary validation source.
Lower case, within parentheses = alternative validation source.
R = Rationale included in the data package Appendix.

Notes:
1. Only one page is shown, and some test conditions were deleted for brevity.
2. Relevant regulatory material should be consulted and all applicable tests addressed.
3. Validation source, document and comments provided herein are for reference only and do not constitute approval for use.
4. CCA mode must be described for each test condition.
5. If more than one aircraft type (e.g., derivative and baseline) are used as validation data more columns may be necessary.

<table>
<thead>
<tr>
<th>1.a.1. Minimum Radius Turn</th>
<th>X</th>
<th>D71</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.a.2. Rate of Turn vs. Nosewheel Angle (2 speeds)</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.b.1. Ground Acceleration Time and Distance</td>
<td>X</td>
<td>D73</td>
</tr>
<tr>
<td>1.b.2. Minimum Control Speed, Ground (Vnorg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.b.3. Minimum Unstick Speed (Vin)</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.b.4. Normal Takeoff</td>
<td>X</td>
<td>D73</td>
</tr>
<tr>
<td>1.b.5. Critical Engine Failure on Takeoff</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.b.6. Crosswind Takeoff</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.b.7. Reject Takeoff</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.b.8. Engine Sustained Bleed Rate/Engine Failure After Takeoff</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.c.1. Normal Climb – All Engines</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.c.2. Climb – Engine-out, Second Segment</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.c.3. Climb – Engine-out, One Engine Out</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.c.4. Engine-out, Approach Climb</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.c.5.a. Level Flight Acceleration</td>
<td>(x)</td>
<td>X</td>
</tr>
<tr>
<td>1.c.5.b. Level Flight Deceleration</td>
<td>(x)</td>
<td>X</td>
</tr>
<tr>
<td>1.d.1. Cruise Performance</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.e.1.a. Stopping Time & Distance (Wheel brakes / Light weight)</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.e.1.b. Stopping Time & Distance (Wheel brakes / Medium weight)</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.e.1.c. Stopping Time & Distance (Wheel brakes / Heavy weight)</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.e.2.a. Stopping Time & Distance (Reverse thrust / Light weight)</td>
<td>X</td>
<td>D71</td>
</tr>
<tr>
<td>1.e.2.b. Stopping Time & Distance (Reverse thrust / Medium weight)</td>
<td>X</td>
<td>D71</td>
</tr>
</tbody>
</table>
13. ACCEPTANCE GUIDELINES FOR ALTERNATIVE ENGINES DATA.

a. Background

(1) For a new airplane type, the majority of flight validation data are collected on the first airplane configuration with a “baseline” engine type. These data are then used to validate all flight simulators representing that airplane type.

(2) Additional flight test validation data may be needed for flight simulators representing an airplane with engines of a different type than the baseline, or for engines with thrust rating that is different from previously validated configurations.

(3) When a flight simulator with alternate engines is to be qualified, the QTG should contain tests against flight test validation data for selected cases where engine differences are expected to be significant.

b. Approval Guidelines For Validating Alternate Engine Applications

(1) The following guidelines apply to flight simulators representing airplanes with alternate engine applications or with more than one engine type or thrust rating.

(2) Validation tests can be segmented into two groups, those that are dependent on engine type or thrust rating and those that are not.

(3) For tests that are independent of engine type or thrust rating, the QTG can be based on validation data from any engine application. Tests in this category should be designated as independent of engine type or thrust rating.

(4) For tests that are affected by engine type, the QTG should contain selected engine-specific flight test data sufficient to validate that particular airplane-engine configuration. These effects may be due to engine dynamic characteristics, thrust levels or engine-related airplane configuration changes. This category is primarily characterized by variations between different engine manufacturers’ products, but also includes differences due to significant engine design changes from a previously flight-tested configuration within a single engine type.

(5) Alternate engine validation data should be based on flight test data, except as noted in sub-paragraphs 13.c.(1) and (2), or where other data are specifically allowed (e.g., engineering simulator-simulation data). If certification of the flight characteristics of the airplane with a new thrust rating (regardless of percentage change) does require certification flight testing with a comprehensive stability and control flight instrumentation package, then the conditions described in Table A2D in this section should be obtained from flight testing and presented in the QTG. Flight test data, other than throttle calibration data, are not required if the new thrust rating is certified on the airplane without need for a comprehensive stability and control flight instrumentation package.

(6) As a supplement to the engine-specific flight tests listed in Table A2D and baseline engine-independent tests, additional enginespecific engineering validation data should be provided in the QTG, as appropriate, to facilitate running the entire QTG with the alternate engine configuration. The sponsor and the NSPM should agree in advance on the specific validation tests to be supported by engineering simulation data.

(7) A matrix or VDR should be provided with the QTG indicating the appropriate validation data source for each test.

(8) The flight test conditions in Table A2D are appropriate and should be sufficient to validate implementation of alternate engines in a flight simulator.

END INFORMATION

BEGIN QPS REQUIREMENT

c. Test Requirements

(1) The QTG must contain selected engine-specific flight test data sufficient to validate the alternative thrust level when:

(a) the engine type is the same, but the thrust rating exceeds that of a previously flight-tested validated configuration by five percent (5%) or more; or

(b) the engine type is the same, but the thrust rating is less than the lowest previously flight-tested validated rating by fifteen percent (15%) or more. See Table A2D for a list of acceptable tests.

(2) Flight test data is not required if the thrust increase is greater than 5%, but flight tests have confirmed that the thrust increase does not change the airplane’s flight characteristics.

(3) Throttle calibration data (i.e., commanded power setting parameter versus throttle position) must be provided to validate all alternate engine types and engine thrust ratings that are higher or lower than a previously validated engine. Data from a test airplane or engineering test bench with the correct engine controller (both hardware and software) are required.

END QPS REQUIREMENT
Table A2D—Alternative Engine Validation Flight Tests

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Test description</th>
<th>Alternative engine type</th>
<th>Alternative thrust rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.b.1.</td>
<td>Normal take-off/ground acceleration time and distance</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.b.2.</td>
<td>V_{mae} if performed for airplane certification</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.b.5.</td>
<td>Engine-out take-off</td>
<td>Either test may be</td>
<td></td>
</tr>
<tr>
<td>1.b.8.</td>
<td>Dynamic engine failure after take-off</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

1.b.7. Rejected take-off if performed for airplane certification X
1.d.1. Cruise performance X
1.f.1., 1.f.2. Engine acceleration and deceleration X
2.a.7. Throttle calibration X
2.c.1. Power change dynamics (acceleration) X
2.d.1. V_{mae} if performed for airplane certification X
2.d.5. Engine inoperative trim X
2.e.1. Normal landing X

1 Must be provided for all changes in engine type or thrust rating; see paragraph 13.c.(3).
2 See paragraphs 13.c.(1) through 13.c.(3), for a definition of applicable thrust ratings.

End QPS Requirement

Begin Information

a. Background

1. For a new airplane type, the majority of flight validation data are collected on the first airplane configuration with a “baseline” flight-related avionics ship-set; (see subparagraph b.(2) of this section). These data are then used to validate all flight simulators representing that airplane type.

2. Additional validation data may be required for flight simulators representing an airplane with avionics of a different hardware design than the baseline, or a different software revision than previously validated configurations.

3. When a flight simulator with additional or alternate avionics configurations is to be qualified, the QTG should contain tests against validation data for selected cases where avionics differences are expected to be significant.

b. Approval Guidelines for Validating Alternate Avionics

1. The following guidelines apply to flight simulators representing airplanes with a revised avionics configuration, or more than one avionics configuration.

2. The baseline validation data should be based on flight test data, except where other data are specifically allowed (e.g., engineering flight simulator data).

3. The airplane avionics can be segmented into two groups, systems or components whose functional behavior contributes to the aircraft response presented in the QTG results, and systems that do not. The following avionics are examples of contributory systems for which hardware design changes or software revisions may lead to significant differences in the aircraft response relative to the baseline avionics configuration: Flight control computers and controllers for engines, autopilot, braking system, nosewheel steering system, and high lift system. Related avionics such as stall warning and augmentation systems should also be considered.

4. The acceptability of validation data used in the QTG for an alternative avionics fit should be determined as follows:

 (a) For changes to an avionics system or component that do not affect QTG validation test response, the QTG test can be based on validation data from the previously validated avionics configuration.

 (b) For an avionics change to a contributory system, where a specific test is not affected by the change (e.g., the avionics change is a Built In Test Equipment (BITE) update or a modification in a different flight phase), the QTG test can be based on validation data from the previously-validated avionics configuration. The QTG should include authoritative justification (e.g., from the airplane manufacturer or system supplier) that this avionics change does not affect the test.

 (c) For an avionics change to a contributory system, the QTG may be based on validation data from the previously-validated avionics configuration if no new functionality is added and the impact of the avionics change on the airplane response is small and based on acceptable aeronautical principles with proven success history and valid outcomes. This should be supplemented with avionics-specific validation data from the airplane manufacturer’s engineering
Federal Aviation Administration, DOT
Pt. 60, App. A

simulation, generated with the revised avionics configuration. The QTG should also include an explanation of the nature of the change and its effect on the airplane response.

(d) For an avionics change to a contributory system that significantly affects some tests in the QTG or where new functionality is added, the QTG should be based on validation data from the previously validated avionics configuration and supplemental avionics-specific flight test data sufficient to validate the alternate avionics revision. Additional flight test validation data may not be needed if the avionics changes were certified without the need for testing with a comprehensive flight instrumentation package. The airplane manufacturer should coordinate flight simulator data requirements, in advance with the NSP.M.

(5) A matrix or “roadmap” should be provided with the QTG indicating the appropriate validation data source for each test. The roadmap should identify identification of the revision state of those contributory avionics systems that could affect specific test responses if changed.

15. TRANSPORT DELAY TESTING

a. This paragraph explains how to determine the introduced transport delay through the flight simulator system so that it does not exceed a specific time delay. The transport delay should be measured from control inputs through the interface, through each of the host computer modules and back through the interface to motion, flight instrument, and visual systems. The transport delay should not exceed the maximum allowable interval.

b. Four specific examples of transport delay are:

(1) Simulation of classic non-computer controlled aircraft;

(2) Simulation of computer controlled aircraft using real airplane black boxes;

(3) Simulation of computer controlled aircraft using software emulation of airplane boxes;

(4) Simulation using software avionics or re-hosted instruments.

c. Figure A2C illustrates the total transport delay for a non-computer-controlled airplane or the classic transport delay test. Since there are no airplane-induced delays for this case, the total transport delay is equivalent to the introduced delay.

d. Figure A2D illustrates the transport delay testing method using the real airplane controller system.

e. To obtain the induced transport delay for the motion, instrument and visual signal, the delay induced by the airplane controller should be subtracted from the total transport delay. This difference represents the introduced delay and should not exceed the standards prescribed in Table A1A.

f. Introduced transport delay is measured from the flight deck control input to the reaction of the instruments and motion and visual systems (See Figure A2C).

g. The control input may also be introduced after the airplane controller system and the introduced transport delay measured directly from the control input to the reaction of the instruments, and simulation of motion and visual systems (See Figure A2D).

h. Figure A2E illustrates the transport delay testing method used on a flight simulator that uses a software emulated airplane controller system.

i. It is not possible to measure the introduced transport delay using the simulated airplane controller system architecture for the pitch, roll and yaw axes. Therefore, the signal should be measured directly from the control input to the reaction of the instruments and motion and visual systems (See Figure A2C).

j. Special measurements for instrument signals for flight simulators using a real airplane instrument display system instead of a simulated or re-hosted display. For flight instrument systems, the total transport delay should be measured and the inherent delay of the actual airplane components subtracted to ensure that the introduced delay does not exceed the standards prescribed in Table A1A.

(1) Figure A2FA illustrates the transport delay procedure without airplane display simulation. The introduced delay consists of the delay between the control input and the instrument change on the data bus.

(2) Figure A2FB illustrates the modified testing method required to measure introduced delay due to software avionics or re-hosted instruments. The total simulated instrument transport delay is measured and the airplane delay should be subtracted from this total. This difference represents the introduced delay and should not exceed the standards prescribed in Table A1A. The inherent delay of the airplane between the data bus and the displays is indicated in Figure A2FA. The display manufacturer should provide this delay time.

k. Recorded signals. The signals recorded to conduct the transport delay calculations should be explained on a schematic block diagram. The flight simulator manufacturer should also provide an explanation of why each signal was selected and how they relate to the above descriptions.

l. Interpretation of results. Flight simulator results vary over time from test to test due to “sampling uncertainty.” All flight simulators run at a specific rate where all
modules are executed sequentially in the host computer. The flight controls input can occur at any time in the iteration, but these data will not be processed before the start of the new iteration. For example, a flight simulator running at 60 Hz may have a difference of as much as 16.67 msec between test results. This does not mean that the test has failed. Instead, the difference is attributed to variations in input processing. In some conditions, the host simulator and the visual system do not run at the same iteration rate, so the output of the host computer to the visual system will not always be synchronized.

m. The transport delay test should account for both daylight and night modes of operation of the visual system. In both cases, the tolerances prescribed in Table A1A must be met and the motion response should occur before the end of the first video scan containing new information.
Figure A2C
Transport Delay for simulation of classic non-computer controlled aircraft.

Figure A2D
Transport Delay for simulation of computer controlled aircraft using real airplane black boxes

Figure A2E
Transport Delay for simulation of computer controlled aircraft using software emulation of airplane boxes
16. CONTINUING QUALIFICATION EVALUATIONS—VALIDATION TEST DATA PRESENTATION

a. Background

(1) The MQTG is created during the initial evaluation of a flight simulator. This is the master document, as amended, to which flight simulator continuing qualification evaluation test results are compared.

(2) The currently accepted method of presenting continuing qualification evaluation test results is to provide flight simulator results over-plotted with reference data. Test results are carefully reviewed to determine if the test is within the specified tolerances. This can be a time consuming process, particularly when reference data exhibits rapid variations or an apparent anomaly requiring engineering judgment in the application of the tolerances. In these cases, the solution is to compare the results to the MQTG. The continuing qualification results are compared to the results in the MQTG for acceptance. The flight simulator operator and the NSPM should look for any change in the flight simulator performance since initial qualification.

b. Continuing Qualification Evaluation Test Results Presentation

(1) Flight simulator operators are encouraged to over-plot continuing qualification validation test results with MQTG flight simulator results recorded during the initial evaluation and as amended. Any change in a validation test will be readily apparent. In addition to plotting continuing qualification validation test and MQTG results, operators may elect to plot reference data as well.

(2) There are no suggested tolerances between flight simulator continuing qualification and MQTG validation test results. Investigation of any discrepancy between the MQTG and continuing qualification flight simulator performance is left to the discretion of the flight simulator operator and the NSPM.
17. ALTERNATIVE DATA SOURCES, PROCEDURES, AND INSTRUMENTATION: LEVEL A AND LEVEL B SIMULATORS ONLY

a. Sponsors are not required to use the alternative data sources, procedures, and instrumentation. However, a sponsor may choose to use one or more of the alternative sources, procedures, and instrumentation described in Table A2E.

b. It has become standard practice for experienced simulator manufacturers to use modeling techniques to establish data bases for new simulator configurations while awaiting the availability of actual flight test data. The data generated from the aerodynamic modeling techniques is then compared to the flight test data when it becomes available. The results of such comparisons have become increasingly consistent, indicating that these techniques, applied with the appropriate experience, are dependable and accurate for the development of aerodynamic models for use in Level A and Level B simulators.

c. Based on this history of successful comparisons, the NSPM has concluded that those who are experienced in the development of aerodynamic models may use modeling techniques to alter the method for acquiring flight test data for Level A or Level B simulators.

d. The information in Table A2E (Alternative Data Sources, Procedures, and Instrumentation) is presented to describe an acceptable alternative to data sources for simulator modeling and validation and an acceptable alternative to the procedures and instrumentation traditionally used to gather such modeling and validation data.

1. Alternative data sources that may be used for part or all of a data requirement are the Airplane Maintenance Manual, the Airplane Flight Manual (AFM), Airplane Design Data, the Type Inspection Report (TIR), Certification Data or acceptable supplemental flight test data.

2. The sponsor should coordinate with the NSPM prior to using alternative data sources in a flight test or data gathering effort.

3. The NSPM position regarding the use of these alternative data sources, procedures, and instrumentation is based on the following presumptions:

 a. Data gathered through the alternative means does not require angle of attack (AOA) measurements or control surface position measurements for any flight test. However, AOA can be sufficiently derived if the flight test program ensures the collection of acceptable level, unaccelerated, trimmed flight data. All of the simulator time history tests that begin in level, unaccelerated, and trimmed flight, including the three basic trim tests and "fly-by" trims, can be a successful validation of angle of attack by comparison with flight test pitch angle. (Note: Due to the criticality of angle of attack in the development of the ground effects model, particularly critical for normal landings and landings involving cross-control input applicable to Level B simulators, stable "fly-by" trim data will be the acceptable norm for normal and cross-control input landing objective data for these applications.)

 b. The use of a rigorously defined and fully mature simulation controls system model that includes accurate gearing and cable stretch characteristics (where applicable), determined from actual aircraft measurements. Such a model does not require control surface position measurements in the flight test objective data in these limited applications.

 c. The sponsor is urged to contact the NSPM for clarification of any issue regarding airplanes with reversible control systems. Table A2E is not applicable to Computer Controlled Aircraft FFSs.

 d. Utilization of these alternate data sources, procedures, and instrumentation (Table A2E) does not relieve the sponsor from compliance with the balance of the information contained in this document relative to Level A or Level B FFSs.

3. The term "inertial measurement system" is used in the following table to include the use of a functional global positioning system (GPS).

 a. Synchronized video for the use of alternative data sources, procedures, and instrumentation should have:

 (1) Sufficient resolution to allow magnification of the display to make appropriate measurement and comparisons; and

 (2) Sufficient size and incremental marking to allow similar measurement and comparison. The detail provided by the video should provide sufficient clarity and accuracy to measure the necessary parameter(s) to at least ½ of the tolerance authorized for the specific test being conducted and allow
an integration of the parameter(s) in question to obtain a rate of change.

Table A2E—Alternative Data Sources, Procedures, and Instrumentation

<table>
<thead>
<tr>
<th>Table of objective tests</th>
<th>Sim level</th>
<th>Alternative data sources, procedures, and instrumentation</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test entry number and title</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>1.a.1. Performance. Taxi. Minimum Radius turn.</td>
<td>X</td>
<td>X</td>
<td>TIR, AFM, or Design data may be used.</td>
</tr>
<tr>
<td>1.a.2. Performance. Taxi Rate of Turn vs. Nosewheel Steering Angle.</td>
<td>X</td>
<td>Data may be acquired by using a constant tiller position, measured with a protractor or full rudder pedal application for steady state turn, and synchronized video of heading indicator. If less than full rudder pedal is used, pedal position must be recorded.</td>
<td></td>
</tr>
<tr>
<td>1.b.1. Performance. Takeoff. Ground Acceleration Time and Distance.</td>
<td>X</td>
<td>X</td>
<td>Preliminary certification data may be used. Data may be acquired by using a stop watch, calibrated airspeed, and runway markers during a takeoff with power set before brake release. Power settings may be hand recorded. If an inertial measurement system is installed, speed and distance may be derived from acceleration measurements.</td>
</tr>
<tr>
<td>1.b.2. Performance. Takeoff. Minimum Control Speed—ground (V(_{mcg})) using aerodynamic controls only (per applicable airworthiness standard) or low speed, engine inoperative ground control characteristics.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls. Rapid throttle reductions at speeds near V(_{mcg}) may be used while recording appropriate parameters. The nosewheel must be free to caster, or equivalently freed of sideforce generation.</td>
</tr>
<tr>
<td>1.b.3. Performance. Takeoff. Minimum Unstick Speed (V(_{mu})) or equivalent test to demonstrate early rotation takeoff characteristics.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and the force/position measurements of flight deck controls.</td>
</tr>
<tr>
<td>1.b.4. Performance. Takeoff. Normal Takeoff.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls. AOA can be calculated from pitch attitude and flight path.</td>
</tr>
<tr>
<td>1.b.5. Performance. Takeoff. Critical Engine Failure during Takeoff.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls. Record airplane dynamic response to engine failure and control inputs required to correct flight path.</td>
</tr>
<tr>
<td>1.b.6. Performance. Takeoff. Crosswind Takeoff.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls. The “1.7 law” to 100 feet (30 meters) is an acceptable wind profile.</td>
</tr>
</tbody>
</table>
OBS REQUIREMENTS

The standards in this table are required if the data gathering methods described in paragraph 9 of Appendix A are not used.

<table>
<thead>
<tr>
<th>Test entry number and title</th>
<th>Sim level</th>
<th>Alternative data sources, procedures, and instrumentation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.b. 7. Performance. Takeoff. Rejected Takeoff.</td>
<td>X X</td>
<td>Data may be acquired with a synchronized video of calibrated airplane instruments, thrust lever position, engine parameters, and distance (e.g., runway markers). A stop watch is required.</td>
<td></td>
</tr>
<tr>
<td>1.c. 1. Performance. Climb. Normal Climb all engines operating.</td>
<td>X X</td>
<td>Data may be acquired with a synchronized video of calibrated airplane instruments and engine power throughout the climb range.</td>
<td></td>
</tr>
<tr>
<td>1.c. 2. Performance. Climb. One engine Inoperative Climb.</td>
<td>X X</td>
<td>Data may be acquired with a synchronized video of calibrated airplane instruments and engine power throughout the climb range.</td>
<td></td>
</tr>
<tr>
<td>1.c. 4. Performance. Climb. One Engine Inoperative Approach Climb (if operations in icing conditions are authorized).</td>
<td>X X</td>
<td>Data may be acquired with a synchronized video of calibrated airplane instruments and engine power throughout the climb range.</td>
<td></td>
</tr>
<tr>
<td>1.d. 1. Cruise/Descent. Level flight acceleration.</td>
<td>X X</td>
<td>Data may be acquired with a synchronized video of calibrated airplane instruments, thrust lever position, engine parameters, and elapsed time.</td>
<td></td>
</tr>
<tr>
<td>1.d. 2. Cruise/Descent. Level flight deceleration.</td>
<td>X X</td>
<td>Data may be acquired with a synchronized video of calibrated airplane instruments, thrust lever position, engine parameters, and elapsed time.</td>
<td></td>
</tr>
<tr>
<td>1.d. 4. Cruise/Descent. Idle descent.</td>
<td>X X</td>
<td>Data may be acquired with a synchronized video of calibrated airplane instruments, thrust lever position, engine parameters, and elapsed time.</td>
<td></td>
</tr>
<tr>
<td>1.d. 5. Cruise/Descent. Emergency Descent.</td>
<td>X X</td>
<td>Data may be acquired with a synchronized video of calibrated airplane instruments, thrust lever position, engine parameters, and elapsed time.</td>
<td></td>
</tr>
<tr>
<td>1.e. 1. Performance. Stopping. Deceleration time and distance, using manual application of wheel brakes and no reverse thrust on a dry runway.</td>
<td>X X</td>
<td>Data may be acquired during landing tests using a stop watch, runway markers, and a synchronized video of calibrated airplane instruments, thrust lever position and the pertinent parameters of engine power.</td>
<td></td>
</tr>
<tr>
<td>1.e. 2. Performance. Ground Deceleration Time and Distance, using reverse thrust and no wheel brakes.</td>
<td>X X</td>
<td>Data may be acquired during landing tests using a stop watch, runway markers, and a synchronized video of calibrated airplane instruments, thrust lever position and pertinent parameters of engine power.</td>
<td></td>
</tr>
<tr>
<td>1.f. 1. Performance. Engines. Acceleration.</td>
<td>X X</td>
<td>Data may be acquired with a synchronized video recording of engine instruments and throttle position.</td>
<td></td>
</tr>
<tr>
<td>1.f. 2. Performance. Engines. Deceleration.</td>
<td>X X</td>
<td>Data may be acquired with a synchronized video recording of engine instruments and throttle position.</td>
<td></td>
</tr>
</tbody>
</table>
TABLE A2E—ALTERNATIVE DATA SOURCES, PROCEDURES, AND INSTRUMENTATION—Continued

QPS REQUIREMENTS

The standards in this table are required if the data gathering methods described in paragraph 9 of Appendix A are not used.

<table>
<thead>
<tr>
<th>Test entry number and title</th>
<th>A</th>
<th>B</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a.1.a. Handling Qualities. Static Control Checks. Pitch Controller Position vs. Force and Surface Position Calibration.</td>
<td>X</td>
<td>X</td>
<td>Surface position data may be acquired from flight data recorder (FDR) sensor or, if no FDR sensor, at selected, significant column positions (encompassing significant column position data points), acceptable to the NSPM, using a control surface protractor on the ground. Force data may be acquired by using a hand held force gauge at the same column position data points. For airplanes with reversible control systems, surface position data acquisition should be accomplished with winds less than 5 kts.</td>
</tr>
<tr>
<td>2.a.2.a. Handling Qualities. Static Control Checks. Roll Controller Position vs. Force and Surface Position Calibration.</td>
<td>X</td>
<td>X</td>
<td>Surface position data may be acquired from flight data recorder (FDR) sensor or, if no FDR sensor, at selected, significant wheel positions (encompassing significant wheel position data points), acceptable to the NSPM, using a control surface protractor on the ground. Force data may be acquired by using a hand held force gauge at the same wheel position data points. For airplanes with reversible control systems, surface position data acquisition should be accomplished with winds less than 5 kts.</td>
</tr>
<tr>
<td>2.a.3.a. Handling Qualities. Static Control Checks. Rudder Pedal Position vs. Force and Surface Position Calibration.</td>
<td>X</td>
<td>X</td>
<td>Surface position data may be acquired from flight data recorder (FDR) sensor or, if no FDR sensor, at selected, significant rudder pedal positions (encompassing significant rudder pedal position data points), acceptable to the NSPM, using a control surface protractor on the ground. Force data may be acquired by using a hand held force gauge at the same rudder pedal position data points. For airplanes with reversible control systems, surface position data acquisition should be accomplished with winds less than 5 kts.</td>
</tr>
<tr>
<td>2.a.4. Handling Qualities. Static Control Checks. Nosewheel Steering Controller Force and Position.</td>
<td>X</td>
<td>X</td>
<td>Breakout data may be acquired with a hand held force gauge. The remainder of the force to the stops may be calculated if the force gauge and a protractor are used to measure force after breakout for at least 25% of the total displacement capability.</td>
</tr>
<tr>
<td>2.a.5. Handling Qualities. Static Control Checks. Rudder Pedal Steering Calibration.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired through the use of force pads on the rudder pedals and a pedal position measurement device, together with design data for nosewheel position.</td>
</tr>
<tr>
<td>2.a.6. Handling Qualities. Static Control Checks. Pitch Trim Indicator vs. Surface Position Calibration.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired through calculations.</td>
</tr>
<tr>
<td>2.a.7. Handling qualities. Static control tests. Pitch trim rate.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using a synchronized video of pitch trim indication and elapsed time through range of trim indication.</td>
</tr>
<tr>
<td>2.a.8. Handling Qualities. Static Control checks. Alignment of Flight deck Throttle Lever Angle vs. Selected engine parameter.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired through the use of a temporary throttle quadrant scale to document throttle position. Use a synchronized video to record steady state instrument readings or hand-record steady state engine performance readings.</td>
</tr>
<tr>
<td>Test entry number and title</td>
<td>Sim level</td>
<td>Alternative data sources, procedures, and instrumentation</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>2.a.9. Handling qualities. Static control tests. Brake pedal position vs. force and brake system pressure calibration.</td>
<td>X X</td>
<td>Use of design or predicted data is acceptable. Data may be acquired by measuring deflection at "zero" and "maximum" and calculating deflections between the extremes using the airplane design data curve.</td>
<td></td>
</tr>
<tr>
<td>2.c.1. Handling qualities. Longitudinal control tests. Power change dynamics.</td>
<td>X X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and throttle position.</td>
<td></td>
</tr>
<tr>
<td>2.c.2. Handling qualities. Longitudinal control tests. Flap/slat change dynamics.</td>
<td>X X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and flap/slat position.</td>
<td></td>
</tr>
<tr>
<td>2.c.3. Handling qualities. Longitudinal control tests. Spoiler/speedbrake change dynamics.</td>
<td>X X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and spoiler/speedbrake position.</td>
<td></td>
</tr>
<tr>
<td>2.c.4. Handling qualities. Longitudinal control tests. Gear change dynamics.</td>
<td>X X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and gear position.</td>
<td></td>
</tr>
<tr>
<td>2.c.5. Handling qualities. Longitudinal control tests. Longitudinal trim.</td>
<td>X X</td>
<td>Data may be acquired through use of an inertial measurement system and a synchronized video of flight deck controls position (previously calibrated to show related surface position) and the engine instrument readings.</td>
<td></td>
</tr>
<tr>
<td>2.c.6. Handling qualities. Longitudinal control tests. Longitudinal maneuvering stability (stick force/g).</td>
<td>X X</td>
<td>Data may be acquired through the use of an inertial measurement system and a synchronized video of calibrated airplane instruments; a temporary, high resolution bank angle scale affixed to the attitude indicator; and a wheel and column force measurement indication.</td>
<td></td>
</tr>
<tr>
<td>2.c.7. Handling qualities. Longitudinal control tests. Longitudinal static stability.</td>
<td>X X</td>
<td>Data may be acquired through the use of a synchronized video of airplane flight instruments and a hand held force gauge.</td>
<td></td>
</tr>
<tr>
<td>2.c.8. Handling qualities. Longitudinal control tests. Stall characteristics.</td>
<td>X X</td>
<td>Data may be acquired through a synchronized video recording of a stop watch and calibrated airplane airspeed indicator. Hand-record the flight conditions and airplane configuration.</td>
<td>Airspeeds may be cross checked with those in the TIR and AFM.</td>
</tr>
<tr>
<td>2.c.9. Handling qualities. Longitudinal control tests. Phugoid dynamics.</td>
<td>X X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls.</td>
<td></td>
</tr>
<tr>
<td>2.c.10. Handling qualities. Longitudinal control tests. Short period dynamics.</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls.</td>
<td></td>
</tr>
</tbody>
</table>
QPS REQUIREMENTS

The standards in this table are required if the data gathering methods described in paragraph 9 of Appendix A are not used.

<table>
<thead>
<tr>
<th>Table of objective tests</th>
<th>Sim level</th>
<th>Alternative data sources, procedures, and instrumentation</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test entry number and title</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>2.d.1. Handling qualities. Lateral directional tests. Minimum control speed, air (V_{mca} or V_{mci}), per applicable airworthiness standard or Low speed engine inoperative handling characteristics in the air.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls.</td>
</tr>
<tr>
<td>2.d.2. Handling qualities. Lateral directional tests. Roll response (rate).</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck lateral controls.</td>
</tr>
<tr>
<td>2.d.3. Handling qualities. Lateral directional tests. Roll response to flight deck roll controller step input.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck lateral controls.</td>
</tr>
<tr>
<td>2.d.4. Handling qualities. Lateral directional tests. Spiral stability.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments; force/position measurements of flight deck controls; and a stop watch.</td>
</tr>
<tr>
<td>2.d.5. Handling qualities. Lateral directional tests. Engine inoperative trim.</td>
<td>X</td>
<td>X</td>
<td>Data may be hand recorded in-flight using high resolution scales affixed to trim controls that have been calibrated on the ground using protractors on the control/trim surfaces with winds less than 5 kts. OR Data may be acquired during second segment climb (with proper pilot control input for an engine-out condition) by using a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls.</td>
</tr>
<tr>
<td>2.d.6. Handling qualities. Lateral directional tests. Rudder response.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of rudder pedals.</td>
</tr>
<tr>
<td>2.d.7. Handling qualities. Lateral directional tests. Dutch roll, (yaw damper OFF).</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls.</td>
</tr>
<tr>
<td>2.d.8. Handling qualities. Lateral directional tests. Steady state sideslip.</td>
<td>X</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls.</td>
</tr>
<tr>
<td>2.e.1. Handling qualities. Landings. Normal landing.</td>
<td>X</td>
<td></td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls.</td>
</tr>
</tbody>
</table>
TABLE A2E—ALTERNATIVE DATA SOURCES, PROCEDURES, AND INSTRUMENTATION—Continued

<table>
<thead>
<tr>
<th>Test entry number and title</th>
<th>Sim level</th>
<th>Alternative data sources, procedures, and instrumentation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.e.3. Handling qualities. Landings. Crosswind landing.</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls.</td>
<td></td>
</tr>
<tr>
<td>2.e.4. Handling qualities. Landings. One engine inoperative landing.</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and the force/position measurements of flight deck controls. Normal and lateral accelerations may be recorded in lieu of AOA and sideslip.</td>
<td></td>
</tr>
<tr>
<td>2.e.5. Handling qualities. Landings. Autopilot landing (if applicable).</td>
<td>..........</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls. Normal and lateral accelerations may be recorded in lieu of AOA and sideslip.</td>
<td></td>
</tr>
<tr>
<td>2.e.6. Handling qualities. Landings. All engines operating, autopilot, go around.</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls. Normal and lateral accelerations may be recorded in lieu of AOA and sideslip.</td>
<td></td>
</tr>
<tr>
<td>2.e.7. Handling qualities. Landings. One engine inoperative go around.</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls. Normal and lateral accelerations may be recorded in lieu of AOA and sideslip.</td>
<td></td>
</tr>
<tr>
<td>2.e.8. Handling qualities. Landings. Directional control (rudder effectiveness with symmetric thrust).</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls. Normal and lateral accelerations may be recorded in lieu of AOA and sideslip.</td>
<td></td>
</tr>
<tr>
<td>2.e.9. Handling qualities. Landings. Directional control (rudder effectiveness with asymmetric reverse thrust).</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls. Normal and lateral accelerations may be recorded in lieu of AOA and sideslip.</td>
<td></td>
</tr>
<tr>
<td>2.f. Handling qualities. Ground effect. Test to demonstrate ground effect.</td>
<td>X</td>
<td>Data may be acquired by using calibrated airplane instruments, an inertial measurement system, and a synchronized video of calibrated airplane instruments and force/position measurements of flight deck controls.</td>
<td></td>
</tr>
</tbody>
</table>
attachment 3 to appendix a to part 60—simulator subjective evaluation

BEGIN requirements

1. requirements

a. except for special use airport models, described as class iii, all airport models required by this part must be representations of real-world, operational airports or representations of fictional airports and must meet the requirements set out in tables a3b or a3c of this attachment, as appropriate.

b. if fictional airports are used, the sponsor must ensure that navigational aids and all appropriate maps, charts, and other navigational reference material for the fictional airports (and surrounding areas as necessary) are compatible, complete, and accurate with respect to the visual presentation of the airport model of this fictional airport. an soc must be submitted that addresses navigation aid installation and performance and other criteria (including obstruction clearance protection) for all instrument approaches to the fictional airports that are available in the simulator. the soc must reference and account for information in the terminal instrument procedures manual and the construction and availability of the required maps, charts, and other navigational material. this material must be clearly marked “for training purposes only.”

c. when the simulator is being used by an instructor or evaluator for purposes of training, checking, or testing under this chapter, only airport models classified as class i, class ii, or class iii may be used by the instructor or evaluator. detailed descriptions/definitions of these classifications are found in appendix f of this part.

d. when a person sponsors an ffs maintained by a person other than a u.s. certificate holder, the sponsor is accountable for that ffs originally qualified and, continuing to meet, the criteria under which it was originally qualified and the appropriate part 60 criteria, including the airport models that may be used by instructors or evaluators for purposes of training, checking, or testing under this chapter.

e. neither class ii nor class iii airport visual models are required to appear on the soq, and the method used for keeping instructors and evaluators apprised of the airport models that meet class ii or class iii requirements on any given simulator is at the option of the sponsor, but the method used must be available for review by the tpaa.

f. when an airport model represents a real world airport and a permanent change is made to that real world airport (e.g., a new runway, an extended taxiway, a new lighting system, a runway closure) without a written extension grant from the nspm (described in paragraph 1.g. of this section), an update to that airport model must be made in accordance with the following time limits:

(1) for a new airport runway, a runway extension, a new airport taxiway, a taxiway extension, or a runway/taxiway closure—within 90 days of the opening for use of the new airport runway, runway extension, new airport taxiway, or taxiway extension; or within 90 days of the closure of the runway or taxiway.

(2) for a new or modified approach light system—within 45 days of the activation of the new or modified approach light system.

(3) for other facility or structural changes on the airport (e.g., new terminal, relocation of air traffic control tower)—within 180 days of the opening of the new or changed facility or structure.

g. if a sponsor desires an extension to the time limit for an update to a visual scene or airport model or has an objection to what must be updated in the specific airport model requirement, the sponsor must provide a written extension request to the nspm stating the reason for the update delay and a proposed completion date, or explain why the update is not necessary (i.e., why the identified airport change will not have an impact on flight training, testing, or checking). a copy of this request or objection must also be sent to the poi/tcpm. the nspm will send the official response to the sponsor and a copy to the poi/tcpm. if there is an objection, after consultation with the appropriate poi/tcpm regarding the training, testing, or checking impact, the nspm will send the official response to the sponsor and a copy to the poi/tcpm.

END qps requirements

BEGIN information

2. discussion

a. the subjective tests provide a basis for evaluating the capability of the simulator to perform over a typical utilization period; determining that the simulator accurately simulates each required maneuver, procedure, or task; and verifying correct operation of the simulator controls, instruments, and systems. the items listed in the following tables are for simulator evaluation purposes only. they may not be used to limit or exceed the authorizations for use of a given level of simulator, as described on the soq, or as approved by the tpaa.

b. the tests in table a3a, operations tasks, in this attachment, address pilot functions, including maneuvers and procedures (called flight tasks), and are divided by

100
flight phases. The performance of these tasks by the NSPM includes an operational examination of the visual system and special effects. There are flight tasks included to address some features of advanced technology airplanes and innovative training programs. For example, “high angle-of-attack maneuver” is included to provide a required alternative to “approach to stalls” for airplanes employing flight envelope protection functions.

c. The tests in Table A3A, Operations Tasks, and Table A3G, Instructor Operating Station of this attachment, address the overall function and control of the simulator including the various simulated environmental conditions; simulated airplane system operations (normal, abnormal, and emergency); visual system displays; and special effects necessary to meet flight crew training, evaluation, or flight experience requirements.

d. All simulated airplane systems functions will be assessed for normal and, where appropriate, alternate operations. Normal, abnormal, and emergency operations associated with a flight phase will be assessed during the evaluation of flight tasks or events within that flight phase. Simulated airplane systems are listed separately under “Any Flight Phase” to ensure appropriate attention to systems checks. Operational navigation systems (including inertial navigation systems, global positioning systems, or other long-range systems) and the associated electronic display systems will be evaluated if installed. The NSP pilot will include in his report to the TPAA, the effect of the system operation and any system limitation.

e. Simulators demonstrating a satisfactory circling approach will be qualified for the circling approach maneuver and may be approved for such use by the TPAA in the sponsor’s FAA-approved flight training program. To be considered satisfactory, the circling approach will be flown at maximum gross weight for landing, with minimum visibility for the airplane approach category, and must allow proper alignment with a landing runway at least 90° different from the instrument approach course while allowing the pilot to keep an identifiable portion of the airport in sight throughout the maneuver.

f. At the request of the TPAA, the NSPM may assess a device to determine if it is capable of simulating certain training activities in a sponsor’s training program, such as a portion of a Line Oriented Flight Training (LOFT) scenario. Unless directly related to a requirement for the qualification level, the results of such an evaluation would not affect the qualification level of the simulator. However, if the NSPM determines that the simulator does not accurately simulate that training activity, the simulator would not be approved for that training activity.

g. The FAA intends to allow the use of Class III airport models when the sponsor provides the TPAA (or other regulatory authority) an appropriate analysis of the skills, knowledge, and abilities (SKAs) necessary for competent performance of the tasks in which this particular media element is used. The analysis should describe the ability of the FFS/visual media to provide an adequate environment in which the required SKAs are satisfactorily performed and learned. The analysis should also include the specific media element, such as the airport model. Additional sources of information on the conduct of task and capability analysis may be found on the FAA’s Advanced Qualification Program (AQP) Web site at: http://www.faa.gov/education/training/aqp.

h. The TPAA may accept Class III airport models without individual observation provided the sponsor provides the TPAA with an acceptable description of the process for determining the acceptability of a specific airport model. Outlines the conditions under which such an airport model may be used, and adequately describes what restrictions will be applied to each resulting airport or landing area model. Examples of situations that may warrant Class III model designation by the TPAA include the following:

(a) Training, testing, or checking on very low visibility operations, including SMGCS operations.

(b) Instrument operations training (including instrument takeoff, departure, arrival, approach, and missed approach training, testing, or checking) using

(i) A specific model that has been geographic “moved” to a different location and aligned with an instrument procedure for another airport.

(ii) A model that does not match changes made at the real-world airport (or landing area for helicopters) being modeled.

(iii) A model generated with an “off-board” or an “on-board” model development tool (by providing proper latitude/longitude reference; correct runway or landing area orientation, length, width, marking, and lighting information; and appropriate adjacent taxiway location) to generate a facsimile of a real world airport or landing area.

i. Previously qualified simulators with certain early generation Computer Generated Image (CGI) visual systems, are limited by the capability of the Image Generator or the display system used. These systems are:

(1) Early CGI visual systems that are excepted from the requirement of including runway numbers as a part of the specific runway marking requirements are:

(a) Link NVS and DNVS.

(b) Novoview 2500 and 6000.

(c) FlightSafety VITAL series up to, and including, VITAL III, but not beyond.

(d) Redifusion SP1, SP2, and SP24.
(2) Early CGI visual systems are excepted from the requirement of including runway numbers unless the runways are used for LOFT training sessions. These LOFT airport models require runway numbers but only for the specific runway end (one direction) used in the LOFT session. The systems required to display runway numbers only for LOFT scenes are:
 (a) FlightSafety VITAL IV.
 (b) Redifusion SP3 and SP3T.
 (c) Link-Miles Image II.
(3) The following list of previously qualified CGI and display systems are incapable of generating blue lights. These systems are not required to have accurate taxi-way edge lighting:
 (a) Redifusion SP1.
 (b) FlightSafety Vital IV.
 (c) Link-Miles Image II and Image IIT
 (d) XKD displays (even though the XKD image generator is capable of generating blue colored lights, the display cannot accommodate that color).

TABLE A3A—FUNCTIONS AND SUBJECTIVE TESTS

<table>
<thead>
<tr>
<th>QPS Requirements</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry No.</td>
<td>Operations tasks</td>
</tr>
<tr>
<td>1.</td>
<td>Preparation For Flight</td>
</tr>
<tr>
<td>2.</td>
<td>Surface Operations (Pre-Take-Off)</td>
</tr>
<tr>
<td>2.a.</td>
<td>Engine Start</td>
</tr>
<tr>
<td>2.a.1.</td>
<td>Normal start</td>
</tr>
<tr>
<td>2.a.2.</td>
<td>Alternate start procedures</td>
</tr>
<tr>
<td>2.a.3.</td>
<td>Abnormal starts and shutdowns (e.g., hot/hung start, tail pipe fire)</td>
</tr>
<tr>
<td>2.b.</td>
<td>Pushback/Powerback</td>
</tr>
<tr>
<td>2.c.</td>
<td>Taxi</td>
</tr>
<tr>
<td>2.c.1.</td>
<td>Thrust response</td>
</tr>
<tr>
<td>2.c.2.</td>
<td>Power lever friction</td>
</tr>
<tr>
<td>2.c.3.</td>
<td>Ground handling</td>
</tr>
<tr>
<td>2.c.4.</td>
<td>Nosewheel scuffing</td>
</tr>
<tr>
<td>2.c.5.</td>
<td>Brake operation (normal and alternate/emergency)</td>
</tr>
<tr>
<td>2.c.6.</td>
<td>Brake fade (if applicable)</td>
</tr>
<tr>
<td>3.</td>
<td>Take-off.</td>
</tr>
<tr>
<td>3.a.</td>
<td>Normal</td>
</tr>
<tr>
<td>3.a.1.</td>
<td>Airplane/engine parameter relationships</td>
</tr>
<tr>
<td>3.a.2.</td>
<td>Acceleration characteristics (motion)</td>
</tr>
<tr>
<td>3.a.3.</td>
<td>Nosewheel and rudder steering</td>
</tr>
<tr>
<td>3.a.4.</td>
<td>Crosswind (maximum demonstrated)</td>
</tr>
<tr>
<td>3.a.5.</td>
<td>Special performance (e.g., reduced V1, max de-rate, short field operations)</td>
</tr>
<tr>
<td>3.a.6.</td>
<td>Low visibility take-off</td>
</tr>
<tr>
<td>3.a.7.</td>
<td>Landing gear, wing flap leading edge device operation</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Operations tasks</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>3.a.8....</td>
<td>Contaminated runway operation</td>
</tr>
<tr>
<td>3.b.</td>
<td>Abnormal/emergency</td>
</tr>
<tr>
<td>3.b.1....</td>
<td>Rejected Take-off</td>
</tr>
<tr>
<td>3.b.2....</td>
<td>Rejected special performance (e.g., reduced V_1, max de-rate, short field operations)</td>
</tr>
<tr>
<td>3.b.3....</td>
<td>Takeoff with a propulsion system malfunction (allowing an analysis of causes, symptoms, recognition, and the effects on aircraft performance and handling) at the following points:</td>
</tr>
<tr>
<td></td>
<td>(i) Prior to V_1 decision speed</td>
</tr>
<tr>
<td></td>
<td>(ii) Between V_1 and V_r (rotation speed)</td>
</tr>
<tr>
<td></td>
<td>(iii) Between V_r and 500 feet above ground level</td>
</tr>
<tr>
<td>3.b.4....</td>
<td>With wind shear</td>
</tr>
<tr>
<td>3.b.5....</td>
<td>Flight control system failures, reconfiguration modes, manual reversion and associated handling.</td>
</tr>
<tr>
<td>3.b.6....</td>
<td>Rejected takeoff with brake fade</td>
</tr>
<tr>
<td>3.b.7....</td>
<td>Rejected, contaminated runway</td>
</tr>
<tr>
<td>4.a.</td>
<td>Normal</td>
</tr>
<tr>
<td>4.b.</td>
<td>One or more engines inoperative</td>
</tr>
<tr>
<td>5.</td>
<td>Cruise</td>
</tr>
<tr>
<td>5.a.</td>
<td>Performance characteristics (speed vs. power)</td>
</tr>
<tr>
<td>5.b.</td>
<td>High altitude handling</td>
</tr>
<tr>
<td>5.c.</td>
<td>High Mach number handling (Mach tuck, Mach buffet) and recovery (trim change)</td>
</tr>
<tr>
<td>5.d.</td>
<td>Overspeed warning (in excess of V_{mo} or M_{mo})</td>
</tr>
<tr>
<td>5.e.</td>
<td>High IAS handling</td>
</tr>
<tr>
<td>6.</td>
<td>Maneuvers</td>
</tr>
<tr>
<td>6.a.</td>
<td>High angle of attack, approach to stalls, stall warning, buffet, and g-break (take-off, cruise, approach, and landing configuration).</td>
</tr>
<tr>
<td>6.b.</td>
<td>Flight envelope protection (high angle of attack, bank limit, overspeed, etc.)</td>
</tr>
<tr>
<td>6.c.</td>
<td>Turns with/without speedbrake/spoilers deployed</td>
</tr>
<tr>
<td>6.d.</td>
<td>Normal and steep turns</td>
</tr>
<tr>
<td>6.e.</td>
<td>In flight engine shutdown and restart (assisted and windmill)</td>
</tr>
<tr>
<td>6.f.</td>
<td>Maneuvering with one or more engines inoperative, as appropriate</td>
</tr>
<tr>
<td>6.g.</td>
<td>Specific flight characteristics (e.g., direct lift control)</td>
</tr>
<tr>
<td>6.h.</td>
<td>Flight control system failures, reconfiguration modes, manual reversion and associated handling.</td>
</tr>
<tr>
<td>7.</td>
<td>Descent.</td>
</tr>
<tr>
<td>7.a.</td>
<td>Normal</td>
</tr>
<tr>
<td>7.b.</td>
<td>Maximum rate (clean and with speedbrake, etc.)</td>
</tr>
<tr>
<td>7.c.</td>
<td>With autopilot</td>
</tr>
</tbody>
</table>
TABLE A3A—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.d.</td>
<td>Flight control system failures, reconfiguration modes, manual reversion and associated handling.</td>
<td>X X C D</td>
</tr>
<tr>
<td>8.</td>
<td>Instrument Approaches and Landing. Those instrument approach and landing tests relevant to the simulated airplane type are selected from the following list. Some tests are made with limiting wind velocities, under wind shear conditions, and with relevant system failures, including the failure of the Flight Director. If Standard Operating Procedures allow use autopilot for non-precision approaches, evaluation of the autopilot will be included. Level A simulators are not authorized to credit the landing maneuver.</td>
<td></td>
</tr>
<tr>
<td>8.a.</td>
<td>Precision.</td>
<td></td>
</tr>
<tr>
<td>8.a.1.</td>
<td>PAR</td>
<td>X X X X</td>
</tr>
<tr>
<td>8.a.2.</td>
<td>CAT II/GBAS (ILS/MLS) published approaches</td>
<td>X X X X</td>
</tr>
<tr>
<td>8.b.1.</td>
<td>NDB</td>
<td>X X X X</td>
</tr>
<tr>
<td>8.b.2.</td>
<td>VOR, VOR/DME, VOR/TAC</td>
<td>X X X X</td>
</tr>
<tr>
<td>8.b.3.</td>
<td>RNAV (GNSS/GPS)</td>
<td>X X X X</td>
</tr>
<tr>
<td>8.b.4.</td>
<td>ILS LLZ (LOC), LLZ (LOC)/BC</td>
<td>X X X X</td>
</tr>
<tr>
<td>8.b.5.</td>
<td>ILS offset localizer</td>
<td>X X X X</td>
</tr>
<tr>
<td>8.b.6.</td>
<td>Direction finding facility (ADF/SDF)</td>
<td>X X X X</td>
</tr>
<tr>
<td>8.b.7.</td>
<td>Airport surveillance radar (ASR)</td>
<td>X X X X</td>
</tr>
<tr>
<td>9.</td>
<td>Visual Approaches (Visual Segment) and Landings. Flight simulators with visual systems, which permit completing a special approach procedure in accordance with applicable regulations, may be approved for that particular approach procedure.</td>
<td></td>
</tr>
<tr>
<td>9.a.</td>
<td>Maneuvering, normal approach and landing, all engines operating with and without visual approach aid guidance.</td>
<td>X X X X</td>
</tr>
<tr>
<td>9.b.</td>
<td>Approach and landing with one or more engines inoperative</td>
<td>X X X X</td>
</tr>
</tbody>
</table>
Table A3A—Functions and Subjective Tests—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>9.c.</td>
<td>Operation of landing gear, flap/slats and speedbrakes (normal and abnormal)</td>
<td>X</td>
</tr>
<tr>
<td>9.d.</td>
<td>Approach and landing with crosswind (max. demonstrated)</td>
<td>X</td>
</tr>
<tr>
<td>9.e.</td>
<td>Approach to land with wind shear on approach</td>
<td>X</td>
</tr>
<tr>
<td>9.f.</td>
<td>Approach and landing with flight control system failures, reconfiguration modes, manual reversion and associated handling (most significant degradation which is probable).</td>
<td>X</td>
</tr>
<tr>
<td>9.g.</td>
<td>Approach and landing with trim malfunctions</td>
<td>X</td>
</tr>
<tr>
<td>9.g.1.</td>
<td>Longitudinal trim malfunction</td>
<td>X</td>
</tr>
<tr>
<td>9.g.2.</td>
<td>Lateral-directional trim malfunction</td>
<td>X</td>
</tr>
<tr>
<td>9.h.</td>
<td>Approach and landing with standby (minimum) electrical/hydraulic power</td>
<td>X</td>
</tr>
<tr>
<td>9.i.</td>
<td>Approach and landing from circling conditions (circling approach)</td>
<td>X</td>
</tr>
<tr>
<td>9.j.</td>
<td>Approach and landing from visual traffic pattern</td>
<td>X</td>
</tr>
<tr>
<td>9.k.</td>
<td>Approach and landing from non-precision approach</td>
<td>X</td>
</tr>
<tr>
<td>9.l.</td>
<td>Approach and landing from precision approach</td>
<td>X</td>
</tr>
<tr>
<td>9.m.</td>
<td>Approach procedures with vertical guidance (APV), e.g., SBAS</td>
<td>X</td>
</tr>
<tr>
<td>10.</td>
<td>Missed Approach</td>
<td>X</td>
</tr>
<tr>
<td>10.a.</td>
<td>All engines</td>
<td>X</td>
</tr>
<tr>
<td>10.b.</td>
<td>One or more engine(s) out</td>
<td>X</td>
</tr>
<tr>
<td>10.c.</td>
<td>With flight control system failures, reconfiguration modes, manual reversion and associated handling</td>
<td>X</td>
</tr>
<tr>
<td>11.</td>
<td>Surface Operations (Landing roll and taxi).</td>
<td>X</td>
</tr>
<tr>
<td>11.a.</td>
<td>Spoiler operation</td>
<td>X</td>
</tr>
<tr>
<td>11.b.</td>
<td>Reverse thrust operation</td>
<td>X</td>
</tr>
<tr>
<td>11.c.</td>
<td>Directional control and ground handling, both with and without reverse thrust</td>
<td>X</td>
</tr>
<tr>
<td>11.d.</td>
<td>Reduction of rudder effectiveness with increased reverse thrust (rear pod-mounted engines).</td>
<td>X</td>
</tr>
<tr>
<td>11.e.</td>
<td>Brake and anti-skid operation with dry, patchy wet, wet on rubber residue, and patchy icy conditions.</td>
<td>X</td>
</tr>
<tr>
<td>11.f.</td>
<td>Brake operation, to include auto-braking system where applicable</td>
<td>X</td>
</tr>
<tr>
<td>12.</td>
<td>Any Flight Phase</td>
<td>X</td>
</tr>
<tr>
<td>12.a.</td>
<td>Airplane and engine systems operation.</td>
<td>X</td>
</tr>
<tr>
<td>12.a.1.</td>
<td>Air conditioning and pressurization (ECS)</td>
<td>X</td>
</tr>
<tr>
<td>12.a.2.</td>
<td>De-icing/anti-icing</td>
<td>X</td>
</tr>
<tr>
<td>12.a.3.</td>
<td>Auxiliary power unit (APU)</td>
<td>X</td>
</tr>
<tr>
<td>12.a.4.</td>
<td>Communications</td>
<td>X</td>
</tr>
<tr>
<td>12.a.5.</td>
<td>Electrical</td>
<td>X</td>
</tr>
<tr>
<td>12.a.6.</td>
<td>Fire and smoke detection and suppression</td>
<td>X</td>
</tr>
<tr>
<td>12.a.7.</td>
<td>Flight controls (primary and secondary)</td>
<td>X</td>
</tr>
</tbody>
</table>
TABLE A3A—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.a.8.</td>
<td>Fuel and oil; hydraulic and pneumatic</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.a.9.</td>
<td>Landing gear</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.a.10.</td>
<td>Oxygen</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.a.11.</td>
<td>Engine</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.a.12.</td>
<td>Airborne radar</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.a.13.</td>
<td>Autopilot and Flight Director</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.a.15.</td>
<td>Flight control computers including stability and control augmentation</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.a.16.</td>
<td>Flight display systems</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.a.17.</td>
<td>Flight management computers</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.a.18.</td>
<td>Head-up guidance, head-up displays</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.a.20.</td>
<td>Stall warning/avoidance</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.a.21.</td>
<td>Wind shear avoidance equipment</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.a.22.</td>
<td>Automatic landing aids</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.b.</td>
<td>Airborne procedures</td>
<td></td>
</tr>
<tr>
<td>12.b.1.</td>
<td>Holding</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.b.2.</td>
<td>Air hazard avoidance (traffic, weather)</td>
<td>X X</td>
</tr>
<tr>
<td>12.b.3.</td>
<td>Wind shear</td>
<td>X X</td>
</tr>
<tr>
<td>12.b.4.</td>
<td>Effects of airframe ice</td>
<td>X X</td>
</tr>
<tr>
<td>12.c.</td>
<td>Engine shutdown and parking</td>
<td></td>
</tr>
<tr>
<td>12.c.1.</td>
<td>Engine and systems operation</td>
<td>X X X X</td>
</tr>
<tr>
<td>12.c.2.</td>
<td>Parking brake operation</td>
<td>X X X X</td>
</tr>
</tbody>
</table>

TABLE A3B—FUNCTIONS AND SUBJECTIVE TESTS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>For qualification at the stated level—Class I airport models</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A B C D</td>
</tr>
</tbody>
</table>

This table specifies the minimum airport model content and functionality to qualify a simulator at the indicated level. This table applies only to the airport models required for simulator qualification; i.e., one airport model for Level A and Level B simulators; three airport models for Level C and Level D simulators.

Begin QPS Requirements

1. Functional test content requirements for Level A and Level B simulators. The following is the minimum airport model content requirement to satisfy visual capability tests, and provides suitable visual cues to allow completion of all functions and subjective tests described in this attachment for simulators at Levels A and B.

1.a. A minimum of one (1) representative airport model. This model identification must be acceptable to the sponsor’s TPAA, selectable from the IOS, and listed on the SOQ. X X
TABLE A3B—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>QPS Requirements</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For qualification at the stated level—Class I airport models</td>
<td>A</td>
</tr>
<tr>
<td>1.b.</td>
<td>The fidelity of the airport model must be sufficient for the aircrew to visually identify the airport; determine the position of the simulated airplane within a night visual scene; successfully accomplish take-offs, approaches, and landings; and maneuver around the airport on the ground as necessary.</td>
<td>X</td>
</tr>
<tr>
<td>1.c.</td>
<td>Runways: ... X</td>
<td>X</td>
</tr>
<tr>
<td>1.c.1.</td>
<td>Visible runway number ... X</td>
<td>X</td>
</tr>
<tr>
<td>1.c.2.</td>
<td>Runway threshold elevations and locations must be modeled to provide sufficient correlation with airplane systems (e.g., altimeter).</td>
<td>X</td>
</tr>
<tr>
<td>1.c.3.</td>
<td>Runway surface and markings ... X</td>
<td>X</td>
</tr>
<tr>
<td>1.c.4.</td>
<td>Lighting for the runway in use including runway edge and centerline X</td>
<td>X</td>
</tr>
<tr>
<td>1.c.5.</td>
<td>Lighting, visual approach aid and approach lighting of appropriate colors X</td>
<td>X</td>
</tr>
<tr>
<td>1.c.6.</td>
<td>Representative taxiway lights ... X</td>
<td>X</td>
</tr>
<tr>
<td>2.</td>
<td>Functional test content requirements for Level C and Level D simulators. The following is the minimum airport model content requirement to satisfy visual capability tests, and provide suitable visual cues to allow completion of all functions and subjective tests described in this attachment for simulators at Levels C and D. Not all of the elements described in this section must be found in a single airport model. However, all of the elements described in this section must be found throughout a combination of the three (3) airport models described in entry 2.a.</td>
<td></td>
</tr>
<tr>
<td>2.a.</td>
<td>A minimum of three (3) representative airport models. The model identifications must be acceptable to the sponsor’s TPAA, selectable from the IOS, and listed on the SOQ.</td>
<td>X</td>
</tr>
<tr>
<td>2.a.1.</td>
<td>Night and Twilight (Dusk) scenes required ... X</td>
<td>X</td>
</tr>
<tr>
<td>2.a.2.</td>
<td>Daylight scenes required .. X</td>
<td></td>
</tr>
<tr>
<td>2.b.</td>
<td>Two parallel runways and one crossing runway, displayed simultaneously; at least two of the runways must be able to be lighted fully and simultaneously. Note: This requirement may be demonstrated at either a fictional airport or a real-world airport. However, if a fictional airport is used, this airport must be listed on the SOQ.</td>
<td>X</td>
</tr>
<tr>
<td>2.c.</td>
<td>Runway threshold elevations and locations must be modeled to provide sufficient correlation with airplane systems (e.g., HGS, GPS, altimeter); slopes in runways, taxiways, and ramp areas must not cause distracting or unrealistic effects, including pilot eye-point height variation.</td>
<td>X</td>
</tr>
<tr>
<td>2.d.</td>
<td>Representative airport buildings, structures and lighting .. X</td>
<td>X</td>
</tr>
<tr>
<td>2.e.</td>
<td>At least one useable gate, at the appropriate height (required only for those airplanes that typically operate from terminal gates).</td>
<td>X</td>
</tr>
<tr>
<td>2.f.</td>
<td>Representative moving and static gate clutter (e.g., other airplane, power carts, tugs, fuel trucks, and additional gates).</td>
<td>X</td>
</tr>
<tr>
<td>2.g.</td>
<td>Representative apron markings (e.g., hazard markings, lead-in lines, gate numbering) and lighting.</td>
<td>X</td>
</tr>
<tr>
<td>2.h.</td>
<td>Representative runway markings, lighting, and signage, including a windsock that gives appropriate wind cues.</td>
<td>X</td>
</tr>
<tr>
<td>2.i.</td>
<td>Representative taxiway markings, lighting, and signage necessary for position identification, and to taxi from parking to a designated runway and return to parking.</td>
<td>X</td>
</tr>
<tr>
<td>2.j.</td>
<td>A low visibility taxi route (e.g., Surface Movement Guidance Control System, follow-me truck, daylight taxi lights) must also be demonstrated.</td>
<td></td>
</tr>
<tr>
<td>2.k.</td>
<td>Representative moving and static ground traffic (e.g., vehicular and airplane), including the capability to present ground hazards (e.g., another airplane crossing the active runway).</td>
<td>X</td>
</tr>
</tbody>
</table>
TABLE A3B—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>QPS Requirements</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.i.</td>
<td>Representative moving airborne traffic, including the capability to present air hazards (e.g., airborne traffic on a possible collision course).</td>
<td>X X</td>
</tr>
<tr>
<td>2.m.</td>
<td>Representative depiction of terrain and obstacles as well as significant and identifiable natural and cultural features, within 25 NM of the reference airport.</td>
<td>X X</td>
</tr>
<tr>
<td>2.n.</td>
<td>Appropriate approach lighting systems and airfield lighting for a VFR circuit and landing, non-precision approaches and landings, and Category I, II and III precision approaches and landings.</td>
<td>X X</td>
</tr>
<tr>
<td>2.o.</td>
<td>Portrayal of physical relationships known to cause landing illusions (e.g., short runways, landing approaches over water, uphill or downhill runways, rising terrain on the approach path). This requirement may be met by a SOC and a demonstration of two landing illusions. The illusions are not required to be beyond the normal operational capabilities of the airplane being simulated. The demonstrated illusions must be available to the instructor or check airman at the IOS for training, testing, checking, or experience activities.</td>
<td>X</td>
</tr>
<tr>
<td>2.p.</td>
<td>Portrayal of runway surface contaminants, including runway lighting reflections when wet and partially obscured lights when snow is present, or suitable alternative effects.</td>
<td>X</td>
</tr>
</tbody>
</table>

3. Airport model management. The following is the minimum airport model management requirements for simulators at Levels A, B, C, and D.

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>QPS Requirements</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.a.</td>
<td>Runway and approach lighting must fade into view in accordance with the environmental conditions set in the simulator, and the distance from the object.</td>
<td>X X X X</td>
</tr>
<tr>
<td>3.b.</td>
<td>The direction of strobe lights, approach lights, runway edge lights, visual landing aids, runway centerline lights, threshold lights, and touchdown zone lights must be replicated.</td>
<td>X X X</td>
</tr>
</tbody>
</table>

4. Visual feature recognition. The following is the minimum distances at which runway features must be visible for simulators at Levels A, B, C, and D. Distances are measured from runway threshold to an airplane aligned with the runway on an extended glide-slope in simulated meteorological conditions that recreate the minimum distances for visibility. For circling approaches, all tests apply to the runway used for the initial approach and to the runway of intended landing.

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>QPS Requirements</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.a.</td>
<td>Runway definition, strobe lights, approach lights, and runway edge white lights from 5 sm (8 km) of the runway threshold.</td>
<td>X X X X</td>
</tr>
<tr>
<td>4.b.</td>
<td>Visual Approach Aid lights (VASI or PAPI) from 5 sm (8 km) of the runway threshold.</td>
<td>X X</td>
</tr>
<tr>
<td>4.c.</td>
<td>Visual Approach Aid lights (VASI or PAPI) from 3 sm (5 km) of the runway threshold.</td>
<td>X</td>
</tr>
<tr>
<td>4.d.</td>
<td>Runway centerline lights and taxiway definition from 3 sm (5 km).</td>
<td>X X X</td>
</tr>
<tr>
<td>4.e.</td>
<td>Threshold lights and touchdown zone lights from 2 sm (3 km).</td>
<td>X X X</td>
</tr>
<tr>
<td>4.f.</td>
<td>Runway markings within range of landing lights for night scenes as required by the surface resolution test on day scenes.</td>
<td>X X X</td>
</tr>
<tr>
<td>4.g.</td>
<td>For circling approaches, the runway of intended landing and associated lighting must fade into view in a non-distracting manner.</td>
<td>X X X X</td>
</tr>
</tbody>
</table>
TABLE A3B—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>For qualification at the stated level—Class I airport models</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Airport model content. The following sets out the minimum requirements for what must be provided in an airport model and also identifies the other aspects of the airport environment that must correspond with that model for simulators at Levels A, B, C, and D. For circling approaches, all tests apply to the runway used for the initial approach and to the runway of intended landing. If all runways in an airport model used to meet the requirements of this attachment are not designated as “in use,” then the “in use” runways must be listed on the SOQ (e.g., KORD, Rwys 9R, 14L, 22R). Models of airports with more than one runway must have all significant runways not “in use” visually depicted for airport and runway recognition purposes. The use of white or off white light strings that identify the runway threshold, edges, and ends for twilight and night scenes are acceptable for this requirement. Rectangular surface depictions are acceptable for daylight scenes. A visual system’s capabilities must be balanced between providing airport models with an accurate representation of the airport and a realistic representation of the surrounding environment. Airport model detail must be developed using airport pictures, construction drawings and maps, or other similar data, or developed in accordance with published regulatory material; however, this does not require that such models contain details that are beyond the design capability of the currently qualified visual system. Only one “primary” taxi route from parking to the runway end will be required for each “in-use” runway.</td>
<td></td>
</tr>
<tr>
<td>5.a.</td>
<td>The surface and markings for each “in-use” runway must include the following:</td>
<td></td>
</tr>
<tr>
<td>5.a.1.</td>
<td>Threshold markings</td>
<td>X X X X X</td>
</tr>
<tr>
<td>5.a.2.</td>
<td>Runway numbers</td>
<td>X X X X</td>
</tr>
<tr>
<td>5.a.3.</td>
<td>Touchdown zone markings</td>
<td>X X X X</td>
</tr>
<tr>
<td>5.a.4.</td>
<td>Fixed distance markings</td>
<td>X X X X</td>
</tr>
<tr>
<td>5.a.5.</td>
<td>Edge markings</td>
<td>X X X X</td>
</tr>
<tr>
<td>5.a.6.</td>
<td>Centerline stripes</td>
<td>X X X X</td>
</tr>
<tr>
<td>5.b.</td>
<td>Each runway designated as an “in-use” runway must include the following:</td>
<td></td>
</tr>
<tr>
<td>5.b.1.</td>
<td>The lighting for each “in-use” runway must include the following:</td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>Threshold lights</td>
<td>X X X X</td>
</tr>
<tr>
<td>(ii)</td>
<td>Edge lights</td>
<td>X X X X</td>
</tr>
<tr>
<td>(iii)</td>
<td>End lights</td>
<td>X X X X</td>
</tr>
<tr>
<td>(iv)</td>
<td>Centerline lights, if appropriate</td>
<td>X X X X</td>
</tr>
<tr>
<td>(v)</td>
<td>Touchdown zone lights, if appropriate</td>
<td>X X X X</td>
</tr>
<tr>
<td>(vi)</td>
<td>Leadoff lights, if appropriate</td>
<td>X X X X</td>
</tr>
<tr>
<td>(vii)</td>
<td>Appropriate visual landing aid(s) for that runway</td>
<td>X X X X</td>
</tr>
<tr>
<td>(viii)</td>
<td>Approach lighting system for that runway</td>
<td>X X X X</td>
</tr>
<tr>
<td>5.b.2.</td>
<td>The taxiway surface and markings associated with each “in-use” runway must include the following:</td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>Edge</td>
<td>X X X X</td>
</tr>
<tr>
<td>(ii)</td>
<td>Centerline</td>
<td>X X X X</td>
</tr>
<tr>
<td>(iii)</td>
<td>Runway hold lines</td>
<td>X X X X</td>
</tr>
<tr>
<td>(iv)</td>
<td>ILS critical area markings</td>
<td>X X X X</td>
</tr>
<tr>
<td>5.b.3.</td>
<td>The taxiway lighting associated with each “in-use” runway must include the following:</td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>Edge</td>
<td>X X X X</td>
</tr>
<tr>
<td>(ii)</td>
<td>Centerline, if appropriate</td>
<td>X X X X</td>
</tr>
<tr>
<td>(iii)</td>
<td>Runway hold and ILS critical area lights</td>
<td>X X X X</td>
</tr>
</tbody>
</table>
TABLE A3B—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>QPS Requirements</th>
<th>Simulator level</th>
</tr>
</thead>
</table>

5.b.4.
Airport signage associated with each "in-use" runway must include the following:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Distance remaining signs, if appropriate</td>
<td>X X X X</td>
</tr>
<tr>
<td>(ii) Signs at intersecting runways and taxiways</td>
<td>X X X X</td>
</tr>
<tr>
<td>(iii) Signs described in entries 2.h. and 2.i. of this table</td>
<td>X X X X</td>
</tr>
</tbody>
</table>

5.b.5. Required airport model correlation with other aspects of the airport environment simulation:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) The airport model must be properly aligned with the navigational aids that are associated with operations at the runway "in-use".</td>
<td>X X X X</td>
</tr>
<tr>
<td>(ii) The simulation of runway contaminants must be correlated with the displayed runway surface and lighting where applicable.</td>
<td>X</td>
</tr>
</tbody>
</table>

6. Correlation with airplane and associated equipment. The following are the minimum correlation comparisons that must be made for simulators at Levels A, B, C, and D.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Visual system compatibility with aerodynamic programming</td>
<td>X X X X</td>
</tr>
<tr>
<td>(b) Visual cues to assess sink rate and depth perception during landings</td>
<td>X X X</td>
</tr>
<tr>
<td>(c) Accurate portrayal of environment relating to flight simulator attitudes</td>
<td>X X X X</td>
</tr>
<tr>
<td>(d) The airport model and the generated visual scene must correlate with integrated airplane systems (e.g., terrain, traffic and weather avoidance systems and Head-up Guidance System (HGS)).</td>
<td>X X</td>
</tr>
<tr>
<td>(e) Representative visual effects for each visible, own-ship, airplane external light(s)—taxi and landing light lobes (including independent operation, if appropriate).</td>
<td>X X X X</td>
</tr>
<tr>
<td>(f) The effect of rain removal devices</td>
<td>X X</td>
</tr>
</tbody>
</table>

7. Scene quality. The following are the minimum scene quality tests that must be conducted for simulators at Levels A, B, C, and D.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Surfaces and textural cues must be free from apparent and distracting quantization (aliasing).</td>
<td>X X</td>
</tr>
<tr>
<td>(b) System capable of portraying full color realistic textural cues</td>
<td>X</td>
</tr>
<tr>
<td>(c) The system light points must be free from distracting jitter, smearing or streaking</td>
<td>X X X X</td>
</tr>
<tr>
<td>(d) Demonstration of occulting through each channel of the system in an operational scene.</td>
<td>X X</td>
</tr>
<tr>
<td>(e) Demonstration of a minimum of ten levels of occulting through each channel of the system in an operational scene.</td>
<td>X X</td>
</tr>
<tr>
<td>(f) System capable of providing focus effects that simulate rain</td>
<td>X X</td>
</tr>
<tr>
<td>(g) System capable of providing focus effects that simulate light point perspective growth</td>
<td>X X</td>
</tr>
<tr>
<td>(h) System capable of six discrete light step controls (0–6)</td>
<td>X X X X</td>
</tr>
</tbody>
</table>

8. Environmental effects. The following are the minimum environmental effects that must be available as indicated.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) The displayed scene corresponding to the appropriate surface contaminants and include runway lighting reflections for wet, partially obscured lights for snow, or alternative effects.</td>
<td>X X</td>
</tr>
</tbody>
</table>

8.a.1. Special weather representations which include:
TABLE A3B—FUNCTIONS AND SUBJECTIVE TESTS—Continued

QPS Requirements

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>For qualification at the stated level—Class I airport models</th>
<th>Simulator level</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i) The sound, motion and visual effects of light, medium and heavy precipitation near a thunderstorm on take-off, approach,</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and landings at and below an altitude of 2,000 ft (600 m) above the airport surface and within a radius of 10 sm (16 km) from</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the airport.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.b.</td>
<td>(ii) One airport with a snow scene to include terrain snow and snow-covered taxiways and runways.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.c.</td>
<td>In-cloud effects such as variable cloud density, speed cues and ambient changes.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.d.</td>
<td>The effect of multiple cloud layers representing few, scattered, broken and overcast conditions giving partial or complete obstruction of the ground scene.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.e.</td>
<td>Visibility and RVR measured in terms of distance. Visibility/RVR checked at 2,000 ft (600 m) above the airport and at two heights below 2000 ft with at least 500 ft of separation between the measurements. The measurements must be taken within a radius of 10 sm (16 km) from the airport.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8.f.</td>
<td>Effects of fog on airport lighting such as halos and defocus.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.g.</td>
<td>Effect of own-ship lighting in reduced visibility, such as reflected glare, including landing lights, strobes, and beacons.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.h.</td>
<td>Wind cues to provide the effect of blowing snow or sand across a dry runway or taxiway selectable from the instructor station.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Instructor control of the following: The following are the minimum instructor controls that must be available in simulators at Levels A, B, C, and D.</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9.a.</td>
<td>Environmental effects, e.g., cloud base, cloud effects, cloud density, visibility in statute miles/kilometers and RVR in feet/meters.</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9.b.</td>
<td>Airport selection</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9.c.</td>
<td>Airport lighting, including variable intensity</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9.d.</td>
<td>Dynamic effects including ground and flight traffic</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End QPS Requirement

Begin Information

10. An example of being able to “combine two airport models to achieve two “in-use” runways:
 One runway designated as the “in use” runway in the first model of the airport, and the second runway designated as the “in use” runway in the second model of the same airport. For example, the clearance is for the ILS approach to Runway 27, Circle to Land on Runway 18 right. Two airport visual models might be used: the first with Runway 27 designated as the “in use” runway for the approach to runway 27, and the second with Runway 18 Right designated as the “in use” runway. When the pilot breaks off the ILS approach to runway 27, the instructor may change to the second airport visual model in which runway 18 Right is designated as the “in use” runway, and the pilot would make a visual approach and landing. This process is acceptable to the FAA as long as the temporary interruption due to the visual model change is not distracting to the pilot, does not cause changes in navigational radio frequencies, and does not cause undue instructor/evaluator time.

11. Sponsors are not required to provide every detail of a runway, but the detail that is provided should be correct within the capabilities of the system.

End Information
This table specifies the minimum airport model content and functionality necessary to add airport models to a simulator’s model library, beyond those necessary for qualification at the stated level, without the necessity of further involvement of the NSPM or TPAA.

Begin QPS Requirements

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>GQPS requirements</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Airport model management. The following is the minimum airport model management requirements for simulators at Levels A, B, C, and D.</td>
<td>A</td>
</tr>
<tr>
<td>1.a</td>
<td>The direction of strobe lights, approach lights, runway edge lights, visual landing aids, runway centerline lights, threshold lights, and touchdown zone lights on the "in-use" runways must be replicated.</td>
<td>x</td>
</tr>
</tbody>
</table>

2. **Visual feature recognition.** The following are the minimum distances at which runway features must be visible for simulators at Levels A, B, C, and D. Distances are measured from runway threshold to an airplane aligned with the runway on an extended 3° glide-slope in simulated meteorological conditions that recreate the minimum distances for visibility. For circling approaches, all requirements of this section apply to the runway used for the initial approach and to the runway of intended landing.

2.a	Runway definition, strobe lights, approach lights, and runway edge white lights from 5 sm (8 km) from the runway threshold.	x	x	x	x
2.b	Visual Approach Aid lights (VASI or PAPI) from 5 sm (8 km) from the runway threshold.	x	x	x	x
2.c	Visual Approach Aid lights (VASI or PAPI) from 3 sm (5 km) from the runway threshold.	x	x	x	x
2.d	Runway centerline lights and taxiway definition from 3 sm (5 km) from the runway threshold.	x	x	x	x
2.e	Threshold lights and touchdown zone lights from 2 sm (3 km) from the runway threshold.	x	x	x	x
2.f	Runway markings within range of landing lights for night scenes and as required by the surface resolution requirements on day scenes.	x	x	x	x
2.g	For circling approaches, the runway of intended landing and associated lighting must fade into view in a non-distracting manner.	x	x	x	x

3. **Airport model content.** The following prescribes the minimum requirements for what must be provided in an airport model and identifies other aspects of the airport environment that must correspond with that model for simulators at Levels A, B, C, and D. The detail must be developed using airport pictures, construction drawings and maps, or other similar data, or developed in accordance with published regulatory material; however, this does not require that airport models contain details that are beyond the designed capability of the currently qualified visual system. For circling approaches, all requirements of this section apply to the runway used for the initial approach and to the runway of intended landing. Only one "primary" taxi route from parking to the runway end will be required for each "in-use" runway.

<table>
<thead>
<tr>
<th>3.a</th>
<th>The surface and markings for each "in-use" runway:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.a.1</td>
<td>Threshold markings.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.a.2</td>
<td>Runway numbers.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.a.3</td>
<td>Touchdown zone markings.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.a.4</td>
<td>Fixed distance markings.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.a.5</td>
<td>Edge markings.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3.a.6</td>
<td>Centerline stripes.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

3.b. **The lighting for each "in-use" runway.**

<p>| 3.b.1 | Threshold lights. | x | x | x | x |
| 3.b.2 | Edge lights. | x | x | x | x |
| 3.b.3 | End lights. | x | x | x | x |
| 3.b.4 | Centerline lights. | x | x | x | x |</p>
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Additional airport models beyond minimum required for qualification—Class II airport models</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.b.5.</td>
<td>Touchdown zone lights, if appropriate</td>
<td>X X X X</td>
</tr>
<tr>
<td>3.b.6.</td>
<td>Leadoff lights, if appropriate</td>
<td>X X X X</td>
</tr>
<tr>
<td>3.b.7.</td>
<td>Appropriate visual landing aid(s) for that runway</td>
<td>X X X X</td>
</tr>
<tr>
<td>3.b.8.</td>
<td>Appropriate approach lighting system for that runway</td>
<td>X X X X</td>
</tr>
<tr>
<td>3.c.</td>
<td>The taxiway surface and markings associated with each “in-use” runway:</td>
<td>X X X X</td>
</tr>
<tr>
<td>3.c.1.</td>
<td>Edge</td>
<td>X X X X</td>
</tr>
<tr>
<td>3.c.2.</td>
<td>Centerline</td>
<td>X X X X</td>
</tr>
<tr>
<td>3.c.3.</td>
<td>Runway hold lines</td>
<td>X X X X</td>
</tr>
<tr>
<td>3.c.4.</td>
<td>ILS critical area markings</td>
<td>X X X X</td>
</tr>
<tr>
<td>3.d.</td>
<td>The taxiway lighting associated with each “in-use” runway:</td>
<td>X X X X</td>
</tr>
<tr>
<td>3.d.1.</td>
<td>Edge</td>
<td>X X</td>
</tr>
<tr>
<td>3.d.2.</td>
<td>Centerline</td>
<td>X X X X</td>
</tr>
<tr>
<td>3.d.3.</td>
<td>Runway hold and ILS critical area lights</td>
<td>X X X X</td>
</tr>
</tbody>
</table>

4. Required model correlation with other aspects of the airport environment simulation. The following are the minimum model correlation tests that must be conducted for simulators at Levels A, B, C, and D.

4.a. The airport model must be properly aligned with the navigational aids that are associated with operations at the “in-use” runway. X X X X

4.b. Slopes in runways, taxiways, and ramp areas, if depicted in the visual scene, must not cause distracting or unrealistic effects. X X X X

5. Correlation with airplane and associated equipment. The following are the minimum correlation comparisons that must be made for simulators at Levels A, B, C, and D.

5.a. Visual system compatibility with aerodynamic programming X X X X

5.b. Accurate portrayal of environment relating to flight simulator attitudes X X X X

5.c. Visual cues to assess sink rate and depth perception during landings X X X

5.d. Visual effects for each visible, own-ship, airplane external light(s) X X X

6. Scene quality. The following are the minimum scene quality tests that must be conducted for simulators at Levels A, B, C, and D.

6.a. Surfaces and textural cues must be free of apparent and distracting quantization (aliasing) X X

6.b. Correct color and realistic textural cues X X

6.c. Light points free from distracting jitter, smearing or streaking X X X X

7. Instructor controls of the following: The following are the minimum instructor controls that must be available in simulators at Levels A, B, C, and D.

7.a. Environmental effects, e.g., cloud base (if used), cloud effects, cloud density, visibility in statute miles/kilometers and RVR in feet/meters. X X X X

7.b. Airport selection X X X X

7.c. Airport lighting including variable intensity X X X X

7.d. Dynamic effects including ground and flight traffic X X
TABLE A3C—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>QPS requirements</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Additional airport models beyond minimum required for qualification—Class II airport models</td>
<td>A B C D</td>
<td></td>
</tr>
</tbody>
</table>

End QPS Requirements

Begin Information

8. Sponsors are not required to provide every detail of a runway, but the detail that is provided must be correct within the capabilities of the system.

End Information

TABLE A3D—FUNCTIONS AND SUBJECTIVE TESTS

<table>
<thead>
<tr>
<th>Entry no.</th>
<th>Motion system effects</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Information</td>
<td>A B C D</td>
<td></td>
</tr>
</tbody>
</table>

This table specifies motion effects that are required to indicate when a flight crewmember must be able to recognize an event or situation. Where applicable, flight simulator pitch, side loading and directional control characteristics must be representative of the airplane.

1. Runway rumble, oleo deflection, ground speed, uneven runway, runway and taxiway centerline light characteristics:
 Procedure: After the airplane has been preset to the takeoff position and then released, taxi at various speeds with a smooth runway and note the general characteristics of the simulated runway rumble effects of oleo deflections. Repeat the maneuver with a runway roughness of 50%, then with maximum roughness. Note the associated motion vibrations affected by ground speed and runway roughness.

2. Buffets on the ground due to spoiler/ speedbrake extension and reverse thrust:
 Procedure: Perform a normal landing and use ground spoilers and reverse thrust—either individually or in combination—to decelerate the simulated airplane. Do not use wheel braking so that only the buffet due to the ground spoilers and thrust reversers is felt.

3. Bumps associated with the landing gear:
 Procedure: Perform a normal take-off, paying special attention to the bumps that could be perceptible due to maximum oleo extension after lift-off. When the landing gear is extended or retracted, motion bumps can be felt when the gear locks into position.

4. Buffet during extension and retraction of landing gear:
 Procedure: Operate the landing gear. Check that the motion cues of the buffet experienced represent the actual airplane.

Different gross weights can also be selected, which may also affect the associated vibrations depending on airplane type. The associated motion effects for the above tests should also include an assessment of the effects of rolling over centerline lights, surface discontinuities of uneven runways, and various taxiway characteristics.
<table>
<thead>
<tr>
<th>Entry no.</th>
<th>Motion system effects</th>
<th>Simulator level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QPS Requirements</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>5.........</td>
<td>Buffet in the air due to flap and spoiler/speedbrake extension and approach to stall buffet:</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Procedure: Perform an approach and extend the flaps and slats with airspeeds deliberately in excess of the normal approach speeds. In cruise configuration, verify the buffets associated with the spoiler/speedbrake extension. The above effects can also be verified with different combinations of spoiler/speedbrake, flap, and landing gear settings to assess the interaction effects.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.........</td>
<td>Approach to stall buffet:</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Procedure: Conduct an approach-to-stall with engines at idle and a deceleration of 1 knot/second. Check that the motion cues of the buffet, including the level of buffet increase with decreasing speed, are representative of the actual airplane.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.........</td>
<td>Touchdown cues for main and nose gear:</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Procedure: Conduct several normal approaches with various rates of descent. Check that the motion cues for the touchdown bumps for each descent rate are representative of the actual airplane.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.........</td>
<td>Nosewheel scuffing:</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Procedure: Taxi at various ground speeds and manipulate the nosewheel steering to cause yaw rates to develop that cause the nosewheel to vibrate against the ground ("scuffing"). Evaluate the speed/nosewheel combination needed to produce scuffing and check that the resultant vibrations are representative of the actual airplane.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.........</td>
<td>Thrust effect with brakes set:</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Procedure: Set the brakes on at the take-off point and increase the engine power until buffet is experienced. Evaluate its characteristics. Confirm that the buffet increases appropriately with increasing engine thrust.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10........</td>
<td>Mach and maneuver buffet:</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Procedure: With the simulated airplane trimmed in 1 g flight while at high altitude, increase the engine power so that the Mach number exceeds the documented value at which Mach buffet is experienced. Check that the buffet begins at the same Mach number as it does in the airplane (for the same configuration) and that buffet levels are representative of the actual airplane. For certain airplanes, maneuver buffet can also be verified for the same effects. Maneuver buffet can occur during turning flight at conditions greater than 1 g, particularly at higher altitudes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE A3D—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry no.</th>
<th>Motion system effects</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>11.</td>
<td>Tire failure dynamics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Engine malfunction and engine damage:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Tail strikes and engine pod strikes:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE A3E—FUNCTIONS AND SUBJECTIVE TESTS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Sound system</th>
<th>Simulator level A B C D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1.</td>
<td>Precipitation</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Rain removal equipment</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Significant airplane noises perceptible to the pilot during normal operations</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Abnormal operations for which there are associated sound cues including, engine malfunction, landing gear/tire malfunctions, tail and engine pod strikes and pressurization malfunction.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Sound of a crash when the flight simulator is landed in excess of limitations</td>
<td></td>
</tr>
</tbody>
</table>

TABLE A3F—FUNCTIONS AND SUBJECTIVE TESTS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Special effects</th>
<th>Simulator level A B C D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Special effects</td>
<td>A</td>
</tr>
<tr>
<td>1.</td>
<td>Braking Dynamics:</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Effects of Airframe and Engine Icing:</td>
<td></td>
</tr>
</tbody>
</table>
Table A3F—Functions and Subjective Tests—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Special effects</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Required only for those airplanes authorized for operations in known icing conditions. Procedure: With the simulator airborne, in a clean configuration, nominal altitude and cruise airspeed; autopilot on and auto-throttles off, engine and airfoil anti-ice/de-ice systems deactivated; activate icing conditions at a rate that allows monitoring of simulator and systems response. Icing recognition will include an increase in gross weight, airspeed decay, change in simulator pitch attitude, change in engine performance indications (other than due to airspeed changes), and change in data from pitot/static system. Activate heating, anti-ice, or de-ice systems independently. Recognition will include proper effects of these systems, eventually returning the simulated airplane to normal flight.</td>
<td></td>
</tr>
</tbody>
</table>

Table A3G—Functions and Subjective Tests

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Special effects</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Functions in this table are subject to evaluation only if appropriate for the airplane and/or the system is installed on the specific simulator.</td>
<td></td>
</tr>
</tbody>
</table>

1. Simulator Power Switch(es) ... X X X X

2. Airplane conditions
 2.a. Gross weight, center of gravity, fuel loading and allocation .. X X X X
 2.b. Airplane systems status .. X X X X
 2.c. Ground crew functions (e.g., ext. power, push back) .. X X X X

3. Airports
 3.a. Number and selection .. X X X X
 3.b. Runway selection .. X X X X
 3.c. Runway surface condition (e.g., rough, smooth, icy, wet) .. X X
 3.d. Preset positions (e.g., ramp, gate, #1 for takeoff, takeoff position, over FAF) X X X X
 3.e. Lighting controls .. X X X X

4. Environmental controls
 4.a. Visibility (statute miles (kilometers)) ... X X X X
 4.b. Runway visual range (in feet (meters)) .. X X X X
 4.c. Temperature .. X X X X
 4.d. Climate conditions (e.g., ice, snow, rain) .. X X X X
 4.e. Wind speed and direction ... X X X X
 4.f. Windshear .. X X
 4.g. Clouds (base and tops) ... X X X X

5. Airplane system malfunctions (Inserting and deleting malfunctions into the simulator) X X X X

6. Locks, Freezes, and Repositioning
 6.a. Problem (all) freeze/release .. X X X X
 6.b. Position (geographic) freeze/release .. X X X X
 6.c. Repositioning (locations, freezes, and releases) .. X X X X
TABLE A3G—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Special effects</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.d.</td>
<td>Ground speed control</td>
<td>X X X X</td>
</tr>
<tr>
<td>7.</td>
<td>Remote IOS</td>
<td>X X X X</td>
</tr>
<tr>
<td>8.</td>
<td>Sound Controls. On/off/adjustment</td>
<td>X X X X</td>
</tr>
<tr>
<td>9.</td>
<td>Motion/Control Loading System</td>
<td>X X X X</td>
</tr>
<tr>
<td>9.a.</td>
<td>On/off/emergency stop</td>
<td>X X X X</td>
</tr>
<tr>
<td>10.</td>
<td>Observer Seats/Stations. Position/Adjustment/Positive restraint system</td>
<td>X X X X</td>
</tr>
</tbody>
</table>

2. EVENTS

a. Initial Conditions

1. Airport.
2. QNH.
3. Temperature.
4. Wind/Crosswind.

b. Initial Checks

1. Documentation of Simulator.
 a. Simulator Acceptance Test Manuals.
 b. Simulator Approval Test Guide.
 c. Technical Logbook Open Item List.
 d. Daily Functional Pre-flight Check.
2. Documentation of User/Carrier Flight Logs.
 b. Difference List (Aircraft/Simulator).
 c. Flight Crew Operating Manuals.
 d. Performance Data for Different Fields.
 e. Crew Training Manual.
 f. Normal/Abnormal/Emergency Check-lists.
 a. Appearance and Cleanliness.
 b. Stairway/Access Bridge.
 c. Emergency Rope Ladders.
 d. "Motion On"/"Flight in Progress" Lights.
4. Simulator Internal Checks.
 a. Cleaning/Disinfecting Towels (for cleaning oxygen masks).
 b. Flight deck Layout (compare with difference list).
5. Equipment.
 a. Quick Donning Oxygen Masks.
 b. Head Sets.
 c. Smoke Goggles.
 d. Sun Visors.
 e. Escape Rope.
 f. Chart Holders.
 g. Flashlights.
6. Fire Extinguisher (inspection date).
7. Crash Axe.
Federal Aviation Administration, DOT

Pl. 60, App. A

c. Power Supply and APU Start Checks
(1) Batteries and Static Inverter.
(2) APU Start with Battery.
(3) APU Shutdown using Fire Handle.
(4) External Power Connection.
(5) APU Start with External Power.
(6) Abnormal APU Start/Operation.

d. Flight deck Checks
(1) Flight deck Preparation Checks.
(2) PMC Programming.
(3) Communications and Navigational Aids Checks.

e. Engine Start
(1) Before Start Checks.
(2) Battery start with Ground Air Supply Unit.
(3) Engine Crossbleed Start.
(4) Normal Engine Start.
(5) Abnormal Engine Starts.
(6) Engine Idle Readings.
(7) APU Start with Battery.
(8) APU Start with External Power.
(9) Abnormal APU Start/Operation.

f. Taxi Checks
(1) Pushback/Powerback.
(2) Taxi Checks.
(3) Ground Handling Check:
(a) Power required to initiate ground roll.
(b) Thrust response.
(c) Nosewheel and Pedal Steering.
(d) Nosewheel Scruffing.
(e) Perform 180 degree turns.
(f) Brakes Response and Differential Braking using Normal, Alternate and Emergency.
(g) Brake Systems.
(h) Eye height and fore/aft position.
(i) Runway Roughness.

Visual Scene—Ground Assessment. Select 3 different airport models and perform the following checks with Day, Dusk and Night selected, as appropriate:
(1) Visual Controls.
(a) Daylight, Dusk, Night Scene Controls.
(b) Flight deck “Daylight” ambient lighting.
(c) Environment Light Controls.
(d) Runway Light Controls.
(e) Taxiway Light Controls.
(f) Visual scene quantization (aliasing), color, and occulting levels.

(2) Ground Traffic Selection.
(3) Environment Effects.
(a) Low cloud scene.
(b) Rain:
(A) Runway surface scene.
(B) Windshield wiper—operation and sound.
(c) Snow/ice runway surface scene.
(d) Fog.
(h) Takeoff. Select one or several of the following test cases:
(1) TO Configuration Warnings.
(2) Engine Takeoff Readings.
(3) Rejected Takeoff (Dry/Wet/Icy Runway) and check the following:
(a) Autobrake function.
(b) Anti-skid operation.
(c) Motion/visual effects during deceleration.
(d) Record stopping distance (use runway plot or runway lights remaining).
Continue taxiing along the runway while applying brakes and check the following:
(e) Center line lights alternating red/white for 2000 feet/600 meters.
(f) Center line lights all red for 1000 feet/300 meters.
(g) Runway end, red stop bars.
(h) Braking fade effect.
(i) Brake temperature indications.
(j) Engine Failure between VI and V2.
(5) Normal Takeoff:
(a) During ground roll check the following:
(i) Runway rumble.
(ii) Acceleration cues.
(iii) Groundspeed effects.
(iv) Engine sounds.
(v) Nosewheel and rudder pedal steering.
(b) During and after rotation, check the following:
(i) Rotation characteristics.
(ii) Column force during rotation.
(iii) Gear unlock sounds/bumps.
(iv) Effect of slat/flap retraction during climbout.
(6) Crosswind Takeoff (check the following):
(a) Tendency to turn into or out of the wind.
(b) Tendency to lift upwind wing as airspeed increases.
(7) Windshear during Takeoff (check the following):
(a) Controllable during windshear encounter.
(b) Performance adequate when using correct techniques.
(c) Windshear Indications satisfactory.
(d) Motion cues satisfactory (particularly turbulence).
(8) Normal Takeoff with Control Malfunction.
(9) Low Visibility T/O (check the following):
(a) Visual cues.
(b) Flying by reference to instruments.
(c) SID Guidance on LNAV.

i. Climb Performance. Select one or several of the following test cases:
(1) Normal Climb—Climb while maintaining recommended speed profile and note fuel, distance and time.
(2) Single Engine Climb—Trim aircraft in a zero wheel climb at V2. Note: Up to 5° bank towards the operating engine(s) is permissible. Climb for 3 minutes and note fuel, distance, and time. Increase speed toward en route climb speed and retract flaps. Climb for 3 minutes and note fuel, distance, and time.

j. Systems Operation During Climb.
Check normal operation and malfunctions as appropriate for the following systems:
(1) Air conditioning/Pressurization/ Ventilation.
(2) Autoflight.
(3) Communications.
(4) Electrical.
(5) Fuel.
(6) Icing Systems.
(7) Indicating and Recording Systems.
(8) Navigation/FMS.
(9) Pneumatics.

k. Cruise Checks. Select one or several of the following test cases:
(1) Cruise Performance.
(2) High Speed/High Altitude Handling (check the following):
(a) Overspeed warning.
(b) High Speed buffet.
(c) Aircraft control satisfactory.
(d) Envelope limiting functions on Computer Controlled Aircraft.
Reduce airspeed to below level flight buffet onset speed, start a turn, and check the following:
(e) High Speed buffet increases with G loading.
Reduce throttles to idle and start descent, deploy the speedbrake, and check the following:
(f) Speedbrake indications.
(g) Symmetrical deployment.
(h) Airframe buffet.
(i) Aircraft response hands off.
(j) Yaw Damper Operation. Switch off yaw dampers and autopilot. Initiate a Dutch roll and check the following:
(a) Aircraft dynamics.
(b) Simulator motion effects.
Switch on yaw dampers, re-initiate a Dutch roll and check the following:
(c) Damped aircraft dynamics.
(d) Engine Gravity Feed.
(e) Engine Shutdown and Driftdown Check: FMC operation Aircraft performance.
(f) Engine Re-light.

l. Descent. Select one of the following test cases:
(1) Normal Descent. Descend while maintaining recommended speed profile and note fuel, distance and time.
(2) Cabin Depressurization/Emergency Descent.

m. Medium Altitude Checks. Select one or several of the following test cases:
(1) High Angle of Attack/Stall. Trim the aircraft at 1.4 Vs, establish 1 kt/sec² deceleration rate, and check the following—
(a) System displays/operation satisfactory.
(b) Handling characteristics satisfactory.
(c) Stall and Stick shaker speed.
(d) Buffet characteristics and onset speed.
(e) Envelope limiting functions on Computer Controlled Aircraft.
Recover to straight and level flight and check the following:
(f) Handling characteristics satisfactory.
(2) Turning Flight. Roll aircraft to left, establish a 30° to 45° bank angle, and check the following:
(a) Stick force required, satisfactory.
(b) Wheel requirement to maintain bank angle.
(c) Slip ball response, satisfactory.
(d) Time to turn 180°.
Roll aircraft from 45° bank one way to 45° bank the opposite direction while maintaining altitude and airspeed—check the following:
(e) Controllability during maneuver.
(3) Degraded flight controls.
(4) Holding Procedure (check the following):
(a) FMC operation.
(b) Autopilot auto thrust performance.
(5) Storm Selection (check the following):
(a) Weather radar controls.
(b) Weather radar operation.
(c) Visual scene corresponds with WXR pattern.
(Fl) through storm center, and check the following:
(d) Aircraft enters cloud.
(e) Aircraft encounters representative turbulence.
(f) Rain/hail sound effects evident.
As aircraft leaves storm area, check the following:
(g) Storm effects disappear.
(6) TCAS (check the following):
(a) Traffic appears on visual display.
(b) Traffic appears on TCAS display(s).
As conflicting traffic approaches, take relevant avoiding action, and check the following:
(c) Visual and TCAS system displays.

n. Approach and Landing. Select one or several of the following test cases while monitoring flight control and hydraulic systems for normal operation and with malfunctions selected:
(1) Flaps/Gear Normal Operation. Check the following:
Federal Aviation Administration, DOT Pt. 60, App. A

(a) Time for extension/retraction.
(b) Buffet characteristics.
(2) Normal Visual Approach and Landing.
Fly a normal visual approach and landing—check the following:
(a) Aircraft handling.
(b) Spoiler operation.
(c) Reverse thrust operation.
(d) Directional control on the ground.
(e) Touchdown cues for main and nosewheel.
(f) Visual cues.
(g) Motion cues.
(h) Sound cues.
(i) Brake and anti-skid operation.
(j) Flaps/Plain/Flap snack or with hydraulic malfunctions.
Check the following:
(a) Aircraft handling.
(b) Radio aids and instruments.
(c) Airport model content and cues.
(d) Motion cues.
(e) Sound cues.
(f) Non-precision Approach—One Engine Inoperative.

o. Visual Scene—In-Flight Assessment.
Select three (3) different visual models and perform the following checks with “day,” “dusk,” and “night” (as appropriate) selected. Reposition the aircraft at or below 2000 feet within 10 nm of the airfield. Fly the aircraft around the airport environment and assess control of the visual system and evaluate the Airport model content as described below:
1. Visual Controls.
(1) Daylight, Dusk, Night Scene Controls.
(2) Environment Light Controls.
(3) Runway Light Controls.
(4) Taxiway Light Controls.
(5) Approach Light Controls.
(6) Airport model Content.
(a) Airport environment for correct terrain and significant features.
(b) Runways for correct markings, runway slope, directionality of runway lights.
(c) Visual scene for quantization (aliasing), color, and occulting.
Reposition the aircraft to a long, final approach for an “ILS runway.” Select flight freeze when the aircraft is 5-statute miles (sm)/8-kilometers (km) out and on the glide slope. Check the following:
3. Airport model content.
(a) Airfield features.
(b) Approach lights.
(c) Runway definition.
(d) Runway edge lights and VASI lights.
(e) Strobe lights.
(f) Release flight freeze. Continue flying the approach with NO engaged. Select flight freeze when aircraft is 3 sm/5 km out and on the glide slope. Check the following:
5. Airport model content.
(a) Runway threshold lights.
(b) Runway edge lights and VASI lights.
(c) Runway markings.
(d) Release flight freeze and continue flying the approach with A/P engaged. Select flight freeze when aircraft is 2 sm/3 km out and on the glide slope. Check the following:
7. Airport model content.
(a) Runway centerline light.
(b) Taxiway definition and lights.
(c) Touchdown zone lights.
At 200 ft radio altitude and still on glide slope, select Flight Freeze. Check the following:
9. Airport model content.
(a) Runway threshold lights.
(b) Touchdown zone lights.
(c) Runway edge lights and VASI lights.
(d) Runway markings.
(e) Strobe lights.
(f) Release flight freeze. Continue flying the approach with NO engaged. Select flight freeze when aircraft is 3 sm/5 km out and on the glide slope. Check the following:
11. Airport model content.
(a) Runway edge lights and VASI lights.
(b) Runway markings.
(c) Touchdown zone lights.
(d) Strobe lights.
(e) Release flight freeze and continue flying the approach with A/P engaged. Select flight freeze when aircraft is 2 sm/3 km out and on the glide slope. Check the following:
13. Airport model content.
(a) Runway threshold lights.
(b) Touchdown zone lights.
(c) Runway edge lights and VASI lights.
(d) Strobe lights.
Set the weather to Category I conditions and check the following:

7. Airport model content.
 (a) Visual ground segment.

Set the weather to Category II conditions, release Flight Freeze, re-select Flight Freeze at 100 feet radio altitude, and check the following:

8. Airport model content.
 (a) Visual ground segment.

Select night/dusk (twilight) conditions and check the following:

9. Airport model content.
 (a) Runway markings visible within landing light lobes.

Set the weather to Category III conditions, release Flight Freeze, re-select Flight Freeze at 50 feet radio altitude and check the following:

10. Airport model content.
 (a) Visual ground segment.

Set WX to a typical “missed approach” weather condition, release Flight Freeze, re-select Flight Freeze at 15 feet radio altitude, and check the following:

11. Airport model content.
 (a) Visual ground segment.

When on the ground, stop the aircraft. Set 0 feet RVR, ensure strobe/beacon lights are switched on and check the following:

12. Airport model content.
 (a) Visual effect of strobe and beacon.

Reposition to final approach, set weather to “Clear,” continue approach for an automatic landing, and check the following:

13. Airport model content.
 (a) Visual cues during flare to assess sink rate.
 (b) Visual cues during flare to assess Depth perception.
 (c) Flight deck height above ground.

After Landing Operations.

1. After Landing Checks.
 (2) Taxi back to gate. Check the following:
 (a) Visual model satisfactory.
 (b) Parking brake operation satisfactory.

3. Shutdown Checks.
 q. Crash Function.
 (1) Gear-up Crash.
 (2) Excessive rate of descent Crash.
 (3) Excessive bank angle Crash.
Federal Aviation Administration, DOT Pt. 60, App. A

Typical Subjective Continuing Qualification Evaluation Profile (2 hours)

End Information

Attachment 4 to Appendix A to Part 60--

SAMPLE DOCUMENTS

Table of Contents

Title of Sample
Figure A4A Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation.
Figure A4B Attachment: FFS Information Form
Figure A4C Sample Letter of Compliance
Figure A4D Sample Qualification Test Guide Cover Page
Figure A4E Sample Statement of Qualification - Certificate
Figure A4F Sample Statement of Qualification - Configuration List
Figure A4G Sample Statement of Qualification - List of Qualified Tasks
Figure A4H Sample Continuing Qualification Evaluation Requirements Page
Figure A4I Sample MQTG Index of Effective FFS Directives

123
Attachment 4 to Appendix A to Part 60—
Figure A4A – Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation
INFORMATION

Date ______
Edward D. Cook, Ph.D.
Manager, National Simulator Program
Federal Aviation Administration
100 Hartsfield Centre Parkway, Suite 400
Atlanta, GA 30354

Dear Dr. Cook:

RE: Request for Initial/Upgrade Evaluation Date

This is to advise you of our intent to request an (initial or upgrade) evaluation of our (FFS Manufacturer) (Aircraft Type/Level) Full Flight Simulator (FFS), (FAA ID Number, if previously qualified), located in (City, State) at the (Facility) on (Proposed Evaluation Date). (The proposed evaluation date shall not be more than 180 days following the date of this letter.) The FFS will be sponsored by (Name of Training Center/Air Carrier), FAA Designator (4 Letter Code). The FFS will be sponsored as follows: (Select One)

☐ The FFS will be used within the sponsor’s FAA approved training program and placed on the sponsor’s Training/Operations Specifications.

☐ The FFS will be used for dry lease only.

We agree to provide the formal request for the evaluation to your staff as follows: (check one)

☐ For QTG tests run at the factory, not later, than 45 days prior to the proposed evaluation date with the additional “1/3 on-site” tests provided not later than 14 days prior to the proposed evaluation date.

☐ For QTG tests run on-site, not later than 30 days prior to the proposed evaluation date.

We understand that the formal request will contain the following documents:

2. Principal Operations Inspector (POI) or Training Center Program Manager’s (TCPM) endorsement.
3. Complete QTG.

If we are unable to meet the above requirements, we understand this may result in a significant delay, perhaps 45 days or more, in rescheduling and completing the evaluation.

(The sponsor should add additional comments as necessary).

Please contact (Name Telephone and Fax Number of Sponsor’s Contact) to confirm the date for this initial evaluation. We understand a member of your National Simulator Program staff will respond to this request within 14 days.

A copy of this letter of intent has been provided to (Name), the Principal Operations Inspector (POI) and/or Training Center Program Manager (TCPM).

Sincerely,

Attachment: FFS Information Form
cc: POI/TCPM
Attachment 4 to Appendix A to Part 60—
Figure A4B – Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation Attachment: FSTD Information Form

<table>
<thead>
<tr>
<th>Date:</th>
<th>Section 1. FSTD Information and Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sponsor Name: FSTD Location:</td>
</tr>
<tr>
<td></td>
<td>Address: Physical Address:</td>
</tr>
<tr>
<td></td>
<td>City: City:</td>
</tr>
<tr>
<td></td>
<td>State: State:</td>
</tr>
<tr>
<td></td>
<td>Country: Country:</td>
</tr>
<tr>
<td></td>
<td>ZIP: ZIP:</td>
</tr>
<tr>
<td></td>
<td>Manager:</td>
</tr>
<tr>
<td></td>
<td>Sponsor ID No: (Four Letter FAA Designator) Nearest Airport: (Airport Designator)</td>
</tr>
</tbody>
</table>

Type of Evaluation Requested:
- Initial
- Upgrade
- Continuing Qualification
- Special
- Reinstatement

Aircraft Make/model/series:

Initial Qualification:
- Date: Level: Manufacturer's Identification or Serial Number:

Upgrade Qualification:
- Date: Level: eMQTG

Qualification Basis:
- ☐ A
- ☐ B
- ☐ Interim C
- ☐ C
- ☐ D
- ☐ 6
- ☐ 7
- ☐ Provisional Status

Other Technical Information:
- FAA FSTD ID No: FSTD Manufacturer:
- Convertible FSTD: Yes: Date of Manufacture: MMDDYYYY
- Related FAA ID No: (If Applicable) Sponsor FSTD ID No:
- Engine model(s) and data revision: Source of aerodynamic model:
- FMS identification and revision level: Source of aerodynamic coefficient data:
- Visual system manufacturer/model: Aerodynamic data revision number:
- Flight control data revision: Visual system display:
- Motion system manufacturer/type: FSTD computer(s) identification:

National Aviation Authority (NAA):
- (If Applicable)
- NAA FSTD ID No: Last NAA Evaluation Date:
- NAA Qualification Level:
- NAA Qualification Basis:

Visual System Manufacturer and Type:
- FSTD Seats Available: Motion System Manufacturer and Type:

125
Section 2. Supplementary Information

FAA Training Program Approval Authority: □ POH □ TPCM □ Other: ____
Name: __________________________
Tel: __________________________
Fax: __________________________
Email: __________________________

FSTD Scheduling Person:
Name: __________________________
Address 1: __________________________
City: __________________________
State: __________________________
ZIP: __________________________
Tel: __________________________
Fax: __________________________

FSTD Technical Contact:
Name: __________________________
Address 1: __________________________
City: __________________________
State: __________________________
ZIP: __________________________
Tel: __________________________
Fax: __________________________

Section 3. Training, Testing and Checking Considerations

<table>
<thead>
<tr>
<th>Area/Function/Maneuver</th>
<th>Requested</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Pilot - Training / Checks (142)</td>
<td>□</td>
<td>________</td>
</tr>
<tr>
<td>Commercial Pilot - Training / Checks (42)</td>
<td>□</td>
<td>________</td>
</tr>
<tr>
<td>Multi-Engine Rating - Training / Checks (42)</td>
<td>□</td>
<td>________</td>
</tr>
<tr>
<td>Instrument Rating - Training / Checks (142)</td>
<td>□</td>
<td>________</td>
</tr>
<tr>
<td>Type Rating - Training / Checks (135/121/142)</td>
<td>□</td>
<td>________</td>
</tr>
<tr>
<td>Proficiency Checks (135/121/142)</td>
<td>□</td>
<td>________</td>
</tr>
</tbody>
</table>
Attachment 4 to Appendix A to Part 60—
Figure A4B – Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation

Attachment: FSTD Information Form

<table>
<thead>
<tr>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT I: (RVR 2400/1800 ft. DH 1200 ft) □</td>
</tr>
<tr>
<td>CAT II: (RVR 1200 ft. DH 100 ft) □</td>
</tr>
<tr>
<td>CAT III * (lowest minimum) RVR ft. □</td>
</tr>
<tr>
<td>* State CAT III (< 700 ft.), CAT IIIb (< 150 ft.), or CAT IIIc (0 ft.)</td>
</tr>
<tr>
<td>Circling Approach □</td>
</tr>
<tr>
<td>Windshear Training: □</td>
</tr>
<tr>
<td>Windshear Training (121.409d) (121 Turboprops Only) □</td>
</tr>
<tr>
<td>Generic Unusual Attitudes and Recoveries within the Normal Flight Envelope □</td>
</tr>
<tr>
<td>Specific Unusual Attitudes Recoveries □</td>
</tr>
<tr>
<td>Auto-coupled Approach/Auto Go Around □</td>
</tr>
<tr>
<td>Auto-land / Roll Out Guidance □</td>
</tr>
<tr>
<td>TCAS/ACAS I / II □</td>
</tr>
<tr>
<td>WX-Radar □</td>
</tr>
<tr>
<td>HUD □</td>
</tr>
<tr>
<td>HGS □</td>
</tr>
<tr>
<td>EFVS □</td>
</tr>
<tr>
<td>Future Air Navigation Systems □</td>
</tr>
<tr>
<td>GPWS / EGPWS □</td>
</tr>
<tr>
<td>ETOPS Capability □</td>
</tr>
<tr>
<td>GPS □</td>
</tr>
<tr>
<td>SMICS □</td>
</tr>
<tr>
<td>Helicopter Slope Landings □</td>
</tr>
<tr>
<td>Helicopter External Load Operations □</td>
</tr>
<tr>
<td>Helicopter Pinnacle Approach to Landings □</td>
</tr>
<tr>
<td>Helicopter Night Vision Maneuvers □</td>
</tr>
<tr>
<td>Helicopter Category A Takeoffs □</td>
</tr>
</tbody>
</table>

127
Attachment 4 to Appendix A to Part 60—
Figure A4C – Sample Letter of Compliance

INFORMATION

(Date)

Mr. (Name of Training Program Approval Authority):
(Name of FAA FSDO)
(Address)
(City/State/Zip)

Dear Mr. (Name of TPAA):

RE: Letter of Compliance

(Operator Sponsor Name) requests evaluation of our (Aircraft Type) FFS for Level (__) qualification. The (FFS Manufacturer Name) FFS with (Visual System Manufacturer Name/Model) system is fully defined on the FFS Information page of the accompanying Qualification Test Guide (QTG). We have completed the tests of the FFS and certify that it meets all applicable requirements of FAR parts 121, 125, or 135, and the guidance of (AC 120-40B or 14 CFR Part 60). Appropriate hardware and software configuration control procedures have been established. Our Pilot(s), (Name(s)), who are qualified on (Aircraft Type) aircraft have assessed the FFS and have found that it conforms to the (Operator/Sponsor) (Aircraft Type) flight deck configuration and that the simulated systems and subsystems function equivalently to those in the aircraft. The above named pilot(s) have also assessed the performance and the flying qualities of the FFS and find that it represents the respective aircraft.

(Added Comments may be placed here)

Sincerely,
(Sponsor Representative)

cc:
FAA, National Simulator Program
Attachment 4 to Appendix A to Part 60—
Figure A4D – Sample Qualification Test Guide Cover Page
INFORMATION

SPONSOR NAME

SPONSOR ADDRESS

FAA QUALIFICATION TEST GUIDE

(SPECIFIC AIRPLANE MODEL)

for example

Stratos BA797-320A

(Type of Simulator)

(Simulator Identification Including Manufacturer, Serial Number, Visual System Used)

(Simulator Level)

(Qualification Performance Standard Used)

(Simulator Location)

FAA Initial Evaluation

Date: ____________

_________________________ Date: ____________
(Sponsor)

_________________________ Date: ____________
Manager, National Simulator Program, FAA
Federal Aviation Administration
National Simulator Program

Certificate of Qualification

This is to certify that representatives of the National Simulator Program completed an evaluation of the

Go-Fast Airlines
Farnsworth Z-100 Full Flight Simulator
FAA Identification Number 999

And pursuant to 14 CFR Part 60 found it to meet its original qualification basis, AC 120-40B (MM/DD/YY)

The Master Qualification Test Guide and the attached
Configuration List and Restrictions List
Provide the Qualification Basis for this device to operate at
Level D

Until April 30, 2010
Unless sooner rescinded or extended by the National Simulator Program Manager

March 15, 2009 B. Williamson
(date) (for the NSPM)
STATEMENT OF QUALIFICATION
CONFIGURATION LIST

Date:

<table>
<thead>
<tr>
<th>Sponsor Name:</th>
<th>FSTD Location:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
<th>Physical Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State:</th>
<th>Country:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZIP:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manager:</th>
<th>Nearest Airport:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Airport Designator)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsor ID No:</th>
<th>(Four Letter FAA Designator)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type of Evaluation Requested:
- [] Initial
- [] Upgrade
- [] Continuing Qualification
- [] Special
- [] Reinstatement

<table>
<thead>
<tr>
<th>Aircraft Make/model/serial:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial Qualification:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(if Applicable)</td>
</tr>
<tr>
<td>Date: MM/DD/YYYY</td>
</tr>
<tr>
<td>Level:</td>
</tr>
<tr>
<td>Identification or Serial Number:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upgrade Qualification:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(if Applicable)</td>
</tr>
<tr>
<td>Date: MM/DD/YYYY</td>
</tr>
<tr>
<td>Level:</td>
</tr>
<tr>
<td>eMQTG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qualification Basis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Other Technical Information:

- **FAA FSTD ID No:**
 - (if Applicable)
 - (if Applicable)

- **FSTD Manufacturer:**
 - (if Applicable)
 - (if Applicable)

- **Convertable FSTD:**
 - Yes
 - Date of Manufacture: MM/DD/YYYY

- **Related FAA ID No:**
 - (if Applicable)
 - Sponsor FSTD ID No: __________

- **Engine model(s) and data revision:**
 - Source of aerodynamic model:

- **FMS identification and revision level:**
 - Source of aerodynamic coefficient data:

- **Visual system manufacturer/model:**
 - Aerodynamic data revision number:

- **Flight control data revision:**
 - Visual system display:

- **Situation system manufacturer/type:**
 - FSTD computer(s) identification:

- **National Aviation Authority (NAA):**
 - (if Applicable)

- **Last NAA Evaluation Date:**
 - NAA FSTD ID No: __________

- **NAA Qualification Level:**
 - NAA Qualification Basis: __________
Attachment 4 to Appendix A to Part 60—
Figure A4F – Sample Statement of Qualification; Configuration List

INFORMATION

<table>
<thead>
<tr>
<th>Visual System Manufacturer and Type:</th>
<th>FSTD Seats Available:</th>
<th>Motion System Manufacturer and Type:</th>
<th>__________</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aircraft Equipment:</th>
<th>Engine Type(s):</th>
<th>Flight Instrumentation:</th>
<th>__________</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engine Instrumentation:</th>
<th>__________</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Airport Models:</th>
<th>__________</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circle to Land:</th>
<th>__________</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visual Ground Segment</th>
<th>__________</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>

Section 2. Supplementary Information

<table>
<thead>
<tr>
<th>FAA Training Program Approval Authority:</th>
<th>__________</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tel:</th>
<th>__________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Email:</th>
<th>__________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FSTD Scheduling Person:</th>
<th>__________</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address 1:</th>
<th>__________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>City:</th>
<th>__________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ZIP:</th>
<th>__________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Email:</th>
<th>__________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tel:</th>
<th>__________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fritz Technical Contact:</th>
<th>__________</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address 1:</th>
<th>__________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>City:</th>
<th>__________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ZIP:</th>
<th>__________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Email:</th>
<th>__________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tel:</th>
<th>__________</th>
</tr>
</thead>
</table>

Section 3. Training, Testing and Checking Considerations

<table>
<thead>
<tr>
<th>Area/Function/Maneuver</th>
<th>Requested</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Pilot - Training / Checks (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Pilot - Training / Checks (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Engine Rating - Training / Checks (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument Rating - Training / Checks (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type Rating - Training / Checks (135/121/142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFORMATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Proficiency Checks (135/121/142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT I: (RVR 2400/1800 ft. DH200 ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT II: (RVR 1200 ft. DH 100 ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT III * (lowest minimum) RVR ___ ft. * State CAT III (≤ 700 ft), CAT IIIb (≤ 150 ft), or CAT IIIc (0 ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circling Approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windshear Training:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windshear Training (AW 121.409(d) (121 Turbojets Only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generic Unusual Attitudes and Recoveries within the Normal Flight Envelope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Unusual Attitudes Recoveries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto-coupled Approach/Auto Go Around</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto-land / Roll Out Guidance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCAS/ACAS I / II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WX-Radar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future Air Navigation Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPWS / EGPWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETOPS Capability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMGCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicopter Slope Landings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicopter External Load Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicopter Pinnacle Approach to Landings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicopter Night Vision Maneuvers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicopter Category A Takeoffs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attachment 4 to Appendix A to Part 60—
Figure A4G – Sample Statement of Qualification – List of Qualified Tasks
INFORMATION

STATEMENT of QUALIFICATION
List of Qualified Tasks
Go Fast Airline Training -- Farnsworth Z-100 -- Level D -- FAA ID# 999

The FFS is qualified to perform all of the Maneuvers, Procedures, Tasks, and Functions
Listed in Appendix A, Attachment 1, Table A1B, Minimum FFS Requirements
In Effect on [mm/dd/yyyy] except for the following listed Tasks or Functions.

Qualified for all tasks in Table A1B, for which the sponsor has requested qualification, except for the
following:
3.e(1)(i) NDB approach
3.f. Recovery from Unusual Attitudes
4.3. Circling Approach

Additional tasks for which this FFS is qualified (i.e., in addition to the list in Table A1B)
1. Enhanced Visual System
2. Windshear Training IAW Section 121.409(d).

The airport visual models evaluated for qualification at this level are:
1. Atlanta Hartsfield International Airport (KATL)
2. Miami International Airport (KMIA)
3. Dallas/Ft. Worth Regional Airport (KDFW)
Continuing Qualification Evaluation Requirements

Completed at conclusion of Initial Evaluation

<table>
<thead>
<tr>
<th>Continuing qualification Evaluations to be conducted each</th>
<th>Continuing qualification evaluations are due as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fill in) months</td>
<td>(month) and (month) and (month)</td>
</tr>
<tr>
<td>Alloting _____ hours of FTD time.</td>
<td>(enter or strike out, as appropriate)</td>
</tr>
</tbody>
</table>

Signed:
NSPM / Evaluation Team Leader

Date

Revision:

Based on (enter reasoning):

Continuing Qualification Evaluation Requirements

Completed at conclusion of Initial Evaluation

<table>
<thead>
<tr>
<th>Continuing qualification Evaluations are to be conducted each</th>
<th>Continuing qualification evaluations are due as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fill in) months. Alloting _____ hours.</td>
<td>(month) and (month) and (month)</td>
</tr>
<tr>
<td></td>
<td>(enter or strike out, as appropriate)</td>
</tr>
</tbody>
</table>

Signed:
NSPM / Evaluation Team Leader

Date

Revision:

Based on (enter reasoning):

Continuing Qualification Evaluation Requirements

Completed at conclusion of Initial Evaluation

<table>
<thead>
<tr>
<th>Continuing qualification Evaluations are to be conducted each</th>
<th>Continuing qualification evaluations are due as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fill in) months. Alloting _____ hours.</td>
<td>(month) and (month) and (month)</td>
</tr>
<tr>
<td></td>
<td>(enter or strike out, as appropriate)</td>
</tr>
</tbody>
</table>

Signed:
NSPM / Evaluation Team Leader

Date

(Repeat as Necessary)
ATTACHMENT 5 TO APPENDIX A TO PART 60—
SIMULATOR QUALIFICATION REQUIREMENTS
FOR WINDSHEAR TRAINING PROGRAM USE

BEGIN QPS REQUIREMENTS

1. APPLICABILITY

This attachment applies to all simulators, regardless of qualification level, that are used to satisfy the training requirements of an FAA-approved low-altitude windshear flight training program, or any FAA-approved training program that addresses windshear encounters.

2. STATEMENT OF COMPLIANCE AND CAPABILITY (SOC)

a. The sponsor must submit an SOC confirming that the aerodynamic model is based on flight test data supplied by the airplane manufacturer or other approved data provider. The SOC must also confirm that any change to environmental wind parameters, including variances in those parameters for windshear conditions, once inserted for computation, result in the correct simulated performance. This statement must also include examples of environmental wind parameters currently evaluated in the simulator (such as crosswind takeoffs, crosswind approaches, and crosswind landings).

b. For simulators without windshear warning, caution, or guidance hardware in the original equipment, the SOC must also state that the simulation of the added hardware and/or software, including associated flight deck displays and annunciations, replicates the system(s) installed in the airplane. The statement must be accompanied by a block diagram depicting the input and output signal flow, and comparing the signal flow to the equipment installed in the airplane.

3. MODELS

The windshear models installed in the simulator software used for the qualification evaluation must do the following:

a. Provide cues necessary for recognizing windshear onset and potential performance degradation requiring a pilot to initiate recovery procedures. The cues must include all of the following, as appropriate for the portion of the flight envelope:
 (1) Rapid airspeed change of at least ±15 knots (kts).
 (2) Stagnation of airspeed during the takeoff roll.
 (3) Rapid vertical speed change of at least ±500 feet per minute (fpm).
 (4) Rapid pitch change of at least ±5°.

b. Be adjustable in intensity (or other parameter to achieve an intensity effect) to at
least two (2) levels so that upon encountering the windshear the pilot may identify its presence and apply the recommended procedures for escape from such a windshear.
(1) If the intensity is lesser, the performance capability of the simulated airplane in the windshear permits the pilot to maintain a satisfactory flightpath; and
(2) If the intensity is greater, the performance capability of the simulated airplane in the windshear does not permit the pilot to maintain a satisfactory flightpath (crash).

Note: The means used to accomplish the “nonsurvivable” scenario of paragraph 3.b.(2) of this attachment, that involve operational elements of the simulated airplane, must reflect the dispatch limitations of the airplane.

c. Be available for use in the FAA-approved windshear flight training program.

4. DEMONSTRATIONS
a. The sponsor must identify one survivable takeoff windshear training model and one survivable approach windshear training model. The wind components of the survivable models must be presented in graphical format so that all components of the windshear are shown, including initiation point, variance in magnitude, and time or distance correlations. The simulator must be operated at the same gross weight, airplane configuration, and initial airspeed during the takeoff demonstration (through calm air and through the first selected survivable windshear), and at the same gross weight, airplane configuration, and initial airspeed during the approach demonstration (through calm air and through the second selected survivable windshear).
b. In each of these four situations, at an “initiation point” (i.e., where windshear onset is or should be recognized), the recommended procedures for windshear recovery are applied and the results are recorded as specified in paragraph 5 of this attachment.
c. These recordings are made without inserting programmed random turbulence. Turbulence that results from the windshear model is to be expected, and no attempt may be made to neutralize turbulence from this source.
d. The definition of the models and the results of the demonstrations of all four(4) cases described in paragraph 4.a of this attachment, must be made a part of the MQTG.

5. RECORDING PARAMETERS
a. In each of the four MQTG cases, an electronic recording (time history) must be made of the following parameters:
(1) Indicated or calibrated airspeed.
(2) Indicated vertical speed.
(3) Pitch attitude.
(4) Indicated or radio altitude.
(5) Angle of attack.
(6) Elevator position.
(7) Engine data (thrust, N1, or throttle position).
(8) Wind magnitudes (simple windshear model assumed).
b. These recordings must be initiated at least 10 seconds prior to the initiation point, and continued until recovery is complete or ground contact is made.

6. EQUIPMENT INSTALLATION AND OPERATION
All windshear warning, caution, or guidance hardware installed in the simulator must operate as it operates in the airplane. For example, if a rapidly changing wind speed and/or direction would have caused a windshear warning in the airplane, the simulator must respond equivalently without instructor/evaluator intervention.

7. QUALIFICATION TEST GUIDE
a. All QTG material must be forwarded to the NSPM.
b. A simulator windshear evaluation will be scheduled in accordance with normal procedures. Continuing qualification evaluation schedules will be used to the maximum extent possible.
c. During the on-site evaluation, the evaluator will ask the operator to run the performance tests and record the results. The results of these on-site tests will be compared to those results previously approved and placed in the QTG or MQTG, as appropriate.
d. QTGs for new (or MQTGs for upgraded) simulators must contain or reference the information described in paragraphs 2, 3, 4, and 5 of this attachment.

END QPS REQUIREMENTS

BEGIN INFORMATION

8. SUBJECTIVE EVALUATION
The NSPM will fly the simulator in at least two of the available windshear scenarios to subjectively evaluate simulator performance as it encounters the programmed windshear conditions.
a. One scenario will include parameters that enable the pilot to maintain a satisfactory flightpath.
b. One scenario will include parameters that will not enable the pilot to maintain a satisfactory flightpath (crash).
c. Other scenarios may be examined at the NSPM’s discretion.

9. QUALIFICATION BASIS
The addition of windshear programming to a simulator in order to comply with the qualification for required windshear training
ATTACHMENT 6 TO APPENDIX A TO PART 60—
FLIGHT SIMULATION TRAINING DEVICE (FSTD) DIRECTIVE

FSTD Directive 1. Applicable to all Full Flight Simulators (FFS), regardless of the original qualification basis and qualification date (original or upgrade), having Class II or Class III airport models available.

Agency: Federal Aviation Administration (FAA), DOT.

Action: This is a retroactive requirement to have all Class II or Class III airport models meet current requirements.

Summary: Notwithstanding the authorization listed in paragraph 13b in Appendices A and C of this part, this FSTD Directive requires each certificate holder to ensure that by May 30, 2009, except for the airport model(s) used to qualify the simulator at the designated level, each airport model used by the certificate holder’s instructors or evaluators for training, checking, or testing under this chapter in an FFS, meets the definition of a Class II or Class III airport model as defined in 14 CFR part 60. The completion of this requirement will not require a report, and the method used for keeping instructors and evaluators apprised of the airport models that meet Class II or Class III requirements on any given simulator is at the option of the certificate holder whose employees are using the FFS, but the method used must be available for review by the TPAA for that certificate holder.

Dates: FSTD Directive 1 becomes effective on May 30, 2008.

For Further Information Contact: Ed Cook, Senior Advisor to the Division Manager, Air Transportation Division, APS–200, 880 Independence Ave., SW., Washington, DC 20591; telephone: (404) 832–4701; fax: (404) 761–8906.

SPECIFIC REQUIREMENTS:
1. Part 60 requires that each FSTD be:
 a. Sponsored by a person holding or applying for an FAA operating certificate under Part 119, Part 141, or Part 142, or holding or applying for an FAA-approved training program under Part 63, Appendix C, for flight engineers, and
 b. Evaluated and issued an SOQ for a specific FSTD level.
2. FFSs also require the installation of a visual system that is capable of providing an out-of-the-flight-deck view of airport models. However, historically these airport models were not routinely evaluated or required to meet any standardized criteria. This has led to qualified simulators containing airport models being used to meet FAA-approved training, testing, or checking requirements with potentially incorrect or inappropriate visual references.
3. To prevent this from occurring in the future, by May 30, 2009, except for the airport model(s) used to qualify the simulator at the designated level, each certificate holder must assure that each airport model used for training, testing, or checking under this chapter in a qualified FFS meets the definition of a Class II or Class III airport model as defined in Appendix F of this part.
4. These references describe the requirements for visual scene management and the minimum distances from which runway or landing area features must be visible for all levels of simulator. The airport model must provide, for each “in-use runway” or “in-use landing area,” runway or landing area surface lighting, taxiway surface and markings, and taxiway lighting. Additional requirements include correlation of the v airport models with other aspects of the airport environment, correlation of the aircraft and associated equipment, scene quality assessment features, and the control of these models the instructor must be able to exercise.
5. For circling approaches, all requirements of this section apply to the runway used for the initial approach and to the runway of intended landing.
6. The details in these models must be developed using airport pictures, construction drawings and maps, or other similar data, or developed in accordance with published regulatory material. However, this FSTD DIRECTIVE 1 does not require that airport models contain details that are beyond the initially designed capability of the visual system, as currently qualified. The recognized limitations to visual systems are as follows:
 a. Visual systems not required to have runway numbers as a part of the specific runway marking requirements are:
 (1) Link NVS and DNVs.
 (2) Novoview 2500 and 6000.
 (3) FlightSafety VITAL series up to, and including, VITAL III, but not beyond.
 (4) Redifusion SP1, SPIT, and SP2.
 b. Visual systems required to display runway numbers only for LOFT scenes are:
 (1) FlightSafety VITAL IV.
 (2) Redifusion SP3 and SP3T.
 (3) Link-Miles Image II.
Federal Aviation Administration, DOT

Pt. 60, App. B

139

APPENDIX B TO PART 60—QUALIFICATION PERFORMANCE STANDARDS FOR AIRPLANE FLIGHT TRAINING DEVICES

1. INTRODUCTION

This appendix establishes the standards for Airplane FTD evaluation and qualification at Level 4, Level 5, or Level 6. The Flight Standards Service, NSPM, is responsible for the development, application, and implementation of the standards contained within this appendix. The procedures and criteria specified in this appendix will be used by the NSPM, or a person or persons assigned by the NSPM when conducting airplane FTD evaluations.

TABLE OF CONTENTS

1. Introduction
2. Applicability (§§ 60.1 and 60.2).
3. Definitions (§ 60.3).
4. Qualification Performance Standards (§ 60.4).
5. Quality Management System (§ 60.5).
6. Sponsor Qualification Requirements (§ 60.7).
7. Additional Responsibilities of the Sponsor (§ 60.9).
8. FTD Use (§ 60.11).
9. FTD Objective Data Requirements (§ 60.13).
10. Special Equipment and Personnel Requirements for Qualification of the FTD (§ 60.14).
11. Initial (and Upgrade) Qualification Requirements (§ 60.15).
12. Additional Qualifications for Currently Qualified FTD (§ 60.16).
13. Previously Qualified FTDs (§ 60.17).
15. Logging FTD Discrepancies (§ 60.20).
16. Interim Qualification of FTDs for New Airplane Types or Models (§ 60.21).
17. Modifications to FTDs (§ 60.23).
18. Operations with Missing, Malfunctioning, or Inoperative Components (§ 60.25).
19. Automatic Loss of Qualification and Procedures for Restoration of Qualification (§ 60.27).
20. Other Losses of Qualification and Procedures for Restoration of Qualification (§ 60.29).
21. Record Keeping and Reporting (§ 60.31).
22. Applications, Logbooks, Reports, and Records: Fraud, Falsification, or Incorrect Statements (§ 60.33).
23. [Reserved]
24. Levels of FTD.
25. FTD Qualification on the Basis of a Bilateral Aviation Safety Agreement (BASA) (§ 60.37).

Attachment 1 to Appendix B to Part 60—General FTD Requirements.
Attachment 2 to Appendix B to Part 60—Flight Training Device (FTD) Objective Tests.
Attachment 3 to Appendix B to Part 60—Flight Training Device (FTD) Subjective Evaluation.
Attachment 4 to Appendix B to Part 60—Sample Documents.

END INFORMATION
qualified flight simulation devices, AOs, a description of the qualification process, NSP policy, and an NSP “In-Works” section. Also linked from this site are additional information sources, handbook bulletins, frequently asked questions, a listing and text of the Federal Aviation Regulations, Flight Standards Inspector’s handbooks, and other FAA links.

c. The NSP encourages the use of electronic media for all communication, including any record, report, request, test, or statement required by this appendix. The electronic media used must have adequate security provisions and be acceptable to the NSP. The NSP recommends inquiries on system compatibility, and minimum system requirements are also included on the NSP Web site.

d. Related Reading References.
 (1) 14 CFR part 60.
 (2) 14 CFR part 61.
 (3) 14 CFR part 63.
 (4) 14 CFR part 119.
 (5) 14 CFR part 121.
 (6) 14 CFR part 123.
 (7) 14 CFR part 135.
 (8) 14 CFR part 141.
 (9) 14 CFR part 142.
 (10) AC 120–28, as amended, Criteria for Approval of Category III Landing Weather Minima.
 (11) AC 120–29, as amended, Criteria for Approving Category I and Category II Landing Minima for part 121 operators.
 (14) AC 120–45, as amended, Airplane Flight Training Device Qualification.

2. APPLICABILITY (§§ 60.1 AND 60.2)

BEGIN INFORMATION
No additional regulatory or informational material applies to § 60.1, Applicability, or to § 60.2, Applicability of sponsor rules to person who are not sponsors and who are engaged in certain unauthorized activities.

3. DEFINITIONS (§ 60.3)

See Appendix F of this part for a list of definitions and abbreviations from part 1, part 60, and the QPS appendices of part 60.

4. QUALIFICATION PERFORMANCE STANDARDS (§ 60.4)

No additional regulatory or informational material applies to § 60.4, Qualification Performance Standards.

5. QUALITY MANAGEMENT SYSTEM (§ 60.5)

Additional regulatory material and informational material regarding Quality Management Systems for FTDs may be found in Appendix E of this part.

6. SPONSOR QUALIFICATION REQUIREMENTS. (§ 60.7)
Federal Aviation Administration, DOT

Pt. 60, App. B

BEGIN INFORMATION

a. The intent of the language in §60.7(b) is to have a specific FTD, identified by the sponsor, used at least once in an FAA-approved flight training program for the airplane simulated during the 12-month period described. The identification of the specific FTD may change from one 12-month period to the next 12-month period as long as that sponsor sponsors and uses at least one FTD at least once during the prescribed period. There is no minimum number of hours or minimum FTD periods required.

b. The following examples describe acceptable operational practices:

(1) Example One.
 (a) A sponsor is sponsoring a single, specific FTD for its own use, in its own facility or elsewhere—this single FTD forms the basis for the sponsorship. The sponsor uses that FTD at least once in each 12-month period in that sponsor’s FAA-approved flight training program for the airplane simulated.
 This 12-month period is established in the same manner as in example one.

 (ii) A device qualified on or after May 30, 2008, will be required to undergo an initial or upgrade evaluation in accordance with §60.15 if the initial or upgrade evaluation is complete, the first continuing qualification evaluation will be conducted within 6 months. The 12-month continuing qualification evaluation cycle begins on that date and continues for each subsequent 12-month period.

 (ii) A device qualified on or after May 30, 2008, will be required to undergo an initial or upgrade evaluation in accordance with §60.15 if the initial or upgrade evaluation is complete, the first continuing qualification evaluation will be conducted within 6 months. The 12-month continuing qualification evaluation cycle begins on that date and continues for each subsequent 12-month period.

 (b) There is no minimum number of hours of FTD use required.

 (c) The identification of the specific FTD may change from one 12-month period to the next 12-month period as long as that sponsor sponsors and uses at least one FTD at least once during the prescribed period.

(2) Example Two.
 (a) A sponsor sponsors an additional number of FTDs, in its facility or elsewhere. Each additionally sponsored FTD must be—
 (i) Used by the sponsor in the sponsor’s FAA-approved flight training program for the airplane simulated (as described in §60.7(d)(1)); or
 (ii) Used by another FAA certificate holder in that other certificate holder’s FAA-approved flight training program for the airplane simulated (as described in §60.7(d)(1)).

 This 12-month period is established in the same manner as in example one; or

 (iii) Provided a statement each year from a qualified pilot, (after having flown the airplane, not the subject FTD or another FTD, during the preceding 12-month period) stating that the subject FTD’s performance and handling qualities represent the airplane (as described in §60.7(d)(2)). This statement is provided at least once in each 12-month period established in the same manner as in example one.

 (b) There is no minimum number of hours of FTD use required.

(3) Example Three.
 (a) A sponsor in New York (in this example, a Part 142 certificate holder) establishes “satellite” training centers in Chicago and Moscow.

 (b) The satellite function means that the Chicago and Moscow centers must operate under the New York center’s certificate (in accordance with all of the New York center’s practices, procedures, and policies; e.g., instructor and/or technician training/checking requirements, record keeping, QMS program).

 (c) All of the FTDs in the Chicago and Moscow centers could be dry-leased (i.e., the certificate holder does not have and use FAA-approved flight training programs for the FTDs in the Chicago and Moscow centers) because—
 (i) Each FTD in the Chicago center and each FTD in the Moscow center is used at least once each 12-month period by another FAA certificate holder in that other certificate holder’s FAA-approved flight training program for the airplane (as described in §60.7(d)(1)); or
 (ii) A statement is obtained from a qualified pilot (having flown the airplane, not the subject FTD or another FTD during the preceding 12-month period) stating that the performance and handling qualities of each FTD in the Chicago and Moscow centers represent the airplane (as described in §60.7(d)(2)).

END INFORMATION

7. ADDITIONAL RESPONSIBILITIES OF THE SPONSOR (§60.9)

BEGIN INFORMATION

The phrase “as soon as practicable” in §60.9(a) means without unnecessarily disrupting or delaying beyond a reasonable time the training, evaluation, or experience being conducted in the FTD.

8. FTD USE (§60.11)

No additional regulatory or informational material applies to §60.11, FTD use.

END INFORMATION

9. FTD Objective Data Requirements (§60.13)
BEGIN QPS REQUIREMENTS

a. Flight test data used to validate FTD performance and handling qualities must have been gathered in accordance with a flight test program containing the following:
 (1) A flight test plan consisting of:
 (a) The maneuvers and procedures required for aircraft certification and simulation programming and validation.
 (b) For each maneuver or procedure—
 (i) The procedures and control input the flight test pilot and/or engineer used.
 (ii) The atmospheric and environmental conditions.
 (iii) The initial flight conditions.
 (iv) The airplane configuration, including weight and center of gravity.
 (v) The data to be gathered.
 (vi) All other information necessary to recreate the flight test conditions in the FTD.
 (2) Appropriately qualified flight test personnel.
 (3) An understanding of the accuracy of the data to be gathered using appropriate alternative data sources, procedures, and instrumentation that is traceable to a recognized standard as described in Attachment 2, Table B2F of this appendix.
 (4) Appropriate and sufficient data acquisition equipment or system(s), including appropriate data reduction and analysis methods and techniques, acceptable to the FAA’s Aircraft Certification Service.
 b. The data, regardless of source, must be presented:
 (1) In a format that supports the FTD validation process;
 (2) In a manner that is clearly readable and annotated correctly and completely;
 (3) With resolution sufficient to determine compliance with the tolerances set forth in Attachment 2, Table B2A, Appendix B;
 (4) With any necessary guidance information provided; and
 (5) Without alteration, adjustments, or bias. Data may be corrected to address known data calibration errors provided that an explanation of the methods used to correct the errors appears in the QTG. The corrected data may be re-scaled, digitized, or otherwise manipulated to fit the desired presentation.
 c. After completion of any additional flight test, a flight test report must be submitted in support of the validation data. The report must contain sufficient data and rationale to support qualification of the FTD at the level requested.
 d. As required by §60.13(f), the sponsor must notify the NSPM when it becomes aware that an addition to or a revision of the flight related data or airplane systems related data is available if this data is used to program and operate a qualified FTD. The data referred to in this sub-section are those data that are used to validate the performance, handling qualities, or other characteristics of the aircraft, including data related to any relevant changes occurring after the type certification is issued. The sponsor must—
 (1) Within 10 calendar days, notify the NSPM of the existence of this data; and
 (2) Within 45 calendar days, notify the NSPM of—
 (i) The schedule to incorporate this data into the FTD; or
 (ii) The reason for not incorporating this data into the FTD.
 e. In those cases where the objective test results authorize a “snapshot test” or a “series of snapshot test results” in lieu of a time-history result, the sponsor or other data provider must ensure that a steady state condition exists at the instant of time captured by the “snapshot.” The steady state condition must exist from 4 seconds prior to, through 1 second following, the instant of time captured by the snapshot.

END QPS REQUIREMENTS

BEGIN INFORMATION

f. The FTD sponsor is encouraged to maintain a liaison with the manufacturer of the aircraft being simulated (or with the holder of the aircraft type certificate for the aircraft being simulated if the manufacturer is no longer in business), and if appropriate, with the person having supplied the aircraft data package for the FTD in order to facilitate the notification described in this paragraph.

g. It is the intent of the NSPM that for new aircraft entering service, at a point well in advance of preparation of the QTG, the sponsor should submit to the NSPM for approval, a descriptive document (see Appendix A, Table A2C, Sample Validation Data Roadmap for Airplanes) containing the plan for acquiring the validation data, including data sources. This document should clearly identify sources of data for all required tests, a description of the validity of these data for a specific engine type and thrust rating configuration, and the revision levels of all avionics affecting the performance or flying qualities of the aircraft. Additionally, this document should provide other information such as the rationale or explanation for cases where data or data parameters are missing, instances where engineering simulation data are used, or where flight test methods require further explanations. It should also provide a brief narrative describing the cause and effect of any deviation from data requirements. The aircraft manufacturer may provide this document.

h. There is no requirement for any flight test data supplier to submit a flight test
1. The NSPM will consider, on a case-by-case basis, whether to approve supplemental validation data derived from flight data recording systems such as a Quick Access Recorder or Flight Data Recorder.

END INFORMATION

10. SPECIAL EQUIPMENT AND PERSONNEL REQUIREMENTS FOR QUALIFICATION OF THE FTD (§60.14).

BEGIN INFORMATION

a. In the event that the NSPM determines that special equipment or specifically qualified persons will be required to conduct an evaluation, the NSPM will make every effort to notify the sponsor at least one (1) week, but in no case less than 72 hours, in advance of the evaluation. Examples of special equipment include flight control measurement devices, accelerometers, or oscilloscopes. Examples of specially qualified personnel include individuals specifically qualified to install or use any special equipment when its use is required.

b. Examples of a special evaluation include an evaluation conducted after: An FTD is moved; at the request of the TPAA; or as a result of comments received from users of the FTD that raise questions about the continued qualification or use of the FTD.

END INFORMATION

11. INITIAL (AND UPGRADE) QUALIFICATION REQUIREMENTS (§60.15).

BEGIN QPS REQUIREMENT

a. In order to be qualified at a particular qualification level, the FTD must:
 (1) Meet the general requirements listed in Attachment 1 of this appendix;
 (2) Meet the objective testing requirements listed in Attachment 2 of this appendix (Level 4 FTDs do not require objective testing);
 and
 (3) Satisfactorily accomplish the subjective tests listed in Attachment 3 of this appendix.

b. The request described in §60.15(a) must include all of the following:
 (1) A statement that the FTD meets all of the applicable provisions of this part and all applicable provisions of the QPS;
 (2) A confirmation that the sponsor will forward to the NSPM the statement described in §60.15(b) in such time as to be received no later than 5 business days prior to the scheduled evaluation and may be forwarded to the NSPM via traditional or electronic means;
 (3) Except for a Level 4 FTD, a QTG acceptable to the NSPM, that includes all of the following:
 (a) Objective data obtained from aircraft testing or another approved source;
 (b) Correlating objective test results obtained from the performance of the FTD as prescribed in the appropriate QPS;
 (c) The result of FTD subjective tests prescribed in the appropriate QPS;
 (d) A description of the equipment necessary to perform the evaluation for initial qualification and the continuing qualification evaluations.
 e. The QTG described in paragraph a(3) of this section, must provide the documented proof of compliance with the FTD objective tests in Attachment 2, Table B2A of this appendix.
 d. The QTG is prepared and submitted by the sponsor, or the sponsor’s agent on behalf of the sponsor, to the NSPM for review and approval, and must include, for each objective test:
 (1) Parameters, tolerances, and flight conditions;
 (2) Pertinent and complete instructions for conducting automatic and manual tests;
 (3) A means of comparing the FTD test results to the objective data;
 (4) Any other information as necessary to assist in the evaluation of the test results;
 (5) Other information appropriate to the qualification level of the FTD.
 e. The QTG described in paragraphs (a)(3) and (b) of this section, must include the following:
 (1) A QTG cover page with sponsor and FAA approval signature blocks (see Attachment 4, Figure B4C, of this appendix, for a sample QTG cover page);
 (2) A continuing qualification evaluation requirements page. This page will be used by the NSPM to establish and record the frequency with which continuing qualification evaluations must be conducted and any subsequent changes that may be determined by
the NSPM in accordance with §60.19. See Attachment 4, Figure B4G, of this appendix, for a sample Continuing Qualification Evaluation Requirements page.

(3) An FTD information page that provides the information listed in this paragraph, if applicable (see Attachment 4, Figure B4B, of this appendix, for a sample FTD information page). For convertible FTDs, the sponsor must submit a separate page for each configuration of the FTD.

(a) The sponsor’s FTD identification number or code.

(b) The airplane model and series being simulated.

(c) The aerodynamic data revision number or reference.

(d) The source of the basic aerodynamic model and the aerodynamic coefficient data used to modify the basic model.

(e) The engine model(s) and its data revision number or reference.

(f) The flight control data revision number or reference.

(g) The flight management system identification and revision level.

(h) The FTD model and manufacturer.

(i) The date of FTD manufacture.

(j) The FTD computer identification.

(k) The visual system model and manufacturer, including display type.

(l) The motion system type and manufacturer, including degrees of freedom.

(4) A Table of Contents.

(5) A log of revisions and a list of effective pages.

(6) List of all relevant data references.

(7) A glossary of terms and symbols used (including sign conventions and units).

(8) Statements of compliance and capability (SOCs) with certain requirements.

(9) Recording procedures or equipment required to accomplish the objective tests.

(10) The following information for each objective test designated in Attachment 2 of this appendix, as applicable to the qualification level sought:

(a) Name of the test.

(b) Objective of the test.

(c) Initial conditions.

(d) Manual test procedures.

(e) Automatic test procedures (if applicable).

(f) Method for evaluating FTD objective test results.

(g) List of all relevant parameters driven or constrained during the automatic test(s).

(h) List of all relevant parameters driven or constrained during the manual test(s).

(i) Tolerances for relevant parameters.

(j) Source of Validation Data (document and page number).

(k) Copy of the Validation Data (if located in a separate binder, a cross reference for the identification and page number for pertinent data location must be provided).

(1) FTD Objective Test Results as obtained by the sponsor. Each test result must reflect the date completed and must be clearly labeled as a product of the device being tested.

(f) A convertible FTD is addressed as a separate FTD for each model and series airplane to which it will be converted and for the FAA qualification level sought. The NSPM will conduct an evaluation for each configuration. If a sponsor seeks qualification for two or more models of an airplane type using a convertible FTD, the sponsor must provide a QTG for each airplane model, or a QTG for the first airplane model and a supplement to that QTG for each additional airplane model. The NSPM will conduct evaluations for each airplane model.

(g) The form and manner of presentation of objective test results in the QTG must include the following:

(1) The sponsor’s FTD test results must be recorded in a manner acceptable to the NSPM, that allows easy comparison of the FTD test results to the validation data (e.g., use of a multi-channel recorder, line printer, cross plotting, overlays, transparencies).

(2) FTD results must be labeled using terminology common to airplane parameters as opposed to computer software identifications.

(3) Validation data documents included in a QTG may be photographically reduced only if such reduction will not alter the graphic scaling or cause difficulties in scale interpretation or resolution.

(4) Scaling on graphical presentations must provide the resolution necessary to evaluate the parameters shown in Attachment 2, Table B2A of this appendix.

(5) Tests involving time histories, data sheets (or transparencies thereof) and FTD test results must be clearly marked with appropriate reference points to ensure an accurate comparison between FTD and airplane with respect to time. Time histories recorded via a line printer are to be clearly identified for cross-plotting on the airplane data. Overplots may not obscure the reference data.

(h) The sponsor may elect to complete the QTG objective and subjective tests at the manufacturer’s facility or at the sponsor’s training facility. If the tests are conducted at the manufacturer’s facility, the sponsor must repeat at least one-third of the tests at the sponsor’s training facility in order to substantiate FTD performance. The QTG must be clearly annotated to indicate when and where each test was accomplished. Tests conducted at the manufacturer’s facility and at the sponsor’s training facility must be conducted after the FTD is assembled with systems and sub-systems functional and operating in an interactive manner. The test results must be submitted to the NSPM.

(i) The sponsor must maintain a copy of the MQTG at the FTD location.
j. All FTDs for which the initial qualification is conducted after May 30, 2014, must have an electronic MQTG (eMQTG) including all objective data obtained from airplane testing, or another approved source (reformatted or digitized), together with correlating objective test results obtained from the performance of the FTD (reformatted or digitized) as prescribed in this appendix. The eMQTG must also contain the general FTD performance or demonstration results (reformatted or digitized) prescribed in this appendix, and a description of the equipment necessary to perform the initial qualification evaluation and the continuing qualification evaluations. The eMQTG must include the original digitized data used to validate FTD performance and handling qualities in either the original digitized format from the data supplier or an electronic scan of the original time-history plots that were provided by the data supplier. A copy of the eMQTG must be provided to the NSPM.

k. All other FTDs (not covered in subparagraph “i”) must have an electronic copy of the MQTG by and after May 30, 2014. An electronic copy of the copy of the MQTG must be provided to the NSPM. This may be provided by an electronic scan presented in a Portable Document File (PDF), or similar format acceptable to the NSPM.

l. During the initial (or upgrade) qualification evaluation conducted by the NSPM, the sponsor must also provide a person knowledgeable about the operation of the aircraft and the operation of the FTD.

END QPS REQUIREMENTS

BEGIN INFORMATION

m. Only those FTDs that are sponsored by a certificate holder as defined in Appendix F will be evaluated by the NSPM. However, other FTD evaluations may be conducted on a case-by-case basis as the Administrator deems appropriate, but only in accordance with applicable agreements.

n. The NSPM will conduct an evaluation for each configuration, and each FTD must be evaluated as completely as possible. To ensure a thorough and uniform evaluation, each FTD is subjected to the general FTD requirements in Attachment 1 of this appendix, the objective tests listed in Attachment 2 of this appendix, and the subjective tests listed in Attachment 3 of this appendix. The evaluations described herein will include, but not necessarily be limited to the following:

(1) Airplane responses, including longitudinal and lateral-directional control responses (see Attachment 2 of this appendix);

(2) Performance in authorized portions of the simulated airplane’s operating envelope, to include tasks evaluated by the NSPM in the areas of surface operations, takeoff, climb, cruise, descent, approach and landing, as well as abnormal and emergency operations (see Attachment 2 of this appendix);

(3) Control checks (see Attachment 1 and Attachment 2 of this appendix);

(4) Flight deck configuration (see Attachment 1 of this appendix);

(5) Pilot, flight engineer, and instructor station functions checks (see Attachment 1 and Attachment 3 of this appendix);

(6) Airplane systems and sub-systems (as appropriate) as compared to the airplane simulated (see Attachment 1 and Attachment 3 of this appendix);

(7) FTD systems and sub-systems, including force cueing (motion), visual, and aural (sound) systems, as appropriate (see Attachment 1 and Attachment 2 of this appendix); and

(8) Certain additional requirements, depending upon the qualification level sought, including equipment or circumstances that may become hazardous to the occupants. The sponsor may be subject to Occupational Safety and Health Administration requirements.

o. The NSPM administers the objective and subjective tests, which includes an examination of functions. The tests include a qualitative assessment of the FTD by an NSP pilot. The NSP evaluation team leader may assign other qualified personnel to assist in accomplishing the functions examination and/or the objective and subjective tests performed during an evaluation when required.

(1) Objective tests provide a basis for measuring and evaluating FTD performance and determining compliance with the requirements of this part.

(2) Subjective tests provide a basis for:

(a) Evaluating the capability of the FTD to perform over a typical utilization period;

(b) Determining that the FTD satisfactorily simulates each required task;

(c) Verifying correct operation of the FTD controls, instruments, and systems; and

(d) Demonstrating compliance with the requirements of this part.

p. The tolerances for the test parameters listed in Attachment 2 of this appendix reflect the range of tolerances acceptable to the NSPM for FTD validation and are not to be confused with design tolerances specified for FTD manufacture. In making decisions regarding tests and test results, the NSPM relies on the use of operational and engineering judgment in the application of data (including consideration of the way in which the flight test was flown and way the data was gathered and applied), data presentations, and the applicable tolerances for each test.

q. In addition to the scheduled continuing qualification evaluation, each FTD is subject to evaluations conducted by the NSPM at any time without prior notification to the
Pt. 60, App. B

14 CFR Ch. I (1–1–12 Edition)

s. FTDs qualified prior to May 30, 2008, and replacement FTD systems, are not required to meet the general FTD requirements, the objective test requirements, and the subjective test requirements of Attachments 1, 2, and 3 of this appendix as long as the FTD continues to meet the test requirements contained in the MQTG developed under the original qualification basis.

c. [Reserved]

d. FTDs qualified prior to May 30, 2008, may be updated. If an evaluation is deemed appropriate or necessary by the NSPM after such an update, the evaluation will not require an evaluation to standards beyond those against which the FTD was originally qualified.

w. Examples of the exclusions for which the FTD might not have been subjectively tested by the sponsor or the NSPM and for which qualification might not be sought or granted, as described in §60.16(e)(6), include engine out maneuvers or circling approaches.

12. ADDITIONAL QUALIFICATIONS FOR CURRENTLY QUALIFIED FTDs (§60.16).

No additional regulatory or informational material applies to §60.16. Additional Qualifications for a Currently Qualified FTD.

END INFORMATION

13. PREVIOUSLY QUALIFIED FTDs (§60.17).

BEGIN QPS REQUIREMENTS

a. In instances where a sponsor plans to remove an FTD from active status for a period of less than two years, the following procedures apply:

(1) The NSPM must be notified in writing and the notification must include an estimate of the period that the FTD will be inactive;

(2) Continuing Qualification evaluations will not be scheduled during the inactive period;

(3) The NSPM will remove the FTD from the list of qualified FTDs on a mutually established date not later than the date on which the first missed continuing qualification evaluation would have been scheduled;

(4) Before the FTD is restored to qualified status, it must be evaluated by the NSPM. The evaluation content and the time required to accomplish the evaluation is based on the number of continuing qualification evaluations and sponsor-conducted quarterly inspections missed during the period of inactivity.

(5) The sponsor must notify the NSPM of any changes to the original scheduled time out of service;

b. FTDs qualified prior to May 30, 2008, and replacement FTD systems, are not required to meet the general FTD requirements, the objective test requirements, and the subjective test requirements of Attachments 1, 2, and 3 of this appendix as long as the FTD continues to meet the test requirements contained in the MQTG developed under the original qualification basis.

c. [Reserved]

d. FTDs qualified prior to May 30, 2008, may be updated. If an evaluation is deemed appropriate or necessary by the NSPM after such an update, the evaluation will not require an evaluation to standards beyond those against which the FTD was originally qualified.
14. INSPECTION, CONTINUING QUALIFICATION, EVALUATION, AND MAINTENANCE REQUIREMENTS (§ 60.19).

END QPS REQUIREMENTS

BEGIN INFORMATION

e. Other certificate holders or persons desiring to use an FTD may contract with FTD sponsors to use FTDs previously qualified at a particular level for an airplane type and approved for use within an FAA-approved flight training program. Such FTDs are not required to undergo an additional qualification process, except as described in §60.16.

f. Each FTD user must obtain approval from the appropriate TPAA to use any FTD in an FAA-approved flight training program.

g. The intent of the requirement listed in §60.17(b), for each FTD to have an SOQ within 6 years, is to have the availability of that statement (including the configuration list and the limitations to authorizations) to provide a complete picture of the FTD inventory regulated by the FAA. The issuance of the statement will not require any additional evaluation or require any adjustment to the evaluation basis for the FTD.

h. Downgrading of an FTD is a permanent change in qualification level and will necessitate the issuance of a revised SOQ to reflect the revised qualification level, as appropriate. If a temporary restriction is placed on an FTD because of a missing, malfunctioning, or inoperative component or ongoing repairs, the restriction is not a permanent change in qualification level. Instead, the restriction is temporary and is removed when the reason for the restriction has been resolved.

i. The NSPM will determine the evaluation criteria for an FTD that has been removed from active status for a prolonged period. The criteria will be based on the number of continuing qualification evaluations and quarterly inspections missed during the period of inactivity. For example, if the FTD was out of service for a 1 year period, it would be necessary to complete the entire QTG, since all of the quarterly evaluations would have been missed. The NSPM will also consider how the FTD was stored, whether parts were removed from the FTD and whether the FTD was disassembled.

j. The FTD will normally be requalified using the FAA-approved MQTG and the criteria that was in effect prior to its removal from qualification. However, inactive periods of 2 years or more will require requalification under the standards in effect and current at the time of requalification.

END INFORMATION
be performed either automatically or manually and should be able to be conducted within approximately one-third (1/3) of the allotted FTD time.

(3) A subjective evaluation of the FTD to perform a representative sampling of the tasks set out in attachment 3 of this appendix. This portion of the evaluation should take approximately two-thirds (2/3) of the allotted FTD time.

(4) An examination of the functions of the FTD may include the motion system, visual system, sound system as applicable, instructor operating station, and the normal functions and simulated malfunctions of the airplane systems. This examination is normally accomplished simultaneously with the subjective evaluation requirements.

h. The requirement established in §60.19(b)(4) regarding the frequency of NSPM-conducted continuing qualification evaluations for each FTD is typically 12 months. However, the establishment and satisfactory implementation of an approved QMS for a sponsor will provide a basis for adjusting the frequency of evaluations to exceed 12-month intervals.

15. LOGGING FTD DISCREPANCIES (§ 60.20)

No additional regulatory or informational material applies to §60.20, Logging FTD Discrepancies.

16. INTERIM QUALIFICATION OF FTDS FOR NEW AIRPLANE TYPES OR MODELS (§ 60.21)

No additional regulatory or informational material applies to §60.21, Interim Qualification of FTDS for New Airplane Types or Models.

END INFORMATION

17. MODIFICATIONS TO FTDS (§ 60.23)

BEGIN QPS REQUIREMENTS

a. The notification described in §60.23(c)(2) must include a complete description of the planned modification, with a description of the operational and engineering effect the proposed modification will have on the operation of the FTD and the results that are expected with the modification incorporated.

b. Prior to using the modified FTD:

(1) All the applicable objective tests completed with the modification incorporated, including any necessary updates to the MQTG (e.g., accomplishment of FSTD Directives) must be acceptable to the NSPM, and

(2) The sponsor must provide the NSPM with a statement signed by the MR that the factors listed in §60.15(b) are addressed by the appropriate personnel as described in that section.

END QPS REQUIREMENTS

BEGIN INFORMATION

c. FSTD Directives are considered modification of an FTD. See Attachment 4 of this appendix for a sample index of effective FSTD Directives.

END INFORMATION

18. OPERATION WITH MISSING, MALFUNCTIONING, OR INOPERATIVE COMPONENTS (§60.25)

a. The sponsor’s responsibility with respect to §60.25(a) is satisfied when the sponsor fairly and accurately advises the user of the current status of an FTD, including any missing, malfunctioning, or inoperative (MMI) component(s).

b. It is the responsibility of the instructor, check airman, or representative of the administrator conducting training, testing, or checking to exercise reasonable and prudent judgment to determine if any MMI component is necessary for the satisfactory completion of a specific maneuver, procedure, or task.

c. If the 29th or 30th day of the 30-day period described in 60.25(b) is on a Saturday, a Sunday, or a holiday, the FAA will extend the deadline until the next business day.

d. In accordance with the authorization described in §60.25(b), the sponsor may develop a discrepancy prioritizing system to accomplish repairs based on the level of impact on the capability of the FTD. Repairs having a larger impact on the FTD’s ability to provide the required training, evaluation, or flight experience will have a higher priority for repair or replacement.

END INFORMATION

19. AUTOMATIC LOSS OF QUALIFICATION AND PROCEDURES FOR RESTORATION OF QUALIFICATION (§60.27)

BEGIN INFORMATION

If the sponsor provides a plan for how the FTD will be maintained during its out-of-service period (e.g., periodic exercise of mechanical, hydraulic, and electrical systems; routine replacement of hydraulic fluid; control of the environmental factors in which the FTD is to be maintained) there is a greater likelihood that the NSPM will be able to determine the amount of testing that required for requalification.
20. OTHER LOSSES OF QUALIFICATION AND PROCEDURES FOR RESTORATION OF QUALIFICATION (§ 60.29)

BEGIN INFORMATION

If the sponsor provides a plan for how the FTD will be maintained during its out-of-service period (e.g., periodic exercise of mechanical, hydraulic, and electrical systems; routine replacement of hydraulic fluid; control of the environmental factors in which the FTD is to be maintained) there is a greater likelihood that the NSPM will be able to determine the amount of testing that required for requalification.

END INFORMATION

21. RECORDKEEPING AND REPORTING (§ 60.31)

BEGIN QPS REQUIREMENTS

a. FTD modifications can include hardware or software changes. For FTD modifications involving software programming changes, the record required by §60.31(a)(2) must consist of the name of the aircraft system software, aerodynamic model, or engine model change, the date of the change, a summary of the change, and the reason for the change.

b. If a coded form for record keeping is used, it must provide for the preservation and retrieval of information with appropriate security or controls to prevent the inappropriate alteration of such records after the fact.

END QPS REQUIREMENTS

22. APPLICATIONS, LOGBOOKS, REPORTS, AND RECORDS: FRAUD, FALSIFICATION, OR INCORRECT STATEMENTS (§ 60.33)

BEGIN INFORMATION

No additional regulatory or informational material applies to §60.33. Applications, Logbooks, Reports, and Records; Fraud, Falsification, or Incorrect Statements.

END INFORMATION

23. [RESERVED]

24. LEVELS OF FTD.

BEGIN INFORMATION

a. The following is a general description of each level of FTD. Detailed standards and tests for the various levels of FTDs are fully defined in Attachments 1 through 3 of this appendix.

(1) Level 4. A device that may have an open airplane-specific flight deck area, or an enclosed airplane-specific flight deck and at least one operating system. Air/ground logic is required (no aerodynamic programming required). All displays are flat/LCD panel representations or actual representations of displays in the aircraft. All controls, switches, and knobs may be touch sensitive activation (not capable of manual manipulation of the flight controls) or may physically replicate the aircraft in control operation.

(2) Level 5. A device that may have an open airplane-specific flight deck area, or an enclosed airplane-specific flight deck; generic aerodynamic programming; at least one operating system; and control loading that is representative of the simulated airplane only at an approach speed and configuration. All displays may be flat/LCD panel representations or actual representations of displays in the aircraft. Primary and secondary flight controls (e.g., rudder, aileron, elevator, flaps, spoilers/speed brakes, engine controls, landing gear, nosewheel steering, trim, brakes) must be physical controls. All other controls, switches, and knobs may be touch sensitive activation.

(3) Level 6. A device that has an enclosed airplane-specific flight deck; airplane-specific aerodynamic programming; all applicable airplane systems operating; control loading that is representative of the simulated airplane throughout its ground and flight envelope; and significant sound representation. All displays may be flat/LCD panel representations or actual representations of displays in the aircraft, but all controls, switches, and knobs must physically replicate the aircraft in control operation.

END INFORMATION

25. FTD QUALIFICATION ON THE BASIS OF A BILATERAL AVIATION SAFETY AGREEMENT (BASA) (§ 60.37)

BEGIN INFORMATION

No additional regulatory or informational material applies to §60.37, FTD Qualification on the Basis of a Bilateral Aviation Safety Agreement (BASA).

END INFORMATION
ATTACHMENT 1 TO APPENDIX B TO PART 60—
GENERAL FTD REQUIREMENTS

BEGIN QPS REQUIREMENTS

1. REQUIREMENTS

a. Certain requirements included in this appendix must be supported with an SOC as defined in Appendix F, which may include objective and subjective tests. The requirements for SOCs are indicated in the “General FTD Requirements” column in Table B1A of this appendix.

b. Table B1A describes the requirements for the indicated level of FTD. Many devices include operational systems or functions that exceed the requirements outlined in this section. In any event, all systems will be tested and evaluated in accordance with this appendix to ensure proper operation.

END QPS REQUIREMENTS

BEGIN INFORMATION

2. DISCUSSION

a. This attachment describes the general requirements for qualifying Level 4 through Level 6 FTDs. The sponsor should also consult the objectives tests in Attachment 2 of this appendix and the examination of functions and subjective tests listed in Attachment 3 of this appendix to determine the complete requirements for a specific level FTD.

b. The material contained in this attachment is divided into the following categories:
 (1) General Flight deck Configuration.
 (2) Programming.
 (3) Equipment Operation.
 (4) Equipment and facilities for instructor/evaluator functions.
 (5) Motion System.
 (6) Visual System.
 (7) Sound System.

c. Table B1A provides the standards for the General FTD Requirements.

d. Table B1B provides the tasks that the sponsor will examine to determine whether the FTD satisfactorily meets the requirements for flight crew training, testing, and experience, and provides the tasks for which the simulator may be qualified.

e. Table B1C provides the functions that an instructor/check airman must be able to control in the simulator.

f. It is not required that all of the tasks that appear on the List of Qualified Tasks (part of the SOQ) be accomplished during the initial or continuing qualification evaluation.

END INFORMATION

TABLE B1A—MINIMUM FTD REQUIREMENTS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General FTD requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. General Flight Deck Configuration</td>
<td>4 5 6</td>
<td></td>
</tr>
<tr>
<td>1.a.</td>
<td>The FTD must have a flight deck that is a replica of the airplane simulated with controls, equipment, observable flight deck indicators, circuit breakers, and bulkheads properly located, functionally accurate and replicating the airplane. The direction of movement of controls and switches must be identical to that in the airplane. Pilot seat(s) must afford the capability for the occupant to be able to achieve the design “eye position.” Equipment for the operation of the flight deck windows must be included, but the actual windows need not be operable. Fire axes, extinguishers, and spare light bulbs must be available in the flight simulator, but may be relocated to a suitable location as near as practical to the original position. Fire axes, landing gear pins, and any similar purpose instruments need only be represented in silhouette.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
TABLE B1A—MINIMUM FTD REQUIREMENTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General FTD requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 5 6</td>
<td></td>
</tr>
<tr>
<td>1.b.</td>
<td>The FTD must have equipment (e.g., instruments, panels, systems, circuit breakers, and controls) simulated sufficiently for the authorized training/checking events to be accomplished. The installed equipment must be located in a spatially correct location and may be in a flight deck or an open flight deck area. Additional equipment required for the authorized training/checking events must be available in the FTD, but may be located in a suitable location as near as practical to the spatially correct position. Actuation of equipment must replicate the appropriate function in the airplane. Fire axes, landing gear pins, and any similar purpose instruments need only be represented in silhouette.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>2. Programming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.</td>
<td>The FTD must provide the proper effect of aerodynamic changes for the combinations of drag and thrust normally encountered in flight. This must include the effect of change in airplane attitude, thrust, drag, altitude, temperature, and configuration. Level 6 additionally requires the effects of changes in gross weight and center of gravity. Level 5 requires only generic aerodynamic programming. An SOC is required.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>2.b.</td>
<td>The FTD must have the computer (analog or digital) capability (i.e., capacity, accuracy, resolution, and dynamic response) needed to meet the qualification level sought. An SOC is required.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.c.</td>
<td>Relative responses of the flight deck instruments must be measured by latency tests, or transport delay tests, and may not exceed 300 milliseconds. The instruments must respond to abrupt input at the pilot’s position within the allotted time, but not before the time when the airplane responds under the same conditions. • Latency: The FTD instrument and, if applicable, the motion system and the visual system response must not be prior to that time when the airplane responds and may respond up to 300 milliseconds after that time under the same conditions. • Transport Delay: As an alternative to the Latency requirement, a transport delay objective test may be used to demonstrate that the FTD system does not exceed the specified limit. The sponsor must measure all the delay encountered by a step signal migrating from the pilot’s control through all the simulation software modules in the correct order, using a handshaking protocol, finally through the normal output interfaces to the instrument display and, if applicable, the motion system, and the visual system.</td>
<td>X X</td>
<td>The intent is to verify that the FTD provides instrument cues that are, within the stated time delays, like the airplane responses. For airplane response, acceleration in the appropriate, corresponding rotational axis is preferred. Additional information regarding Latency and Transport Delay testing may be found in Appendix A, Attachment 2, paragraph 15.</td>
</tr>
<tr>
<td>3. Equipment Operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>General FTD requirements</td>
<td>FTD level</td>
<td>Information</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>3.a.</td>
<td>All relevant instrument indications involved in the simulation of the airplane must automatically respond to control movement or external disturbances to the simulated airplane, e.g., turbulence or winds.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>3.b.</td>
<td>Navigation equipment must be installed and operate within the tolerances applicable for the airplane.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level 6 must also include communication equipment (inter-phone and air/ground) like that in the airplane and, if appropriate to the operation being conducted, an oxygen mask microphone system. Level 5 need have only that navigation equipment necessary to fly an instrument approach.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.c.</td>
<td>Installed systems must simulate the applicable airplane system operation, both on the ground and in flight. Installed systems must be operative to the extent that applicable normal, abnormal, and emergency operating procedures included in the sponsor’s training programs can be accomplished. Level 6 must simulate all applicable airplane flight, navigation, and systems operation. Level 5 must have at least functional flight and navigational controls, displays, and instrumentation. Level 4 must have at least one airplane system installed and functional.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>3.d.</td>
<td>The lighting environment for panels and instruments must be sufficient for the operation being conducted.</td>
<td>X X X</td>
<td>Back-lighted panels and instruments may be installed but are not required.</td>
</tr>
<tr>
<td>3.e.</td>
<td>The FTD must provide control forces and control travel that correspond to the airplane being simulated. Control forces must react in the same manner as in the airplane under the same flight conditions.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3.f.</td>
<td>The FTD must provide control forces and control travel of sufficient precision to manually fly an instrument approach.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Instructor or Evaluator Facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.a.</td>
<td>In addition to the flight crewmember stations, suitable seating arrangements for an instructor/check airman and FAA Inspector must be available. These seats must provide adequate view of crewmember’s panel(s).</td>
<td>X X X</td>
<td>These seats need not be a replica of an aircraft seat and may be as simple as an office chair placed in an appropriate position.</td>
</tr>
<tr>
<td>4.b.</td>
<td>The FTD must have instructor controls that permit activation of normal, abnormal, and emergency conditions as appropriate. Once activated, proper system operation must result from system management by the crew and not require input from the instructor controls.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Motion System (not required)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
###TABLE B1A—MINIMUM FTD REQUIREMENTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General FTD requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 5 6</td>
<td></td>
</tr>
<tr>
<td>5.a.</td>
<td>The FTD may have a motion system, if desired, although it is not required. If a motion system is installed and additional training, testing, or checking credits are being sought on the basis of having a motion system, the motion system operation may not be distracting and must be coupled closely to provide integrated sensory cues. The motion system must also respond to abrupt input at the pilot’s position within the allotted time, but not before the time when the airplane responds under the same conditions.</td>
<td>X X</td>
<td>The motion system standards set out in part 60, Appendix A for at least Level A simulators is acceptable.</td>
</tr>
<tr>
<td>5.b.</td>
<td>If a motion system is installed, it must be measured by latency tests or transport delay tests and may not exceed 300 milliseconds. Instrument response may not occur prior to motion onset.</td>
<td>X</td>
<td>The motion system standards set out in part 60, Appendix A for at least Level A simulators is acceptable.</td>
</tr>
</tbody>
</table>

###6. Visual System

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General FTD requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.a.</td>
<td>The FTD may have a visual system, if desired, although it is not required. If a visual system is installed, it must meet the following criteria:</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.a.1.</td>
<td>The visual system must respond to abrupt input at the pilot’s position. An SOC is required.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>6.a.2.</td>
<td>The visual system must be at least a single channel, non-collimated display. An SOC is required.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.a.3.</td>
<td>The visual system must provide at least a field-of-view of 18° vertical / 24° horizontal for the pilot flying. An SOC is required.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.a.4.</td>
<td>The visual system must provide for a maximum parallax of 10° per pilot. An SOC is required.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.a.5.</td>
<td>The visual scene content may not be distracting An SOC is required.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.a.6.</td>
<td>The minimum distance from the pilot’s eye position to the surface of a direct view display may not be less than the distance to any front panel instrument. An SOC is required.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>6.a.7.</td>
<td>The visual system must provide for a minimum resolution of 5 arc-minutes for both computed and displayed pixel size. An SOC is required.</td>
<td>X X X</td>
<td></td>
</tr>
</tbody>
</table>
TABLE B1A—MINIMUM FTD REQUIREMENTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General FTD requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.b.</td>
<td>If a visual system is installed and additional training, testing, or checking credits are being sought on the basis of having a visual system, a visual system meeting the standards set out for at least a Level A FFS (see Appendix A of this part) will be required. A "direct-view," non-collimated visual system (with the other requirements for a Level A visual system met) may be considered satisfactory for those installations where the visual system design "eye point" is appropriately adjusted for each pilot’s position such that the parallax error is at or less than 10° simultaneously for each pilot. An SOC is required.</td>
<td>X</td>
<td>Directly projected, non-collimated visual displays may prove to be unacceptable for dual pilot applications.</td>
</tr>
</tbody>
</table>

7. Sound System

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.a.</td>
<td>The FTD must simulate significant flight deck sounds resulting from pilot actions that correspond to those heard in the airplane.</td>
</tr>
</tbody>
</table>

TABLE B1B—TABLE OF TASKS VS. FTD LEVEL

<table>
<thead>
<tr>
<th>Subjective Requirements—In order to be qualified at the FTD qualification level indicated, the FTD must be able to perform at least the tasks associated with that level of qualification. See Notes 1 and 2 at the end of the Table</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry No.</td>
<td>FTD level</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1. Preflight Procedures.</td>
<td></td>
</tr>
<tr>
<td>1.a. Preflight Inspection (flight deck only)</td>
<td>A A X</td>
</tr>
<tr>
<td>1.b. Engine Start</td>
<td>A A X</td>
</tr>
<tr>
<td>1.c. Pre-takeoff Checks</td>
<td>A A X</td>
</tr>
<tr>
<td>2. Takeoff and Departure Phase.</td>
<td></td>
</tr>
<tr>
<td>2.a. Rejected Takeoff (requires visual system)</td>
<td>.. .. A</td>
</tr>
<tr>
<td>2.b. Departure Procedure</td>
<td>.. .. X X</td>
</tr>
<tr>
<td>3. In-flight Maneuvers.</td>
<td></td>
</tr>
<tr>
<td>3.a. a. Steep Turns</td>
<td>.. .. X X</td>
</tr>
<tr>
<td>3.b. b. Approaches to Stalls</td>
<td>.. .. A X</td>
</tr>
<tr>
<td>3.c. c. Engine Failure (procedures only)—Multi-engine Airplane.</td>
<td>.. .. A X</td>
</tr>
<tr>
<td>3.d. d. Engine Failure (procedures only)—Single-Engine Airplane.</td>
<td>.. .. A X</td>
</tr>
<tr>
<td>3.e. e. Specific Flight Characteristics incorporated into the user’s FAA approved flight training program.</td>
<td>A A A</td>
</tr>
<tr>
<td>4.b. Holding</td>
<td>.. .. A X</td>
</tr>
</tbody>
</table>
TABLE B1B—TABLE OF TASKS VS. FTD LEVEL—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective Requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 5 6</td>
<td></td>
</tr>
<tr>
<td>4.c.</td>
<td>Precision Instrument, all engines operating</td>
<td>...</td>
<td>A X e.g., Autopilot, Manual (Flt. Dir. Assisted), Manual (Raw Data).</td>
</tr>
<tr>
<td>4.d.</td>
<td>Non-precision Instrument, all engines operating</td>
<td>...</td>
<td>A X e.g., NDB, VOR, VOR/DME, VOR/TAC, RNAV, LOC, LOC/BC, ADF, and SDF.</td>
</tr>
<tr>
<td>4.e.</td>
<td>Circling Approach (requires visual system)</td>
<td>...</td>
<td>... A</td>
</tr>
<tr>
<td>4.f.</td>
<td>Missed Approach</td>
<td>...</td>
<td>A X</td>
</tr>
</tbody>
</table>

5. Normal and Abnormal Procedures.

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective Requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 5 6</td>
<td></td>
</tr>
<tr>
<td>5.a.</td>
<td>Engine (including shutdown and restart—proce- dures only).</td>
<td>A A X</td>
<td></td>
</tr>
<tr>
<td>5.b.</td>
<td>Fuel System</td>
<td>A A X</td>
<td></td>
</tr>
<tr>
<td>5.c.</td>
<td>Electrical System</td>
<td>A A X</td>
<td></td>
</tr>
<tr>
<td>5.d.</td>
<td>Hydraulic System</td>
<td>A A X</td>
<td></td>
</tr>
<tr>
<td>5.e.</td>
<td>Environmental and Pressurization Systems</td>
<td>A A X</td>
<td></td>
</tr>
<tr>
<td>5.f.</td>
<td>Fire Detection and Extinguisher Systems</td>
<td>A A X</td>
<td></td>
</tr>
<tr>
<td>5.g.</td>
<td>Navigation and Avionics Systems</td>
<td>A A X</td>
<td></td>
</tr>
<tr>
<td>5.i.</td>
<td>Flight Control Systems</td>
<td>A A X</td>
<td></td>
</tr>
<tr>
<td>5.j.</td>
<td>Anti-ice and Deice Systems</td>
<td>A A X</td>
<td></td>
</tr>
<tr>
<td>5.k.</td>
<td>Aircraft and Personal Emergency Equipment</td>
<td>A A X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective Requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 5 6</td>
<td></td>
</tr>
<tr>
<td>6.a.</td>
<td>Emergency Descent (maximum rate)</td>
<td>...</td>
<td>A X</td>
</tr>
<tr>
<td>6.b.</td>
<td>Inflight Fire and Smoke Removal</td>
<td>...</td>
<td>A X</td>
</tr>
<tr>
<td>6.c.</td>
<td>Rapid Decompression</td>
<td>...</td>
<td>A X</td>
</tr>
<tr>
<td>6.d.</td>
<td>Emergency Evacuation</td>
<td>...</td>
<td>A A X</td>
</tr>
</tbody>
</table>

7. Postflight Procedures.

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective Requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 5 6</td>
<td></td>
</tr>
<tr>
<td>7.a.</td>
<td>After-Landing Procedures</td>
<td>A A X</td>
<td></td>
</tr>
<tr>
<td>7.b.</td>
<td>Parking and Securing</td>
<td>A A X</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: An “A” in the table indicates that the system, task, or procedure, although not required to be present, may be examined if the appropriate airplane system is simulated in the FTD and is working properly.

Note 2: Items not installed or not functional on the FTD and not appearing on the SOQ Configuration List, are not required to be listed as exceptions on the SOQ.

TABLE B1C—TABLE OF FTD SYSTEM TASKS QPS REQUIREMENTS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective Requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 5 6</td>
<td></td>
</tr>
<tr>
<td>1. Instructor Operating Station (IOS).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE B1C—TABLE OF FTD SYSTEM TASKS QPS REQUIREMENTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective Requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.a</td>
<td>Power switch(es)</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.b</td>
<td>Airplane conditions</td>
<td>A X X</td>
<td>e.g., GW, CG, Fuel loading, Systems, Ground Crew.</td>
</tr>
<tr>
<td>1.c</td>
<td>Airports/Runways</td>
<td>X X X</td>
<td>e.g., Selection and Presets; Surface and Lighting controls if equipped with a visual system.</td>
</tr>
<tr>
<td>1.d</td>
<td>Environmental controls</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.e</td>
<td>Airplane system malfunctions</td>
<td>A X X</td>
<td></td>
</tr>
<tr>
<td>1.f</td>
<td>Locks, Freezes, and Repositioning</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.g</td>
<td>Sound Controls, (On/off/adjustment)</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.h</td>
<td>Motion/Control Loading System, as appropriate.</td>
<td>A A A</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Observer Seats/Stations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a</td>
<td>Position/Adjustment/Positive restraint system</td>
<td>X X X</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: An “A” in the table indicates that the system, task, or procedure, although not required to be present, may be examined if the appropriate system is in the FTD and is working properly.

ATTACHMENT 2 TO APPENDIX B TO PART 60—FLIGHT TRAINING DEVICE (FTD) OBJECTIVE TESTS

BEGIN INFORMATION

1. DISCUSSION

a. For the purposes of this attachment, the flight conditions specified in the Flight Conditions Column of Table B2A, are defined as follows:
 (1) Ground—on ground, independent of airplane configuration;
 (2) Take-off—gear down with flaps/slats in any certified takeoff position;
 (3) First segment climb—gear down with flaps/slats in any certified takeoff position (normally not above 50 ft AGL);
 (4) Second segment climb—gear up with flaps/slats in any certified takeoff position (normally between 50 ft and 400 ft AGL);
 (5) Clean—flaps/slats retracted and gear up;
 (6) Cruise—clean configuration at cruise altitude and airspeed;
 (7) Approach—gear up or down with flaps/slats at any normal approach position as recommended by the airplane manufacturer; and
 (8) Landing—gear down with flaps/slats in any certified landing position.

b. The format for numbering the objective tests in Appendix A, Attachment 2, Table A2A, and the objective tests in Appendix B, Attachment 2, Table B2A, is identical. However, each test required for FFSs is not necessarily required for FTDs. Also, each test required for FTDs is not necessarily required for FFSs. Therefore, when a test number (or series of numbers) is not required, the term “Reserved” is used in the table at that location. Following this numbering format provides a degree of commonality between the two tables and substantially reduces the potential for confusion when referring to objective test numbers for either FFSs or FTDs.

d. If relevant winds are present in the objective data, the wind vector should be clearly noted as part of the data presentation, expressed in conventional terminology, and related to the runway being used for the test.

e. A Level 4 FTD does not require objective tests and therefore, Level 4 is not addressed in the following table.

END INFORMATION

156
BEGIN QPS REQUIREMENTS

2. TEST REQUIREMENTS

a. The ground and flight tests required for qualification are listed in Table B2A Objective Tests. Computer generated FTD test results must be provided for each test except where an alternate test is specifically authorized by the NSPM. If a flight condition or operating condition is required for the test but does not apply to the airplane being simulated or to the qualification level sought, the alternate test result is compared against the validation data described in §60.13, and in Appendix B. The results must be produced on an appropriate recording device acceptable to the NSPM and must include FTD number, date, time, conditions, tolerances, and appropriate dependent variables portrayed in comparison to the validation data. Time histories are required unless otherwise indicated in Table B2A. All results must be labeled using the tolerances and units given.

b. Table B2A in this attachment sets out tests required, including the parameters, tolerances, and flight conditions for FTD validation. Tolerances are provided for the listed tests because mathematical modeling and acquisition and development of reference data are often inexact. All tolerances listed in the following tables are applied to FTD performance. When two tolerances are given, the less restrictive may be used unless otherwise indicated. In those cases where a tolerance is expressed only as a percentage, the tolerance percentage applies to the maximum value of that parameter within its normal operating range as measured from the neutral or zero position unless otherwise indicated.

c. Certain tests included in this attachment must be supported with a SOC. In Table B2A, requirements for SOCs are indicated in the “Test Details” column.

d. When operational or engineering judgment is used in making assessments for flight test data applications for FTD validity, such judgment may not be limited to a single parameter. For example, data that exhibit rapid variations of the measured parameter may require interpolations or a “best fit” data section. All relevant parameters related to a given maneuver or flight condition must be provided to allow overall interpretation. When it is difficult or impossible to match FTD to airplane data throughout a time history, differences must be justified by providing a comparison of other related variables for the condition being assessed.

e. It is not acceptable to program the FTD so that the mathematical modeling is correct only at the validation test points. Unless noted otherwise, tests must represent airplane performance and handling qualities at operating weights and centers of gravity (CG) typical of normal operation. If a test is supported by aircraft data at mid-conditions or as close as possible to the other extreme is necessary. Certain tests that are unique, extreme CG or weight condition need not be repeated at the other extreme. The results of the tests for Level 6 are expected to be indicative of the device’s performance and handling qualities throughout all of the following:

(1) The airplane weight and CG envelope;

(2) The operational envelope; and

(3) Varying atmospheric ambient and environmental conditions—including the extremes authorized for the respective airplane or set of airplanes.

f. When comparing the parameters listed to those of the airplane, sufficient data must also be provided to verify the correct flight condition and airplane configuration changes. For example, to show that control force is within the parameters for a static stability test, data to show the correct airspeed, power, thrust or torque, airplane configuration, altitude, and other appropriate datum identification parameters must also be given. If comparing short period dynamics, normal acceleration may be used to establish a match to the airplane, but airspeed, altitude, control input, airplane configuration, and other appropriate data must also be given. If comparing landing gear change dynamics, pitch, airspeed, altitude may be used to establish a match to the airplane, but landing gear position must also be provided. All airspeed values must be properly annotated (e.g., indicated versus calibrated). In addition, the same variables must be used for comparison (e.g., compare inches to inches rather than inches to centimeters).

g. The QTG provided by the sponsor must clearly describe how the FTD will be set up and operated for each test. Each FTD subsystem may be tested independently, but overall integrated testing of the FTD must be accomplished to assure that the total FTD system meets the prescribed standards. A manual test procedure with explicit and detailed steps for completing each test must also be provided.

h. For previously qualified FTDs, the tests and tolerances of this attachment may be used in subsequent continuing qualification evaluations for any given test if the sponsor has submitted a proposed MQTG revision to the NSPM and has received NSPM approval.

i. FTDs are evaluated and qualified with an engine model simulating the airplane data supplier’s flight test engine. For qualification of alternative engine models (either variations of the flight test engine or other manufacturer’s engines) additional tests...
with the alternative engine models may be required. This attachment contains guidelines for alternative engines.

j. Testing Computer Controlled Aircraft (CCA) simulators, or other highly augmented airplane simulators, flight test data is required for the Normal (N) and/or Non-normal (NN) control states, as indicated in this attachment. Where test results are independent of control state, Normal or Non-normal control data may be used. All tests in Table B2A require test results in the Normal control state unless specifically noted otherwise in the Test Details section following the CCA designation. The NSPM will determine what tests are appropriate for airplane simulation data. When making this determination, the NSPM may require other levels of control state degradation for specific airplane tests. Where Non-normal control states are required, test data must be provided for one or more Non-normal control states, and must include the least augmented state. Where applicable, flight test data must record Normal and Non-normal states for:

(1) Pilot controller deflections or electronically generated inputs, including location of input; and

(2) Flight control surface positions unless test results are not affected by, or are independent of, surface positions.

k. Tests of handling qualities must include validation of augmentation devices. FTDs for highly augmented airplanes will be validated both in the unaugmented configuration (or failure state with the maximum permitted degradation in handling qualities) and the augmented configuration. Where various levels of handling qualities result from failure states, validation of the effect of the failure is necessary. Requirements for testing will be mutually agreed to between the sponsor and the NSPM on a case-by-case basis.

l. Some tests will not be required for airplanes using airplane hardware in the FTD flight deck (e.g., "side stick controller"). These exceptions are noted in Section 2 “Handling Qualities” in Table B2A of this attachment. However, in these cases, the sponsor must provide a statement that the airplane hardware meets the appropriate manufacturer’s specifications and the sponsor must have supporting information to that fact available for NSPM review.

m. For objective test purposes, see Appendix F of this part for the definitions of “Near maximum,” “Light,” and “Medium” gross weight.

END QPS REQUIREMENTS

BEGIN INFORMATION

n. In those cases where the objective test results authorize a “snapshot test” or a “series of snapshot test results” in lieu of a time-history result, the sponsor or other data provider must ensure that a steady state condition exists at the instant of time captured by the “snapshot.” The steady state condition must exist from 4 seconds prior to, through 1 second following, the instant of time captured by the snapshot.

END INFORMATION
TABLE B2A—FLIGHT TRAINING DEVICE (FTD) OBJECTIVE TESTS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Test details</th>
<th>Flight conditions</th>
<th>Tolerances</th>
<th>FTD level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.a</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.b</td>
<td>Takeoff</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.b.1.</td>
<td>Ground Acceleration Time</td>
<td>±5% time or ±1 sec 1.b.1. Takeoff</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Record acceleration time for a minimum of 80% of the segment from brake release to V(_R). Preliminary aircraft certification data may be used.</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.b.2.</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.b.7</td>
<td>Rejected Takeoff</td>
<td>±5% time or ±1.5 sec 1.b.7. Takeoff</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Record time for at least 80% of the segment from initiation of the Rejected Takeoff to full stop.</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.b.8</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.c</td>
<td>Climb</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.c.1</td>
<td>Normal Climb all engines operating.</td>
<td>±3 kt airspeed, ±5% or ±100 ft/min (0.5 m/sec) climb rate.</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flight test data or airplane performance manual data may be used. Record at nominal climb speed and at nominal altitude. May be a snapshot test result. FTD performance must be recorded over an interval of at least 1,000 ft (300 m).</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.c.2.</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.d</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.e</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.f</td>
<td>Engines</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
TABLE B2A—FLIGHT TRAINING DEVICE (FTD) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerances</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>FTD level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.f.1.</td>
<td>Acceleration</td>
<td>Level 6: ±10% T_i, or ±0.25 sec.</td>
<td>Approach or Landing</td>
<td>Record engine power (N_1, N_2, EPR, Torque, Manifold Pressure) from idle to maximum takeoff power for a rapid (slam) throttle movement.</td>
<td>X</td>
<td>See Appendix F of this part for definitions of T_i and T_t.</td>
</tr>
<tr>
<td>1.f.2.</td>
<td>Deceleration</td>
<td>Level 6: ±10% T_i, or ±0.25 sec.</td>
<td>Ground</td>
<td>Record engine power (N_1, N_2, EPR, Torque, Manifold Pressure) from maximum takeoff power to idle for a rapid (slam) throttle movement.</td>
<td>X</td>
<td>See Appendix F of this part for definitions of T_i and T_t.</td>
</tr>
</tbody>
</table>

2. Handling Qualities

For FTDs requiring Static tests at the controls (i.e., column, wheel, rudder pedal), special test fixtures will not be required during initial or upgrade evaluations if the sponsor's QTG/MQTG shows both test fixture results and the results of an alternative approach, such as computer plots produced concurrently, that show satisfactory agreement. Repeat of the alternative method during the initial or upgrade evaluation would then satisfy this test requirement.

2.a. Static Control Tests

2.a.1.a. Pitch Controller Position vs. Force and Surface Position Calibration.

| ±2 lb (0.9 daN) breakout, ±10% or ±5 lb (2.2 daN) force, ±2° elevator. | Ground | Record results for an uninterrupted control sweep to the stops. | X |

2.a.1.b. Roll Controller Position vs. Force.

| ±2 lb (0.9 daN) breakout, ±10% or ±5 lb (2.2 daN) force. | As determined by sponsor | Record results during initial qualification evaluation for an uninterrupted control sweep to the stops. The recorded tolerances apply to subsequent comparisons on continuing qualification evaluations. | X |

2.a.2a. Roll Controller Position vs. Force and Surface Position Calibration.

±2 lb (0.9 daN) breakout, ±10% or ±3 lb (1.3 daN) force, ±2° aileron, ±3° spoiler angle.	Ground	Record results for an uninterrupted control sweep to the stops.	X			
2.a.2b.	Roll Controller Position vs. Force	±2 lb (0.9 daN) breakout, ±10% or ±3 lb (1.3 daN) force.	As determined by sponsor	Record results during initial qualification evaluation for an uninterrupted control sweep to the stops. The recorded tolerances apply to subsequent comparisons on continuing qualification evaluations.	X	Applicable only on continuing qualification evaluations. The intent is to design the control feel for Level 5 to be able to manually fly an instrument approach; and not to compare results to flight test or other such data.
2.a.3a.	Rudder Pedal Position vs. Force and Surface Position Calibration	±5 lb (2.2 daN) breakout, ±10% or ±5 lb (2.2 daN) force, ±2° rudder angle.	Ground	Record results for an uninterrupted control sweep to the stops.	X	
2.a.3b.	Rudder Pedal Position vs. Force	±5 lb (2.2 daN) breakout, ±10% or ±5 lb (2.2 daN) force.	As determined by sponsor	Record results during initial qualification evaluation for an uninterrupted control sweep to the stops. The recorded tolerances apply to subsequent comparisons on continuing qualification evaluations.	X	Applicable only on continuing qualification evaluations. The intent is to design the control feel for Level 5 to be able to manually fly an instrument approach; and not to compare results to flight test or other such data.
2.a.4.	Nosewheel Steering Controller Force	±2 lb (0.9 daN) breakout, ±10% or ±3 lb (1.3 daN) force.	Ground	Record results of an uninterrupted control sweep to the stops.	X	
2.a.5.	Rudder Pedal Steering Calibration	±2° nosewheel angle	Ground	Record results of an uninterrupted control sweep to the stops.	X	
2.a.6.	Pitch Trim Indicator vs. Surface Position Calibration	±0.5° of computed trim surface angle.	Ground	X	The purpose of the test is to compare the FTD against design data or equivalent.	
2.a.7.	(Reserved)					
2.a.8.	Alignment of Flight deck Throttle Lever vs. Selected Engine Parameter	±5° of throttle lever angle or ±0.8 in (2 cm) for power control without angular travel, or ±3% N1, or ±0.03 EPR, or ±3% max. manifold pressure, or ±3% torque.	Ground	Requires simultaneous recording for all engines. The tolerances apply against airplane data and between engines. In the case of propeller powered airplanes, if a propeller lever is present, it must also be checked. For airplanes with throttle “detents,” all detents must be presented. May be a series of snapshot test results.	X	
TABLE B2A—FLIGHT TRAINING DEVICE (FTD) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerances</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>FTD level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a.9.</td>
<td>Brake Pedal Position vs. Force</td>
<td>±5 lb (2.2 daN) or 10% force.</td>
<td>Ground</td>
<td>Two data points are required. Zero and maximum deflection. Computer output results may be used to show compliance.</td>
<td>X</td>
<td>Test not required unless RTD credit is sought.</td>
</tr>
<tr>
<td>2.b.</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.c.</td>
<td>Longitudinal Control Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.c.1.</td>
<td>Power Change Force</td>
<td>±5 lb (2.2 daN) or ±0% pitch control force.</td>
<td>Approach</td>
<td>May be a series of snapshot test results. Power change dynamics test as described in test 2.c.1 of Table A2A of this part will be accepted. CCA: Test in Normal and Non-normal control states.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.c.2.</td>
<td>Flap/Slat Change Force</td>
<td>±5 lb (2.2 daN) or ±0% pitch control force.</td>
<td>Takeoff through initial flap retraction, and approach to landing.</td>
<td>May be a series of snapshot test results. Flap/Slat change dynamics test as described in test 2.c.2 of Table A2A of this part will be accepted. CCA: Test in Normal and Non-normal control states.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.c.3.</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.c.4.</td>
<td>Gear Change Force</td>
<td>±5 lb (2.2 daN) or ±0% pitch control force.</td>
<td>Takeoff (retraction) and Approach (extension).</td>
<td>May be a series of snapshot test results. Gear change dynamics test as described in test 2.c.4 of Table A2A of this part will be accepted. CCA: Test in Normal and Non-normal control states.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.c.5.</td>
<td>Longitudinal Trim</td>
<td>±0.5° trim surface angle ±1° elevator ±1° pitch angle ±5% net thrust or equivalent.</td>
<td>Cruise, Approach, and Landing.</td>
<td>Record steady-state condition with wings level and thrust set for level flight. May be a series of snapshot tests Level 5 may use equivalent stick and trim controllers in lieu of elevator and trim surface. CCA: Test in Normal and Non-normal control states.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Tolerance</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.c.6.</td>
<td>Longitudinal Maneuvering Stability (Stick Force/g)</td>
<td>±5 lb (±22 daN) or ±10% pitch controller force</td>
<td>Continuous time history data or a series of snapshot tests may be used. Record results up to 30° of bank for approach and landing configurations. Record results for up to 45° of bank for the cruise configuration. The force tolerance is not applicable if forces are generated solely by the use of airplane hardware in the FTD. The alternative method applies to airplanes that do not exhibit "stick-force-per-g" characteristics. CCA: Test in Normal and Non-normal control states.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.c.7.</td>
<td>Longitudinal Static Stability</td>
<td>±5 lb (±22 daN) or ±10% pitch controller force</td>
<td>May be a series of snapshot test results. Record results for at least 2 speeds above and 2 speeds below trim speed. The force tolerance is not applicable if forces are generated solely by the use of airplane hardware in the FTD. The alternative method applies to airplanes that do not exhibit speed stability characteristics. Level 5 must exhibit positive static stability, but need not comply with the numerical tolerance. CCA: Test in Normal and Non-normal control states.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.c.8.</td>
<td>Stall Warning (actuation of stall warning device)</td>
<td>±3 kts. airspeed, ±2° bank for speeds greater than actuation of stall warning device or initial buffet.</td>
<td>The stall maneuver must be entered with thrust at or near idle power and wings level (1g). Record the stall warning signal and initial buffet if applicable. CCA: Test in Normal and Non-normal control states.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.c.9a.</td>
<td>Phugoid Dynamics</td>
<td>±10% period, ±10% of time to ½ or double amplitude or ±.02 of damping ratio</td>
<td>The test must include whichever is less of the following: Three full cycles (six overshoots after the input is completed), or the number of cycles sufficient to determine representative damping. CCA: Test in Normal or Non-normal control state.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.c.9b.</td>
<td>Phugoid Dynamics</td>
<td>±10% period, Representative damping.</td>
<td>The test must include whichever is less of the following: Three full cycles (six overshoots after the input is completed), or the number of cycles sufficient to determine representative damping. CCA: Test in Normal or Non-normal control state.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Test</td>
<td>Tolerances</td>
<td>Flight conditions</td>
<td>Test details</td>
<td>FTD level</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>------------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>2.c.10.</td>
<td>Short Period Dynamics</td>
<td>±1.5°</td>
<td>±2°/sec pitch rate or ±0.10g</td>
<td>Cruise</td>
<td>CCA: Test in Non-normal control state.</td>
<td>5</td>
</tr>
<tr>
<td>2.d.</td>
<td>Lateral Directional Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.1.</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.2.</td>
<td>Roll Response (Rate)</td>
<td>±10%</td>
<td>±2°/sec roll rate</td>
<td>Cruise, and Approach or Landing</td>
<td>Record results for normal roll controller deflection (one-third of maximum roll controller travel). May be combined with step input of flight deck roll controller test (see 2.d.3.).</td>
<td>X</td>
</tr>
<tr>
<td>2.d.3.</td>
<td>Roll Response to Flight deck Roll Controller Step Input</td>
<td>±10%</td>
<td>±2° bank angle</td>
<td>Approach or Landing</td>
<td>Record from initiation of roll through 10 seconds after control is returned to neutral and released. May be combined with roll response (rate) test (see 2.d.2). CCA: Test in Non-normal control state.</td>
<td>X</td>
</tr>
<tr>
<td>2.d.4a.</td>
<td>Spiral Stability</td>
<td></td>
<td>Correct trend and ±3° or ±10% bank angle in 30 seconds.</td>
<td>Cruise</td>
<td>Record results for both directions. As an alternate test, demonstrate the lateral control required to maintain a steady turn with a bank angle of 30°. CCA: Test in Non-normal control state.</td>
<td>X</td>
</tr>
<tr>
<td>2.d.4b.</td>
<td>Spiral Stability</td>
<td></td>
<td>Correct trend</td>
<td>Cruise</td>
<td>CCA: Test in Non-normal control state.</td>
<td></td>
</tr>
<tr>
<td>2.d.5.</td>
<td>(Reserved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.6.a.</td>
<td>Rudder Response</td>
<td>±2°/sec or ±10% yaw rate</td>
<td>Approach or Landing</td>
<td>A rudder step input of 20%–30% rudder pedal throw must be used. Not required if rudder input and response is shown in Dutch Roll test (test 2.d.7.). CCA: Test in Normal and Non-normal control states.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.d.6.b.</td>
<td>Rudder Response</td>
<td>Roll rate ≤2°/sec, bank angle ≤3°.</td>
<td>Approach or Landing</td>
<td>May be roll response to a given rudder deflection. CCA: Test in Normal and Non-normal control states.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.d.6.c.</td>
<td>Dutch Roll (Yaw Damper OFF)</td>
<td>±0.5 sec, or ±10% of period, ±10% of time to 1/2 or double amplitude or ±0.03 of damping ratio.</td>
<td>Cruise, and Approach or Landing</td>
<td>Record results for at least 6 complete cycles with stability augmentation OFF, or the number of cycles sufficient to determine time to 1/2 or double amplitude. CCA: Test in Non-normal control state.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.8.</td>
<td>Steady State Sideslip</td>
<td>For given rudder position, ±2° bank angle, ±1° sideslip angle, ±10% or ±2° aileron, ±10% or ±5° spoiler or equivalent roll, controller position or force.</td>
<td>Approach or Landing</td>
<td>Use at least two rudder positions, one of which must be near maximum allowable rudder. Propeller driven airplanes must test in each direction. May be a series of snapshot test results. Sideslip angle is matched only for repeatability and only on continuing qualification evaluations.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

FTD System Response Time

<p>| 6.a. | Latency | 300 ms (or less) after airplane response. | Take-off, cruise, and approach or landing. | One test is required in each axis (pitch, roll and yaw) for each of the three conditions (take-off, cruise, and approach or landing). | X |</p>
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerances</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>FTD level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300 ms (or less) after controller movement.</td>
<td>N/A</td>
<td>A separate test is required in each axis (pitch, roll, and yaw).</td>
<td>X X</td>
<td>X</td>
<td>Notes</td>
</tr>
</tbody>
</table>

If Transport Delay is the chosen method to demonstrate relative responses, the sponsor and the NSPM will use the latency values to ensure proper simulator response when reviewing those existing tests where latency can be identified (e.g., short period, roll response, rudder response).
3. For additional information on the following topics, please refer to Appendix A, Attachment 2, and the indicated paragraph within that attachment:

- Control Dynamics, paragraph 4.
- Motion System, paragraph 6.
- Sound System, paragraph 7.
- Engineering Simulator Validation Data, paragraph 9.
- Validation Test Tolerances, paragraph 11.
- Validation Data Road Map, paragraph 12.
- Transport Delay Testing, paragraph 15.
- Continuing Qualification Evaluation Validation Data Presentation, paragraph 16.

4. Alternative Objective Data for FTD Level 5

a. This paragraph (including the following tables) is relevant only to FTD Level 5. It is provided because this level is required to simulate the performance and handling characteristics of a set of airplanes with similar characteristics, such as normal airspeed/altitude operating envelope and the same number and type of propulsion systems (engines).

b. Tables B2B through B2E reflect FTD performance standards that are acceptable to the FAA. A sponsor must demonstrate that a device performs within these parameters, as applicable. If a device does not meet the established performance parameters for some or all of the applicable tests listed in Tables B2B through B2E, the sponsor may use NSP accepted flight test data for comparison purposes for those tests.

c. Sponsors using the data from Tables B2B through B2E must comply with the following:
 1. Submit a complete QTG, including results from all of the objective tests appropriate for the level of qualification sought as set out in Table B2A. The QTG must highlight those results that demonstrate the performance of the FTD is within the allowable performance ranges indicated in Tables B2B through B2E, as appropriate.
 2. The QTG test results must include all relevant information concerning the conditions under which the test was conducted; e.g., gross weight, center of gravity, airspeed, power setting, altitude (climbing, descending, or level), temperature, configuration, and any other parameter that impacts the conduct of the test.
 3. The test results become the validation data against which the initial and all subsequent continuing qualification evaluations are compared. These subsequent evaluations will use the tolerances listed in Table B2A.
 4. Subjective testing of the device must be performed to determine that the device performs and handles like an airplane within the appropriate set of airplanes.

<table>
<thead>
<tr>
<th>TABLE B2B—ALTERNATIVE DATA SOURCE FOR FTD LEVEL 5 SMALL, SINGLE ENGINE (RECIPROCATING) AIRPLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The performance parameters in this table must be used to program the FTD if flight test data is not used to program the FTD.</td>
</tr>
<tr>
<td>Applicable test</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Entry No.</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>1.c</td>
</tr>
<tr>
<td>1.c.1</td>
</tr>
<tr>
<td>1.f</td>
</tr>
</tbody>
</table>
TABLE B2B—ALTERNATIVE DATA SOURCE FOR FTD LEVEL 5 SMALL, SINGLE ENGINE (RECIPROCATING) AIRPLANE—Continued

The performance parameters in this table must be used to program the FTD if flight test data is not used to program the FTD.

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title and procedure</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.f.1.</td>
<td>Acceleration; idle to takeoff power</td>
<td>2–4 Seconds.</td>
</tr>
<tr>
<td>1.f.2.</td>
<td>Deceleration; takeoff power to idle</td>
<td>2–4 Seconds.</td>
</tr>
<tr>
<td>2.</td>
<td>Handling Qualities</td>
<td></td>
</tr>
<tr>
<td>2.c.</td>
<td>Longitudinal Tests</td>
<td></td>
</tr>
<tr>
<td>2.c.1.</td>
<td>Power change force</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Trim for straight and level flight at 80% of normal cruise airspeed with necessary power. Reduce power to flight idle. Do not change trim or configuration. After stabilized, record column force necessary to maintain original airspeed.</td>
<td>5–15 lbs (2.2–6.6 daN) of force (Pull).</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Trim for straight and level flight at 80% of normal cruise airspeed with necessary power. Add power to maximum setting. Do not change trim or configuration. After stabilized, record column force necessary to maintain original airspeed.</td>
<td>5–15 lbs (2.2–6.6 daN) of force (Push).</td>
</tr>
<tr>
<td>2.c.2.</td>
<td>Flap/slat change force</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Trim for straight and level flight with flaps fully retracted at a constant airspeed within the flaps-extended airspeed range. Do not adjust trim or power. Extend the flaps to 50% of full flap travel. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>5–15 lbs (2.2–6.6 daN) of force (Pull).</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Trim for straight and level flight with flaps extended to 50% of full flap travel, at a constant airspeed within the flaps-extended airspeed range. Do not adjust trim or power. Retract the flaps to zero. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>5–15 lbs (2.2–6.6 daN) of force (Push).</td>
</tr>
<tr>
<td>2.c.4.</td>
<td>Gear change force</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Trim for straight and level flight with landing gear retracted at a constant airspeed within the landing gear-extended airspeed range. Do not adjust trim or power. Extend the landing gear. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>2–12 lbs (0.88–5.3 daN) of force (Pull).</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Trim for straight and level flight with landing gear extended, at a constant airspeed within the landing gear-extended airspeed range. Do not adjust trim or power. Retract the landing gear. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>2–12 lbs (0.88–5.3 daN) of force (Push).</td>
</tr>
<tr>
<td>2.c.5.</td>
<td>Longitudinal trim</td>
<td>Must be able to trim longitudinal stick force to “zero” in each of the following configurations: cruise; approach; and landing.</td>
</tr>
<tr>
<td>2.c.7.</td>
<td>Longitudinal static stability</td>
<td>Must exhibit positive static stability.</td>
</tr>
</tbody>
</table>
TABLE B2B—ALTERNATIVE DATA SOURCE FOR FTD LEVEL 5 SMALL, SINGLE ENGINE (RECIPROCATING) AIRPLANE—Continued

The performance parameters in this table must be used to program the FTD if flight test data is not used to program the FTD.

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Applicable test</th>
<th>Title and procedure</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.c.8.</td>
<td>Stall warning (actuation of stall warning device) with nominal gross weight; wings level; and a deceleration rate of not more than three (3) knots per second.</td>
<td>(a) Landing configuration</td>
<td>40–60 knots; ± 5° of bank.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Clean configuration</td>
<td>Landing configuration speed ± 10–20%.</td>
</tr>
<tr>
<td>2.c.9.b.</td>
<td>Phugoid dynamics</td>
<td>Must have a phugoid with a period of 30–60 seconds. May not reach 1⁄2 or double amplitude in less than 2 cycles.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lateral Directional Tests.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.2.</td>
<td>Roll response (rate). Roll rate must be measured through at least 30° of roll. Aileron control must be deflected 1⁄3 (33.3 percent) of maximum travel.</td>
<td></td>
<td>Must have a roll rate of 40°–25°/second.</td>
</tr>
<tr>
<td>2.d.6.b.</td>
<td>Rudder response. Use 25 percent of maximum rudder deflection. (Applicable to approach or landing configuration.)</td>
<td>A roll rate of 2°–6°/second yaw rate.</td>
<td></td>
</tr>
<tr>
<td>2.d.7.</td>
<td>Dutch roll, yaw damper off. (Applicable to cruise and approach configurations.)</td>
<td>A period of 2–5 seconds; and 1⁄3–2 cycles.</td>
<td></td>
</tr>
<tr>
<td>2.d.8.</td>
<td>Steady state sideslip. Use 50 percent rudder deflection. (Applicable to approach and landing configurations.)</td>
<td>2°–10° of bank; 4°–10° of sideslip; and 2°–10° of aileron.</td>
<td></td>
</tr>
</tbody>
</table>

TABLE B2C—ALTERNATIVE DATA SOURCE FOR FTD LEVEL 5 SMALL, MULTI-ENGINE (RECIPROCATING) AIRPLANE

The performance parameters in this table must be used to program the FTD if flight test data is not used to program the FTD.

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Applicable test</th>
<th>Title and procedure</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.c.</td>
<td>Climb</td>
<td>Normal climb with nominal gross weight, at best rate-of-climb airspeed.</td>
<td>Climb airspeed = 95–115 knots. Climb rate = 500–1500 fpm (2.5–7.5 m/sec)</td>
</tr>
<tr>
<td>1.f.</td>
<td>Engines</td>
<td>Acceleration; idle to takeoff power</td>
<td>2–5 Seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deceleration; takeoff power to idle</td>
<td>2–5 Seconds.</td>
</tr>
</tbody>
</table>

FTD System Response Time

6.a. Latency. Flight deck instrument systems response to an abrupt pilot controller input. One test is required in each axis (pitch, roll, yaw). 300 milliseconds or less.
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title and procedure</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.c.1.</td>
<td>Power change force.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Trim for straight and level flight at 80% of normal cruise airspeed with necessary power. Reduce power to flight idle. Do not change trim or configuration. After stabilized, record column force necessary to maintain original airspeed.</td>
<td>10–25 lbs (2.2–6.6 daN) of force (Pull).</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Trim for straight and level flight at 80% of normal cruise airspeed with necessary power. Add power to maximum setting. Do not change trim or configuration. After stabilized, record column force necessary to maintain original airspeed.</td>
<td>5–15 lbs (2.2–6.6 daN) of force (Push).</td>
</tr>
<tr>
<td>2.c.2.</td>
<td>Flap/slat change force.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Trim for straight and level flight with flaps fully retracted at a constant airspeed within the flaps-extended airspeed range. Do not adjust trim or power. Extend the flaps to 50% of full flap travel. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>5–15 lbs (2.2–6.6 daN) of force (Pull).</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Trim for straight and level flight with flaps extended to 50% of full flap travel, at a constant airspeed within the flaps-extended airspeed range. Do not adjust trim or power. Retract the flaps to zero. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>5–15 lbs (2.2–6.6 daN) of force (Push).</td>
</tr>
<tr>
<td>2.c.4.</td>
<td>Gear change force.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Trim for straight and level flight with landing gear retracted at a constant airspeed within the landing gear-extended airspeed range. Do not adjust trim or power. Extend the landing gear. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>2–12 lbs (0.88–5.3 daN) of force (Pull).</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Trim for straight and level flight with landing gear extended, at a constant airspeed within the landing gear-extended airspeed range. Do not adjust trim or power. Retract the landing gear. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>2–12 lbs (0.88–5.3 daN) of force (Push).</td>
</tr>
<tr>
<td>2.c.5.</td>
<td>Longitudinal trim</td>
<td>Must be able to trim longitudinal stick force to “zero” in each of the following configurations: cruise; approach; and landing.</td>
</tr>
<tr>
<td>2.c.7.</td>
<td>Longitudinal static stability</td>
<td>Must exhibit positive static stability.</td>
</tr>
<tr>
<td>2.c.8.</td>
<td>Stall warning (actuation of stall warning device) with nominal gross weight; wings level; and a deceleration rate of not more than three (3) knots per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Landing configuration</td>
<td>60–90 knots; ± 5° of bank.</td>
</tr>
<tr>
<td></td>
<td>(b) Clean configuration</td>
<td>Landing configuration speed + 10–20%.</td>
</tr>
</tbody>
</table>
TABLE B2C—ALTERNATIVE DATA SOURCE FOR FTD LEVEL 5 SMALL, MULTI-ENGINE (RECIPROCATING) AIRPLANE—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title and procedure</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.c.9.b.</td>
<td>Phugoid dynamics</td>
<td>Must have a phugoid with a period of 30–60 seconds. May not reach ½ or double amplitude in less than 2 cycles.</td>
</tr>
<tr>
<td>2.d.</td>
<td>Lateral Directional Tests</td>
<td></td>
</tr>
<tr>
<td>2.d.2.</td>
<td>Roll response</td>
<td>Must have a roll rate of 1½–2½/second.</td>
</tr>
<tr>
<td>2.d.4.b.</td>
<td>Spiral stability</td>
<td>Initial bank angle (± 5°) after 20 seconds.</td>
</tr>
<tr>
<td>2.d.7.</td>
<td>Dutch roll; yaw damper off.</td>
<td>A period of 2–5 seconds; and ½–2 cycles.</td>
</tr>
<tr>
<td>2.d.8.</td>
<td>Steady state sideslip</td>
<td>2°–10° of bank; 4–10 degrees of sideslip; and 2°–10° of aileron.</td>
</tr>
</tbody>
</table>

6. FTD System Response Time

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title and procedure</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.a.</td>
<td>Flight deck instrument systems response to an abrupt pilot controller input. One test is required in each axis (pitch, roll, yaw).</td>
<td>300 milliseconds or less.</td>
</tr>
</tbody>
</table>

TABLE B2D—ALTERNATIVE DATA SOURCE FOR FTD LEVEL 5 SMALL, SINGLE ENGINE (TURBO-PROPeller) AIRPLANE

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title and procedure</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>1.c.</td>
<td>Climb</td>
<td></td>
</tr>
<tr>
<td>1.f.</td>
<td>Engines</td>
<td></td>
</tr>
<tr>
<td>1.f.1.</td>
<td>Acceleration; idle to takeoff power</td>
<td>4–8 Seconds.</td>
</tr>
<tr>
<td>1.f.2.</td>
<td>Deceleration; takeoff power to idle</td>
<td>3–7 Seconds.</td>
</tr>
<tr>
<td>2.</td>
<td>Handling Qualities</td>
<td></td>
</tr>
<tr>
<td>2.c.</td>
<td>Longitudinal Tests</td>
<td></td>
</tr>
<tr>
<td>2.c.1.</td>
<td>Power change force</td>
<td></td>
</tr>
</tbody>
</table>
TABLE B2D—ALTERNATIVE DATA SOURCE FOR FTD LEVEL 5 SMALL, SINGLE ENGINE (TURBO-PROPELLER) AIRPLANE—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title and procedure</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.c.2.</td>
<td>Flap/slat change force</td>
<td>5–15 lbs (2.2–6.6 daN) of force (Pull).</td>
</tr>
<tr>
<td>(a)</td>
<td>Trim for straight and level flight with flaps fully retracted at a constant airspeed within the flaps-extended airspeed range. Do not adjust trim or power. Extend the flaps to 50% of full flap travel. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>5–15 lbs (2.2–6.6 daN) of force (Pull).</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Trim for straight and level flight with flaps extended to 50% of full flap travel, at a constant airspeed within the flaps-extended airspeed range. Do not adjust trim or power. Retract the flaps to zero. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>5–15 lbs (2.2–6.6 daN) of force (Push).</td>
</tr>
</tbody>
</table>

2.c.4.	Gear change force.	2–12 lbs (0.88–5.3 daN) of force (Pull).
(a)	Trim for straight and level flight with landing gear retracted at a constant airspeed within the landing gear-extended airspeed range. Do not adjust trim or power. Extend the landing gear. After stabilized, record stick force necessary to maintain original airspeed.	2–12 lbs (0.88–5.3 daN) of force (Pull).
OR		
(b)	Trim for straight and level flight with landing gear extended, at a constant airspeed within the landing gear-extended airspeed range. Do not adjust trim or power. Retract the landing gear. After stabilized, record stick force necessary to maintain original airspeed.	2–12 lbs (0.88–5.3 daN) of force (Push).

2.b.5.	Longitudinal trim	Must be able to trim longitudinal stick force to "zero" in each of the following configurations: cruise; approach; and landing.
2.c.7.	Longitudinal static stability	Must exhibit positive static stability.
2.c.8.	Stall warning (actuation of stall warning device) with nominal gross weight, wings level, and a deceleration rate of not more than three (3) knots per second.	
(a)	Landing configuration	60–90 knots; ± 5° of bank.
(b)	Clean configuration	Landing configuration speed = 10–20%.
TABLE B2D—ALTERNATIVE DATA SOURCE FOR FTD LEVEL 5 SMALL, SINGLE ENGINE (TURBO-PROPELLER) AIRPLANE—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title and procedure</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.c.6.b.</td>
<td>Phugoid dynamics</td>
<td>Must have a phugoid with a period of 30–60 seconds. May not reach 1⁄2 or double amplitude in less than 2 cycles.</td>
</tr>
</tbody>
</table>

2.d. Lateral Directional Tests

2.d.2. Roll response

Roll rate must be measured through at least 30° of roll. Aileron control must be deflected 1⁄3 (33.3 percent) of maximum travel.

Must have a roll rate of 4°–25°/second.

2.d.4.b. Spiral stability

Cruise configuration and normal cruise airspeed. Establish a 20°–30° bank. When stabilized, neutralize the aileron control and release. Must be completed in both directions of turn.

Initial bank angle (±15°) after 20 seconds.

2.d.6.b. Rudder response

Use 25 percent of maximum rudder deflection. (Applicable to approach or landing configuration.)

3°–6°/second yaw rate.

2.d.7. Dutch roll, yaw damper off

(Applicable to cruise and approach configurations.)

A period of 2–5 seconds; and 1⁄2–3 cycles.

2.d.8. Steady state sideslip

Use 50 percent rudder deflection. (Applicable to approach and landing configurations.)

2°–10° of bank; 4°–10° of sideslip; and 2°–10° of aileron.

6. FTD System Response Time

6.a. Flight deck instrument systems response to an abrupt pilot controller input. One test is required in each axis (pitch, roll, yaw).

300 milliseconds or less.

TABLE B2E—ALTERNATIVE DATA SOURCE FOR FTD LEVEL 5 MULTI-ENGINE (TURBO-PROPELLER) AIRPLANE

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title and procedure</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.c.</td>
<td>Climb.</td>
<td></td>
</tr>
<tr>
<td>1.f.</td>
<td>Engines</td>
<td></td>
</tr>
<tr>
<td>1.f.1.</td>
<td>Acceleration; idle to takeoff power</td>
<td>2–6 Seconds.</td>
</tr>
<tr>
<td>1.f.2.</td>
<td>Deceleration; takeoff power to idle</td>
<td>1–5 Seconds.</td>
</tr>
</tbody>
</table>

2. Handling Qualities

2.c. Longitudinal Tests

2.c.1. Power change force
TABLE B2E—ALTERNATIVE DATA SOURCE FOR FTD LEVEL 5 MULTI-ENGINE (TURBO-PROPELLER) AIRPLANE—Continued

The performance parameters in this table must be used to program the FTD if flight test data is not used to program the FTD.

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Applicable test</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QPS Requirement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Trim for straight and level flight at 80% of normal cruise airspeed with necessary power. Reduce power to flight idle. Do not change trim or configuration. After stabilized, record column force necessary to maintain original airspeed.</td>
<td>8 lbs (3.5 daN) of Push force to 8 lbs (3.5 daN) of Pull force.</td>
</tr>
<tr>
<td>OR</td>
<td>(b) Trim for straight and level flight at 80% of normal cruise airspeed with necessary power. Add power to maximum setting. Do not change trim or configuration. After stabilized, record column force necessary to maintain original airspeed.</td>
<td>12–22 lbs (5.3–9.7 daN) of force (Push).</td>
</tr>
<tr>
<td>2.c.2.</td>
<td>Flap/slat change force</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Trim for straight and level flight with flaps fully retracted at a constant airspeed within the flaps-extended airspeed range. Do not adjust trim or power. Extend the flaps to 50% of full flap travel. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>5–15 lbs (2.2–6.6 daN) of force (Pull).</td>
</tr>
<tr>
<td>OR</td>
<td>(b) Trim for straight and level flight with flaps extended to 50% of full flap travel, at a constant airspeed within the flaps-extended airspeed range. Do not adjust trim or power. Retract the flaps to zero. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>5–15 lbs (2.2–6.6 daN) of force (Push).</td>
</tr>
<tr>
<td>2.c.4.</td>
<td>Gear change force</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Trim for straight and level flight with landing gear retracted at a constant airspeed within the landing gear-extended airspeed range. Do not adjust trim or power. Extend the landing gear. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>2–12 lbs (0.88–5.3 daN) of force (Pull).</td>
</tr>
<tr>
<td>OR</td>
<td>(b) Trim for straight and level flight with landing gear extended, at a constant airspeed within the landing gear-extended airspeed range. Do not adjust trim or power. Retract the landing gear. After stabilized, record stick force necessary to maintain original airspeed.</td>
<td>2–12 lbs (0.88–5.3 daN) of force (Push).</td>
</tr>
<tr>
<td>2.b.5.</td>
<td>Longitudinal trim</td>
<td>Must be able to trim longitudinal stick force to “zero” in each of the following configurations: cruise; approach; and landing.</td>
</tr>
<tr>
<td>2.c.7.</td>
<td>Longitudinal static stability</td>
<td>Must exhibit positive static stability.</td>
</tr>
<tr>
<td>2.c.8.</td>
<td>Stall warning (actuation of stall warning device) with nominal gross weight; wings level; and a deceleration rate of not more than three (3) knots per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Landing configuration</td>
<td>80–100 knots; # 5° of bank.</td>
</tr>
<tr>
<td></td>
<td>(b) Clean configuration</td>
<td>Landing configuration speed = 10–20%.</td>
</tr>
</tbody>
</table>
TABLE B2E—ALTERNATIVE DATA SOURCE FOR FTD LEVEL 5 MULTI-ENGINE (TURBO-PROPELLER) AIRPLANE—Continued

<table>
<thead>
<tr>
<th>Applicable test</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.c.b.b. Phugoid dynamics</td>
<td>Must have a phugoid with a period of 30–60 seconds. May not reach 1/2 or double amplitude in less than 2 cycles.</td>
</tr>
<tr>
<td>2.d. Lateral Directional Tests</td>
<td></td>
</tr>
<tr>
<td>2.d.2. Roll response</td>
<td>Must have a roll rate of 4–25 degrees/second.</td>
</tr>
<tr>
<td>2.d.4.b. Spiral stability</td>
<td>Initial bank angle (±5°) after 20 seconds.</td>
</tr>
<tr>
<td>2.d.7. Dutch roll, yaw damper off</td>
<td>A period of 2–5 seconds; and 1½–2 cycles.</td>
</tr>
<tr>
<td>2.d.8. Steady state sideslip</td>
<td>2°–10° of bank; 4°–10° of sideslip; and 2°–10° of aileron.</td>
</tr>
</tbody>
</table>

6. FTD System Response Time

<table>
<thead>
<tr>
<th>Applicable test</th>
<th>Authorized performance range</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.a. Flight deck instrument systems response to an abrupt pilot controller input. One test is required in each axis (pitch, roll, yaw).</td>
<td>300 milliseconds or less.</td>
</tr>
</tbody>
</table>

END QPS REQUIREMENTS

5. ALTERNATIVE DATA SOURCES, PROCEDURES, AND INSTRUMENTATION: LEVEL 6 FTD ONLY

 a. Sponsors are not required to use the alternative data sources, procedures, and instrumentation. However, a sponsor may choose to use one or more of the alternative sources, procedures, and instrumentation described in Table B2F.

 END QPS REQUIREMENTS

BEGIN INFORMATION

b. It has become standard practice for experienced FTD manufacturers to use such techniques as a means of establishing data bases for new FTD configurations while awaiting the availability of actual flight test data; and then comparing this new data with the newly available flight test data. The results of such comparisons have, as reported by some recognized and experienced simulation experts, become increasingly consistent and indicate that these techniques, applied with appropriate experience, are becoming dependably accurate for the development of aerodynamic models for use in Level 6 FTDs. In reviewing this history, the NSPM has concluded that, with proper care, those who are experienced in the development of aerodynamic models for FTD application can successfully use these modeling techniques to acceptably alter the method by which flight test data may be acquired and, when applied to Level 6 FTDs, does not compromise the quality of that simulation.

d. The information in the table that follows (Table of Alternative Data Sources, Procedures, and Information: Level 6 FTD Only) is presented to describe an acceptable alternative to data sources for Level 6 FTD modeling and validation, and an acceptable alternative to the procedures and instrumentation found in the flight test methods traditionally accepted for gathering modeling and validation data.
(1) Alternative data sources that may be used for part or all of a data requirement are the Airplane Maintenance Manual, the Airplane Flight Manual (AFM), Airplane Design Data, the Type Inspection Report (TIR), Certification Data or acceptable supplemental flight test data.

(2) The NSPM recommends that use of the alternative instrumentation noted in Table B2F be coordinated with the NSPM prior to employment in a flight test or data gathering effort.

e. The NSPM position regarding the use of these alternative data sources, procedures, and instrumentation is based on three primary preconditions and presumptions regarding the objective data and FTD aerodynamic program modeling.

(1) Data gathered through the alternative means does not require angle of attack (AOA) measurements or control surface position measurements for any flight test. AOA can be sufficiently derived if the flight test program insures the collection of acceptable level, unaccelerated, trimmed flight data. Angle of attack may be validated by conducting the three basic “fly-by” trim tests.

The FTD time history tests should begin in level, unaccelerated, and trimmed flight, and the results should be compared with the flight test pitch angle.

(2) A simulation controls system model should be rigorously defined and fully mature. It should also include accurate gearing and cable stretch characteristics (where applicable) that are determined from actual aircraft measurements. Such a model does not require control surface position measurements in the flight test objective data for Level 6 FTD applications.

f. Table B2F is not applicable to Computer Controlled Aircraft FTDs.

Table B2F is applicable to Computer Controlled Aircraft FTDs.

The term “inertial measurement system” allows the use of a functional global positioning system (GPS).

END INFORMATION

<p>	Table B2F—ALTERNATIVE DATA SOURCES, PROCEDURES, AND INSTRUMENTATION LEVEL 6 FTD
Objective test reference number and title	Alternative data sources, procedures, and instrumentation
1.b.1. Performance. Takeoff. Ground acceleration time.	Data may be acquired through a synchronized video recording of a stop watch and the calibrated airplane airspeed indicator. Hand-record the flight conditions and airplane configuration.
1.b.7. Performance. Takeoff. Rejected takeoff.	Data may be acquired through a synchronized video recording of a stop watch and the calibrated airplane airspeed indicator. Hand-record the flight conditions and airplane configuration.
1.c.1. Performance. Climb. Normal climb all engines operating.	Data may be acquired with a synchronized video of calibrated airplane instruments and engine power throughout the climb range.
1.f.1. Performance. Engines. Acceleration	Data may be acquired with a synchronized video recording of engine instruments and throttle position.
1.f.2. Performance. Engines. Deceleration	Data may be acquired with a synchronized video recording of engine instruments and throttle position.
<table>
<thead>
<tr>
<th>Objective test reference number and title</th>
<th>Alternative data sources, procedures, and instrumentation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a.1.a.</td>
<td>Surface position data may be acquired from flight data recorder (FDR) sensor or, if no FDR sensor, at selected, significant column positions (encompassing significant column position data points), acceptable to the NSPM, using a control surface protractor on the ground. Force data may be acquired by using a hand held force gauge at the same column position data points.</td>
<td>For airplanes with reversible control systems, surface position data acquisition should be accomplished with winds less than 5 kts.</td>
</tr>
<tr>
<td></td>
<td>Surface position data may be acquired from flight data recorder (FDR) sensor or, if no FDR sensor, at selected, significant wheel positions (encompassing significant wheel position data points), acceptable to the NSPM, using a control surface protractor on the ground. Force data may be acquired by using a hand held force gauge at the same wheel position data points.</td>
<td>For airplanes with reversible control systems, surface position data acquisition should be accomplished with winds less than 5 kts.</td>
</tr>
<tr>
<td></td>
<td>Surface position data may be acquired from flight data recorder (FDR) sensor or, if no FDR sensor, at selected, significant rudder pedal positions (encompassing significant rudder pedal position data points), acceptable to the NSPM, using a control surface protractor on the ground. Force data may be acquired by using a hand held force gauge at the same rudder pedal position data points.</td>
<td>For airplanes with reversible control systems, surface position data acquisition should be accomplished with winds less than 5 kts.</td>
</tr>
<tr>
<td>2.a.4.</td>
<td>Breakout data may be acquired with a hand held force gauge. The remainder of the force to the stops may be calculated if the force gauge and a protractor are used to measure force after breakout for at least 25% of the total displacement capability.</td>
<td></td>
</tr>
<tr>
<td>2.a.5.</td>
<td>Data may be acquired through the use of force pads on the rudder pedals and a pedal position measurement device, together with design data for nosewheel position.</td>
<td></td>
</tr>
<tr>
<td>2.a.6.</td>
<td>Data may be acquired through calculations.</td>
<td></td>
</tr>
<tr>
<td>2.a.8.</td>
<td>Data may be acquired through the use of a temporary throttle quadrant scale to document throttle position. Use a synchronized video to record steady state instrument readings or hand-record steady state engine performance readings.</td>
<td></td>
</tr>
<tr>
<td>2.a.9.</td>
<td>Use of design or predicted data is acceptable. Data may be acquired by measuring deflection at "zero" and at "maximum."</td>
<td></td>
</tr>
<tr>
<td>Objective test reference number and title</td>
<td>Alternative data sources, procedures, and instrumentation</td>
<td>Notes</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>2.c.1. Handling qualities.</td>
<td>Data may be acquired using an inertial measurement system and a synchronized video of the calibrated airplane instruments, throttle position, and the force/position measurements of flight deck controls.</td>
<td>Power change dynamics test is acceptable using the same data acquisition methodology.</td>
</tr>
<tr>
<td>2.c.2. Handling qualities.</td>
<td>Data may be acquired using an inertial measurement system and a synchronized video of calibrated airplane instruments, flap/slat position, and the force/position measurements of flight deck controls.</td>
<td>Flap/slat change dynamics test is acceptable using the same data acquisition methodology.</td>
</tr>
<tr>
<td>2.c.4. Handling qualities.</td>
<td>Data may be acquired using an inertial measurement system and a synchronized video of the calibrated airplane instruments, gear position, and the force/position measurements of flight deck controls.</td>
<td>Gear change dynamics test is acceptable using the same data acquisition methodology.</td>
</tr>
<tr>
<td>2.c.5. Handling qualities.</td>
<td>Data may be acquired through use of an inertial measurement system and a synchronized video of flight deck controls position (previously calibrated to show related surface position) and engine instrument readings.</td>
<td></td>
</tr>
<tr>
<td>2.c.6. Handling qualities.</td>
<td>Data may be acquired through the use of an inertial measurement system and a synchronized video of the calibrated airplane instruments; a temporary, high resolution bank angle scale affixed to the attitude indicator; and a wheel and column force measurement indication.</td>
<td></td>
</tr>
<tr>
<td>2.c.7. Handling qualities.</td>
<td>Data may be acquired through the use of a synchronized video of the airplane flight instruments and a hand held force gauge.</td>
<td></td>
</tr>
<tr>
<td>2.c.8. Handling qualities.</td>
<td>Data may be acquired through a synchronized video recording of a stop watch and the calibrated airplane airspeed indicator. Hand record the flight conditions and airplane configuration.</td>
<td>Airspeeds may be cross checked with those in the TIR and AFM.</td>
</tr>
<tr>
<td>2.c.9.a. Handling qualities.</td>
<td>Data may be acquired using an inertial measurement system and a synchronized video of the calibrated airplane instruments and the force/position measurements of flight deck controls.</td>
<td></td>
</tr>
<tr>
<td>2.c.10. Handling qualities.</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of the calibrated airplane instruments and the force/position measurements of flight deck controls.</td>
<td></td>
</tr>
<tr>
<td>2.c.11. Handling qualities.</td>
<td>May use design data, production flight test schedule, or maintenance specification, together with an SOC.</td>
<td></td>
</tr>
<tr>
<td>2.d.2. Handling qualities.</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of the calibrated airplane instruments and the force/position measurements of flight deck lateral controls.</td>
<td></td>
</tr>
</tbody>
</table>
TABLE B2F—ALTERNATIVE DATA SOURCES, PROCEDURES, AND INSTRUMENTATION LEVEL 6 FTD—Continued

<table>
<thead>
<tr>
<th>Objective test reference number and title</th>
<th>Alternative data sources, procedures, and instrumentation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.d.3. ..</td>
<td>Handling qualities. Lateral directional tests. (a) Roll overshoot. OR (b) Roll response to flight deck roll controller step input.</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of the calibrated airplane instruments and the force/position measurements of flight deck lateral controls.</td>
</tr>
<tr>
<td>2.d.4. ..</td>
<td>Handling qualities. Lateral directional tests. Spiral stability.</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of the calibrated airplane instruments; the force/position measurements of flight deck controls; and a stop watch.</td>
</tr>
<tr>
<td>2.d.6.a. ...</td>
<td>Handling qualities. Lateral directional tests. Rudder response.</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of the calibrated airplane instruments; the force/position measurements of rudder pedals.</td>
</tr>
<tr>
<td>2.d.7. ..</td>
<td>Handling qualities. Lateral directional tests. Dutch roll, (yaw damper OFF).</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of the calibrated airplane instruments and the force/position measurements of flight deck controls.</td>
</tr>
<tr>
<td>2.d.8. ..</td>
<td>Handling qualities. Lateral directional tests. Steady state sideslip.</td>
<td>Data may be acquired by using an inertial measurement system and a synchronized video of the calibrated airplane instruments and the force/position measurements of flight deck controls.</td>
</tr>
</tbody>
</table>

ATTACHMENT 3 TO APPENDIX B TO PART 60—FLIGHT TRAINING DEVICE (FTD) SUBJECTIVE EVALUATION

BEGIN INFORMATION

1. DISCUSSION

a. The subjective tests provide a basis for evaluating the capability of the FTD to perform over a typical utilization period. The items listed in the Table of Functions and Subjective Tests are used to determine whether the FTD competently simulates each required maneuver, procedure, or task; and verifying correct operation of the FTD controls, instruments, and systems. The tasks do not limit or exceed the authorizations for use of a given level of FTD as described on the SOQ or as approved by the TPAA. All items in the following paragraphs are subject to examination.

b. All simulated airplane systems functions will be assessed for normal and, where appropriate, alternate operations. Simulated airplane systems are listed separately under “Any Flight Phase” to ensure appropriate attention to systems checks. Operational navigation systems (including inertial navigation systems, global positioning systems, or other long-range systems) and the associated electronic display systems will be evaluated if installed. The NSP pilot will include in his report to the TPAA, the effect of the system operation and any system limitation.

c. At the request of the TPAA, the NSP Pilot may assess the FTD for a special aspect of a sponsor’s training program during the functions and subjective portion of an evaluation. Such an assessment may include a portion of a specific operation (e.g., a Line Oriented Flight Training (LOFT) scenario) or special emphasis items in the sponsor’s training program. Unless directly related to a requirement for the qualification level, the results of such an evaluation would not affect the qualification of the FTD.

END INFORMATION
TABLE B3A—Table of Functions and Subjective Tests Level 6 FTD

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QPS requirements</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Preflight</td>
<td>Accomplish a functions check of all installed switches, indicators, systems, and equipment at all crewmembers’ and instructors’ stations, and determine that the flight deck (or flight deck area) design and functions replicate the appropriate airplane.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Surface Operations (pre-takeoff)</td>
<td></td>
</tr>
<tr>
<td>2.a.</td>
<td>Engine start:</td>
</tr>
<tr>
<td>2.a.1.</td>
<td>Normal start.</td>
</tr>
<tr>
<td>2.a.2.</td>
<td>Alternative procedures start.</td>
</tr>
<tr>
<td>2.a.3.</td>
<td>Abnormal procedures start/shut down.</td>
</tr>
<tr>
<td>2.b.</td>
<td>Pushback/Powerback (powerback requires visual system).</td>
</tr>
<tr>
<td>3. Takeoff (requires appropriate visual system as set out in Table B1A, item 6; Appendix B, Attachment 1.)</td>
<td></td>
</tr>
<tr>
<td>3.a.</td>
<td>Instrument takeoff:</td>
</tr>
<tr>
<td>3.a.1.</td>
<td>Engine checks (e.g., engine parameter relationships, propeller/mixture controls).</td>
</tr>
<tr>
<td>3.a.2.</td>
<td>Acceleration characteristics.</td>
</tr>
<tr>
<td>3.a.3.</td>
<td>Nosewheel/rudder steering.</td>
</tr>
<tr>
<td>3.a.4.</td>
<td>Landing gear, wing flap, leading edge device operation.</td>
</tr>
<tr>
<td>3.b.</td>
<td>Rejected takeoff:</td>
</tr>
<tr>
<td>3.b.1.</td>
<td>Deceleration characteristics.</td>
</tr>
<tr>
<td>3.b.2.</td>
<td>Brakes/engine reverser/ground spoiler operation.</td>
</tr>
<tr>
<td>3.b.3.</td>
<td>Nosewheel/rudder steering.</td>
</tr>
<tr>
<td>4. In-Flight Operations</td>
<td></td>
</tr>
<tr>
<td>4.b.</td>
<td>Cruise:</td>
</tr>
<tr>
<td>4.b.1.</td>
<td>Demonstration of performance characteristics (speed vs. power).</td>
</tr>
<tr>
<td>4.b.2.</td>
<td>Normal turns.</td>
</tr>
<tr>
<td>4.b.3.</td>
<td>Demonstration of high altitude handling.</td>
</tr>
<tr>
<td>4.b.4.</td>
<td>Demonstration of high airspeed handling/overspeed warning.</td>
</tr>
<tr>
<td>4.b.5.</td>
<td>Demonstration of Mach effects on control and trim.</td>
</tr>
<tr>
<td>4.b.7.</td>
<td>In-Flight engine shutdown (procedures only).</td>
</tr>
<tr>
<td>4.b.8.</td>
<td>In-Flight engine restart (procedures only).</td>
</tr>
<tr>
<td>4.b.9.</td>
<td>Specific flight characteristics.</td>
</tr>
<tr>
<td>4.b.10.</td>
<td>Response to loss of flight control power.</td>
</tr>
<tr>
<td>4.b.11.</td>
<td>Response to other flight control system failure modes.</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Operations tasks</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>4.b.13</td>
<td>Effects of airframe/engine icing.</td>
</tr>
<tr>
<td>4.c.</td>
<td>Other flight phase:</td>
</tr>
<tr>
<td>4.c.1.</td>
<td>Approach to stalls in the following configurations:</td>
</tr>
<tr>
<td>4.c.1.a.</td>
<td>Cruise.</td>
</tr>
<tr>
<td>4.c.1.b.</td>
<td>Takeoff or approach.</td>
</tr>
<tr>
<td>4.c.1.c.</td>
<td>Landing.</td>
</tr>
<tr>
<td>4.c.2.</td>
<td>High angle of attack maneuvers in the following configurations:</td>
</tr>
<tr>
<td>4.c.2.a.</td>
<td>Cruise.</td>
</tr>
<tr>
<td>4.c.2.b.</td>
<td>Takeoff or approach.</td>
</tr>
<tr>
<td>4.c.2.c.</td>
<td>Landing.</td>
</tr>
<tr>
<td>4.c.3.</td>
<td>Slow flight.</td>
</tr>
<tr>
<td>4.c.4.</td>
<td>Holding.</td>
</tr>
</tbody>
</table>

5. Approaches

5.a. Non-precision Instrument Approaches:

5.a.1. With use of autopilot and autothrottle, as applicable.

5.a.2. Without use of autopilot and autothrottle, as applicable.

5.a.3. With 10 knot tail wind.

5.a.4. With 10 knot crosswind.

5.b. Precision Instrument Approaches:

5.b.1. With use of autopilot, autothrottle, and autoland, as applicable.

5.b.2. Without use of autopilot, autothrottle, and autoland, as applicable.

5.b.3. With 10 knot tail wind.

5.b.4. With 10 knot crosswind.

6. Missed Approach

6.b. Automatically controlled (if applicable).

7. Any Flight Phase, as appropriate

7.a. Normal system operation (installed systems).

7.b. Abnormal/Emergency system operation (installed systems).

7.c. Flap operation.

7.d. Landing gear operation.

7.e. Engine Shutdown and Parking.

7.e.1. Systems operation.

7.e.2. Parking brake operation.

8. Instructor Operating Station (IOS), as appropriate. Functions in this section are subject to evaluation only if appropriate for the airplane and/or installed on the specific FTD involved.
TABLE B3A—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS LEVEL 6 FTD—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.a.</td>
<td>Power Switch(es).</td>
</tr>
<tr>
<td>8.b.</td>
<td>Airplane conditions.</td>
</tr>
<tr>
<td>8.b.1. ...</td>
<td>Gross weight, center of gravity, and fuel loading and allocation.</td>
</tr>
<tr>
<td>8.b.2. ...</td>
<td>Airplane systems status.</td>
</tr>
<tr>
<td>8.b.3. ...</td>
<td>Ground crew functions (e.g., external power, push back).</td>
</tr>
<tr>
<td>8.c.</td>
<td>Airports.</td>
</tr>
<tr>
<td>8.c.1. ...</td>
<td>Selection.</td>
</tr>
<tr>
<td>8.c.2. ...</td>
<td>Runway selection.</td>
</tr>
<tr>
<td>8.c.3. ...</td>
<td>Preset positions (e.g., ramp, over FAF).</td>
</tr>
<tr>
<td>8.d.</td>
<td>Environmental controls.</td>
</tr>
<tr>
<td>8.d.1. ...</td>
<td>Temperature.</td>
</tr>
<tr>
<td>8.d.2. ...</td>
<td>Climate conditions (e.g., ice, rain).</td>
</tr>
<tr>
<td>8.d.3. ...</td>
<td>Wind speed and direction.</td>
</tr>
<tr>
<td>8.e.</td>
<td>Airplane system malfunctions.</td>
</tr>
<tr>
<td>8.e.1. ...</td>
<td>Insertion/deletion.</td>
</tr>
<tr>
<td>8.e.2. ...</td>
<td>Problem clear.</td>
</tr>
<tr>
<td>8.f.</td>
<td>Locks, Freezes, and Repositioning.</td>
</tr>
<tr>
<td>8.f.1. ...</td>
<td>Problem (all) freeze/release.</td>
</tr>
<tr>
<td>8.f.2. ...</td>
<td>Position (geographic) freeze/release.</td>
</tr>
<tr>
<td>8.f.3. ...</td>
<td>Repositioning (locations, freezes, and releases).</td>
</tr>
<tr>
<td>8.f.4. ...</td>
<td>Ground speed control.</td>
</tr>
<tr>
<td>8.f.5. ...</td>
<td>Remote IOS, if installed.</td>
</tr>
<tr>
<td>9. Sound Controls. On/off/adjustment</td>
<td></td>
</tr>
<tr>
<td>10. Control Loading System (as applicable) On/off/emergency stop.</td>
<td></td>
</tr>
<tr>
<td>11.a.</td>
<td>Position.</td>
</tr>
<tr>
<td>11.b.</td>
<td>Adjustments.</td>
</tr>
</tbody>
</table>

End QPS Requirements

TABLE B3B—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS LEVEL 5 FTD

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
</table>

Tasks in this table are subject to evaluation if appropriate for the airplane system or systems simulated as indicated in the SOQ Configuration List as defined in Appendix B, Attachment 2 of this part.

1. Preflight
 - Accomplish a functions check of all installed switches, indicators, systems, and equipment at all crewmembers' and instructors' stations, and determine that the flight deck (or flight deck area) design and functions replicate the appropriate airplane.

2. Surface Operations (pre-takeoff)
TABLE B3B—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS LEVEL 5 FTD—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
<th>QPS requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a.</td>
<td>Engine start (if installed):</td>
<td>Tasks in this table are subject to evaluation if appropriate for the airplane system or systems simulated as indicated in the SOQ Configuration List as defined in Appendix B, Attachment 2 of this part.</td>
</tr>
<tr>
<td>2.a.1.</td>
<td>Normal start.</td>
<td></td>
</tr>
<tr>
<td>2.a.2.</td>
<td>Alternative procedures start.</td>
<td></td>
</tr>
<tr>
<td>2.a.3.</td>
<td>Abnormal/Emergency procedures start/shut down.</td>
<td></td>
</tr>
<tr>
<td>3. In-Flight Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.a.</td>
<td>Normal climb.</td>
<td></td>
</tr>
<tr>
<td>3.b.</td>
<td>Cruise:</td>
<td></td>
</tr>
<tr>
<td>3.b.1.</td>
<td>Performance characteristics (speed vs. power).</td>
<td></td>
</tr>
<tr>
<td>3.b.2.</td>
<td>Normal turns.</td>
<td></td>
</tr>
<tr>
<td>3.c.</td>
<td>Normal descent.</td>
<td></td>
</tr>
<tr>
<td>4. Approaches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.a.</td>
<td>Coupled instrument approach maneuvers (as applicable for the systems installed).</td>
<td></td>
</tr>
<tr>
<td>5. Any Flight Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.</td>
<td>Normal system operation (Installed systems).</td>
<td></td>
</tr>
<tr>
<td>5.b.</td>
<td>Abnormal/Emergency system operation (Installed systems).</td>
<td></td>
</tr>
<tr>
<td>5.c.</td>
<td>Flap operation.</td>
<td></td>
</tr>
<tr>
<td>5.d.</td>
<td>Landing gear operation</td>
<td></td>
</tr>
<tr>
<td>5.e.</td>
<td>Engine Shutdown and Parking (if installed).</td>
<td></td>
</tr>
<tr>
<td>5.e.1.</td>
<td>Systems operation.</td>
<td></td>
</tr>
<tr>
<td>5.e.2.</td>
<td>Parking brake operation</td>
<td></td>
</tr>
<tr>
<td>6. Instructor Operating Station (IOS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.b.</td>
<td>Preset positions—ground, air.</td>
<td></td>
</tr>
<tr>
<td>6.c.</td>
<td>Airplane system malfunctions (Installed systems).</td>
<td></td>
</tr>
<tr>
<td>6.c.1.</td>
<td>Insertions/deletion.</td>
<td></td>
</tr>
<tr>
<td>6.c.2.</td>
<td>Problem clear.</td>
<td></td>
</tr>
</tbody>
</table>

TABLE B3C—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS LEVEL 4 FTD

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
<th>QPS requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Level 4 FTDs are required to have at least one operational system. The NSPM will accomplish a functions check of all installed systems, switches, indicators, and equipment at all crewmembers’ and instructors’ stations, and determine that the flight deck (or flight deck area) design and functions replicate the appropriate airplane.</td>
<td>Tasks in this table are subject to evaluation if appropriate for the airplane system or systems simulated as indicated in the SOQ Configuration List as defined in Appendix B, Attachment 2 of this part.</td>
</tr>
</tbody>
</table>
ATTACHMENT 4 TO APPENDIX B TO PART 60—SAMPLE DOCUMENTS

BEGIN INFORMATION

TABLE OF CONTENTS

Title of Sample

Figure B4A Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation

Figure B4B Attachment: FTD Information Form

Figure B4C Sample Letter of Compliance

Figure B4D Sample Qualification Test Guide Cover Page

Figure B4E Sample Statement of Qualification—Certificate

Figure B4F Sample Statement of Qualification—Configuration List

Figure B4G Sample Statement of Qualification—List of Qualified Tasks

Figure B4H Sample Continuing Qualification Evaluation Requirements Page

Figure B4I Sample MQTG Index of Effective FTD Directives
Attachment 4 to Appendix B to Part 60—
Figure B4A – Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation.

INFORMATION

Date ______
Edward D. Cook, Ph.D.
Manager, National Simulator Program
Federal Aviation Administration
100 Hartsfield Centre Parkway. Suite 400
Atlanta, GA 30354

Dear Dr. Cook:

RE: Request for Initial/Upgrade Evaluation Date

This is to advise you of our intent to request an (initial or upgrade) evaluation of our (FTD Manufacturer), (Aircraft Type/Level) Flight Training Device (FTD), (FAA ID Number, if previously qualified), located in (City, State) at the (Facility) on (Proposed Evaluation Date). (The proposed evaluation date shall not be more than 180 days following the date of this letter). The FTD will be sponsored by (Name of Training Center/Air Carrier), FAA Designator (4 Letter Code). The FTD will be sponsored as follows; (Select One)

☐ The FTD will be used within the sponsor’s FAA approved training program and placed on the sponsor’s Training/Operations Specifications.

☐ The FTD will be used for dry lease only.

We agree to provide the formal request for the evaluation to your staff as follows: (check one)

☐ For QTG tests run at the factory, not later, than 45 days prior to the proposed evaluation date with the additional “1/3 on-site” tests provided not later than 14 days prior to the proposed evaluation date.

☐ For QTG tests run on-site, not later than 30 days prior to the proposed evaluation date.

We understand that the formal request will contain the following documents:

5. Principal Operations Inspector (POI) or Training Center Program Manager’s (TCPM) endorsement.
6. Complete QTG.

If we are unable to meet the above requirements, we understand this may result in a significant delay, perhaps 45 days or more, in rescheduling and completing the evaluation.

(The sponsor should add additional comments as necessary).

Please contact (Name Telephone and Fax Number of Sponsor’s Contact) to confirm the date for this initial evaluation. We understand a member of your National Simulator Program staff will respond to this request within 14 days.

A copy of this letter of intent has been provided to (Name), the Principal Operations Inspector (POI) and/or Training Center Program Manager (TCPM).

Sincerely,

Attachment: FTD Information and Characteristics Form
cc: POI/TCPM
Attachment 4 to Appendix B to Part 60

Figure B4B – Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation

Attachment: FSTD Information Form

INFORMATION

<table>
<thead>
<tr>
<th>Date:</th>
<th>Section 1. FSTD Information and Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSTD Location:</td>
</tr>
<tr>
<td></td>
<td>Address:</td>
</tr>
<tr>
<td></td>
<td>Physical Address:</td>
</tr>
<tr>
<td></td>
<td>City:</td>
</tr>
<tr>
<td></td>
<td>State:</td>
</tr>
<tr>
<td></td>
<td>Country:</td>
</tr>
<tr>
<td></td>
<td>ZIP:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsor Name:</th>
<th>Nearest Airport:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Four Letter FAA Designator)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Evaluation Requested:</th>
<th>Initial</th>
<th>Upgrade</th>
<th>Continuing Qualification</th>
<th>Special</th>
<th>Reinstatement</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Aircraft Make/model/series:</th>
<th>Date: Level MM/DD/YYYY</th>
<th>Manufacturer’s Identification or Serial Number:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Initial Qualification:</th>
<th>Level MM/DD/YYYY</th>
<th>eMQTG</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Upgrade Qualification:</th>
<th>Date: Level MM/DD/YYYY</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Qualification Basic:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Provisional Status</th>
</tr>
</thead>
</table>

- | | | | | |

Other Technical Information:

- FAA FSTD ID No: |
- Convertible FSTD: Yes: Date of Manufacture: MM/DD/YYYY |
- Related FAA ID No. (If Applicable): |
- Engine model(s) and data revision: |
- FMS identification and revision level: |
- Visual system manufacturer/model: |
- Flight control data revision: |
- Motion system manufacturer/type: |
- FSTD computer(s) identification: |

National Aviation Authority (NAA):

- NAA FSTD ID No: |
- Last NAA Evaluation Date: |

<table>
<thead>
<tr>
<th>NAA Qualification Level:</th>
<th>NAA Qualification Basis:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Visual System Manufacturer and Type:</th>
<th>FSTD Seats Available:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Motion System Manufacturer and Type:</td>
</tr>
</tbody>
</table>

186
<table>
<thead>
<tr>
<th>Aircraft Equipment:</th>
<th>Engine Type(s):</th>
<th>Flight Instrumentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EFIS ☐ HUD ☐ HGS ☐ GPWS ☐ TCAS ☐ FMS Type: ☐ WX Radar ☐ Other: ☐</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Airport Models:</th>
<th>Engine Instrumentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.1 Airport Designator</td>
<td>EICAS ☐ FADAC ☐ Other: ☐</td>
</tr>
<tr>
<td>3.6.2 Airport Designator</td>
<td></td>
</tr>
<tr>
<td>3.6.3 Airport Designator</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circle to Land:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.1 Airport Designator</td>
</tr>
<tr>
<td>3.7.3 Landing Runway</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visual Ground Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8.1 Airport Designator</td>
</tr>
<tr>
<td>3.8.3 Landing Runway</td>
</tr>
</tbody>
</table>

Section 2. Supplementary Information

FAA Training Program Approval Authority:
- POI ☐ TCFM ☐ Other: ☐

Name:
-

Office:
-

Tel:
-

Fax:
-

Email:
-

FSTD Scheduling Person:

Name:
-

Address 1:
-

Address 2:
-

City:
-

State:
-

ZIP:
-

Email:
-

Tel:
-

Fax:
-

FSTD Technical Contact:

Name:
-

Address 1:
-

Address 2:
-

City:
-

State:
-

ZIP:
-

Email:
-

Tel:
-

Fax:
-

Section 3. Training, Testing and Checking Considerations

<table>
<thead>
<tr>
<th>Area/Function/Maneuver</th>
<th>Requested</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Pilot - Training / Checks: (142)</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Commercial Pilot - Training / Checks: (142)</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Multi-Engine Rating - Training / Checks (142)</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Instrument Rating - Training / Checks (142)</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Type Rating - Training / Checks (135/121/142)</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Proficiency Checks (135/121/142)</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>CAT I: (RVR 2400/1800 ft. DH/200 ft)</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>
Attachment 4 to Appendix B to Part 60—
Figure B4B – Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation

Attachment: FSTD Information Form

<table>
<thead>
<tr>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT II (RVR 1200 ft, DH 100 ft)</td>
</tr>
<tr>
<td>CAT III * (lowest minimum)</td>
</tr>
<tr>
<td>RVR</td>
</tr>
<tr>
<td>0 ft</td>
</tr>
<tr>
<td>* State CAT IIIc (c 700 ft), CAT IIIb (c 150 ft), or CAT IIIa (0 ft)</td>
</tr>
<tr>
<td>Circling Approach</td>
</tr>
<tr>
<td>Windshear Training:</td>
</tr>
<tr>
<td>Windshear Training IAW 121.409(d) (121 Turbojets Only)</td>
</tr>
<tr>
<td>Generic Unusual Attitudes and Recoveries within the Normal Flight Envelope</td>
</tr>
<tr>
<td>Specific Unusual Attitudes Recoveries</td>
</tr>
<tr>
<td>Auto-coupled Approach/Auto Go Around</td>
</tr>
<tr>
<td>Auto-tandem/Roll Out Guidance</td>
</tr>
<tr>
<td>TCAS/ACAS I/II</td>
</tr>
<tr>
<td>WX-Radar</td>
</tr>
<tr>
<td>HUD</td>
</tr>
<tr>
<td>HGS</td>
</tr>
<tr>
<td>EFVS</td>
</tr>
<tr>
<td>Future Air Navigation Systems</td>
</tr>
<tr>
<td>GPWS / EGPRS</td>
</tr>
<tr>
<td>ETOPS Capability</td>
</tr>
<tr>
<td>GPS</td>
</tr>
<tr>
<td>SMGCS</td>
</tr>
<tr>
<td>Helicopter Slope Landings</td>
</tr>
<tr>
<td>Helicopter External Load Operations</td>
</tr>
<tr>
<td>Helicopter Pinnacle Approach to Landings</td>
</tr>
<tr>
<td>Helicopter Night Vision Maneuvers</td>
</tr>
<tr>
<td>Helicopter Category A Takeoffs</td>
</tr>
</tbody>
</table>
Federal Aviation Administration, DOT
Pt. 60, App. B

Attachment 4 to Appendix B to Part 60—
Figure B4C—Sample Letter of Compliance
INFORMATION

(Date)

Mr. (Name of Training Program Approval Authority):
(Name of FAA FSDO)
(Address)
(City/State/Zip)

Dear Mr. (Name of TPAA):

RE: Letter of Compliance

(Operator Sponsor Name) requests evaluation of our (Aircraft Type) FTD for Level (__) qualification. The (FTD Manufacturer Name) FTD with (Visual System Manufacturer Name/Model) system is fully defined on the FTD Information page of the accompanying Qualification Test Guide (QTG). We have completed the tests of the FTD and certify that it meets all applicable requirements of FAR parts 121, 125, or 135), and the guidance of (AC 120-40B or 14 CFR Part 60). Appropriate hardware and software configuration control procedures have been established. Our Pilot(s), (Name(s)), who are qualified on (Aircraft Type) aircraft have assessed the FTD and have found that it conforms to the (Operator/Sponsor) (Aircraft Type) flight deck configuration and that the simulated systems and subsystems function equivalently to those in the aircraft. The above named pilot(s) have also assessed the performance and the flying qualities of the FTD and find that it represents the respective aircraft.

(Added Comments may be placed here)

Sincerely,
(Sponsor Representative)

cc:
FAA, National Simulator Program
Attachment 4 to Appendix B to Part 60—
Figure B4D – Sample Qualification Test Guide Cover Page
INFORMATION

SPONSOR NAME
SPONSOR ADDRESS

FAA QUALIFICATION TEST GUIDE
(SPECIFIC AIRPLANE MODEL)
for example
Stratos BA797-320A
(Type of FTD)
(FTD Identification Including Manufacturer, Serial Number, Visual System Used)
(FTD Level)
(Qualification Performance Standard Used)
(FTD Location)

FAA Initial Evaluation
Date: ___________

_________________ Date: ___________
(Sponsor)

_________________ Date: ___________
Manager, National Simulator Program, FAA
Certificate of Qualification

This is to certify that representatives of the National Simulator Program
Completed an evaluation of the

Go-Fast Airlines
Farnsworth Z-100 Flight Training Device
FAA Identification Number 998

And pursuant to 14 CFR Part 60 found it to meet its original qualification basis, AC 120-45A (MM/DD/YY)

The Master Qualification Test Guide and the attached
Configuration List and Restrictions List
Provide the Qualification Basis for this device to operate at
Level 6

Until March 31, 2010

Unless sooner rescinded or extended by the National Simulator Program Manager

February 15, 2009 B. Williamson
(date) (for the NSPM)
Certificate of Qualification Configuration List

Date:

<table>
<thead>
<tr>
<th>Sponsor Name:</th>
<th>FSTD Location:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td>Physical Address:</td>
</tr>
<tr>
<td>State:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>ZIP:</td>
<td></td>
</tr>
<tr>
<td>Manager</td>
<td></td>
</tr>
<tr>
<td>Sponsor ID No: (Four Letter FAA Designator)</td>
<td>Nearest Airport: (Airport Designator)</td>
</tr>
</tbody>
</table>

Type of Evaluation Requested:

- [] Initial
- [] Upgrade
- [] Continuing Qualification
- [] Special
- [] Reinstatement

Aircraft Make/model/series:

<table>
<thead>
<tr>
<th>Initial Qualification: (If Applicable)</th>
<th>Date:</th>
<th>Level:</th>
<th>Manufacturer's Identification or Serial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MM/DD/YYYY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upgrade Qualification: (If Applicable)</th>
<th>Date:</th>
<th>Level:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MM/DD/YYYY</td>
<td></td>
<td>eMQTG</td>
</tr>
</tbody>
</table>

Qualification Basis:

- [] A
- [] B
- [] Interim C
- [] D
- [] 6
- [] 7
- [] Provisional Status

Other Technical Information:

- FAA FSTD ID No: (If Applicable) | FSTD Manufacturer: |
- Convertible FSTD: [] Yes: Date of Manufacture: MM/DD/YYYY
- Related FAA ID No: (If Applicable) | Sponsor FSTD ID No: |
- Engine model(s) and data revision: | Source of aerodynamic model: |
- FMS identification and revision level: | Source of aerodynamic coefficient data: |
- Visual system manufacturer/model: | Aerodynamic data revision number: |
- Flight control data revision: | Visual system display: |
- Motion system manufacturer/type: | FSTD computer(s) identification: |

National Aviation Authority (NAA):

- (If Applicable)

NAA FSTD ID No:	Last NAA Evaluation Date:

NAA Qualification Level:

NAA Qualification Basis:
Section 2. Supplementary Information

<table>
<thead>
<tr>
<th>FAA Training Program Approval Authority:</th>
<th>POI</th>
<th>TCPP</th>
<th>Other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FSTD Scheduling Person:

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address 1:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>ZIP:</td>
<td></td>
</tr>
<tr>
<td>Tel:</td>
<td></td>
</tr>
<tr>
<td>Email:</td>
<td></td>
</tr>
</tbody>
</table>

FSTD Technical Contact:

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address 1:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>ZIP:</td>
<td></td>
</tr>
<tr>
<td>Tel:</td>
<td></td>
</tr>
<tr>
<td>Email:</td>
<td></td>
</tr>
</tbody>
</table>

Section 3. Training, Testing and Checking Considerations

<table>
<thead>
<tr>
<th>Area/Function/Maneuver</th>
<th>Requested</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Pilot - Training / Checks: (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Pilot - Training / Checks: (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Engine Rating - Training / Checks: (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument Rating - Training / Checks: (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type Rating - Training / Checks: (15/12/142)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attachment 4 to Appendix B to Part 60—
Figure B4F – Sample Statement of Qualification; Configuration List
INFORMATION

<table>
<thead>
<tr>
<th>Proficiency Checks (135/121/142)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT I: (RVR 2400/1800 ft, DH 200 ft)</td>
<td></td>
</tr>
<tr>
<td>CAT II: (RVR 1200 ft, DH 100 ft)</td>
<td></td>
</tr>
<tr>
<td>CAT III*: (lowest minimum) RVR ___ ft.</td>
<td></td>
</tr>
</tbody>
</table>
* State CAT III (< 200 ft), CAT IIIb (< 150 ft), or CAT IIIc (< 10 ft).

- Circling Approach
- Windshear Training:
- Windshear Training IAW 121.409(d) (121 Turbojets Only)
- Generic Unusual Attitudes and Recoveries within the Normal Flight Envelope
- Specific Unusual Attitudes Recoveries
- Auto-coupled Approach/ Auto Go Around
- Auto-land / Roll Out Guidance
- TCAS/ACAS I / II
- WX-Radar
- HUD
- HGS
- EFVS
- Future Air Navigation Systems
- GPWS / EGPWS
- ETOPS Capability
- GPS
- SMGCS
- Helicopter Slope Landings
- Helicopter External Load Operations
- Helicopter Pinnacle Approach to Landings
- Helicopter Night Vision Maneuvers
- Helicopter Category A Takeoffs
Go Fast Airline Training -- Farnsworth Z-100 -- Level D -- FAA ID# 999

The FTD is qualified to perform all of the tasks listed in Appendix 1, Table B1B for its assigned level of qualification except for the following listed tasks.

- Qualifying for all tasks in Table B1B, for which the sponsor has requested qualification, except for the following:
 - Circling Approach
 - Emergency Descent (maximum rate)
 - Inflight Fire and Smoke Removal
 - Rapid Decompression
 - Emergency Evacuation

- Additional tasks for which this FTD is qualified (i.e., in addition to the list in Table B1B):
 NONE
Attachment 4 to Appendix B to Part 60—
Figure B4H – Sample Continuing Qualification Evaluation Requirements Page

INFORMATION

<table>
<thead>
<tr>
<th>Continuing qualification Evaluation Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed at conclusion of Initial Evaluation</td>
</tr>
<tr>
<td>Continuing qualification Evaluations to be conducted each</td>
</tr>
<tr>
<td>(fill in) ___ months</td>
</tr>
<tr>
<td>Allotting _____ hours of FTD time.</td>
</tr>
<tr>
<td>Signed:</td>
</tr>
<tr>
<td>NSPM / Evaluation Team Leader</td>
</tr>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

Revision:

Based on (enter reasoning):

<table>
<thead>
<tr>
<th>Continuing qualification Evaluations are to be conducted each</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fill in) ___ months. Allotting _____ hours.</td>
</tr>
<tr>
<td>Signed:</td>
</tr>
<tr>
<td>NSPM / Evaluation Team Leader</td>
</tr>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

Revision:

Based on (enter reasoning):

<table>
<thead>
<tr>
<th>Continuing qualification Evaluations are to be conducted each</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fill in) ___ months. Allotting _____ hours.</td>
</tr>
<tr>
<td>Signed:</td>
</tr>
<tr>
<td>NSPM / Evaluation Team Leader</td>
</tr>
<tr>
<td>Date</td>
</tr>
</tbody>
</table>

(Repeat as Necessary)
Table of Contents

1. Introduction.
2. Applicability (§60.1) and (§60.2).
3. Definitions (§60.3).
4. Qualification Performance Standards (§60.4).
5. Quality Management System (§60.5).
6. Sponsor Qualification Requirements (§60.7).
7. Additional Responsibilities of the Sponsor (§60.9).
8. FFS Use (§60.11).
9. FFS Objective Data Requirements (§60.13).
10. Special Equipment and Personnel Requirements for Qualification of the FFS (§60.14).
11. Initial (and Upgrade) Qualification Requirements (§60.15).
12. Additional Qualifications for a Currently Qualified FFS (§60.16).
13. Previously Qualified FFSs (§60.17).
15. Logging FFS Discrepancies (§60.20).
16. Interim Qualification of FFSs for New Helicopter Types or Models (§60.21).
17. Modifications to FFSs (§60.23).
18. Operations with Missing, Malfunctioning, or Inoperative Components (§60.25).
19. Automatic Loss of Qualification and Procedures for Restoration of Qualification (§60.27).
20. Other Losses of Qualification and Procedures for Restoration of Qualification (§60.29).
21. Record Keeping and Reporting (§60.31).
22. Applications, Logbooks, Reports, and Records: Fraud, Falsification, or Incorrect Statements (§60.33).
23. [Reserved]
24. [Reserved]
25. FFS Qualification on the Basis of a Bilateral Aviation Safety Agreement (BASA) (§60.37).

Index of Effective FSTD Directives

<table>
<thead>
<tr>
<th>Number</th>
<th>Effective Date</th>
<th>Date of Notification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continue as Necessary...
Pt. 60, App. C

Attachment 3 to Appendix C to Part 60—Simulator Subjective Evaluation.
Attachment 4 to Appendix C to Part 60—Sample Documents.
Attachment 5 to Appendix C to Part 60—FSTD Directives Applicable to Helicopter FFSs

END INFORMATION

1. INTRODUCTION

BEGIN INFORMATION

a. This appendix contains background information as well as regulatory and informative material as described later in this section. To assist the reader in determining what areas are required and what areas are permissive, the text in this appendix is divided into two sections: "Requirements" and "Information." The Requirements sections contain details regarding compliance with the part 60 rule language. These details are regulatory, but are found only in this appendix. The Information sections contain material that is advisory in nature, and designed to give the user general information about the regulation.

b. Questions regarding the contents of this publication should be sent to the U.S. Department of Transportation, Federal Aviation Administration, Flight Standards Service, National Simulator Program Staff, AFS–205, 100 Hartsfield Centre Parkway, Suite 500, Atlanta, Georgia, 30334. Telephone contact numbers for the NSP are: phone, 404–822–4700; fax, 404–761–8906. The general e-mail address for the NSP office is: nspsim@faa.gov. The NSP Internet Web site address is: http://www.faa.gov/safety/programs/initiatives/aircraft_aviation/nspsim. On this Web Site you will find an NSP personnel list with telephone and e-mail contact information for each NSP staff member, a list of qualified flight simulation devices, ACs, a description of the qualification process, NSP policy, and an NSP "In-Works" section. Also linked from this site are additional information sources, handbook bulletins, frequently asked questions, a listing and text of the Federal Aviation Regulations, Flight Standards Inspector's handbooks, and other FAA links.

c. The NSPM encourages the use of electronic media for all communication, including any record, report, request, test, or statement required by this appendix. The electronic media used must have adequate security provisions and be acceptable to the NSPM. The NSPM recommends inquiries on system compatibility, and minimum system requirements are also included on the NSP Web site.

d. Related Reading References.

(1) 14 CFR part 60.
(2) 14 CFR part 61.
(3) 14 CFR part 68.
(4) 14 CFR part 119.
(5) 14 CFR part 121.
(6) 14 CFR part 135.
(7) 14 CFR part 136.
(8) 14 CFR part 141.
(9) 14 CFR part 142.
(11) AC 120–57, as amended, Surface Movement Guidance and Control System (SMGCS).
(12) AC 120–63, as amended, Helicopter Simulator Qualification.
(13) AC 150/5300–15, as amended, Airport Design.
(14) AC 150/5340–1, as amended, Standards for Airport Markings.
(15) AC 150/5340–4, as amended, Installation Details for Runway Centerline Touchdown Zone Lighting Systems.
(16) AC 150/5340–19, as amended, Taxiway Centerline Lighting System.
(17) AC 150/5340–24, as amended, Runway and Taxiway Edge Lighting System.
(18) AC 150/5345–28, as amended, Precision Approach Path Indicator (PAPI) Systems.
(19) AC 150/5390–2, as amended, Heliport Design.
(20) International Air Transport Association document, 'Flight Simulator Design and Performance Data Requirements,' as amended.
(22) AC 27–1, as amended, Flight Test Guide for Certification of Normal Category Rotorcraft.
2. APPLICABILITY (§§ 60.1 AND 60.2)

No additional regulatory or informational material applies to §60.1, Applicability, or to §60.2, Applicability of sponsor rules to person who are not sponsors and who are engaged in certain unauthorized activities.

3. DEFINITIONS (§ 60.3)

See Appendix F of this part for a list of definitions and abbreviations from part 1 and part 60, including the appropriate appendices of part 60.

4. QUALIFICATION PERFORMANCE STANDARDS (§ 60.4)

No additional regulatory or informational material applies to §60.4, Qualification Performance Standards.

5. QUALITY MANAGEMENT SYSTEM (§ 60.5)

See Appendix E of this part for additional regulatory and informational material regarding Quality Management Systems.

6. SPONSOR QUALIFICATION REQUIREMENTS (§ 60.7)

The intent of the language in §60.7(b) is to have a specific FFS, identified by the sponsor, used at least once in an FAA-approved flight training program for the helicopter simulated during the 12-month period described. The identification of the specific FFS may change from one 12-month period to the next 12-month period as long as that sponsor sponsors and uses at least one FFS at least once during the prescribed period. There is no minimum number of hours or minimum FFS periods required.

b. The following examples describe acceptable operational practices:

(1) Example One.

(a) A sponsor is sponsoring a single, specific FFS for its own use, in its own facility or elsewhere—this single FFS forms the basis for the sponsorship. The sponsor uses that FFS at least once in each 12-month period in that sponsor’s FAA-approved flight training program for the helicopter simulated. This 12-month period is established according to the following schedule:

(i) If the FFS was qualified prior to May 30, 2008, the 12-month period begins on the date of the first continuing qualification evaluation conducted in accordance with §60.19 after May 30, 2008, and continues for each subsequent 12-month period;

(ii) A device qualified on or after May 30, 2008, will be required to undergo an initial or upgrade evaluation in accordance with §60.15. Once the initial or upgrade evaluation is complete, the first continuing qualification evaluation will be conducted within 6 months. The 12 month continuing qualification evaluation cycle begins on that date and continues for each subsequent 12-month period.

(b) There is no minimum number of hours of FFS use required.

(c) The identification of the specific FFS may change from one 12-month period to the next 12-month period as long as that sponsor sponsors and uses at least one FFS at least once during the prescribed period.

(2) Example Two.

(a) A sponsor sponsors an additional number of FFSs, in its facility or elsewhere. Each additionally sponsored FFS must be—

(i) Used by the sponsor in the sponsor’s FAA-approved flight training program for the helicopter simulated (as described in §60.7(d)(1)); or

(ii) Used by another FAA certificate holder in that other certificate holder’s FAA-approved flight training program for the helicopter simulated (as described in §60.7(d)(1)).

This 12-month period is established in the same manner as in example one; or

(iii) Provided a statement each year from a qualified pilot, (after having flown the helicopter, not the subject FFS or another FFS, during the preceding 12-month period) stating that the subject FFS’s performance and handling qualities represent the helicopter (as described in §60.7(d)(2)). This statement is provided at least once in each 12-month period established in the same manner as in example one.

(b) There is no minimum number of hours of FFSs use required.

(3) Example Three.
(a) A sponsor in New York (in this example, a Part 142 certificate holder) establishes “satellite” training centers in Chicago and Moscow.

(b) The satellite function means that the Chicago and Moscow centers must operate under the New York center’s certificate (in accordance with all of the New York center’s practices, procedures, and policies; e.g., instructor and/or technician training/checking requirements, record keeping, QMS program).

(c) All of the FFSs in the Chicago and Moscow centers could be dry-leased (i.e., the certificate holder does not have and use FAA-approved flight training programs for the FFSs in the Chicago and Moscow centers) because—

(i) Each FFS in the Chicago center and each FFS in the Moscow center is used at least once each 12-month period by another FAA certificate holder in that other certificate holder’s FAA-approved flight training program for the helicopter (as described in §60.7(d)(1)); OR

(ii) A statement is obtained from a qualified pilot (having flown the helicopter, not the subject FFS or another FFS during the preceding 12-month period) stating that the performance and handling qualities of each FFS in the Chicago and Moscow centers represents the helicopter (as described in §60.7(d)(2)).

8. FFS USE (§60.11)

No additional regulatory or informational material applies to §60.11, FFS Use.

9. FFS OBJECTIVE DATA REQUIREMENTS (§60.13)

a. Flight test data used to validate FFS performance and handling qualities must have been gathered in accordance with a flight test program containing the following:

(i) A flight test plan consisting of:

(1) The maneuvers and procedures required for aircraft certification and simulation programming and validation

(ii) For each maneuver or procedure—

(1) The procedures and control input the flight test pilot and/or engineer used.

(2) The atmospheric and environmental conditions.

(3) The initial flight conditions.

(4) The helicopter configuration, including weight and center of gravity.

(5) The data to be gathered.

(6) All other information necessary to recreate the flight test conditions in the FFS.

(b) Appropriately qualified flight test personnel.

3. An understanding of the accuracy of the data to be gathered using appropriate alternative data sources, procedures, and instrumentation that is traceable to a recognized standard as described in Attachment 2, Table C2D of this appendix.

4. Appropriate and sufficient data acquisition equipment or system(s), including appropriate data reduction and analysis methods and techniques, acceptable to the FAA’s Aircraft Certification Service.

5. The data, regardless of source, must be presented:

(i) In a format that supports the FFS validation process;

(ii) In a manner that is clearly readable and annotated correctly and completely;

(iii) With resolution sufficient to determine compliance with the tolerances set forth in Attachment 2, Table C2A of this appendix.

(iv) With any necessary instructions or other details provided, such as Stability Augmentation System (SAS) or throttle position; and

(v) Without alteration, adjustments, or bias. Data may be corrected to address known data calibration errors provided that an explanation of the methods used to correct the errors appears in the QTG. The corrected data may be re-scaled, digitized, or otherwise manipulated to fit the desired presentation.

6. After completion of any additional flight test, a flight test report must be submitted in support of the validation data. The report must contain sufficient data and rationale to support qualification of the FFS at the level requested.

7. As required by §60.13(f), the sponsor must notify the NSPM when it becomes aware that an addition to, an amendment to, or a revision of data that may relate to FFS performance or handling characteristics is
available. The data referred to in this paragraph is data used to validate the performance, handling qualities, or other characteristics of the aircraft, including data related to any relevant changes occurring after the type certificate was issued. The sponsor must—

(1) Within 10 calendar days, notify the NSPM of the existence of this data; and

(2) Within 45 calendar days, notify the NSPM of—

(a) The schedule to incorporate this data into the FFS; or

(b) The reason for not incorporating this data into the FFS.

e. In those cases where the objective test results authorize a “snapshot test” or a “series of snapshot test results” in lieu of a time-history result, the sponsor or other data provider must ensure that a steady state condition exists at the instant of time captured by the “snapshot.” The steady state condition must exist from 4 seconds prior to, through 1 second following, the instant of time captured by the snapshot.

END QPS REQUIREMENTS

BEGIN INFORMATION

f. The FFS sponsor is encouraged to maintain a liaison with the manufacturer of the aircraft being simulated (or with the holder of the aircraft type certificate for the aircraft being simulated if the manufacturer is no longer in business), and, if appropriate, with the person who supplied the aircraft data package for the FFS in order to facilitate the notification required by §60.13(f).

g. It is the intent of the NSPM that for new aircraft entering service, at a point well in advance of preparation of the QTG, the sponsor should submit to the NSPM for approval, a descriptive document (see Table C2D, Sample Validation Data Roadmap for Helicopters) containing the plan for acquiring the validation data, including data sources. This document should clearly identify sources of data for all required tests, a description of the validity of these data for a specific engine type and thrust rating configuration, and the revision levels of all avionics affecting the performance or flying qualities of the aircraft. Additionally, this document should provide other information, such as the rationale or explanation for cases where data or data parameters are missing, instances where engineering simulation data are used or where flight test methods require further explanations. It should also provide a brief narrative describing the cause and effect of any deviation from data requirements. The aircraft manufacturer may provide this document.

h. There is no requirement for any flight test data supplier to submit a flight test plan or program prior to gathering flight test data. However, the NSPM notes that inexperienced data gatherers often provide data that is irrelevant, improperly marked, or lacking adequate justification for selection. Other problems include inadequate information regarding initial conditions or test maneuvers. The NSPM has been forced to refuse these data submissions as validation data for an FFS evaluation. It is for this reason that the NSPM recommends that any data supplier not previously experienced in this area review the data necessary for programming and for validating the performance of the FFS, and discuss the flight test plan anticipated for acquiring such data with the NSPM well in advance of commencing the flight tests.

1. The NSPM will consider, on a case-by-case basis, whether to approve supplemental validation data derived from flight data recording systems such as a Quick Access Recorder or Flight Data Recorder.

END INFORMATION

10. SPECIAL EQUIPMENT AND PERSONNEL REQUIREMENTS FOR QUALIFICATION OF THE FFS (§60.14)

BEGIN INFORMATION

a. In the event that the NSPM determines that special equipment or specifically qualified persons will be required to conduct an evaluation, the NSPM will make every attempt to notify the sponsor at least one (1) week, but in no case less than 72 hours, in advance of the evaluation. Examples of special equipment include spot photometers, flight control measurement devices, and sound analyzers. Examples of specially qualified personnel include individuals specifically qualified to install or use any special equipment when its use is required.

b. Examples of a special evaluation include an evaluation conducted after an FFS is moved, at the request of the TPAA, or as a result of comments received from users of the FFS that raise questions about the continued qualification or use of the FFS.

END INFORMATION

11. INITIAL (AND UPGRADE) QUALIFICATION REQUIREMENTS (§60.15)

BEGIN INFORMATION

a. In order to be qualified at a particular qualification level, the FFS must—

(1) Meet the general requirements listed in Attachment 1 of this appendix;

(2) Meet the objective testing requirements listed in Attachment 2 of this appendix; and
(3) Satisfactorily accomplish the subjective tests listed in Attachment 3 of this appendix.

b. The request described in §60.15(a) must include all of the following:
 (1) A statement that the FFS meets all of the applicable provisions of this part and all applicable provisions of the QPS.
 (2) A confirmation that the sponsor will forward to the NSPM the statement described in §60.15(b) in such time as to be received no later than 5 business days prior to the scheduled evaluation and may be forwarded to the NSPM via traditional or electronic means.
 (3) A QTG, acceptable to the NSPM, that includes all of the following:
 (a) Objective data obtained from aircraft testing or another approved source.
 (b) Correlating objective test results obtained from the performance of the FFS as prescribed in the appropriate QPS.
 (c) The result of FFS subjective tests prescribed in the appropriate QPS.
 (d) A description of the equipment necessary to perform the evaluation for initial qualification and the continuing qualification evaluations.
 c. The QTG described in paragraph (a)(3) of this section, must provide the documented proof of compliance with the simulator objective tests in Attachment 2, Table C2A of this appendix.
 d. The QTG is prepared and submitted by the sponsor, or the sponsor’s agent on behalf of the sponsor, to the NSPM for review and approval, and must include, for each objective test:
 (1) Parameters, tolerances, and flight conditions.
 (2) Pertinent and complete instructions for the conduct of automatic and manual tests.
 (3) A means of comparing the FFS test results to the objective data.
 (4) Any other information as necessary, to assist in the evaluation of the test results.
 (5) Other information appropriate to the qualification level of the FFS.
 e. The QTG described in paragraphs (a)(3) and (b) of this section, must include the following:
 (1) A QTG cover page with sponsor and FAA approval signature blocks (see Attachment 4, Figure C4A, of this appendix, for a sample QTG cover page).
 (2) A continuing qualification evaluation schedule requirements page. This page will be used by the NSPM to establish and record the frequency with which continuing qualification evaluations must be conducted and any subsequent changes that may be determined by the NSPM in accordance with §60.19. See Attachment 4 of this appendix, Figure C4G, for a sample Continuing Qualification Evaluation Requirements page.
 (3) An FFS information page that provides the information listed in this paragraph (see Attachment 4, Figure C4B, of this appendix for a sample FFS information page). For convertible FFSs, the sponsor must submit a separate page for each configuration of the FFS.
 (a) The sponsor’s FFS identification number or code.
 (b) The helicopter model and series being simulated.
 (c) The aerodynamic data revision number or reference.
 (d) The source of the basic aerodynamic model and the aerodynamic coefficient data used to modify the basic model.
 (e) The engine model(s) and its data revision number or reference.
 (f) The flight control data revision number or reference.
 (g) The flight management system identification and revision level.
 (h) The FFS model and manufacturer.
 (i) The date of FFS manufacture.
 (j) The FFS computer identification.
 (k) The visual system model and manufacturer, including display type.
 (l) The motion system type and manufacturer, including degrees of freedom.
 (4) A Table of Contents.
 (5) A log of revisions and a list of effective pages.
 (6) List of all relevant data references.
 (7) A glossary of terms and symbols used (including sign conventions and units).
 (8) Statements of compliance and capability (SOCs) with certain requirements.
 (9) Recording procedures or equipment required to accomplish the objective tests.
 (10) The following information for each objective test designated in Attachment 2 of this appendix, Table C2A, as applicable to the qualification level sought:
 (a) Name of the test.
 (b) Objective of the test.
 (c) Initial conditions.
 (d) Manual test procedures.
 (e) Automatic test procedures (if applicable).
 (f) Method for evaluating FFS objective test results.
 (g) List of all relevant parameters driven or constrained during the automatically conducted test(s).
 (h) List of all relevant parameters driven or constrained during the manually conducted test(s).
 (i) Tolerances for relevant parameters.
 (j) Source of Validation Data (document and page number).
 (k) Copy of the Validation Data (if located in a separate binder, a cross reference for the identification and page number for pertinent data location must be provided).
 (l) Simulator Objective Test Results as obtained by the sponsor. Each test result must reflect the date completed and must be clearly labeled as a product of the device being tested.
f. A convertible FFS is addressed as a separate FFS for each model and series helicopter to which it will be converted and for the FAA qualification level sought. If a sponsor seeks qualification for two or more models of a helicopter type using a convertible FFS, the sponsor must submit a QTG for each helicopter model, or a QTG for the first helicopter model and a supplement to the QTG for each additional helicopter model. The NSPM will conduct evaluations for each helicopter model.

g. Form and manner of presentation of objective test results in the QTG:
 (1) The sponsor’s FFS test results must be recorded in a manner acceptable to the NSPM, that allows easy comparison of the FFS test results to the validation data (e.g., use of a multi-channel recorder, line printer, cross plotting, overlays, transparencies).
 (2) FFS results must be labeled using terminology common to helicopter parameters as opposed to computer software identifications.
 (3) Validation data documents included in a QTG may be photographically reduced only if such reduction will not alter the graphic scaling or cause difficulties in scale interpretation or resolution.
 (4) Scaling on graphical presentations must provide the resolution necessary to evaluate the parameters shown in Attachment 2 of this appendix.
 (5) Tests involving time histories, data sheets (or transparencies thereof) and FFS test results must be clearly marked with appropriate reference points to ensure an accurate comparison between the FFS and the helicopter with respect to time. Time histories recorded via a line printer are to be clearly identified for cross plotting on the helicopter data. Over-plots must not obscure the reference data.
 (6) The sponsor may elect to complete the QTG objective and subjective tests at the manufacturer’s facility or at the sponsor’s training facility. If the tests are conducted at the manufacturer’s facility, the sponsor must repeat at least one-third of the tests at the sponsor’s training facility in order to substantiate FFS performance. The QTG must be clearly annotated to indicate when and where each test was accomplished. Tests conducted at the manufacturer’s facility and at the sponsor’s training facility must be conducted after the FFS is assembled with the performance or demonstration results (reformatted or digitized) as prescribed in this appendix. The eMQTG must include the original validation data used to validate FFS performance and handling qualities in either the original digitized format from the data supplier or an electronic scan of the original time-history plots that were provided by the data supplier. A copy of the eMQTG must be provided to the NSPM.
 (7) All other FFSs not covered in subparagraph “j” must have an electronic copy of the MQTG by May 30, 2014. An electronic copy of the MQTG must be provided to the NSPM. This may be provided by an electronic scan presented in a Portable Document File (PDF), or similar format acceptable to the NSPM.

h. During the initial (or upgrade) qualification evaluation conducted by the NSPM, the sponsor must also provide a person who is a user of the device (e.g., a qualified pilot or instructor pilot with flight time experience in that aircraft) and knowledgeable about the operation of the aircraft and the operation of the FFS.

END QPS REQUIREMENTS

BEGIN INFORMATION

m. Only those FFSs that are sponsored by a certificate holder as defined in Appendix F of this part will be evaluated by the NSPM. However, other FFS evaluations may be conducted on a case-by-case basis as the Administrator deems appropriate, but only in accordance with applicable agreements.

n. The NSPM will conduct an evaluation for each configuration, and each FFS must be evaluated as completely as possible. To ensure a thorough and uniform evaluation, each FFS is subjected to the general simulator requirements in Attachment 1 of this appendix, the objective tests listed in Attachment 2 of this appendix, and the subjective tests listed in Attachment 3 of this appendix. The evaluations described herein will include, but not necessarily be limited to the following:

 (1) Helicopter responses, including longitudinal and lateral-directional control responses (see Attachment 2 of this appendix).
 (2) Performance in authorized portions of the simulated helicopter’s operating envelope, to include tasks evaluated by the NSPM in the areas of surface operations, takeoff, climb, cruise, descent, approach, and landing as well as abnormal and emergency
exclusive use of the FFS for the conduct of
accomplished in a normal manner (i.e., requiring
sponsor. Such evaluations would be accom-
any time without prior notification to the
qualification evaluation, each FFS is subject
each test.
was gathered and applied), data presen-
the flight test was flown and way the data
cluding consideration of the way in which
determination in the application of data (in-
regarding tests and test results, the NSPM
be confused with design tolerances specified
reflect the range of tolerances acceptable to
listed in Attachment 2 of this appendix re-
requirements of this part.
controls, instruments, and systems; and
perform over a typical utilization period;
assign other qualified personnel to assist in
accomplishing the functions examination
and/or the objective and subjective tests per-
during an evaluation when required.
(1) Objective tests provide a basis for meas-
uring and evaluating FFS performance and
determining compliance with the require-
ments of this part.
(2) Subjective tests provide a basis for:
(a) Evaluating the capability of the FFS to
perform over a typical utilization period;
(b) Determining that the FFS satisfac-
torily simulates each required task;
(c) Verifying correct operation of the FFS
controls, instruments, and systems; and
(d) Demonstrating compliance with the re-
quirements of this part.
p. The tolerances for the test parameters
listed in Attachment 2 of this appendix re-
fect the range of tolerances acceptable to
the NSPM for FFS validation and are not to be
confused with design tolerances specified
for FFS manufacture. In making decisions
regarding tests and test results, the NSPM
relies on the use of operational and engineer-
ing judgment in the application of data (in-
cluding consideration of the way in which
the flight test was flown and way the data
was gathered and applied), data present-
tations, and the applicable tolerances for
each test.
q. In addition to the scheduled continuing
qualification evaluation, each FFS is subject
to evaluations conducted by the NSPM at
any time without prior notification to the
sponsor. Such evaluations would be accom-
plished in a normal manner (i.e., requiring
exclusive use of the FFS for the conduct of
objective and subjective tests and an exami-
nation of functions) if the FFS is not being
used for flight crewmember training, testing,
or checking. However, if the FFS were being
used, the evaluation would be conducted
in a non-exclusive manner. This non-exclusive
evaluation will be conducted by the FFS
evaluator accompanying the check airman,
Instructor, Aircrew Designee (APD), or FAA inspector aboard the FFS
along with the student(s) and observing the
operation of the FFS during the training,
testing, or checking activities.
r. Problems with objective test results are
handled as follows:
(1) If a problem with an objective test re-
result is detected by the NSP evaluation team
during an evaluation, the test may be re-
peated or the QTG may be amended.
(2) If it is determined that the results of an
objective test do not support the level re-
quested but do support a lower level, the
NSPM may qualify the FFS at that lower
level. For example, if a Level D evaluation is
requested and the FFS fails to meet sound
test tolerances, it could be qualified at Level
C.
s. After an FFS is successfully evaluated,
the NSPM issues a certificate of qualifica-
tion (COQ) to the sponsor. The NSPM rec-
ommends the FFS to the TPAA, who will ap-
prove the FFS for use in a flight training
program. The COQ will be issued at the satis-
factory conclusion of the initial or con-
tinuing qualification evaluation and will list
the tasks for which the FFS is qualified, ref-
erencing the tasks described in Table C1B in
Attachment 1 of this appendix. However, it is
the sponsor’s responsibility to obtain TPAA
approval prior to using the FFS in an FAA-
approved flight training program.
t. Under normal circumstances, the NSPM
establishes a date for the initial or upgrad-
evaluation within ten (10) working days after
determining that a complete QTG is accept-
able. Unusual circumstances may warrant
exemption from the requirement. A sponsor may
schedule an evaluation date as early as 6
months in advance. However, there may be a
delay of 45 days or more in rescheduling and
completing the evaluation if the sponsor is
unable to meet the scheduled date. See At-
tachment 4, of this appendix, Figure C4A,
Sample Request for Initial, Upgrade, or Re-
instatement Evaluation.
u. The numbering system used for objec-
tive test results in the QTG should closely
follow the numbering system set out in At-
tachment 2, FFS Objective Tests, Table C2A
of this appendix.
v. Contact the NSPM or visit the NSPM
Web site for additional information regard-
ing the preferred qualifications of pilots used
to meet the requirements of § 60.15(d).
w. Examples of the exclusions for which
the FFS might not have been subjectively
will not require an evaluation to standards NSPM after such an update, the evaluation deemed appropriate or necessary by the 2008, may be updated. If an evaluation is stalled in and available for use in a qualified airport model beyond the minimum required for the MQTG developed under the original qualification basis.

The evaluation content and the time required to accomplish the evaluation is based on the number of continuing qualification evaluations and sponsor-conducted quarterly inspections missed during the period of inactivity.

(5) The sponsor must notify the NSPM of any changes to the original scheduled time out of service.

b. Simulators qualified prior to May 30, 2008, are not required to meet the general simulation requirements, the objective test requirements, and the subjective test requirements of attachments 1, 2, and 3, of this appendix as long as the simulator continues to meet the test requirements contained in the MQTG developed under the original qualification basis.

c. After May 30, 2009, each visual scene or airport model beyond the minimum required for the FFS qualification level that is installed in and available for use in a qualified FFS must meet the requirements described in Attachment 3 of this appendix.

d. Simulators qualified prior to May 30, 2008, may be updated. If an evaluation is deemed appropriate or necessary by the NSPM after such an update, the evaluation will not require an evaluation to standards beyond those against which the simulator was originally qualified.

END QPS REQUIREMENTS

12. ADDITIONAL QUALIFICATIONS FOR A CURRENTLY QUALIFIED FFS (§ 60.16)

No additional regulatory or informational material applies to §60.16. Additional Qualifications for a Currently Qualified FFS.

13. PREVIOUSLY QUALIFIED FFSS (§ 60.17)

BEGIN QPS REQUIREMENTS

a. In instances where a sponsor plans to remove an FFS from active status for a period of less than two years, the following procedures apply:

(1) The NSPM must be notified in writing and the notification must include an estimate of the period that the FFS will be inactive.

(2) Continuing Qualification evaluations will not be scheduled during the inactive period.

(3) The NSPM will remove the FFS from the list of qualified FSTDs on a mutually established date not later than the date on which the first missed continuing qualification evaluation would have been scheduled.

(4) Before the FFS is restored to qualified status, it must be evaluated by the NSPM.

The evaluation content and the time required to accomplish the evaluation is based on the number of continuing qualification evaluations and sponsor-conducted quarterly inspections missed during the period of inactivity.

(5) The sponsor must notify the NSPM of any changes to the original scheduled time out of service.

b. Simulators qualified prior to May 30, 2008, are not required to meet the general simulation requirements, the objective test requirements, and the subjective test requirements of attachments 1, 2, and 3, of this appendix as long as the simulator continues to meet the test requirements contained in the MQTG developed under the original qualification basis.

c. After May 30, 2009, each visual scene or airport model beyond the minimum required for the FFS qualification level that is installed in and available for use in a qualified FFS must meet the requirements described in Attachment 3 of this appendix.

d. Simulators qualified prior to May 30, 2008, may be updated. If an evaluation is deemed appropriate or necessary by the NSPM after such an update, the evaluation will not require an evaluation to standards beyond those against which the simulator was originally qualified.

END QPS REQUIREMENTS

BEGIN INFORMATION

e. Other certificate holders or persons desiring to use an FFS may contract with FFS sponsors to use FFSs previously qualified at a particular level for a helicopter type and approved for use within an FAA-approved flight training program. Such FFSs are not required to undergo an additional qualification process, except as described in §60.16.

f. Each FFS user must obtain approval from the appropriate TPAA to use any FFS in an FAA-approved flight training program.

g. The intent of the requirement listed in §60.17(b), for each FFS to have an SOQ within 6 years, is to have the availability of that statement (including the configuration list and the limitations to authorizations) to provide a complete picture of the FFS inventory regulated by the FAA. The issuance of the statement will not require any additional evaluation or require any adjustment to the evaluation basis for the FFS.

h. Downgrading of an FFS is a permanent change in qualification level and will necessitate the issuance of a revised SOQ to reflect the revised qualification level, as appropriate. If a temporary restriction is placed on an FFS because of a missing, malfunctioning, or inoperative component or ongoing repairs, the restriction is not a permanent change in qualification level. Instead, the restriction is temporary and is removed when the reason for the restriction has been resolved.

i. The NSPM will determine the evaluation criteria for an FFS that has been removed from active status. The criteria will be based on the number of continuing qualification evaluations and quarterly inspections missed during the period of inactivity. For example, if the FFS were out of service for a 1 year period, it would be necessary to complete the entire QTG, since all of the quarterly evaluations would have been missed. The NSPM will also consider how the FFS was stored, whether parts were removed from the FFS and whether the FFS was disassembled.

j. The FFS will normally be requalified using the FAA-approved MQTG and the criteria that was in effect prior to its removal from qualification. However, inactive periods of 2 years or more will require requalification under the standards in effect and current at the time of requalification.

END INFORMATION
14 CFR Ch. I (1–1–12 Edition)

Pt. 60, App. C

14. Inspection, Continuing Qualification Evaluation, and Maintenance Requirements (§ 60.19)

BEGIN QPS Requirements

a. The sponsor must conduct a minimum of four evenly spaced inspections throughout the year. The objective test sequence and content of each inspection must be developed by the sponsor and must be acceptable to the NSPM.

b. The description of the functional preflight check must be contained in the sponsor’s QMS.

c. Record “functional preflight” in the FFS discrepancy log book or other acceptable location, including any item found to be missing, malfunctioning, or inoperative.

d. During the continuing qualification evaluation conducted by the NSPM, the sponsor must also provide a person knowledgeable about the operation of the aircraft and the operation of the FFS.

e. The NSPM will conduct continuing qualification evaluations every 12 months unless:

 (1) The NSPM becomes aware of discrepancies or performance problems with the device that warrants more frequent evaluations; or

 (2) The sponsor implements a QMS that justifies less frequent evaluations. However, in no case shall the frequency of a continuing qualification evaluation exceed 36 months.

END QPS Requirements

BEGIN INFORMATION

f. The sponsor’s test sequence and the content of each quarterly inspection required in §60.19(a)(1) should include a balance and a mix from the objective test requirement areas listed as follows:

 (1) Performance.

 (2) Handling qualities.

 (3) Motion system (where appropriate).

 (4) Visual system (where appropriate).

 (5) Sound system (where appropriate).

 (6) Other FFS systems.

 g. If the NSP evaluator plans to accomplish specific tests during a normal continuing qualification evaluation that requires the use of special equipment or technicians, the sponsor will be notified as far in advance of the evaluation as practical; but not less than 72 hours. Examples of such tests include latencies, control dynamics, sounds and vibrations, motion, and/or some visual system tests.

 h. The continuing qualification evaluations, described in §60.19(b), will normally require 4 hours of FFS time. However, flexibility is necessary to address abnormal situations or situations involving aircraft with additional levels of complexity (e.g., computer controlled aircraft). The sponsor should anticipate that some tests may require additional time. The continuing qualification evaluations will consist of the following:

 (1) Review of the results of the quarterly inspections conducted by the sponsor since the last scheduled continuing qualification evaluation.

 (2) A selection of approximately 8 to 15 objective tests from the MQTG that provide an adequate opportunity to evaluate the performance of the FFS. The tests chosen will be performed either automatically or manually and should be able to be conducted within approximately one-third (1/3) of the allotted FFS time.

 (3) A subjective evaluation of the FFS to perform a representative sampling of the tasks set out in attachment 3 of this appendix. This portion of the evaluation should take approximately two-thirds (2/3) of the allotted FFS time.

 (4) An examination of the functions of the FFS may include the motion system, visual system, sound system, instructor operating station, and the normal functions and simulated malfunctions of the simulated helicopter systems. This examination is normally accomplished simultaneously with the subjective evaluation requirements.

END INFORMATION

15. Logging FFS Discrepancies (§ 60.20)

BEGIN INFORMATION

No additional regulatory or informational material applies to §60.20, Logging FFS Discrepancies.

END INFORMATION

16. Interim Qualification of FFSs for New Helicopter Types or Models (§ 60.21)

BEGIN INFORMATION

No additional regulatory or informational material applies to §60.21, Interim Qualification of FFSs for New Helicopter Types or Models.

END INFORMATION

17. Modifications to FFSs (§ 60.23)
BEGIN QPS REQUIREMENTS
a. The notification described in §60.23(c)(2) must include a complete description of the planned modification, with a description of the operational and engineering effect the proposed modification will have on the operation of the FFS and the results that are expected with the modification incorporated.
b. Prior to using the modified FFS:
 (1) All the applicable objective tests completed with the modification incorporated, including any necessary updates to the MQTG (e.g., accomplishment of FSTD Directives) must be acceptable to the NSPM; and
 (2) The sponsor must provide the NSPM with a statement signed by the MR that the factors listed in §60.15(b) are addressed by the appropriate personnel as described in that section.

END QPS REQUIREMENTS

BEGIN INFORMATION
(3) FSTD Directives are considered modifications of an FFS. See Attachment 4 of this appendix for a sample index of effective FSTD Directives. See Attachment 6 of this appendix for a list of all effective FSTD Directives applicable to Helicopter FFSs.

END INFORMATION

18. OPERATION WITH MISSING, MALFUNCTIONING, OR INOPERATIVE COMPONENTS (§60.25)

BEGIN INFORMATION
a. The sponsor’s responsibility with respect to §60.25(a) is satisfied when the sponsor fairly and accurately advises the user of the current status of an FFS, including any missing, malfunctioning, or inoperative (MMI) component(s).
b. It is the responsibility of the instructor, check airman, or representative of the administrator conducting training, testing, or checking to exercise reasonable and prudent judgment to determine if any MMI component is necessary for the satisfactory completion of a specific maneuver, procedure, or task.
c. If the 29th or 30th day of the 30-day period described in §60.25(b) is on a Saturday, a Sunday, or a holiday, the FAA will extend the deadline until the next business day.
d. In accordance with the authorization described in §60.25(b), the sponsor may develop a discrepancy prioritizing system to accomplish repairs based on the level of impact on the capability of the FFS. Repairs having a larger impact on FFS capability to provide the required training, evaluation, or flight experience will have a higher priority for repair or replacement.

END INFORMATION

19. AUTOMATIC LOSS OF QUALIFICATION AND PROCEDURES FOR RESTORATION OF QUALIFICATION (§60.27)

BEGIN INFORMATION
If the sponsor provides a plan for how the FFS will be maintained during its out-of-service period (e.g., periodic exercise of mechanical, hydraulic, and electrical systems; routine replacement of hydraulic fluid; control of the environmental factors in which the FFS is to be maintained) there is a greater likelihood that the NSPM will be able to determine the amount of testing required for requalification.

END INFORMATION

20. OTHER LOSSES OF QUALIFICATION AND PROCEDURES FOR RESTORATION OF QUALIFICATION (§60.29)

BEGIN INFORMATION
If the sponsor provides a plan for how the FFS will be maintained during its out-of-service period (e.g., periodic exercise of mechanical, hydraulic, and electrical systems; routine replacement of hydraulic fluid; control of the environmental factors in which the FFS is to be maintained) there is a greater likelihood that the NSPM will be able to determine the amount of testing required for requalification.

END INFORMATION

21. RECORD KEEPING AND REPORTING (§60.31)

BEGIN QPS REQUIREMENTS
a. FFS modifications can include hardware or software changes. For FFS modifications involving software programming changes, the record required by §60.31(a)(2) must consist of the name of the aircraft system software, aerodynamic model, or engine model change, the date of the change, a summary of the change, and the reason for the change.
b. If a coded form for record keeping is used, it must provide for the preservation and retrieval of information with appropriate security or controls to prevent the inappropriate alteration of such records after the fact.

END QPS REQUIREMENTS
22. APPLICATIONS, LOGBOOKS, REPORTS, AND RECORDS: FRAUD, FALSIFICATION, OR INCORRECT STATEMENTS (§ 60.33)

BEGIN INFORMATION
No additional regulatory or informational material applies to §60.33. Applications, Logbooks, Reports, and Records: Fraud, Falsification, or Incorrect Statements.

23. [RESERVED]

24. [RESERVED]

25. FFS QUALIFICATION ON THE BASIS OF A BILATERAL AVIATION SAFETY AGREEMENT (BASA) (§ 60.37)

No additional regulatory or informational material applies to §60.37. FFS Qualification on the Basis of a Bilateral Aviation Safety Agreement (BASA).

ATTACHMENT 1 TO APPENDIX C TO PART 60—GENERAL SIMULATOR REQUIREMENTS

BEGIN QPS REQUIREMENTS

1. REQUIREMENTS

a. Certain requirements included in this appendix must be supported with an SOC as defined in Appendix F of this part, which may include objective and subjective tests. The requirements for SOCs are indicated in the “General Simulator Requirements” column in Table C1A of this appendix.
b. Table C1A describes the requirements for the indicated level of FFS. Many devices include operational systems or functions that exceed the requirements outlined in this section. However, all systems will be tested and evaluated in accordance with this appendix to ensure proper operation.

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>QPS requirements</th>
<th>Simulator levels</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>General simulator requirements</td>
<td>B</td>
</tr>
<tr>
<td>1.</td>
<td>General Flight Deck Configuration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BEGIN INFORMATION

2. DISCUSSION

a. This attachment describes the general simulator requirements for qualifying a helicopter FFS. The sponsor should also consult the objective tests in Attachment 2 of this appendix and the examination of functions and subjective tests listed in Attachment 3 of this appendix to determine the complete requirements for a specific level simulator.
b. The material contained in this attachment is divided into the following categories:
 (1) General flight deck configuration.
 (2) Simulator programming.
 (3) Equipment operation.
 (4) Equipment and facilities for instructor/evaluator functions.
 (5) Motion system.
 (6) Visual system.
 (7) Sound system.
c. Table C1A provides the standards for the General Simulator Requirements.
d. Table C1B provides the tasks that the sponsor will examine to determine whether the FFS satisfactorily meets the requirements for flight crew training, testing, and experience, and provides the tasks for which the simulator may be qualified.
e. Table C1C provides the functions that an instructor/check airman must be able to control in the simulator.
f. It is not required that all of the tasks that appear on the List of Qualified Tasks (part of the SOQ) be accomplished during the initial or continuing qualification evaluation.
g. Table C1A addresses only Levels B, C, and D helicopter simulators because there are no Level A Helicopter simulators.

END INFORMATION
TABLE C1A—MINIMUM SIMULATOR REQUIREMENTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General simulator requirements</th>
<th>Simulator levels</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.a.</td>
<td>The simulator must have a flight deck that is a replica of the helicopter being simulated. The simulator must have controls, equipment, observable flight deck indicators, circuit breakers, and bulkheads properly located, functionally accurate and replicating the helicopter. The direction of movement of controls and switches must be identical to that in the helicopter. Pilot seats must afford the capability for the occupant to be able to achieve the design "eye position" established for the helicopter being simulated. Equipment for the operation of the flight deck windows must be included, but the actual windows need not be operable. Fire axes, extinguishers, and spare light bulbs must be available in the FFS but may be re-located to a suitable location as near as practical to the original position. Fire axes, landing gear pins, and any similar purpose instruments need only be represented in silhouette.</td>
<td>X X X</td>
<td>For simulator purposes, the flight deck consists of all that space forward of a cross section of the fuselage at the most extreme aft setting of the pilots' seats including additional, required flight crewmember duty stations and those required bulkheads aft of the pilot seats. For clarification, bulkheads containing only items such as landing gear pin storage compartments, fire axes and extinguishers, spare light bulbs, and aircraft documents pouches are not considered essential and may be omitted.</td>
</tr>
<tr>
<td>1.b.</td>
<td>Those circuit breakers that affect procedures or result in observable flight deck indications must be properly located and functionally accurate.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Programming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.</td>
<td>A flight dynamics model that accounts for various combinations of air speed and power normally encountered in flight must correspond to actual flight conditions, including the effect of change in helicopter attitude, aerodynamic and propulsive forces and moments, altitude, temperature, mass, center of gravity location, and configuration. An SOC is required</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.b.</td>
<td>The simulator must have the computer capacity, accuracy, resolution, and dynamic response needed to meet the qualification level sought. An SOC is required</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.c.</td>
<td>Ground handling (where appropriate) and aerodynamic programming must include the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.c.1.</td>
<td>Ground effect Level B does not require hover programming An SOC is required</td>
<td>X X X</td>
<td>Applicable areas include flare and touch down from a running landing as well as for in-ground-effect (IGE) hover. A reasonable simulation of ground effect includes modeling of lift, drag, pitching moment, trim, and power while in ground effect.</td>
</tr>
<tr>
<td>2.c.2.</td>
<td>Ground reaction Level B does not require hover programming An SOC is required</td>
<td>X X X</td>
<td>Reaction of the helicopter upon contact with the landing surface during landing (e.g., strut deflection, tire or skid friction, side forces) may differ with changes in gross weight, airspeed, rate of descent on touchdown, and slide slip.</td>
</tr>
<tr>
<td>Entry No.</td>
<td>QPS requirements</td>
<td>Simulator requirements</td>
<td>Information</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>General simulator requirements</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>2.d.</td>
<td>The simulator must provide for manual and automatic testing of simulator hardware and software programming to determine compliance with simulator objective tests as prescribed in Attachment 2 of this appendix. An SOC is required.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.e.</td>
<td>The relative responses of the motion system, visual system, and flight deck instruments must be measured by latency tests or transport delay tests. Motion onset must occur before the end of the scan of that video field. Instrument response may not occur prior to motion onset. Test results must be within the following limits: The intent is to verify that the simulator provides instrument, motion, and visual cues that are like the helicopter responses within the stated time delays. It is preferable motion onset occur before the start of the visual scene change (the start of the scan of the first video field containing different information). For helicopter response, acceleration in the appropriate corresponding rotational axis is preferred.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.e.1.</td>
<td>Response must be within 150 milliseconds of the helicopter response.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.e.2.</td>
<td>Response must be within 100 milliseconds of the helicopter response.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.f.</td>
<td>The simulator must simulate brake and tire failure dynamics (including antiskid failure, if appropriate). An SOC is required.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.g.</td>
<td>The aerodynamic modeling in the simulator must include: (1) Ground effect, (2) Effects of airframe and rotor icing (if applicable), (3) Aerodynamic interference effects between the rotor wake and fuselage, (4) Influence of the rotor on control and stabilization systems, (5) Representations of settling with power, and (6) Retreating blade stall. An SOC is required.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.h.</td>
<td>The simulator must provide for realistic mass properties, including gross weight, center of gravity, and moments of inertia as a function of payload and fuel loading. An SOC is required.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Equipment Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.a.</td>
<td>All relevant instrument indications involved in the simulation of the helicopter must automatically respond to control movement or external disturbances to the simulated helicopter; e.g., turbulence or windshear. Numerical values must be presented in the appropriate units.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.b.</td>
<td>Communications, navigation, caution, and warning equipment must be installed and operate within the tolerances applicable for the helicopter being simulated.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.c.</td>
<td>Simulated helicopter systems must operate as the helicopter systems operate under normal, abnormal, and emergency operating conditions on the ground and in flight.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Entry No.</td>
<td>QPS requirements</td>
<td>Simulator levels</td>
<td>Information</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>General simulator requirements</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>3.d.</td>
<td>The simulator must provide pilot controls with control forces and control travel that correspond to the simulated helicopter. The simulator must also react in the same manner as the helicopter under the same flight conditions.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.e.</td>
<td>Simulator control feel dynamics must replicate the helicopter simulated. This must be determined by comparing a recording of the control feel dynamics of the simulator to helicopter measurements. For initial and upgrade evaluations, the control dynamic characteristics must be measured and recorded directly from the flight deck controls, and must be accomplished in takeoff, cruise, and landing conditions and configurations.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.</td>
<td>Instructor/Evaluator Facilities</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.a.</td>
<td>In addition to the flight crewmember stations, the simulator must have at least two suitable seats for the instructor/check airman and FAA inspector. These seats must provide adequate vision to the pilot's panel and forward windows. All seats other than flight crew seats need not represent those found in the helicopter but must be adequately secured to the floor and equipped with similar positive restraint devices.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.b.</td>
<td>The simulator must have controls that enable the instructor/evaluator to control all required system variables and insert all abnormal or emergency conditions into the simulated helicopter systems as described in the sponsor's FAA-approved training program, or as described in the relevant operating manual as appropriate.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.c.</td>
<td>The simulator must have instructor controls for all environmental effects expected to be available at the IOS; e.g., clouds, visibility, icing, precipitation, temperature, storm cells, and wind speed and direction.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.d.</td>
<td>The simulator must provide the instructor or evaluator the ability to present ground and air hazards.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4.e.</td>
<td>The simulator must provide the instructor or evaluator the ability to present the effect of re-circulating dust, water vapor, or snow conditions that develop as a result of rotor downwash.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.</td>
<td>Motion System</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.a.</td>
<td>The simulator must have motion (force) cues perceptible to the pilot that are representative of the motion in a helicopter.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.b.</td>
<td>The simulator must have a motion (force cueing) system with a minimum of three degrees of freedom (at least pitch, roll, and heave). An SOC is required.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>QPS requirements</td>
<td>Simulator levels</td>
<td>Information</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>General simulator requirements</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>5.c.</td>
<td>The simulator must have a motion (force cue-ing) system that produces cues at least equivalent to those of a six-degrees-of-freedom, synergistic platform motion system (i.e., pitch, roll, yaw, heave, sway, and surge). An SOC is required.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.d.</td>
<td>The simulator must provide for the recording of the motion system response time. An SOC is required.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.e.</td>
<td>The simulator must provide motion effects programming to include the following:.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(1) Runway rumble, oleo deflections, effects of ground speed, uneven runway, characteristics.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Buffets due to transverse flow effects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Buffet during extension and retraction of landing gear.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Buffet due to retreating blade stall.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Buffet due to vortex ring (settling with power).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Representative cues resulting from touchdown.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) High speed rotor vibrations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Tire failure dynamics</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(9) Engine malfunction and engine damage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) Airframe ground strike</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11) Motion vibrations that result from atmospheric disturbances.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.f.</td>
<td>The simulator must provide characteristic motion vibrations that result from operation of the helicopter (for example, retreating blade stall, extended landing gear, settling with power) in so far as vibration marks an event or helicopter state, which can be sensed in the flight deck. The simulator should be programmed and instrumented in such a manner that the characteristic buffet modes can be measured and compared to helicopter data.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Visual System .. Additional horizontal field-of-view capability may be added at the sponsor’s discretion provided the minimum field-of-view is retained.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.a.</td>
<td>The simulator must have a visual system providing an out-of-the-flight deck view.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.b.</td>
<td>The simulator must provide a continuous field-of-view of at least 75° horizontally and 30° vertically per pilot seat. Both pilot seat visual systems must be operable simultaneously. The minimum horizontal field-of-view coverage must be plus and minus one-half (½) of the minimum continuous field-of-view requirement, centered on the zero-degree azimuth line relative to the aircraft fuselage. An SOC must explain the geometry of the installation. An SOC is required.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>OPS requirements</td>
<td>Simulator levels</td>
<td>Information</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>General simulator requirements</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>6.c.</td>
<td>The simulator must provide a continuous visual field-of-view of at least 146° horizontally and 36° vertically per pilot seat. Both pilot seat visual systems must be operable simultaneously. Horizontal field-of-view is centered on the zero degree azimuth line relative to the aircraft fuselage. The minimum horizontal field-of-view coverage must be plus and minus one-half (1⁄2) of the minimum continuous field-of-view requirement, centered on the zero degree azimuth line relative to the aircraft fuselage. An SOC must explain the geometry of the installation. Capability for a field-of-view in excess of the minimum is not required for qualification at Level C. However, where specific tasks require extended fields of view beyond the 146° by 36° (e.g., to accommodate the use of “chin windows” where the accommodation is either integral with or separate from the primary visual system display), then the extended fields of view must be provided. When considering the installation and use of augmented fields of view, the sponsor must meet with the NSPM to determine the training, testing, checking, and experience tasks for which the augmented field-of-view capability may be required. An SOC is required.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6.d.</td>
<td>The simulator must provide a continuous visual field-of-view of at least 176° horizontally and 56° vertically per pilot seat. Both pilot seat visual systems must be operable simultaneously. Horizontal field-of-view is centered on the zero degree azimuth line relative to the aircraft fuselage. The minimum horizontal field-of-view coverage must be plus and minus one-half (1⁄2) of the minimum continuous field-of-view requirement, centered on the zero degree azimuth line relative to the aircraft fuselage. An SOC must explain the geometry of the installation. Capability for a field-of-view in excess of the minimum is not required for qualification at Level D. However, where specific tasks require extended fields of view beyond the 176° by 56° (e.g., to accommodate the use of “chin windows” where the accommodation is either integral with or separate from the primary visual system display), then the extended fields of view must be provided. When considering the installation and use of augmented fields of view, the sponsor must meet with the NSPM to determine the training, testing, checking, and experience tasks for which the augmented field-of-view capability may be required. An SOC is required.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6.e.</td>
<td>The visual system must be free from optical discontinuities and artifacts that create non-realistic cues.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Entry No.</td>
<td>QPS requirements</td>
<td>Simulator levels</td>
<td>Information</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>General simulator requirements</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>6.f.</td>
<td>The simulator must have operational landing lights for night scenes. Where used, dusk (or twilight) scenes require operational landing lights.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.g.</td>
<td>The simulator must have instructor controls for the following: (1) Visibility in statute miles (kilometers) and runway visual range (RVR) in ft. (meters). (2) Airport or landing area selection. (3) Airport or landing area lighting</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.h.</td>
<td>Each airport scene displayed must include the following: (1) Airport runways and taxiways. (2) Runway definition. (a) Runway surface and markings. (b) Lighting for the runway in use, including runway threshold, edge, centerline, touchdown zone, VASI (or PAPI), and approach lighting of appropriate colors, as appropriate. (c) Taxiway lights.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.i.</td>
<td>The simulator must provide visual system compatibility with dynamic response programming.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.j.</td>
<td>The simulator must show that the segment of the ground visible from the simulator flight deck is the same as from the helicopter flight deck (within established tolerances) when at the correct airspeed and altitude above the touchdown zone.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.k.</td>
<td>The simulator must provide visual cues necessary to assess rate of change of height, height AGL, and translational displacement and rates during takeoffs and landings.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6.l.</td>
<td>The simulator must provide visual cues necessary to assess rate of change of height, height AGL, as well as translational displacement and rates during takeoff, low altitude/low airspeed maneuvering, hover, and landing.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.m.</td>
<td>The simulator must provide for accurate portrayal of the visual environment relating to the simulator attitude.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.n.</td>
<td>The simulator must provide for quick confirmation of visual system color, RVR, focus, and intensity. An SOC is required.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.o.</td>
<td>The simulator must be capable of producing at least 10 levels of occulting.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Entry No.</td>
<td>OPS requirements</td>
<td>Simulator levels</td>
<td>Information</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6.p.</td>
<td>Night Visual Scenes. The simulator must provide night visual scenes with sufficient scene content to recognize the airport, the terrain, and major landmarks around the airport. The scene content must allow a pilot to successfully accomplish a visual landing. Night scenes, as a minimum, must provide presentations of sufficient surfaces with appropriate textural cues that include self-illuminated objects such as road networks, ramp lighting, and airport signage, to conduct a visual approach, a landing, and airport movement (taxi). Scenes must include a definable horizon and typical terrain characteristics such as fields, roads and bodies of water and surfaces illuminated by helicopter landing lights.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.q.</td>
<td>Dusk (Twilight) Visual Scenes. The simulator must provide dusk (or twilight) visual scenes with sufficient scene content to recognize the airport, the terrain, and major landmarks around the airport. The scene content must allow a pilot to successfully accomplish a visual landing. Dusk (or twilight) scenes, as a minimum, must provide full color presentations of reduced ambient intensity, sufficient surfaces with appropriate textural cues that include self-illuminated objects such as road networks, ramp lighting and airport signage, to conduct a visual approach, landing and airport movement (taxi). Scenes must include a definable horizon and typical terrain characteristics such as fields, roads and bodies of water and surfaces illuminated by representative aircraft lighting (e.g., landing lights). If provided, directional horizon lighting must have correct orientation and be consistent with surface shading effects. Total scene content must be comparable in detail to that produced by 10,000 visible textured surfaces and 15,000 visible lights with sufficient system capacity to display 16 simultaneously moving objects. An SOC is required.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6.r.</td>
<td>Daylight Visual Scenes. The simulator must have daylight visual scenes with sufficient scene content to recognize the airport, the terrain, and major landmarks around the airport. The scene content must allow a pilot to successfully accomplish a visual landing. No ambient lighting may "washout" the displayed visual scene. Total scene content must be comparable in detail to that produced by 10,000 visible textured surfaces and 6,000 visible lights with sufficient system capacity to display 16 simultaneously moving objects. The visual display must be free of apparent and distracting quantization and other distracting visual effects while the simulator is in motion. An SOC is required.</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
| 6.s. | The simulator must provide operational visual scenes that portray physical relationships known to cause landing illusions to pilots. | X | X | For example: short runways, landing approaches over water, uphill or downhill runways, rising terrain on the approach path, unique topographic features.
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>QPS requirements</th>
<th>Simulator levels</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.t.</td>
<td>The simulator must provide special weather representations of light, medium, and heavy precipitation near a thunderstorm on takeoff and during approach and landing. Representations need only be presented at and below an altitude of 2,000 ft (610 m) above the airport surface and within 10 miles (16 km) of the airport.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>6.u.</td>
<td>The simulator must present visual scenes of wet and snow-covered runways, including runway lighting reflections for wet conditions, and partially obscured lights for snow conditions.</td>
<td>X X</td>
<td>The NSPM will consider suitable alternative effects.</td>
</tr>
<tr>
<td>6.v.</td>
<td>The simulator must present realistic color and directionality of all airport lighting.</td>
<td>X X</td>
<td></td>
</tr>
</tbody>
</table>

Table C1B—Table of Tasks vs. Simulator Level

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Simulator levels</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Preflight Procedures</td>
<td>The simulator must be able to perform the tasks associated with that level of qualification.</td>
<td>B C D</td>
<td>Notes</td>
</tr>
</tbody>
</table>

1.a.	Preflight Inspection (Flight deck Only) switches, indicators, systems, and equipment.	X X X
1.b.	APU/Engine start and run-up.	
1.b.1	Normal start procedures	X X X
1.b.2	Alternate start procedures	X X X
1.b.3	Abnormal starts and shutdowns (hot start, hung start)	X X X
1.c.	Taxiing—Ground	X X
TABLE C1B—TABLE OF TASKS VS. SIMULATOR LEVEL—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Simulator levels</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The simulator must be able to perform the tasks associated with that level of qualification.</td>
<td>B C D</td>
<td>Notes</td>
</tr>
<tr>
<td>1.d.</td>
<td>Taxiing—Hover</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.e.</td>
<td>Pre-takeoff Checks</td>
<td>X X X</td>
<td></td>
</tr>
</tbody>
</table>

2. Takeoff and Departure Phase

a.	Normal takeoff.		
a.1.	From ground	X X X	
a.2.	From hover	X X	
a.3.	Running	X X X	
b.	Instrument	X X X	
c.	Powerplant Failure During Takeoff	X X X	
d.	Rejected Takeoff	X X X	
e.	Instrument Departure	X X X	

3. Climb

a.	Normal	X X X	
b.	Obstacle clearance	X X X	
c.	Vertical	X X X	
d.	One engine inoperative	X X X	

4. In-flight Maneuvers

a.	Turns (timed, normal, steep)	X X X	
b.	Powerplant Failure—Multiengine Helicopters	X X X	
c.	Powerplant Failure—Single-Engine Helicopters	X X X	
d.	Recovery From Unusual Attitudes	X X X	
e.	Setting with Power	X X X	
f.	Specific Flight Characteristics incorporated into the user’s FAA approved flight training program.	A A A	

5. Instrument Procedures

<p>| a. | Instrument Arrival | X X X | |
| b. | Holding | X X X | |
| c. | Precision Instrument Approach. | |
| c.1. | Normal—All engines operating | X X X | |
| c.2. | Manually controlled—One or more engines inoperative | X X X | |
| d. | Non-precision Instrument Approach | X X X | |
| e. | Missed Approach | |
| e.1. | All engines operating | X X X | |
| e.2. | One or more engines inoperative | X X X | |
| e.3. | Stability augmentation system failure | X X X | |</p>
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Information</th>
<th>Simulator levels</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The simulator must be able to perform the tasks associated with that level of qualification.</td>
<td></td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>QPS requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Landings and Approaches to Landings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.a.</td>
<td>............ Visual Approaches (normal, steep, shallow)</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.b.</td>
<td>............ Landings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.b.1.</td>
<td>............ Normal/crosswind.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.b.1.a.</td>
<td>............ Running</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.b.1.b.</td>
<td>............ From Hover</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.b.2.</td>
<td>............ One or more engines inoperative</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.b.3.</td>
<td>............ Rejected Landing</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Normal and Abnormal Procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.a.</td>
<td>............ Powerplant</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.b.</td>
<td>............ Fuel System</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.c.</td>
<td>............ Electrical System</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.d.</td>
<td>............ Hydraulic System</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.e.</td>
<td>............ Environmental System(s)</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.f.</td>
<td>............ Fire Detection and Extinguisher Systems</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.g.</td>
<td>............ Navigation and Aviation Systems</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.i.</td>
<td>............ Flight Control Systems</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.j.</td>
<td>............ Anti-ice and Deice Systems</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.k.</td>
<td>............ Aircraft and Personal Emergency Equipment</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.l.</td>
<td>............ Special Missions tasks (e.g., Night Vision goggles, Forward Looking Infrared System, External Loads and as listed on the SOQ).</td>
<td>A A X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Emergency procedures (as applicable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.a.</td>
<td>............ Emergency Descent</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.b.</td>
<td>............ Inflight Fire and Smoke Removal</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.c.</td>
<td>............ Emergency Evacuation</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.d.</td>
<td>............ Ditching</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.e.</td>
<td>............ Autorotative Landing</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.f.</td>
<td>............ Retreating blade stall recovery</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.g.</td>
<td>............ Mast bumping</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.h.</td>
<td>............ Loss of tail rotor effectiveness</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.i.</td>
<td>............ Vortex recovery</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Postflight Procedures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.a.</td>
<td>............ After-Landing Procedures</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE C1B—TABLE OF TASKS VS. SIMULATOR LEVEL—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Simulator levels</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.b.</td>
<td>Parking and Securing.</td>
<td>B C D</td>
<td></td>
</tr>
<tr>
<td>9.b.1.</td>
<td>Rotor brake operation</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>9.b.2.</td>
<td>Abnormal/emergency procedures</td>
<td>X X X</td>
<td></td>
</tr>
</tbody>
</table>

Note: An "A" in the table indicates that the system, task, or procedure may be examined if the appropriate aircraft system or control is simulated in the FFS and is working properly.

TABLE C1C—TABLE OF TASKS VS. SIMULATOR LEVEL

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>Simulator levels</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Instructor Operating Station (IOS), as appropriate</td>
<td>B C D</td>
<td></td>
</tr>
<tr>
<td>1.a.</td>
<td>Power switch(es)</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.b.</td>
<td>Helicopter conditions</td>
<td>X X X</td>
<td>e.g., GW, CG, Fuel loading, Systems, Ground Crew.</td>
</tr>
<tr>
<td>1.c.</td>
<td>Airports/Heliports/Helicopter Landing Areas</td>
<td>X X X</td>
<td>e.g., Selection, Surface, Presets, Lighting controls</td>
</tr>
<tr>
<td>1.d.</td>
<td>Environmental controls.</td>
<td>X X X</td>
<td>e.g., Clouds, Visibility, RVR, Temp, Wind, Ice, Snow, Rain, and Windshear.</td>
</tr>
<tr>
<td>1.e.</td>
<td>Helicopter system malfunctions (Insertion/deletion)</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.f.</td>
<td>Locks, Freezes, and Repositioning</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Sound Controls.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.a.</td>
<td>On/off/adjustment</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Motion/Control Loading System</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>3.a.</td>
<td>On/off/emergency stop</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Observer Seats/Stations</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>4.a.</td>
<td>Position/Adjustment/Positive restraint system</td>
<td>X X X</td>
<td></td>
</tr>
</tbody>
</table>

ATTACHMENT 2 TO APPENDIX C TO PART 60—FFS OBJECTIVE TESTS

BEGIN INFORMATION

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Paragraph No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction.</td>
</tr>
<tr>
<td>2.</td>
<td>Test Requirements.</td>
</tr>
<tr>
<td>3.</td>
<td>General.</td>
</tr>
<tr>
<td>4.</td>
<td>Control Dynamics.</td>
</tr>
<tr>
<td>5.</td>
<td>[Reserved]</td>
</tr>
<tr>
<td>6.</td>
<td>Motion System.</td>
</tr>
<tr>
<td>7.</td>
<td>Sound System.</td>
</tr>
<tr>
<td>8.</td>
<td>Additional Information About Flight Simulator Qualification for New or Derivative Helicopters.</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS—Continued

Paragraph No.	Title
9 | Engineering Simulator—Validation Data.
10 | [Reserved]
11 | Validation Test Tolerances.
12 | Validation Data Roadmap.
13 | Acceptance Guidelines for Alternative Engines Data.
14 | Acceptance Guidelines for Alternative Avionics (Flight-Related Computers and Controllers).
15 | Transport Delay Testing.
16 | Continuing Qualification Evaluations—Validation Test Data Presentation.
17 | Alternative Data Sources, Procedures, and Instrumentation: Level A and Level B Simulators Only.

1. INTRODUCTION

a. If relevant winds are present in the objective data, the wind vector (magnitude and direction) should be clearly noted as part of the data presentation, expressed in conventional terminology, and related to the runway being used for the test.

b. The NSPM will not evaluate any simulator unless the required SOC indicates that the motion system is designed and manufactured to safely operate within the simulator’s maximum excursion, acceleration, and velocity capabilities (see Motion System in the following table).

c. Table C2A addresses helicopter simulators at Levels B, C, and D because there are no Level A Helicopter simulators.

END INFORMATION

BEGIN QPS REQUIREMENTS

2. TEST REQUIREMENTS

a. The ground and flight tests required for qualification are listed in Table of C2A, FFS Objective Tests. Computer-generated simulator test results must be provided for each test except where an alternative test is specifically authorized by the NSPM. If a flight condition or operating condition is required for the test but does not apply to the helicopter being simulated or to the qualification level sought, it may be disregarded (e.g., an engine out missed approach for a single-engine helicopter, or a hover test for a Level B simulator). Each test result is compared against the validation data described in §60.13 and in this appendix. Although use of a driver program designed to automatically accomplish the tests is encouraged for all simulators and required for Level C and Level D simulators, each test must be able to be accomplished manually while recording all appropriate parameters. The results must be produced on an appropriate recording device acceptable to the NSPM and must include simulator number, date, time, conditions, tolerances, and appropriate dependent variables portrayed in comparison to the validation data. Time histories are required unless otherwise indicated in Table C2A. All results must be labeled using the tolerances and units given.

b. Table C2A sets out the test results required, including the parameters, tolerances, and flight conditions for simulator validation. Tolerances are provided for those listed tests because mathematical modeling and acquisition/development of reference data are often inexact. All tolerances listed in the following tables are applied to simulator performance. When two tolerance values are given for a parameter, the less restrictive value may be used unless otherwise indicated. In those cases where a tolerance is expressed only as a percentage, the tolerance percentage applies to the maximum value of that parameter within its normal operating range as measured from the neutral or zero position unless otherwise indicated.

c. Certain tests included in this attachment must be supported with an SOC. In Table C2A, requirements for SOCs are indicated in the “Test Details” column.

d. When operational or engineering judgment is used in making assessments for flight test data applications for simulator validity, such judgment may not be limited to a single parameter. For example, data that exhibit rapid variations of the measured parameters may require interpolations or a “best fit” data selection. All relevant parameters related to a given maneuver or flight condition must be provided to allow overall interpretation. When it is difficult or impossible to match simulator to helicopter data throughout a time history, differences must be justified by providing a comparison of other related variables for the condition being assessed.

e. The FFS may not be programmed so that the mathematical modeling is correct only at the validation test points. Unless noted otherwise, simulator tests must represent helicopter performance and handling qualities at operating weights and centers of gravity (CG) typical of normal operation. If a test is supported by helicopter data at one extreme weight or CG, another test supported by helicopter data at mid-conditions or as close as possible to the other extreme must be included. Certain tests that are relevant only at one extreme CG or weight condition need not be repeated at the other extreme. Tests of handling qualities must include validation of augmentation devices.
f. When comparing the parameters listed to those of the helicopter, sufficient data must also be provided to verify the correct flight condition and helicopter configuration changes. It must be shown that control force is within ±0.5 pound (0.22 daN) in a static stability test, data to show the correct airspeed, power, thrust or torque, helicopter configuration, altitude, and other appropriate datum identification parameters must also be given. If comparing short period dynamics, normal acceleration may be used to establish a match to the helicopter, but airspeed, altitude, control input, helicopter configuration, and other appropriate data must also be given. All airspeed values must be properly annotated (e.g., indicated versus calibrated). In addition, the same variables must be used for comparison (e.g., compare inches to inches rather than inches to centimeters).

g. The QTG provided by the sponsor must clearly describe how the simulator will be set up and operated for each test. Each simulator subsystem may be tested independently, but overall integrated testing of the simulator must be accomplished to assure that the total simulator system meets the prescribed standards. A manual test procedure with explicit and detailed steps for completing each test must also be provided.

h. For previously qualified simulators, the tests and tolerances of this attachment may be used in subsequent continuing qualification evaluations for any given test if the sponsor has submitted a proposed MQTG revision to the NSPM and has received NSPM approval.

i. Motion System Tests:
 (a) The minimum excursions, accelerations, and velocities for pitch, roll, and yaw must be measurable about a single, common reference point and must be achieved by driving one degree of freedom at a time.
 (b) The minimum excursions, accelerations, and velocities for heave, sway, and surge may be measured about different, identifiable reference points and must be achieved by driving one degree of freedom at a time.

j. Tests of handling qualities must include validation of augmentation devices. FFSs for highly augmented helicopters will be validated both in the unaugmented configuration (or failure state with the maximum permitted degradation in handling qualities) and the augmented configuration. Where various levels of handling qualities result from failure states, validation of the effect of the failure is necessary. For those performance and static handling qualities tests where the primary concern is control position in the unaugmented configuration, unaugmented data are not required if the design of the system precludes any affect on control position. In those instances where the unaugmented helicopter response is divergent and non-repeatable, it may not be feasible to meet the specified tolerances. Alternative requirements for testing will be mutually agreed upon by the sponsor and the NSPM on a case-by-case basis.

k. Some tests will not be required for helicopters using helicopter hardware in the simulator flight deck (e.g., “helicopter modular controller”). These exceptions are noted in Table C2A of this attachment. However, in these cases, the sponsor must provide a statement that the helicopter hardware meets the appropriate manufacturer’s specifications and the sponsor must have supporting information to that fact available for NSPM review.

l. In cases where light-class helicopters are being simulated, prior coordination with the NSPM on acceptable weight ranges is required. The terms “light”, “medium”, and “near maximum”, as defined in Appendix F of this part, may not be appropriate for the simulation of light-class helicopters.

m. In those cases where the objective test results authorize a “snapshot test” or a “series of snapshot test results” in lieu of a time-history result, the sponsor or other data provider must ensure that a steady state condition exists at the instant of time captured by the “snapshot”. The steady state condition must exist from 4 seconds prior to, through 1 second following, the instant of time captured by the snapshot.

n. For references on basic operating weight, see AC 120-27, Aircraft Weight and Balance; and FAA–H–8083–1, Aircraft Weight and Balance Handbook.
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance(s)</th>
<th>Flight condition</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a</td>
<td>Engine Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a.1</td>
<td>Start Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a.1.a</td>
<td>Engine start and acceleration (transient)</td>
<td>Light Off Time—±10% or ±1 sec., Torque—±5%, Rotor Speed—±3%, Fuel Flow—±10%, Gas Generator Speed—±5%, Power Turbine Speed—±5%, Gas Turbine Temp.—±30 °C.</td>
<td>Ground with the Rotor Brake Used and Not Used, if applicable.</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a.1.b</td>
<td>Steady State Idle and Operating RPM conditions.</td>
<td>Torque—±3%, Rotor Speed—±1.5%, Fuel Flow—±5%, Gas Generator Speed—±2%, Power Turbine Speed—±2%, Turbine Gas Temp.—±20 °C.</td>
<td>Ground</td>
<td>Record both steady state idle and operating RPM conditions. May be a series of snapshot tests.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.a.2</td>
<td>Power Turbine Speed Trim</td>
<td>≤10% of total change of power turbine speed, or ±0.5% change of rotor speed.</td>
<td>Ground</td>
<td>Record engine response to trim system actuation in both directions.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.a.3</td>
<td>Engine and Rotor Speed Governing.</td>
<td>Torque—±5%, Rotor Speed—1.5%.</td>
<td>Climb and descent</td>
<td>Record results using a step input to the collective. May be conducted concurrently with climb and descent performance tests.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.b</td>
<td>Surface Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.b.1</td>
<td>Minimum Radius Turn</td>
<td>≤3 ft. (0.9 m) or 20% of helicopter turn radius.</td>
<td>Ground</td>
<td>If brakes are used, brake pedal position and brake system pressure must be matched to the helicopter flight test value.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.b.2.</td>
<td>Rate of Turn vs. Pedal Deflection, Brake Application, or Nosewheel Angle, as applicable.</td>
<td>±10% or ±2°/sec. Turn Rate.</td>
<td>Ground Takeoff</td>
<td>If brakes are used, brake pedal position and brake system pressure must be matched to the helicopter flight test value.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.b.3.</td>
<td>Taxi</td>
<td>Pitch Angle—±1.5°; Torque—±3%; Longitudinal Control Position—±5%; Lateral Control Position—±5%; Directional Control Position—±5%; Collective Control Position—±5%.</td>
<td>Ground</td>
<td>Record results for control position and pitch attitude during ground taxi for a specific ground speed, wind speed and direction, and density altitude.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.b.4.</td>
<td>Brake Effectiveness</td>
<td>±10% of time and distance.</td>
<td>Ground</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.c.</td>
<td>Takeoff</td>
<td>When the speed range for the following tests is less than 40 knots, the applicable airspeed tolerance may be applied to either airspeed or ground speed, as appropriate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.c.1.</td>
<td>All Engines</td>
<td>Airspeed—±3 kt, Altitude—±20 ft (6.1m), Torque—±3%, Rotor Speed—±1.5%, Vertical Velocity—±100 fpm (0.50m/sec) or 10%, Pitch Attitude—±1.5°, Bank Attitude—±2°, Heading—±2°, Longitudinal Control Position—±10%, Lateral Control Position—±10%, Directional Control Position—±10%, Collective Control Position—±10%.</td>
<td>Ground/Takeoff and Initial Segment of Climb.</td>
<td>Record results of takeoff flight path as appropriate to helicopter model simulated (running takeoff for Level B, takeoff from a hover for Level C and D). For Level B, the criteria apply only to those segments at airspeeds above effective translational lift. Results must be recorded from the initiation of the takeoff to at least 200 ft (61m) AGL.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.c.2.</td>
<td>One Engine Inoperative continued takeoff.</td>
<td>Airspeed—±3 kt, Altitude—±20 ft (6.1m), Torque—±3%, Rotor Speed—±1.5%, Vertical Velocity—±100 fpm (0.50m/sec) or 10%, Pitch Attitude—±1.5°, Bank Attitude—±2°, Heading—±2°, Longitudinal Control Position—±10%, Lateral Control Position—±10%, Directional Control Position—±10%, Collective Control Position—±10%.</td>
<td>Ground/Takeoff and Initial Segment of Climb.</td>
<td>Record takeoff flight path as appropriate to helicopter model simulated. Results must be recorded from the initiation of the takeoff to at least 200 ft (61m) AGL.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Test</td>
<td>Tolerance(s)</td>
<td>Flight condition</td>
<td>Test details</td>
<td>Simulator level</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>1.c.3</td>
<td>One Engine inoperative, rejected take off.</td>
<td>Airspeed—±3 kt, Altitude—±20 ft (6.1 m), Torque—±3%, Rotor Speed—±1.5%, Pitch Attitude—±1.5°, Roll angle—±1.5°, Heading—±2°, Longitudinal Control Position—±5%, Lateral Control Position—±10%, Directional Control Position—±5%, Collective Control Position—±10%, Distance—±7.5% or ±30m (100 ft)</td>
<td>Ground, Takeoff</td>
<td>Time history from the take off point to touch down. Test conditions near limiting performance.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.d</td>
<td>Hover</td>
<td>Torque—±3%, Pitch Attitude—±1.5°, Roll Angle—±1.5°, Longitudinal Control Position—±5%, Lateral Control Position—±5%, Directional Control Position—±5%, Collective Control Position—±5%</td>
<td>In Ground Effect (IGE), and Out of Ground Effect (OGE)</td>
<td>Record results for light and heavy gross weights. May be a series of snapshot tests.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.e</td>
<td>Vertical Climb</td>
<td>Vertical Velocity—±100 fpm (±0.5 m/sec) or ±10%, Directional Control Position—±5%, Collective Control Position—±5%</td>
<td>From OGE Hover</td>
<td>Record results for light and heavy gross weights. May be a series of snapshot tests.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.f</td>
<td>Level Flight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.g. Climb</td>
<td>Performance and Trimmed Right Control Positions.</td>
<td>Torque—±3%, Pitch Attitude—±1.5°, Sideslip Angle—±2°, Longitudinal Control Position—±5%, Lateral Control Position—±5%, Directional Control Position—±5%, Collective Control Position—±5%.</td>
<td>Cruise (Augmentation On and Off).</td>
<td>Record results for two gross weight and CG combinations with varying trim speeds throughout the airspeed envelope. May be a series of snapshot tests.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.h. Descent</td>
<td>Performance and Trimmed Right Control Positions.</td>
<td>Vertical Velocity—±100 fpm (5.1 m/sec) or ±10%, Pitch Attitude—±1.5°, Sideslip Angle—±2°, Longitudinal Control Position—±5%, Lateral Control Position—±5%, Directional Control Position—±5%, Collective Control Position—±5%.</td>
<td>All engines operating; One engine inoperative; Augmentation System(s) On and Off.</td>
<td>Record results for two gross weight and CG combinations. The data presented must be for normal climb power conditions. May be a series of snapshot tests.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.h.1. Descent Performance and Trimmed Flight Control Positions.</td>
<td>Torque—±3%, Pitch Attitude—±1.5°, Sideslip Angle—±2°, Longitudinal Control Position—±5%, Lateral Control Position—±5%, Directional Control Position—±5%, Collective Control Position—±5%.</td>
<td>At or near 1,000 fpm (5 m/sec) rate of descent (RoD) at normal approach speed, Augmentation System(s) On and Off.</td>
<td>Results must be recorded for two gross weight and CG combinations. May be a series of snapshot tests.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.h.2. Autorotation Performance and Trimmed Flight Control Positions.</td>
<td>Pitch Attitude—±1.5°, Sideslip Angle—±2°, Longitudinal Control Position—±5%, Lateral Control Position—±5%, Directional Control Position—±5%, Collective Control Position—±5%, Vertical Velocity—±100 fpm or 10%, Rotor Speed—±1.5%.</td>
<td>Steady descents. Augmentation System(s) On and Off.</td>
<td>Record results for two gross weight conditions. Data must be recorded for normal operating RPM. (Rotor speed tolerance applies only if collective control position is full down.) Data must be recorded for speeds from 50 kts, ±5 kts, through at least maximum glide distance airspeed, or maximum allowable autorotation airspeed, whichever is slower. May be a series of snapshot tests.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1.i. Autorotation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE C2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Test Title</th>
<th>Tolerance(s)</th>
<th>Flight condition</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rotor Speed—±3%, Pitch Attitude—±2°, Roll Attitude—±3° Yaw Attitude—±5°.</td>
<td>Cruise or Climb</td>
<td>Record results of a rapid throttle reduction to idle. If the cruise condition is selected, comparison must be made for the maximum range airspeed. If the climb condition is selected, comparison must be made for the maximum rate of climb airspeed at or near maximum continuous power.</td>
<td></td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>1.1.1</td>
<td>All Engines</td>
<td>Airspeed—±3 kts., Altitude—±20 ft. (6.1 m), Torque—±3%, Rotor Speed—±1.5%, Pitch Attitude—±1.5°, Bank Altitude—±2°, Heading—±2°, Longitudinal Control Position—±10%, Lateral Control Position—±10%, Directional Control Position—±10%, Collective Control Position—±10%</td>
<td>Approach</td>
<td>Record results of the approach and landing profile as appropriate to the helicopter model simulated (running landing for Level B, or approach to a hover for Level C and D). For Level B, the criteria apply only to those segments at airspeeds below effective translational lift.</td>
<td></td>
<td>X X</td>
</tr>
<tr>
<td>1.1.2</td>
<td>One Engine Inoperative</td>
<td>Airspeed—±3 kts., Altitude—±20 ft. (6.1 m), Torque—±3%, Rotor Speed—±1.5%, Pitch Attitude—±1.5°, Bank Altitude—±2°, Heading—±2°, Longitudinal Control Position—±10%, Lateral Control Position—±10%, Directional Control Position—±10%, Collective Control Position—±10%</td>
<td>Approach</td>
<td>Record results for both Category A and Category B approaches and landing as appropriate to helicopter model simulated. For Level B, the criteria apply only to those segments at airspeeds above effective translational lift.</td>
<td></td>
<td>X X</td>
</tr>
</tbody>
</table>
1.j.3. Balked Landing

<table>
<thead>
<tr>
<th>Airspeed</th>
<th>±3 kts</th>
<th>Altitude</th>
<th>±20 ft (6.1 m)</th>
<th>Torque</th>
<th>±3%</th>
<th>Rotor Speed</th>
<th>±1.5%</th>
<th>Pitch Attitude</th>
<th>±1.5°</th>
<th>Bank Attitude</th>
<th>±2°</th>
<th>Heading</th>
<th>±2°</th>
<th>Longitudinal Control Position</th>
<th>±10%</th>
<th>Lateral Control Position</th>
<th>±10%</th>
<th>Directional Control Position</th>
<th>±10%</th>
<th>Collective Control Position</th>
<th>±10%</th>
</tr>
</thead>
</table>

Approach

Record the results for the maneuver initiated from a stabilized approach at the landing decision point (LDP).

X X X

1.j.4. Autorotational Landing

<table>
<thead>
<tr>
<th>Torque</th>
<th>±3%</th>
<th>Rotor Speed</th>
<th>±3%</th>
<th>Vertical Velocity</th>
<th>±100 fpm (0.50 m/sec) or 10%</th>
<th>Pitch Attitude</th>
<th>±2°</th>
<th>Bank Attitude</th>
<th>±2°</th>
<th>Heading</th>
<th>±5°</th>
<th>Longitudinal Control Position</th>
<th>±10%</th>
<th>Lateral Control Position</th>
<th>±10%</th>
<th>Directional Control Position</th>
<th>±10%</th>
<th>Collective Control Position</th>
<th>±10%</th>
</tr>
</thead>
</table>

Landing

Record the results of an autorotational deceleration and landing from a stabilized autorotational descent, to touch down. If flight test data containing all required parameters for a complete power-off landing is not available from the aircraft manufacturer for this test and other qualified flight test personnel are not available to acquire this data, the sponsor may coordinate with the NSPM to determine if it is appropriate to accept alternative testing means.

X X

Alternative approaches for acquiring this data may be acceptable, depending on the aircraft as well as the personnel and the data recording, reduction, and interpretation facilities to be used, are: (1) a simulated autorotational flare and reduction of rate of descent (ROD) at altitude; or (2) a power-on termination following an autorotational approach and flare.

2. Handling Qualities

2.a. Control System Mechanical Characteristics

For simulators requiring Static or Dynamic tests at the controls (i.e., cyclic, collective, and pedal), special test fixtures will not be required during initial or upgrade evaluations if the sponsor's QTG/MQTG shows both test fixture results and the results of an alternative approach, such as computer plots produced concurrently showing satisfactory agreement. Repeat of the alternative method during the initial or upgrade evaluation satisfies this test requirement. For initial and upgrade evaluations, the control dynamic characteristics must be measured at and recorded directly from the flight deck controls, and must be accomplished in hover, climb, cruise, and autorotation.

Contact the NSPM for clarification of any issue regarding helicopters with reversible controls or where the required validation data is not attainable.
TABLE C2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance(s)</th>
<th>Flight condition</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a.1</td>
<td>Cyclic</td>
<td>Breakout—±0.25 lbs. (0.112 daN) or 25%; Force—±1.0 lb. (0.224 daN) or 10%.</td>
<td>Ground; Static conditions with the hydraulic system (if applicable) pressurized; supplemental hydraulic pressurization system may be used. Trim On and Off. Friction Off. Augmentation (if applicable) On and Off.</td>
<td>Record results for an uninterrupted control sweep to the stops. (This test does not apply if aircraft hardware modular controllers are used.)</td>
<td>B C D</td>
<td>X X X Flight Test Data for this test does not require the rotor to be engaged/turning. The phrase “if applicable” regarding stability augmentation systems means if an augmentation system is available and if this system may be operational on the ground under static conditions as described here.</td>
</tr>
<tr>
<td>2.a.2</td>
<td>Collective/Pedals</td>
<td>Breakout—±0.5 lb. (0.224 daN) or 25%; Force—±1.0 lb. (0.224 daN) or 10%.</td>
<td>Ground; Static conditions with the hydraulic system (if applicable) pressurized; supplemental hydraulic pressurization system may be used. Trim On and Off. Friction Off. Augmentation (if applicable) On and Off.</td>
<td>Record results for an uninterrupted control sweep to the stops.</td>
<td>B C D</td>
<td>X X X Flight Test Data for this test does not require the rotor to be engaged/turning. The phrase “if applicable” regarding stability augmentation system means if a stability augmentation system is available and if this system may be operational on the ground under static conditions as described here.</td>
</tr>
<tr>
<td>2.a.3</td>
<td>Brake Pedal Force vs. Position.</td>
<td>±5 lbs. (2.224 daN) or 10%.</td>
<td>Ground; Static conditions.</td>
<td></td>
<td>B C D</td>
<td>X X X</td>
</tr>
<tr>
<td>2.a.4</td>
<td>Trim System Rate (all applicable systems).</td>
<td>Rate—±10%.</td>
<td>Ground; Static conditions. Trim On, Friction Off.</td>
<td>The tolerance applies to the recorded value of the trim rate.</td>
<td>B C D</td>
<td>X X X</td>
</tr>
</tbody>
</table>
2.a.5. Control Dynamics (all axes)
- ±10% of time for first zero crossing and ±(N+1)% of period thereafter; ±10% of amplitude of first overshoot, 20% of amplitude of 2nd and subsequent overshoots greater than 5% of initial displacement, ±1 overshoot.
- Hover/Cruise, Trim On, Friction Off.
- Results must be recorded for a normal control displacement in both directions in each axis.

2.a.6. Control System Freeplay
- ±0.10 inches (±2.5 mm).
- Ground; Static conditions; with the hydraulic system (if applicable) pressurized; supplemental hydraulic pressurization system may be used.
- Record and compare results for all controls.

2.b. Low Airspeed Handling Qualities
2.b.1. Trimmed Flight Control Positions
- Torque—±3%, Pitch Attitude—±1.5°, Bank Attitude—±2°, Longitudinal Control Position—±5%, Lateral Control Position—±5%, Directional Control Position—±5%, Collective Control Position—±5%.
- Translational Flight IGE—Sideward, rearward, and forward flight. Augmentation On and Off.
- Record results for several airspeed increments to the translational airspeed limits and for 45 kts. forward airspeed. May be a series of snapshot tests.

2.b.2. Critical Azimuth
- Torque—±3%, Pitch Attitude—±1.5°, Bank Attitude—±2°, Longitudinal Control Position—±5%, Lateral Control Position—±5%, Directional Control Position—±5%, Collective Control Position—±5%.
- Stationary Hover. Augmentation On and Off.
- Record results for three relative wind directions (including the most critical case) in the critical quadrant. May be a series of snapshot tests.

2.b.3. Control Response
2.b.3.a. Longitudinal
- Pitch Rate—±10% or ±2°/sec. Pitch Attitude Change—±10% or 1.5°.
- Hover Augmentation On and Off.
- Record results for a step control input. The Off-axis response must show correct trend for unaugmented cases.

Typically, control displacement of 25% to 50% is necessary for proper excitation. Control Dynamics for irreversible control systems may be evaluated in a ground/static condition. Additional information on control dynamics is found later in this attachment. “N” is the sequential period of a full cycle of oscillation.

Flight Test Data for this test does not require the rotor to be engaged/turning.
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance(s)</th>
<th>Flight condition</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.b.3.b.</td>
<td>Lateral</td>
<td>Roll Rate—±10% or ±3°/sec., Roll Attitude Change—±10% or ±3°.</td>
<td>Hover Augmentation On and Off.</td>
<td>Record results for a step control input. The Off-axis response must show correct trend for unaugmented cases.</td>
<td>B</td>
<td>X X This is a “short time” test conducted in a hover, in ground effect, without entering translational flight, to provide better visual reference.</td>
</tr>
<tr>
<td>2.b.3.c.</td>
<td>Directional</td>
<td>Yaw Rate—±10% or ±5°/sec., Heading Change—±10% or ±5°.</td>
<td>Hover Augmentation On and Off.</td>
<td>Record results for a step control input. The Off-axis response must show correct trend for unaugmented cases.</td>
<td>B</td>
<td>X X This is a “short time” test conducted in a hover, in ground effect, without entering translational flight, to provide better visual reference.</td>
</tr>
<tr>
<td>2.b.3.d.</td>
<td>Vertical</td>
<td>Normal Acceleration—±0.1 g.</td>
<td>Hover Augmentation On and Off.</td>
<td>Record results for a step control input. The Off-axis response must show correct trend for unaugmented cases.</td>
<td>B</td>
<td>X X</td>
</tr>
</tbody>
</table>

2.c. Longitudinal Handling Qualities

2.c.1.	Control Response	Pitch Rate—±10% or ±2°/sec., Pitch Attitude Change—±10% or ±1.5°.	Cruise Augmentation On and Off.	Results must be recorded for two cruise airspeeds to include minimum power required speed. Record data for a step control input. The Off-axis response must show correct trend for unaugmented cases.	B	X X
2.c.2.	Static Stability	Longitudinal Control Position: ±10% of change from trim or ±0.25 in. (6.3 mm) or Longitudinal Control Force: ±0.5 lb. (0.223 daN) or ±10%.	Cruise or Climb, Autorotation, Augmentation On and Off.	Record results for a minimum of two speeds on each side of the trim speed. May be a series of snapshot tests.	B	X X
2.c.3.	Dynamic Stability				B	
2.c.3.a. Long-Term Response

| ±10% of calculated period, ±10% of time to ½ or double amplitude, or ±0.02 of damping ratio. For non-periodic responses, the time history must be matched within ±3° pitch and ±5 kts airspeed over a 20 sec period following release of the controls. | Cruise Augmentation On and Off. | X | X | X |
|---|---|---|---|
| For periodic responses, record results for three full cycles (6 overshoots after input completed) or that sufficient to determine time to ½ or double amplitude, whichever is less. The test may be terminated prior to 20 sec if the test pilot determines that the results are becoming uncontrollably divergent. | The response may be unrepeatable throughout the stated time for certain helicopters. In these cases, the test should show at least that a divergence is identifiable. For example, Displacing the cyclic for a given time normally excites this test or until a given pitch attitude is achieved and then return the cyclic to the original position. For non-periodic responses, results should show the same convergent or divergent character as the flight test data. |

2.c.3.b. Short-Term Response

| ±1.5° Pitch or ±2°/sec Pitch Rate; ±0.1 g Normal Acceleration. | Cruise or Climb, Augmentation On and Off. | X | X |
|---|---|---|
| Record results for at least two airspeeds. | A control doublet inserted at the natural frequency of the aircraft normally excites this test. However, while input doublets are preferred over pulse inputs for Augmentation-Off tests, for Augmentation-On tests, when the short-term response exhibits 1st-order or deadbeat characteristics, longitudinal pulse inputs may produce a more coherent response. |

2.c.4. Maneuvering Stability

| Longitudinal Control Position—±10% of change from trim or ±0.25 in. (6.3 mm) or Longitudinal Control Forces—±0.5 lb (0.223 daN) or ±10%. | Cruise or Climb, Augmentation On and Off. | X | X |
|---|---|---|
| Record results for at least two airspeeds at 30°–45° roll angle. The force may be shown as a cross plot for irreversible systems. May be a series of snapshot tests. | The force may be shown as a cross plot for irreversible systems. May be a series of snapshot tests. |

2.d. Lateral and Directional Handling Qualities

2.d.1. Control Response
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance(s)</th>
<th>Flight condition</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.d.1.a</td>
<td>Lateral</td>
<td>Roll Rate—±10% or ±3°/sec., Roll Attitude Change—±10% or ±3°.</td>
<td>Cruise Augmentation On and Off.</td>
<td>Record results for at least two airspeeds, including the speed at or near the minimum power required airspeed. Record results for a step control input. The Off-axis response must show correct trend for unaugmented cases.</td>
<td>X</td>
<td>X X X</td>
</tr>
<tr>
<td>2.d.1.b</td>
<td>Directional</td>
<td>Yaw Rate—±10% or ±2°/sec., Yaw Attitude Change—±10% or ±2°.</td>
<td>Cruise Augmentation On and Off.</td>
<td>Record data for at least two airspeeds, including the speed at or near the minimum power required airspeed. Record results for a step control input. The Off-axis response must show correct trend for unaugmented cases.</td>
<td>X</td>
<td>X X</td>
</tr>
<tr>
<td>2.d.2</td>
<td>Directional Static Stability.</td>
<td>Lateral Control Position—±10% of change from trim or ±0.25 in. (6.3 mm) or Lateral Control Force—±0.5 lb. (0.223 daN) or 10%, Roll Attitude—±1.5, Directional Control Position—±10% of change from trim or ±0.25 in. (6.3 mm) or Directional Control Force—±1 lb. (0.448 daN) or 10%, Longitudinal Control Position—±10% of change from trim or ±0.25 in. (6.3 mm), Vertical Velocity—±100 fpm (0.50 m/sec) or 10%.</td>
<td>Cruise; or Climb (may use Descent instead of Climb if desired), Augmentation On and Off.</td>
<td>Record results for at least two sideslip angles on either side of the trim point. The force may be shown as a cross plot for irreversible systems. May be a series of snapshot tests.</td>
<td>X</td>
<td>X X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This is a steady heading sideslip test at a fixed collective position.</td>
</tr>
</tbody>
</table>
2.d.3 Dynamic Lateral and Directional Stability

<table>
<thead>
<tr>
<th>2.d.3.a.</th>
<th>Lateral-Directional Oscillations.</th>
<th>±0.5 sec. or ±10% of period. ±10% of time to 1/2 or double amplitude or ±0.02 of damping ratio. ±20% or ±1 sec of time difference between peaks of bank and sideslip. For non-periodic responses, the time history must be matched within ±10 knots Airspeed; ±5°/s Roll Rate or ±5° Roll Attitude; ±4° Yaw Rate or ±4° Yaw Angle over a 20 sec period roll angle following release of the controls.</th>
<th>Cruise or Climb, Augmentation On and Off.</th>
<th>Record results for at least two airspeeds. The test must be initiated with a cyclic or a pedal doublet input. Record results for six full cycles (12 overshoots after input completed) or that sufficient to determine time to 1/2 or double amplitude, whichever is less. The test may be terminated prior to 20 sec if the test pilot determines that the results are becoming uncontrollably divergent.</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
</table>

2.d.3.b. Spiral Stability. | ±2° or ±10% roll angle. | Cruise or Climb, Augmentation On and Off. | Record the results of a release from pedal only or cyclic only turns for 20 sec. Results must be recorded from turns in both directions. Terminate check at zero roll angle or when the test pilot determines that the attitude is becoming uncontrollably divergent. | X | X | X |

2.d.3.c. Adverse/Proverse Yaw. | Correct Trend, ±2° transient sideslip angle. | Cruise or Climb, Augmentation On and Off. | Record the time history of initial entry into cyclic only turns, using only a moderate rate for cyclic input. Results must be recorded for turns in both directions. | X | X | X |

3 Motion System

<p>| 3.a. | Frequency response | Based on Simulator Capability. | N/A | Required as part of the MOTG. The test must demonstrate frequency response of the motion system as specified by the applicant for flight simulator qualification. | X | X | X |</p>
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance(s)</th>
<th>Flight condition</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.b</td>
<td>Leg Balance</td>
<td></td>
<td>Based on Simulator Capability.</td>
<td>N/A. Required as part of the MQTG. The test must demonstrate motion system leg balance as specified by the applicant for flight simulator qualification.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>3.c</td>
<td>Turn Around</td>
<td></td>
<td>Based on Simulator Capability.</td>
<td>N/A. Required as part of the MQTG. The test must demonstrate a smooth turnaround (shift to opposite direction of movement) of the motion system as specified by the applicant for flight simulator qualification.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>3.d</td>
<td>Motion system repeatability</td>
<td></td>
<td>With the same input signal, the test results must be repeatable to within ±0.05g actual platform linear acceleration in each axis.</td>
<td>Accomplished in both the “ground” mode and the “flight” mode of the motion system operation.</td>
<td>X X</td>
<td>See Paragraph 6.c. in this attachment for additional information. Note: If there is no difference in the model for “ground” and “flight” operation of the motion system, this should be described in an SOC and will not require tests in both modes.</td>
</tr>
<tr>
<td>3.e</td>
<td>Motion cueing performance signature</td>
<td></td>
<td></td>
<td>Required as part of the MQTG. The test is accomplished by injecting a motion signal to generate movement of the platform. The input must be such that the rotational accelerations, rotational rates, and linear accelerations are inserted before the transfer from helicopter center of gravity to the pilot reference point with a minimum amplitude of 5°/sec, 10°/sec and 0.3g, respectively.</td>
<td>X X</td>
<td></td>
</tr>
</tbody>
</table>
Federal Aviation Administration, DOT Pt. 60, App. C

Required as part of MOTG. These tests must be run with the motion buffet mode disabled.

See paragraph 6.d., of this attachment. Motion cueing performance signature.

<table>
<thead>
<tr>
<th>3.e.1.</th>
<th>Takeoff (all engines).</th>
<th>As specified by the sponsor for flight simulator qualification.</th>
<th>Ground</th>
<th>Pitch attitude due to initial climb must dominate over cab lift due to longitudinal acceleration.</th>
<th>X</th>
<th>X</th>
<th>Associated to test number 1.c.1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.e.2.</td>
<td>Hover performance (IGE and OGE).</td>
<td>As specified by the sponsor for flight simulator qualification.</td>
<td>Ground</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Associated to test number 1.d.</td>
</tr>
<tr>
<td>3.e.3.</td>
<td>Autorotation (entry).</td>
<td>As specified by the sponsor for flight simulator qualification.</td>
<td>Flight</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Associated to test number 1.j.</td>
</tr>
<tr>
<td>3.e.4.</td>
<td>Landing (all engines).</td>
<td>As specified by the sponsor for flight simulator qualification.</td>
<td>Flight</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Associated to test number 1.j.1.</td>
</tr>
<tr>
<td>3.e.5.</td>
<td>Autorotation (landing).</td>
<td>As specified by the sponsor for flight simulator qualification.</td>
<td>Flight</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Associated to test number 1.j.4.</td>
</tr>
<tr>
<td>3.e.6.</td>
<td>Control Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.e.6.a.</td>
<td>Longitudinal</td>
<td>As specified by the sponsor for flight simulator qualification.</td>
<td>Flight</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Associated to test number 2.c.1.</td>
</tr>
<tr>
<td>3.e.6.b.</td>
<td>Lateral</td>
<td>As specified by the sponsor for flight simulator qualification.</td>
<td>Ground</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Associated to test number 2.d.1.a.</td>
</tr>
<tr>
<td>3.e.6.c.</td>
<td>Directional</td>
<td>As specified by the sponsor for flight simulator qualification.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>Associated to test number 2.d.1.c.</td>
</tr>
<tr>
<td>3.f.</td>
<td>Characteristic Motion (Vibration) Cues—For all of the following tests, the simulator test results must exhibit the overall appearance and trends of the helicopter data, with at least three (3) of the predominant frequency “spikes” being present within ±2 Hz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Characteristic motion cues may be separate from the “main” motion system.</td>
</tr>
</tbody>
</table>
Table C2A—Full Flight Simulator (FFS) Objective Tests—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance(s)</th>
<th>Flight condition</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.f.1.</td>
<td>Vibrations—to include 1/Rev and n/Rev vibrations (where “n” is the number of main rotor blades).</td>
<td>+3db to −6db or ±10% of nominal vibration level in flight cruise and correct trend (see comment).</td>
<td>(a) On ground (idle); (b) In flight</td>
<td>Characteristic vibrations include those that result from operation of the helicopter (for example, high airspeed, retreating blade stall, extended landing gear, vortex ring or settling with power) in so far as vibration marks an event or helicopter state, which can be sensed in the flight deck. [See Table C1A, table entries 5.e. and 5.f.]</td>
<td>X Correct trend refers to a comparison of vibration amplitudes between different maneuvers; e.g., if the 1/rev vibration amplitude in the helicopter is higher during steady state than in level flight this increasing trend should be demonstrated in the simulator. Additional examples of vibrations may include: (a) Low & High speed transition to and from hover; (b) Level flight; (c) Climb and descent (including vertical climb; (d) Auto-rotation; (e) Steady Turns.</td>
<td></td>
</tr>
<tr>
<td>3.f.2.</td>
<td>Buffet—Test against recorded results for characteristic buffet motion that can be sensed in the flight deck.</td>
<td>+3db to −6db or ±10% of nominal vibration level in flight cruise and correct trend (see comment).</td>
<td>On ground and in flight</td>
<td>Characteristic buffets include those that result from operation of the helicopter (for example, high airspeed, retreating blade stall, extended landing gear, vortex ring or settling with power) in so far as a buffet marks an event or helicopter state, which can be sensed in the flight deck. [See Table C1A, table entries 5.e. and 5.f.]</td>
<td>X The recorded test results for characteristic buffets should allow the checking of relative amplitude for different frequencies. For atmospheric disturbance, general purpose models are acceptable which approximate demonstrable flight test data.</td>
<td></td>
</tr>
</tbody>
</table>

4. Visual System

4.a. Visual System Response Time. (Choose either test 4.a.1. or 4.a.2. to satisfy test 4.a., Visual System Response Time Test. This test is also sufficient for motion system response timing and flight deck instrument response timing.)

4.a.1. Latency
<table>
<thead>
<tr>
<th>4.a.2.</th>
<th>Transport Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 ms (or less) after helicopter response.</td>
<td>Takeoff, climb, and descent.</td>
</tr>
<tr>
<td>100 ms (or less) after helicopter response.</td>
<td>Climb, cruise, descent, and hover.</td>
</tr>
<tr>
<td>4.b.</td>
<td>Field-of-view</td>
</tr>
<tr>
<td>150 ms (or less) after controller movement.</td>
<td>N/A</td>
</tr>
<tr>
<td>100 ms (or less) after controller movement.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

If Transport Delay is the chosen method to demonstrate relative responses, the sponsor and the NSPM will use the latency values to ensure proper simulator response when reviewing the existing tests where latency can be identified (e.g., short period, roll response, rudder response).
TABLE C2A—FULL FLIGHT SIMULATOR (FFS) OBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance(s)</th>
<th>Flight condition</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.b.1. ...</td>
<td>Continuous field-of-view.</td>
<td>N/A</td>
<td>The simulator must provide a continuous field-of-view of at least 75° horizontally and 30° vertically per pilot seat or the number of degrees necessary to meet the visual ground segment requirement, whichever is greater. Both pilot seat visual systems must be operable simultaneously. Wide-angle systems providing cross-flight deck viewing (for both pilots simultaneously) must provide a minimum field-of-view of at least 146° horizontally and 36° vertically. Any geometric error between the Image Generator eye point and the pilot eye point must be 8° or less.</td>
<td>An SOC is required and must explain the geometry of the installation. Additional horizontal field-of-view capability may be added at the sponsor’s discretion provided the minimum field-of-view is retained.</td>
<td>X</td>
<td>Horizontal field-of-view is centered on the zero degree azimuth line relative to the aircraft fuselage. Field-of-view may be measured using a visual test pattern filling the entire visual scene (all channels) with a matrix of black and white 5° squares.</td>
</tr>
<tr>
<td>4.b.2.</td>
<td>Continuous field-of-view.</td>
<td>The simulator must provide a continuous field-of-view of at least 146° horizontally and 36° vertically or the number of degrees necessary to meet the visual ground segment requirement, whichever is greater. The minimum horizontal field-of-view coverage must be plus and minus one-half ((\frac{1}{2})) of the minimum continuous field-of-view requirement, centered on the zero degree azimuth line relative to the aircraft fuselage. Any geometric error between the Image Generator eye point and the pilot eye point must be 8° or less.</td>
<td>N/A</td>
<td>An SOC is required and must explain the geometry of the installation. Horizontal field-of-view of at least 146° (including not less than 73° measured either side of the center of the design eye point). Additional horizontal field-of-view capability may be added at the sponsor's discretion provided the minimum field-of-view is retained. Vertical field-of-view of at least 36° measured from the pilot's and co-pilot's eye point.</td>
<td>X</td>
<td>Horizontal field-of-view is centered on the zero degree azimuth line relative to the aircraft fuselage. Field-of-view may be measured using a visual test pattern filling the entire visual scene (all channels) with a matrix of black and white 5° squares.</td>
</tr>
<tr>
<td>4.b.3.</td>
<td>Continuous field-of-view.</td>
<td>Continuous field-of-view of at least 176° horizontal and 56° vertical field-of-view for each pilot simultaneously. Any geometric error between the Image Generator eye point and the pilot eye point must be 8° or less.</td>
<td>N/A</td>
<td>An SOC is required and must explain the geometry of the installation. Horizontal field-of-view is centered on the zero degree azimuth line relative to the aircraft fuselage. Horizontal field-of-view must be at least 176° (including not less than 88° either side of the center of the design eye point). Additional horizontal field-of-view capability may be added at the sponsor's discretion provided the minimum field-of-view is retained. Vertical field-of-view must not be less than a total of 56° measured from the pilot's and co-pilot's eye point.</td>
<td>X</td>
<td>The horizontal field-of-view is traditionally described as a 180° field-of-view. However, the field-of-view is technically no less than 176°. Field-of-view may be measured using a visual test pattern filling the entire visual scene (all channels) with a matrix of black and white 5° squares.</td>
</tr>
</tbody>
</table>
Table C2A—Full Flight Simulator (FFS) Objective Tests—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Test Title</th>
<th>Tolerance(s)</th>
<th>Flight condition</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.c</td>
<td>Surface contrast ratio.</td>
<td>Not less than 5:1.</td>
<td>N/A</td>
<td>The ratio is calculated by dividing the brightness level of the center, bright square (providing at least 2 foot-lamberts or 7 cd/m²) by the brightness level of any adjacent dark square.</td>
<td>X</td>
<td>Measurements may be made using a 1° spot photometer and a raster drawn test pattern filling the entire visual scene (all channels) with a test pattern of black and white squares, 5 per square, with a white square in the center of each channel. During contrast ratio testing, simulator aft-cab and flight deck ambient light levels should be zero.</td>
</tr>
<tr>
<td>4.d</td>
<td>Highlight brightness.</td>
<td>Not less than six (6) foot-lamberts (20 cd/m²).</td>
<td>N/A</td>
<td>Measure the brightness of the center, white square while superimposing a highlight on that white square. The use of calligraphic capabilities to enhance the raster brightness is acceptable; however, measuring light points is not acceptable.</td>
<td>X</td>
<td>Measurements may be made using a 1° spot photometer and a raster drawn test pattern filling the entire visual scene (all channels) with a test pattern of black and white squares, 5 per square, with a white square in the center of each channel.</td>
</tr>
<tr>
<td>4.e.</td>
<td>Surface resolution.</td>
<td>Not greater than two (2) arc minutes.</td>
<td>N/A</td>
<td>An SOC is required and must include the appropriate calculations and an explanation of those calculations. Level B requires surface resolution not greater than three (3) arc minutes.</td>
<td>X</td>
<td>X When the eye is positioned on a 3° glide slope at the slant range distances indicated with white runway markings on a black runway surface, the eye will subtend two (2) arc minutes: (1) A slant range of 6,876 ft with stripes 150 ft long and 16 ft wide, spaced 4 ft apart. (2) For Configuration A, a slant range of 5,157 feet with stripes 150 ft long and 12 ft wide, spaced 3 ft apart. (3) For Configuration B, a slant range of 9,884 feet, with stripes 150 ft long and 5.75 ft wide, spaced 5.75 ft apart.</td>
</tr>
<tr>
<td>4.f.</td>
<td>Light point size</td>
<td>Not greater than five (5) arc minutes.</td>
<td>N/A</td>
<td>An SOC is required and must include the relevant calculations.</td>
<td>X</td>
<td>X Light point size may be measured using a test pattern consisting of a centrally located single row of light points reduced in length until modulation is just discernible in each visual channel. A row of 48 lights will form a 4° angle or less.</td>
</tr>
<tr>
<td>4.g.</td>
<td>Light point contrast ratio.</td>
<td></td>
<td></td>
<td>A 1° spot photometer may be used to measure a square of at least 1° filled with light points (where light point modulation is just discernible) and compare the results to the measured adjacent background. During contrast ratio testing, simulator aft-cab and flight deck ambient light levels should be zero.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.g.1.</td>
<td></td>
<td>Not less than 10:1</td>
<td>N/A</td>
<td>An SOC is required and must include the relevant calculations.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Tolerance(s)</td>
<td>Flight condition</td>
<td>Test details</td>
<td>Simulator level</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>4.g.2.</td>
<td></td>
<td>Not less than 25:1</td>
<td>N/A</td>
<td>An SOC is required and must include the relevant calculations.</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

4.h. Visual ground segment

- The visible segment in the simulator must be ≥20% of the segment computed to be visible from the helicopter flight deck. This tolerance may be applied at the far end of the displayed segment. However, lights and ground objects computed to be visible from the helicopter flight deck at the near end of the visible segment must be visible in the simulator.

- Landing configuration, with the aircraft trimmed for the appropriate airspeed, where the MLG are at 100 ft (30 m) above the plane of the touchdown zone, on the electronic glide slope with an RVR value set at 1,200 ft (360 m).

- The QTG must contain appropriate calculations and a drawing showing the data used to establish the helicopter location and the segment of the ground that is visible considering design eye point, the helicopter altitude, flight deck cutoff angle, and a visibility of 1,200 ft (360 m) RVR. Simulator performance must be measured against the QTG calculations. The data submitted must include at least the following:

- Pre-positioning for this test is encouraged, and may be achieved via manual or autopilot control to the desired position.
5. **Sound system**

The sponsor will not be required to repeat the helicopter tests (i.e., tests 5.a.1. through 5.a.8. (or 5.b.1. through 5.b.9.) and 5.c., as appropriate) during continuing qualification evaluations if frequency response and background noise test results are within tolerance when compared to the initial qualification evaluation results, and the sponsor shows that no software changes have occurred that will affect the helicopter test results. If the frequency response test method is chosen and fails, the sponsor may elect to fix the frequency response problem and repeat the test or the sponsor may elect to repeat the helicopter tests. If the helicopter tests are repeated during continuing qualification evaluations, the results may be compared against initial qualification evaluation results or helicopter master data. All tests in this section must be presented using an unweighted 1/3-octave band format from band 17 to 42 (50 Hz to 16 kHz). A minimum 20 second average must be taken at the location corresponding to the helicopter data set. The helicopter and flight simulator results must be produced using comparable data analysis techniques.

5.a. **Basic requirements**
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerance(s)</th>
<th>Flight condition</th>
<th>Test details</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.a.1.</td>
<td>Ready for engine start</td>
<td>± 5 dB per $\frac{1}{3}$ octave band.</td>
<td>Ground</td>
<td>Normal condition prior to engine start. The APU must be on if applicable.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.a.2.</td>
<td>All engines at idle; rotor not turning (if applicable) and rotor turning</td>
<td>± 5 dB per $\frac{1}{3}$ octave band.</td>
<td>Ground</td>
<td>Normal condition prior to lift-off.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.a.3.</td>
<td>Hover</td>
<td>± 5 dB per $\frac{1}{3}$ octave band.</td>
<td>Hover</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.a.4.</td>
<td>Climb</td>
<td>± 5 dB per $\frac{1}{3}$ octave band.</td>
<td>Enroute climb</td>
<td>Medium altitude</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.a.5.</td>
<td>Cruise</td>
<td>± 5 dB per $\frac{1}{3}$ octave band.</td>
<td>Cruise</td>
<td>Normal cruise configuration.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.a.6.</td>
<td>Final approach</td>
<td>± 5 dB per $\frac{1}{3}$ octave band.</td>
<td>Landing</td>
<td>Constant airspeed, gear down.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.b.</td>
<td>Special cases</td>
<td>± 5 dB per $\frac{1}{3}$ octave band.</td>
<td>As appropriate</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.c.</td>
<td>Background noise</td>
<td>± 3 dB per $\frac{1}{3}$ octave band.</td>
<td>As appropriate</td>
<td>Results of the background noise at initial qualification must be included in the MQTG. Measurements must be made with the simulation running, the sound muted, and a "dead" flight deck.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.d.</td>
<td>Frequency response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These special cases are identified as particularly significant during critical phases of flight and ground operations for a specific helicopter type or model.

The simulated sound will be evaluated to ensure that the background noise does not interfere with training, testing, or checking.
±5 dB on three (3) consecutive bands when compared to initial evaluation; and ±2 dB when comparing the average of the absolute differences between initial and continuing qualification evaluation.

Applicable only to Continuing Qualification Evaluations. If frequency response plots are provided for each channel at the initial evaluation, these plots may be repeated at the continuing qualification evaluation with the following tolerances applied:

(a) The continuing qualification 1/3 octave band amplitudes must not exceed ±5 dB for three consecutive bands when compared to initial results.

(b) The average of the sum of the absolute differences between initial and continuing qualification results must not exceed 2 dB (refer to table C3C in Appendix C).

Measurements are compared to those taken during initial qualification evaluation.
a. General. The characteristics of a helicopter flight control system have a major effect on the handling qualities. A significant consideration in pilot acceptance of a helicopter is the "feel" provided through the flight controls. Considerable effort is expended on helicopter feel system design so that pilots will be comfortable and will consider the helicopter desirable to fly. In order for an FFS to be representative, it should "feel" like the helicopter being simulated. Compliance with this requirement is determined by comparing a recording of the control feel dynamics of the FFS to actual helicopter measurements in the hover and cruise configurations. (1) Recordings such as free response to an impulse or step function are classically used to estimate the dynamic properties of electromechanical systems. In any case, it is only possible to estimate the dynamic properties as a result of only being able to estimate true inputs and responses. Therefore, it is imperative that the best possible data be collected since close matching of the FFS control loading system to the helicopter system is essential. The required dynamic control tests are described in Table C2A of this attachment. (2) For initial and upgrade evaluations, the QPS requires that control dynamics characteristics be measured and recorded directly from the flight controls (Handling Qualities—Table C2A). This procedure is usually accomplished by measuring the free response of the controls using a step or impulse input to excite the system. The procedure should be accomplished in the hover and cruise flight conditions and configurations. (3) For helicopters with irreversible control systems, measurements may be obtained on the ground if proper pitot-static inputs are provided to represent airspeeds typical of those encountered in flight. Likewise, it may be shown that for some helicopters, hover, climb, cruise, and autorotation have like effects. Thus, one may suffice for another. If either or both considerations apply, engineering validation or helicopter manufacturer rationale should be submitted as justification for ground tests or for eliminating a configuration. For FFSs requiring static and dynamic tests at the controls, special test fixtures will not be required during initial and upgrade evaluations if the QPS shows both test fixture results and the results of an alternate approach (e.g., computer plots that were produced concurrently and show satisfactory agreement). Repeat of the alternate method during the initial evaluation satisfies this test requirement. b. Control Dynamics Evaluations. The dynamic properties of control systems are often stated in terms of frequency, damping, and a number of other classical measurements. In order to establish a consistent means of validating test results for FFS control loading, criteria are needed that will clearly define the measurement interpretation and the applied tolerances. Criteria are needed for underdamped, critically damped and overdamped systems. In the case of an underdamped system with very light damping, the system may be quantified in terms of frequency and damping. In critically damped or overdamped systems, the frequency and damping are not readily measured from a response time history. Therefore, the following suggested measurements may be used: (1) For Levels C and D simulators. Tests to verify that control feel dynamics represent the helicopter should show that the dynamic damping cycles (free response of the controls) match those of the helicopter within specified tolerances. The NSPM recognizes that several different testing methods may be used to verify the control feel dynamic response. The NSPM will consider the merits of testing methods based on reliability and consistency. One acceptable method of evaluating the response and the tolerance to be applied is described below for the underdamped and critically damped cases. A sponsor using this method to comply with the QPS requirements should perform the tests as follows: (a) Underdamped Response. Two measurements are required for the period, the time to first zero crossing (in case a rate limit is present) and the subsequent frequency of oscillation. It is necessary to measure cycles on an individual basis in case there are nonuniform periods in the response. Each period will be independently compared to the respective period of the helicopter control system and, consequently, will enjoy the full tolerance specified for that period. The damping tolerance will be applied to overshoots on an individual basis. Care should be
taken when applying the tolerance to small overshoots since the significance of such overshoots becomes questionable. Only those overshoots larger than 5 percent of the total initial displacement should be considered significant. The residual band, labeled $T(A_d)$ on Figure C2A, is ±5 percent of the initial displacement amplitude A_d from the steady state value of the oscillation. Only oscillations outside the residual band are considered significant. When comparing FFS data to helicopter data, the process should begin by overlaying or aligning the FFS and helicopter steady state values and then comparing amplitudes of oscillation peaks, the time of the first zero crossing, and individual periods of oscillation. The FFS should show the same number of significant overshoots to within one when compared against the helicopter data. The procedure for evaluating the response is illustrated in Figure C2A.

(b) Critically damped and Overdamped Response. Due to the nature of critically damped and overdamped responses (no overshoots), the time to reach 90 percent of the steady state (neutral point) value should be the same as the helicopter within ±10 percent. The simulator response must be critically damped also. Figure C2B illustrates the procedure.

(c) Special considerations. Control systems that exhibit characteristics other than classical overdamped or underdamped responses should meet specified tolerances. In addition, special consideration should be given to ensure that significant trends are maintained.

(2) Tolerances.

(a) The following summarizes the tolerances, "T" for underdamped systems, and "n" is the sequential period of a full cycle of oscillation. See Figure C2A of this attachment for an illustration of the referenced measurements.

- $T(P_0)$ ±10% of P_0
- $T(P_1)$ ±20% of P_1
- $T(P_2)$ ±30% of P_2
- $T(P_n)$ ±10(n+1)% of P_n
- $T(A_n)$ ±10% of A_n ±20% of Subsequent Peaks
- $T(A_d)$ ±5% of A_d = residual band

Significant overshoots. First overshoot and ±1 subsequent overshoots

(b) The following tolerance applies to critically damped and overdamped systems only. See Figure C2B for an illustration of the reference measurements:

- $T(P_0)$ ±10% of P_0

END INFORMATION

BEGIN QPS REQUIREMENT

c. Alternative method for control dynamics evaluation.

(1) An alternative means for validating control dynamics for aircraft with hydraulically powered flight controls and artificial feel systems is by the measurement of control force and rate of movement. For each axis of pitch, roll, and yaw, the control must be forced to its maximum extreme position for the following distinct rates. These tests are conducted under normal flight and ground conditions.

(a) Static test—Slowly move the control so that a full sweep is achieved within 95–105 seconds. A full sweep is defined as movement of the controller from neutral to the stop, usually aft or right stop, then to the opposite stop, then to the neutral position.

(b) Slow dynamic test—Achieve a full sweep within 8–12 seconds.

(c) Fast dynamic test—Achieve a full sweep in within 3–5 seconds.

NOTE: Dynamic sweeps may be limited to forces not exceeding 100 lbs. (% daN).

(d) Tolerances

(i) Static test—see Table C2A, FFS Objective Tests, Entries 2.a.1., 2.a.2., and 2.a.3.

(ii) Dynamic test—±2 lbs (0.9 daN) or ±10% on dynamic increment above static test.

END QPS REQUIREMENT

BEGIN INFORMATION

d. The FAA is open to alternative means that are justified and appropriate to the application. For example, the method described here may not apply to all manufacturers systems and certainly not to aircraft with reversible control systems. Each case is considered on its own merit on an ad hoc basis. If the FAA finds that alternative methods do not result in satisfactory performance, more conventionally accepted methods will have to be used.
6. Motion System.

a. General.

(1) Pilots use continuous information signals to regulate the state of the helicopter. In concert with the instruments and outside-world visual information, whole-body motion feedback is essential in assisting the pilot to
control the helicopter dynamics, particularly in the presence of external disturbances. The motion system should meet basic objective performance criteria, and be subjected to inputs to represent the linear and angular accelerations of the helicopter during a prescribed minimum set of maneuvers and conditions. The response of the motion cueing system should be repeatable.

(2) The Motion System tests in Section 3 of Table C2A are intended to qualify the FFS motion cueing system from a mechanical performance standpoint. Additionally, the list of motion effects provides a representative sample of dynamic conditions that should be present in the flight simulator. An additional list of representative, training-critical maneuvers, selected from Section 1, (Performance tests) and Section 2, (Handling Qualities tests) in Table C2A, that should be recorded during initial qualification (but without tolerance) to indicate the flight simulator motion cueing performance signature that have been identified (reference Section 3.e). These tests are intended to help improve the overall standard of FFS motion cueing.

b. Motion System Checks. The intent of test 3a, Frequency Response, test 3b, Leg Balance, and test 3c, Turn-Around Check, as described in the Table of Objective Tests, is to demonstrate the performance of the motion system hardware, and to check the integrity of the motion set-up with regard to calibration and wear. These tests are independent of the motion cueing software and should be considered robotic tests.

c. Motion System Repeatability. The intent of this test is to ensure that the motion system software and motion system hardware have not degraded or changed over time. This diagnostic test should be completed during continuing qualification checks in lieu of the robotic tests. This will allow an improved ability to determine changes in the software or determine degradation in the hardware. The following information delineates the methodology that should be used for this test.

(1) Input: The inputs should be such that rotational accelerations, rotational rates, and linear accelerations are inserted before the transfer from helicopter center of gravity to pilot reference point with a minimum amplitude of 3 deg/sec/sec, 10 deg/sec and 0.3 g, respectively, to provide adequate analysis of the output.

(2) Recommended output:

a. Actual platform linear accelerations; the output will comprise accelerations due to both the linear and rotational motion acceleration;

b. Motion actuators position.

d. Motion Cueing Performance Signature.

(1) Background. The intent of this test is to provide quantitative time history records of motion system response to a selected set of automated QTG maneuvers during initial qualification. It is not intended to be a comparison of the motion platform accelerations against the flight test recorded accelerations (i.e., not to be compared against helicopter cueing). If there is a modification to the initially qualified motion software or motion hardware (e.g., motion washout filter, simulator payload change greater than 10%), then a new baseline may need to be established.

(2) Test Selection. The conditions identified in Section 3.e. in Table C2A are those maneuvers where motion cueing is the most discernible. They are general tests applicable to all types of helicopters and should be completed for motion cueing performance signature at any time acceptable to the NSPM prior to or during the initial qualification evaluation, and the results included in the MQTG.

(3) Priority. Motion system should be designed with the intent of placing greater importance on those maneuvers that directly influence pilot perception and control of the helicopter motions. For the maneuvers identified in section 3.e. in Table C2A, the flight simulator motion cueing system should have a high tilt co-ordination gain, high rotational gain, and high correlation with respect to the helicopter simulation model.

(4) Data Recording. The minimum list of parameters provided should allow for the determination of the flight simulator’s motion cueing performance signature for the initial qualification evaluation. The following parameters are recommended as being acceptable to perform such a function:

a. Flight model acceleration and rotational rate commands at the pilot reference point;

b. Motion actuators position;

c. Actual platform position;

d. Actual platform acceleration at pilot reference point.

e. Motion Vibrations.

(1) Presentation of results. The characteristic motion vibrations may be used to verify that the flight simulator can reproduce the frequency content of the helicopter when flown in specific conditions. The test results should be presented as a Power Spectral Density (PSD) plot with frequencies on the horizontal axis and amplitude on the vertical axis. The helicopter data and flight simulator data should be presented in the same format with the same scaling. The algorithms used for generating the flight simulator data should be the same as those used for the helicopter data. If they are not the same then the algorithms used for the flight simulator data should be proven to be sufficiently comparable. As a minimum the results along the dominant axes should be presented and a rationale for not presenting the other axes should be provided.

(2) Interpretation of results. The overall trend of the PSD plot should be considered
while focusing on the dominant frequencies, Less emphasis should be placed on the differences at the high frequency and low amplitude portions of the PSD plot. During the analysis, certain structural components of the flight simulator have resonant frequencies that are filtered and may not appear in the PSD plot. If filtering is required, the notch filter bandwidth should be limited to 1 Hz to ensure that the buffet feel is not adversely affected. In addition, a rationale should be provided to explain that the characteristic motion vibration is not being adversely affected by the filtering. The amplitude should match helicopter data as described below. However, if the PSD plot was altered for subjective reasons, a rationale should be provided to justify the change. If the plot is on a logarithmic scale it may be difficult to interpret the amplitude of the buffet in terms of acceleration. For example, a 1×10^{-3} g-rms2/Hz would describe a heavy buffet and may be seen in the deep stall regime. Alternatively, a 1×10^{-6} g-rms2/Hz buffet is almost imperceptible, but may represent a flat buffet at low speed. The previous two examples differ in magnitude by 1000. On a PSD plot this represents three decades (one decade is a change in order of magnitude of 10, and two decades is a change in order of magnitude of 100).

NOTE: In the example, “g-rms2” is the mathematical expression for “g’s root mean squared.”

f. Table C2B, Motion System Recommendations for Level C and Level D Helicopter Simulators, contains a description of the parameters that should be present in simulator motion systems to provide adequate onset motion cues to helicopter pilots. The information provided covers the six axes of motion (pitch, roll, yaw, vertical, lateral, and longitudinal) and addresses displacement, velocity, and acceleration. Also included is information about the parameters for initial rotational and linear acceleration. The parameters listed in this table apply only to Level C and Level D simulators, and are presented here as recommended targets for motion system capability. They are not requirements.

TABLE C2B—MOTION SYSTEM RECOMMENDATIONS FOR LEVEL C AND LEVEL D HELICOPTER SIMULATORS

<table>
<thead>
<tr>
<th>a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.1.</td>
</tr>
<tr>
<td>a.1.a.</td>
</tr>
<tr>
<td>a.1.b.</td>
</tr>
<tr>
<td>a.1.c.</td>
</tr>
<tr>
<td>a.2.</td>
</tr>
<tr>
<td>a.2.a.</td>
</tr>
<tr>
<td>a.2.b.</td>
</tr>
<tr>
<td>a.2.c.</td>
</tr>
<tr>
<td>a.3.</td>
</tr>
<tr>
<td>a.3.a.</td>
</tr>
<tr>
<td>a.3.b.</td>
</tr>
<tr>
<td>a.3.c.</td>
</tr>
<tr>
<td>a.4.</td>
</tr>
<tr>
<td>a.4.a.</td>
</tr>
<tr>
<td>a.4.b.</td>
</tr>
<tr>
<td>a.4.c.</td>
</tr>
<tr>
<td>a.5.</td>
</tr>
<tr>
<td>a.5.a.</td>
</tr>
<tr>
<td>a.5.b.</td>
</tr>
<tr>
<td>a.5.c.</td>
</tr>
<tr>
<td>a.6.</td>
</tr>
<tr>
<td>a.6.a.</td>
</tr>
<tr>
<td>a.6.b.</td>
</tr>
<tr>
<td>a.6.c.</td>
</tr>
<tr>
<td>a.7.</td>
</tr>
<tr>
<td>a.8.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motion System Envelope</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.1. Pitch</td>
</tr>
<tr>
<td>a.1.a. Displacement</td>
</tr>
<tr>
<td>a.1.b. Velocity</td>
</tr>
<tr>
<td>a.1.c. Acceleration</td>
</tr>
<tr>
<td>a.2. Roll</td>
</tr>
<tr>
<td>a.2.a. Displacement</td>
</tr>
<tr>
<td>a.2.b. Velocity</td>
</tr>
<tr>
<td>a.2.c. Acceleration</td>
</tr>
<tr>
<td>a.3. Yaw</td>
</tr>
<tr>
<td>a.3.a. Displacement</td>
</tr>
<tr>
<td>a.3.b. Velocity</td>
</tr>
<tr>
<td>a.3.c. Acceleration</td>
</tr>
<tr>
<td>a.4. Vertical</td>
</tr>
<tr>
<td>a.4.a. Displacement</td>
</tr>
<tr>
<td>a.4.b. Velocity</td>
</tr>
<tr>
<td>a.4.c. Acceleration</td>
</tr>
<tr>
<td>a.5. Lateral</td>
</tr>
<tr>
<td>a.5.a. Displacement</td>
</tr>
<tr>
<td>a.5.b. Velocity</td>
</tr>
<tr>
<td>a.5.c. Acceleration</td>
</tr>
<tr>
<td>a.6. Longitudinal</td>
</tr>
<tr>
<td>a.6.a. Displacement</td>
</tr>
<tr>
<td>a.6.b. Velocity</td>
</tr>
<tr>
<td>a.6.c. Acceleration</td>
</tr>
<tr>
<td>a.7. Initial Rotational Acceleration Ratio</td>
</tr>
<tr>
<td>a.8. Initial Linear Acceleration Ratio</td>
</tr>
</tbody>
</table>

All axes 300°/sec2/sec
7. SOUND SYSTEM
 a. General. The total sound environment in the helicopter is very complex, and changes with atmospheric conditions, helicopter configuration, airspeed, altitude, and power settings. Flight deck sounds are an important component of the flight deck operational environment and provide valuable information.

 NOTE: Motion system baseline performance repeatability tests should be repeated if the simulator weight changes for any reason (i.e., visual change or structural change). The new results should be used for future comparison.
to the flight crew. These aural cues can either assist the crew (as an indication of an abnormal situation), or hinder the crew (as a distraction or nuisance). For effective training, the flight simulator should provide flight deck sounds that are perceptible to the pilot during normal and abnormal operations, and that are comparable to those of the helicopter. The flight simulator operator should carefully evaluate background noises in the location where the device will be installed. To demonstrate compliance with the sound requirements, the objective or validation tests in this attachment were selected to provide a representative sample of normal static conditions typically experienced by a pilot.

b. Alternate propulsion. For FFS with multiple propulsion configurations, any condition listed in Table C2A in this attachment should be presented for evaluation as part of the QTG if identified by the helicopter manufacturer or other data supplier as significantly different due to a change in propulsion system (engine or propeller).

c. Data and Data Collection System.

(1) Information provided to the flight simulator manufacturer should comply be presented in the format suggested by the “International Air Transport Association (IATA) Flight Simulator Design and Performance Data Requirements,” as amended. This information should contain calibration and frequency response data.

(2) The system used to perform the tests listed in Table C2A should comply with the following standards:

(a) The specifications for octave, half octave, and third octave band filter sets may be found in American National Standards Institute (ANSI) S1.11–1986.

(b) Measurement microphones should be type WS2 or better, as described in International Electrotechnical Commission (IEC) 1094–4–1965.

(3) Headsets. If headsets are used during normal operation of the helicopter they should also be used during the flight simulator evaluation.

(4) Playback equipment. Playback equipment and recordings of the QTG conditions should be provided during initial evaluations.

(5) Background noise.

(a) Background noise is the noise in the flight simulator that is not associated with the helicopter, but is caused by the flight simulator’s cooling and hydraulic systems and extraneous noise from other locations in the building. Background noise can seriously impact the correct simulation of helicopter sounds, and should be kept below the helicopter sounds. In some cases, the sound level of the simulation can be increased to compensate for the background noise. However, this approach is limited by the specified tolerances and by the subjective acceptability of the sound environment to the evaluation pilot.

(b) The acceptability of the background noise levels is dependent upon the normal sound levels in the helicopter being represented. Background noise levels that fall below the lines defined by the following points, may be acceptable:

- (i) 70 dB @ 50 Hz;
- (ii) 55 dB @ 1000 Hz;
- (iii) 30 dB @ 16 kHz.

(NOTE: These limits are for unweighted 1/3 octave band sound levels. Meeting these limits for background noise does not ensure an acceptable flight simulator. Helicopter sounds that fall below this limit require careful review and may require lower limits on background noise.)

(c) Validation testing. Deficiencies in helicopter recordings should be considered when applying the specified tolerances to ensure that the simulation is representative of the helicopter. Examples of typical deficiencies are:

- (a) Variation of data between tail numbers.
- (b) Frequency response of microphones.
- (c) Repeatability of the measurements.

<table>
<thead>
<tr>
<th>Band center frequency</th>
<th>Initial results (dBSPL)</th>
<th>Continuing qualification results (dBSPL)</th>
<th>Absolute difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>75.0</td>
<td>73.8</td>
<td>1.2</td>
</tr>
<tr>
<td>63</td>
<td>75.9</td>
<td>75.6</td>
<td>0.3</td>
</tr>
<tr>
<td>80</td>
<td>77.1</td>
<td>76.5</td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>78.0</td>
<td>78.3</td>
<td>0.3</td>
</tr>
<tr>
<td>125</td>
<td>81.9</td>
<td>81.3</td>
<td>0.6</td>
</tr>
<tr>
<td>160</td>
<td>79.8</td>
<td>80.1</td>
<td>0.3</td>
</tr>
<tr>
<td>200</td>
<td>83.1</td>
<td>84.9</td>
<td>1.8</td>
</tr>
<tr>
<td>250</td>
<td>78.6</td>
<td>78.9</td>
<td>0.3</td>
</tr>
<tr>
<td>315</td>
<td>79.5</td>
<td>78.3</td>
<td>1.2</td>
</tr>
<tr>
<td>400</td>
<td>80.1</td>
<td>79.5</td>
<td>0.6</td>
</tr>
<tr>
<td>500</td>
<td>80.7</td>
<td>79.8</td>
<td>0.9</td>
</tr>
<tr>
<td>630</td>
<td>81.9</td>
<td>80.4</td>
<td>1.5</td>
</tr>
<tr>
<td>800</td>
<td>73.2</td>
<td>74.1</td>
<td>0.9</td>
</tr>
<tr>
<td>1000</td>
<td>79.2</td>
<td>80.1</td>
<td>0.9</td>
</tr>
<tr>
<td>1250</td>
<td>80.7</td>
<td>82.8</td>
<td>2.1</td>
</tr>
</tbody>
</table>
8. ADDITIONAL INFORMATION ABOUT FLIGHT SIMULATOR QUALIFICATION FOR NEW OR DERIVATIVE HELICOPTERS

a. Typically, a helicopter manufacturer’s approved final data for performance, handling qualities, systems or avionics is not available until well after a new or derivative helicopter has entered service. However, flight crew training and certification often begins several months prior to the entry of the first helicopter into service. Consequently, it may be necessary to use preliminary data provided by the helicopter manufacturer for interim qualification of flight simulators.

b. In these cases, the NSPM may accept certain partially validated preliminary helicopter and systems data, and early release (“red label”) avionics data in order to permit the necessary program schedule for training, certification, and service introduction.

c. Simulator sponsors seeking qualification based on preliminary data should consult the NSPM to make special arrangements for using preliminary data for flight simulator qualification. The sponsor should also consult the helicopter and flight simulator manufacturers to develop a data plan and flight simulator qualification plan.

d. The procedure to be followed to gain NSPM acceptance of preliminary data will vary from case to case and between helicopter manufacturers. Each helicopter manufacturer’s new helicopter development and test program is designed to suit the needs of the particular project and may not contain the same events or sequence of events as another manufacturer’s program or even the same manufacturer’s program for a different helicopter. Therefore, there cannot be a prescribed procedure for acceptance of preliminary data; instead there should be a statement describing the final sequence of events, data sources, and validation procedures agreed by the simulator sponsor, the helicopter manufacturer, the flight simulator manufacturer, and the NSPM.

Note: A description of helicopter manufacturer-provided data needed for flight simulator modeling and validation is to be found in the “Royal Aeronautical Society Data Package Requirements for Design and Performance Evaluation of Rotary Wing Synthetic Training Devices.”

e. The preliminary data should be the manufacturer’s best representation of the helicopter, with assurance that the final data will not deviate significantly from the preliminary estimates. Data derived from these predictive or preliminary techniques should be validated by available sources including, at least, the following:

(1) Manufacturer’s engineering report. The report should explain the predictive method used and illustrate past success of the method on similar projects. For example, the manufacturer could show the application of the method to an earlier helicopter model or predict the characteristics of an earlier model and compare the results to final data for that model.

(2) Early flight test results. This data is often derived from helicopter certification tests and should be used to maximum advantage for early flight simulator validation. Certain critical tests that would normally be done early in the helicopter certification program should be included to validate essential pilot training and certification maneuvers. These tests include cases where a pilot is expected to cope with a helicopter failure mode or an engine failure. The early data available will depend on the helicopter manufacturer’s flight test program design and may not be the same in each case. The flight test program of the helicopter manufacturer should include provisions for generation of very early flight tests results for flight simulator validation.
f. The use of preliminary data is not indefinite. The helicopter manufacturer’s final data should be available within 12 months after the helicopter first entry into service or as agreed by the NSPM, the simulator sponsor, and the helicopter manufacturer. When applying for interim qualification using preliminary data, the simulator sponsor and the NSPM should agree on the update program. This includes specifying that the final data update will be installed in the flight simulator within a period of 12 months following the final data release, unless special conditions exist and a different schedule is acceptable. The flight simulator performance and handling validation would then be based on data derived from flight tests. Initial helicopter systems data should be updated after engineering tests. Final helicopter systems data should also be used for flight simulator programming and validation.

g. Flight simulator avionics should stay essentially in step with helicopter avionics (hardware and software) updates. The permitted time lapse between helicopter and flight simulator updates should be minimal. It may depend on the magnitude of the update and whether the QTG and pilot training and certification are affected. Differences in helicopter and flight simulator avionics versions and the resulting effects on flight simulator qualification should be agreed between the simulator sponsor and the NSPM. Consultation with the flight simulator manufacturer is desirable throughout the qualification process.

h. The following describes an example of the design data and sources that might be used in the development of an interim qualification plan.

(1) The plan should consist of the development of a QTG based upon a mix of flight test and engineering simulation data. For data collected from specific helicopter flight tests or other flights the required design model or data changes necessary to support an acceptable Proof of Match (POM) should be generated by the helicopter manufacturer.

(2) For proper validation of the two sets of data, the helicopter manufacturer should compare their simulation model responses against the flight test data, when driven by the same control inputs and subjected to the same atmospheric conditions as recorded in the flight test. The model responses should result from a simulation where the following systems are run in an integrated fashion and are consistent with the design data released to the flight simulator manufacturer:
 (a) Propulsion.
 (b) Aerodynamics.
 (c) Mass properties.
 (d) Flight controls.
 (e) Stability augmentation.
 (f) Brakes/landing gear.

i. A qualified test pilot should be used to assess handling qualities and performance evaluations for the qualification of flight simulators of new helicopter types.
activities for those handling and performance characteristics.

(2) Have an engineering simulator that:
 (a) Is a physical entity, complete with a flight deck representative of the simulated class of helicopter;
 (b) Has controls sufficient for manual flight;
 (c) Has models that run in an integrated manner;
 (d) Had fully flight-test validated simulation models as the original or baseline simulation models;
 (e) Has an out-of-the-flight deck visual system;
 (f) Has actual avionics boxes interchangeable with the equivalent software simulations to support validation of released software;
 (g) Uses the same models as released to the training community (which are also used to produce stand-alone proof-of-match and checkout documents);
 (h) Is used to support helicopter development and certification; and
 (i) Has been found to be a high fidelity representation of the helicopter by the manufacturer’s pilots (or other acceptable data supplier), certificate holders, and the NSPM.

(3) Use the engineering simulator to produce a representative set of integrated proof-of-match cases.

(4) Use a configuration control system covering hardware and software for the operating components of the engineering simulator.

(5) Demonstrate that the predicted effects of the change(s) are within the provisions of sub-paragraph “a” of this section, and confirm that additional flight test data are not required.

d. Additional Requirements for Validation Data
 (1) When used to provide validation data, an engineering simulator must meet the simulator standards currently applicable to training simulators except for the data package.
 (2) The data package used must be:
 (a) Comprised of the engineering predictions derived from the helicopter design, development, or certification process;
 (b) Based on acceptable aeronautical principles with proven success history and valid outcomes for aerodynamics, engine operations, avionics operations, flight control applications, or ground handling;
 (c) Verified with existing flight-test data; and
 (d) Applicable to the configuration of a production helicopter, as opposed to a flight-test helicopter.
 (3) Where engineering simulator data are used as part of a QTG, an essential match must exist between the training simulator and the validation data.

 (4) Training flight simulator(s) using these baseline and modified simulation models must be qualified to at least internationally recognized standards, such as contained in the ICAO Document 9625, the “Manual of Criteria for the Qualification of Flight Simulators.”

END QPS REQUIREMENT

10. [RESERVED]

11. Validation Test Tolerances

 BEGIN INFORMATION

 a. Non-Flight-Test Tolerances. If engineering simulator data or other non-flight-test data are used as an allowable form of reference validation data for the objective tests listed in Table C2A of this attachment, the data provider must supply a well-documented mathematical model and testing procedure that enables a replication of the engineering simulation results within 20% of the corresponding flight test tolerances.

 b. Background
 (1) The tolerances listed in Table C2A of this attachment are designed to measure the quality of the match using flight-test data as a reference.
 (2) Good engineering judgment should be applied to all tolerances in any test. A test is failed when the results fall outside of the prescribed tolerance(s).
 (3) Engineering simulator data are acceptable because the same simulation models used to produce the reference data are also used to test the flight training simulator (i.e., the two sets of results should be “essentially” similar).
 (4) The results from the two sources may differ for the following reasons:
 (a) Hardware (avionics units and flight controls);
 (b) Iteration rates;
 (c) Execution order;
 (d) Integration methods;
 (e) Processor architecture;
 (f) Digital drift, including:
 (i) Interpolation methods;
 (ii) Data handling differences;
 (iii) Auto-test trim tolerances.
 (5) The tolerance limit between the reference data and the flight simulator results is generally 20% of the corresponding “flight-test” tolerances. However, there may be cases where the simulator models used are of higher fidelity, or the manner in which they are cascaded in the integrated testing loop have the effect of a higher fidelity, than those supplied by the data provider. Under these circumstances, it is possible that an error greater than 20% may be generated. An error greater than 20% may be acceptable if
the simulator sponsor can provide an adequate explanation.

Guidelines are needed for the application of tolerances to engineering-simulator-generated validation data because:

(a) Flight-test data are often not available due to sound technical reasons;
(b) Alternative technical solutions are being advanced; and
(c) The costs are high.

12. VALIDATION DATA ROADMAP

a. Helicopter manufacturers or other data suppliers should supply a validation data roadmap (VDR) document as part of the data package. A VDR document contains guidance material from the helicopter validation data supplier recommending the best possible sources of data to be used as validation data in the QTG. A VDR is of special value when requesting interim qualification, qualification of simulators for helicopters certified prior to 1992, and qualification of alternate engine or avionics fits. A sponsor seeking to have a device qualified in accordance with the standards contained in this QPS appendix should submit a VDR to the NSPM as early as possible in the planning stages. The NSPM is the final authority to approve the data to be used as validation material for the QTG. The NSPM and the Joint Aviation Authorities’ Synthetic Training Devices Advisory Board have committed to maintain a list of agreed VDRs.

b. The VDR should identify (in matrix format) sources of data for all required tests. It should also provide guidance regarding the validity of these data for a specific engine type, thrust rating configuration, and the revision levels of all avionics affecting helicopter handling qualities and performance. The VDR should include rationale or explanation in cases where data or parameters are missing, engineering simulation data are to be used, flight test methods require explanation, or where there is any deviation from data requirements. Additionally, the document should refer to other appropriate sources of validation data (e.g., sound and vibration data documents).

c. The Sample Validation Data Roadmap (VDR) for helicopters, shown in Table C2D, depicts a generic roadmap matrix identifying sources of validation data for an abbreviated list of tests. This sample document uses fixed wing parameters instead of helicopter values. It is merely a sample and does not provide actual data. A complete matrix should address all test conditions for helicopter application and provide actual data and data sources.

d. Two examples of rationale pages are presented in Appendix F of IATA Flight Simulator Design and Performance Data Requirements document. These illustrate the type of helicopter and avionics configuration information and descriptive engineering rationale used to describe data anomalies or provide an acceptable basis for using alternative data for QTG validation requirements.

END INFORMATION
<table>
<thead>
<tr>
<th>ICAO or IATA #</th>
<th>Test Description</th>
<th>Validation Source</th>
<th>Validation Document</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CCA Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a.1.</td>
<td>Minimum Radius Turn</td>
<td>X</td>
<td>D71</td>
<td></td>
</tr>
<tr>
<td>1.a.2.</td>
<td>Rate of Turn vs. Nosewheel Angle (2 speeds)</td>
<td>X</td>
<td>D71</td>
<td></td>
</tr>
<tr>
<td>1.b.1.</td>
<td>Ground Acceleration Time and Distance</td>
<td>X</td>
<td>(d73)</td>
<td>D73</td>
</tr>
<tr>
<td>1.b.2.</td>
<td>Minimum Control Speed, Ground (Vmeg)</td>
<td>X</td>
<td>(d71)</td>
<td>D73</td>
</tr>
<tr>
<td>1.b.3.</td>
<td>Minimum Untieback Speed (Vmu)</td>
<td>X</td>
<td>D71</td>
<td></td>
</tr>
<tr>
<td>1.b.4.</td>
<td>Normal Takeoff</td>
<td>X</td>
<td>(d73)</td>
<td>D73</td>
</tr>
<tr>
<td>1.b.5.</td>
<td>Critical Engine Failure on Takeoff</td>
<td>X</td>
<td>(d71)</td>
<td>D73</td>
</tr>
<tr>
<td>1.b.6.</td>
<td>Crosswind Takeoff</td>
<td>X</td>
<td>(d71)</td>
<td>D73</td>
</tr>
<tr>
<td>1.b.7.</td>
<td>Rejected Takeoff</td>
<td>X</td>
<td>D71</td>
<td>R</td>
</tr>
<tr>
<td>1.b.8.</td>
<td>Dynamic Engine Failure After Takeoff</td>
<td>X</td>
<td>D73</td>
<td>No flight test data available; see rationale.</td>
</tr>
<tr>
<td>1.e.1.</td>
<td>Normal Climb – All Engines</td>
<td>X</td>
<td>(d71)</td>
<td>D71</td>
</tr>
<tr>
<td>1.e.2.</td>
<td>Climb – Engine-out, Second Segment</td>
<td>X</td>
<td>(d71)</td>
<td>D73</td>
</tr>
<tr>
<td>1.e.4.</td>
<td>Engine-out, Approach Climb</td>
<td>X</td>
<td>D71</td>
<td></td>
</tr>
<tr>
<td>1.e.5.a.</td>
<td>Level Flight Acceleration</td>
<td>(x) X</td>
<td>(d73)</td>
<td>D73</td>
</tr>
<tr>
<td>1.e.5.b.</td>
<td>Level Flight Deceleration</td>
<td>(x) X</td>
<td>(d73)</td>
<td>D73</td>
</tr>
<tr>
<td>1.d.1.</td>
<td>Cruise Performance</td>
<td>X</td>
<td>D71</td>
<td></td>
</tr>
<tr>
<td>1.e.1.a.</td>
<td>Stopping Time & Distance (Wheel brakes / Light weight)</td>
<td>X</td>
<td>D71</td>
<td>(d73) No flight test data available; see rationale.</td>
</tr>
<tr>
<td>1.e.1.b.</td>
<td>Stopping Time & Distance (Wheel brakes/Med. weight)</td>
<td>X (x)</td>
<td>D71</td>
<td>(d73)</td>
</tr>
<tr>
<td>1.e.1.c.</td>
<td>Stopping Time & Distance (Wheel brakes / Heavy weight)</td>
<td>X (x)</td>
<td>D71</td>
<td>(d73)</td>
</tr>
<tr>
<td>1.e.2.a.</td>
<td>Stopping Time & Distance (Reverse thrust / Light weight)</td>
<td>X (x)</td>
<td>D71</td>
<td>(d73)</td>
</tr>
<tr>
<td>1.e.2.b.</td>
<td>Stopping Time & Distance (Reverse thrust / Med. Weight)</td>
<td>X (x)</td>
<td>D71</td>
<td>(d73) No flight test data available; see rationale.</td>
</tr>
</tbody>
</table>
14. ACCEPTANCE GUIDELINES FOR ALTERNATIVE AVIONICS

a. Background

(1) For a new helicopter type, the majority of flight validation data are collected on the first helicopter configuration with a “baseline” flight-related avionics ship-set; (see subparagraph b.(2) of this section). These data are then used to validate all flight simulators representing that helicopter type.

(2) Additional validation data may be needed for flight simulators representing a helicopter with avionics of a different hardware design than the baseline, or a different software revision than that of previously validated configurations.

(3) When a flight simulator with additional or alternate avionics configurations is to be qualified, the QTG should contain tests against validation data for selected cases where avionics differences are expected to be significant.

b. Approval Guidelines For Validating Alternate Avionics

(1) The following guidelines apply to flight simulators representing helicopters with a revised avionics configuration, or more than one avionics configuration.

(2) The baseline validation data should be based on flight test data, except where other data are specifically allowed (e.g., engineering flight simulator data).

(3) The helicopter avionics can be segmented into two groups, systems or components whose functional behavior contributes to the aircraft response presented in the QTG results, and systems that do not. The following avionics are examples of contributory systems for which hardware design changes or software revisions may lead to significant differences in the aircraft response relative to the baseline avionics configuration: Flight control computers and controllers for engines, autopilot, braking system, and nosewheel steering system, if applicable. Related avionics such as augmentation systems should also be considered.

(4) The acceptability of validation data used in the QTG for an alternative avionics fit should be determined as follows:

(a) For changes to an avionics system or component that do not affect QTG validation test responses, the QTG test can be based on validation data from the previously validated avionics configuration.

(b) For an avionics change to a contributory system, where a specific test is not affected by the change (e.g., the avionics change is a Built In Test Equipment (BITE) update or a modification in a different flight phase), the QTG test can be based on validation data from the previously-validated avionics configuration. The QTG should include authoritative justification (e.g., from the helicopter manufacturer or system supplier) that this avionics change does not affect the test.

(c) For an avionics change to a contributory system, the QTG may be based on validation data from the previously-validated avionics configuration if no new functionality is added and the impact of the avionics change on the helicopter response is based on acceptable aeronautical principles with proven success history and valid outcomes. This should be supplemented with avionics-specific validation data from the helicopter manufacturer’s engineering simulation, generated with the revised avionics configuration. The QTG should include an explanation of the nature of the change and its effect on the helicopter response.

(d) For an avionics change to a contributory system that significantly affects some tests in the QTG, or where new functionality is added, the QTG should be based on validation data from the previously validated avionics configuration and supplemental avionics-specific flight test data sufficient to validate the alternate avionics revision. Additional flight test validation data may not be needed if the avionics changes were certified without the need for testing with a comprehensive flight instrumentation package. The helicopter manufacturer should coordinate flight simulator data requirements in advance with the NSPM.

(5) A matrix or “roadmap” should be provided with the QTG indicating the appropriate validation data source for each test. The roadmap should include identification of the revision state of those contributory avionics systems that could affect specific test responses.

15. TRANSPORT DELAY TESTING

a. This paragraph describes how to determine the introduced transport delay through the flight simulator system so that it does not exceed a specific time delay. The transport delay should be measured from control inputs through the interface, through each of the host computer modules and back through the interface to motion, flight instrument, and visual systems. The transport delay should not exceed the maximum allowable interval.

b. Four specific examples of transport delay are:

(1) Simulation of classic non-computer controlled aircraft;

(2) Simulation of Computer Controlled Aircraft using real helicopter black boxes;
(3) Simulation of Computer Controlled Aircraft using software emulation of helicopter boxes;
(4) Simulation using software avionics or rehosted instruments.

c. Figure C2C illustrates the total transport delay for a non-computer-controlled helicopter or the classic transport delay test. Since there are no helicopter-induced delays for this case, the total transport delay is equivalent to the introduced delay.

d. Figure C2D illustrates the transport delay testing method using the real helicopter controller system.

e. To obtain the induced transport delay for the motion, instrument and visual signal, the delay induced by the helicopter controller should be subtracted from the total transport delay. This difference represents the introduced delay and should not exceed the standards prescribed in Table C1A.

f. Introduced transport delay is measured from the flight deck control input to the reaction of the instruments and motion and visual systems (See Figure C2C).

g. The control input may also be introduced after the helicopter controller system input and the introduced transport delay may be measured directly from the control input to the reaction of the instruments, and simulator motion and visual systems (See Figure C2D).

h. Figure C2E illustrates the transport delay testing method used on a flight simulator that uses a software emulated helicopter controller system.

i. It is not possible to measure the introduced transport delay using the simulated helicopter controller system architecture for the pitch, roll and yaw axes. Therefore, the signal should be measured directly from the control input to the reaction of the instruments, and simulator motion and visual systems (See Figure C2D).

j. Special measurements for instrument signals for flight simulators using a real helicopter instrument display system instead of a simulated or re-hosted display. For flight instrument systems, the total transport delay should be measured and the inherent delay of the actual helicopter components subtracted to ensure that the introduced delay does not exceed the standards prescribed in Table C1A.

k. Recorded signals. The signals recorded to conduct the transport delay calculations should be explained on a schematic block diagram. The flight simulator manufacturer should also provide an explanation of why each signal was selected and how they relate to the above descriptions.

l. Interpretation of results. Flight simulator results vary over time from test to test due to “sampling uncertainty.” All flight simulators run at a specific rate where all modules are executed sequentially in the host computer. The flight controls input can occur at any time in the iteration, but these data will not be processed before the start of the new iteration. For example, a flight simulator running at 60 Hz may have a difference of as much as 16.67 msec between results. This does not mean that the test has failed. Instead, the difference is attributed to variation in input processing. In some conditions, the host simulator and the visual system do not run at the same iteration rate, so the output of the host computer to the visual system will not always be synchronized.

m. The transport delay test should account for both daylight and night modes of operation of the visual system. In both cases, the tolerances prescribed in Table C1A should be met and the motion response should occur before the end of the first video scan containing new information.
Figure C2E
Transport Delay for simulation of classic non-Computer Controlled Aircraft.

Figure C2F
Transport Delay for simulation of Computer Controlled Aircraft using real helicopter black boxes
16. **Continuing Qualification Evaluations—Validation Test Data Presentation**

a. Background

(1) The MQTG is created during the initial evaluation of a flight simulator. This is the master document, as amended, to which flight simulator continuing qualification evaluation test results are compared.

(2) The currently accepted method of presenting continuing qualification evaluation test results is to provide flight simulator results over-plotted with reference data. Test results are carefully reviewed to determine if the test is within the specified tolerances. This can be a time consuming process, particularly when reference data exhibits rapid variations or an apparent anomaly requiring engineering judgment in the application of
the tolerances. In these cases, the solution is to compare the results to the MQTG. The continuing qualification results are compared to the results in the MQTG for acceptance. The flight simulator operator and the NSPM should look for any change in the flight simulator performance since initial qualification.

b. Continuing Qualification Evaluation Test Results Presentation

(1) Flight simulator operators are encouraged to over-plot continuing qualification validation test results with MQTG flight simulator results recorded during the initial evaluation and as amended. Any change in a validation test will be readily apparent. In addition to plotting continuing qualification validation test and MQTG results, operators may elect to plot reference data.

(2) There are no suggested tolerances between flight simulator continuing qualification and MQTG validation test results. Investigation of any discrepancy between the MQTG and continuing qualification flight simulator performance is left to the discretion of the flight simulator operator and the NSPM.

(3) Differences between the two sets of results, other than variations attributable to repeatability issues that cannot be explained should be investigated.

(4) The flight simulator should retain the ability to over-plot both automatic and manual validation test results with reference data.

END INFORMATION

BEGIN QPS REQUIREMENTS

17. ALTERNATIVE DATA SOURCES, PROCEDURES, AND INSTRUMENTATION: LEVEL B SIMULATORS ONLY

a. Sponsors are not required to use the alternative data sources, procedures, and instrumentation. However, any sponsor choosing to use alternative sources must comply with the requirements in Table C2E.

END QPS REQUIREMENTS

BEGIN INFORMATION

b. It has become standard practice for experienced simulator manufacturers to use such techniques as a means of establishing data bases for new simulator configurations while awaiting the availability of actual flight test data. The data generated from the aerodynamic modeling techniques is then compared to the flight test data when it becomes available. The results of such comparisons have become increasingly consistent, indicating that these techniques, applied with appropriate experience, are dependable and accurate for the development of aerodynamic models for use in Level B simulators.

c. Based on this history of successful comparisons, the NSPM has concluded that those who are experienced in the development of aerodynamic models for simulator application can successfully use these modeling techniques to alter the method for acquiring flight test data for Level B simulators.

d. The information in Table C2E (Alternative Data Sources, Procedures, and Information) is presented to describe an acceptable alternative to data sources for simulator modeling and validation and an acceptable alternative to the procedures and instrumentation traditionally used to gather such modeling and validation data.

(1) Alternative data sources that may be used for part or all of a data requirement are the Helicopter Maintenance Manual, the Rotorcraft Flight Manual (RFM), Helicopter Design Data, the Type Inspection Report (TIR), Certification Data or acceptable supplemental flight test data.

(2) The sponsor should coordinate with the NSPM prior to using alternative data sources in a flight test or data gathering effort.

e. The NSPM position on the use of these alternative data sources, procedures, and instrumentation is based on the use of a rigorously defined and fully mature simulation controls system model that includes accurate gearing and cable stretch characteristics (where applicable), determined from actual aircraft measurements. The model does not require control surface position measurements in the flight test objective data in these limited applications.

f. Data may be acquired by using an inertial measurement system and a synchronized video of the calibrated helicopter instruments, including the inclinometer; the force/position measurements of flight deck controls; and a clear visual directional reference for a known magnetic bearing (e.g., a runway centerline). Ground track and wind corrected heading may be used for sideslip angle.

g. The sponsor is urged to contact the NSPM for clarification of any issue regarding helicopters with reversible control systems. This table is not applicable to Computer Controlled Aircraft flight simulators.

h. Use of these alternate data sources, procedures, and instrumentation does not relieve the sponsor from compliance with the balance of the information contained in this document relative to Level B FFSs.

i. The term “inertial measurement system” is used in Table C2E includes the use of a functional global positioning system (GPS).

j. Synchronized video for the use of alternative data sources, procedures, and instrumentation should have:
(1) sufficient resolution to allow magnification of the display to make appropriate measurement and comparisons; and
(2) sufficient size and incremental marking to allow similar measurement and comparison. The detail provided by the video should provide sufficient clarity and accuracy to measure the necessary parameter(s) to at least $\frac{1}{2}$ of the tolerance authorized for the specific test being conducted and allow an integration of the parameter(s) in question to obtain a rate of change.

END INFORMATION

<table>
<thead>
<tr>
<th>Test entry number and title</th>
<th>QPS requirements</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.a.1.a. Performance. Engine Start and Accelerations.</td>
<td>X</td>
<td>Data may be acquired using a synchronized video recording of all engine instruments, start buttons, means for fuel introduction and means for moving from “idle” to “flight.” A stopwatch is necessary.</td>
</tr>
<tr>
<td>1.a.1.b. Performance. Steady State Idle and Operating RPM Conditions.</td>
<td>X</td>
<td>Data may be acquired using a synchronized video recording of all engine instruments, and include the status of the means for moving from “idle” to “flight.”</td>
</tr>
<tr>
<td>1.a.2. Performance. Power Turbine Speed Trim.</td>
<td>X</td>
<td>Data may be acquired using a synchronized video recording of all engine instruments. Speed trim actuator position may be hand recorded.</td>
</tr>
<tr>
<td>1.a.3. Performance. Engine and Rotor Speed Governing.</td>
<td>X</td>
<td>Data may be acquired by using a synchronized video of the calibrated helicopter instruments and the force/position measurements of flight deck controls.</td>
</tr>
<tr>
<td>1.b.1. Performance. On Surface Taxi. Minimum Radius Turn.</td>
<td>X</td>
<td>TIR, AFM, or Design data may be used.</td>
</tr>
<tr>
<td>1.b.2. Performance. On Surface Taxi Rate of Turn vs. Nosewheel Steering Angle.</td>
<td>X</td>
<td>Data may be acquired by using a constant tiller position (measured with a protractor), or full pedal application for steady state turn, and synchronized video of heading indicator. If less than full pedal is used, pedal position must be recorded. A single procedure may not be adequate for all rotorcraft steering systems. Appropriate measurement procedures must be devised and proposed for NSPM concurrence.</td>
</tr>
<tr>
<td>1.b.3. Performance. Taxi ...</td>
<td>X</td>
<td>Data may be acquired by using a synchronized video of the calibrated helicopter instruments and the force/position measurements of flight deck controls.</td>
</tr>
<tr>
<td>1.b.4. Performance. Brake</td>
<td>X</td>
<td>Data may be acquired using a stopwatch and a means for measuring distance such as runway distance markers conforming with runway distance marker standards.</td>
</tr>
<tr>
<td>1.c.1. Performance. Running Takeoff.</td>
<td>X</td>
<td>Preliminary certification data may be used. Data may be acquired by using a synchronized video of the calibrated helicopter instruments and the force/position measurements of flight deck controls. Collective, cyclic, and pedal position time history must be recorded from the start of collective movement through to normal climb. Indicated torque settings may be hand recorded at the moment of lift-off and in a steady normal climb.</td>
</tr>
<tr>
<td>1.c.2. Performance. One Engine Inoperative (OEI), continued takeoff.</td>
<td>X</td>
<td>Data may be acquired by using a synchronized video of the calibrated helicopter instruments and the force/position measurements of flight deck controls. Collective, cyclic, and pedal position time history must be recorded from the start of collective movement through to normal OEI climb. Indicated torque settings may be hand recorded at the moment of lift-off and in a steady normal OEI climb.</td>
</tr>
<tr>
<td>1.f. Performance. Level Flight. Trimmed Flight Control Positions.</td>
<td>X</td>
<td>Data may be acquired by using a synchronized video of the calibrated helicopter instruments and the force/position measurements of flight deck controls.</td>
</tr>
<tr>
<td>1.g. Performance. Normal Climb. Trimmed Flight Control Positions.</td>
<td>X</td>
<td>Data may be acquired by using a synchronized video of the calibrated helicopter instruments and the force/position measurements of flight deck controls.</td>
</tr>
<tr>
<td>1.h.1. Descent Performance and Trimmed Flight Control Positions.</td>
<td>X</td>
<td>Data may be acquired by using a synchronized video of the calibrated helicopter instruments and the force/position measurements of flight deck controls.</td>
</tr>
<tr>
<td>Test entry number and title</td>
<td>Level</td>
<td>Alternative data sources, procedures, and instrumentation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>1.h.2. Autorotation Perform-</td>
<td>X</td>
<td>Data may be acquired by using a synchronized video of the</td>
</tr>
<tr>
<td>ance and Trimmed Flight</td>
<td></td>
<td>calibrated helicopter instruments and the force/position</td>
</tr>
<tr>
<td>Control Positions.</td>
<td></td>
<td>measurements of flight deck controls.</td>
</tr>
<tr>
<td>1.j.1. Performance. Runnin-</td>
<td>X</td>
<td>Data may be acquired by using a synchronized video of the</td>
</tr>
<tr>
<td>g Landing All Engines.</td>
<td></td>
<td>calibrated helicopter instruments and the force/position</td>
</tr>
<tr>
<td>1.j.2. Performance. Runnin-</td>
<td>X</td>
<td>Data may be acquired by using a synchronized video of the</td>
</tr>
<tr>
<td>g Landing One Engine</td>
<td></td>
<td>calibrated helicopter instruments and the force/position</td>
</tr>
<tr>
<td>Inoperative.</td>
<td></td>
<td>measurements of flight deck controls.</td>
</tr>
<tr>
<td>1.j.3. Performance. Balked</td>
<td>X</td>
<td>Data may be acquired by using a synchronized video of the</td>
</tr>
<tr>
<td>Landing.</td>
<td></td>
<td>calibrated helicopter instruments and the force/position</td>
</tr>
<tr>
<td></td>
<td></td>
<td>measurements of flight deck controls. The synchronized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>video must record the time of the "balk landing" decision.</td>
</tr>
<tr>
<td>2.a.1. Handling Qualities.</td>
<td>X</td>
<td>Control positions can be obtained using continuous con-</td>
</tr>
<tr>
<td>Static Control Checks.</td>
<td></td>
<td>trol position recordings. Force data may be acquired by</td>
</tr>
<tr>
<td>Cyclic Controller Position</td>
<td></td>
<td>using a hand held force gauge so that the forces can be</td>
</tr>
<tr>
<td>vs. Force.</td>
<td></td>
<td>cross-plotted against control position in each of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>control axes.</td>
</tr>
<tr>
<td>2.a.2. Handling Qualities.</td>
<td>X</td>
<td>Control positions can be obtained using continuous con-</td>
</tr>
<tr>
<td>Static Control Checks.</td>
<td></td>
<td>trol position recordings. Force data may be acquired by</td>
</tr>
<tr>
<td>Collective/Pedals vs.</td>
<td>X</td>
<td>using a hand held force gauge so that the forces can be</td>
</tr>
<tr>
<td>Force.</td>
<td></td>
<td>cross-plotted against control position in each of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>control axes.</td>
</tr>
<tr>
<td>2.a.3. Handling Qualities.</td>
<td>X</td>
<td>Brake pedal positions can be obtained using continuous</td>
</tr>
<tr>
<td>Brake Pedal Force vs.</td>
<td></td>
<td>position recordings. Force data may be acquired by using</td>
</tr>
<tr>
<td>Position.</td>
<td></td>
<td>a hand held force gauge so that the forces can be cross-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plotted against brake pedal position.</td>
</tr>
<tr>
<td>2.a.4. Handling Qualities.</td>
<td>X</td>
<td>Control positions can be obtained using continuous con-</td>
</tr>
<tr>
<td>Trim System Rate (all</td>
<td></td>
<td>trol position recordings plotted against time to provide</td>
</tr>
<tr>
<td>applicable systems).</td>
<td></td>
<td>rate in each applicable system.</td>
</tr>
<tr>
<td>2.a.6. Handling Qualities.</td>
<td>X</td>
<td>Data may be acquired by direct measurement.</td>
</tr>
<tr>
<td>Control System Freeplay.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.c.1. Longitudinal Handling</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement</td>
</tr>
<tr>
<td>Qualities. Control Re-</td>
<td></td>
<td>system, a synchronized video of the calibrated</td>
</tr>
<tr>
<td>sponse.</td>
<td></td>
<td>helicopter instruments and the force/position measure-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ments of flight deck controls.</td>
</tr>
<tr>
<td>2.c.2. Longitudinal Handling</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement</td>
</tr>
<tr>
<td>Qualities. Static Stability.</td>
<td></td>
<td>system, a synchronized video of the calibrated helicopter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>instruments and the force/position measurements of flight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>deck controls.</td>
</tr>
<tr>
<td>2.c.3.a. Longitudinal Han-</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement</td>
</tr>
<tr>
<td>dling Qualities. Dynamic</td>
<td></td>
<td>system, a synchronized video of the calibrated</td>
</tr>
<tr>
<td>Stability, Long Term Re-</td>
<td></td>
<td>helicopter instruments and the force/position measure-</td>
</tr>
<tr>
<td>sponse.</td>
<td></td>
<td>ments of flight deck controls.</td>
</tr>
<tr>
<td>2.c.3.b. Longitudinal Han-</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement</td>
</tr>
<tr>
<td>dling Qualities. Dynamic</td>
<td></td>
<td>system, a synchronized video of the calibrated</td>
</tr>
<tr>
<td>Stability, Short Term Re-</td>
<td></td>
<td>helicopter instruments and the force/position measure-</td>
</tr>
<tr>
<td>sponse.</td>
<td></td>
<td>ments of flight deck controls.</td>
</tr>
<tr>
<td>2.c.4. Longitudinal Handling</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement</td>
</tr>
<tr>
<td>Qualities. Maneuvering</td>
<td></td>
<td>system, a synchronized video of the calibrated</td>
</tr>
<tr>
<td>stability.</td>
<td></td>
<td>helicopter instruments and the force/position measure-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ments of flight deck controls.</td>
</tr>
<tr>
<td>2.d.1.a. Lateral Handling</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement</td>
</tr>
<tr>
<td>Qualities. Control Re-</td>
<td></td>
<td>system, a synchronized video of the calibrated</td>
</tr>
<tr>
<td>sponse.</td>
<td></td>
<td>helicopter instruments and the force/position measure-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ments of flight deck controls.</td>
</tr>
<tr>
<td>2.d.1.b Directional Handling</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement</td>
</tr>
<tr>
<td>Qualities. Control Re-</td>
<td></td>
<td>system, a synchronized video of the calibrated</td>
</tr>
<tr>
<td>sponse.</td>
<td></td>
<td>helicopter instruments and the force/position measure-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ments of flight deck controls and a stop watch.</td>
</tr>
<tr>
<td>2.d.2. Handling Qualities.</td>
<td>X</td>
<td>Data may be acquired by using an inertial measurement</td>
</tr>
<tr>
<td>Directional Static Stability.</td>
<td></td>
<td>system, a synchronized video of the calibrated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>helicopter instruments and the force/position measure-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ments of flight deck controls and a stop watch.</td>
</tr>
</tbody>
</table>

[The standards in this table are required if the data gathering methods described in paragraph 9 of Appendix C are not used]
Typically, an FFS display provides an image of the world, the runway is distant and the light rays from the runway to the eyes are parallel. The runway appears to be straight ahead of the aircraft. As the aircraft is still moving towards the runway, the perceived velocity vector will be directed towards the runway and this will be interpreted as the aircraft having some yaw offset.

(2) The situation in a dome display is shown in Figure C2C. As the angles can be correct for only one eye point at a time, the visual system in the figure has been aligned for the right seat eye point position. The runway appears to be straight ahead of the aircraft for this viewer. For the left seat viewer, however, the runway appears to be somewhat to the right of the aircraft. As the aircraft is still moving towards the runway, the perceived velocity vector will be directed towards the runway and this will be interpreted as the aircraft having some yaw offset.

(3) Collimated displays are well suited to many simulation applications as the area of interest is relatively distant from the observer so the angles to objects should remain independent of viewing position. Consider the view of the runway seen by the flight crew lined up on an approach. In the real world, the runway is distant and the light rays from the runway to the eyes are parallel. The runway appears to be straight ahead of both crew members. This situation is well simulated by a collimated display and is presented in Figure C2B. Note that the distance to the runway has been shortened for clarity. If drawn to scale, the runway would be farther away and the rays from the two seats would be closer to being parallel.

(4) While the horizontal field-of-view of a collimated display can be extended to approximately 210°–220°, the vertical field-of-view has been limited to about 40°–45°. These limitations result from tradeoffs in optical quality and interference between the display components and flight deck structures, but were sufficient to meet FFS regulatory approval for Helicopter FFSs. However, recent designs have been introduced with vertical fields of view of up to 60° for helicopter applications.

b. Basic principles of a FFS dome (or non-collimated) display:

(1) The situation in a dome display is substantially different for near field objects encountered in helicopter operations close to the ground. In those cases, objects that should be interpreted as being close to the viewer will be misinterpreted as being distant in a collimated display. The errors can actually be reduced in a dome display.

(3) The field-of-view possible with a dome display can be larger than that of a collimated display. Depending on the configuration, a field-of-view of 240° by 90° is possible and can be exceeded.

c. Additional display considerations

(1) While the situations described above are for discrete viewing positions, the same arguments can be extended to moving eye points produced by the viewer’s head movement. In the real world, the parallax effects resulting from head movement provide distance cues. The effect is particularly strong for relative movement of flight deck structure in the near field and modeled objects in the distance. Collimated displays will provide accurate parallax cues for distant objects, but increasingly inaccurate cues for...
near field objects. The situation is reversed for dome displays. (2) Stereopsis cues resulting from the different images presented to each eye for objects relatively close to the viewer also provide depth cues. Again, the collimated and dome displays provide more or less accurate cues depending on the modeled distance of the objects being viewed.

d. Training implications

(1) In view of the basic principles described above, it is clear that neither display approach provides a completely accurate image for all possible object distances. The sponsor should consider the training role of the FFS when configuring the display system to make the optimum choice. Factors that should be considered include relative importance of training tasks at low altitudes, the role of the two crew members in the flying tasks, and the field-of-view required for specific training tasks.
BEGIN QPS REQUIREMENTS

1. REQUIREMENTS

a. Except for special use airport models, all airport models required by this part must be representations of real-world, operational airports or representations of fictional airports and must meet the requirements set out in Tables C3B or C3C of this attachment, as appropriate.

b. If fictional airports are used, the sponsor must ensure that navigational aids and all appropriate maps, charts, and other navigational reference material for the fictional
airports (and surrounding areas as necessary) are compatible, complete, and accurate with respect to the visual presentation and airport model of this fictional airport. An SOC must be submitted that addresses navigation aid installation and performance and other criteria (including obstruction clearance protection) for all instrument approaches to the fictional airports that are available in the simulator. The SOC must reference and account for information in the terminal instrument procedures manual and the construction and availability of the required maps, charts, and other navigational material. This material must be clearly marked “for training purposes only.”

b. When the simulator is being used by an instructor or evaluator for purposes of training, checking, or testing under this chapter, the approval of the airport model required by the sponsor can be obtained. An airport model classified as Class I, Class II, or Class III may be used by the instructor or evaluator. Detailed descriptions/definitions of these classifications are found in Appendix F of this part.

c. When a person sponsors an FFS maintained by a person other than a U.S. certificate holder, the sponsor is accountable for that FFS originally meeting, and continuing to meet, the criteria under which it was originally qualified and the appropriate Part 60 criteria, including the visual scenes and airport models that may be used by instructors or evaluators for purposes of training, checking, or testing under this chapter.

d. Neither Class II nor Class III airport visual models are required to appear on the SOQ, and the method used for keeping instructors and evaluators apprised of the airport models that meet Class II or Class III requirements on any given simulator is at the option of the sponsor, but the method used must be available for review by the TPAA.

e. When an airport model represents a real world airport and a permanent change is made to that real world airport (e.g., a new runway, an extended taxiway, a new lighting system, a runway closure) without a written extension grant from the NSPM (described in paragraph 1.g., of this section), an update to the airport model of this fictional airport must be submitted in accordance with the following time limits:

(1) For a new airport runway, a runway extension, a new airport taxiway, a taxiway extension, or a runway/taxiway closure with no runway or airport closure—within 180 days of the opening of the new or changed facility or structure.

(2) For a new or modified approach light system—within 90 days of the activation of the new or modified approach light system.

(3) For other facility or structural changes on the airport (e.g., new terminal, relocation of Air Traffic Control Tower)—within 180 days of the opening of the new or changed facility or structure.

g. If a sponsor desires an extension to the time limit for an update to a visual scene or airport model or has an objection to what must be updated in the specific airport model requirement, the sponsor must provide a written extension request to the NSPM stating the reason for the update delay and a proposed completion date or provide an explanation for the objection, explaining why the identified airport change will not have an impact on flight training, testing, or checking. A copy of this request or objection must also be sent to the POI/TCPM. The NSPM will send the official response to the sponsor and a copy to the POI/TCPM; however, if there is an objection, after consultation with the appropriate POI/TCPM regarding the training, testing, or checking impact, the NSPM will send the official response to the sponsor and a copy to the POI/TCPM.

END QPS REQUIREMENTS

BEGIN INFORMATION

2. DISCUSSION

a. The subjective tests provide a basis for evaluating the capability of the simulator to perform over a typical utilization period; determining that the simulator competently simulates each required maneuver, procedure, or task; and verifying correct operation of the simulator controls, instruments, and systems. The items listed in the following Tables are for simulator evaluation purposes only. They may not be used to limit or exceed the authorizations for use of a given level of simulator as described on the SOQ or as approved by the TPAA. All items in the following paragraphs are subject to an examination.

b. The tests in Table C3A, Operations Tasks, in this attachment address pilot functions, including maneuvers and procedures (called flight tasks), and are divided by flight phases. The performance of these tasks by the NSPM includes an operational examination of the visual system and special effects. There are flight tasks included to address some features of advanced technology helicopters and innovative training programs.

c. The tests in Table C3A, Operations Tasks, and Table C3G, Instructor Operating Station, in this attachment address the overall function and control of the simulator including the various simulated environmental conditions; simulated helicopter system operation (normal, abnormal, and emergency); visual system displays; and special effects necessary to meet flight crew training, evaluation, or flight experience requirements.
d. All simulated helicopter systems functions will be assessed for normal and, where appropriate, alternate operations. Normal, abnormal, and emergency operations associated with a flight phase will be assessed during the evaluation of flight tasks or events within that flight phase. Simulated helicopter systems are listed separately under "Any Flight Phase" to ensure appropriate attention to systems checks. Operational navigation systems (including inertial navigation systems, global positioning systems, or other long-range systems) and the associated electronic display systems will be evaluated if installed. The NSP pilot will include in his report to the TPAA, the effect of the system operation and any system limitation.

e. Simulators demonstrating a satisfactory circling approach will be qualified for the circling approach maneuver and may be approved for such use by the TPAA in the sponsor’s FAA-approved flight training program. To be considered satisfactory, the circling approach will be flown at maximum gross weight for landing, with minimum visibility for the helicopter approach category, and must allow proper alignment with a landing runway at least 90° different from the instrument approach course while allowing the pilot to keep an identifiable portion of the airport in sight throughout the maneuver (reference—14 CFR 91.175(e)).

f. At the request of the TPAA, the NSP Pilot may assess the simulator for a special aspect of a sponsor’s training program during the functions and subjective portion of an evaluation. Such an assessment may include a portion of a Line Oriented Flight Training (LOFT) scenario or special emphasis items in the sponsor’s training program. Unless directly related to a requirement for the qualification level, the results of such an evaluation would not affect the qualification of the simulator.

g. This appendix addresses helicopter simulators at Levels B, C, and D because there are no Level A Helicopter simulators.

h. The FAA intends to allow the use of Class III airport models on a limited basis when the sponsor provides the TPAA (or other regulatory authority) an appropriate analysis of the skills, knowledge, and abilities (SKAs) necessary for competent performance of the tasks in which this particular media element is used. The analysis should describe the ability of the FFS/visual media to provide an adequate environment in which the required SKAs are satisfactorily performed and learned. The analysis should also include the specific media element, such as the visual scene or airport model. Additional sources of information on the conduct of task and capability analysis may be found on the FAA’s Advanced Qualification Program (AQP) Web site at: http://www.faa.gov/education_research/training/aqp.

i. The TPAA may accept Class III airport models without individual observation provided the sponsor provides the TPAA with an acceptable description of the process for determining the acceptability of a specific airport model, outlines the conditions under which such an airport model may be used, and adequately describes what restrictions will be applied to each resulting airport or landing area model. Examples of situations that may warrant Class III model designation by the TPAA include the following:

 (a) Training, testing, or checking on very low visibility operations, including SMGCS operations.

 (b) Instrument operations training (including instrument takeoff, departure, arrival, approach, and missed approach training, testing, or checking) using—

 (i) A specific model that has been geographically “moved” to a different location and aligned with an instrument procedure for another airport.

 (ii) A model that does not match changes made at the real-world airport (or landing area for helicopters) being modeled.

 (iii) A model generated with an “off-board” or an “on-board” model development tool (by providing proper latitude/longitude reference; correct runway or landing area orientation, length, width, marking, and lighting information; and appropriate adjacent taxiway location) to generate a facsimile of a real world airport or landing area.

 i. Previously qualified simulators with certain early generation Computer Generated Image (CGI) visual systems, are limited by the capability of the Image Generator or the display system used. These systems are:

 (1) Early CGI visual systems that are exempt from the necessity of including runway numbers as a part of the specific runway marking requirements are:

 (a) Link NVS and DNVS.

 (b) Novoview 2500 and 6000.

 (c) FlightSafety VITAL series up to, and including, VITAL III, but not beyond.

 (d) Redifusion SP1, SPIT, and SP2.

 (2) Early CGI visual systems are excepted from the necessity of including runway numbers unless the runway is used for LOFT training sessions. These LOFT airport models require runway numbers, but only for the specific runway end (one direction) used in the LOFT session. The systems required to display runway numbers only for LOFT scenes are:

 (a) FlightSafety VITAL IV.

 (b) Redifusion SP3 and SP3T.

 (c) Link-Miles Image II.

 (3) The following list of previously qualified CGI and display systems are incapable of generating blue lights. These systems are not required to have accurate taxi-way edge lighting are:

 (a) Redifusion SP1 and SPIT.

 (b) FlightSafety Vital IV.
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>1. Preparation for Flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a.</td>
<td>Flight deck check: Switches, indicators, systems, and equipment</td>
<td>X</td>
</tr>
<tr>
<td>2. APU/Engine start and run-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.</td>
<td>Normal start procedures</td>
<td>X</td>
</tr>
<tr>
<td>2.b.</td>
<td>Alternate start procedures</td>
<td>X</td>
</tr>
<tr>
<td>2.c.</td>
<td>Abnormal starts and shutdowns (e.g., hot start, hung start)</td>
<td>X</td>
</tr>
<tr>
<td>2.d.</td>
<td>Rotor engagement</td>
<td>X</td>
</tr>
<tr>
<td>2.e.</td>
<td>System checks</td>
<td>X</td>
</tr>
<tr>
<td>3. Taxiing—Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.a.</td>
<td>Power required to taxi</td>
<td>X</td>
</tr>
<tr>
<td>3.b.</td>
<td>Brake effectiveness</td>
<td>X</td>
</tr>
<tr>
<td>3.c.</td>
<td>Ground handling</td>
<td>X</td>
</tr>
<tr>
<td>3.d.</td>
<td>Water handling (if applicable)</td>
<td>X</td>
</tr>
<tr>
<td>3.e.</td>
<td>Abnormal/emergency procedures:</td>
<td></td>
</tr>
<tr>
<td>3.e.1.</td>
<td>Brake system failure</td>
<td>X</td>
</tr>
<tr>
<td>3.e.2.</td>
<td>Ground resonance</td>
<td>X</td>
</tr>
<tr>
<td>3.e.3.</td>
<td>Dynamic rollover</td>
<td>X</td>
</tr>
<tr>
<td>3.e.4.</td>
<td>Deployment of emergency floats/water landing</td>
<td>X</td>
</tr>
<tr>
<td>3.e.5.</td>
<td>Others listed on the SOQ</td>
<td>A</td>
</tr>
<tr>
<td>4. Taxiing—Hover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.a.</td>
<td>Takeoff to a hover</td>
<td>X</td>
</tr>
<tr>
<td>4.b.</td>
<td>Instrument response:</td>
<td></td>
</tr>
<tr>
<td>4.b.1.</td>
<td>Engine instruments</td>
<td>X</td>
</tr>
<tr>
<td>4.b.2.</td>
<td>Flight instruments</td>
<td>X</td>
</tr>
<tr>
<td>4.b.3.</td>
<td>Hovering turns</td>
<td>X</td>
</tr>
<tr>
<td>4.c.</td>
<td>Hover power checks:</td>
<td></td>
</tr>
<tr>
<td>4.c.1.</td>
<td>In ground effect (IGE)</td>
<td>X</td>
</tr>
<tr>
<td>4.c.2.</td>
<td>Out of ground effect (OGE)</td>
<td>X</td>
</tr>
<tr>
<td>4.d.</td>
<td>Crosswind/tailwind hover</td>
<td>X</td>
</tr>
</tbody>
</table>
Table C3A—Functions and Subjective Tests—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.e.</td>
<td>Translating tendency</td>
<td>X X X</td>
</tr>
<tr>
<td>4.f.</td>
<td>External load operations:</td>
<td></td>
</tr>
<tr>
<td>4.f.1.</td>
<td>Hookup</td>
<td>X X</td>
</tr>
<tr>
<td>4.f.2.</td>
<td>Release</td>
<td>X X</td>
</tr>
<tr>
<td>4.f.3.</td>
<td>Winch operations</td>
<td>X X</td>
</tr>
<tr>
<td>4.g.</td>
<td>Abnormal/emergency procedures:</td>
<td></td>
</tr>
<tr>
<td>4.g.1.</td>
<td>Engine failure</td>
<td>X X X</td>
</tr>
<tr>
<td>4.g.2.</td>
<td>Fuel governing system failure</td>
<td>X X X</td>
</tr>
<tr>
<td>4.g.3.</td>
<td>Setting with power (OGE)</td>
<td>X X X</td>
</tr>
<tr>
<td>4.g.4.</td>
<td>Hovering autorotation</td>
<td></td>
</tr>
<tr>
<td>4.g.5.</td>
<td>Stability augmentation system failure</td>
<td>X X X</td>
</tr>
<tr>
<td>4.g.6.</td>
<td>Directional control malfunction</td>
<td>X X X</td>
</tr>
<tr>
<td>4.g.7.</td>
<td>Loss of tail rotor effectiveness (LTE)</td>
<td></td>
</tr>
<tr>
<td>4.g.8.</td>
<td>Others listed on the SOQ</td>
<td>A X X</td>
</tr>
<tr>
<td>4.h.</td>
<td>Pre-takeoff checks</td>
<td>X X X</td>
</tr>
</tbody>
</table>

5. Takeoff/Translational Flight

- 5.a. Forward (up to effective translational lift) | X X |
- 5.b. Sideward (up to limiting airspeed) | X X |
- 5.c. Rearward (up to limiting airspeed) | X X |

6. Takeoff and Departure Phase

- 6.a. Normal | X X X |
- 6.a.1. From ground | X X X |
- 6.a.2. From hover | X X X |
- 6.a.2.a. Cat A | X X X |
- 6.a.2.b. Cat B | X X X |
- 6.a.3. Running | X X X |
- 6.a.4. Crosswind/tailwind | X X X |
- 6.a.5. Maximum performance | X X X |
- 6.a.6. Instrument | X X X |
- 6.a.7. Takeoff from a confined area | X X X |
- 6.a.8. Takeoff from a pinnacle/platform | X X X |
- 6.a.9. Takeoff from a slope | X X X |
- 6.a.10. External load operations | | X X |
- 6.b. Abnormal/emergency procedures: | X X X |
- 6.b.1. Takeoff with engine failure after critical decision point (CDP) | X X X |
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.b.1.a.</td>
<td>Cat A</td>
<td>X X X</td>
</tr>
<tr>
<td>6.b.1.b.</td>
<td>Cat B</td>
<td>X X</td>
</tr>
<tr>
<td>6.c.</td>
<td>Rejected takeoff</td>
<td></td>
</tr>
<tr>
<td>6.c.1.</td>
<td>Land</td>
<td>X X X</td>
</tr>
<tr>
<td>6.c.2.</td>
<td>Water (if appropriate)</td>
<td>X X X</td>
</tr>
<tr>
<td>6.d.</td>
<td>Instrument departure</td>
<td>X X X</td>
</tr>
<tr>
<td>6.e.</td>
<td>Others as listed on the SOQ</td>
<td>A X X</td>
</tr>
<tr>
<td>7. Climb</td>
<td>Normal</td>
<td>X X X</td>
</tr>
<tr>
<td>7.b.</td>
<td>Obstacle clearance</td>
<td>X X X</td>
</tr>
<tr>
<td>7.c.</td>
<td>Vertical</td>
<td>X X</td>
</tr>
<tr>
<td>7.d.</td>
<td>One engine inoperative</td>
<td>X X X</td>
</tr>
<tr>
<td>7.e.</td>
<td>Others as listed on the SOQ</td>
<td>A X X</td>
</tr>
<tr>
<td>8. Cruise</td>
<td>Performance</td>
<td>X X X</td>
</tr>
<tr>
<td>8.b.</td>
<td>Flying qualities</td>
<td>X X X</td>
</tr>
<tr>
<td>8.c.</td>
<td>Tums</td>
<td>X X X</td>
</tr>
<tr>
<td>8.c.1.</td>
<td>Timed</td>
<td>X X X</td>
</tr>
<tr>
<td>8.c.2.</td>
<td>Normal</td>
<td>X X X</td>
</tr>
<tr>
<td>8.c.3.</td>
<td>Sleep</td>
<td>X X X</td>
</tr>
<tr>
<td>8.d.</td>
<td>Accelerations and decelerations</td>
<td>X X X</td>
</tr>
<tr>
<td>8.e.</td>
<td>High speed vibrations</td>
<td>X X X</td>
</tr>
<tr>
<td>8.f.</td>
<td>External Load Operations (see entry 4.f. of this table)</td>
<td>X X</td>
</tr>
<tr>
<td>8.g.</td>
<td>Abnormal/emergency procedures</td>
<td>X X</td>
</tr>
<tr>
<td>8.g.1.</td>
<td>Engine fire</td>
<td>X X X</td>
</tr>
<tr>
<td>8.g.2.</td>
<td>Engine failure</td>
<td>X X X</td>
</tr>
<tr>
<td>8.g.3.</td>
<td>Inflight engine shutdown and restart</td>
<td>X X X</td>
</tr>
<tr>
<td>8.g.4.</td>
<td>Fuel governing system failures</td>
<td>X X X</td>
</tr>
<tr>
<td>8.g.5.</td>
<td>Directional control malfunction</td>
<td>X X X</td>
</tr>
<tr>
<td>8.g.6.</td>
<td>Hydraulic failure</td>
<td>X X X</td>
</tr>
<tr>
<td>8.g.7.</td>
<td>Stability system failure</td>
<td>X X X</td>
</tr>
<tr>
<td>8.g.8.</td>
<td>Rotor vibrations</td>
<td>X X X</td>
</tr>
<tr>
<td>8.g.9.</td>
<td>Recovery from unusual attitudes</td>
<td>X X X</td>
</tr>
<tr>
<td>9. Descent</td>
<td>Normal</td>
<td>X X X</td>
</tr>
</tbody>
</table>
TABLE C3A—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.b.</td>
<td>Maximum rate</td>
<td>X X X</td>
</tr>
<tr>
<td>9.c.</td>
<td>Autorotative</td>
<td></td>
</tr>
<tr>
<td>9.c.1.</td>
<td>Straight-in</td>
<td>X X X</td>
</tr>
<tr>
<td>9.c.2.</td>
<td>With turn</td>
<td>X X X</td>
</tr>
<tr>
<td>9.d.</td>
<td>External Load</td>
<td>X X</td>
</tr>
<tr>
<td>10.</td>
<td>Approach</td>
<td></td>
</tr>
<tr>
<td>10.a.</td>
<td>Non-precision</td>
<td>X X X</td>
</tr>
<tr>
<td>10.a.1.</td>
<td>All engines operating</td>
<td>X X X</td>
</tr>
<tr>
<td>10.a.2.</td>
<td>One or more engines inoperative</td>
<td>X X X</td>
</tr>
<tr>
<td>10.a.3.</td>
<td>Approach procedures:</td>
<td>X X</td>
</tr>
<tr>
<td>10.a.3.a.</td>
<td>NDB</td>
<td>X X X</td>
</tr>
<tr>
<td>10.a.3.b.</td>
<td>VOR, RNAV, TACAN</td>
<td>X X X</td>
</tr>
<tr>
<td>10.a.3.c.</td>
<td>ASR</td>
<td>X X X</td>
</tr>
<tr>
<td>10.a.3.d.</td>
<td>Circling</td>
<td>X X X</td>
</tr>
<tr>
<td>10.a.3.e.</td>
<td>Helicopter only</td>
<td>X X X</td>
</tr>
<tr>
<td>10.a.4.</td>
<td>Missed approach</td>
<td>X X X</td>
</tr>
<tr>
<td>10.a.4.a.</td>
<td>All engines operating</td>
<td>X X X</td>
</tr>
<tr>
<td>10.a.4.b.</td>
<td>One or more engines inoperative</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.</td>
<td>Precision</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.1.</td>
<td>All engines operating</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.2.</td>
<td>Manually controlled—one or more engines inoperative</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.3.</td>
<td>Approach procedures:</td>
<td>X X</td>
</tr>
<tr>
<td>10.b.3.a.</td>
<td>PAR</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.3.b.</td>
<td>MLS</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.3.c.</td>
<td>ILS</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.3.c.</td>
<td>(1) Manual (raw data)</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.3.c.</td>
<td>(2) Flight director only</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.3.c.</td>
<td>(3) Autopilot* only</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.3.c.</td>
<td>(4) Cat I</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.3.c.</td>
<td>(5) Cat II</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.4.</td>
<td>Missed approach:</td>
<td></td>
</tr>
<tr>
<td>10.b.4.a.</td>
<td>All engines operating</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.4.b.</td>
<td>One or more engines inoperative</td>
<td>X X X</td>
</tr>
<tr>
<td>10.b.4.c.</td>
<td>Stability system failure</td>
<td>X X X</td>
</tr>
<tr>
<td>10.c.</td>
<td>Others as listed on the SOQ</td>
<td>A X X</td>
</tr>
</tbody>
</table>

Simulator level

- B: Basic
- C: Comprehensive
- D: Detailed

273
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>11.</td>
<td>Landings and Approaches to Landings</td>
<td></td>
</tr>
<tr>
<td>11.a.</td>
<td>Visual Approaches:</td>
<td></td>
</tr>
<tr>
<td>11.a.1.</td>
<td>Normal</td>
<td>...</td>
</tr>
<tr>
<td>11.a.2.</td>
<td>Steep</td>
<td>...</td>
</tr>
<tr>
<td>11.a.3.</td>
<td>Shallow</td>
<td>...</td>
</tr>
<tr>
<td>11.a.4.</td>
<td>Crosswind</td>
<td>...</td>
</tr>
<tr>
<td>11.a.5.</td>
<td>Category A profile</td>
<td>...</td>
</tr>
<tr>
<td>11.a.6.</td>
<td>Category B profile</td>
<td>...</td>
</tr>
<tr>
<td>11.a.7.</td>
<td>External Load</td>
<td>...</td>
</tr>
<tr>
<td>11.b.</td>
<td>Abnormal/emergency procedures:</td>
<td></td>
</tr>
<tr>
<td>11.b.1.</td>
<td>Directional control failure</td>
<td>...</td>
</tr>
<tr>
<td>11.b.2.</td>
<td>Hydraulics failure</td>
<td>...</td>
</tr>
<tr>
<td>11.b.3.</td>
<td>Fuel governing failure</td>
<td>...</td>
</tr>
<tr>
<td>11.b.4.</td>
<td>Autorotation</td>
<td>...</td>
</tr>
<tr>
<td>11.b.5.</td>
<td>Stability system failure</td>
<td>...</td>
</tr>
<tr>
<td>11.b.6.</td>
<td>Others listed on the SOQ</td>
<td>...</td>
</tr>
<tr>
<td>11.c.</td>
<td>Landings:</td>
<td></td>
</tr>
<tr>
<td>11.c.1.</td>
<td>Normal:</td>
<td></td>
</tr>
<tr>
<td>11.c.1.a.</td>
<td>Running</td>
<td>...</td>
</tr>
<tr>
<td>11.c.1.b.</td>
<td>From Hover</td>
<td>...</td>
</tr>
<tr>
<td>11.c.2.</td>
<td>Pinnacle/platform</td>
<td>...</td>
</tr>
<tr>
<td>11.c.3.</td>
<td>Confined area</td>
<td>...</td>
</tr>
<tr>
<td>11.c.4.</td>
<td>Slope</td>
<td>...</td>
</tr>
<tr>
<td>11.c.5.</td>
<td>Crosswind</td>
<td>...</td>
</tr>
<tr>
<td>11.c.6.</td>
<td>Tailwind</td>
<td>...</td>
</tr>
<tr>
<td>11.c.7.</td>
<td>Rejected Landing</td>
<td>...</td>
</tr>
<tr>
<td>11.c.8.</td>
<td>Abnormal/emergency procedures:</td>
<td></td>
</tr>
<tr>
<td>11.c.8.a.</td>
<td>From autorotation</td>
<td>...</td>
</tr>
<tr>
<td>11.c.8.b.</td>
<td>One or more engines inoperative</td>
<td>...</td>
</tr>
<tr>
<td>11.c.8.c.</td>
<td>Directional control failure</td>
<td>...</td>
</tr>
<tr>
<td>11.c.8.d.</td>
<td>Hydraulics failure</td>
<td>...</td>
</tr>
<tr>
<td>11.c.8.e.</td>
<td>Stability augmentation system failure</td>
<td>...</td>
</tr>
<tr>
<td>11.c.9.</td>
<td>Other (listed on the SOQ)</td>
<td>...</td>
</tr>
<tr>
<td>12.</td>
<td>Any Flight Phase</td>
<td></td>
</tr>
<tr>
<td>12.a.1.</td>
<td>Air conditioning</td>
<td>...</td>
</tr>
</tbody>
</table>
TABLE C3A—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.a.2</td>
<td>Anti-icing/deicing</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.3</td>
<td>Auxiliary power-plant</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.4</td>
<td>Communications</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.5</td>
<td>Electrical</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.6</td>
<td>Fire detection and suppression</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.7</td>
<td>Stabilizer</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.8</td>
<td>Flight controls</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.9</td>
<td>Fuel and oil</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.10</td>
<td>Hydraulic</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.11</td>
<td>Landing gear</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.12</td>
<td>Oxygen</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.13</td>
<td>Pneumatic</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.14</td>
<td>Powerplant</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.15</td>
<td>Flight control computers</td>
<td>X X X</td>
</tr>
<tr>
<td>12.a.16</td>
<td>Stability and control augmentation</td>
<td>X X X</td>
</tr>
<tr>
<td>12.b.</td>
<td>Flight management and guidance system:</td>
<td></td>
</tr>
<tr>
<td>12.b.1</td>
<td>Airborne radar</td>
<td>X X X</td>
</tr>
<tr>
<td>12.b.2</td>
<td>Automatic landing aids</td>
<td>X X X</td>
</tr>
<tr>
<td>12.b.3</td>
<td>Autopilot</td>
<td>X X X</td>
</tr>
<tr>
<td>12.b.4</td>
<td>Collision avoidance system</td>
<td>X X X</td>
</tr>
<tr>
<td>12.b.5</td>
<td>Flight data displays</td>
<td>X X X</td>
</tr>
<tr>
<td>12.b.6</td>
<td>Flight management computers</td>
<td>X X X</td>
</tr>
<tr>
<td>12.b.7</td>
<td>Heads-up displays</td>
<td>X X X</td>
</tr>
<tr>
<td>12.b.8</td>
<td>Navigation systems</td>
<td>X X X</td>
</tr>
<tr>
<td>12.c.</td>
<td>Airborne procedures:</td>
<td></td>
</tr>
<tr>
<td>12.c.1</td>
<td>Holding</td>
<td>X X X</td>
</tr>
<tr>
<td>12.c.2</td>
<td>Air hazard avoidance</td>
<td>X X X</td>
</tr>
<tr>
<td>12.c.3</td>
<td>Retreating blade stall recovery</td>
<td>X X X</td>
</tr>
<tr>
<td>12.c.4</td>
<td>Mast bumping</td>
<td>X X X</td>
</tr>
<tr>
<td>12.c.5</td>
<td>Loss of directional control</td>
<td>X X X</td>
</tr>
<tr>
<td>12.c.6</td>
<td>Loss of tail rotor effectiveness</td>
<td>X X X</td>
</tr>
<tr>
<td>12.c.7</td>
<td>Other (listed on the SOQ)</td>
<td>A X X</td>
</tr>
<tr>
<td>13.</td>
<td>Engine Shutdown and Parking</td>
<td></td>
</tr>
<tr>
<td>13.a.</td>
<td>Engine and systems operation</td>
<td>X X X</td>
</tr>
<tr>
<td>13.b.</td>
<td>Parking brake operation</td>
<td>X X X</td>
</tr>
</tbody>
</table>
TABLE C3A—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.c.</td>
<td>Rotor brake operation</td>
<td>X X X</td>
</tr>
<tr>
<td>13.d.</td>
<td>Abnormal/emergency procedures</td>
<td>X X X</td>
</tr>
</tbody>
</table>

Autopilot means attitude retention mode of operation.

Note: An "A" in the table indicates that the system, task, or procedure may be examined if the appropriate aircraft system or control is simulated in the FFS and is working properly.

TABLE C3B—FUNCTIONS AND SUBJECTIVE TESTS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Visual requirements for qualification at the stated level on class I airport or landing area models</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B C D</td>
</tr>
</tbody>
</table>

This table specifies the minimum airport visual model content and functionality to qualify a simulator at the indicated level. This table applies only to the airport scenes required for simulator qualification; i.e., two helicopter landing area models for Level B simulators; four helicopter landing area models for Level C and Level D simulators.

1. Functional test content requirements

The following is the minimum airport/landing area model content requirement to satisfy visual capability tests, and provides suitable visual cues to allow completion of all functions and subjective tests described in this attachment for simulators at Level B.

1.a. A minimum of one (1) representative airport and one (1) representative helicopter landing area model. The airport and the helicopter landing area may be contained within the same model. If but if this option is selected, the approach path to the airport runway(s) and the approach path to the helicopter landing area must be different. The model(s) used to meet the following requirements may be demonstrated at either a fictional or a real-world airport or helicopter landing area, but each must be acceptable to the sponsor’s TPAA, selectable from the IOS, and listed on the SOQ.

1.b. The fidelity of the visual scene must be sufficient for the aircrew to visually identify the airport and/or helicopter landing area; determine the position of the simulated helicopter within the visual scene; successfully accomplish take-offs, approaches, and landings; and maneuver around the airport on the ground, or hover taxi, as necessary.

1.c. Runways:

1.c.1. Visible runway number

1.c.2. Runway threshold elevations and locations must be modeled to provide sufficient correlation with helicopter systems (e.g., altimeter).

1.c.3. Runway surface and markings

1.c.4. Lighting for the runway in use including runway edge and centerline

1.c.5. Lighting, visual approach aid (VASI or PAPI) and approach lighting of appropriate colors

1.c.6. Representative taxiway lights

1.d. Other helicopter landing area:

1.d.1. Standard heliport designation ("H") marking, properly sized and oriented

1.d.2. Perimeter markings for the Touchdown and Lift-Off Area (TLOF) or the Final Approach and Takeoff Area (FATO), as appropriate.

1.d.3. Perimeter lighting for the TLOF or the FATO areas, as appropriate

1.d.4. Appropriate markings and lighting to allow movement from the runway or helicopter landing area to another part of the landing facility.
The following is the minimum airport/landing area model content requirement to satisfy visual capability tests, and provide suitable visual cues to allow completion of all functions and subjective tests described in this attachment for simulators at Level C and Level D. Not all of the elements described in this section must be found in a single airport/landing area scene. However, all of the elements described in this section must be found throughout a combination of the four (4) airport/landing area models described in entry 2.a. The representations of the hazards (as described in 2.d.) must be “hard objects” that interact as such if contacted by the simulated helicopter. Additionally, surfaces on which the helicopter lands must be “hard surfaces.” The model(s) used to meet the following requirements must be demonstrated at either a fictional or a real-world airport or helicopter landing area, and each must be acceptable to the sponsor’s TPAA, selectable from the IOS, and listed on the SOQ.

2.a. There must be at least the following airport/helicopter landing areas.

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Visual requirements for qualification at the stated level class I airport or landing area models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a.1.</td>
<td>At least one (1) representative airport ...</td>
</tr>
<tr>
<td>2.a.2.</td>
<td>At least three representative non-airport landing areas, as follows:</td>
</tr>
<tr>
<td>2.a.2.a.</td>
<td>At least one (1) representative helicopter landing area situated on a substantially elevated surface with respect to the surrounding structures or terrain (e.g., building top, offshore oil rig).</td>
</tr>
<tr>
<td>2.a.2.b.</td>
<td>At least one (1) helicopter landing area that meets the definition of a “confined landing area.”</td>
</tr>
<tr>
<td>2.a.2.c.</td>
<td>At least one (1) helicopter landing area on a sloped surface where the slope is at least 2 1/2°.</td>
</tr>
</tbody>
</table>

2.b. For each of the airport/helicopter landing areas described in 2.a., the simulator must be able to provide at least the following:

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Visual requirements for qualification at the stated level class I airport or landing area models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.b.1.</td>
<td>A night and twilight (dusk) environment. ..</td>
</tr>
<tr>
<td>2.b.2.</td>
<td>A daylight environment. ...</td>
</tr>
</tbody>
</table>

2.c. Non-airport helicopter landing areas must have the following:

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Visual requirements for qualification at the stated level class I airport or landing area models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.c.1.</td>
<td>Representative buildings, structures, and lighting within appropriate distances</td>
</tr>
<tr>
<td>2.c.2.</td>
<td>Representative moving and static clutter (e.g., other aircraft, power carts, tugs, fuel trucks)</td>
</tr>
<tr>
<td>2.c.3.</td>
<td>Representative depiction of terrain and obstacles as well as significant and identifiable natural and cultural features, within 25 NM of the reference landing area.</td>
</tr>
<tr>
<td>2.c.4.</td>
<td>Standard heliport designation (“H”) marking, properly sized and oriented</td>
</tr>
<tr>
<td>2.c.5.</td>
<td>Perimeter markings for the Touchdown and Lift-Off Area (TLOF) or the Final Approach and Takeoff Area (FATO), as appropriate.</td>
</tr>
<tr>
<td>2.c.6.</td>
<td>Perimeter lighting for the TLOF or the FATO areas, as appropriate ...</td>
</tr>
<tr>
<td>2.c.7.</td>
<td>Appropriate markings and lighting to allow movement from the area to another part of the landing facility, if appropriate.</td>
</tr>
<tr>
<td>2.c.8.</td>
<td>Appropriate markings, lighting, and signage, including a windsock that gives appropriate wind cues.</td>
</tr>
<tr>
<td>2.c.9.</td>
<td>Appropriate markings, lighting, and signage necessary for position identification, and to allow movement from the landing area to another part of the landing facility.</td>
</tr>
<tr>
<td>2.c.10.</td>
<td>Representative moving and static ground traffic (e.g., vehicular and aircraft), including the ability to present surface hazards (e.g., conflicting traffic, vehicular or aircraft, on or approaching the landing area).</td>
</tr>
<tr>
<td>2.c.11.</td>
<td>Portrayal of landing surface contaminants, including lighting reflections when wet and partially obscured lights when snow is present, or suitable alternative effects.</td>
</tr>
</tbody>
</table>

2.d. All of the following three (3) hazards must be presented in a combination of the three (3) non-airport landing areas (described in entry 2.a.2. of this table) and each of these non-airport landing areas must have at least one of the following hazards:

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Visual requirements for qualification at the stated level class I airport or landing area models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.d.1.</td>
<td>Other airborne traffic ...</td>
</tr>
</tbody>
</table>
TABLE C3B—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Visual requirements for qualification at the stated level class I airport or landing area models</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.d.2.</td>
<td>Buildings, trees, or other vertical obstructions in the immediate landing area</td>
<td>B C D</td>
</tr>
<tr>
<td>2.d.3.</td>
<td>Suspended wires in the immediate landing area</td>
<td>X X</td>
</tr>
<tr>
<td>2.e.</td>
<td>Airport applications. Each airport must have the following:</td>
<td></td>
</tr>
<tr>
<td>2.e.1.</td>
<td>At least one runway designated as “in-use”, appropriately marked and capable of being lighted fully</td>
<td>X X</td>
</tr>
<tr>
<td>2.e.2.</td>
<td>Runway threshold elevations and locations must be modeled to provide sufficient correlation with helicopter systems (e.g., HGS, GPS, altimeter). Slopes in runways, taxiways, and ramp areas, if depicted in the visual scene, may not cause distracting or unrealistic effects, including pilot eye-point height variation.</td>
<td>X X X</td>
</tr>
<tr>
<td>2.e.3.</td>
<td>Appropriate approach lighting systems and airfield lighting for a VFR circuit and landing, non-precision approaches and landings, and precision approaches and landings, as appropriate.</td>
<td>X X</td>
</tr>
<tr>
<td>2.e.4.</td>
<td>Representative taxiway lights</td>
<td>X X</td>
</tr>
<tr>
<td>3.</td>
<td>Airport or landing area model management</td>
<td></td>
</tr>
<tr>
<td>3.a.</td>
<td>Runway and helicopter landing area approach lighting must fade into view in accordance with the environmental conditions set in the simulator.</td>
<td>X X X</td>
</tr>
<tr>
<td>3.b.</td>
<td>The direction of strobe lights, approach lights, runway edge lights, visual landing aids, runway centerline lights, threshold lights, touchdown zone lights, and TLOF or FATO lights must be replicated.</td>
<td>X X X</td>
</tr>
<tr>
<td>4.</td>
<td>Visual feature recognition. The following are the minimum distances at which runway features must be visible. Distances are measured from runway threshold or a helicopter landing area to a helicopter aligned with the runway or helicopter landing area on an extended 3° glide-slope in simulated meteorological conditions. For circling approaches, all tests apply to the runway used for the initial approach and to the runway of intended landing</td>
<td></td>
</tr>
<tr>
<td>4.a.</td>
<td>For runways: Runway definition, strobe lights, approach lights, and runway edge lights from 5 sm (8 km) of the runway threshold.</td>
<td>X X X</td>
</tr>
<tr>
<td>4.b.</td>
<td>For runways: Centerline lights and taxiway definition from 3 sm (5 km)</td>
<td>X X X</td>
</tr>
<tr>
<td>4.c.</td>
<td>For runways: Visual Approach Aid lights (VASI or PAPI) from 3 sm (5 km) of the threshold</td>
<td>X X X</td>
</tr>
<tr>
<td>4.d.</td>
<td>For runways: Visual Approach Aid lights (VASI or PAPI) from 5 sm (8 km) of the threshold</td>
<td>X X X</td>
</tr>
<tr>
<td>4.e.</td>
<td>For runways: Runway threshold lights and touchdown zone lights from 2 sm (3 km)</td>
<td>X X X</td>
</tr>
<tr>
<td>4.f.</td>
<td>For runways and helicopter landing areas: Markings within range of landing lights for night/twilight scenes and the surface resolution test on daylight scenes, as required.</td>
<td>X X X</td>
</tr>
<tr>
<td>4.g.</td>
<td>For circling approaches, the runway of intended landing and associated lighting must fade into view in a non-distracting manner.</td>
<td>X X X</td>
</tr>
<tr>
<td>4.h.</td>
<td>For helicopter landing areas: Landing direction lights and raised FATO lights from 1 sm (1.5 km).</td>
<td>X X X</td>
</tr>
<tr>
<td>4.i.</td>
<td>For helicopter landing areas: Flush mounted FATO lights, TOFL lights, and the lighted windsock from 0.5 sm (750 m).</td>
<td>X X X</td>
</tr>
<tr>
<td>4.j.</td>
<td>Hover taxiway lighting (yellow/blue/yellow cylinders) from TOFL area</td>
<td>X X X</td>
</tr>
<tr>
<td>5.</td>
<td>Airport or landing area model content</td>
<td></td>
</tr>
</tbody>
</table>
TABLE C3B—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Visual requirements for qualification at the stated level</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Visual system compatibility with aerodynamic programming</td>
<td>X X X</td>
</tr>
</tbody>
</table>
TABLE C3B—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Visual requirements for qualification at the stated level class I airport or landing area models</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.b.</td>
<td>Visual cues to assess sink rate and depth perception during landings</td>
<td>X X X</td>
</tr>
<tr>
<td>6.c.</td>
<td>Accurate portrayal of environment relating to flight simulator attitudes</td>
<td>X X X</td>
</tr>
<tr>
<td>6.d.</td>
<td>The visual scene must correlate with integrated helicopter systems (e.g., terrain, traffic and weather avoidance systems and Head-up Guidance System (HGS)).</td>
<td>X X X</td>
</tr>
<tr>
<td>6.e.</td>
<td>Representative visual effects for each visible, own-ship, helicopter external light(s)—taxi and landing light lobes (including independent operation, if appropriate).</td>
<td>X X X</td>
</tr>
<tr>
<td>6.f.</td>
<td>The effect of rain removal devices</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Scene quality</td>
<td></td>
</tr>
<tr>
<td>7.a.</td>
<td>Surfaces and textural cues must be free from apparent and distracting quantization (aliasing)</td>
<td>X X X</td>
</tr>
<tr>
<td>7.b.</td>
<td>System capable of portraying full color realistic textural cues</td>
<td>X X X</td>
</tr>
<tr>
<td>7.c.</td>
<td>The system light points must be free from distracting jitter, smearing or streaking</td>
<td>X X X</td>
</tr>
<tr>
<td>7.d.</td>
<td>Demonstration of occulting through each channel of the system in an operational scene</td>
<td>X X X</td>
</tr>
<tr>
<td>7.e.</td>
<td>Demonstration of a minimum of ten levels of occulting through each channel of the system in an operational scene.</td>
<td>X X X</td>
</tr>
<tr>
<td>7.f.</td>
<td>System capable of providing focus effects that simulate rain.</td>
<td>X X X</td>
</tr>
<tr>
<td>7.g.</td>
<td>System capable of providing focus effects that simulate light point perspective growth</td>
<td>X X X</td>
</tr>
<tr>
<td>7.h.</td>
<td>Runway light controls capable of six discrete light steps (0–5)</td>
<td>X X X</td>
</tr>
<tr>
<td>8.</td>
<td>Environmental effects.</td>
<td></td>
</tr>
<tr>
<td>8.a.</td>
<td>The displayed scene corresponding to the appropriate surface contaminants and include appropriate lighting reflections for wet, partially obscured lights for snow, or alternative effects.</td>
<td>X X X</td>
</tr>
<tr>
<td>8.b.</td>
<td>Special weather representations which include:</td>
<td></td>
</tr>
<tr>
<td>8.b.1.</td>
<td>The sound, motion and visual effects of light, medium and heavy precipitation near a thunderstorm on take-off, approach, and landings at and below an altitude of 2,000 ft (600 m) above the surface and within a radius of 10 sm (16 km) from the airport or helicopter landing area.</td>
<td>X X X</td>
</tr>
<tr>
<td>8.b.2.</td>
<td>One airport or helicopter landing area with a snow scene to include terrain snow and snow-covered surfaces.</td>
<td>X X X</td>
</tr>
<tr>
<td>8.c.</td>
<td>In-cloud effects such as variable cloud density, speed cues and ambient changes</td>
<td>X X X</td>
</tr>
<tr>
<td>8.d.</td>
<td>The effect of multiple cloud layers representing few, scattered, broken and overcast conditions giving partial or complete obstruction of the ground scene.</td>
<td>X X X</td>
</tr>
<tr>
<td>8.e.</td>
<td>Visibility and RVR measured in terms of distance. Visibility/RVR checked at 2,000 ft (600 m) above the airport or helicopter landing area and at two heights below 2,000 ft with at least 500 ft of separation between the measurements. The measurements must be taken within a radius of 10 sm (16 km) from the airport or helicopter landing area.</td>
<td>X X X</td>
</tr>
<tr>
<td>8.f.</td>
<td>Patchy fog giving the effect of variable RVR</td>
<td>X</td>
</tr>
<tr>
<td>8.g.</td>
<td>Effects of fog on airport lighting such as halos and defocus</td>
<td>X X X</td>
</tr>
<tr>
<td>8.h.</td>
<td>Effect of own-ship lighting in reduced visibility, such as reflected glare, including landing lights, strobes, and beacons.</td>
<td>X X X</td>
</tr>
<tr>
<td>8.i.</td>
<td>Wind cues to provide the effect of blowing snow or sand across a dry runway or taxiway selectable from the instructor station.</td>
<td>X</td>
</tr>
</tbody>
</table>
TABLE C3B—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Visual requirements for qualification at the stated level class I airport or landing area models</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>8.j...........</td>
<td>"White-out" or "Brown-out" effects due to rotor downwash beginning at a distance above the ground equal to the rotor diameter.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Instructor control of the following: The following are the minimum instructor controls that must be available in Level B, Level C, and Level D simulators, as indicated.</td>
<td></td>
</tr>
<tr>
<td>9.a.</td>
<td>Environmental effects, e.g. cloud base, cloud effects, cloud density, visibility in statute miles/ kilometers and RVR in feet/meters.</td>
<td>X</td>
</tr>
<tr>
<td>9.b.</td>
<td>Airport or helicopter landing area selection ...</td>
<td>X</td>
</tr>
<tr>
<td>9.c.</td>
<td>Airport or helicopter landing area lighting, including variable intensity</td>
<td>X</td>
</tr>
<tr>
<td>9.d.</td>
<td>Dynamic effects including ground and flight traffic ..</td>
<td>X</td>
</tr>
</tbody>
</table>

End QPS Requirement

Begin Information

10. An example of being able to "combine two airport models to achieve two "in-use" runways: One runway designated as the "in-use" runway in the first model of the airport, and the second runway designated as the "in-use" runway in the second model of the same airport. For example, the clearance is for the ILS approach to Runway 27, Circle to Land on Runway 18 right. Two airport visual models might be used: the first with Runway 27 designated as the "in use" runway for the approach to runway 27, and the second with Runway 18 Right designated as the "in use" runway. When the pilot breaks off the ILS approach to runway 27, the instructor may change to the second airport visual model in which runway 18 Right is designated as the "in use" runway, and the pilot would make a visual approach and landing. This process is acceptable to the FAA as long as the temporary interruption due to the visual model change is not distracting to the pilot.

11. Sponsors are not required to provide every detail of a runway, but the detail that is provided should be correct within reasonable limits.

End Information

TABLE C3C—FUNCTIONS AND SUBJECTIVE TESTS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Visual scene content additional airport or landing area models beyond minimum required for qualification Class II airport or landing area models</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>1.</td>
<td>Airport or landing area model management The following is the minimum visual scene management requirements for simulators at Levels B, C, and D.</td>
<td></td>
</tr>
<tr>
<td>1.a.</td>
<td>The installation and direction of the following lights must be replicated for the "in-use" surface:</td>
<td></td>
</tr>
<tr>
<td>1.a.1.</td>
<td>For "in-use" runways: Strobe lights, approach lights, runway edge lights, visual landing aids, runway centerline lights, threshold lights, and touchdown zone lights.</td>
<td>X</td>
</tr>
<tr>
<td>1.a.2.</td>
<td>For "in-use" helicopter landing areas: ground level TLOF perimeter lights, elevated TLOF perimeter lights (if applicable), Optional TLOF lights (if applicable), ground FAT0 perimeter lights, elevated TLOF lights (if applicable), landing direction lights.</td>
<td>X</td>
</tr>
</tbody>
</table>

2. Visual feature recognition The following are the minimum distances at which runway or landing area features must be visible for simulators at Levels B, C, and D. Distances are measured from runway threshold or a helicopter landing area to an aircraft aligned with the runway or helicopter landing area on a 3° glide-slope from the aircraft to the touchdown point, in simulated meteorological conditions. For circling approaches, all tests apply to the runway used for the initial approach and to the runway of intended landing.
TABLE C3C—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Visual scene content additional airport or landing area models beyond minimum required for qualification</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class II airport or landing area models</td>
<td>B</td>
</tr>
<tr>
<td>2.a.</td>
<td>For Runways:</td>
<td>X</td>
</tr>
<tr>
<td>2.a.1.</td>
<td>Strobe lights, approach lights, and edge lights from 5 sm (8 km) of the threshold</td>
<td>X</td>
</tr>
<tr>
<td>2.a.2.</td>
<td>Centerline lights and taxiway definition from 3 sm (5 km)</td>
<td>X</td>
</tr>
<tr>
<td>2.a.3.</td>
<td>Visual Approach Aid lights (VASI or PAPI) from 3 sm (5 km) of the threshold</td>
<td>X</td>
</tr>
<tr>
<td>2.a.4.</td>
<td>Visual Approach Aid lights (VASI or PAPI) from 5 sm (8 km) of the threshold</td>
<td>X</td>
</tr>
<tr>
<td>2.a.5.</td>
<td>Threshold lights and touchdown zone lights from 2 sm (3 km)</td>
<td>X</td>
</tr>
<tr>
<td>2.a.6.</td>
<td>Markings within range of landing lights for night/twilight (dusk) scenes and as required by the surface resolution test on daylight scenes</td>
<td>X</td>
</tr>
<tr>
<td>2.a.7.</td>
<td>For circling approaches, the runway of intended landing and associated lighting must fade into view in a non-distracting manner</td>
<td>X</td>
</tr>
<tr>
<td>2.b.</td>
<td>For Helicopter landing areas:</td>
<td>X</td>
</tr>
<tr>
<td>2.b.1.</td>
<td>Landing direction lights and raised FATO lights from 1 sm (1.5 km)</td>
<td>X</td>
</tr>
<tr>
<td>2.b.2.</td>
<td>Flush mounted FATO lights, TOFL lights, and the lighted windsock from 0.5 sm (750 m)</td>
<td>X</td>
</tr>
<tr>
<td>2.b.3.</td>
<td>Hover taxiway lighting (yellow/blue/yellow cylinders) from TOFL area</td>
<td>X</td>
</tr>
<tr>
<td>2.b.4.</td>
<td>Markings within range of landing lights for night/twilight (dusk) scenes and as required by the surface resolution test on daylight scenes</td>
<td>X</td>
</tr>
</tbody>
</table>

Airport or Helicopter landing area model content

The following prescribes the minimum requirements for what must be provided in an airport visual model and identifies other aspects of the airport environment that must correspond with that model for simulators at Level B, C, and D. The detail must be developed using airport pictures, construction drawings and maps, or other similar data, or developed in accordance with published regulatory material; however, this does not require that airport or helicopter landing area models contain details that are beyond the designed capability of the currently qualified visual system. For circling approaches, all requirements of this section apply to the runway used for the initial approach and to the runway of intended landing. Only one “primary” taxi route from parking to the runway end or helicopter takeoff/landing area will be required for each “in-use” runway or helicopter takeoff/landing area.

Required visual model correlation with other aspects of the airport environment simulation
The Federal Aviation Administration, DOT Pt. 60, App. C

TABLE C3C—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Visual scene content additional airport or landing area models beyond minimum required for qualification Class II airport or landing area models</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The following are the minimum visual model correlation tests that must be conducted for Level B, Level C, and Level D simulators, as indicated.</td>
<td></td>
</tr>
<tr>
<td>4.a.</td>
<td>The airport model must be properly aligned with the navigational aids that are associated with operations at the “in-use” runway.</td>
<td>X X X</td>
</tr>
<tr>
<td>4.b.</td>
<td>Slopes in runways, taxiways, and ramp areas, if depicted in the visual scene, must not cause distracting or unrealistic effects.</td>
<td>X X X</td>
</tr>
<tr>
<td>5.</td>
<td>Correlation with helicopter and associated equipment
The following are the minimum correlation comparisons that must be made for simulators at Level B, C, and D.</td>
<td></td>
</tr>
<tr>
<td>5.a.</td>
<td>Visual system compatibility with aerodynamic programming .. X X X</td>
<td></td>
</tr>
<tr>
<td>5.b.</td>
<td>Accurate portrayal of environment relating to flight simulator attitudes .. X X X</td>
<td></td>
</tr>
<tr>
<td>5.c.</td>
<td>Visual cues to assess sink rate and depth perception during landings .. X X X</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Scene quality
The following are the minimum scene quality tests that must be conducted for simulators at Level B, C, and D.</td>
<td></td>
</tr>
<tr>
<td>6.a.</td>
<td>Light points free from distracting jitter, smearing or streaking .. X X X</td>
<td></td>
</tr>
<tr>
<td>6.b.</td>
<td>Surfaces and textural cues free from apparent and distracting quantization (aliasing) X X</td>
<td></td>
</tr>
<tr>
<td>6.c.</td>
<td>Correct color and realistic textural cues .. X</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Instructor controls of the following:
The following are the minimum instructor controls that must be available in Level B, Level C, and Level D simulators, as indicated.</td>
<td></td>
</tr>
<tr>
<td>7.a.</td>
<td>Environmental effects, e.g., cloud base (if used), cloud effects, cloud density, visibility in statute miles/kilometers and RVR in feet/meters.</td>
<td>X X X</td>
</tr>
<tr>
<td>7.b.</td>
<td>Airport/Heliport selection ...</td>
<td>X X X</td>
</tr>
<tr>
<td>7.c.</td>
<td>Airport lighting including variable intensity ... X X</td>
<td></td>
</tr>
<tr>
<td>7.d.</td>
<td>Dynamic effects including ground and flight traffic ... X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>End QPS Requirements</td>
<td></td>
</tr>
</tbody>
</table>

TABLE C3D—FUNCTIONS AND SUBJECTIVE TESTS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Motion system (and special aerodynamic model) effects</th>
<th>Simulator level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Notes
This table specifies motion effects that are required to indicate the threshold at which a flight crewmember must be able to recognize an event or situation. Where applicable, flight simulator pitch, side loading and directional control characteristics must be representative of the helicopter.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. **End Information**

Note: Sponsors are not required to provide every detail of a runway or helicopter landing area, but the detail that is provided must be correct within the capabilities of the system. | X X X |
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Motion system (and special aerodynamic model) effects</th>
<th>Simulator level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Runway rumble, oleo deflection, ground speed, uneven runway, runway and taxiway centerline light characteristics: Procedure: After the helicopter has been preset to the takeoff position and then released, taxi at various speeds with a smooth runway and note the general characteristics of the simulated runway rumble effects of oleo deflections. Repeat the maneuver with a runway roughness of 50%, then with maximum roughness. Note the associated motion vibrations affected by ground speed and runway roughness</td>
<td>X X X</td>
<td>If time permits, different gross weights can also be selected as this may also affect the associated vibrations depending on helicopter type. The associated motion effects for the above tests should also include an assessment of the effects of rolling over centerline lights, surface discontinuities of uneven runways, and various taxiway characteristics.</td>
</tr>
<tr>
<td></td>
<td>Friction Drag from Skid-type Landing Gear: Procedure: Perform a running takeoff or a running landing and note an increase in a fuselage vibration (as opposed to rotor vibration) due to the friction of dragging the skid along the surface. This vibration will lessen as the ground speed decreases</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotor Out-of-Track and/or Out-of-Balance condition: Procedure: Select the malfunction or condition from the IOS. Start the engine(s) normally and check for an abnormal vibration for an Out-of-Track condition and check for an abnormal vibration for an Out-of-Balance condition</td>
<td>X X X</td>
<td>Does not require becoming airborne. The abnormal vibration for Out-of-Track and Out-of-Balance conditions should be recognized in the frequency range of the inverse of the period for each; i.e., 1/P for vertical vibration, and 1/P for lateral vibration.</td>
</tr>
<tr>
<td></td>
<td>Bumps associated with the landing gear: Procedure: Perform a normal take-off paying special attention to the bumps that could be perceptible due to maximum oleo extension after lift-off</td>
<td>X X X</td>
<td>When the landing gear is extended or retracted, motion bumps can be felt when the gear locks into position.</td>
</tr>
<tr>
<td></td>
<td>Buffet during extension and retraction of landing gear: Procedure: Operate the landing gear. Check that the motion cues of the buffet experienced represent the actual helicopter</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failure of Dynamic Vibration Absorber or similar system as appropriate for the helicopter (e.g., droop stop or static stop): Procedure: May be accomplished any time the rotor is engaged. Select the appropriate failure at the IOS, note an appropriate increase in vibration and check that the vibration intensity and frequency increases with an increase in RPM and an increase in collective application</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tail Rotor Drive Failure: Procedure: With the engine(s) running and the rotor engaged—select the malfunction and note the immediate increase of medium frequency vibration</td>
<td>X X X</td>
<td>The tail rotor operates in the medium frequency range, normally estimated by multiplying the tail rotor gear box ratio by the main rotor RPM. The failure can be recognized by an increase in the vibrations in this frequency range.</td>
</tr>
<tr>
<td></td>
<td>Touchdown cues for main and nose gear: Procedure: Conduct several normal approaches with various rates of descent. Check that the motion cues for the touchdown bumps for each descent rate are representative of the actual helicopter</td>
<td>X X X</td>
<td></td>
</tr>
</tbody>
</table>

Table C3D—Functions and Subjective Tests—Continued
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Function and Subjective Tests</th>
<th>Simulator level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>Tire failure dynamics: Procedure: Simulate a single tire failure and a multiple tire failure</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10.</td>
<td>Engine malfunction and engine damage: Procedure: The characteristics of an engine malfunction as prescribed in the malfunction definition document for the particular flight simulator must describe the special motion effects felt by the pilot. Note the associated engine instruments varying according to the nature of the malfunction and note the replication of the effects of the airframe vibration</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>11.</td>
<td>Tail boom strikes: Procedure: Tail strikes can be checked by over-rotation of the helicopter at a quick stop or autorotation to the ground</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>12.</td>
<td>Vortex Ring State (Settling with Power): Procedure: Specific procedures may differ between helicopters and may be prescribed by the Helicopter Manufacturer or other subject matter expert. However, the following information is provided for illustrative purposes: * * * To enter the maneuver, reduce power below hover power. Hold altitude with aft cyclic until the airspeed approaches 20 knots. Then allow the sink rate to increase to 300 feet per minute or more as the attitude is adjusted to obtain an airspeed of less than 10 knots</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>13.</td>
<td>Retreating Blade Stall: Procedure: Specific procedures may differ between helicopters and may be prescribed by the Helicopter Manufacturer or other subject matter expert. However, the following information is provided for illustrative purposes: To enter the maneuver, increase forward airspeed; the effect will be recognized through the development of a low frequency vibration, pitching up of the nose, and a roll in the direction of the retreating blade. High weight, low rotor RPM, high density altitude, turbulence or steep, abrupt turns are all conducive to retreating blade stall at high forward airspeeds</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
TABLE C3D—FUNCTIONS AND SUBJECTIVE TESTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Motion system (and special aerodynamic model) effects</th>
<th>Simulator level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>Translational Lift Effects:</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Procedure: From a stabilized in-ground-effect (IGE) Hover begin a forward acceleration. When passing through the effective translational lift range, the noticeable effect will be a possible nose pitch-up in some helicopters, an increase in the rate of climb, and a temporary increase in vibration level (in some cases this vibration may be pronounced). This effect is experienced again upon deceleration through the appropriate speed range. During deceleration, the pitch and rate of climb will have the reverse effect, but there will be a similar, temporary increase in vibration level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE C3E—FUNCTIONS AND SUBJECTIVE TESTS

<table>
<thead>
<tr>
<th>Entry number</th>
<th>Sound system</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Precipitation.</td>
<td>X X</td>
</tr>
<tr>
<td>2.</td>
<td>Rain removal equipment.</td>
<td>X X</td>
</tr>
<tr>
<td>3.</td>
<td>Helicopter noises used by the pilot for normal helicopter operation.</td>
<td>X X</td>
</tr>
<tr>
<td>4.</td>
<td>Abnormal operations for which there are associated sound cues, including engine malfunctions, landing gear or tire malfunctions, tail boom.</td>
<td>X X</td>
</tr>
<tr>
<td>5.</td>
<td>Sound of a crash when the flight simulator is landed in excess of limitations</td>
<td>X X</td>
</tr>
</tbody>
</table>

TABLE C3F—FUNCTIONS AND SUBJECTIVE TESTS

<table>
<thead>
<tr>
<th>Entry number</th>
<th>Special effects</th>
<th>Simulator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Braking Dynamics:</td>
<td>X X</td>
</tr>
<tr>
<td></td>
<td>Representations of the dynamics of brake failure (flight simulator pitch, side-loading, and directional control characteristics representative of the helicopter), including antiskid and decreased brake efficiency due to high brake temperatures (based on helicopter related data), sufficient to enable pilot identification of the problem and implementation of appropriate procedures.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Effects of Airframe and Engine Icing: Required only for those helicopters authorized for operations in known icing conditions.</td>
<td>X X</td>
</tr>
<tr>
<td></td>
<td>Procedure: With the simulator airborne, in a clean configuration, nominal altitude and cruise airspeed, autopilot on and auto-throttles off, engine and airfoil anti-ice/de-ice systems deactivated; activate icing conditions at a rate that allows monitoring of simulator and systems response. Icing recognition will include an increase in gross weight, airspeed decay, change in simulator pitch attitude, change in engine performance indications (other than due to airspeed changes), and change in data from pitot/static system, or rotor out-of-track/balance. Activate heating, anti-ice, or de-ice systems independently. Recognition will include proper effects of these systems, eventually returning the simulated helicopter to normal flight.</td>
<td></td>
</tr>
<tr>
<td>Entry number</td>
<td>Instructor Operating Station (IOS)</td>
<td>Simulator level</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>QPS Requirements</td>
<td>B</td>
</tr>
<tr>
<td>Functions in this table are subject to evaluation only if appropriate for the helicopter or the system is installed on the specific simulator.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Simulator Power Switch(es)</td>
<td>X</td>
</tr>
<tr>
<td>2.</td>
<td>Helicopter conditions.</td>
<td></td>
</tr>
<tr>
<td>2.a.</td>
<td>Gross weight, center of gravity, fuel loading and allocation</td>
<td>X</td>
</tr>
<tr>
<td>2.b.</td>
<td>Helicopter systems status</td>
<td>X</td>
</tr>
<tr>
<td>2.c.</td>
<td>Ground crew functions</td>
<td>X</td>
</tr>
<tr>
<td>3.</td>
<td>Airports/Heliports.</td>
<td></td>
</tr>
<tr>
<td>3.a.</td>
<td>Number and selection</td>
<td>X</td>
</tr>
<tr>
<td>3.b.</td>
<td>Runway or landing area selection</td>
<td>X</td>
</tr>
<tr>
<td>3.c.</td>
<td>Landing surface conditions (rough, smooth, icy, wet, dry, snow)</td>
<td>X</td>
</tr>
<tr>
<td>3.d.</td>
<td>Preset positions</td>
<td>X</td>
</tr>
<tr>
<td>3.e.</td>
<td>Lighting controls</td>
<td>X</td>
</tr>
<tr>
<td>4.</td>
<td>Environmental controls.</td>
<td></td>
</tr>
<tr>
<td>4.a.</td>
<td>Visibility (statute miles/kilometers)</td>
<td>X</td>
</tr>
<tr>
<td>4.b.</td>
<td>Runway visual range (in feet/meters)</td>
<td>X</td>
</tr>
<tr>
<td>4.c.</td>
<td>Temperature</td>
<td>X</td>
</tr>
<tr>
<td>4.d.</td>
<td>Climate conditions</td>
<td>X</td>
</tr>
<tr>
<td>4.e.</td>
<td>Wind speed and direction</td>
<td>X</td>
</tr>
<tr>
<td>5.</td>
<td>Helicopter system malfunctions (insertion/deletion)</td>
<td>X</td>
</tr>
<tr>
<td>6.a.</td>
<td>Problem (all) freeze/release</td>
<td>X</td>
</tr>
<tr>
<td>6.b.</td>
<td>Position (geographic) freeze/release</td>
<td>X</td>
</tr>
<tr>
<td>6.c.</td>
<td>Repositioning (locations, freezes, and releases)</td>
<td>X</td>
</tr>
<tr>
<td>6.d.</td>
<td>Ground speed control</td>
<td>X</td>
</tr>
<tr>
<td>7.</td>
<td>Remote IOS.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Sound Controls. On/off/adjustment</td>
<td>X</td>
</tr>
<tr>
<td>9.</td>
<td>Motion/Control Loading System.</td>
<td></td>
</tr>
<tr>
<td>9.a.</td>
<td>On/off/emergency stop</td>
<td>X</td>
</tr>
<tr>
<td>10.</td>
<td>Observer Seats/Stations. Position/Adjustment/Positive restraint system</td>
<td>X</td>
</tr>
</tbody>
</table>
ATTACHMENT 4 TO APPENDIX C TO PART 60—SAMPLE DOCUMENTS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title of Sample</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation.</td>
<td>C4A</td>
</tr>
<tr>
<td>Attachment: FFS Information Form</td>
<td>C4B</td>
</tr>
<tr>
<td>Sample Letter of Compliance</td>
<td>A4C</td>
</tr>
<tr>
<td>Sample Qualification Test Guide Cover Page</td>
<td>C4D</td>
</tr>
<tr>
<td>Sample Statement of Qualification—Certificate</td>
<td>C4E</td>
</tr>
<tr>
<td>Sample Statement of Qualification—Configuration List</td>
<td>C4F</td>
</tr>
<tr>
<td>Sample Statement of Qualification—List of Qualified Tasks</td>
<td>C4G</td>
</tr>
<tr>
<td>Sample Continuing Qualification Evaluation Requirements Page</td>
<td>C4H</td>
</tr>
<tr>
<td>Sample MQTG Index of Effective FFS Directives</td>
<td>C4I</td>
</tr>
</tbody>
</table>
Date ______

Charles A. Spillner
Manager, National Simulator Program
Federal Aviation Administration
100 Hartsfield Centre Parkway, Suite 400
Atlanta, GA 30354

Dear Mr. Spillner:

RE: Request for Initial/Upgrade Evaluation Date

This is to advise you of our intent to request an (initial or upgrade) evaluation of our (FFS Manufacturer), (Aircraft Type/Level) Full Flight Simulator (FFS), (FAA ID Number, if previously qualified), located in (City, State) at the (Facility) on (Proposed Evaluation Date). (The proposed evaluation date shall not be more than 180 days following the date of this letter.) The FFS will be sponsored by (Name of Training Center/Air Carrier), FAA Designator (Select One)

☐ The FFS will be used within the sponsor’s FAA approved training program and placed on the sponsor’s Training/Operations Specifications.

☐ The FFS will be used for dry lease only.

We agree to provide the formal request for the evaluation to your staff as follows: (check one)

☐ For QTG tests run at the factory, not later, than 45 days prior to the proposed evaluation date with the additional “I3 on-site” tests provided not later than 14 days prior to the proposed evaluation date.

☐ For QTG tests run on-site, not later than 30 days prior to the proposed evaluation date.

We understand that the formal request will contain the following documents:

8. Principal Operations Inspector (POI) or Training Center Program Manager’s (TCPM) endorsement.
9. Complete QTG.

If we are unable to meet the above requirements, we understand this may result in a significant delay, perhaps 45 days or more, in rescheduling and completing the evaluation.

(The sponsor should add additional comments as necessary).

Please contact (Name Telephone and Fax Number of Sponsor’s Contact) to confirm the date for this initial evaluation. We understand a member of your National Simulator Program staff will respond to this request within 14 days.

A copy of this letter of intent has been provided to (Name), the Principal Operations Inspector (POI) and/or Training Center Program Manager (TCPM).

Sincerely,

Attachment: FFS Information Form
cc: POI/TCPM
Attachment to Appendix C to Part 60—
Figure C4B – Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation
Attachment: FFS Information Form

INFORMATION

<table>
<thead>
<tr>
<th>Date:</th>
<th></th>
</tr>
</thead>
</table>

Section 1. FSTD Information and Characteristics

<table>
<thead>
<tr>
<th>Sponsor Name:</th>
<th>FSTD Location:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td>Physical Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>State:</td>
<td>State:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>ZIP:</td>
<td>ZIP:</td>
<td></td>
</tr>
<tr>
<td>Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sponsor ID No:</td>
<td>Nearest Airport:</td>
<td></td>
</tr>
<tr>
<td>(Four Letter FAA Designator)</td>
<td>(Airport Designator)</td>
<td></td>
</tr>
</tbody>
</table>

Type of Evaluation Requested:
- [] Initial
- [] Upgrade
- [] Continuing Qualification
- [] Special
- [] Reinstatement

Aircraft Make/model/series:

Initial Qualification:
- (If Applicable)
- Date: Level: Manufacturer's Identification or Serial Number:
- MM/DD/YYYY cMQtG
- MM/DD/YYYY

Upgrade Qualification:
- (If Applicable)
- Date: Level: Qualification Basis:
- MM/DD/YYYY
- A B C D
- 6 7 Provisional Status

Other Technical Information:

<table>
<thead>
<tr>
<th>FAA FSTD ID No:</th>
<th>FSTD Manufacturer:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Convertible FSTD:</td>
<td>Yes: Date of Manufacture:</td>
<td>MM/DD/YYYY</td>
</tr>
<tr>
<td>Related FAA ID No:</td>
<td>Sponsor FSTD ID No:</td>
<td></td>
</tr>
<tr>
<td>Engine model(s) and data revision:</td>
<td>Source of aerodynamic model:</td>
<td></td>
</tr>
<tr>
<td>FMS identification and revision level:</td>
<td>Source of aerodynamic coefficient data:</td>
<td></td>
</tr>
<tr>
<td>Visual system manufacturer/model:</td>
<td>Aerodynamic data revision number:</td>
<td></td>
</tr>
<tr>
<td>Flight control data revision: Visual system display:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor system manufacturer/type:</td>
<td>FSTD computer(s) identification:</td>
<td></td>
</tr>
</tbody>
</table>

National Aviation Authority (NAA):

<table>
<thead>
<tr>
<th>NAA FSTD ID No:</th>
<th>Last NAA Evaluation Date:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NAA Qualification Level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAA Qualification Basis:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visual System Manufacturer and Type:

<table>
<thead>
<tr>
<th>FSTD Seats Available: Motion System Manufacturer and Type:</th>
<th></th>
</tr>
</thead>
</table>
Federal Aviation Administration, DOT Pt. 60, App. C

Attachment 4 to Appendix C to Part 60—
Figure C4B – Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation
Attachment: FFS Information Form

<table>
<thead>
<tr>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Equipment:</td>
</tr>
<tr>
<td>Flight Instrumentation:</td>
</tr>
<tr>
<td>□ EFIS</td>
</tr>
<tr>
<td>□ HGS</td>
</tr>
<tr>
<td>□ TCAS</td>
</tr>
<tr>
<td>□ GPS</td>
</tr>
<tr>
<td>□ FMS Type:</td>
</tr>
</tbody>
</table>

Airport Models:	Circle to Land:
3.6.1	3.7.1
Airport Designator	Airport Designator
3.6.2	3.7.2
Airport Designator	Approach
3.6.3	3.7.3
Airport Designator	Landing Runway

Visual Ground Segment		
3.8.1	3.8.2	
Airport Designator	Approach	
3.8.3		Landing Runway

Section 2. Supplementary Information

FAA Training Program Approval Authority:	POI	TCPM	Other:
Name:			
Office:			
Tel:	Fax:		
Email:			

FSTD Scheduling Person:

Name:	Address 1:	Address 2
City:	State:	
ZIP:	Email:	
Tel:	Fax:	

FSTD Technical Contact:

Name:	Address 1:	Address 2
City:	State:	
ZIP:	Email:	
Tel:	Fax:	

Section 3. Training, Testing and Checking Considerations

<table>
<thead>
<tr>
<th>Area/Function/Maneuver</th>
<th>Requested</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Pilot - Training / Checks (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Pilot - Training / Checks (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Engine Rating - Training / Checks (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument Rating - Training / Checks (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type Rating - Training / Checks (135/121/142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proficiency Checks (135/121/142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT I: (RVR 2400/1800 ft. DH200 ft)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

291
Attachment 4 to Appendix C to Part 60—
Figure C4B – Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation
Attachment: FES Information Form

INFORMATION

<table>
<thead>
<tr>
<th>CAT II: (RVR 1200 ft, DH 100 ft)</th>
<th>☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT III * (lowest minimum)</td>
<td>☐</td>
</tr>
<tr>
<td>RVR</td>
<td>☐</td>
</tr>
<tr>
<td>☐ State CAT III (≤ 700 ft), CAT IIIb (≤ 150 ft), or CAT IIIc (0 ft)</td>
<td></td>
</tr>
<tr>
<td>Circling Approach</td>
<td>☐</td>
</tr>
<tr>
<td>Windshear Training:</td>
<td>☐</td>
</tr>
<tr>
<td>Windshear Training LAW 121.409(d) (121 Turbojets Only)</td>
<td>☐</td>
</tr>
<tr>
<td>Generic Unusual Attitudes and Recoveries within the Normal Flight Envelope</td>
<td>☐</td>
</tr>
<tr>
<td>Specific Unusual Attitudes Recoveries</td>
<td>☐</td>
</tr>
<tr>
<td>Auto-coupled Approach/Auto Go Around</td>
<td>☐</td>
</tr>
<tr>
<td>Auto-land / Roll Out Guidance</td>
<td>☐</td>
</tr>
<tr>
<td>TCAS/ACAS I / II</td>
<td>☐</td>
</tr>
<tr>
<td>WX-Radar</td>
<td>☐</td>
</tr>
<tr>
<td>HUD</td>
<td>☐</td>
</tr>
<tr>
<td>IGS</td>
<td>☐</td>
</tr>
<tr>
<td>EFVS</td>
<td>☐</td>
</tr>
<tr>
<td>Future Air Navigation Systems</td>
<td>☐</td>
</tr>
<tr>
<td>GPWS / EGPWS</td>
<td>☐</td>
</tr>
<tr>
<td>ETOPS Capability</td>
<td>☐</td>
</tr>
<tr>
<td>GPS</td>
<td>☐</td>
</tr>
<tr>
<td>SMGCS</td>
<td>☐</td>
</tr>
<tr>
<td>Helicopter Slope Landings</td>
<td>☐</td>
</tr>
<tr>
<td>Helicopter External Load Operations</td>
<td>☐</td>
</tr>
<tr>
<td>Helicopter Pinnacle Approach to Landings</td>
<td>☐</td>
</tr>
<tr>
<td>Helicopter Night Vision Maneuvers</td>
<td>☐</td>
</tr>
<tr>
<td>Helicopter Category A Takeoffs</td>
<td>☐</td>
</tr>
</tbody>
</table>
(Date)

Mr. (Name of Training Program Approval Authority):
(Name of FAA FSDO)
(Address)
(City/State/Zip)

Dear Mr. (Name of TPAA):

RE: Letter of Compliance

(Operator Sponsor Name) requests evaluation of our (Aircraft Type) FFS for Level (__) qualification. The (FFS Manufacturer Name) FFS with (Visual System Manufacturer Name/Model) system is fully defined on the FFS Information page of the accompanying Qualification Test Guide (QTG). We have completed the tests of the FFS and certify that it meets all applicable requirements of FAR parts 121, 125, or 135, and the guidance of (AC 120-40B or 14 CFR Part 60). Appropriate hardware and software configuration control procedures have been established. Our Pilot(s), (Name(s)), who are qualified on (Aircraft Type) aircraft have assessed the FFS and have found that it conforms to the (Operator/Sponsor) (Aircraft Type) flight deck configuration and that the simulated systems and subsystems function equivalently to those in the aircraft. The above named pilot(s) have also assessed the performance and the flying qualities of the FFS and find that it represents the respective aircraft.

(Added Comments may be placed here)

Sincerely,
(Sponsor Representative)

cc:
FAA, National Simulator Program
Attachment 4 to Appendix C to Part 60—
Figure C4D – Sample Qualification Test Guide Cover Page
INFORMATION

SPONSOR NAME
SPONSOR ADDRESS

FAA QUALIFICATION TEST GUIDE
(SPECIFIC Helicopter MODEL)
for example
Farnsworth Z-100

>Type of Simulator
(Simulator Identification Including Manufacturer, Serial Number, Visual System Used)
(Simulator Level)
(Qualification Performance Standard Used)
(Simulator Location)

FAA Initial Evaluation
Date: __________

_________________________ Date: __________
(Sponsor)

_________________________ Date: __________
Manager, National Simulator Program, FAA
Federal Aviation Administration
National Simulator Program

Certificate of Qualification

This is to certify that representatives of the National Simulator Program
Completed an evaluation of the

Go-Fast Airlines
Farnsworth Z-100 Full Flight Simulator
FAA Identification Number 0999

And pursuant to 14 CFR Part 60 found it to meet its original qualification basis, AC 120-63 (MM/DD/YY)

The Master Qualification Test Guide and the attached
Configuration List and List of Qualified Tasks
Provide the Qualification Basis for this device to operate at
Level D

Until April 30, 2010

Unless sooner rescinded or extended by the National Simulator Program Manager

March 15, 2009
(date)

C. Nordlie
(for the NSPM)
STATEMENT of QUALIFICATION

CONFIGURATION LIST

<table>
<thead>
<tr>
<th>Date:</th>
<th></th>
<th>Section 1. FSTD Information and Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsor Name:</td>
<td>FSTD Location:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td>Physical Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>State:</td>
<td>State:</td>
<td></td>
</tr>
<tr>
<td>Country:</td>
<td>Country:</td>
<td></td>
</tr>
<tr>
<td>ZIP:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sponsor ID No:</td>
<td>Nearest Airport:</td>
<td>(Four Letter FAA Designator)</td>
</tr>
<tr>
<td>(Four Letter FAA Designator)</td>
<td></td>
<td>(Airport Designator)</td>
</tr>
</tbody>
</table>

Type of Evaluation Requested:
- [] Initial
- [] Upgrade
- [] Continuing Qualification
- Special
- [] Reinstatement

Aircraft Make/model/series:
- [] Initial Qualification:
 - Date:
 - Level:
- [] Manufacturer's Identification or Serial Number
- [] Upgrade Qualification:
 - Date:
 - Level:
- [] eMQTG

Qualification Basic:
- [] A
- [] B
- [] Interim C
- [] D
- [] 6
- [] 7
- [] Provisional Status

Other Technical Information:
- [] FAA FSTD ID No:
- [] FSTD Manufacturer:
- [] Convertible FSTD:
 - Yes:
 - Date of Manufacture:
- [] Related FAA ID No:
- [] Sponsor FSTD ID No:
- [] Engine model(s) and data revision:
- [] Source of aerodynamic model:
- [] FMS identification and revision level:
- [] Source of aerodynamic coefficient data:
- [] Visual system manufacturer/model:
- [] Aerodynamic data revision number:
- [] Flight control data revision:
- [] Visual system display:
- [] Motion system manufacturer/type:
- [] FSTD computer(s) identification:

National Aviation Authority (NAA):
- [] FAA FSTD ID No:
- [] Last NAA Evaluation Date:
- [] NAA Qualification Level:
- [] NAA Qualification Basis:

296
Attachment 4 to Appendix C to Part 60—
Figure C4F – Sample Statement of Qualification; Configuration List

INFORMATION

<table>
<thead>
<tr>
<th>Visual System Manufacturer and Type:</th>
<th>PSTD Seats Available:</th>
<th>Motion System Manufacturer and Type:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Equipment:</td>
<td>Engine Type(s):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flight Instrumentation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ EFSIS □ HUD □ HGS □ EISYS</td>
<td>□ TCAS □ GPWS □ Plain View</td>
<td>□ GPS □ FMS Type:</td>
</tr>
<tr>
<td></td>
<td>□ WX Radar □ Other:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engine Instrumentation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ FICAAS □ FADEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Other:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airport Modes:</td>
<td>3.6.1</td>
<td>3.6.2</td>
<td>3.6.3</td>
</tr>
<tr>
<td></td>
<td>Airport Designator</td>
<td>Airport Designator</td>
<td>Airport Designator</td>
</tr>
<tr>
<td>Circle to Land:</td>
<td>3.7.1</td>
<td>3.7.2</td>
<td>3.7.3</td>
</tr>
<tr>
<td></td>
<td>Airport Designator</td>
<td>Approach</td>
<td>Landing Runway</td>
</tr>
<tr>
<td>Visual Ground Segment</td>
<td>3.8.1</td>
<td>3.8.2</td>
<td>3.8.3</td>
</tr>
<tr>
<td></td>
<td>Airport Designator</td>
<td>Approach</td>
<td>Landing Runway</td>
</tr>
</tbody>
</table>

Section 2. Supplementary Information

<table>
<thead>
<tr>
<th>FAA Training Program Approval Authority:</th>
<th>□ POI □ TCPO □ Other:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td>Office:</td>
<td></td>
</tr>
<tr>
<td>Tel:</td>
<td>Fax:</td>
<td></td>
</tr>
<tr>
<td>Email:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FSTD Scheduling Person:

<table>
<thead>
<tr>
<th>Name:</th>
<th>Address 1:</th>
<th>Address 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>City:</td>
<td>State:</td>
<td>ZIP:</td>
<td></td>
</tr>
<tr>
<td>Tel:</td>
<td></td>
<td>Fax:</td>
<td></td>
</tr>
</tbody>
</table>

FSTD Technical Contact:

<table>
<thead>
<tr>
<th>Name:</th>
<th>Address 1:</th>
<th>Address 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>City:</td>
<td>State:</td>
<td>ZIP:</td>
<td></td>
</tr>
<tr>
<td>Tel:</td>
<td></td>
<td>Fax:</td>
<td></td>
</tr>
</tbody>
</table>

Section 3. Training, Testing and Checking Considerations

<table>
<thead>
<tr>
<th>Aeronautical Function/Maneuver</th>
<th>Requested</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Pilot - Training / Checks (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Pilot - Training / Checks (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Engine Rating - Training / Checks (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument Rating - Training / Checks (142)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type Rating - Training / Checks (135/121/142)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attachment 4 to Appendix C to Part 60—
Figure C4F – Sample Statement of Qualification; Configuration List

<table>
<thead>
<tr>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proficiency Checks (135/121/142)</td>
</tr>
<tr>
<td>CAT I: (RVR 2400/1800 ft. DH/200 ft)</td>
</tr>
<tr>
<td>CAT II: (RVR 1200 ft. DH/100 ft)</td>
</tr>
<tr>
<td>CAT III* (lowest minimum) RVR ______ ft. *State CAT III (≤ 700 ft.), CAT IIb (≤ 150 ft.), or CAT IIc (0 ft.)</td>
</tr>
<tr>
<td>Circling Approach</td>
</tr>
<tr>
<td>Windshear Training</td>
</tr>
<tr>
<td>Windshear Training Law 121.409(d) (121 Turbojets Only)</td>
</tr>
<tr>
<td>Generic Unusual Attitudes and Recoveries within the Normal Flight Envelope</td>
</tr>
<tr>
<td>Specific Unusual Attitudes Recoveries</td>
</tr>
<tr>
<td>Auto-coupled Approach/Auto Go Around</td>
</tr>
<tr>
<td>Auto-land / Roll Out Guidance</td>
</tr>
<tr>
<td>TCAS/ACAS I / II</td>
</tr>
<tr>
<td>WX-Radar</td>
</tr>
<tr>
<td>HUD</td>
</tr>
<tr>
<td>IGS</td>
</tr>
<tr>
<td>EFVS</td>
</tr>
<tr>
<td>Future Air Navigation Systems</td>
</tr>
<tr>
<td>GPWS / EGPRS</td>
</tr>
<tr>
<td>ETOPS Capability</td>
</tr>
<tr>
<td>GPS</td>
</tr>
<tr>
<td>SMGCS</td>
</tr>
<tr>
<td>Helicopter Slope Landings</td>
</tr>
<tr>
<td>Helicopter External Load Operations</td>
</tr>
<tr>
<td>Helicopter Pinnacle Approach to Landings</td>
</tr>
<tr>
<td>Helicopter Night Vision Maneuvers</td>
</tr>
<tr>
<td>Helicopter Category A Takeoffs</td>
</tr>
</tbody>
</table>
Amendment 60-APP C - Figure C4G

STATEMENT of QUALIFICATION

List of Qualified Tasks

Go Fast Airline Training -- Farnsworth Z-100 -- Level D -- FAA ID# 0999

The FFS is qualified to perform all of the Maneuvers, Procedures, Tasks, and Functions Listed in Appendix A, Attachment 1, Table A1B, Minimum FFS Requirements In Effect on [mm/dd/yyyy] except for the following listed Tasks or Functions.

<table>
<thead>
<tr>
<th>Qualified for all tasks in Table C1B for which the sponsor has requested qualification, except for the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.e. Environmental system.</td>
</tr>
<tr>
<td>6.f. Fire detection and extinguisher system.</td>
</tr>
<tr>
<td>7.b. In-flight fire and smoke removal.</td>
</tr>
<tr>
<td>7.d. Ditching.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional tasks for which this FFS is qualified (i.e., in addition to the list in Table C1B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced Visual System</td>
</tr>
</tbody>
</table>
Continuing qualification Evaluation Requirements

Completed at conclusion of Initial Evaluation

<table>
<thead>
<tr>
<th>Continuing qualification Evaluations to be conducted each</th>
<th>Continuing qualification evaluations are due as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fill in) months</td>
<td>(month) and (month) and (month) (enter or strike out, as appropriate)</td>
</tr>
</tbody>
</table>

Allotting _____ hours of FTD time.

Signed: __

NSPM / Evaluation Team Leader _______________________

Date ___________________________

Revision:

Based on (enter reasoning):

Continuing qualification Evaluations are to be conducted each

(fill in) months. Allotting _____ hours.

Signed: __

NSPM / Evaluation Team Leader _______________________

Date ___________________________

Revision:

Based on (enter reasoning):

(Repeat as Necessary)
ATTACHMENT 5 TO APPENDIX C TO PART 60—
FSTD DIRECTIVES APPLICABLE TO
HELICOPTER FFSs

FLIGHT SIMULATION TRAINING DEVICE (FSTD)
DIRECTIVE

FSTD Directive 1. Applicable to all FFSs, regardless of the original qualification basis and qualification date (original or upgrade), having Class II or Class III airport models available.

Agency: Federal Aviation Administration (FAA), DOT

Action: This is a retroactive requirement to have all Class II or Class III airport models meet current requirements.

Summary: Notwithstanding the authorization listed in paragraph 13b in Appendices A and C of this part, this FSTD Directive requires each certificate holder to ensure that by May 30, 2009, except for the airport model(s) used to qualify the simulator at the designated level, each airport model used by the certificate holder’s instructors or evaluators for training, checking, or testing under this chapter in an FFS, meets the definition of a Class II or Class III airport model as defined in 14CFR part 60. The completion of this requirement will not require a report, and the method used for keeping instructors and evaluators apprised of the airport models that meet Class II or Class III requirements on any given simulator is at the option of the certificate holder whose employees are using the FFS, but the method used must be available for review by the TPAA for that certificate holder.

For Further Information Contact: Ed Cook, Senior Advisor to the Division Manager, Air Transportation Division, AFS–200, 800 Independence Ave, SW, Washington, DC, 20591; telephone: (404) 832–4701; fax: (404) 761–8906.

SPECIFIC REQUIREMENTS:

1. Part 60 requires that each FSTD be:
 a. Sponsored by a person holding or applying for an FAA operating certificate under Part 119, Part 141, or Part 142, or holding or applying for an FAA-approved training program under Part 63, Appendix C, for flight engineers, and
 b. Evaluated and issued an SOQ for a specific FSTD level.

2. FFSs also require the installation of a visual system that is capable of providing an out-of-the-flight-deck view of airport models. However, historically these airport models were not routinely evaluated or required to meet any standardized criteria. This has led to qualified simulators containing airport models being used to meet FAA-approved training, testing, or checking requirements with potentially incorrect or inappropriate visual references.
3. To prevent this from occurring in the future, by May 30, 2009, except for the airport model(s) used to qualify the simulator at the designated level, each certificate holder must assure that each airport model used for training, testing, or checking under this chapter in a qualified FFS meets the definition of a Class II or Class III airport model as defined in Appendix F of this part.

4. These references describe the requirements for visual scene management and the minimum distances from which runway or landing area features must be visible for all levels of simulator. The visual scene or airport model must provide, for each “in-use runway” or “in-use landing area,” runway or landing area surface and markings, runway or landing area lighting, taxiway surface and markings, and taxiway lighting. Additional requirements include correlation of the visual scenes or airport models with other aspects of the airport environment, correlation of the aircraft and associated equipment, scene quality assessment features, and the extent to which the instructor is able to exercise control of these scenes or models.

5. For circling approaches, all requirements of this section apply to the runway used for the initial approach and to the runway of intended landing.

6. The details in these scenes or models must be developed using airport pictures, construction drawings and maps, or other similar data, or be developed in accordance with published regulatory material. However, FSTD Directive 1 does not require that airport models contain details that are beyond the initially designed capability of the visual system, as currently qualified. The recognized limitations to visual systems are as follows:

 a. Visual systems not required to have runway numbers as a part of the specific runway marking requirements are:
 (1) Link NVS and DNVS.
 (2) Novoview 2500 and 6000.
 (3) FlightSafety VITAL series up to, and including, VITAL III, but not beyond.
 (4) Redifusion SP1, SPIT, and SP2.
 b. Visual systems required to display runway numbers only for LOFT scenes are:
 (1) FlightSafety VITAL IV.
 (2) Redifusion SP3 and SP3T.
 (3) Link-Miles Image II.
 c. Visual systems not required to have accurate taxiway edge lighting are:
 (1) Redifusion SP1.
 (2) FlightSafety Vital IV.
 (3) Link-Miles Image II and Image IIT.
 (4) XKD displays (even though the XKD image generator is capable of generating blue colored lights, the display cannot accommodate that color).

7. A copy of this Directive must be filed in the MQTG in the designated FSTD Directive Section, and its inclusion must be annotated on the Index of Effective FSTD Directives chart. See Attachment 4, Appendices A through D of this part for a sample MQTG Index of Effective FSTD Directives chart.

[Doc. No. FAA–2002–12461, 73 FR 26490, May 9, 2008]

APPENDIX D TO PART 60—QUALIFICATION PERFORMANCE STANDARDS FOR HELICOPTER FLIGHT TRAINING DEVICES

BEGIN INFORMATION

This appendix establishes the standards for Helicopter Flight Training Device (FTD) evaluation and qualification at Level 4, Level 5, Level 6, or Level 7. The NSPM is responsible for the development, application, and implementation of the standards contained within this appendix. The procedures and criteria specified in this appendix will be used by the NSPM, or a person or persons assigned by the NSPM when conducting helicopter FTD evaluations.

TABLE OF CONTENTS

1. Introduction.
2. Applicability (§§ 60.1, 60.2).
3. Definitions (§ 60.3).
4. Qualification Performance Standards (§ 60.4).
5. Quality Management System (§ 60.5).
6. Sponsor Qualification Requirements (§ 60.7).
7. Additional Responsibilities of the Sponsor (§ 60.9).
8. FTD Use (§ 60.11).
9. FTD Objective Data Requirements (§ 60.13).
10. Special Equipment and Personnel Requirements for Qualification of the FTD (§ 60.14).
11. Initial (and Upgrade) Qualification Requirements (§ 60.15).
12. Additional Qualifications for Currently Qualified FTDs (§ 60.16).
13. Previously Qualified FTDs (§ 60.17).
15. Logging FTD Discrepancies (§ 60.20).
16. Interim Qualification of FTDs for New Helicopter Types or Models (§ 60.21).
17. Modifications to FTDs (§ 60.23).
18. Operations with Missing, Malfunctioning, or Inoperative Components (§ 60.25).
19. Automatic Loss of Qualification and Procedures for Restoration of Qualification (§ 60.27).
20. Other Losses of Qualification and Procedures for Restoration of Qualification (§ 60.29).
21. Recordkeeping and Reporting (§ 60.31).
22. Applications, Logbooks, Reports, and Records: Fraud, Falseification, or Incorrect Statements (§ 60.35).
23. [Reserved]
24. Levels of FTD.
25. FTD Qualification on the Basis of a Bilateral Aviation Safety Agreement (BASA) (§ 60.37).

Attachment 1 to Appendix D to Part 60—General FTD Requirements.
Attachment 2 to Appendix D to Part 60—Flight Training Device (FTD) Objective Tests.
Attachment 3 to Appendix D to Part 60—Flight Training Device (FTD) Subjective Evaluation.
Attachment 4 to Appendix D to Part 60—Sample Documents.

1. INTRODUCTION

a. This appendix contains background information as well as regulatory and informative material as described later in this section. To assist the reader in determining what areas are required and what areas are permissive, the text in this appendix is divided into two sections: "QPS Requirements" and "Information." The QPS Requirements sections contain details regarding compliance with the part 60 rule language. These details are regulatory, but are found only in this appendix. The Information sections contain material that is advisory in nature, and designed to give the user general information about the regulation.

b. Questions regarding the contents of this publication should be sent to the U.S. Department of Transportation, Federal Aviation Administration, Flight Standards Service, National Simulator Program Staff, AFS–205, 100 Hartsfield Centre Parkway, Suite 400, Atlanta, Georgia 30334. Telephone contact numbers for the NSP are: Phone, 404–832–4700; fax, 404–761–8906. The general e-mail address for the NSP office is: 9-aso-avr-sim-team@faa.gov. The NSP Internet Web Site address is: http://www.faa.gov/safety/programs_initiatives/aircraft_aviation/nsp. On this Web Site you will find an NSP personnel list with telephone and e-mail contact information for each NSP staff member, a list of qualified flight simulation devices, ACs, a description of the qualification process, NSP policy, and an NSP "In-Works" section. Also linked from this site are additional information sources, handbook bulletins, frequently asked questions, a listing and text of the Federal Aviation Regulations, Flight Standards Inspector’s handbooks, and other FAA links.

c. The NSPM encourages the use of electronic media for all communication, including any record, report, request, test, or statement required by this appendix. The electronic media used must have adequate security provisions and be acceptable to the NSPM. The NSPM recommends inquiries on system compatibility, and minimum system requirements are also included on the NSP Web site.

d. Related Reading References.
 (1) 14 CFR part 60.
 (2) 14 CFR part 61.
 (3) 14 CFR part 65.
 (4) 14 CFR part 119.
 (5) 14 CFR part 121.
 (6) 14 CFR part 125.
 (7) 14 CFR part 135.
 (8) 14 CFR part 141.
 (9) 14 CFR part 142.
 (10) AC 120–28, as amended, Criteria for Approval of Category III Landing Weather Minima.
 (11) AC 120–29, as amended, Criteria for Approving Category I and Category II Landing Minima for part 121 operators.
 (14) AC 120–57, as amended, Surface Movement Guidance and Control System (SMGCS).
 (15) AC 120–63, as amended, Helicopter Simulator Qualification.
 (16) AC 150/5300–13, as amended, Airport Design.
 (17) AC 150/5340–1, as amended, Standards for Airport Markings.
 (18) AC 150/5340–4, as amended, Installation Details for Runway Centerline Touchdown Zone Lighting Systems.
 (19) AC 150/5390–2, as amended, Heliport Design.
 (20) AC 150/5390–19, as amended, Taxiway Centerline Lighting System.
 (21) AC 150/5340–24, as amended, Runway and Taxiway Edge Lighting System.
 (22) AC 150/5345–28, as amended, Precision Approach Path Indicator (PAPI) Systems.
 (23) International Air Transport Association document, "Flight Simulator Design and Performance Data Requirements."
Pt. 60, App. D

14 CFR Ch. I (1–1–12 Edition)

END INFORMATION

2. APPLICABILITY (§ 60.1 AND 60.2)

BEGIN INFORMATION

No additional regulatory or informational material applies to § 60.1, Applicability, or to § 60.2, Applicability of sponsor rules to person who are not sponsors and who are engaged in certain unauthorized activities.

END INFORMATION

3. DEFINITIONS (§ 60.3)

BEGIN INFORMATION

See Appendix F of this part for a list of definitions and abbreviations from part 1, part 60, and the QPS appendices of part 60.

END INFORMATION

4. QUALIFICATION PERFORMANCE STANDARDS (§ 60.4)

BEGIN INFORMATION

No additional regulatory or informational material applies to §60.4, Qualification Performance Standards.

END INFORMATION

5. QUALITY MANAGEMENT SYSTEM (§ 60.5)

BEGIN INFORMATION

Additional regulatory material and informational material regarding Quality Management Systems for FTDs may be found in Appendix E of this part.

END INFORMATION

6. SPONSOR QUALIFICATION REQUIREMENTS (§ 60.7)

BEGIN INFORMATION

a. The intent of the language in §60.7(b) is to have a specific FTD, identified by the sponsor, used at least once in an FAA-approved flight training program for the helicopter simulated during the 12-month period described. The identification of the specific FTD may change from one 12-month period to the next 12-month period as long as that sponsor sponsors and uses at least one FTD at least once during the prescribed period.

There is no minimum number of hours or minimum FTD periods required.

b. The following examples describe acceptable operational practices:

(1) Example One.

(a) A sponsor is sponsoring a single, specific FTD for its own use, in its own facility or elsewhere—this single FTD forms the basis for the sponsorship. The sponsor uses that FTD at least once in each 12-month period in that sponsor’s FAA-approved flight training program for the helicopter simulated. This 12-month period is established according to the following schedule:

(i) If the FTD was qualified prior to May 30, 2008, the 12-month period begins on the date of the first continuing qualification evaluation conducted in accordance with §60.19 after May 30, 2008, and continues for each subsequent 12-month period;

(ii) A device qualified on or after May 30, 2008, will be required to undergo an initial or upgrade evaluation in accordance with §60.15. Once the initial or upgrade evaluation is complete, the first continuing qualification evaluation will be conducted within 6 months. The 12 month continuing qualification evaluation cycle begins on that date and continues for each subsequent 12-month period.

(b) There is no minimum number of hours of FTD use required.

(c) The identification of the specific FTD may change from one 12-month period to the next 12-month period as long as that sponsor sponsors and uses at least one FTD at least once during the prescribed period.

(2) Example Two.

(a) A sponsor sponsors an additional number of FTDs, in its facility or elsewhere. Each additionally sponsored FTD must be—

(i) Used by the sponsor in the sponsor’s FAA-approved flight training program for the helicopter simulated (as described in §60.7(d)(1)); or
(ii) Used by another FAA certificate holder in that other certificate holder’s FAA-approved flight training program for the helicopter simulated (as described in §60.7(d)(1)). This 12-month period is established in the same manner as in example one; or
(iii) Provided a statement each year from a qualified pilot, (after having flown the helicopter not the subject FTD or another FTD, during the preceding 12-month period) stating that the subject FTD’s performance and handling qualities represent the helicopter (as described in §60.7(d)(2)). This statement is provided at least once in each 12-month period established in the same manner as in example one.
(b) There is no minimum number of hours of FTD use required.
(3) Example Three.
(a) A sponsor in New York (in this example, a Part 142 certificate holder) establishes “satellite” training centers in Chicago and Moscow.
(b) The satellite function means that the Chicago and Moscow centers must operate under the New York center’s certificate (in accordance with all of the New York center’s practices, procedures, and policies; e.g., instructor and/or technician training/checking requirements, record keeping, QMS program),
(c) All of the FTDs in the Chicago and Moscow centers could be dry-leased (i.e., the certificate holder does not have and use FAA-approved flight training programs for the FTDs in the Chicago and Moscow centers) because—
(i) Each FTD in the Chicago center and each FTD in the Moscow center is used at least once each 12-month period by another FAA certificate holder in that other certificate holder’s FAA-approved flight training program for the helicopter (as described in §60.7(d)(1)); or
(ii) A statement is obtained from a qualified pilot (having flown the helicopter, not the subject FTD or another FTD during the preceding 12-month period) stating that the performance and handling qualities of each FTD in the Chicago and Moscow centers represents the helicopter (as described in §60.7(d)(2)).

END INFORMATION

7. ADDITIONAL RESPONSIBILITIES OF THE SPONSOR (§60.9)

END INFORMATION

8. FTD USE (§60.11).

BEGIN INFORMATION
No additional regulatory or informational material applies to §60.11, FTD Use.

END INFORMATION

9. FTD OBJECTIVE DATA REQUIREMENTS (§60.13)

BEGIN QPS REQUIREMENTS
a. Flight test data used to validate FTD performance and handling qualities must have been gathered in accordance with a flight test program containing the following:
(1) A flight test plan consisting of:
(a) The maneuvers and procedures required for aircraft certification and simulation programming and validation.
(b) For each maneuver or procedure—
(i) The procedures and control input the flight test pilot and/or engineer used.
(ii) The atmospheric and environmental conditions.
(iii) The initial flight conditions.
(iv) The helicopter configuration, including weight and center of gravity.
(v) The data to be gathered.
(vi) The procedures and control input the flight test pilot and/or engineer used.
(vii) The atmospheric and environmental conditions.
(iii) The initial flight conditions.
(iv) The helicopter configuration, including weight and center of gravity.
(v) The data to be gathered.
(vi) All other information necessary to recreate the flight test conditions in the FTD.
(2) Appropriately qualified flight test personnel.
(3) Appropriate and sufficient data acquisition equipment or system(s), including appropriate data reduction and analysis methods and techniques, acceptable to the FAA’s Aircraft Certification Service.
(4) The data, regardless of source, must be presented:
(1) In a format that supports the FTD validation process;
(2) In a manner that is clearly readable and annotated correctly and completely;
(3) With resolution sufficient to determine compliance with the tolerances set forth in Attachment 2, Table D2A Appendix D;
(4) With any necessary guidance information provided; and
(5) Without alteration, adjustments, or bias. Data may be corrected to address known data calibration errors provided that an explanation of the methods used to correct the errors appears in the QTG. The corrected data may be re-scaled, digitized, or otherwise manipulated to fit the desired presentation.

END INFORMATION
c. After completion of any additional flight test, a flight test report must be submitted in support of the validation data. The report must contain sufficient data and rationale to support qualification of the FTD at the level requested.

d. As required by §60.13(f), the sponsor must notify the NSPM when it becomes aware that an addition to or a revision of the flight related data or helicopter systems related data is available if this data is used to program and operate a qualified FTD. The data referred to in this sub-section is data used to validate the performance, handling qualities, or other characteristics of the aircraft, including data related to any relevant changes occurring after the type certification is issued. The sponsor must—

(1) Within 10 calendar days, notify the NSPM of the existence of this data; and

(2) Within 45 calendar days, notify the NSPM of—

(b) The schedule to incorporate this data into the FTD; or

c. After completion of any additional flight test, a flight test report must be submitted in support of the validation data. The report must contain sufficient data and rationale to support qualification of the FTD at the level requested.

(1) Within 10 calendar days, notify the NSPM of the existence of this data; and

(2) Within 45 calendar days, notify the NSPM of—

(b) The schedule to incorporate this data into the FTD; or

c. After completion of any additional flight test, a flight test report must be submitted in support of the validation data. The report must contain sufficient data and rationale to support qualification of the FTD at the level requested.

(1) Within 10 calendar days, notify the NSPM of the existence of this data; and

(2) Within 45 calendar days, notify the NSPM of—

(b) The schedule to incorporate this data into the FTD; or

(c) The reason for not incorporating this data into the FTD.

e. In those cases where the objective test results authorize a "snapshot test" or a "series of snapshot tests" results in lieu of a time-history result, the sponsor or other data provider must ensure that a steady state condition exists at the instant of time captured by the "snapshot." The steady state condition must exist from 4 seconds prior to, through 1 second following, the instant of time captured by the snapshot.

END QPS REQUIREMENTS

BEGIN INFORMATION

f. The FTD sponsor is encouraged to maintain a liaison with the manufacturer of the aircraft being simulated (or with the holder of the aircraft type certificate for the aircraft being simulated if the manufacturer is no longer in business), and if appropriate, with the person having supplied the aircraft data package for the FTD in order to facilitate the notification described in this paragraph.

g. It is the intent of the NSPM that for new aircraft entering service, at a point well in advance of preparation of the QTG, the sponsor should submit to the NSPM for approval, a descriptive document (see Appendix C of this part, Table C2D, Sample Validation Data Package for Helicopters) containing the plan for acquiring the validation data, including data sources. This document should clearly identify sources of data for all required tests, a description of the validity of these data for a specific engine type and thrust rating configuration, and the revision levels of all avionics affecting the performance or flying qualities of the aircraft. Additionally, this document should provide other information such as the rationale or explanation for cases where data or data parameters are missing, instances where engineering simulation data are used, or where flight test methods require further explanations. It should also provide a brief narrative describing the cause and effect of any deviation from data requirements. The aircraft manufacturer may provide this document.

h. There is no requirement for any flight test data supplier to submit a flight test plan or program prior to gathering flight test data. However, the NSPM notes that inexperienced data gatherers often provide data that is irrelevant, improperly marked, or lacking adequate justification for selection. Other problems include inadequate information regarding initial conditions or test maneuvers. The NSPM has been forced to refuse these data submissions as validation data for an FTD evaluation. For this reason the NSPM recommends that any data supplier not previously experienced in this area review the data necessary for programming and for validating the performance of the FTD and discuss the flight test plan anticipated for acquiring such data with the NSPM well in advance of commencing the flight tests.

i. The NSPM will consider, on a case-by-case basis, whether to approve supplemental validation data derived from flight data recording systems such as a Quick Access Recorder or Flight Data Recorder.

END INFORMATION

10. SPECIAL EQUIPMENT AND PERSONNEL REQUIREMENTS FOR QUALIFICATION OF THE FTD ($60.14).

BEGIN INFORMATION

a. In the event that the NSPM determines that special equipment or specifically qualified persons will be required to conduct an evaluation, the NSPM will make every attempt to notify the sponsor at least one (1) week, but in no case less than 72 hours, in advance of the evaluation. Examples of special equipment include flight control measurement devices, accelerometers, or oscilloscopes. Examples of specially qualified personnel include individuals specifically qualified to install or use any special equipment or specifically qualified personnel include individuals specifically qualified to install or use any special equipment or specifically qualified personnel include individuals specifically qualified to install or use any special equipment or specifically qualified personnel include individuals specifically qualified to install or use any special equipment.

b. Examples of a special evaluation include an evaluation conducted after an FTD is moved; at the request of the TPAA; or as a result of comments received from users of the FTD that raise questions about the continued qualification or use of the FTD.
11. INITIAL (AND UPGRADE) QUALIFICATION REQUIREMENTS (§ 60.15).

BEGIN QPS REQUIREMENT

a. In order to be qualified at a particular qualification level, the FTD must:

(1) Meet the general requirements listed in Attachment 1 of this appendix.

(2) Meet the objective testing requirements listed in Attachment 2 of this appendix (Level 4 FTDs do not require objective tests).

(3) Satisfactorily accomplish the subjective tests listed in Attachment 3 of this appendix.

b. The request described in §60.15(a) must include all of the following:

(1) A statement that the FTD meets all of the applicable provisions of this part and all applicable provisions of the QPS.

(2) A confirmation that the sponsor will forward to the NSPM the statement described in §60.15(b) in such time as to be received no later than 5 business days prior to the scheduled evaluation and may be forwarded to the NSPM via traditional or electronic means.

(3) Except for a Level 4 FTD, a QTG, acceptable to the NSPM, that includes all of the following:

(a) Objective data obtained from aircraft testing or another approved source.

(b) Correlating objective test results obtained from the performance of the FTD as prescribed in the appropriate QPS.

(c) The result of FTD subjective tests prescribed in the appropriate QPS.

(d) A description of the equipment necessary to perform the evaluation for initial qualification and the continuing qualification evaluations.

c. The QTG described in paragraph a(3) of this section must provide the documented proof of compliance with the FTD objective tests in Attachment 2, Table D2A of this appendix.

d. The QTG is prepared and submitted by the sponsor, or the sponsor’s agent on behalf of the sponsor, to the NSPM for review and approval, and must include, for each objective test:

(1) Parameters, tolerances, and flight conditions.

(2) Pertinent and complete instructions for conducting automatic and manual tests.

(3) A means of comparing the FTD test results to the objective data.

(4) Any other information as necessary to assist in the evaluation of the test results.

(5) Other information appropriate to the qualification level of the FTD.

e. The QTG described in paragraphs (a)(3) and (b) of this section, must include the following:

(1) A QTG cover page with sponsor and FAA approval signature blocks (see Attachment 4, Figure D4C, of this appendix, for a sample QTG cover page).

(2) A continuing qualification evaluation requirements page. This page will be used by the NSPM to establish and record the frequency with which continuing qualification evaluations must be conducted and any subsequent changes that may be determined by the NSPM in accordance with §60.19. See Attachment 4, Figure D4G, of this appendix for a sample Continuing Qualification Evaluation Requirements page.

(3) An FTD information page that provides the information listed in this paragraph, if applicable (see Attachment 4, Figure D4B, of this appendix, for a sample FTD information page). For convertible FTDs, the sponsor must submit a separate page for each configuration of the FTD.

(a) The sponsor’s FTD identification number or code.

(b) The helicopter model and series being simulated.

(c) The aerodynamic data revision number or reference.

(d) The source of the basic aerodynamic model and the aerodynamic coefficient data used to modify the basic model.

(e) The engine model(s) and its data revision number or reference.

(f) The flight control data revision number or reference.

(g) The flight management system identification and revision level.

(h) The FTD model and manufacturer.

(i) The date of FTD manufacture.

(j) The FTD computer identification.

(k) The visual system model and manufacturer, including display type.

(l) The motion system type and manufacturer, including degrees of freedom.

(4) A Table of Contents.

(5) A log of revisions and a list of effective pages.

(6) List of all relevant data references.

(7) A glossary of terms and symbols used (including sign conventions and units).

(8) Statements of Compliance and Capability (SOC) with certain requirements.

(9) Recording procedures or equipment required to accomplish the objective tests.

(10) The following information for each objective test designated in Attachment 2 of this appendix, as applicable to the qualification level sought:

(a) Name of the test.

(b) Objective of the test.

(c) Initial conditions.

(d) Manual test procedures.

(e) Automatic test procedures (if applicable).
(f) Method for evaluating FTD objective test results.

(g) List of all relevant parameters driven or constrained during the automatic test(s).

(h) List of all relevant parameters driven or constrained during the manual test(s).

(i) Tolerances for relevant parameters.

(j) Source of Validation Data (document and page number).

(k) Copy of the Validation Data (if located in a separate binder, a cross reference for the identification and page number for pertinent data location must be provided).

(l) FTD Objective Test Results as obtained by the sponsor. Each test result must reflect the date completed and must be clearly labeled as a product of the device being tested.

(f) A convertible FTD is addressed as a separate FTD for each model and series helicopter to which it will be converted and for the FAA qualification level sought. The NSPM will conduct an evaluation for each configuration. If a sponsor seeks qualification for two or more models of a helicopter type using a convertible FTD, the sponsor must provide a QTG for each helicopter model, or a QTG for the first helicopter model and a supplement to that QTG for each additional helicopter model. The NSPM will conduct evaluations for each helicopter model.

(g) The form and manner of presentation of objective test results in the QTG must include the following:

(1) The sponsor’s FTD test results must be recorded in a manner acceptable to the NSPM, that allows easy comparison of the FTD test results to the validation data (e.g., use of a multi-channel recorder, line printer, cross plotting, overlays, transparencies).

(2) FTD results must be labeled using terminology common to helicopter parameters as opposed to computer software identifications.

(3) Validation data documents included in a QTG may be photographically reduced only if such reduction will not alter the graphic scaling or cause difficulties in scale interpretation or resolution.

(4) Scaling on graphical presentations must provide the resolution necessary to evaluate the parameters shown in Attachment 2, Table D2A of this appendix.

(5) Tests involving time histories, data sheets (or transparencies thereof) and FTD test results must be clearly marked with appropriate reference points to ensure an accurate comparison between FTD and helicopter with respect to time. Time histories recorded via a line printer are to be clearly identified for cross-plotting on the helicopter data. Over-plots may not obscure the reference data.

(h) The sponsor may elect to complete the QTG objective and subjective tests at the manufacturer’s facility or at the sponsor’s training facility. If the tests are conducted at the manufacturer’s facility, the sponsor must repeat at least one-third of the tests at the sponsor’s training facility in order to substantiate FTD performance. The QTG must be clearly annotated to indicate when and where each test was accomplished. Tests conducted at the manufacturer’s facility and at the sponsor’s training facility must be conducted after the FTD is assembled with systems and sub-systems functional and operating in an interactive manner. The test results must be submitted to the NSPM.

(i) The sponsor must maintain a copy of the MQTG at the FTD location.

(j) All FTDs for which the initial qualification is conducted after May 30, 2014, must have an electronic MQTG (eMQTG) including all objective data obtained from helicopter testing, or another approved source (reformatted or digitized), together with correlating objective test results obtained from the performance of the FTD (reformatted or digitized) as prescribed in this appendix. The eMQTG must also contain the general FTD performance or demonstration results (reformatted or digitized) prescribed in this appendix, and a description of the equipment necessary to perform the initial qualification evaluation and the continuing qualification evaluations. The eMQTG must include the original validation data used to validate FTD performance and handling qualities in either the original digitized format from the data supplier or an electronic scan of the original time-history plots that were provided by the data supplier. A copy of the eMQTG must be provided to the NSPM.

(k) All other FTDs (not covered in subparagraph “j”) must have an electronic copy of the MQTG by and after May 30, 2014. An electronic copy of the MQTG must be provided to the NSPM. This may be provided by an electronic scan presented in a Portable Document File (PDF), or similar format acceptable to the NSPM.

(l) During the initial (or upgrade) qualification evaluation conducted by the NSPM, the sponsor must also provide a person knowledgeable about the operation of the aircraft and the operation of the FTD.

END QPS REQUIREMENTS
each FTD is subjected to the general FTD requirements in Attachment 1 of this appendix, the objective tests listed in Attachment 2 of this appendix, and the subjective tests listed in Attachment 3 of this appendix. The evaluations described herein will include, but not necessarily be limited to the following:

(a) Evaluating the capability of the FTD to perform over a typical utilization period.
(b) Determining that the FTD satisfies design and operational requirements.

(2) Subjective tests provide a basis for:

(a) Verifying correct operation of the FTD controls, instruments, and systems; and
(b) Demonstrating compliance with the requirements of this part.

(3) Control checks (see Attachment 1 and Attachment 2 of this appendix).

(4) Flight deck configuration (see Attachment 1 of this appendix).

(5) Pilot, flight engineer, and instructor station functions checks (see Attachment 1 and Attachment 3 of this appendix).

(6) Helicopter systems and sub-systems (as appropriate) as compared to the helicopter simulated (see attachment 1 and attachment 3 of this appendix).

(7) FTD systems and sub-systems, including force cueing (motion), visual, and aural (sound) systems, as appropriate (see Attachment 1 and Attachment 2 of this appendix).

(8) Certain additional requirements, depending upon the qualification level sought, including equipment or circumstances that may become hazardous to the occupants of the aircraft. The FTD may be subject to Occupational Safety and Health Administration requirements.

(q) In addition to the scheduled continuing qualification evaluation, each FTD is subject to evaluations conducted by the NSPM at any time without prior notification to the sponsor. Such evaluations would be accomplished in a normal manner (i.e., requiring exclusive use of the FTD for the conduct of objective and subjective tests and an examination of functions) if the FTD is not being used for flight crewmember training, testing, or checking. However, if the FTD were being used, the evaluation would be conducted in a non-exclusive manner. This non-exclusive evaluation will be conducted by the FTD evaluator accompanying the check airman, instructor, Aircrew Program Designee (APD), or FAA inspector aboard the FTD along with the student(s) and observing the operation of the FTD during the training, testing, or checking activities.

(q) Problems with objective test results are handled as follows:

(1) If a problem with an objective test result is detected by the NSP evaluation team during an evaluation, the test may be repeated or the QTG may be amended.

(2) If it is determined that the results of an objective test do not support the qualification level requested but do support a lower level, the NSPM may qualify the FTD at a lower level.

(s) After an FTD is successfully evaluated, the NSPM issues an SOQ to the sponsor. The NSPM recommends the FTD to the TPAA, who will approve the FTD for use in a flight training program. The SOQ will be issued at the satisfactory conclusion of the initial or continuing qualification evaluation and will list the tasks for which the FTD is qualified, referencing the tasks described in Table D1B in Attachment 1 of this appendix. However, it is the sponsor's responsibility to obtain TPAA approval prior to using the FTD in an FAA-approved flight training program.

(t) Under normal circumstances, the NSPM establishes a date for the initial or upgrade evaluation within ten (10) working days after determining that a complete QTG is acceptable. Unusual circumstances may warrant establishing an evaluation date before this determination is made. A sponsor may schedule an evaluation date as early as 6 months in advance. However, there may be a delay of 45 days or more in rescheduling and completing the evaluation if the sponsor is unable to meet the scheduled date.
Pt. 60, App. D

Sample Request for Initial, Upgrade, or Reinstatement Evaluation.

u. The numbering system used for objective test results in the QTG should closely follow the numbering system set out in Attachment 2, FTD Objective Tests, Table D2A of this appendix.

v. Contact the NSPM or visit the NSPM Web site for additional information regarding the preferred qualifications of pilots used to meet the requirements of §60.15(d).

w. Examples of the exclusions for which the FTD might not have been qualify tested by the sponsor or the NSPM and for which qualification might not be sought or granted, as described in §60.15(g)(6), include approaches to and departures from slopes and pinnacles.

END INFORMATION

12. ADDITIONAL QUALIFICATIONS FOR CURRENTLY QUALIFIED FTDs (§60.16)

BEGIN INFORMATION

No additional regulatory or informational material applies to §60.16. Additional Qualifications for a Currently Qualified FTD.

END INFORMATION

13. PREVIOUSLY QUALIFIED FTDs (§60.17)

BEGIN QPS REQUIREMENTS

a. In instances where a sponsor plans to remove an FTD from active status for a period of less than two years, the following procedures apply:

(1) The NSPM must be notified in writing and the notification must include an estimate of the period that the FTD will be inactive.

(2) Continuing Qualification evaluations will not be scheduled during the inactive period.

(3) The NSPM will remove the FTD from the list of qualified FTDs on a mutually established date not later than the date on which the first missed continuing qualification evaluation would have been scheduled.

(4) Before the FTD is restored to qualified status, it must be evaluated by the NSPM. The evaluation content and the time required to accomplish the evaluation is based on the number of continuing qualification evaluations and sponsor-conducted quarterly inspections missed during the period of inactivity.

(5) The sponsor must notify the NSPM of any changes to the original scheduled time out of service.

b. FTDs and replacement FTD systems qualified prior to May 30, 2008, are not required to meet the general FTD requirements, the objective test requirements, and the subjective test requirements contained in the MQTG developed under the original qualification basis.

c. After (1 year after date of publication of the final rule in the Federal Register) each visual scene and airport model installed in and available for use in a qualified FTD must meet the requirements described in Attachment 3 of this appendix.

d. Simulators qualified prior to May 30, 2008, may be updated. If an evaluation is deemed appropriate or necessary by the NSPM after such an update, the evaluation will not require an evaluation to standards beyond those against which the simulator was originally qualified.

END QPS REQUIREMENTS

BEGIN INFORMATION

e. Other certificate holders or persons desiring to use an FTD in an FAA-approved flight training program. Such FTDs are not required to undergo an additional qualification process, except as described in §60.16.

f. Each FTD user must obtain approval from the appropriate TPAA to use any FTD in an FAA-approved flight training program.

g. The intent of the requirement listed in §60.17(b), for each FTD to have an SOQ within 6 years, is to have the availability of that statement (including the configuration list and the limitations to authorizations) to provide a complete picture of the FTD inventory regulated by the FAA. The issuance of the statement will not require any additional evaluation or require any adjustment to the evaluation basis for the FTD.

h. Downgrading of an FTD is a permanent change in qualification level and will necessitate the issuance of a revised SOQ to reflect the revised qualification level, as appropriate. If a temporary restriction is placed on a FTD because of a missing, malfunctioning, or inoperative component or ongoing repairs, the restriction is not a permanent change in qualification level. Instead, the restriction is temporary and is removed when the reason for the restriction has been resolved.

i. It is not the intent of the NSPM to discourage the improvement of existing simulation (e.g., the “updating” of a control loading system, or the replacement of the IOS with a more capable unit) by requiring the
"updated" device to meet the qualification standards current at the time of the update. Depending on the extent of the update, the NSPM may require that the updated device be evaluated and may require that an evaluation include all or a portion of the elements of an initial evaluation. However, the standards against which the device would be evaluated are those that are found in the MQTG for that device.

j. The NSPM will determine the evaluation criteria for an FTD that has been removed from active status for a prolonged period. The criteria will be based on the number of continuing qualification evaluations and quarterly inspections missed during the period of inactivity. For example, if the FTD was out of service for a 1 year period, it would be necessary to complete the entire QTG, since all of the quarterly evaluations would have been missed. The NSPM will also consider how the FTD was stored, whether parts were removed from the FTD and whether the FTD was disassembled.

k. The FTD will normally be requalified using the FAA-approved MQTG and the criteria that was in effect prior to its removal from qualification. However, inactive periods of 2 years or more will require re-qualification under the standards in effect and current at the time of requalification.

14. INSPECTION, CONTINUING QUALIFICATION, EVALUATION, AND MAINTENANCE REQUIREMENTS (§ 60.19)

BEGIN QPS REQUIREMENT

a. The sponsor must conduct a minimum of four evenly spaced inspections throughout the year. The objective test sequence and content of each inspection in this sequence must be developed by the sponsor and must be acceptable to the NSPM.

b. The description of the functional preflight check must be contained in the sponsor’s QMS.

c. Record “functional preflight” in the FTD discrepancy log book or other acceptable location, including any item found to be missing, malfunctioning, or inoperative.

d. During the continuing qualification evaluation conducted by the NSPM, the sponsor must also provide a person knowledgeable about the operation of the aircraft and the operation of the FTD.

END QPS REQUIREMENTS

BEGIN INFORMATION

e. The sponsor’s test sequence and the content of each quarterly inspection required in §60.19(a)(1) should include a balance and a mix from the objective test requirement areas listed as follows:

(1) Performance.

(2) Handling qualities.

(3) Motion system (where appropriate).

(4) Visual system (where appropriate).

(5) Sound system (where appropriate).

(6) Other FTD systems.

f. If the NSP evaluator plans to accomplish specific tests during a normal continuing qualification evaluation that requires the use of special equipment or technicians, the sponsor will be notified as far in advance of the evaluation as practical; but not less than 72 hours. Examples of such tests include latencies and control sweeps.

g. The continuing qualification evaluations described in §60.19(b) will normally require 4 hours of FTD time. However, flexibility is necessary to address abnormal situations or situations involving aircraft with additional levels of complexity (e.g., computer-controlled aircraft). The sponsor should anticipate that some tests may require additional time. The continuing qualification evaluations will consist of the following:

(1) Review of the results of the quarterly inspections conducted by the sponsor since the last scheduled continuing qualification evaluation.

(2) A selection of approximately 8 to 15 objective tests from the MQTG that provide an adequate opportunity to evaluate the performance of the FTD. The tests chosen will be performed either automatically or manually and should be able to be conducted within approximately one-third (1/3) of the allotted FTD time.

(3) A subjective evaluation of the FTD to perform a representative sampling of the tasks set out in attachment 3 of this appendix. This portion of the evaluation should take approximately two-thirds (2/3) of the allotted FTD time.

(4) An examination of the functions of the FTD may include the motion system, visual system, sound system as applicable, instructor operating station, and the normal functions and simulated malfunctions of the simulated helicopter systems. This examination is normally accomplished simultaneously with the subjective evaluation requirements.

h. The requirement established in §60.19(b)(4) regarding the frequency of NSPM-conducted continuing qualification evaluations for each FTD is typically 12 months. However, the establishment and satisfactory implementation of an approved QMS for a sponsor will provide a basis for adjusting the frequency of evaluations to exceed 12-month intervals.

END INFORMATION
15. LOGGING FTD DISCREPANCIES (§ 60.20)

BEGIN INFORMATION
No additional regulatory or informational material applies to §60.20. Logging FTD Discrepancies.

END INFORMATION

16. INTERIM QUALIFICATION OF FTDs FOR NEW HELICOPTER TYPES OR MODELS (§60.21)

BEGIN INFORMATION
No additional regulatory or informational material applies to §60.21, Interim Qualification of FTDs for New Helicopter Types or Models.

END INFORMATION

17. MODIFICATIONS TO FTDs (§60.23)

BEGIN QPS REQUIREMENTS
a. The notification described in §60.23(c)(2) must include a complete description of the planned modification, with a description of the operational and engineering effect the proposed modification will have on the operation of the FTD and the results that are expected with the modification incorporated.

b. Prior to using the modified FTD:
 (1) All the applicable objective tests completed with the modification incorporated, including any necessary updates to the MQTG (e.g., accomplishment of FSTD Directives) must be acceptable to the NSPM; and
 (2) The sponsor must provide the NSPM with a statement signed by the MR that the factors listed in §60.15(b) are addressed by the appropriate personnel as described in that section.

END QPS REQUIREMENTS

BEGIN INFORMATION
FSTD Directives are considered modification of an FTD. See Attachment 4 of this appendix, Figure D4H for a sample index of effective FSTD Directives. See Attachment 6 of this appendix for a list of all effective FSTD Directives applicable to Helicopter FTDs.

END INFORMATION

18. OPERATION WITH MISSING, MALFUNCTIONING, OR INOPERATIVE COMPONENTS (§60.25)

BEGIN INFORMATION
a. The sponsor’s responsibility with respect to §60.25(a) is satisfied when the sponsor fairly and accurately advises the user of the current status of an FTD, including any missing, malfunctioning, or inoperative (MMI) component(s).

b. It is the responsibility of the instructor, check airman, or representative of the administrator conducting training, testing, or checking to exercise reasonable and prudent judgment to determine if any MMI component is necessary for the satisfactory completion of a specific maneuver, procedure, or task.

c. If the 29th or 30th day of the 30-day period described in §60.25(b) is on a Saturday, a Sunday, or a holiday, the FAA will extend the deadline until the next business day.

d. In accordance with the authorization described in §60.25(b), the sponsor may develop a discrepancy prioritizing system to accomplish repairs based on the level of impact on the capability of the FTD. Repairs having a larger impact on the FTD’s ability to provide the required training, evaluation, or flight experience will have a higher priority for repair or replacement.

END INFORMATION

19. AUTOMATIC LOSS OF QUALIFICATION AND PROCEDURES FOR RESTORATION OF QUALIFICATION (§60.27)

BEGIN INFORMATION
If the sponsor provides a plan for how the FTD will be maintained during its out-of-service period (e.g., periodic exercise of mechanical, hydraulic, and electrical systems; routine replacement of hydraulic fluid; control of the environmental factors in which the FTD is to be maintained) there is a greater likelihood that the NSPM will be able to determine the amount of testing that is required for requalification.

END INFORMATION

20. OTHER LOSSES OF QUALIFICATION AND PROCEDURES FOR RESTORATION OF QUALIFICATION (§60.29)

BEGIN INFORMATION
If the sponsor provides a plan for how the FTD will be maintained during its out-of-
Federal Aviation Administration, DOT

service period (e.g., periodic exercise of mechanical, hydraulic, and electrical systems; routine replacement of hydraulic fluid; control of the environmental factors in which the FTD is to be maintained) there is a greater likelihood that the NSPM will be able to determine the amount of testing that is required for requalification.

21. RECORD KEEPING AND REPORTING (§ 60.31)

BEGIN QPS REQUIREMENTS

a. FTD modifications can include hardware or software changes. For FTD modifications involving software programming changes, the record required by §60.31(a)(2) must consist of the name of the aircraft system software, aerodynamic model, or engine model change, the date of the change, a summary of the change, and the reason for the change.

b. If a coded form for record keeping is used, it must provide for the preservation and retrieval of information with appropriate security or controls to prevent the inappropriate alteration of such records after the fact.

END INFORMATION

22. APPLICATIONS, LOGBOOKS, REPORTS, AND RECORDS: FRAUD, FALSIFICATION, OR INCORRECT STATEMENTS (§ 60.33)

BEGIN INFORMATION

No additional regulatory or informational material applies to §60.33, Applications, Logbooks, Reports, and Records: Fraud, Falsification, or Incorrect Statements.

END INFORMATION

23. [RESERVED]

END INFORMATION

24. LEVELS OF FTD

BEGIN INFORMATION

a. The following is a general description of each level of FTD. Detailed standards and tests for the various levels of FTDs are fully defined in Attachments 1 through 3 of this appendix.

(1) Level 4. A Level 4 device is one that may have an open helicopter-specific flight deck area, or an enclosed helicopter-specific flight deck and at least one operating system. Air-ground logic is required (no aerodynamic programming required). All displays may be flat/LCD panel representations or actual representations of displays in the aircraft. All controls, switches, and knobs may be touch sensitive activation (not capable of manual manipulation of the flight controls) or may physically replicate the aircraft in control operation.

(2) Level 5. A Level 5 device is one that may have an open helicopter-specific flight deck area, or an enclosed helicopter-specific flight deck and a generic aerodynamic program with at least one operating system and control loading representative of the simulated helicopter. The control loading need only represent the helicopter at an approach speed and configuration. All displays may be flat/LCD panel representations or actual representations of displays in the aircraft. Primary and secondary flight controls (e.g., rudder, aileron, elevator, flaps, spoilers/speed brakes, engine controls, landing gear, nosewheel steering, trim, brakes) must be physical controls. All other controls, switches, and knobs may be touch sensitive activation.

(3) Level 6. A Level 6 device is one that has an enclosed helicopter-specific flight deck and aerodynamic program with all applicable helicopter systems operating and control loading that is representative of the simulated helicopter throughout its ground and flight envelope and significant sound representation. All displays may be flat/LCD panel representations or actual representations of displays in the aircraft, but all controls, switches, and knobs must physically replicate the aircraft in control operation.

(4) Level 7. A Level 7 device is one that has an enclosed helicopter-specific flight deck and aerodynamic program with all applicable helicopter systems operating and control loading that is representative of the simulated helicopter throughout its ground and flight envelope and significant sound representation. All displays may be flat/LCD panel representations or actual representations of displays in the aircraft, but all controls, switches, and knobs must physically replicate the aircraft in control operation. It also has a visual system that provides an out-of-the-flight deck view, providing cross-flight deck viewing (for both pilots simultaneously) of a field-of-view of at least 146° horizontally and 36° vertically as well as a vibration cueing system for characteristic helicopter vibrations noted at the pilot station(s).

END INFORMATION

25. FTD QUALIFICATION ON THE BASIS OF A BILATERAL AVIATION SAFETY AGREEMENT (BASA) (§ 60.37)
BEGIN INFORMATION
No additional regulatory or informational material applies to §60.37, FTD Qualification on the Basis of a Bilateral Aviation Safety Agreement (BASA).

END INFORMATION

ATTACHMENT 1 TO APPENDIX D TO PART 60—GENERAL FTD REQUIREMENTS

BEGIN QPS REQUIREMENTS

1. REQUIREMENTS

a. Certain requirements included in this appendix must be supported with an SOC as defined in Appendix F, which may include objective and subjective tests. The requirements for SOCs are indicated in the “General FTD Requirements” column in Table D1A of this appendix.

b. Table D1A describes the requirements for the indicated level of FTD. Many devices include operational systems or functions that exceed the requirements outlined in this section. In any event, all systems will be tested and evaluated in accordance with this appendix to ensure proper operation.

END QPS REQUIREMENTS

BEGIN INFORMATION

2. DISCUSSION

a. This attachment describes the general requirements for qualifying Level 4 through Level 7 FTDs. The sponsor should also consult the objectives tests in Attachment 2 of this appendix and the examination of functions and subjective tests listed in Attachment 3 of this appendix to determine the complete requirements for a specific level FTD.

b. The material contained in this attachment is divided into the following categories:
(1) General Flight Deck Configuration.
(2) Programming.
(3) Equipment Operation.
(4) Equipment and Facilities for Instructor/Evaluator Functions.
(5) Motion System.
(6) Visual System.
(7) Sound System.

c. Table D1A provides the standards for the General FTD Requirements.

d. Table D1B provides the tasks that the sponsor will examine to determine whether the FTD satisfactorily meets the requirements for flight crew training, testing, and experience.

e. Table D1C provides the functions that an instructor/check airman must be able to control in the simulator.

f. It is not required that all of the tasks that appear on the List of Qualified Tasks (part of the SOQ) be accomplished during the initial or continuing qualification evaluation.

END INFORMATION

TABLE D1A—MINIMUM FTD REQUIREMENTS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General FTD requirements</th>
<th>FTD level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>General Flight Deck Configuration.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE D1A—MINIMUM FTD REQUIREMENTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General FTD requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.a.</td>
<td>The FTD must have a flight deck that is a replica of the helicopter, or set of helicopters simulated with controls, equipment, observable flight deck indicators, circuit breakers, and bulkheads properly located, functionally accurate and replicating the helicopter or set of helicopters. The direction of movement of controls and switches must be identical to that in the helicopter or set of helicopters. Crewmember seats must afford the capability for the occupant to be able to achieve the design "eye position." Equipment for the operation of the flight deck windows must be included, but the actual windows need not be operable. Those circuit breakers that affect procedures or result in observable flight deck indications must be properly located and functionally accurate. Fire axes, extinguishers, landing gear pins, and spare light bulbs must be available, and may be represented in silhouette, in the flight simulator. This equipment must be present as near as practical to the original position.</td>
<td>X X</td>
<td>For FTD purposes, the flight deck consists of all that space forward of a cross section of the flight deck at the most extreme aft setting of the pilots’ seats including additional, required crewmember duty stations and those required bulkheads aft of the pilot seats. Bulkheads containing only items such as landing gear pin storage compartments, fire axes and extinguishers, spare light bulbs, and aircraft documents pouches are not considered essential and may be omitted. If omitted, these items, or the silhouettes of these items, may be placed on the wall of the simulator, or in any other location as near as practical to the original position of these items.</td>
</tr>
<tr>
<td>1.b.</td>
<td>The FTD must have equipment (i.e., instruments, panels, systems, circuit breakers, and controls) simulated sufficiently for the authorized training/checking events to be accomplished. The installed equipment, must be located in a spatially correct configuration, and may be in a flight deck or an open flight deck area. Those circuit breakers that affect procedures or result in observable flight deck indications must be properly located and functionally accurate. Additional equipment required for the authorized training and checking events must be available in the FTD but may be located in a suitable location as near as practical to the spatially correct position. Actuation of this equipment must replicate the appropriate function in the helicopter. Fire axes, landing gear pins, and any similar purpose instruments need only be represented in silhouette.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Programming.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.</td>
<td>The FTD must provide the proper effect of aerodynamic changes for the combinations of drag and thrust normally encountered in flight. This must include the effect of change in helicopter attitude, thrust, drag, altitude, temperature, and configuration. Levels 6 and 7 additionally require the effects of changes in gross weight and center of gravity. Level 5 requires only generic aerodynamic programming. An SOC is required.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.b.</td>
<td>The FTD must have the computer (analog or digital) capability (i.e., capacity, accuracy, resolution, and dynamic response) needed to meet the qualification level sought. An SOC is required.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>General FTD requirements</td>
<td>FTD level</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>2.c.</td>
<td>Relative responses of the flight deck instruments must be measured by latency tests or transport delay tests, and may not exceed 150 milliseconds. The instruments must respond to abrupt input at the pilot’s position within the allotted time, but not before the time that the helicopter or set of helicopters respond under the same conditions.</td>
<td>X X X</td>
<td>The intent is to verify that the FTD provides instrument cues that are, within the stated time delays, like the helicopter responses. For helicopter response, acceleration in the appropriate, corresponding rotational axis is preferred.</td>
</tr>
<tr>
<td>3.</td>
<td>All relevant instrument indications involved in the simulation of the helicopter must automatically respond to control movement or external disturbances to the simulated helicopter or set of helicopters; e.g., turbulence or winds.</td>
<td>A X X X</td>
<td></td>
</tr>
<tr>
<td>3.b.</td>
<td>Navigation equipment must be installed and operate within the tolerances applicable for the helicopter or set of helicopters. Levels 6 and 7 must also include communication equipment (inter-phone and air/ground) like that in the helicopter. Level 5 only needs that navigation equipment necessary to fly an instrument approach.</td>
<td>A X X X</td>
<td></td>
</tr>
<tr>
<td>3.c.</td>
<td>Installed systems must simulate the applicable helicopter system operation both on the ground and in flight. At least one helicopter system must be represented. Systems must be operative to the extent that applicable normal, abnormal, and emergency operating procedures included in the sponsor’s training programs can be accomplished. Levels 6 and 7 must simulate all applicable helicopter flight, navigation, and systems operation. Level 5 must have functional flight and navigational controls, displays, and instrumentation</td>
<td>A X X X</td>
<td></td>
</tr>
<tr>
<td>3.d.</td>
<td>The lighting environment for panels and instruments must be sufficient for the operation being conducted</td>
<td>X X X</td>
<td>Back-lighted panels and instruments may be installed but are not required.</td>
</tr>
<tr>
<td>Entry No.</td>
<td>General FTD requirements</td>
<td>FTD level</td>
<td>Information</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>3.e.</td>
<td>The FTD must provide control forces and control travel that correspond to the replicated helicopter or set of helicopters. Control forces must react in the same manner as in the helicopter or set of helicopters under the same flight conditions</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>3.f.</td>
<td>The FTD must provide control forces and control travel of sufficient precision to manually fly an instrument approach. The control forces must react in the same manner as in the helicopter or set of helicopters under the same flight conditions</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4. Instructor or Evaluator Facilities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.a.</td>
<td>In addition to the flight crewmember stations, suitable seating arrangements for an instructor/check airman and FAA Inspector must be available. These seats must provide adequate view of crewmember's panel(s)</td>
<td>X X X X</td>
<td>These seats need not be a replica of an aircraft seat and may be as simple as an office chair placed in an appropriate position.</td>
</tr>
<tr>
<td>4.b.</td>
<td>The FTD must have instructor controls that permit activation of normal, abnormal, and emergency conditions, as appropriate. Once activated, proper system operation must result from system management by the crew and not require input from the instructor controls.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>5. Motion System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.a.</td>
<td>A motion system may be installed in an FTD. If installed, the motion system operation must not be distracting. If a motion system is installed and additional training, testing, or checking credits are being sought, sensory cues must also be integrated. The motion system must respond to abrupt input at the pilot’s position within the allotted time, but not before the time when the helicopter responds under the same conditions. The motion system must be measured by latency tests or transport delay tests and may not exceed 150 milliseconds. Instrument response must not occur prior to motion onset</td>
<td>X X X X</td>
<td></td>
</tr>
<tr>
<td>5.b.</td>
<td>The FTD must have at least a vibration cueing system for characteristic helicopter vibrations noted at the pilot station(s)</td>
<td>X</td>
<td>May be accomplished by a “seat shaker” or a bass speaker sufficient to provide the necessary cueing.</td>
</tr>
<tr>
<td>6. Visual System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.a.</td>
<td>The FTD may have a visual system, if desired, although it is not required. If a visual system is installed, it must meet the following criteria:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.a.1.</td>
<td>The visual system must respond to abrupt input at the pilot’s position. An SOC is required</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>6.a.2.</td>
<td>The visual system must at least a single channel, non-collimated display. An SOC is required</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>General FTD requirements</td>
<td>FTD level</td>
<td>Information</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>6.a.3.</td>
<td>The visual system must provide at least a field-of-view of 18° vertical/24° horizontal for the pilot flying. An SOC is required</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.a.4.</td>
<td>The visual system must provide for a maximum parallax of 10° per pilot. An SOC is required</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.a.5.</td>
<td>The visual scene content may not be distracting. An SOC is required</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.a.6.</td>
<td>The minimum distance from the pilot's eye position to the surface of a direct view display may not be less than the distance to any front panel instrument. An SOC is required</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.a.7.</td>
<td>The visual system must provide for a minimum resolution of 5 arc-minutes for both computed and displayed pixel size. An SOC is required</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.b.</td>
<td>If a visual system is installed and additional training, testing, or checking credits are being sought on the basis of having a visual system, a visual system meeting the standards set out for at least a Level A FFS (see Appendix A of this part) will be required. A 'direct-view,' non-collimated visual system (with the other requirements for a Level A visual system met) may be considered satisfactory for those installations where the visual system design 'eye point' is appropriately adjusted for each pilot's position such that the parallax error is at or less than 10° simultaneously for each pilot. An SOC is required</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.c.</td>
<td>The FTD must provide a continuous visual field-of-view of at least 146° horizontally and 36° vertically for both pilot seats, simultaneously. The minimum horizontal field-of-view coverage must be plus and minus one-half (½) of the minimum continuous field-of-view requirement, centered on the zero degree azimuth line relative to the aircraft fuselage. Additional horizontal field-of-view capability may be added at the sponsor's discretion provided the minimum field-of-view is retained. Capability for a field-of-view in excess of these minima is not required for qualification at Level 7. However, where specific tasks require extended fields of view beyond the 146° by 36° (e.g., to accommodate the use of 'chin windows' where the accommodation is either integral with or separate from the primary visual system display), then such extended fields of view must be provided. An SOC is required and must explain the geometry of the installation. Optimization of the vertical field-of-view may be considered with respect to the specific helicopter flight deck cut-off angle. When considering the installation/use of augmented fields of view, as described here, it will be the responsibility of the sponsor to meet with the NSPM to determine the training, testing, checking, or experience tasks for which the augmented field-of-view capability may be critical to that approval.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
TABLE D1A—MINIMUM FTD REQUIREMENTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>General FTD requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.a.</td>
<td>The FTD must simulate significant flight deck sounds resulting from pilot actions that correspond to those heard in the helicopter</td>
<td>X X</td>
<td></td>
</tr>
</tbody>
</table>

Note: An "A" in the table indicates that the system, task, or procedure may be examined if the appropriate helicopter system or control is simulated in the FTD and is working properly.

TABLE D1B—MINIMUM FTD REQUIREMENTS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Preflight Procedures</td>
<td></td>
<td>4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>1.a.</td>
<td>Preflight Inspection (Flight Deck Only) switches, indicators, systems, and equipment.</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1.b.</td>
<td>APU/Engine start and run-up.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.b.1.</td>
<td>Normal start procedures</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1.b.2.</td>
<td>Alternate start procedures</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1.b.3.</td>
<td>Abnormal starts and shutdowns (hot start, hung start).</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1.c.</td>
<td>Taxing—Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.d.</td>
<td>Taxing—Hover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.e.</td>
<td>Pre-takeoff Checks</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>2. Takeoff and Departure Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.</td>
<td>Normal takeoff.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.1.</td>
<td>From ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.2.</td>
<td>From hover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.a.3</td>
<td>Running</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.b.</td>
<td>Instrument</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.c.</td>
<td>Powerplant Failure During Takeoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.</td>
<td>Rejected Takeoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.e.</td>
<td>Instrument Departure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Climb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.a.</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.b.</td>
<td>Obstacle clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.c.</td>
<td>Vertical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.d.</td>
<td>One engine inoperative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. In-flight Maneuvers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.a.</td>
<td>Turns (timed, normal, steep)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4.b.</td>
<td>Powerplant Failure—Multiengine Helicopters</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
TABLE D1B—MINIMUM FTD REQUIREMENTS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The FTD must be able to perform the tasks associated with the level of qualification sought.</td>
<td>4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>4.d.</td>
<td>Recovery From Unusual Attitudes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.e.</td>
<td>Settling with Power</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

5. Instrument Procedures

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.a.</td>
<td>Instrument Arrival</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>5.b.</td>
<td>Holding</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>5.c.</td>
<td>Precision Instrument Approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.c.1.</td>
<td>Normal—All engines operating</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>5.c.2.</td>
<td>Manually controlled—One or more engines inoperative</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>5.e.</td>
<td>Missed Approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.e.1.</td>
<td>All engines operating</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>5.e.2.</td>
<td>One or more engines inoperative</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>5.e.3.</td>
<td>Stability augmentation system failure</td>
<td>X X</td>
<td></td>
</tr>
</tbody>
</table>

6. Landings and Approaches to Landings

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.a.</td>
<td>Visual Approaches (normal, steep, shallow)</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>6.b.</td>
<td>Landings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.b.1.</td>
<td>Normal/crosswind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.b.1.a.</td>
<td>Running</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6.b.1.b.</td>
<td>From Hover</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6.b.2.</td>
<td>One or more engines inoperative</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6.b.3.</td>
<td>Rejected Landing</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

7. Normal and Abnormal Procedures

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.a.</td>
<td>Powerplant</td>
<td>A A X X</td>
<td></td>
</tr>
<tr>
<td>7.b.</td>
<td>Fuel System</td>
<td>A A X X</td>
<td></td>
</tr>
<tr>
<td>7.c.</td>
<td>Electrical System</td>
<td>A A X X</td>
<td></td>
</tr>
<tr>
<td>7.d.</td>
<td>Hydraulic System</td>
<td>A A X X</td>
<td></td>
</tr>
<tr>
<td>7.e.</td>
<td>Environmental System(s)</td>
<td>A A X X</td>
<td></td>
</tr>
<tr>
<td>7.g.</td>
<td>Navigation and Aviation Systems</td>
<td>A A X X</td>
<td></td>
</tr>
<tr>
<td>7.i.</td>
<td>Flight Control Systems</td>
<td>A A X X</td>
<td></td>
</tr>
<tr>
<td>7.j.</td>
<td>Anti-ice and Deice Systems</td>
<td>A A X X</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>Subjective requirements</td>
<td>FTD level</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>The FTD must be able to perform the tasks associated with the level of qualification</td>
<td>4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>7.k.</td>
<td>Aircraft and Personal Emergency Equipment</td>
<td>A A X X</td>
<td></td>
</tr>
<tr>
<td>7.l.</td>
<td>Special Missions tasks (e.g., Night Vision goggles, Forward Looking Infrared System, External Loads and as listed on the SOQ.)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Emergency procedures (as applicable)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.a.</td>
<td>Emergency Descent</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>8.b.</td>
<td>Inflight Fire and Smoke Removal</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>8.c.</td>
<td>Emergency Evacuation</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>8.d.</td>
<td>Ditching</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8.e.</td>
<td>Autorotative Landing</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8.f.</td>
<td>Retreating blade stall recovery</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8.g.</td>
<td>Mast bumping</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8.h.</td>
<td>Loss of tail rotor effectiveness</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Postflight Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.b.</td>
<td>Parking and Securing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.b.1.</td>
<td>Rotor brake operation</td>
<td>A A X X</td>
<td></td>
</tr>
<tr>
<td>9.b.2.</td>
<td>Abnormal/emergency procedures</td>
<td>A A X X</td>
<td></td>
</tr>
</tbody>
</table>

Note: An “A” in the table indicates that the system, task, or procedure may be examined if the appropriate aircraft system or control is simulated in the FTD and is working properly.

TABLE D1C—TABLE OF FTD SYSTEM TASKS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In order to be qualified at the FTD qualification level indicated, the FTD must be able to perform at least the tasks associated with that level of qualification.</td>
<td>4 5 6 7</td>
<td></td>
</tr>
<tr>
<td>1.a.</td>
<td>Power switch(es)</td>
<td>A X X X</td>
<td></td>
</tr>
<tr>
<td>1.b.</td>
<td>Helicopter conditions</td>
<td>A A X X</td>
<td>e.g., GW, CG, Fuel loading, Systems, Ground, Crew.</td>
</tr>
<tr>
<td>1.c.</td>
<td>Airports/Heliports/Helicopter Landing Areas</td>
<td>A X X X</td>
<td>e.g., Selection, Surface, Presets, Lighting controls.</td>
</tr>
<tr>
<td>1.d.</td>
<td>Environmental controls</td>
<td>A X X X</td>
<td>e.g., Temp and Wind.</td>
</tr>
<tr>
<td>1.e.</td>
<td>Helicopter system malfunctions (Insertion/deletion)</td>
<td>A A X X</td>
<td></td>
</tr>
<tr>
<td>1.f.</td>
<td>Locks, Freezes, and Repositioning (as appropriate)</td>
<td>A X X X</td>
<td></td>
</tr>
<tr>
<td>1.g.</td>
<td>Sound Controls. (On/off/adjustment)</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.h.</td>
<td>Motion/Control Loading System, as appropriate. On/off/emergency stop.</td>
<td>A X X</td>
<td></td>
</tr>
</tbody>
</table>

2. Observer Seats/Stations
TABLE D1C—TABLE OF FTD SYSTEM TASKS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Subjective requirements</th>
<th>QPS requirements</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a........</td>
<td>Position/Adjustment/Positive restraint system</td>
<td></td>
<td>4 5 6 7</td>
<td>A X X</td>
</tr>
</tbody>
</table>

Note: An “A” in the table indicates that the system, task, or procedure may be examined if the appropriate simulator system or control is in the FTD and is working properly.

ATTACHMENT 2 TO APPENDIX D TO PART 60—FLIGHT TRAINING DEVICE (FTD) OBJECTIVE TESTS

BEGIN INFORMATION

1. DISCUSSION

a. If relevant winds are present in the objective data, the wind vector (magnitude and direction) should be noted as part of the data presentation, expressed in conventional terminology, and related to the runway being used for the test.

b. The format for numbering the objective tests in Appendix C of this part, Attachment 2, Table C2A, and the objective tests in Appendix D of this part, Attachment 2, Table D2A, is identical. However, each test required for FFSs is not necessarily required for FTDs, and each test required for FTDs is not necessarily required for FFSs. When a test number (or series of numbers) is not required, the term “Reserved” is used in the table at that location. Following this numbering format provides a degree of commonality between the two tables and substantially reduces the potential for confusion when referring to objective test numbers for either FFSs or FTDs.

c. A Level 4 FTD does not require objective tests and is not addressed in the following table.

END INFORMATION

BEGIN QPS REQUIREMENTS

2. TEST REQUIREMENTS

a. The ground and flight tests required for qualification are listed in Table D2A Objective Evaluation Tests. Computer generated FTD test results must be provided for each test except where an alternate test is specifically authorized by the NSPM. If a flight condition or operating condition is required for the test but does not apply to the helicopter being simulated or to the qualification level sought, it may be disregarded (e.g., engine out climb capability for a single-engine helicopter). Each test result is compared against the validation data described in §60.13, and in Appendix B of this part. The results must be produced on an appropriate recording device acceptable to the NSPM and must include FTD number, date, time, conditions, tolerances, and appropriate dependent variables portrayed in comparison to the validation data. Time histories are required unless otherwise indicated in Table D2A. All results must be labeled using the tolerances and units given.

b. Table D2A in this attachment sets out the test results required, including the parameters, tolerances, and flight conditions for FTD validation. Tolerances are provided for the listed tests because mathematical modeling and acquisition and development of reference data are often inexact. All tolerances listed in the following tables are applied to FTD performance. When two tolerance values are given for a parameter, the less restrictive may be used unless otherwise indicated. In those cases where a tolerance is expressed only as a percentage, the tolerance percentage applies to the maximum value of that parameter within its normal operating range as measured from the neutral or zero position unless otherwise indicated.

c. Certain tests included in this attachment must be supported with an SOC. In Table D2A, requirements for SOCs are indicated in the “Test Details” column.

d. When operational or engineering judgment is used in making assessments for flight test data applications for FTD validity, such judgment must not be limited to a single parameter. For example, data that exhibit rapid variations of the measured parameters may require interpolations or a “best fit” data section. All relevant parameters related to a given maneuver or flight condition must be provided to allow overall interpretation. When it is difficult or impossible to match FTD to helicopter data throughout a time history, differences must be justified by providing a comparison of other related variables for the condition being assessed.

e. The FTD may not be programmed so that the mathematical modeling is correct only at the validation test points. Unless noted otherwise, tests must represent helicopter performance and handling qualities at operating weights and centers of gravity (CG) typical of normal operation. If a test is
supported by aircraft data at one extreme weight or CG, another test supported by aircraft data at mid-conditions or as close as possible to the other extreme is necessary. Certain tests that are relevant only at one extreme CG or weight condition need not be repeated at the other extreme. The results of the tests for Level 6 are expected to be indicative of the device’s performance and handling qualities throughout all of the following:

(1) The helicopter weight and CG envelope. (2) The operational envelope. (3) Varying atmospheric ambient and environmental conditions—including the extremes authorized for the respective helicopter or set of helicopters.

f. When comparing the parameters listed to those of the helicopter, sufficient data must also be provided to verify the correct flight condition and helicopter configuration changes. For example, to show that control force is within the parameters for a static stability test, data to show the correct airspeed, power, thrust or torque, helicopter configuration, attitude, and other appropriate data must also be given. If comparing short period dynamics, normal acceleration may be used to establish a match to the helicopter, but airspeed, altitude, control input, helicopter configuration, and other appropriate data must also be given. If comparing landing gear change dynamics, pitch, airspeed, and attitude may be used to establish a match to the helicopter, but landing gear position must also be provided. All airspeed values must be properly annotated (e.g., indicated versus calibrated). In addition, the same variables must be used for comparison (e.g., compare inches to inches rather than inches to centimeters).

g. The QTG provided by the sponsor must clearly describe how the FTD will be set up and operated for each test. Each FTD subsystem may be tested independently, but overall integrated testing of the FTD must be accomplished to assure that the total FTD system meets the prescribed standards. A manual test procedure with explicit and detailed steps for completing each test must also be provided.

h. For previously qualified FTDs, the tests and tolerances of this attachment may be used in subsequent continuing qualification evaluations for any given test if the sponsor has submitted a proposed MQTG revision to the NSPM and has received NSPM approval.

i. Tests of handling qualities must include validation of augmentation devices. FTDs for highly augmented helicopters will be validated both in the unaugmented configuration (or failure state with the maximum permitted degradation in handling qualities) and the augmented configuration. Where various levels of handling qualities result from failure states, validation of the effect of the failure is necessary. For those performance and static handling qualities tests where the primary concern is control position in the unaugmented configuration, unaugmented data are not required if the design of the system precludes any affect on control position. In those instances where the unaugmented helicopter response is divergent and non-repeatable, it may not be feasible to meet the specified tolerances. Alternative requirements for testing will be mutually agreed upon by the sponsor and the NSPM on a case-by-case basis.

j. Some tests will not be required for helicopters using helicopter hardware in the FTD flight deck (e.g., “helicopter modular controller”). These exceptions are noted in Section 2 “Handling Qualities” in Table D2A of this attachment. However, in these cases, the sponsor must provide a statement that the helicopter hardware meets the appropriate manufacturer’s specifications and the sponsor must have supporting information to that fact available for NSPM review.

k. In cases where light-class helicopters are being simulated, prior coordination with the NSPM on acceptable weight ranges is required. The terms “light,” “medium,” and “near maximum,” may not be appropriate for the simulation of light-class helicopters.

END QPS REQUIREMENTS

BEGIN INFORMATION

1. In those cases where the objective test results authorize a “snapshot test” or a “series of snapshot test” results in lieu of a time-history result, the sponsor or other data provider must ensure that a steady state condition exists at the instant of time captured by the “snapshot.” The steady state condition must exist from 4 seconds prior to, through 1 second following, the instant of time captured by the snapshot.

m. Refer to AC 120–27, Aircraft Weight and Balance; and FAA–H–8083–1, Aircraft Weight and Balance Handbook, for more information.

END INFORMATION
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerances</th>
<th>Right conditions</th>
<th>Test details</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a.</td>
<td>Engine Assessment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a.1.a.</td>
<td>Engine start and accel-</td>
<td>Light Off Time—±10% or ±1 sec.</td>
<td>Ground with the</td>
<td>Record each engine start from</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eration (transient).</td>
<td>Torque—±5% Rotor Speed—±3% Fuel Flow—</td>
<td>Rotor Brake Used</td>
<td>the initiation of the start sequence to steady state idle and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>±10% Gas Generator Speed—±5% Power</td>
<td>and Not Used.</td>
<td>from steady state idle to operating RPM.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turbine Speed—±5% Gas Turbine Temp—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>±30 °C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a.1.b.</td>
<td>Steady State Idle and</td>
<td>Torque—±3% Rotor Speed—±1.5% Fuel</td>
<td>Ground</td>
<td>Record both steady state idle and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating RPM condi-</td>
<td>Flow—±5% Gas Generator Speed—±2% Power</td>
<td></td>
<td>operating RPM conditions. May be a series of snapshot tests.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tions.</td>
<td>Turbine Speed—±2% Turbine Gas Temp—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>±20 °C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a.2.</td>
<td>Power Turbine Speed</td>
<td>±10% of total change of power</td>
<td>Ground</td>
<td>Record engine response to trim system actuation in both directions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trim.</td>
<td>turbine speed; or ±0.5% change of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.a.3.</td>
<td>Engine and Rotor Speed</td>
<td>Torque—±5% Rotor Speed—±1.5%.</td>
<td>Climb Descent.</td>
<td>Record results using a step input to the collective. May be conducted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Governing.</td>
<td></td>
<td></td>
<td>concurrently with climb and descent performance tests.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.b.</td>
<td>Reserved.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.c.</td>
<td>Takeoff.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.c.1.</td>
<td>All Engines</td>
<td>Airspeed—±3 kt, Altitude—±20 ft (6.1 m), Torque—±3%, Rotor Speed—±1.5%, Vertical Velocity—±100 fpm (0.50 m/sec) or 10%, Pitch Attitude—±1.5°, Bank Attitude—±2°, Heading—±2°, Longitudinal Control Position—±10%, Lateral Control Position—±10%, Collective Control Position—±10%.</td>
<td>Ground/ Takeoff and Initial Segment of Climb.</td>
<td>Record results of takeoff flight path (running takeoff and takeoff from a hover). The criteria apply only to those segments at airspeeds above effective translational lift. Results must be recorded from the initiation of the takeoff to at least 200 ft (61 m) AGL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.c.2. through 1.c.3</td>
<td>Reserved.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.e.</td>
<td>Vertical Climb.</td>
<td>Performance</td>
<td>Vertical Velocity—±100 fpm (0.50 m/sec) or ±10%, Directional Control Position—±5%, Collective Control Position—±5%.</td>
<td>From OGE Hover.</td>
<td>Record results for light and heavy gross weights. May be a series of snapshot tests.</td>
<td></td>
</tr>
<tr>
<td>1.g.</td>
<td>Climb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Federal Aviation Administration, DOT Pt. 60, App. D

VerDate Mar<15>2010 18:16 Mar 01, 2012 Jkt 226045 PO 00000 Frm 00335 Fmt 8010 Sfmt 8002 Q:\14\14V2 ofr150 PsN: PC150
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerances</th>
<th>Flight conditions</th>
<th>Test details</th>
<th>FTD level</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Performance and Trimmed Flight Control Positions.</td>
<td>Vertical Velocity—±100 fpm (61 m/sec) or ±10% Pitch Attitude—±1.5° Slipslip Angle—±2° Longitudinal Control Position—±5% Lateral Control Position—±5% Directional Control Position—±5% Collective Control Position—±5%.</td>
<td>All engines operating One engine inoperable. Augmentation System(s) On and Off.</td>
<td>Record results for two gross weight and CG combinations. The data presented must be for normal climb power conditions. May be a series of snapshot tests.</td>
<td>X X X</td>
<td>Notes</td>
</tr>
<tr>
<td>1.h.</td>
<td>Descent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.h.1.</td>
<td>Descent Performance and Trimmed Flight Control Positions.</td>
<td>Torque—±3% Pitch Attitude—±1.5° Slipslip Angle—±2° Longitudinal Control Position—±5% Lateral Control Position—±5% Directional Control Position—±5% Collective Control Position—±5%.</td>
<td>At or near 1,000 fpm (5 m/sec) rate of descent (RoD) at normal approach speed. Augmentation System(s) On and Off.</td>
<td>Record results for two gross weight and CG combinations. May be a series of snapshot tests.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.h.2.</td>
<td>Autorotation Performance and Trimmed Flight Control Positions.</td>
<td>Pitch Attitude—±1.5° Slipslip Angle—±2° Longitudinal Control Position—±5% Lateral Control Position—±5% Directional Control Position—±5% Collective Control Position—±5%.</td>
<td>Steady descents. Augmentation System(s) On and Off.</td>
<td>Record results for two gross weight conditions. Data must be recorded for normal operating RPM. (Rotor speed tolerance applies only if collective control position is full down.) Data must be recorded for speeds from 50 kts, ±5 kts through at least maximum glide distance airspeed. May be a series of snapshot tests.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>1.i.</td>
<td>Autorotation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry</td>
<td>Rotor Speed</td>
<td>±3% Pitch Attitude</td>
<td>±2° Roll Attitude</td>
<td>±3° Yaw Attitude</td>
<td>±35° Airspeed</td>
<td>±5 kts</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Cruise, or Climb</td>
<td>Record results of a rapid throttle reduction to idle. If accomplished in cruise, results must be for the maximum range airspeed. If accomplished in climb, results must be for the maximum rate of climb airspeed at or near maximum continuous power.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.j. Landing

<table>
<thead>
<tr>
<th>1.j.</th>
<th>All Engines</th>
<th>Airspeed</th>
<th>±3 kts, Altitude</th>
<th>±20 ft (6.1 m)</th>
<th>Torque</th>
<th>±5%</th>
<th>Rotor Speed</th>
<th>±1.5%</th>
<th>Pitch Attitude</th>
<th>±1.5°</th>
<th>Bank Attitude</th>
<th>±1.5°</th>
<th>Heading</th>
<th>±2°</th>
<th>Longitudinal Control Position</th>
<th>±10%</th>
<th>Lateral Control Position</th>
<th>±10%</th>
<th>Directional Control Position</th>
<th>±10%</th>
<th>Collective Control Position</th>
<th>±10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>Record results of the approach and landing profile (running landing or approach to a hover). The criteria apply only to those segments at airspeeds above effective translational lift. Record the results from 200 ft AGL (61 m) to the landing or to where the hover is established prior to landing.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

1.j.2. through 1.j.3

Reserved.
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Tolerances</th>
<th>Right conditions</th>
<th>Test details</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.j.4</td>
<td>Autorotational Landing</td>
<td>Torque—≤3%, Rotor Speed—≤3%, Vertical Velocity—≤100 fpm (0.50 m/sec) or 10%, Pitch Attitude—≤2°, Bank Attitude—≤2°, Heading—≤5°, Longitudinal Control Position—≤10%, Lateral Control Position—≤10%, Directional Control Position—≤10%, Collective Control Position—≤10%</td>
<td>Landing</td>
<td>Record the results of an autorotational deceleration and landing from a stabilized autorotational descent, to touch down.</td>
<td>X</td>
<td>If flight test data containing all required parameters for a complete power-off landing is not available from the aircraft manufacturer for this test, and other qualified flight test personnel are not available to acquire this data, the sponsor must coordinate with the NSPM to determine if it would be appropriate to accept alternative testing means. Alternative approaches to this data acquisition that may be acceptable are: (1) A simulated autorotational flare and reduction of rate of descent (ROD) at altitude; or (2) a power-on termination following an autorotational approach and flare.</td>
</tr>
</tbody>
</table>

2. Handling Qualities

2.a | Control System Mechanical Characteristics | Contact the NSPM for clarification of any issue regarding helicopters with reversible controls. | | | | |

2.a.1 | Cyclic | Breakout—0.25 lbs (0.112 daN) or 25%, Force—1.0 lb (0.224 daN) or 10% | Ground, Static conditions. Trim On and Off, Friction Off, Augmentation On and Off. | Record results for an uninterrupted control sweep to the stops. (This test does not apply if aircraft hardware modular controllers are used.) | X | X |
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Criteria</th>
<th>Conditions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a.2</td>
<td>Collective and Pedals</td>
<td>Breakout—±0.5 lb (0.224 daN) or 25%. Force—±1.0 lb (0.224 daN) or 10%.</td>
<td>Ground; Static conditions</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trim On and Off; Friction Off; Augmentation On and Off.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Record results for an uninterrupted control sweep to the stops.</td>
<td></td>
</tr>
<tr>
<td>2.a.3</td>
<td>Brake Pedal Force vs. Position</td>
<td>±5 lbs (2.224 daN) or 10%</td>
<td>Ground; Static conditions</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trim On and Off; Friction Off.</td>
<td>X</td>
</tr>
<tr>
<td>2.a.4</td>
<td>Trim System Rate (all applicable systems)</td>
<td>Rate—±10%</td>
<td>Ground; Static conditions</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trim On; Friction Off.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The tolerance applies to the recorded value of the trim rate.</td>
<td>X</td>
</tr>
<tr>
<td>2.a.5</td>
<td>Control Dynamics (all axes)</td>
<td>±10% of time for first zero crossing and ±10 (N+1)% of period thereafter. ±10% of amplitude of first overshoot, ±20% of amplitude of 2nd and subsequent overshoots greater than 5% of initial displacement. ±1 overshoot.</td>
<td>Hover/Cruise Trim On; Friction Off.</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Results must be recorded for a normal control displacement in both directions in each axis, using 25% to 50% of full throw.</td>
<td></td>
</tr>
<tr>
<td>2.a.6</td>
<td>Freeplay</td>
<td>±0.10 in. (±2.5 mm)</td>
<td>Ground; Static conditions</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Record and compare results for all controls.</td>
<td>X</td>
</tr>
<tr>
<td>2.b</td>
<td>Low Airspeed Handling Qualities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.b.1</td>
<td>Trimmed Flight Control Positions</td>
<td>Torque ±3% Pitch Attitude ±1.5° Bank Attitude ±2° Longitudinal Control Position ±5% Lateral Control Position ±5% Directional Control Position ±5% Collective Control Position ±5%</td>
<td>Translational Flight IGE—Sideward, rearward, and forward flight. Augmentation On and Off.</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Record results for several airspeed increments to the translational airspeed limits and for 45 kts. forward airspeed. May be a series of snapshot tests.</td>
<td></td>
</tr>
<tr>
<td>2.b.2</td>
<td>Critical Azimuth</td>
<td>Torque ±3% Pitch Attitude ±1.5° Bank Attitude ±2° Longitudinal Control Position ±5% Lateral Control Position ±5% Directional Control Position ±5% Collective Control Position ±5%</td>
<td>Stationary Hover; Augmentation On and Off.</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Record results for three relative wind directions (including the most critical case) in the critical quadrant. May be a series of snapshot tests.</td>
<td></td>
</tr>
<tr>
<td>2.b.3</td>
<td>Control Response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Tolerances</td>
<td>Right conditions</td>
<td>Test details</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>------------------------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.b.3.a</td>
<td>Longitudinal</td>
<td>Pitch Rate—±10% or ±2°/sec. Pitch</td>
<td>Hover, Augmentation</td>
<td>Record results for a step control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attitude Change—±10% or ±1.5°.</td>
<td>On and Off.</td>
<td>input. The Off-axis response must show correct trend for un-augmented cases.</td>
</tr>
<tr>
<td>2.b.3.b</td>
<td>Lateral</td>
<td>Roll Rate—±10% or ±3°/sec. Roll</td>
<td>Hover, Augmentation</td>
<td>Record results for a step control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attitude Change—±10% or ±3°.</td>
<td>On and Off.</td>
<td>input. The Off-axis response must show correct trend for un-augmented cases.</td>
</tr>
<tr>
<td>2.b.3.c</td>
<td>Directional</td>
<td>Yaw Rate—±10% or ±2°/sec. Heading</td>
<td>Hover, Augmentation</td>
<td>Record results for a step control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change—±10% or ±2°.</td>
<td>On and Off.</td>
<td>input. The Off-axis response must show correct trend for un-augmented cases.</td>
</tr>
<tr>
<td>2.b.3.d</td>
<td>Vertical</td>
<td>Normal Acceleration ±0.1g</td>
<td>Hover, Augmentation</td>
<td>Record results for a step control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>On and Off.</td>
<td>input. The Off-axis response must show correct trend for un-augmented cases.</td>
</tr>
<tr>
<td>2.c</td>
<td>Longitudinal Handling Qualities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.c.1</td>
<td>Control Response</td>
<td>Pitch Rate—±10% or ±2°/sec. Pitch</td>
<td>Cruise Augmentation</td>
<td>Results must be recorded for two</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attitude Change—±10% or ±1.5°.</td>
<td>On and Off.</td>
<td>cruise airspeeds to include minimum power required speed. Record data for a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>step control input. The Off-axis response must show correct trend for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>un-augmented cases.</td>
</tr>
</tbody>
</table>
Static Stability

- **Longitudinal Control Position:** ±10% of change from trim or ±0.25 in. (6.3 mm) or Longitudinal Control Force: ±0.5 lb. (0.223 daN) or ±10%.
- Cruise or Climb.
- **Autorotation. Augmentation On and Off.**
- Record results for a minimum of two speeds on each side of the trim speed. May be a series of snapshot tests.

Dynamic Stability

2.c.3.a. Long Term Response ...
- ±10% of calculated period. ±10% of time to 1/2 or double amplitude, or ±0.02 of damping ratio. For non-periodic responses, the time history must be matched within ±3° pitch and ±5 kts airspeed over a 20 sec period following release of the controls.
- Cruise Augmentation On and Off.
- Record results for three full cycles (6 overshoots after input completed) or sufficient to determine time to 1/2 or double amplitude, whichever is less. For non-periodic responses, the test may be terminated prior to 20 sec if the test pilot determines that the results are becoming uncontrollably divergent. Displace the cyclic for one second or less to excite the test. The result will be either convergent or divergent and must be recorded. If this method fails to excite the test, displace the cyclic to the predetermined maximum desired pitch attitude and return to the original position. If this method is used, record the results.

2.c.3.b. Short Term Response ...
- ±1.5° Pitch or ±2°/sec. Pitch Rate, ±0.1 g Normal Acceleration.
- Cruise or Climb.
- **Augmentation On and Off.**
- Record results for at least two airspeeds.

Dynamic Stability

- The response for certain helicopters may be unrepeatable throughout the stated time. In these cases, the test should show at least that a divergence is identifiable. For example: Displacing the cyclic for a given time normally excites this test or until a given pitch attitude is achieved and then return the cyclic to the original position. For non-periodic responses, results should show the same convergent or divergent character as the flight test data.

- A control doublet inserted at the natural frequency of the aircraft normally excites this test. However, while input doublets are preferred over pulse inputs for Augmentation-Off tests, for Augmentation-On cases, when the short term response exhibits 1st-order or deadbeat characteristics, longitudinal pulse inputs may produce a more coherent response.
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Test</th>
<th>Tolerances</th>
<th>Right conditions</th>
<th>Test details</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.c.4.</td>
<td>Maneuvering Stability...</td>
<td>Longitudinal Control Position—±10% of change from trim or ±0.25 in. (6.3 mm) or Longitudinal Control Forces—±0.5 lb. (0.223 daN) or ±10%.</td>
<td>Cruise or Climb. Augmentation On and Off.</td>
<td>Record results for at least two airspeeds at 30°–45° bank angle. The force may be shown as a cross plot for irreversible systems. May be a series of snapshot tests.</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>2.d.</td>
<td>Lateral and Directional Handling Qualities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.1.a.</td>
<td>Lateral</td>
<td>Roll Rate—±10% or ±3°/sec. Roll Attitude Change—±10% or ±3°.</td>
<td>Cruise Augmentation On and Off.</td>
<td>Record results for at least two airspeeds, including the speed at or near the minimum power required airspeed. Record results for a step control input. The Off-axis response must show correct trend for unaugmented cases.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>2.d.1.b.</td>
<td>Directional</td>
<td>Yaw Rate—±10% or ±2°/sec. Yaw Attitude Change—±10% or ±2°.</td>
<td>Cruise Augmentation On and Off.</td>
<td>Record data for at least two Airspeeds, including the speed at or near the minimum power required airspeed. Record results for a step control input. The Off-axis response must show correct trend for unaugmented cases.</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Requirements</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.2.</td>
<td>Directional Static Stability.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lateral Control Position—±10% of change from trim or ±0.25 in. (6.3 mm) or Lateral Control Force—0.5 lb. (2.23 daN) or 10%. Roll Attitude—±1.5 Directional Control Position—±10% of change from trim or ±0.25 in. (6.3 mm) or Directional Control Force—±1 lb. (0.448 daN) or 10%. Longitudinal Control Position—±10% of change from trim or ±0.25 in. (6.3 mm). Vertical Velocity—±100 fpm (0.50 m/sec) or 10%.</td>
<td>Record results for at least two sideslip angles on either side of the trim point. The force may be shown as a cross plot for irreversible systems. May be a series of snapshot tests.</td>
<td>X X X This is a steady heading sideslip test at a fixed collective position.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.3.</td>
<td>Dynamic Lateral and Directional Stability.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.3.a.</td>
<td>Lateral-Directional Oscillations.</td>
<td>±0.5 sec or ±10% of period ±10% of time to ½ or double amplitude ±0.02 of damping ratio ±20% or ±1 sec of time difference between peaks of bank and sideslip. For non-periodic responses, the time history must be matched within ±10 knots Airspeed; ±5° Roll Rate or ±5° Roll Attitude; ±4° Yaw Rate or ±4° Yaw Angle over a 20 sec period roll angle following release of the controls.</td>
<td>Record results for at least two airspeeds. The test must be initiated with a cyclic or a pedal doublet input. Record results for six full cycles (12 overshoots after input completed) or that sufficient to determine time to ½ or double amplitude, whichever is less. The test may be terminated prior to 20 sec if the test pilot determines that the results are becoming uncontrollably divergent.</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.3.b.</td>
<td>Spiral Stability</td>
<td>±2° or ±10% roll angle</td>
<td>Record the results of a release from pedal only or cyclic only turns for 20 sec. Results must be recorded from turns in both directions. Terminate check at zero roll angle or when the test pilot determines that the attitude is becoming uncontrollably divergent.</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.d.3.c.</td>
<td>Adverse/Proverse Yaw</td>
<td>Correct Trend, ±2° transient sideslip angle.</td>
<td>Record the time history of initial entry into cyclic only turns, using only a moderate rate for cyclic input. Results must be recorded for turns in both directions.</td>
<td>X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>Title</td>
<td>Tolerances</td>
<td>Right conditions</td>
<td>Test details</td>
<td>FTD level</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>4.</td>
<td>Visual System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.a.</td>
<td>Visual System Response Time: (Choose either test 4.a.1. or 4.a.2. to satisfy test 4.a., Visual System Response Time Test. This test is also sufficient for flight deck instrument response timing.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.a.1.</td>
<td>Latency.</td>
<td>150 ms (or less) after helicopter response.</td>
<td>Takeoff, climb, and descent.</td>
<td>One test is required in each axis (pitch, roll and yaw) for each of the three conditions (take-off, cruise, and approach or landing).</td>
<td>5 6 7</td>
<td></td>
</tr>
<tr>
<td>4.a.2.</td>
<td>Transport Delay.</td>
<td>150 ms (or less) after controller movement.</td>
<td>N/A</td>
<td>A separate test is required in each axis (pitch, roll and yaw).</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.b.</td>
<td>Field-of-view</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.b.1.</td>
<td>Reserved.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.b.2.</td>
<td>Continuous visual field-of-view.</td>
<td>Minimum continuous field-of-view providing 146° horizontal and 36° vertical field-of-view for each pilot simultaneously and any geometric error between the Image Generator eye point and the pilot eye point is 8° or less.</td>
<td>N/A</td>
<td>An SOC is required and must explain the geometry of the installation. Horizontal field-of-view must not be less than a total of 146° (including not less than 73° measured either side of the center of the design eye point). Additional horizontal field-of-view capability may be added at the sponsor’s discretion provided the minimum field-of-view is retained. Vertical field-of-view: Not less than a total of 36° measured from the pilot’s and co-pilot’s eye point.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.b.3.</td>
<td>Reserved.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.c.</td>
<td>Surface contrast ratio</td>
<td>Not less than 5:1</td>
<td>N/A</td>
<td>The ratio is calculated by dividing the brightness level of the center, bright square (providing at least 2 foot-lamberts or 7 cd/m²) by the brightness level of any adjacent dark square.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>------------------</td>
<td>-----</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.d.</td>
<td>Highlight brightness</td>
<td>Not less than three (3) foot-lamberts (10 cd/m²).</td>
<td>N/A</td>
<td>Measure the brightness of the center white square while superimposing a highlight on that white square. The use of calligraphic capabilities to enhance the raster brightness is acceptable, but measuring light points is not acceptable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.e.</td>
<td>Surface resolution</td>
<td>Not greater than two (2) arc minutes.</td>
<td>N/A</td>
<td>An SOC is required and must include the relevant calculations.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X Measurements may be made using a 1° spot photometer and a raster drawn test pattern filling the entire visual scene (all channels) with a test pattern of black and white squares, 5 per square, with a white square in the center of each channel. During contrast ratio testing, simulator aft-cab and flight deck ambient light levels should be zero.

X Measurements may be made using a 1° spot photometer and a raster drawn test pattern filling the entire visual scene (all channels) with a test pattern of black and white squares, 5 per square, with a white square in the center of each channel.

X When the eye is positioned on a 3° glide slope at the slant range distances indicated with white runway markings on a black runway surface, the eye will subtend two (2) arc minutes: (1) A slant range of 6,876 feet with stripes 150 ft long and 16 ft wide, spaced 4 ft apart. (2) For Configuration A, a slant range of 5,157 feet with stripes 150 ft long and 12 ft wide, spaced 3 ft apart. (3) For Configuration B, a slant range of 9,884 feet, with stripes 150 ft long and 5.75 ft wide, spaced 5.75 ft apart.
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Title</th>
<th>Test details</th>
<th>FTD level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.f.</td>
<td>Light point size</td>
<td>Not greater than five (5) arc-minutes.</td>
<td>N/A</td>
<td>An SOC is required and must include the relevant calculations. Light point size may be measured using a test pattern consisting of a centrally located single row of light points reduced in length until modulation is just discernible in each visual channel. A row of 48 lights will form a 4° angle or less.</td>
</tr>
<tr>
<td>4.g.</td>
<td>Light point contrast ratio</td>
<td></td>
<td></td>
<td>A 1° spot photometer may be used to measure a square of at least 1° filled with light points (where light point modulation is just discernible) and compare the results to the measured adjacent background. During contrast ratio testing, simulator aft-cab and flight deck ambient light levels should be zero.</td>
</tr>
<tr>
<td>4.g.1</td>
<td>Reserved.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.g.2</td>
<td>Not less than 25:1</td>
<td></td>
<td>N/A</td>
<td>An SOC is required and must include the relevant calculations.</td>
</tr>
<tr>
<td>4.h.</td>
<td>Visual ground segment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE D2A—FLIGHT TRAINING DEVICE (FTD) OBJECTIVE TESTS—Continued
The visible segment in the simulator must be within 20% of the segment computed to be visible from the helicopter flight deck. The tolerance(s) may be applied at either end or at both ends of the displayed segment. However, lights and ground objects computed to be visible from the helicopter flight deck at the near end of the visible segment must be visible in the simulator.

Landing configuration, trimmed for appropriate airspeed, at 100 ft (30m) above the touchdown zone, on glide slope with an RVR value set at 1,200 ft (350 m). RVR. Simulator performance must be measured against the QTG calculations. The data submitted must include at least the following: (1) Static helicopter dimensions as follows: (i) Horizontal and vertical distance from main landing gear (MLG) to glideslope reception antenna. (ii) Horizontal and vertical distance from MLG to pilot's eyepoint. (iii) Static flight deck cutoff angle. (2) Approach data as follows: (i) Identification of runway. (ii) Horizontal distance from runway threshold to glideslope intercept with runway. (iii) Glideslope angle. (iv) Helicopter pitch angle on approach. (3) Helicopter data for manual testing: (i) Gross weight. (ii) Helicopter configuration. (iii) Approach airspeed. If non-homogenous fog is used to obscure visibility, the vertical variation in horizontal visibility must be described and included in the slant range visibility calculation used in the computations.

5. Reserved

X Pre-position for this test is encouraged, but may be achieved via manual or autopilot control to the desired position.
3. Control Dynamics

a. The characteristics of a helicopter flight control system have a major effect on the handling qualities. A significant consideration in pilot acceptability of a helicopter is the "feel" provided through the flight deck controls. Considerable effort is expended on helicopter feel system design in order to deliver a system with which pilots will be comfortable and consider the helicopter desirable to fly. In order for an FTD to be representative, it too must present the pilot with the proper feel; that of the respective helicopter. Compliance with this requirement is determined by comparing a recording of the control feel dynamics of the FFS to actual helicopter measurements in the hover and cruise configurations.

(1) Recordings such as free response to an impulse or step function are classically used to estimate the dynamic properties of electromechanical systems. It is only possible to estimate the dynamic properties as a result of only being able to estimate true inputs and responses. Therefore, it is imperative that the best possible data be collected since close matching of the FTD control loading system to the helicopter systems is essential. Control feel dynamic tests are described in the Table of Objective Tests in this appendix. Where accomplished, the free response is measured after a step or pulse input is used to excite the system.

(2) For initial and upgrade evaluations, it is required that control dynamic characteristics be measured at and recorded directly from the flight deck controls. This procedure is usually accomplished by measuring the free response of the controls using a step or pulse input to excite the system. The procedure must be accomplished in hover, climb, cruise, and autorotation. For helicopters with irreversible control systems, measurements may be obtained on the ground. The procedure should be accomplished in the hover and cruise flight conditions and configurations. Proper pitot-static inputs (if appropriate) must be provided to represent airspeeds typical of those encountered in flight.

(b) Control Dynamics Evaluations. The dynamic properties of control systems are often stated in terms of frequency, damping, and a number of other classical measurements which can be found in texts on control systems. In order to establish a consistent means of validating test results for FTD control loading, criteria are needed that will clearly define the interpretation of the measurements and the tolerances to be applied. Criteria are needed for both the underdamped system and the overdamped system, including the critically damped case. In the case of an underdamped system with very light damping, the system may be quantified in terms of frequency and damping. In critically damped or overdamped systems, the frequency and damping is not readily measured from a response time history. Therefore, some other measurement must be used.

(1) Tests to verify that control feel dynamics represent the helicopter must show that the dynamic damping cycles (free response of the control) match that of the helicopter within specified tolerances. The method of evaluating the response and the tolerance to be applied are described below for the underdamped and critically damped cases.

(a) Underdamped Response. Two measurements are required for the period, the time to first zero crossing (in case a rate limit is present) and the subsequent frequency of oscillation. It is necessary to measure cycles on an individual basis in case there are non-uniform periods in the response. Each period will be independently compared to the respective period of the helicopter control system and, consequently, will enjoy the full tolerance specified for that period.

(b) The damping tolerance will be applied to overshoots on an individual basis. Care must be taken when applying the tolerance to small overshoots since the significance of such overshoots becomes questionable. Only those overshoots larger than 5 percent of the total initial displacement will be considered significant. The residual band, labeled $T(A_d)$ on Figure 1 of this attachment is ±5 percent of the initial displacement amplitude, A_d, from the steady state value of the oscillation. Oscillations within the residual band are considered insignificant. When comparing simulator data to helicopter data, the process would begin by overlaying or aligning the simulator and helicopter steady state values and then comparing amplitudes of oscillation peaks, the time of the first zero crossing, and individual periods of oscillation. To be satisfactory, the simulator must show the same number of significant overshoots to within one when compared against
the helicopter data. The procedure for evaluating the response is illustrated in Figure 1 of this attachment.

(c) Critically Damped and Overdamped Response. Due to the nature of critically damped responses (no overshoots), the time to reach 90 percent of the steady state (neutral point) value must be the same as the helicopter within ±10 percent. The simulator response must be critically damped also. Figure 2 of this attachment illustrates the procedure.

(d) Special considerations. Control systems that exhibit characteristics other than classical overdamped or underdamped responses should meet specified tolerances. In addition, special consideration should be given to ensure that significant trends are maintained.

(2) Tolerances.

(a) The following summarizes the tolerances, “T” for underdamped systems, and “n” is the sequential period of a full cycle of oscillation. See Figure D2A of this attachment for an illustration of the referenced measurements.

\[
\begin{align*}
T(P_0) & \pm 10\% \text{ of } P_0 \\
T(P_1) & \pm 20\% \text{ of } P_1 \\
T(P_2) & \pm 30\% \text{ of } P_1 \\
T(P_n) & \pm 10(n+1)\% \text{ of } P_n \\
T(A_n) & \pm 10\% \text{ of } A_n \\
T(A_d) & \pm 5\% \text{ of } A_d = \text{ residual band} \\
\text{Significant overshoots First overshoot and } \pm 1 \text{ subsequent overshoots}
\end{align*}
\]

(b) The following tolerance applies to critically damped and overdamped systems only. See Figure D2B for an illustration of the reference measurements:

\[
T(P_0) \pm 10\% \text{ of } P_0
\]
c. Alternative method for control dynamics evaluation.

(1) An alternative means for validating control dynamics for aircraft with hydraulically powered flight controls and artificial feel systems is by the measurement of control force and rate of movement. For each axis of pitch, roll, and yaw, the control must be forced to its maximum extreme position for the following distinct rates. These tests are conducted under normal flight and ground conditions.
Federal Aviation Administration, DOT

Pt. 60, App. D

1. REQUIREMENTS

a. Except for special use airport models, all airport models required by this part must be representations of real-world, operational airports or representations of fictional airports and must meet the requirements set out in Tables D3B or D3C of this attachment, as appropriate.

b. If fictional airports are used, the sponsor must ensure that navigational aids and all appropriate maps, charts, and other navigational reference material for the fictional airports (and surrounding areas as necessary) are compatible, complete, and accurate with respect to the visual presentation and the airport model of this fictional airport. An SOC must be submitted that addresses navigation aid installation and performance and other criteria (including obstruction clearance protection) for all instrument approaches to the fictional airports that are available in the simulator. The SOC must reference and account for information in the terminal instrument procedures manual and the construction and availability of the required maps, charts, and other navigational material. This material must be clearly marked “for training purposes only.”

c. When the simulator is being used by an instructor or evaluator for purposes of training, checking, or testing under this chapter, only airport models classified as Class I, Class II, or Class III may be used by the instructor or evaluator. Detailed descriptions/definitions of these classifications are found in Appendix F of this part.

d. When a person sponsors an FTD maintained by a person other than a U.S. certificate holder, the sponsor is accountable for that FTD originally meeting, and continuing to meet, the criteria under which it was originally qualified and the appropriate Part 60 criteria, including the visual scenes and airport models that may be used by instructors or evaluators for purposes of training, checking, or testing under this chapter.

e. Neither Class II nor Class III airport visual models are required to appear on the SOQ, and the method used for keeping instructors and evaluators apprised of the airport models that meet Class II or Class III requirements on any given simulator is at the option of the sponsor, but the method used must be available for review by the TPAA.

f. When an airport model represents a real world airport and a permanent change is made to that real world airport (e.g., a new runway, an extended taxiway, a new lighting system, a runway closure) without a written extension grant from the NSPM (described in paragraph 1.g., of this section), an update to that airport model must be made in accordance with the following time limits:

(1) For a new airport runway, a runway extension, a new airport taxiway, a taxiway extension, or a runway/taxiway closure—within 90 days of the opening of use of the new airport taxiway, or taxiway extension; or within 90 days of the closure of the runway or taxiway.

(2) For a new or modified approach light system—within 45 days of the activation of the new or modified approach light system.

(3) For other facility or structural changes on the airport (e.g., new terminal, relocation of Air Traffic Control Tower)—within 180 days of the opening of the new or changed facility or structure.

g. If a sponsor desires an extension to the time limit for an update to a visual scene or airport model or has an objection to what must be updated in the specific airport model requirement, the sponsor must provide a written extension request to the NSP pilot indicating the reason for the update delay and a proposed completion date or provide an explanation for the objection, explaining why the identified airport change will not have an impact on flight training, testing, or checking. A copy of this request or objection must also be sent to the POI/TCPM. The NSP pilot will include in his report to the POI/TCPM, however, if there is an objection, after consultation with the appropriate POI/TCPM regarding the training, testing, or checking impact, the NSP pilot will send the official response to the sponsor and a copy to the POI/TCPM; however, if there is an objection, after consultation with the appropriate POI/TCPM regarding the training, testing, or checking impact, the NSP pilot will send the official response to the sponsor and a copy to the POI/TCPM.

h. Examples of situations that may warrant Class III model designation by the TPAA include the following:

(a) Training, testing, or checking on very low visibility operations, including SMGCS operations.

(b) Instrument operations training (including instrument takeoff, departure, arrival, approach, and missed approach training, testing, or checking).

(i) A specific model that has been geographically “moved” to a different location and aligned with an instrument procedure for another airport.

(ii) A model that does not match changes made at the real-world airport (or landing area for helicopters) being modeled.

(iii) A model generated with an “off-board” or an “on-board” model development tool (by providing proper latitude/longitude reference; correct runway or landing area orientation, length, width, marking, and lighting information; and appropriate adjacent taxiway location) to generate a facsimile of a real world airport or landing area.

These airport models may be accepted by the TPAA without individual observation provided the sponsor provides the TPAA with an acceptable description of the process for determining the acceptability of a specific airport model, outlines the conditions under which such an airport model may be used, and adequately describes what restrictions will be applied to each resulting airport or landing area model.

END QPS REQUIREMENTS

BEGIN INFORMATION

2. DISCUSSION

a. The subjective tests and the examination of functions provide a basis for evaluating the capability of the FTD to perform over a typical utilization period; determining that the FTD satisfactorily meets the appropriate training/testing/checking objectives and competently simulates each required maneuver, procedure, or task; and verifying correct operation of the FTD controls, instruments, and systems. The items in the list of operations tasks are for FTD evaluation purposes only. They must not be used to limit or exceed the authorizations for use of a given level of FTD as found in the Practical Test Standards or as approved by the TPAA. All items in the following paragraphs are subject to an examination of function.

b. The List of Operations Tasks in Table D3A addressing pilot functions and maneuvers is divided by flight phases. All simulated helicopter systems functions will be assessed for normal and, where appropriate, alternate operations. Normal, abnormal, and emergency operations associated with a flight phase will be assessed during the evaluation of maneuvers or events within that flight phase.

c. Systems to be evaluated are listed separately under “Any Flight Phase” to ensure appropriate attention to systems checks.

Operational navigation systems (including inertial navigation systems, global positioning systems, or other long-range systems) and the associated electronic display systems will be evaluated if installed. The NSP pilot will include in his report to the TPAA, the effect of the system operation and any system limitation.

d. At the request of the TPAA, the NSP Pilot may assess the FTD for a special aspect of a sponsor’s training program during the functions and subjective portion of an evaluation. Such an assessment may include a portion of a specific operation (e.g., a Line Oriented Flight Training (LOFT) scenario) or special emphasis items in the sponsor’s training program. Unless directly related to a requirement for the qualification level, the results of such an evaluation would not necessarily affect the qualification of the FTD.

e. The FAA intends to allow the use of Class III airport models on a limited basis when the sponsor provides the TPAA (or other regulatory authority) an appropriate
Federal Aviation Administration, DOT
Pt. 60, App. D

analysis of the skills, knowledge, and abilities (SKAs) necessary for competent performance of the tasks in which this particular media element is used. The analysis should describe the ability of the FTD visual media to provide an adequate environment in which the required SKAs are satisfactorily performed and learned. The analysis should also include the specific media element, such as the visual scene or airport model. Additional sources of information on the conduct of task and capability analysis may be found on the FAA’s Advanced Qualification Program (AQP) Web site at: http://www.faa.gov/education_research/training/aqp.

TABLE D3A—Table of Functions and Subjective Tests Level 7 FTD

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Preflight Procedures</td>
<td></td>
</tr>
<tr>
<td>1.a.</td>
<td>Preflight Inspection (Flight Deck Only) switches, indicators, systems, and equipment.</td>
</tr>
<tr>
<td>1.b.</td>
<td>APU/Engine start and run-up.</td>
</tr>
<tr>
<td>1.b.1.</td>
<td>Normal start procedures.</td>
</tr>
<tr>
<td>1.b.2.</td>
<td>Alternate start procedures.</td>
</tr>
<tr>
<td>1.b.3.</td>
<td>Abnormal starts and shutdowns (hot start, hung start).</td>
</tr>
<tr>
<td>1.b.4.</td>
<td>Rotor engagement.</td>
</tr>
<tr>
<td>1.b.5.</td>
<td>System checks.</td>
</tr>
<tr>
<td>1.c.</td>
<td>Taxiing—Ground.</td>
</tr>
<tr>
<td>1.c.1.</td>
<td>Power required to taxi.</td>
</tr>
<tr>
<td>1.c.2.</td>
<td>Brake effectiveness.</td>
</tr>
<tr>
<td>1.c.3.</td>
<td>Ground handling.</td>
</tr>
<tr>
<td>1.c.4.</td>
<td>Abnormal/emergency procedures, for example:</td>
</tr>
<tr>
<td>1.c.4.a.</td>
<td>Brake system failure.</td>
</tr>
<tr>
<td>1.c.4.b.</td>
<td>Ground resonance.</td>
</tr>
<tr>
<td>1.c.4.c.</td>
<td>Other (listed on the SOQ).</td>
</tr>
<tr>
<td>1.d.</td>
<td>Taxiing—Hover.</td>
</tr>
<tr>
<td>1.d.1.</td>
<td>Takeoff to a hover.</td>
</tr>
<tr>
<td>1.d.2.</td>
<td>Instrument response.</td>
</tr>
<tr>
<td>1.d.2.a.</td>
<td>Engine instruments.</td>
</tr>
<tr>
<td>1.d.2.b.</td>
<td>Flight instruments.</td>
</tr>
<tr>
<td>1.d.3.</td>
<td>Hovering turns.</td>
</tr>
<tr>
<td>1.d.4.</td>
<td>Hover power checks.</td>
</tr>
<tr>
<td>1.d.4.a.</td>
<td>In ground effect (IGE).</td>
</tr>
<tr>
<td>1.d.4.b.</td>
<td>Out of ground effect (OGE).</td>
</tr>
<tr>
<td>1.d.5.</td>
<td>Crosswind/tailwind hover.</td>
</tr>
<tr>
<td>1.d.6.</td>
<td>Abnormal/emergency procedures:</td>
</tr>
</tbody>
</table>
TABLE D3A—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS LEVEL 7 FTD—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.d.6.b.</td>
<td>Fuel governing system failure.</td>
</tr>
<tr>
<td>1.d.6.c.</td>
<td>Settling with power (OGE).</td>
</tr>
<tr>
<td>1.d.6.e.</td>
<td>Directional control malfunction (including Loss of Tail Rotor Effectiveness, LTE).</td>
</tr>
<tr>
<td>1.d.6.f.</td>
<td>Other (listed on the SOQ).</td>
</tr>
<tr>
<td>1.e.</td>
<td>Pre-takeoff Checks.</td>
</tr>
</tbody>
</table>

2. Takeoff and Departure Phase

2.a.	Normal and Crosswind Takeoff.
2.a.1	From ground.
2.a.2	From hover.
2.a.3	Running.
2.a.4	Crosswind/tailwind.
2.a.5	Maximum performance.
2.b.	Instrument.
2.c.	Powerplant Failure During Takeoff.
2.c.1.	Takeoff with engine failure after critical decision point (CDP).
2.d.	Rejected Takeoff.
2.e.	Instrument Departure.
2.f.	Other (listed on the SOQ).

3. Climb

3.b.	Obstacle clearance.
3.c.	Vertical.
3.d.	One engine inoperative.
3.e.	Other (listed on the SOQ).

4. Inflight Maneuvers

4.b.	Flying qualities.
4.c.	Tums.
4.c.1.	Timed.
4.c.2.	Normal.
4.c.3.	Steep.
4.e.	High-speed vibrations.
4.f.	Abnormal/emergency procedures, for example:
4.f.1.	Engine fire.
Table D3A—Table of Functions and Subjective Tests Level 7 FTD—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.f.2.</td>
<td>Engine failure.</td>
</tr>
<tr>
<td>4.f.2.a.</td>
<td>Powerplant Failure—Multiengine Helicopters.</td>
</tr>
<tr>
<td>4.f.3.</td>
<td>Inflight engine shutdown (and restart, if applicable).</td>
</tr>
<tr>
<td>4.f.4.</td>
<td>Fuel governing system failures (e.g., FADEC malfunction).</td>
</tr>
<tr>
<td>4.f.5.</td>
<td>Directional control malfunction.</td>
</tr>
<tr>
<td>4.f.7.</td>
<td>Stability augmentation system failure.</td>
</tr>
<tr>
<td>4.f.9.</td>
<td>Recovery From Unusual Attitudes.</td>
</tr>
<tr>
<td>4.f.10.</td>
<td>Settling with Power.</td>
</tr>
<tr>
<td>4.g.</td>
<td>Other (listed on the SOQ).</td>
</tr>
</tbody>
</table>

5. Instrument Procedures

<p>| 5.a. | Instrument Arrival. |
| 5.b. | Holding. |
| 5.c. | Precision Instrument Approach. |
| 5.c.1. | Normal—All engines operating. |
| 5.c.2. | Manually controlled—One or more engines inoperative. |
| 5.c.3. | Approach procedures: |
| 5.c.3.a. | PAR. |
| 5.c.3.b. | GPS. |
| 5.c.3.c. | ILS. |
| 5.c.3.c.1. | Manual (raw data). |
| 5.c.3.c.2. | Autopilot * only. |
| 5.c.3.c.3. | Flight director only. |
| 5.c.3.c.4. | Autopilot * and flight director (if appropriate) coupled. |
| 5.c.3.d. | Other (listed on the SOQ). |
| 5.d.1. | Normal—All engines operating. |
| 5.d.2. | One or more engines inoperative. |
| 5.d.3. | Approach procedures: |
| 5.d.3.a. | NDB. |
| 5.d.3.b. | VOR, RNAV, TACAN, GPS. |
| 5.d.3.c. | ASR. |
| 5.d.3.d. | Circling. |
| 5.d.3.e. | Helicopter only. |</p>
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.d.3.f.</td>
<td>Other (listed on the SOQ).</td>
</tr>
<tr>
<td>5.e.</td>
<td>Missed Approach.</td>
</tr>
<tr>
<td>5.e.1.</td>
<td>All engines operating.</td>
</tr>
<tr>
<td>5.e.2.</td>
<td>One or more engines inoperative.</td>
</tr>
<tr>
<td>5.e.3.</td>
<td>Stability augmentation system failure.</td>
</tr>
<tr>
<td>5.e.4.</td>
<td>Other (listed on the SOQ).</td>
</tr>
<tr>
<td>6.</td>
<td>Landings and Approaches to Landings</td>
</tr>
<tr>
<td>6.a.2.</td>
<td>Steep.</td>
</tr>
<tr>
<td>6.a.3.</td>
<td>Shallow.</td>
</tr>
<tr>
<td>6.a.4.</td>
<td>Crosswind.</td>
</tr>
<tr>
<td>6.b.</td>
<td>Landings.</td>
</tr>
<tr>
<td>6.b.1.</td>
<td>Normal.</td>
</tr>
<tr>
<td>6.b.1.a.</td>
<td>Running.</td>
</tr>
<tr>
<td>6.b.1.b.</td>
<td>From Hover.</td>
</tr>
<tr>
<td>6.b.2.</td>
<td>Crosswind.</td>
</tr>
<tr>
<td>6.b.3.</td>
<td>Tailwind.</td>
</tr>
<tr>
<td>6.b.4.</td>
<td>One or more engines inoperative.</td>
</tr>
<tr>
<td>6.b.5.</td>
<td>Rejected Landing.</td>
</tr>
<tr>
<td>6.b.6.</td>
<td>Other (listed on the SOQ).</td>
</tr>
<tr>
<td>7.</td>
<td>Normal and Abnormal Procedures (any phase of flight)</td>
</tr>
<tr>
<td>7.a.</td>
<td>Helicopter and powerplant systems operation (as applicable).</td>
</tr>
<tr>
<td>7.a.1.</td>
<td>Anti-icing/deicing systems.</td>
</tr>
<tr>
<td>7.a.2.</td>
<td>Auxiliary powerplant.</td>
</tr>
<tr>
<td>7.a.3.</td>
<td>Communications.</td>
</tr>
<tr>
<td>7.a.4.</td>
<td>Electrical system.</td>
</tr>
<tr>
<td>7.a.5.</td>
<td>Environmental system.</td>
</tr>
<tr>
<td>7.a.6.</td>
<td>Fire detection and suppression.</td>
</tr>
<tr>
<td>7.a.7.</td>
<td>Flight control system.</td>
</tr>
<tr>
<td>7.a.8.</td>
<td>Fuel system.</td>
</tr>
<tr>
<td>7.a.9.</td>
<td>Engine oil system.</td>
</tr>
<tr>
<td>7.a.10.</td>
<td>Hydraulic system.</td>
</tr>
<tr>
<td>7.a.11.</td>
<td>Landing gear.</td>
</tr>
<tr>
<td>7.a.13.</td>
<td>Pneumatic.</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Operations tasks</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>7.a.14</td>
<td>Powerplant.</td>
</tr>
<tr>
<td>7.a.15</td>
<td>Flight control computers.</td>
</tr>
<tr>
<td>7.a.16</td>
<td>Fly-by-wire controls.</td>
</tr>
<tr>
<td>7.a.17</td>
<td>Stabilizer.</td>
</tr>
<tr>
<td>7.a.18</td>
<td>Stability augmentation and control augmentation system(s).</td>
</tr>
<tr>
<td>7.a.19</td>
<td>Other (listed on the SOQ).</td>
</tr>
<tr>
<td>7.b</td>
<td>Flight management and guidance system (as applicable).</td>
</tr>
<tr>
<td>7.b.1</td>
<td>Airborne radar.</td>
</tr>
<tr>
<td>7.b.2</td>
<td>Automatic landing aids.</td>
</tr>
<tr>
<td>7.b.3</td>
<td>Autopilot.*</td>
</tr>
<tr>
<td>7.b.4</td>
<td>Collision avoidance system.</td>
</tr>
<tr>
<td>7.b.5</td>
<td>Flight data displays.</td>
</tr>
<tr>
<td>7.b.6</td>
<td>Flight management computers.</td>
</tr>
<tr>
<td>7.b.7</td>
<td>Head-up displays.</td>
</tr>
<tr>
<td>7.b.8</td>
<td>Navigation systems.</td>
</tr>
<tr>
<td>7.b.9</td>
<td>Other (listed on the SOQ).</td>
</tr>
<tr>
<td>8</td>
<td>Emergency Procedures (as applicable)</td>
</tr>
<tr>
<td>8.a</td>
<td>Autorotative Landing.</td>
</tr>
<tr>
<td>8.b</td>
<td>Air hazard avoidance.</td>
</tr>
<tr>
<td>8.c</td>
<td>Ditching.</td>
</tr>
<tr>
<td>8.d</td>
<td>Emergency evacuation.</td>
</tr>
<tr>
<td>8.e</td>
<td>Inflight fire and smoke removal.</td>
</tr>
<tr>
<td>8.f</td>
<td>Retreating blade stall recovery.</td>
</tr>
<tr>
<td>8.g</td>
<td>Mast bumping.</td>
</tr>
<tr>
<td>8.h</td>
<td>Loss of tail rotor effectiveness.</td>
</tr>
<tr>
<td>8.i</td>
<td>Other (listed on the SOQ).</td>
</tr>
<tr>
<td>9</td>
<td>Postflight Procedures</td>
</tr>
<tr>
<td>9.a</td>
<td>After-Landing Procedures.</td>
</tr>
<tr>
<td>9.b</td>
<td>Parking and Securing.</td>
</tr>
<tr>
<td>9.b.1</td>
<td>Engine and systems operation.</td>
</tr>
<tr>
<td>9.b.2</td>
<td>Parking brake operation.</td>
</tr>
<tr>
<td>9.b.3</td>
<td>Rotor brake operation.</td>
</tr>
<tr>
<td>9.b.4</td>
<td>Abnormal/emergency procedures.</td>
</tr>
<tr>
<td>10</td>
<td>Instructor Operating Station (IOS), as appropriate</td>
</tr>
<tr>
<td>10.a</td>
<td>Power Switch(es).</td>
</tr>
<tr>
<td>10.b</td>
<td>Helicopter conditions.</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Operations tasks</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>10.b.1.</td>
<td>Gross weight, center of gravity, fuel loading and allocation, etc.</td>
</tr>
<tr>
<td>10.b.2.</td>
<td>Helicopter systems status.</td>
</tr>
<tr>
<td>10.b.3.</td>
<td>Ground crew functions (e.g., ext. power).</td>
</tr>
<tr>
<td>10.c.</td>
<td>Airports.</td>
</tr>
<tr>
<td>10.c.1.</td>
<td>Selection.</td>
</tr>
<tr>
<td>10.c.2.</td>
<td>Runway selection.</td>
</tr>
<tr>
<td>10.c.3.</td>
<td>Preset positions (e.g., ramp, over final approach fix).</td>
</tr>
<tr>
<td>10.d.</td>
<td>Environmental controls.</td>
</tr>
<tr>
<td>10.d.1.</td>
<td>Temperature.</td>
</tr>
<tr>
<td>10.d.2.</td>
<td>Climate conditions (e.g., ice, rain).</td>
</tr>
<tr>
<td>10.d.3.</td>
<td>Wind speed and direction.</td>
</tr>
<tr>
<td>10.e.</td>
<td>Helicopter system malfunctions.</td>
</tr>
<tr>
<td>10.e.1.</td>
<td>Insertion/deletion.</td>
</tr>
<tr>
<td>10.e.2.</td>
<td>Problem clear.</td>
</tr>
<tr>
<td>10.f.</td>
<td>Locks, Freezes, and Repositioning.</td>
</tr>
<tr>
<td>10.f.1.</td>
<td>Problem (all) freeze/release.</td>
</tr>
<tr>
<td>10.f.2.</td>
<td>Position (geographic) freeze/release.</td>
</tr>
<tr>
<td>10.f.3.</td>
<td>Repositioning (locations, freezes, and releases).</td>
</tr>
<tr>
<td>10.f.4.</td>
<td>Ground speed control.</td>
</tr>
<tr>
<td>10.g.</td>
<td>Sound Controls.</td>
</tr>
<tr>
<td>10.g.1.</td>
<td>On/off/adjustment.</td>
</tr>
<tr>
<td>10.h.</td>
<td>Control Loading System (as applicable).</td>
</tr>
<tr>
<td>10.h.1.</td>
<td>On/off/emergency stop.</td>
</tr>
<tr>
<td>10.i.</td>
<td>Observer Stations.</td>
</tr>
<tr>
<td>10.i.1.</td>
<td>Position.</td>
</tr>
<tr>
<td>10.i.2.</td>
<td>Adjustments.</td>
</tr>
</tbody>
</table>

* "Autopilot" means attitude retention mode of operation.

TABLE D3B—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS AIRPORT OR LANDING AREA CONTENT REQUIREMENTS FOR QUALIFICATION AT LEVEL 7 FTD

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Functional test content requirements for Level 7 FTDs. The following is the minimum airport/landing area model content requirement to satisfy visual capability tests, and provides suitable visual cues to allow completion of all functions and subjective tests described in this attachment for Level 7 FTDs.</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Operations tasks</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>1.a.</td>
<td>A minimum of one (1) representative airport and one (1) representative helicopter landing area model. The airport and the helicopter landing area may be contained within the same visual model. If this option is selected, the approach path to the airport runway(s) and the approach path to the helicopter landing area must be different. The model(s) used to meet the following requirements may be demonstrated at either a fictional or a real-world airport or helicopter landing area, but each must be acceptable to the sponsor’s TPAA, selectable from the IOS, and listed on the SOQ.</td>
</tr>
<tr>
<td>1.b.</td>
<td>Fidelity of the Visual Scene. The fidelity of the visual scene must be sufficient for the aircrew to visually identify the airport and/or helicopter landing area; determine the position of the simulated helicopter within the visual scene; successfully accomplish take-offs, approaches, and landings; and maneuver around the airport and/or helicopter landing area on the ground, or hover taxi, as necessary.</td>
</tr>
<tr>
<td>1.b.1.</td>
<td>For each of the airport/helicopter landing areas described in 1.a., the FTD visual system must be able to provide at least the following:</td>
</tr>
<tr>
<td>1.b.1.a.</td>
<td>A night and twilight (dusk) environment.</td>
</tr>
<tr>
<td>1.b.1.b.</td>
<td>A daylight environment.</td>
</tr>
<tr>
<td>1.c.</td>
<td>Runways:</td>
</tr>
<tr>
<td>1.c.1.</td>
<td>Visible runway number.</td>
</tr>
<tr>
<td>1.c.2.</td>
<td>Runway threshold elevations and locations must be modeled to provide sufficient correlation with helicopter systems (e.g., altimeter).</td>
</tr>
<tr>
<td>1.c.3.</td>
<td>Runway surface and markings.</td>
</tr>
<tr>
<td>1.c.4.</td>
<td>Lighting for the runway in use including runway edge and centerline.</td>
</tr>
<tr>
<td>1.c.5.</td>
<td>Lighting, visual approach aid (VASI or PAPI) and approach lighting of appropriate colors.</td>
</tr>
<tr>
<td>1.c.6.</td>
<td>Taxiway lights.</td>
</tr>
<tr>
<td>1.d.</td>
<td>Helicopter landing area.</td>
</tr>
<tr>
<td>1.d.1.</td>
<td>Standard heliport designation (“H”) marking, properly sized and oriented.</td>
</tr>
<tr>
<td>1.d.2.</td>
<td>Perimeter markings for the Touchdown and Lift-Off Area (TLOF) or the Final Approach and Takeoff Area (FATO), as appropriate.</td>
</tr>
<tr>
<td>1.d.3.</td>
<td>Perimeter lighting for the TLOF or the FATO areas, as appropriate.</td>
</tr>
<tr>
<td>1.d.4.</td>
<td>Appropriate markings and lighting to allow movement from the runway or helicopter landing area to another part of the landing facility.</td>
</tr>
<tr>
<td>2.</td>
<td>Visual scene management.</td>
</tr>
<tr>
<td>2.a.</td>
<td>The following is the minimum visual scene management requirements for a Level 7 FTD.</td>
</tr>
<tr>
<td>2.b.</td>
<td>Runway and helicopter landing area approach lighting must fade into view appropriately in accordance with the environmental conditions set in the FTD.</td>
</tr>
<tr>
<td>3.</td>
<td>Visual feature recognition.</td>
</tr>
<tr>
<td>3.a.</td>
<td>For runways: Runway definition, strobe lights, approach lights, and edge lights from 5 sm (8 km) of the threshold.</td>
</tr>
<tr>
<td>3.b.</td>
<td>For runways: Centerline lights and taxiway definition from 3 sm (5 km).</td>
</tr>
<tr>
<td>3.c.</td>
<td>For runways: Visual Approach Aid lights (VASI or PAPI) from 5 sm (8 km) of the threshold.</td>
</tr>
<tr>
<td>3.d.</td>
<td>For runways: Runway threshold lights and touchdown zone from 2 sm (3 km).</td>
</tr>
</tbody>
</table>
TABLE D3B—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS AIRPORT OR LANDING AREA CONTENT REQUIREMENTS FOR QUALIFICATION AT LEVEL 7 FTD—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.e.</td>
<td>For runways and helicopter landing areas: Markings within range of landing lights for night/twilight scenes and the surface resolution test on daylight scenes, as required.</td>
</tr>
<tr>
<td>3.f.</td>
<td>For circling approaches: The runway of intended landing and associated lighting must fade into view in a non-distracting manner.</td>
</tr>
<tr>
<td>3.g.</td>
<td>For helicopter landing areas: Landing direction lights and raised FATO lights from 1 sm (1.5 km).</td>
</tr>
<tr>
<td>3.h.</td>
<td>For helicopter landing areas: Flush mounted FATO lights, TLOF lights, and the lighted windsock from 0.5 sm (750 m).</td>
</tr>
</tbody>
</table>

4. **Airport or Helicopter Landing Area Model Content.**

The following prescribes the minimum requirements for an airport/helicopter landing area visual model and identifies other aspects of the environment that must correspond with that model for a Level 7 FTD. For circling approaches, all tests apply to the runway used for the initial approach and to the runway of intended landing. If all runways or landing areas in a visual model used to meet the requirements of this attachment are not designated as “in use,” then the “in use” runways/landing areas must be listed on the SOQ (e.g., KCORD, Rwys 9R, 14L, 22R). Models of airports or helicopter landing areas with more than one runway or landing area must have all significant runways or landing areas not “in-use” visually depicted for airport/runway/landing area recognition purposes. The use of white or off white light strings that identify the runway or landing area for twilight and night scenes are acceptable for this requirement; and rectangular surface depictions are acceptable for daylight scenes. A visual system’s capabilities must be balanced between providing visual models with an accurate representation of the airport and a realistic representation of the surrounding environment. Each runway or helicopter landing area designated as an “in-use” runway or area must include the following detail that is developed using airport pictures, construction drawings and maps, or other similar data, or developed in accordance with published regulatory material; however, this does not require that such models contain details that are beyond the design capability of the currently qualified visual system. Only one “primary” taxi route from parking to the runway end or helicopter takeoff/landing area will be required for each “in-use” runway or helicopter takeoff/landing area.

4.a. The surface and markings for each “in-use” runway or helicopter landing area must include the following:

4.a.1. For airports: Runway threshold markings, runway numbers, touchdown zone markings, fixed distance markings, runway edge markings, and runway centerline stripes.

4.a.2. For helicopter landing areas: Markings for standard heliport identification (“H”) and TLOF, FATO, and safety areas.

4.b. The lighting for each “in-use” runway or helicopter landing area must include the following:

4.b.1. For airports: Runway approach, threshold, edge, end, centerline (if applicable), touchdown zone (if applicable), leadoff, and visual landing aid lights or light systems for that runway.

4.b.2. For helicopter landing areas: Landing direction, raised and flush FATO, TLOF, windsock lighting.

4.c. The taxiway surface and markings associated with each “in-use” runway or helicopter landing area must include the following:

4.c.1. For airports: Taxiway edge, centerline (if appropriate), runway hold lines, and ILS critical area(s).

4.c.2. For helicopter landing areas: Taxiways, taxi routes, and aprons.

4.d. The taxiway lighting associated with each “in-use” runway or helicopter landing area must include the following:

4.d.1. For airports: Taxiway edge, centerline (if appropriate), runway hold lines, ILS critical areas.

4.d.2. For helicopter landing areas: Taxiways, taxi routes, and aprons.

4.d.3. For airports: Taxiway lighting of correct color.

4.e. Airport signage associated with each “in-use” runway or helicopter landing area must include the following:

4.e.1. For airports: Signs for runway distance remaining, intersecting runway with taxiway, and intersecting taxiway with taxiway.

4.e.2. For helicopter landing areas: As appropriate for the model used.

4.f. Required visual model correlation with other aspects of the airport or helicopter landing environment simulation.
TABLE D3B—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS AIRPORT OR LANDING AREA CONTENT
REQUIREMENTS FOR QUALIFICATION AT LEVEL 7 FTD—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.f.1.</td>
<td>The airport or helicopter landing area model must be properly aligned with the navigational aids that are associated with operations at the "in-use" runway or helicopter landing area.</td>
</tr>
<tr>
<td>4.f.2.</td>
<td>The simulation of runway or helicopter landing area contaminants must be correlated with the displayed runway surface and lighting, if applicable.</td>
</tr>
</tbody>
</table>

5. Correlation with helicopter and associated equipment.
 The following are the minimum correlation comparisons that must be made for a Level 7 FTD.

5.a. | Visual system compatibility with aerodynamic programming.
5.b. | Visual cues to assess sink rate and depth perception during landings.
5.c. | Accurate portrayal of environment relating to FTD attitudes.
5.d. | The visual scene must correlate with integrated helicopter systems, where installed (e.g., terrain, traffic and weather avoidance systems and Head-up Guidance System (HGS)).
5.e. | Representative visual effects for each visible, own-ship, helicopter external light(s)—taxi and landing light flares (including independent operation, if appropriate).
5.f. | The effect of rain removal devices.

6. Scene quality.
 The following are the minimum scene quality tests that must be conducted for a Level 7 FTD.

6.a. | System light points must be free from distracting jitter, smearing and streaking.
6.b. | Demonstration of occulting through each channel of the system in an operational scene.
6.c. | Six discrete light step controls (0–5).

7. Special weather representations, which include visibility and RVR, measured in terms of distance.
 Visibility/RVR checked at 2,000 ft (600 m) above the airport or helicopter landing area and at two heights below 2,000 ft with at least 500 ft of separation between the measurements. The measurements must be taken within a radius of 10 sm (16 km) from the airport or helicopter landing area.

7.a. | Effects of fog on airport lighting such as halos and defocus.
7.b. | Effect of own-ship lighting in reduced visibility, such as reflected glare, including landing lights, strobes, and beacons.

8. Instructor control of the following:
 The following are the minimum instructor controls that must be available in a Level 7 FTD.

8.a. | Environmental effects: E.g., cloud base, cloud effects, cloud density, visibility in statute miles/kilometers and RVR in feet/meters.
8.b. | Airport or helicopter landing area selection.
8.c. | Airport or helicopter landing area lighting, including variable intensity.
8.d. | Dynamic effects including ground and flight traffic.

End GPS Requirement

Begin Information

9. An example of being able to combine two airport models to achieve two "in-use" runways: One runway designated as the "in-use" runway in the first model of the airport, and the second runway designated as the "in-use" runway in the second model of the same airport. For example, the clearance is for the ILS approach to Runway 27, Circle to Land on Runway 18 right. Two airport visual models might be used: The first with Runway 27 designated as the "in use" runway for the approach to runway 27, and the second with Runway 18 Right designated as the "in use" runway. When the pilot breaks off the ILS approach to runway 27, the instructor may change to the second airport visual model in which runway 18 Right is designated as the "in use" runway, and the pilot would make a visual approach and landing. This process is acceptable to the FAA as long as the temporary interruption due to the visual model change is not distracting to the pilot.
TABLE D3B—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS AIRPORT OR LANDING AREA CONTENT REQUIREMENTS FOR QUALIFICATION AT LEVEL 7 FTD—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>Sponsors are not required to provide every detail of a runway, but the detail that is provided should be correct within reasonable limits.</td>
</tr>
</tbody>
</table>

End Information

TABLE D3C—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS LEVEL 7 FTD VISUAL REQUIREMENTS

ADDITIONAL VISUAL MODELS BEYOND MINIMUM REQUIRED FOR QUALIFICATION CLASS II AIRPORT OR HELICOPTER LANDING AREA MODELS

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>This table specifies the minimum airport or helicopter landing area visual model content and functionality necessary to add visual models to an FTD’s visual model library (i.e., beyond those necessary for qualification at the stated level) without the necessity of further involvement of the NSPM or TPAA.</td>
<td></td>
</tr>
</tbody>
</table>

1. **Visual scene management.**

The following is the minimum visual scene management requirements.

1.a. The installation and direction of the following lights must be replicated for the "in-use" surface:

1.a.1. For "in-use" runways: Strobe lights, approach lights, runway edge lights, visual landing aids, runway centerline lights, threshold lights, and touchdown zone lights.

1.a.2. For "in-use" helicopter landing areas: Ground level TLOF perimeter lights, elevated TLOF perimeter lights (if applicable), Optional TLOF lights (if applicable), ground FATO perimeter lights, elevated TLOF lights (if applicable), landing direction lights.

2. **Visual feature recognition.**

The following are the minimum distances at which runway or landing area features must be visible. Distances are measured from runway threshold or a helicopter landing area to an aircraft aligned with the runway or helicopter landing area on a 3° glide-slope from the aircraft to the touchdown point, in simulated meteorological conditions. For circling approaches, all tests apply to the runway used for the initial approach and to the runway of intended landing.

2.a. For Runways.

2.a.1. Strobe lights, approach lights, and edge lights from 5 sm (8 km) of the threshold.

2.a.2. Centerline lights and taxiway definition from 3 sm (6 km).

2.a.3. Visual Approach Aid lights (VASI or PAPI) from 5 sm (8 km) of the threshold.

2.a.4. Threshold lights and touchdown zone lights from 2 sm (3 km).

2.a.5. Markings within range of landing lights for night/twilight (dusk) scenes and as required by the surface resolution test on daylight scenes.

2.a.6. For circling approaches, the runway of intended landing and associated lighting must fade into view in a non-distracting manner.

2.b. For Helicopter landing areas.

2.b.1. Landing direction lights and raised FATO lights from 2 sm (3 km).

2.b.2. Flush mounted FATO lights, TOFL lights, and the lighted windsock from 1 sm (1500 m).

2.b.3. Hover taxiway lighting (yellow/blue/yellow cylinders) from TOFL area.

2.b.4. Markings within range of landing lights for night/twilight (dusk) scenes and as required by the surface resolution test on daylight scenes.
Table D3C—Table of Functions and Subjective Tests Level 7 FTD Visual Requirements Additional Visual Models Beyond Minimum Required for Qualification Class II Airport or Helicopter Landing Area Models—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
</table>
| 3. | Airport or Helicopter Landing Area Model Content. The following prescribes the minimum requirements for what must be provided in an airport visual model and identifies other aspects of the airport environment that must correspond with that model. The detail must be developed using airport pictures, construction drawings and maps, or other similar data, or developed in accordance with published regulatory material; however, this does not require that airport or helicopter landing area models contain details that are beyond the designed capability of the currently qualified visual system. For circling approaches, all requirements of this section apply to the runway used for the initial approach and to the runway of intended landing. Only one “primary” taxi route from parking to the runway end or helicopter takeoff/landing area will be required for each “in-use” runway or helicopter takeoff/landing area.
3.a. The surface and markings for each “in-use” runway or helicopter landing area must include the following:
3.a.1. For airports: Runway threshold markings, runway numbers, touchdown zone markings, fixed distance markings, runway edge markings, and runway centerline stripes.
3.a.2. For helicopter landing areas: Standard heliport marking ("H"), TOFL, FATO, and safety areas.
3.b. The lighting for each “in-use” runway or helicopter landing area must include the following:
3.b.1. For airports: Runway approach, threshold, edge, end, centerline (if applicable), touchdown zone (if applicable), leadoff, and visual landing aid lights or light systems for that runway.
3.b.2. For helicopter landing areas: Landing direction, raised and flush FATO, TOFL, windsock lighting.
3.c. The taxiway surface and markings associated with each “in-use” runway or helicopter landing area must include the following:
3.c.1. For airports: Taxiway edge, centerline (if appropriate), runway hold lines, and ILS critical area(s).
3.c.2. For helicopter landing areas: Taxiways, taxi routes, and aprons.
3.d. The taxiway lighting associated with each “in-use” runway or helicopter landing area must include the following:
3.d.1. For airports: Runway edge, centerline (if appropriate), runway hold lines, ILS critical areas.
3.d.2. For helicopter landing areas: Taxiways, taxi routes, and aprons.
4. Required visual model correlation with other aspects of the airport environment simulation. The following are the minimum visual model correlation tests that must be conducted for Level 7 FTD.
4.a. The airport model must be properly aligned with the navigational aids that are associated with operations at the “in-use” runway.
4.b. Slopes in runways, taxiways, and ramp areas, if depicted in the visual scene, must not cause distracting or unrealistic effects.
5. Correlation with helicopter and associated equipment. The following are the minimum correlation comparisons that must be made.
5.a. Visual system compatibility with aerodynamic programming.
5.b. Accurate portrayal of environment relating to flight simulator attitudes.
5.c. Visual cues to assess sink rate and depth perception during landings.
6. Scene quality. The following are the minimum scene quality tests that must be conducted.
6.a. Light points free from distracting jitter, smearing or streaking.
6.b. Surfaces and textural cues free from apparent and distracting quantization (aliasing).
7. Instructor controls of the following. The following are the minimum instructor controls that must be available.
7.a. Environmental effects, e.g., cloud base (if used), cloud effects, cloud density, visibility in statute miles/kilometers and RVR in feet/meters. |
TABLE D3C—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS LEVEL 7 FTD VISUAL REQUIREMENTS

ADDITIONAL VISUAL MODELS BEYOND MINIMUM REQUIRED FOR QUALIFICATION CLASS II AIRPORT OR HELICOPTER LANDING AREA MODELS—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.b.</td>
<td>Airport/Heliport selection.</td>
</tr>
<tr>
<td>7.c.</td>
<td>Airport/Heliport lighting including variable intensity.</td>
</tr>
<tr>
<td>7.d.</td>
<td>Dynamic effects including ground and flight traffic.</td>
</tr>
</tbody>
</table>

End QPS Requirements

Begin Information

8. Sponsors are not required to provide every detail of a runway or helicopter landing area, but the detail that is provided must be correct within the capabilities of the system.

End Information

TABLE D3D—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS LEVEL 6 FTD

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
</table>

Tasks in this table are subject to evaluation if appropriate for the helicopter simulated as indicated in the SOQ Configuration List or for a Level 6 FTD. Items not installed or not functional on the FTD and not appearing on the SOQ Configuration List, are not required to be listed as exceptions on the SOQ.

1. Preflight Procedures

1.a. Preflight Inspection (Flight Deck Only) switches, indicators, systems, and equipment.

1.b. APU/Engine start and run-up.

1.b.1. Normal start procedures.

1.b.2. Alternate start procedures.

1.b.3. Abnormal starts and shutdowns.

1.b.4. Rotor engagement.

1.b.5. System checks.

2. Takeoff and Departure Phase

2.a. Instrument.

2.b. Takeoff with engine failure after critical decision point (CDP).

3. Climb

3.b. One engine inoperative.

4. Inflight Maneuvers

4.b. Flying qualities.

4.c. Tums.

4.c.1. Timed.

4.c.2. Normal.

4.c.3. Steep.

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.e.1.</td>
<td>Engine fire.</td>
</tr>
<tr>
<td>4.e.2.</td>
<td>Engine failure.</td>
</tr>
<tr>
<td>4.e.3.</td>
<td>In-flight engine shutdown (and restart, if applicable).</td>
</tr>
<tr>
<td>4.e.4.</td>
<td>Fuel governing system failures (e.g., FADEC malfunction).</td>
</tr>
<tr>
<td>4.e.5.</td>
<td>Directional control malfunction (restricted to the extent that the maneuver may not terminate in a landing).</td>
</tr>
<tr>
<td>4.e.6.</td>
<td>Hydraulic failure.</td>
</tr>
<tr>
<td>4.e.7.</td>
<td>Stability augmentation system failure.</td>
</tr>
</tbody>
</table>

5. Instrument Procedures

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.b.1.</td>
<td>All engines operating.</td>
</tr>
<tr>
<td>5.b.2.</td>
<td>One or more engines inoperative.</td>
</tr>
<tr>
<td>5.b.3.</td>
<td>Approach procedures:</td>
</tr>
<tr>
<td>5.b.4.</td>
<td>PAR.</td>
</tr>
<tr>
<td>5.b.5.</td>
<td>ILS.</td>
</tr>
<tr>
<td>5.b.7.</td>
<td>Flight director only.</td>
</tr>
<tr>
<td>5.b.8.</td>
<td>Autopilot* and flight director (if appropriate) coupled.</td>
</tr>
<tr>
<td>5.c.2.</td>
<td>Normal—All engines operating.</td>
</tr>
<tr>
<td>5.c.3.</td>
<td>One or more engines inoperative.</td>
</tr>
<tr>
<td>5.c.4.</td>
<td>Approach procedures:</td>
</tr>
<tr>
<td>5.c.5.</td>
<td>NDB.</td>
</tr>
<tr>
<td>5.c.6.</td>
<td>VOR, RNAV, TACAN, GPS.</td>
</tr>
<tr>
<td>5.c.7.</td>
<td>ASR.</td>
</tr>
<tr>
<td>5.c.8.</td>
<td>Helicopter only.</td>
</tr>
<tr>
<td>5.d.2.</td>
<td>All engines operating.</td>
</tr>
<tr>
<td>5.d.3.</td>
<td>One or more engines inoperative.</td>
</tr>
<tr>
<td>5.d.4.</td>
<td>Stability augmentation system failure.</td>
</tr>
</tbody>
</table>

6. Normal and Abnormal Procedures (any phase of flight)

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.a.1.</td>
<td>Helicopter and powerplant systems operation (as applicable).</td>
</tr>
<tr>
<td>6.a.2.</td>
<td>Anti-icing/deicing systems.</td>
</tr>
<tr>
<td>6.a.3.</td>
<td>Auxiliary power-plant.</td>
</tr>
<tr>
<td>6.a.4.</td>
<td>Communications.</td>
</tr>
<tr>
<td>Entry No.</td>
<td>Operations tasks</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>6.a.4</td>
<td>Electrical system.</td>
</tr>
<tr>
<td>6.a.5</td>
<td>Environmental system.</td>
</tr>
<tr>
<td>6.a.6</td>
<td>Fire detection and suppression.</td>
</tr>
<tr>
<td>6.a.7</td>
<td>Flight control system.</td>
</tr>
<tr>
<td>6.a.8</td>
<td>Fuel system.</td>
</tr>
<tr>
<td>6.a.9</td>
<td>Engine oil system.</td>
</tr>
<tr>
<td>6.a.10</td>
<td>Hydraulic system.</td>
</tr>
<tr>
<td>6.a.11</td>
<td>Landing gear.</td>
</tr>
<tr>
<td>6.a.12</td>
<td>Oxygen.</td>
</tr>
<tr>
<td>6.a.13</td>
<td>Pneumatic.</td>
</tr>
<tr>
<td>6.a.14</td>
<td>Powerplant.</td>
</tr>
<tr>
<td>6.a.15</td>
<td>Flight control computers.</td>
</tr>
<tr>
<td>6.a.16</td>
<td>Stability augmentation and control augmentation system(s).</td>
</tr>
<tr>
<td>6.b.</td>
<td>Flight management and guidance system (as applicable).</td>
</tr>
<tr>
<td>6.b.1</td>
<td>Airborne radar.</td>
</tr>
<tr>
<td>6.b.2</td>
<td>Automatic landing aids.</td>
</tr>
<tr>
<td>6.b.3</td>
<td>Autopilot.*</td>
</tr>
<tr>
<td>6.b.4</td>
<td>Collision avoidance system.</td>
</tr>
<tr>
<td>6.b.5</td>
<td>Flight data displays.</td>
</tr>
<tr>
<td>6.b.6</td>
<td>Flight management computers.</td>
</tr>
<tr>
<td>6.b.7</td>
<td>Navigation systems.</td>
</tr>
</tbody>
</table>

7. Postflight Procedures

7.b.	Engine and systems operation.
7.c.	Parking brake operation.
7.d.	Rotor brake operation.
7.e.	Abnormal/emergency procedures.

8. Instructor Operating Station (IOS), as appropriate

8.a.	Power Switch(es).
8.b.1	Helicopter conditions.
8.b.2	Gross weight, center of gravity, fuel loading and allocation, etc.
8.b.3	Helicopter systems status.
8.b.4	Ground crew functions (e.g., ext. power).
8.c.	Airports and landing areas.
8.c.1	Number and selection.
8.c.2	Runway or landing area selection.
Table D3D—Table of Functions and Subjective Tests Level 6 FTD—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.c.3.</td>
<td>Preset positions (e.g., ramp, over FAF).</td>
</tr>
<tr>
<td>8.c.4.</td>
<td>Lighting controls.</td>
</tr>
<tr>
<td>8.d.</td>
<td>Environmental controls.</td>
</tr>
<tr>
<td>8.d.1</td>
<td>Temperature.</td>
</tr>
<tr>
<td>8.d.2.</td>
<td>Climate conditions (e.g., ice, rain).</td>
</tr>
<tr>
<td>8.d.3.</td>
<td>Wind speed and direction.</td>
</tr>
<tr>
<td>8.e.</td>
<td>Helicopter system malfunctions.</td>
</tr>
<tr>
<td>8.e.1.</td>
<td>Insertion/deletion.</td>
</tr>
<tr>
<td>8.e.2.</td>
<td>Problem clear.</td>
</tr>
<tr>
<td>8.f.</td>
<td>Locks, Freezes, and Repositioning.</td>
</tr>
<tr>
<td>8.f.1.</td>
<td>Problem (all) freeze/release.</td>
</tr>
<tr>
<td>8.f.2.</td>
<td>Position (geographic) freeze/release.</td>
</tr>
<tr>
<td>8.f.3.</td>
<td>Repositioning (locations, freezes, and releases).</td>
</tr>
<tr>
<td>8.f.4.</td>
<td>Ground speed control.</td>
</tr>
<tr>
<td>8.g.</td>
<td>Sound Controls. On/off/adjustment.</td>
</tr>
<tr>
<td>8.h.</td>
<td>Control Loading System (as applicable) On/off/emergency stop.</td>
</tr>
<tr>
<td>8.i.</td>
<td>Observer Stations.</td>
</tr>
<tr>
<td>8.i.1.</td>
<td>Position.</td>
</tr>
<tr>
<td>8.i.2.</td>
<td>Adjustments.</td>
</tr>
</tbody>
</table>

* "Autopilot" means attitude retention mode of operation.

Table D3E—Table of Functions and Subjective Tests Level 5 FTD

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasks in this table are subject to evaluation if appropriate for the helicopter simulated as indicated in the SOQ Configuration List or for a Level 5 FTD. Items not installed or not functional on the FTD and not appearing on the SOQ are not required to be listed as exceptions on the SOQ.</td>
<td></td>
</tr>
</tbody>
</table>

1. Preflight Procedures

1.a. Preflight Inspection (Flight Deck Only) switches, indicators, systems, and equipment.

1.b. APU/Engine start and run-up.

1.b.1. Normal start procedures.

1.b.2. Alternate start procedures.

1.b.3. Abnormal starts and shutdowns.

2. Climb

2.a. Normal.

3. Inflight Maneuvers

3.a. Performance.

3.b. Tums, Normal.
TABLE D3E—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS LEVEL 5 FTD—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QPS requirements</td>
</tr>
</tbody>
</table>

4. Instrument Procedures
4. a. Coupled instrument approach maneuvers (as applicable for the systems installed).

5. Normal and Abnormal Procedures (any phase of flight)
5. a. Normal system operation (installed systems).
5. b. Abnormal/Emergency system operation (installed systems).

6. Postflight Procedures
6. b. Engine and systems operation.
6. c. Parking brake operation.
6. e. Abnormal/emergency procedures.

7. Instructor Operating Station (IOS), as appropriate
7. a. Power Switch(es).
7. b. Preset positions (ground; air)
7. c. Helicopter system malfunctions.
7. c.1. Insertion/deletion.
7. c.2. Problem clear.
7. d. Control Loading System (as applicable) On/off/emergency stop.
7. e. Observer Stations.
7. e.1. Position.
7. e.2. Adjustments.

TABLE D3F—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS LEVEL 4 FTD

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QPS requirements</td>
</tr>
</tbody>
</table>

Tasks in this table are subject to evaluation if appropriate for the helicopter simulated as indicated in the SOQ Configuration List or for a Level 4 FTD. Items not installed or not functional on the FTD and not appearing on the SOQ Configuration List, are not required to be listed as exceptions on the SOQ.

1. Preflight Procedures
1. a. Preflight Inspection (Flight Deck Only) switches, indicators, systems, and equipment.
1. b. APU/Engine start and run-up.
1. b.1. Normal start procedures.
1. b.2. Alternate start procedures.
1. b.3. Abnormal starts and shutdowns.

2. Normal and Abnormal Procedures (any phase of flight)
2. a. Normal system operation (installed systems).
2. b. Abnormal/Emergency system operation (installed systems).
TABLE D3F—TABLE OF FUNCTIONS AND SUBJECTIVE TESTS LEVEL 4 FTD—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Operations tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPS requirements</td>
<td></td>
</tr>
<tr>
<td>3. Postflight Procedures</td>
<td></td>
</tr>
<tr>
<td>3.a. Park and Securing.</td>
<td></td>
</tr>
<tr>
<td>3.b. Engine and systems operation.</td>
<td></td>
</tr>
<tr>
<td>3.c. Parking brake operation.</td>
<td></td>
</tr>
<tr>
<td>4. Instructor Operating Station (IOS), as appropriate</td>
<td></td>
</tr>
<tr>
<td>4.a. Power Switch(es).</td>
<td></td>
</tr>
<tr>
<td>4.b. Preset positions (ground; air)</td>
<td></td>
</tr>
<tr>
<td>4.c. Helicopter system malfunctions.</td>
<td></td>
</tr>
<tr>
<td>4.c.1 Insertion/deletion.</td>
<td></td>
</tr>
<tr>
<td>4.c.2 Problem clear.</td>
<td></td>
</tr>
</tbody>
</table>

ATTACHMENT 4 TO APPENDIX D TO PART 60—SAMPLE DOCUMENTS

TABLE OF CONTENTS

- Figure D4A Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation Form
- Figure D4B Attachment: FTD Information Form
- Figure A4C Sample Letter of Compliance
- Figure D4D Sample Qualification Test Guide Cover Page
- Figure D4E Sample Statement of Qualification—Certificate
- Figure D4F Sample Statement of Qualification—Configuration List
- Figure D4G Sample Statement of Qualification—List of Qualified Tasks
- Figure D4H Sample Continuing Qualification Evaluation Requirements Page
- Figure D4I Sample MQTG Index of Effective FTD Directives

359
Attachment 4 to Appendix D to Part 60—
Figure D4A – Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation

INFORMATION

Date ________

Mr. Charles A. Spillner
Manager, National Simulator Program
Federal Aviation Administration
100 Hartsfield Centre Parkway, Suite 400
Atlanta, GA 30354

Dear Mr. Spillner:

RE: Request for Initial/Upgrade Evaluation Date

This is to advise you of our intent to request an (initial or upgrade) evaluation of our (FTD Manufacturer), (Aircraft Type/Level) Flight Training Device (FTD), (FAA ID Number, if previously qualified), located in (City, State) at the (Facility) on (Proposed Evaluation Date). (The proposed evaluation date shall not be more than 180 days following the date of this letter.) The FTD will be sponsored by (Name of Training Center/Air Carrier).

FAA Designator (Letter Code). The FTD will be sponsored as follows; (Select One)

☐ The FTD will be used within the sponsor’s FAA approved training program and placed on the sponsor’s Training/Operations Specifications.

☐ The FTD will be used for dry lease only.

We agree to provide the formal request for the evaluation to your staff as follows: (check one)

☐ For QTG tests run at the factory, not later, than 45 days prior to the proposed evaluation date with the additional “V3 on-site” tests provided not later than 14 days prior to the proposed evaluation date.

☐ For QTG tests run on-site, not later than 30 days prior to the proposed evaluation date.

We understand that the formal request will contain the following documents:

11. Principal Operations Inspector (POI) or Training Center Program Manager’s (TCPM) endorsement.
12. Complete QTG.

If we are unable to meet the above requirements, we understand this may result in a significant delay, perhaps 45 days or more, in rescheduling and completing the evaluation.

(The sponsor should add additional comments as necessary).

Please contact (Name Telephone and Fax Number of Sponsor’s Contact) to confirm the date for this initial evaluation. We understand a member of your National Simulator Program staff will respond to this request within 14 days.

A copy of this letter of intent has been provided to (Name), the Principal Operations Inspector (POI) and/or Training Center Program Manager (TCPM).

Sincerely,

Attachment: FTD Information Form

c: POI/TCPM

360
<table>
<thead>
<tr>
<th>Date:</th>
<th>[] Initial [] Upgrade [] Continuing Qualification [] Special [] Reinstatement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsor Name:</td>
<td>FSTD Location:</td>
</tr>
<tr>
<td>Address:</td>
<td>Physical Address:</td>
</tr>
<tr>
<td>City:</td>
<td>City:</td>
</tr>
<tr>
<td>State:</td>
<td>State:</td>
</tr>
<tr>
<td>Country:</td>
<td>Country:</td>
</tr>
<tr>
<td>ZIP:</td>
<td>ZIP:</td>
</tr>
<tr>
<td>Manager:</td>
<td>Nearest Airport:</td>
</tr>
<tr>
<td>Sponsor ID No:</td>
<td>(Four Letter FAA Designator)</td>
</tr>
<tr>
<td></td>
<td>Nearest Airport: (Airport Designator)</td>
</tr>
</tbody>
</table>

Type of Evaluation Requested:

<table>
<thead>
<tr>
<th>Aircraft Make/model/series:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Qualification:</td>
</tr>
<tr>
<td>Date: Level</td>
</tr>
<tr>
<td>Manufacturer's Identification or Serial Number</td>
</tr>
<tr>
<td>Upgrade Qualification:</td>
</tr>
<tr>
<td>Date: Level</td>
</tr>
<tr>
<td>eMQTG</td>
</tr>
</tbody>
</table>

Qualification Basic:

- [] A
- [] B
- [] Interim C
- [] C
- [] D
- [] 6
- [] ?
- [] Provisional Status

Other Technical Information:

<table>
<thead>
<tr>
<th>FAA FSTD ID No:</th>
<th>FSTD Manufacturer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convertible FSTD:</td>
<td></td>
</tr>
<tr>
<td>Date of Manufacture:</td>
<td></td>
</tr>
<tr>
<td>Related FAA ID No:</td>
<td></td>
</tr>
<tr>
<td>Sponsor FSTD ID No:</td>
<td></td>
</tr>
</tbody>
</table>

Engine model(s) and data revision:

- Source of aerodynamic model:

FMS identification and revision level:

- Source of aerodynamic coefficient data:

Visual system manufacturer/model:

- Aerodynamic data revision number:

Flight control data revision:

- Visual system display:

Motion system manufacturer/type:

- FSTD computer(s) identification:

National Aviation Authority (NAA):

- (If Applicable)

NAA FSTD ID No:

- Last NAA Evaluation Date:

NAA Qualification Level:

-

NAA Qualification Basis:

-

Visual System Manufacturer and Type:

- FSTD Seats Available:

Motion System Manufacturer and Type:

-

361
Attachment 4 to Appendix D to Part 60—
Figure D4B — Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation
Attachment: FSTD Information Form

INFORMATION

<table>
<thead>
<tr>
<th>Aircraft Equipment:</th>
<th>Engine Type(s):</th>
<th>Flight Instrumentation:</th>
<th>Engine Instrumentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>☐ EFIS ☐ HUD ☐ HGS ☐ EPVS</td>
<td>☐ EICAS ☐ FADEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐ TCAS ☐ GPWS ☐ Plain View</td>
<td>☐ Other:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>☐ WX Radar</td>
<td>☐ Other:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Airport Models:</th>
<th>3.6.1</th>
<th>3.6.2</th>
<th>3.6.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Airport Designator</td>
<td>Airport Designator</td>
<td>Airport Designator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circle to Land:</th>
<th>3.7.1</th>
<th>3.7.2</th>
<th>3.7.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Airport Designator</td>
<td>Approach</td>
<td>Landing Runway</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visual Ground Segment</th>
<th>3.8.1</th>
<th>3.8.2</th>
<th>3.8.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Airport Designator</td>
<td>Approach</td>
<td>Landing Runway</td>
</tr>
</tbody>
</table>

Section 2. Supplementary Information

FAA Training Program Approval Authority: ☐ POH ☐ TCM ☐ Other: __________
Name: __________
Tel: __________
Fax: __________
Email: __________
Office: __________

FSTD Scheduling Person:
Name: __________
Address 1: __________
City: __________
ZIP: __________
Tel: __________
Fax: __________
State: __________
Email: __________

FSTD Technical Contact:
Name: __________
Address 1: __________
City: __________
ZIP: __________
Tel: __________
Fax: __________
State: __________
Email: __________

Section 3. Training, Testing and Checking Considerations

<table>
<thead>
<tr>
<th>Area/Function/Maneuver</th>
<th>Requested</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Pilot - Training / Checks (142)</td>
<td>☐</td>
<td>__________</td>
</tr>
<tr>
<td>Commercial Pilot - Training/Checks (142)</td>
<td>☐</td>
<td>__________</td>
</tr>
<tr>
<td>Multi-Engine Rating - Training / Checks (142)</td>
<td>☐</td>
<td>__________</td>
</tr>
<tr>
<td>Instrument Rating - Training / Checks (142)</td>
<td>☐</td>
<td>__________</td>
</tr>
<tr>
<td>Type Rating - Training / Checks (135/121/142)</td>
<td>☐</td>
<td>__________</td>
</tr>
<tr>
<td>Proficiency Checks (135/121/142)</td>
<td>☐</td>
<td>__________</td>
</tr>
<tr>
<td>CAT I: (RVR 2400/1800 ft, DH200 ft)</td>
<td>☐</td>
<td>__________</td>
</tr>
</tbody>
</table>
Attachment 4 to Appendix D to Part 60—

Figure D4B – Sample Letter, Request for Initial, Upgrade, or Reinstatement Evaluation

Attachment: FSTD Information Form

<table>
<thead>
<tr>
<th>INFORMATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT II (RVR 1200 ft, DH 100 ft)</td>
<td></td>
</tr>
<tr>
<td>CAT III * (lowest minimum) RVR ft</td>
<td></td>
</tr>
<tr>
<td>* State CAT III (≤ 700 ft), CAT IIb (≤ 150 ft), or CAT IIc (0 ft)</td>
<td></td>
</tr>
<tr>
<td>Circling Approach</td>
<td></td>
</tr>
<tr>
<td>Windshear Training</td>
<td></td>
</tr>
<tr>
<td>Windshear Training (AW 121.409(d) 121 Turbojets Only)</td>
<td></td>
</tr>
<tr>
<td>Generic Unusual Attitudes and Recoveries within the Normal Flight Envelope</td>
<td></td>
</tr>
<tr>
<td>Specific Unusual Attitudes Recoveries</td>
<td></td>
</tr>
<tr>
<td>Auto-coupled Approach/Auto Go Around</td>
<td></td>
</tr>
<tr>
<td>Auto-land / Roll Out Guidance</td>
<td></td>
</tr>
<tr>
<td>TCAS/ACAS I / II</td>
<td></td>
</tr>
<tr>
<td>WX-Radar</td>
<td></td>
</tr>
<tr>
<td>HUD</td>
<td></td>
</tr>
<tr>
<td>HGS</td>
<td></td>
</tr>
<tr>
<td>EFVS</td>
<td></td>
</tr>
<tr>
<td>Future Air Navigation Systems</td>
<td></td>
</tr>
<tr>
<td>GPWS / EGWPS</td>
<td></td>
</tr>
<tr>
<td>ETPS Capability</td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td></td>
</tr>
<tr>
<td>SMGCS</td>
<td></td>
</tr>
<tr>
<td>Helicopter Slope Landings</td>
<td></td>
</tr>
<tr>
<td>Helicopter External Load Operations</td>
<td></td>
</tr>
<tr>
<td>Helicopter Pinnacle Approach to Landings</td>
<td></td>
</tr>
<tr>
<td>Helicopter Night Vision Maneuvers</td>
<td></td>
</tr>
<tr>
<td>Helicopter Category A Takeoffs</td>
<td></td>
</tr>
</tbody>
</table>
(Date)

Mr. (Name of Training Program Approval Authority):
(Name of FAA FSDO)
(Address)
(City/State/Zip)

Dear Mr. (Name of TPAA):

RE: Letter of Compliance

(Operator Sponsor Name) requests evaluation of our (Aircraft Type) FTD for Level (__) qualification. The (FTD Manufacturer Name) FTD with (Visual System Manufacturer Name/Model) system is fully defined on the FTD Information page of the accompanying Qualification Test Guide (QTG). We have completed the tests of the FTD and certify that it meets all applicable requirements of FAR parts 121, 125, or 135, and the guidance of (AC 120-40B or 14 CFR Part 60). Appropriate hardware and software configuration control procedures have been established. Our Pilot(s), (Name(s)), who are qualified on (Aircraft Type) aircraft have assessed the FTD and have found that it conforms to the (Operator/Sponsor) (Aircraft Type) flight deck configuration and that the simulated systems and subsystems function equivalently to those in the aircraft. The above named pilot(s) have also assessed the performance and the flying qualities of the FTD and find that it represents the respective aircraft.

(Added Comments may be placed here)

Sincerely,

(Sponsor Representative)

cc:

FAA, National Simulator Program
INFORMATION

<table>
<thead>
<tr>
<th>SPONSOR NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPONSOR ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FAA QUALIFICATION TEST GUIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SPECIFIC HELICOPTER MODEL)</td>
</tr>
</tbody>
</table>

| |
| for example |
| |
| Vertilite AB-320 |

<table>
<thead>
<tr>
<th>(FTD Identification Including Manufacturer, Serial Number, Visual System Used)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FTD Level)</td>
</tr>
<tr>
<td>(Qualification Performance Standard Used)</td>
</tr>
<tr>
<td>(FTD Location)</td>
</tr>
</tbody>
</table>

FAA Initial Evaluation

<table>
<thead>
<tr>
<th>Date: ________________</th>
<th>Date: ________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sponsor)</td>
<td>Date: ________________</td>
</tr>
<tr>
<td>Manager, National Simulator Program, FAA</td>
<td>Date: ________________</td>
</tr>
</tbody>
</table>
Certificate of Qualification

This is to certify that representatives of the National Simulator Program completed an evaluation of the

Go-Fast Training Center
Vertiflite AB-320 Flight Training Device
FAA Identification Number 889

And found it to meet the standards set forth in
14 CFR Part 60, Appendix D
Qualification Performance Standards

The Master Qualification Test Guide and the attached
Configuration List and List of Qualified Tasks
Provide the Qualification Basis for this device to operate at

Level 6

Until April 30, 2010

Unless sooner rescinded or extended by the National Simulator Program Manager

March 15, 2009
(date)

C. Nordlie
(for the NSPM)
Statement of Qualification

Configuration List

<table>
<thead>
<tr>
<th>Date:</th>
<th>Section 1. FSTD Information and Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsor Name:</td>
<td>FSTD Location</td>
</tr>
<tr>
<td>Address:</td>
<td>Physical Address:</td>
</tr>
<tr>
<td>City:</td>
<td>City:</td>
</tr>
<tr>
<td>State:</td>
<td>State:</td>
</tr>
<tr>
<td>Country:</td>
<td>Country:</td>
</tr>
<tr>
<td>ZIP:</td>
<td>ZIP:</td>
</tr>
<tr>
<td>Manager:</td>
<td></td>
</tr>
<tr>
<td>Sponsor ID No:</td>
<td>Nearest Airport: (Airport Designator)</td>
</tr>
<tr>
<td>Type of Evaluation Requested:</td>
<td>Initial □ Upgrade □ Continuing Qualification □ Special □ Reinstatement</td>
</tr>
<tr>
<td>Aircraft Make/model/series:</td>
<td></td>
</tr>
<tr>
<td>Initial Qualification:</td>
<td>Date: Level MM/DD/YYYY Manufacturer's Identification or Serial Number</td>
</tr>
<tr>
<td>Upgrade Qualification:</td>
<td>Date: Level MM/DD/YYYY □ eMQTG</td>
</tr>
<tr>
<td>Qualification Basis:</td>
<td>□ □ A □ B □ Interim C □ C □ D □ 6 □ 7 □ Provisional Status</td>
</tr>
<tr>
<td>Other Technical Information:</td>
<td></td>
</tr>
<tr>
<td>FAA FSTD ID No:</td>
<td>FSTD Manufacturer:</td>
</tr>
<tr>
<td>Convertible FSTD:</td>
<td>Date of Manufacture: MM/DD/YYYY</td>
</tr>
<tr>
<td>Related FAA ID No:</td>
<td>Sponsor FSTD ID No:</td>
</tr>
<tr>
<td>Engine model(s) and data revision:</td>
<td>Source of aerodynamic model:</td>
</tr>
<tr>
<td>FMS identification and revision level:</td>
<td>Source of aerodynamic coefficient data:</td>
</tr>
<tr>
<td>Visual system manufacturer/model:</td>
<td>Aerodynamic data revision number:</td>
</tr>
<tr>
<td>Flight control data revision:</td>
<td>Visual system display:</td>
</tr>
<tr>
<td>Motion system manufacturer/type:</td>
<td>FSTD computer(s) identification:</td>
</tr>
<tr>
<td>National Aviation Authority (NAA):</td>
<td></td>
</tr>
<tr>
<td>NAA FSTD ID No:</td>
<td>Last NAA Evaluation Date:</td>
</tr>
<tr>
<td>NAA Qualification Level:</td>
<td></td>
</tr>
<tr>
<td>NAA Qualification Basis:</td>
<td></td>
</tr>
</tbody>
</table>
Attachment 4 to Appendix D to Part 60—

Figure D4F – Sample Statement of Qualification – Configuration List

INFORMATION

<table>
<thead>
<tr>
<th>Visual System Manufacturer and Type:</th>
<th>Engine Type(s):</th>
<th>Flight Instrumentation:</th>
<th>Motion System Manufacturer and Type:</th>
<th>Engine Instrumentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>□ EFIS □ HUD □ HGS □ EFVS</td>
<td>□ TCAS □ GPWS □ Plain View □ GPS □ FMS Type: □</td>
<td>□ ECAS □ FADEC □ Other: □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aircraft Equipment:</th>
<th>Engine Type(s):</th>
<th>Flight Instrumentation:</th>
<th>Motion System Manufacturer and Type:</th>
<th>Engine Instrumentation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>□ EFIS □ HUD □ HGS □ EFVS</td>
<td>□ TCAS □ GPWS □ Plain View □ GPS □ FMS Type: □</td>
<td>□ ECAS □ FADEC □ Other: □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Airport Models:</th>
<th>3.6.1 Airport Designator</th>
<th>3.6.2 Airport Designator</th>
<th>3.6.3 Airport Designator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circle to Land:</td>
<td>3.7.1 Airport Designator</td>
<td>3.7.2 Approach</td>
<td>3.7.3 Landing Runway</td>
</tr>
<tr>
<td>Visual Ground Segment</td>
<td>3.8.1 Airport Designator</td>
<td>3.8.2 Approach</td>
<td>3.8.3 Landing Runway</td>
</tr>
</tbody>
</table>

Section 2. Supplementary Information

FAA Training Program Approval Authority: □ POI □ TCMP □ Other: □

Name:

Tel:

Fax:

Email:

FSTD Scheduling Person:

Name:

Address 1:

City:

ZIP:

Tel:

Fax:

FSTD Technical Contact:

Name:

Address 1:

City:

ZIP:

Tel:

Fax:

Section 3. Training, Testing and Checking Considerations

<table>
<thead>
<tr>
<th>Area/Function/Maneuver</th>
<th>Requested</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Pilot - Training / Checks (142)</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Commercial Pilot - Training / Checks (142)</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Multi-Engine Rating - Training / Checks (142)</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Instrument Rating - Training / Checks (142)</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Type Rating - Training / Checks (135/121/142)</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Proficiency Checks (135/121/142)</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>
Attachment 4 to Appendix D to Part 60—
Figure D4F – Sample Statement of Qualification – Configuration List

<table>
<thead>
<tr>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT I: (RVR 2400/1800 ft. DH200 ft)</td>
</tr>
<tr>
<td>CAT II: (RVR 1200 ft. DH 100 ft)</td>
</tr>
<tr>
<td>CAT IIIa (lowest minimum) RVR __ ft.</td>
</tr>
<tr>
<td>CAT IIIb (< 700 ft.), CAT IIIc (< 150 ft.), or CAT IIIc (0 ft.)</td>
</tr>
<tr>
<td>Circling Approach</td>
</tr>
<tr>
<td>Windshear Training</td>
</tr>
<tr>
<td>Windshear Training (AW 121.409(d), 121 Turbojets Only)</td>
</tr>
<tr>
<td>Generic Unusual Attitudes and Recoveries within the Normal Flight Envelope</td>
</tr>
<tr>
<td>Specific Unusual Attitudes Recoveries</td>
</tr>
<tr>
<td>Auto-coupled Approach/Auto Go Around</td>
</tr>
<tr>
<td>Auto-land / Roll Out Guidance</td>
</tr>
<tr>
<td>TCAS/ACAS I / II</td>
</tr>
<tr>
<td>WX-Radar</td>
</tr>
<tr>
<td>HUD</td>
</tr>
<tr>
<td>HGS</td>
</tr>
<tr>
<td>EFVS</td>
</tr>
<tr>
<td>Future Air Navigation Systems</td>
</tr>
<tr>
<td>GPWS / EGWPS</td>
</tr>
<tr>
<td>ETOPS Capability</td>
</tr>
<tr>
<td>GPS</td>
</tr>
<tr>
<td>SMGCS</td>
</tr>
<tr>
<td>Helicopter Slope Landings</td>
</tr>
<tr>
<td>Helicopter External Load Operations</td>
</tr>
<tr>
<td>Helicopter Pinnacle Approach to Landings</td>
</tr>
<tr>
<td>Helicopter Night Vision Maneuvers</td>
</tr>
<tr>
<td>Helicopter Category A Takeoffs</td>
</tr>
</tbody>
</table>
Attachment 4 to Appendix D to Part 60—
Figure D4G – Sample Statement of Qualification – List of Qualified Tasks

INFORMATION

STATEMENT of QUALIFICATION
LIST of QUALIFIED TASKS

Go-Fast Training Center Vertiflite AB-320 -- Level C -- FAA ID# 888

The FTD is qualified to perform all of the Maneuvers, Procedures, Tasks, and Functions Listed in Appendix D, Attachment 1, Table D1B, Minimum FTD Requirements In Effect on [mm/dd/yyyy] except for the following listed Tasks or Functions.

(Example)

Excepted Tasks:

7.d. Ditching.

Excepted Simulator Systems:

Remote IOS

Additional Qualified Tasks or Functions in addition to those listed in Appendix D, Attachment 3, Table D1B, Minimum FTD Requirements.

(None)
Continuing qualification Evaluation Requirements

Completed at conclusion of Initial Evaluation

<table>
<thead>
<tr>
<th>Continuing qualification Evaluations to be conducted each</th>
<th>Continuing qualification evaluations are due as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fill in) months</td>
<td>(month) and (month) and (month)</td>
</tr>
<tr>
<td></td>
<td>(enter or strike out, as appropriate)</td>
</tr>
</tbody>
</table>

Allotting ______ hours of FTD time.

Signed: __________________________

NSPM / Evaluation Team Leader Date

Revision:

Based on (enter reasoning):

<table>
<thead>
<tr>
<th>Continuing qualification Evaluations are to be conducted each</th>
<th>Continuing qualification evaluations are due as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fill in) months. Allotting ______ hours.</td>
<td>(month) and (month) and (month)</td>
</tr>
<tr>
<td></td>
<td>(enter or strike out, as appropriate)</td>
</tr>
</tbody>
</table>

Signed: __________________________

NSPM / Evaluation Team Leader Date

(Repeat as Necessary)
APPENDIX E TO PART 60—QUALIFICATION PERFORMANCE STANDARDS FOR QUALITY MANAGEMENT SYSTEMS FOR FLIGHT SIMULATION TRAINING DEVICES

BEGIN QPS REQUIREMENTS

a. Not later than May 30, 2010, each current sponsor of an FSTD must submit to the NSPM a proposed Quality Management System (QMS) program as described in this appendix. The NSPM will notify the sponsor of the acceptability of the program, including any required adjustments. Within 6 months of the notification of acceptability, the sponsor must implement the program, conduct internal audits, make required program adjustments as a result of any internal audit, and schedule the NSPM initial audit.

b. First-time FSTD sponsors must submit to the NSPM the proposed QMS program no later than 120 days before the initial FSTD evaluation. The NSPM will notify the sponsor of the acceptability of the program, including any required adjustments. Within 6 months of the notification of acceptability, the sponsor must implement the program, conduct internal audits, make required program adjustments as a result of any internal audit, and schedule the NSPM initial audit.

c. The Director of Operations for a Part 119 certificate holder, the Chief Instructor for a Part 141 certificate holder, or the equivalent for a Part 142 or Flight Engineer School sponsor must designate a Management Representative (MR) who has the authority to establish and modify the sponsor’s policies, practices, and procedures regarding the QMS program for the recurring qualification and the daily use of each FSTD.

d. The minimum content required for an acceptable QMS is found in Table E1. The policies, processes, or procedures described in this table must be maintained in a Quality Manual and will serve as the basis for the following:

 (1) The sponsor-conducted initial and recurring periodic assessments;
 (2) The NSPM-conducted initial and recurring periodic assessments; and
 (3) The continuing surveillance and analysis by the NSPM of the sponsor’s performance and effectiveness in providing a satisfactory FSTD for use on a regular basis.

e. The sponsor must conduct assessments of its QMS program in segments. The segments will be established by the NSPM at the initial assessment, and the interval for the segment assessments will be every 6...
months. The intervals for the segment assessments may be extended beyond 6 months as the QMS program matures, but will not be extended beyond 12 months. The entire QMS program must be assessed every 24 months.

f. The periodic assessments conducted by the NSPM will be conducted at intervals not less than once every 24 months, and include a comprehensive review of the QMS program. These reviews will be conducted more frequently if warranted.

END QPS REQUIREMENTS

BEGIN INFORMATION

i. An example of a segment assessment—At the initial QMS assessment, the NSPM will divide the QMS program into segments (e.g., 6 separate segments). There must be an assessment of a certain number of segments every 6 months (i.e., segments 1 and 2 at the end of the first 6 month period; segments 3 and 4 at the end of the second 6 month period; and segments 5 and 6 at the end of the third 6 month period (or 18 months). As the program matures, the interval between assessments may be extended to 12 months (e.g., segments 1, 2, and 3 at the end of the first year; and segments 4, 5, and 6 at the end of the second year). In both cases, the entire QMS program is assessed at least every 24 months.

b. The following materials are presented to assist sponsors in preparing for an NSPM evaluation of the QMS program. The sample documents include:

(1) The NSPM desk assessment tool for initial evaluation of the required elements of a QMS program.
(2) The NSPM on-site assessment tool for initial and continuing evaluation of the required elements of a QMS program.
(3) An Element Assessment Table that describes the circumstances that exist to warrant a finding of "non-compliance," "non-conformity," "partial compliance," or "partial conformity"; and "acceptable compliance," or "acceptable conformity." A sample Continuation Sheet for additional comments that may be added by the sponsor or the NSPM during a QMS evaluation.
(4) A sample Sponsor Checklist to assist the sponsor in verifying the elements that comprise the required QMS program.
(5) A table showing the essential functions, processes, and procedures that relate to the required QMS components and a cross-reference to each represented task.

1. Additional Information.

(1) In addition to specifically designated QMS evaluations, the NSPM will evaluate the sponsor’s QMS program as part of regularly scheduled FSTD continuing qualification evaluations and no-notice FSTD evaluations, focusing in part on the effectiveness and viability of the QMS program and its contribution to the overall capability of the FSTD to meet the requirements of this part.
(2) The sponsor or MR may delegate duties associated with maintaining the qualification of the FSTD (e.g., corrective and preventive maintenance, scheduling and conducting tests or inspections, functional pre-flight checks) but retain the responsibility and authority for the day-to-day qualification of the FSTD. One person may serve as the sponsor or MR for more than one FSTD, but one FSTD may not have more than one sponsor or MR.
(3) A QMS program may be applicable to more than one certificate holder (e.g., part 119 and part 142 or two part 119 certificate holders) and an MR may work for more than one certificate holder (e.g., part 119 and part 142 or two part 119 certificate holders) as long as the sponsor’s QMS program requirements and the MR requirements are met for each certificate holder.

j. The FAA does not mandate a specific QMS program format, but an acceptable QMS program should contain the following:

(1) A Quality Policy. This is a formal written Quality Policy Statement that is a commitment by the sponsor outlining what the Quality System will achieve.
(2) A MR who has overall authority for monitoring the on-going qualification of assigned FSTDs to ensure that all FSTD qualification issues are resolved as required by this part. The MR should ensure that the QMS program is properly implemented and maintained, and should:
(a) Brief the sponsor’s management on the qualification processes;
(b) Serve as the primary contact point for all matters between the sponsor and the NSPM regarding the qualification of the assigned FSTDs; and
(c) Oversee the day-to-day quality control.
(3) The system and processes outlined in the QMS should enable the sponsor to monitor compliance with all applicable regulations and ensure correct maintenance and performance of the FSTD in accordance with part 60.
(4) A QMS program and a statement acknowledging completion of a periodic review by the MR should include the following:
(a) A maintenance facility that provides suitable FSTD hardware and software tests and maintenance capability.
(b) A recording system in the form of a technical log in which defects, deferred defects, and development projects are listed.
assigned and reviewed within a specified time period.
(c) Routine maintenance of the FSTD and performance of the QTG tests with adequate staffing to cover FSTD operating periods.
(d) A planned internal assessment schedule and a periodic review should be used to verify that corrective action was complete and effective. The assessor should have adequate knowledge of FSTDs and should be acceptable to the NSPM.
(5) The MR should receive Quality System training and brief other personnel on the procedures.

Table E1—FSTD Quality Management System

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>QPS requirement</th>
<th>Information (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1.1</td>
<td>A QMS manual that prescribes the policies, processes, or procedures outlined in this table.</td>
<td>§ 60.5(a).</td>
</tr>
<tr>
<td>E1.2</td>
<td>A policy, process, or procedure specifying how the sponsor will identify deficiencies in the QMS.</td>
<td>§ 60.5(b).</td>
</tr>
<tr>
<td>E1.3</td>
<td>A policy, process, or procedure specifying how the sponsor will document how the QMS program will be changed to address deficiencies.</td>
<td>§ 60.5(b).</td>
</tr>
<tr>
<td>E1.4</td>
<td>A policy, process, or procedure specifying how the sponsor will address proposed program changes (for programs that do not meet the minimum requirements as notified by the NSPM) to the NSPM and receive approval prior to their implementation.</td>
<td>§ 60.5(c).</td>
</tr>
<tr>
<td>E1.5</td>
<td>A policy, process, or procedure specifying how the sponsor will document that at least one FSTD is used within the sponsor’s FAA-approved flight training program for the aircraft or set of aircraft at least once within the 12-month period following the initial or upgrade evaluation conducted by the NSPM and at least once within each subsequent 12-month period thereafter.</td>
<td>§ 60.7(b)(5).</td>
</tr>
<tr>
<td>E1.6</td>
<td>A policy, process, or procedure specifying how the sponsor will document that at least one FSTD is used within the sponsor’s FAA-approved flight training program for the aircraft or set of aircraft at least once within the 12-month period following the first continuing qualification evaluation conducted by the NSP and at least once within each subsequent 12-month period thereafter.</td>
<td>§ 60.7(b)(6).</td>
</tr>
<tr>
<td>E1.7</td>
<td>A policy, process, or procedure specifying how the sponsor will obtain an annual written statement from a qualified pilot (who has flown the subject aircraft or set of aircraft during the preceding 12-month period) that the performance and handling qualities of the subject aircraft or set of aircraft (within the normal operating envelope) are acceptable. Required only if the subject FSTD is not used in the sponsor’s FAA-approved flight training program for the aircraft or set of aircraft at least once within the preceding 12-month period.</td>
<td>§ 60.5(b)(7) and § 60.7(d)(6).</td>
</tr>
<tr>
<td>E1.8</td>
<td>A policy, process, or procedure specifying how independent feedback (from persons recently completing training, evaluation, or obtaining flight experience; instructors and check airmen using the FSTD for training, evaluation, or flight experience sessions; and FSTD technicians and maintenance personnel) will be received and addressed by the sponsor regarding the FSTD and its operation.</td>
<td>§ 60.9(b)(1).</td>
</tr>
<tr>
<td>E1.9</td>
<td>A policy, process, or procedure specifying how and where the FSTD SOQ will be posted, or accessed by an appropriate terminal or display, in or adjacent to the FSTD.</td>
<td>§ 60.9(b)(2).</td>
</tr>
<tr>
<td>E1.10</td>
<td>A policy, process, or procedure specifying how the sponsor’s management representative (MR) is selected and identified by name to the NSPM.</td>
<td>§ 60.9(c) and Appendix E, paragraph (d).</td>
</tr>
<tr>
<td>E1.11</td>
<td>A policy, process, or procedure specifying the MR authority and responsibility for the following:</td>
<td>§ 60.9(c)(2), (3), and (4).</td>
</tr>
<tr>
<td>E1.11.a</td>
<td>Monitoring the on-going qualification of assigned FSTDs to ensure all matters regarding FSTD qualification are completed as required by this part.</td>
<td></td>
</tr>
<tr>
<td>E1.11.b</td>
<td>Ensuring that the QMS is properly maintained by overseeing the QMS policies, practices, or procedures and modifying as necessary.</td>
<td></td>
</tr>
<tr>
<td>Entry No.</td>
<td>QPS requirement</td>
<td>Information (reference)</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>E1.11.a.</td>
<td>Regularly briefing sponsor’s management on the status of the on-going FSTD qualification program and the effectiveness and efficiency of the QMS.</td>
<td>§ 60.13; QPS Appendices A, B, C, and D.</td>
</tr>
<tr>
<td>E1.11.d.</td>
<td>Serving as the primary contact point for all matters between the sponsor and the NSPM regarding the qualification of assigned FSTDs.</td>
<td></td>
</tr>
<tr>
<td>E1.11.e.</td>
<td>Delegating the MR assigned duties to an individual at each of the sponsor’s locations, as appropriate.</td>
<td></td>
</tr>
<tr>
<td>E1.12.</td>
<td>A policy, process, or procedure specifying how the sponsor will:</td>
<td></td>
</tr>
<tr>
<td>E1.12.a.</td>
<td>Ensure that the data made available to the NSPM (the validation data package) includes the aircraft manufacturer’s flight test data (or other data approved by the NSPM) and all relevant data developed after the type certificate was issued (e.g., data developed in response to an airworthiness directive) if the data results from a change in performance, handling qualities, functions, or other characteristics of the aircraft that must be considered for flight crewmember training, evaluation, or experience requirements.</td>
<td></td>
</tr>
<tr>
<td>E1.12.b.</td>
<td>Notify the NSPM within 10 working days of becoming aware that an addition to or a revision of the flight related data or airplane systems related data is available if this data is used to program or operate a qualified FSTD.</td>
<td></td>
</tr>
<tr>
<td>E1.12.c.</td>
<td>Maintain a liaison with the manufacturer of the aircraft being simulated (or with the holder of the aircraft type certificate for the aircraft being simulated if the manufacturer is no longer in business), and if appropriate, with the person who supplied the aircraft data package for the FFS for the purposes of receiving notification of data package changes.</td>
<td></td>
</tr>
<tr>
<td>E1.13.</td>
<td>A policy, process, or procedure specifying how the sponsor will make available all special equipment and qualified personnel needed to conduct tests during initial, continuing qualification, or special evaluations.</td>
<td>§ 60.14.</td>
</tr>
<tr>
<td>E1.14.</td>
<td>A policy, process, or procedure specifying how the sponsor will submit to the NSPM a request to evaluate the FSTD for initial qualification at a specific level and simultaneously request the TPA to forward a concurring letter to the NSPM; including how the MR will use qualified personnel to confirm the following:</td>
<td>§ 60.15(a)–(d); § 60.15(b); § 60.15(b)(i); § 60.15(b)(ii); § 60.15(b)(iii).</td>
</tr>
<tr>
<td>E1.14.a.</td>
<td>That the performance and handling qualities of the FSTD represent those of the aircraft or set of aircraft within the normal operating envelope.</td>
<td></td>
</tr>
<tr>
<td>E1.14.b.</td>
<td>The FSTD systems and sub-systems (including the simulated aircraft systems) functionally represent those in the aircraft or set of aircraft.</td>
<td></td>
</tr>
<tr>
<td>E1.14.c.</td>
<td>The flight deck represents the configuration of the specific type or aircraft make, model, and series aircraft being simulated, as appropriate.</td>
<td></td>
</tr>
<tr>
<td>E1.15.</td>
<td>A policy, process, or procedure specifying how the objective tests are completed at the sponsor’s training facility for an initial evaluation.</td>
<td>§ 60.15(e).</td>
</tr>
<tr>
<td>E1.16.</td>
<td>A policy, process, or procedure specifying how the sponsor will update the QTG with the results of the FAA-witnessed tests and demonstrations together with the results of the objective tests and demonstrations after the NSPM completes the evaluation for initial qualification.</td>
<td>§ 60.15(h).</td>
</tr>
<tr>
<td>E1.17.</td>
<td>A policy, process, or procedure specifying how the sponsor will make the MQTG available to the NSPM upon request.</td>
<td>§ 60.15(i).</td>
</tr>
<tr>
<td>E1.18.</td>
<td>A policy, process, or procedure specifying how the sponsor will apply to the NSPM for additional qualification(s) to the SOQ.</td>
<td>§ 60.16(a); § 60.16(a)(1)(i); and § 60.16(a)(1)(ii).</td>
</tr>
<tr>
<td>E1.19.</td>
<td>A policy, process, or procedure specifying how the sponsor completes all required Attachment 2 objective tests each year in a minimum of four evenly spaced inspections as specified in the appropriate QPS.</td>
<td>§ 60.19(a)(1) QPS Appendices A, B, C, or D.</td>
</tr>
<tr>
<td>E1.20.</td>
<td>A policy, process, or procedure specifying how the sponsor completes and records a functional preflight check of the FSTD within the preceding 24 hours of FSTD use, including a description of the functional preflight.</td>
<td>§ 60.19(a)(2) QPS Appendices A, B, C, or D.</td>
</tr>
</tbody>
</table>
TABLE E1—FSTD QUALITY MANAGEMENT SYSTEM—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>QPS requirement</th>
<th>Information (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1.21.</td>
<td>A policy, process, or procedure specifying how the sponsor schedules continuing qualification evaluations with the NSPM.</td>
<td>§ 60.19(b)(2).</td>
</tr>
<tr>
<td>E1.22.</td>
<td>A policy, process, or procedure specifying how the sponsor ensures that the FSTD has received a continuing qualification evaluation at the interval described in the MQTG.</td>
<td>§ 60.19(b)(5)–(6).</td>
</tr>
<tr>
<td>E1.23.</td>
<td>A policy, process, or procedure describing how discrepancies are recorded in the FSTD discrepancy log, including:</td>
<td>§ 60.19(c); § 60.19(c)(2)(i); § 60.19(c)(2)(ii).</td>
</tr>
<tr>
<td>E1.23.a.</td>
<td>A description of how the discrepancies are entered and maintained in the log until corrected.</td>
<td></td>
</tr>
<tr>
<td>E1.23.b.</td>
<td>A description of the corrective action taken for each discrepancy, the identity of the individual taking the action, and the date that action is taken.</td>
<td>§ 60.19(c)(2)(ii).</td>
</tr>
<tr>
<td>E1.24.</td>
<td>A policy, process, or procedure specifying how the discrepancy log is kept in a form and manner acceptable to the Administrator and kept in or adjacent to the FSTD. (An electronic log that may be accessed by an appropriate terminal or display in or adjacent to the FSTD is satisfactory.).</td>
<td>§ 60.20.</td>
</tr>
<tr>
<td>E1.25.</td>
<td>A policy, process, or procedure that requires each instructor, check airman, or representative of the Administrator conducting training, evaluation, or flight experience, and each person conducting the preflight inspection, who discovers a discrepancy, including any missing, malfunctioning, or inoperative components in the FSTD, to write or cause to be written a description of that discrepancy into the discrepancy log at the end of the FSTD preflight or FSTD use session.</td>
<td>§ 60.21(c).</td>
</tr>
<tr>
<td>E1.26.</td>
<td>A policy, process, or procedure specifying how the sponsor will apply for initial qualification based on the final aircraft data package approved by the aircraft manufacturer if operating an FSTD based on an interim qualification.</td>
<td>§ 60.23(a)(1)–(2).</td>
</tr>
<tr>
<td>E1.27.</td>
<td>A policy, process, or procedure specifying how the sponsor determines whether an FSTD change qualifies as a modification as defined in § 60.23.</td>
<td>§ 60.23(b).</td>
</tr>
<tr>
<td>E1.28.</td>
<td>A policy, process, or procedure specifying how the sponsor will ensure the FSTD is modified in accordance with any FSTD Directive regardless of the original qualification basis.</td>
<td>§ 60.23(c)(1)(i), (ii), and (iv).</td>
</tr>
<tr>
<td>E1.29.</td>
<td>A policy, process, or procedure specifying how the sponsor will notify the NSPM and TPAA of their intent to use a modified FSTD and to ensure that the modified FSTD will not be used prior to:</td>
<td>§ 60.23(d)–(e).</td>
</tr>
<tr>
<td>E1.29.a.</td>
<td>Twenty-one days since the sponsor notified the NSPM and the TPAA of the proposed modification and the sponsor has not received any response from either the NSPM or the TPAA; or</td>
<td></td>
</tr>
<tr>
<td>E1.29.b.</td>
<td>Twenty-one days since the sponsor notified the NSPM and the TPAA of the proposed modification and one has approved the proposed modification and the other has not responded; or</td>
<td></td>
</tr>
<tr>
<td>E1.29.c.</td>
<td>The FSTD successfully completing any evaluation the NSPM may require in accordance with the standards for an evaluation for initial qualification or any part thereof before the modified FSTD is placed in service.</td>
<td></td>
</tr>
<tr>
<td>E1.30.</td>
<td>A policy, process, or procedure specifying how, after an FSTD modification is approved by the NSPM, the sponsor will:</td>
<td>§ 60.23(d)(1).</td>
</tr>
<tr>
<td>E1.30.a.</td>
<td>Post an addendum to the SOQ until as the NSPM issues a permanent, updated SOQ.</td>
<td></td>
</tr>
<tr>
<td>E1.30.b.</td>
<td>Update the MQTG with current objective test results and appropriate objective data for each affected objective test or other MQTG section affected by the modification.</td>
<td></td>
</tr>
<tr>
<td>E1.30.c.</td>
<td>File in the MQTG the requirement from the NSPM to make the modification and the record of the modification completion.</td>
<td></td>
</tr>
</tbody>
</table>
TABLE E1—FSTD QUALITY MANAGEMENT SYSTEM—Continued

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>QPS requirement</th>
<th>Information (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1.31.</td>
<td>A policy, process, or procedure specifying how the sponsor will track the length of time a component has been missing, malfunctioning, or inoperable (MMI), including:</td>
<td>§60.25(b)–(c), and QPS Appendices A, B, C, or D.</td>
</tr>
<tr>
<td>E1.31.a.</td>
<td>How the sponsor will post a list of MMI components in or adjacent to the FSTD.</td>
<td>§60.27(a)(3).</td>
</tr>
<tr>
<td>E1.31.b.</td>
<td>How the sponsor will notify the NSPM if the MMI has not been repaired or replaced within 30 days.*</td>
<td></td>
</tr>
<tr>
<td>E1.32.</td>
<td>A policy, process, or procedure specifying how the sponsor will notify the NSPM and how the sponsor will seek requalification of the FSTD if the FSTD is moved and reinstalled in a different location.</td>
<td>§60.31.</td>
</tr>
<tr>
<td>E1.33.</td>
<td>A policy, process, or procedure specifying how the sponsor will maintain control of the following: (The sponsor must specify how these records are maintained in plain language form or in coded form; but if the coded form is used, the sponsor must specify how the preservation and retrieval of information will be conducted.).</td>
<td></td>
</tr>
<tr>
<td>E1.33.a.</td>
<td>The MQTG and each amendment.</td>
<td></td>
</tr>
<tr>
<td>E1.33.b.</td>
<td>A record of all FSTD modifications required by this part since the issuance of the original SOQ.</td>
<td></td>
</tr>
<tr>
<td>E1.33.c.</td>
<td>Results of the qualification evaluations (initial and each upgrade) since the issuance of the original SOQ.</td>
<td></td>
</tr>
<tr>
<td>E1.33.d.</td>
<td>Results of the objective tests conducted in accordance with this part for a period of 2 years.</td>
<td></td>
</tr>
<tr>
<td>E1.33.e.</td>
<td>Results of the previous three continuing qualification evaluations, or the continuing qualification evaluations from the previous 2 years, whichever covers a longer period.</td>
<td></td>
</tr>
<tr>
<td>E1.33.f.</td>
<td>Comments obtained in accordance with §60.9(b);</td>
<td></td>
</tr>
<tr>
<td>E1.33.g.</td>
<td>A record of all discrepancies entered in the discrepancy log over the previous 2 years, including the following:</td>
<td></td>
</tr>
<tr>
<td>E1.33.g.1.</td>
<td>A list of the components or equipment that were or are missing, malfunctioning, or inoperative.</td>
<td></td>
</tr>
<tr>
<td>E1.33.g.2.</td>
<td>The action taken to correct the discrepancy.</td>
<td></td>
</tr>
<tr>
<td>E1.33.g.3.</td>
<td>The date the corrective action was taken.</td>
<td></td>
</tr>
<tr>
<td>E1.33.g.4.</td>
<td>The identity of the person determining that the discrepancy has been corrected.</td>
<td></td>
</tr>
</tbody>
</table>

*Note: If the sponsor has an approved discrepancy prioritization system, this item is satisfied by describing how discrepancies are prioritized, what actions are taken, and how the sponsor will notify the NSPM if the MMI has not been repaired or replaced within the specified timeframe.

[Doc. No. FAA–2002–12461, 73 FR 26490, May 9, 2008]

APPENDIX F TO PART 60—DEFINITIONS AND ABBREVIATIONS FOR FLIGHT SIMULATION TRAINING DEVICES

1. Some of the definitions presented below are repeated from the definitions found in 14 CFR PART 1, as indicated parenthetically
BEGIN QPS REQUIREMENTS

2. Definitions

1st Segment—the portion of the takeoff profile from liftoff to gear retraction.

2nd Segment—the portion of the takeoff profile from after gear retraction to initial flap/slat retraction.

3rd Segment—the portion of the takeoff profile after flap/slat retraction is complete.

Aircraft Data Package—a combination of the various types of data used to design, program, manufacture, modify, and test the FSTD.

Airspeed—calibrated airspeed unless otherwise specified and expressed in terms of nautical miles per hour (knots).

Airport Model—

Class I. Whether modeling real world or fictional airports (or landing areas for helicopters), these airport models (or landing areas for helicopters) are those that meet the requirements of Table A5B or C2B, found in attachment 2 of Appendix A or C, as appropriate, are evaluated by the NSPM, and are listed on the SOQ.

Class II. Whether modeling real world or fictional airports (or landing areas for helicopters), these airport models (or landing areas for helicopters) are those models that are in excess of those used for simulator qualification at a specified level. The FSTD sponsor is responsible for determining that these models meet the requirements set out in Table A5C or C3C, found in attachment 2 of Appendix A or C, as appropriate.

Class III. This is a special class of airport model (or landing area for helicopters), used for specific purposes, and includes models that may be incomplete or inaccurate when viewed without restriction, but when appropriate limits are applied (e.g., “valid for use only in visibility conditions less than 1/2 statute mile or RVSM feet,” “valid for use only for approaches to Runway 22L and 22R”), those features may be incomplete or inaccurate may not be able to be recognized such by the crewmember being trained, tested, or checked. Class III airport models used for training, testing, or checking activities under this Chapter requires the certificate holder to submit to the TPAA an appropriate analysis of the skills, knowledge, and abilities necessary for competent performance of the task(s) in which this particular model is to be used, and requires TPAA acceptance of each Class III model.

Altitude—pressure altitude (meters or feet) unless specified otherwise.

Angle of Attack—the angle between the airplane longitudinal axis and the relative wind vector projected onto the airplane plane of symmetry.

Automatic Testing—FSTD testing where all stimuli are under computer control.

Bank—the airplane attitude with respect to or around the longitudinal axis, or roll angle (degrees).

Breakout—the force required at the pilot’s primary controls to achieve initial movement of the control position.

Certificate Holder—a person issued a certificate under parts 119, 141, or 142 of this chapter or a person holding an approved course of training for flight engineers in accordance with part 63 of this chapter.

Closed Loop Testing—a test method where the input stimuli are generated by controllers that drive the FSTD to follow a pre-defined target response.

Computer Controlled Aircraft—an aircraft where all pilot inputs to the control faces are transferred and augmented by computers.

Confined Area (helicopter operations)—an area where the flight of the helicopter is limited in some direction by terrain or the presence of natural or man-made obstructions (e.g., a clearing in the woods, a city street, or a road bordered by trees or power lines are regarded as confined areas).

Control Sweep—movement of the appropriate pilot controller from neutral to an extreme limit in one direction (Forward, Aft, Right, or Left), a continuous movement back through neutral to the opposite extreme position, and then a return to the neutral position.

Convertible FSTD—an FSTD in which hardware and software can be changed so that the FSTD becomes a replica of a different model, usually of the same type aircraft. The same FSTD platform, flight deck shell, motion system, visual system, computers, and peripheral equipment can be used in more than one simulation.

Critical Engine Parameter—the parameter that is the most accurate measure of propulsive force.

Deadband—the amount of movement of the input for a system for which there is no reaction in the output or state of the system observed.

Distance—the length of space between two points, expressed in terms of nautical miles unless otherwise specified.

Discrepancy—as used in this part, an aspect of the FSTD that is not correct with respect to the aircraft being simulated. This includes missing, malfunctioning, or inoperative components that are required to be present and operate correctly for training, evaluation, and experience functions to be creditable. It also includes errors in the documentation used to support the FSTD (e.g., MQTG errors, information missing from the MQTG, or required statements from appropriately qualified personnel).

Downgrade—a permanent change in the qualification level of an FSTD to a lower level.
Driven—a test method where the input stimulus or variable is positioned by automatic means, usually a computer input.

Electronic Copy of the MQTG—an electronic copy of the MQTG (eMQTG), where all objective data obtained from airplane testing, or another approved source, together with correlating objective test results obtained from the performance of the FSTD and a description of the equipment necessary to perform the evaluation for the initial and the continuing qualification evaluations is stored, archived, or presented in either reformatted or digitized electronic format.

Engine—as used in this part, the appliance or structure that supplies propulsive force for movement of the aircraft; i.e., The turbine engine for turbine powered aircraft, the turbine engine and propeller assembly for turbo-propeller powered aircraft; and the reciprocating engine and propeller assembly for reciprocating engine powered aircraft. For purposes of this part, engine failure is the failure of either the engine or propeller assembly to provide thrust higher than idle power thrust due to a failure of either the engine or the propeller assembly.

Evaluation—with respect to an individual, the checking, testing, or review associated with flight crewmember qualification, training, and certification under parts 61, 63, 121, or 135 of this chapter. With respect to an FSTD, the qualification activities for the device (e.g., the objective and subjective tests, the inspections, or the continuing qualification evaluations) associated with the requirements of this part.

Fictional Airport—a visual model of an airport that is a collection of “non-real world” terrain, instrument approach procedures, navigation aids, maps, and visual modeling detail sufficient to enable completion of an Airline Transport Pilot Certificate or Type Rating.

Flight Experience—recency of flight experience for landing credit purposes.

Flight Test Data—(a subset of objective data) aircraft data collected by the aircraft manufacturer or other acceptable data supplier during an aircraft flight test program.

Flight Training Device (FTD)—a replica of aircraft instruments, equipment, panels, and controls in an open flight deck area or an enclosed aircraft flight deck replica. It includes the equipment and computer programs necessary to represent aircraft (or set of aircraft) operations in ground and flight conditions having the full range of capabilities of the systems installed in the device as described in part 60 of this chapter and the qualification performance standard (QPS) for a specific FSTD qualification level. (Part 1)

Free Response—the response of the FSTD after completion of a control input or disturbance.

Frozen—a test condition where one or more variables are held constant with time.

FSTD Approval—the extent to which an FSTD may be used by a certificate holder as authorized by the FAA.

FSTD Directive—a document issued by the FAA to an FSTD sponsor requiring a modification to the FSTD due to a safety-of-flight issue and amending the qualification basis for the FSTD.

FSTD Latency—the additional time for the FSTD to respond to input that is beyond the response time of the aircraft.

FSTD Performance—the overall performance of the FSTD, including aircraft performance (e.g., thrust/drag relationships, climb, range) and flight and ground handling.

Full Flight Simulator (FFS)—a replica of a specific type, make, model, or series aircraft. It includes the equipment and computer programs necessary to represent aircraft operations in ground and flight conditions, a visual system providing an out-of-the-flight deck view, a system that provides cues at least equivalent to those of a three-degree-of-freedom motion system, and has the full range of capabilities of the systems installed in the device as described in part 60 of this chapter and the QPS for a specific FFS qualification level. (Part 1)

Gate Clutter—the static and moving ground traffic (e.g., other airplanes; tugs; power or baggage carts; fueling, catering, or cargo trucks; pedestrians) presented to pose a potential conflict with the simulated aircraft during ground operations around the point where the simulated airplane is to be parked between flights.

Generic Airport Model—a Class III visual model that combines correct navigation aids for a real world airport with a visual model that does not depict that same airport.

Grandfathering—as used in this part, the practice of assigning a qualification basis for an FSTD based on the period of time during which a published set of standards governed the requirements for the initial and continuing qualification of FSTDs. Each FSTD manufactured during this specified period of time is “grandfathered” or held to the standards that were in effect during that time period. The grandfathered standards remain applicable to each FSTD manufactured during the stated time period regardless of any subsequent modification to those standards and regardless of the sponsor, as long as the FSTD remains qualified or is maintained in a non-qualified status in accordance with the specific requirements and time periods prescribed in this part.
Gross Weight—For objective test purposes:

Basic Operating Weight (BOW)—the empty weight of the aircraft plus the weight of the following: Normal oil quantity; lavatory servicing fluid; potable water; required crew members and their baggage; and emergency equipment.

Light Gross Weight—a weight chosen by the sponsor or data provider that is not more than 120% of the BOW of the aircraft being simulated or the minimum practical operating weight of the test aircraft.

Medium Gross Weight—a weight chosen by the sponsor or data provider that is within 10% of the average of the numerical values of the BOW and the maximum certificated gross weight.

Near Maximum Gross Weight—a weight chosen by the sponsor or data provider that is not less than the BOW of the aircraft being simulated plus 80% of the difference between the maximum certificated gross weight (either takeoff weight or landing weight, as appropriate for the test) and the BOW.

Ground Effect—the change in aerodynamic characteristics due to the change in the airflow past the aircraft caused by the proximity of the earth’s surface to the airplane.

Hands Off—a test maneuver conducted without pilot control inputs.

Hands On—a test maneuver conducted with pilot control inputs as required.

Heave—FSTD movement with respect to or along the vertical axis.

Height—the height above ground level (or AGL) expressed in meters or feet.

“In Use” Runway—as used in this part, the runway that is currently selected, able to be used for takeoffs and landings, and has the surface lighting and markings required by this part. Also known as the “active” runway.

Integrated Testing—testing of the FSTD so that all aircraft system models are active and contribute appropriately to the results. With integrated testing, none of the models used are substituted with models or other algorithms intended for testing only.

Irreversible Control System—a control system where movement of the control surface will not backdrive the pilot’s control on the flight deck.

Locked—a test condition where one or more variables are held constant with time.

Manual Testing—FSTD testing conducted without computer inputs except for initial setup, and all modules of the simulation are active.

Master Qualification Test Guide (MQTG)—the FAA-approved Qualification Test Guide with the addition of the FAA-witnessed test results, applicable to each individual FSTD.

Medium—the normal operational weight for a given flight segment.

National Simulator Program Manager (NSPM)—the FAA manager responsible for the overall administration and direction of the National Simulator Program (NSP), or a person approved by that FAA manager.

Near Limiting Performance—the performance level the operating engine must be required to achieve to have sufficient power to land a helicopter after experiencing a single engine failure during takeoff of a multie engine helicopter. The operating engine must be required to operate within at least 5 percent of the maximum RPM or temperature limits of the gas turbine or power turbine, or operate within at least 5 percent of the maximum drive train torque limits. Near limiting performance is based on the existing combination of density altitude, temperature, and helicopter gross weight.

Nominal—the normal operating configuration, atmospheric conditions, and flight parameters for the specified flight segment.

Non-Normal Control—a term used in reference to Computer Controlled Aircraft. It is the state where one or more of the intended control, augmentation, or protection functions are not fully working. Note: Specific terms such as ALTERNATE, DIRECT, SECONDARY, or BACKUP may be used to define an actual level of degradation.

Normal Control—a term used in reference to Computer Controlled Aircraft. It is the state where the intended control, augmentation, and protection functions are fully working.

Objective Data—quantitative data, acceptable to the NSPM, used to evaluate the FSTD.

Objective Test—a quantitative measurement and evaluation of FSTD performance.

Pitch—the airplane attitude with respect to, or around, the lateral axis expressed in degrees.

Power Lever Angle (PLA)—the angle of the pilot’s primary engine control lever(s) on the flight deck. This may also be referred to as THROTTLE or POWER LEVER.

Predicted Data—estimations or extrapolations of existing flight test data or data from other simulation models using engineering analyses, engineering simulations, design data, or wind tunnel data.

Protection Functions—systems functions designed to protect an airplane from exceeding its flight maneuver limitations.

Pulse Input—a step input to a control followed by an immediate return to the initial position.

Qualification Level—the categorization of an FSTD established by the NSPM based on the FSTDs demonstrated technical and operational capabilities as prescribed in this part.

Qualification Performance Standard (QPS)—the collection of procedures and criteria used when conducting objective and subjective tests, to establish FSTD qualification levels. The QPS are published in the appendices to this part, as follows: Appendix A, for Airplane Simulators; Appendix B, for Airplane
Flight Training Devices: Appendix C, for Helicopter Simulators; Appendix D, for Helicopter Flight Training Devices; Appendix E, for Quality Management Systems for Flight Simulation Training Devices; and Appendix F, for Definitions and Abbreviations for Flight Simulation Training Devices.

Qualification Test Guide (QTG)—the primary reference document used for evaluating an aircraft FSTD. It contains test results, statements of compliance and capability, the configuration of the aircraft simulated, and other information for the evaluator to assess the FSTD against the applicable regulatory criteria.

Simulation Quality Management System (SQMS)—a flight simulation quality-systems that can be used for external quality-assurance purposes. It is designed to identify the processes needed, determine the sequence and interaction of the processes, determine criteria and methods required to ensure the effective operation and control of the processes, ensure the availability of information necessary to support the operation and monitoring of the processes, measure, monitor, and analyze the processes, and implement the actions necessary to achieve planned results.

Real-World Airport—as used in this part in reference to airport visual models, a computer generated visual depiction of an existing airport.

Representative—when used as an adjective in this part, typical, demonstrative, or characteristic of, the feature being described. For example, “representative sampling of tests” means a sub-set of the complete set of all tests such that the sample includes one or more of the tests in each of the major categories, the results of which provide the evaluator with an overall understanding of the performance and handling characteristics of the FSTD.

Reversible Control System—a control system in which movement of the control surface will backdrive the pilot’s control on the flight deck.

Roll—the airplane attitude with respect to, or around, the longitudinal axis expressed in degrees.

Set of Aircraft—aircraft that share similar handling and operating characteristics, similar operating envelopes, and have the same number and type of engines or powerplants.

Sideslip Angle—the angle between the relative wind vector and the airplane plane of symmetry. (Note: this definition replaces the current definition of “sideslip.”)

Simulation Quality Management System (SQMS)—the elements of a quality management system for FSTD continuing qualification.

Snapshot—a presentation of one or more variables at a given instant of time.

Special Evaluation—an evaluation of the FSTD for purposes other than initial, upgrade, or continuing qualification. Circumstances that may require a special evaluation include movement of the FSTD to a different location, or an update to FSTD software or hardware that might affect performance or flying qualities.

Sponsor—a certificate holder who seeks or maintains FSTD qualification and is responsible for the prescribed actions as prescribed in this part and the QPS for the appropriate FSTD and qualification level.

Statement of Compliance and Capability (SOC)—a declaration that a specific requirement has been met and explaining how the requirement was met (e.g., gear modeling approach, coefficient of friction sources). The SOC must also describe the capability of the FSTD to meet the requirement, including references to sources of information for showing compliance, rationale to explain how the referenced material is used, mathematical equations and parameter values used, and conclusions reached.

Step Input—an abrupt control input held at a constant value.

Subjective Test—a qualitative assessment of the performance and operation of the FSTD.

Surge—FSTD movement with respect to or along the longitudinal axis.

Sway—FSTD movement with respect to or along the lateral axis.

T₁—Total time of the flare maneuver.

T₂—Total time from initial throttle movement to an increase of 90% of go around power or a decrease of 90% from maximum take-off power.

Time History—a presentation of the change of a variable with respect to time.

Training Program Approval Authority (TPAA)—a person authorized by the Administrator to approve the aircraft flight training program in which the FSTD will be used.

Training Restriction—a temporary condition where an FSTD with missing, malfunctioning, or inoperative (MMI) components may continue to be used at the qualification level indicated on its SOQ, but restricted from completing the tasks for which the correct function of the MMI component is required.

Transport Delay or “Throughput”—the total FSTD system processing time required for an input signal from a pilot primary flight control until motion system, visual system, or instrument response. It is the overall time delay incurred from signal input to output response. It does not include the characteristic delay of the airplane simulated.

Update—an improvement to or modernization of the quality or the accuracy of the FSTD without affecting the qualification level of the FSTD.

Upgrade—the improvement or enhancement of an FSTD for the purpose of achieving a higher qualification level.
Validation Data—objective data used to determine if the FSTD performance is within the tolerances prescribed in the QPS.

Validation Test—an objective test where FSTD parameters are compared to the relevant validation data to ensure that the FSTD performance is within the tolerances prescribed in the QPS.

Visual Data Base—a display that may include one or more airport models.

Visual System Response Time—the interval from a control input to the completion of the visual display scan of the first video field containing the resulting different information.

Yaw—the airplane attitude with respect to, or around, the vertical axis expressed in degrees.

3. Abbreviations
 AGL Above Ground Level (meters or feet).
 AOA Angle of Attack (degrees).
 APD Aircrew Program Designee.
 CCA Computer Controlled Aircraft.
 cd/m² candela/m²², 3.4263 candela/m²² = 1 ft-Lambert.
 cm(s) centimeter, centimeters.
 daN decaNewtons, one (1) decaNewton = 2.2 pounds.
 deg(s) degree, degrees.
 DOF Degrees-of-freedom.
 eMQTG Electronic Master Qualification Test Guide.
 EPR Engine Pressure Ratio.
 FAA Federal Aviation Administration (U.S.).
 FATO Final Approach and Take Off area.
 fpm feet per minute.
 ft foot/feet, 1 foot = 0.304801 meters.
 ft-Lambert foot-Lambert, 1 ft-Lambert = 3.4263 candela/m²².
 g Acceleration due to Gravity (meters or feet/sec²); 1g = 9.81 m/sec² or 32.2 feet/sec².
 G/S Glideslope.
 IATA International Airline Transport Association.
 ICAO International Civil Aviation Organization.
 IGE In ground effect.
 ILS Instrument Landing System.
 IOS Instructor Operating Station.
 IQTG International Qualification Test Guide.
 km Kilometers; 1 km = 0.62137 Statute Miles.
 kPa KiloPascal, 1 kPa = 0.101325 bars.
 kts Knots calibrated airspeed unless otherwise specified, 1 knot = 0.5148 m/sec or 1.889 ft/sec.
 lb(s) pound(s), one (1) pound = 0.44 decanewton.
 LDP Landing decision point.
 MQTG Master Qualification Test Guide.
 M,m Meters, 1 Meter = 3.28083 feet.
 Min(s) Minute, minutes.

MLG Main Landing Gear.
Mpa MegaPascals (1 psi = 6894.76 pascals).
ms millisecond(s).
N NORMAl CONTROL Used in reference to Computer Controlled Aircraft.
nm Nautical Mile(s) 1 Nautical Mile = 6.080 feet.
NN NON-NORMAL CONTROL Used in reference to Computer Controlled Aircraft.
N1 Low Pressure Rotor revolutions per minute, expressed in percent of maximum.
N2 High Pressure Rotor revolutions per minute, expressed in percent of maximum.
N3 High Pressure Rotor revolutions per minute, expressed in percent of maximum.
NSPM National Simulator Program Manager.
NWA Nosewheel Angle (degrees).
OGE Out of ground effect.
PAPI Precision Approach Path Indicator System.
Pf Impact or Feel Pressure, often expressed as “q.”
PLA Power Lever Angle.
PLF Power for Level Flight.
psi pounds per square inch.
QPS Qualification Performance Standard.
QTG Qualification Test Guide.
RAE Royal Aerospace Establishment.
R/C Rate of Climb (meters/sec or feet/min).
R/D Rate of Descent (meters/sec or feet/ min).
REIL Runway End Identifier Lights.
RVIR Runway Visual Range (meters or feet).
sec(s) second, seconds.
sm Statute Mile(s) 1 Statute Mile = 5,280 feet.
SMGCS Surface Movement Guidance and Control System.
SOC Statement of Compliance and Capability.
SOQ Statement of Qualification.
TIR Type Inspection Report.
TLOF Touchdown and Loft Off area.
T/O Takeoff.
VASI Visual Approach Slope Indicator System.
VG8 Visual Ground Segment.
V₁ Decision speed.
V₂ Takeoff safety speed.
Vmc Minimum Control Speed.
Vmcg Minimum Control Speed on the ground.
Vmc MInimum Control Speed—Landing.
Vmu The speed at which the last main landing gear leaves the ground.
VR Rotate Speed.
Vs Stall Speed or minimum speed in the stall.
WAT Weight, Altitude, Temperature.

END QPS REQUIREMENTS

PART 61—CERTIFICATION: PILOTS,
FLIGHT INSTRUCTORS, AND
gROUND INSTRUCTORS

SPECIAL FEDERAL AVIATION REGULATION NO. 73
SPECIAL FEDERAL AVIATION REGULATION NO. 100–2
SPECIAL FEDERAL AVIATION REGULATION NO. 108

Subpart A—General

Sec.
61.1 Applicability and definitions.
61.2 Exercise of privilege.
61.3 Requirement for certificates, ratings, and authorizations.
61.4 Qualification and approval of flight simulators and flight training devices.
61.5 Certificates and ratings issued under this part.
61.7 Obsolete certificates and ratings.
61.9 [Reserved]
61.11 Expired pilot certificates and reissuance.
61.13 Issuance of airman certificates, ratings, and authorizations.
61.14 [Reserved]
61.15 Offenses involving alcohol or drugs.
61.17 Temporary certificate.
61.18 Security disqualification.
61.19 Duration of pilot and instructor certificates.
61.21 Duration of a Category II and a Category III pilot authorization (for other than part 121 and part 135 use).
61.23 Medical certificates: Requirement and duration.
61.25 Change of name.
61.27 Voluntary surrender or exchange of certificate.
61.29 Replacement of a lost or destroyed airman or medical certificate or knowledge test report.
61.31 Type rating requirements, additional training, and authorization requirements.
61.33 Tests: General procedure.
61.35 Knowledge test: Prerequisites and passing grades.
61.37 Knowledge tests: Cheating or other unauthorized conduct.
61.39 Prerequisites for practical tests.
61.41 Flight training received from flight instructors not certificated by the FAA.
61.43 Practical tests: General procedures.
61.45 Practical tests: Required aircraft and equipment.
61.47 Status of an examiner who is authorized by the Administrator to conduct practical tests.
61.49 Retesting after failure.
61.51 Pilot logbooks.
61.52 Use of aeronautical experience obtained in ultralight vehicles.
61.53 Prohibition on operations during medical deficiency.
61.55 Second-in-command qualifications.
61.56 Flight review.
61.57 Recent flight experience: Pilot in command.
61.58 Pilot-in-command proficiency check: Operation of an aircraft that requires more than one pilot flight crewmember or is turbojet-powered.
61.59 Falsification, reproduction, or alteration of applications, certificates, logbooks, reports, or records.
61.60 Change of address.

Subpart B—Aircraft Ratings and Pilot Authorizations

61.61 Applicability.
61.63 Additional aircraft ratings (other than for ratings at the airline transport pilot certification level).
61.64 Use of a flight simulator and flight training device.
61.65 Instrument rating requirements.
61.67 Category II pilot authorization requirements.
61.69 Category III pilot authorization requirements.
61.69 Glider and unpowered ultralight vehicle towing: Experience and training requirements.
61.71 Graduates of an approved training program other than under this part: Special rules.
61.73 Military pilots or former military pilots: Special rules.
61.75 Private pilot certificate issued on the basis of a foreign pilot license.
61.77 Special purpose pilot authorization: Operation of a civil aircraft of the United States and leased by a non-U.S. citizen.

Subpart C—Student Pilots

61.81 Applicability.
61.83 Eligibility requirements for student pilots.
61.85 Application.
61.87 Solo requirements for student pilots.
61.89 General limitations.
61.91 [Reserved]
61.93 Solo cross-country flight requirements.
61.94 Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at airports within, and in airspace located within, Class B, C, and D airspace, or at airports with an operational control tower in other airspace.
61.95 Operations in Class B airspace and at airports located within Class B airspace.
Subpart D—Recreational Pilots

61.96 Applicability and eligibility requirements: General.
61.97 Aeronautical knowledge.
61.98 Flight proficiency.
61.99 Aeronautical experience.
61.100 Pilots based on small islands.
61.101 Recreational pilot privileges and limitations.

Subpart E—Private Pilots

61.102 Applicability.
61.103 Eligibility requirements: General.
61.105 Aeronautical knowledge.
61.107 Flight proficiency.
61.109 Aeronautical experience.
61.110 Night flying exceptions.
61.111 Cross-country flights: Pilots based on small islands.
61.113 Private pilot privileges and limitations: Pilot in command.
61.115 Balloon rating: Limitations.
61.117 Private pilot privileges and limitations: Second in command of aircraft requiring more than one pilot.
61.118–61.120 [Reserved]

Subpart F—Commercial Pilots

61.121 Applicability.
61.123 Eligibility requirements: General.
61.125 Aeronautical knowledge.
61.127 Flight proficiency.
61.129 Aeronautical experience.
61.131 Exceptions to the night flying requirements.
61.133 Commercial pilot privileges and limitations.
61.135–61.141 [Reserved]

Subpart G—Airline Transport Pilots

61.151 Applicability.
61.153 Eligibility requirements: General.
61.155 Aeronautical knowledge.
61.157 Flight proficiency.
61.158 [Reserved]
61.159 Aeronautical experience: Airplane category rating.
61.161 Aeronautical experience: Rotorcraft category and helicopter class rating.
61.163 Aeronautical experience: Powered-lift category rating.
61.165 Additional aircraft category and class ratings.
61.167 Privileges.
61.169–61.171 [Reserved]

Subpart H—Flight Instructors Other Than Flight Instructors With a Sport Pilot Rating

61.181 Applicability.
61.183 Eligibility requirements.
61.185 Aeronautical knowledge.
61.187 Flight proficiency.
61.189 Flight instructor records.
61.191 Additional flight instructor ratings.
61.193 Flight instructor privileges.
61.195 Flight instructor limitations and qualifications.
61.197 Renewal requirements for flight instructor certification.
61.199 Reinstatement requirements of an expired flight instructor certificate.
61.201 [Reserved]

Subpart I—Ground Instructors

61.211 Applicability.
61.213 Eligibility requirements.
61.215 Ground instructor privileges.
61.217 Recent experience requirements.

Subpart J—Sport Pilots

61.301 What is the purpose of this subpart and to whom does it apply?
61.303 If I want to operate a light-sport aircraft, what operating limits and endorsement requirements in this subpart must I comply with?
61.305 What are the age and language requirements for a sport pilot certificate?
61.307 What tests do I have to take to obtain a sport pilot certificate?
61.309 What aeronautical knowledge must I have to apply for a sport pilot certificate?
61.311 What flight proficiency requirements must I meet to apply for a sport pilot certificate?
61.313 What aeronautical experience must I have to apply for a sport pilot certificate?
61.315 What are the privileges and limits of my sport pilot certificate?
61.317 Is my sport pilot certificate issued with aircraft category and class ratings?
61.319 [Reserved]
61.321 How do I obtain privileges to operate an additional category or class of light-sport aircraft?
61.323 [Reserved]
61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in other airspace with an airport having an operational control tower?
61.327 Are there specific endorsement requirements to operate a light-sport aircraft based on V_{NH}?

Subpart K—Flight Instructors With a Sport Pilot Rating

61.401 What is the purpose of this subpart?
61.403 What are the age, language, and pilot certificate requirements for a flight instructor certificate with a sport pilot rating?
61.405 What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating?
61.407 What aeronautical knowledge must I have to apply for a flight instructor certificate with a sport pilot rating?

61.409 What flight proficiency requirements must I meet to apply for a flight instructor certificate with a sport pilot rating?

61.411 What aeronautical experience must I have to apply for a flight instructor certificate with a sport pilot rating?

61.413 What are the privileges of my flight instructor certificate with a sport pilot rating?

61.415 What are the limits of a flight instructor certificate with a sport pilot rating?

61.417 Will my flight instructor certificate with a sport pilot rating list aircraft category and class ratings?

61.419 How do I obtain privileges to provide training in an additional category or class of light aircraft?

61.421 May I give myself an endorsement?

61.423 What are the recordkeeping requirements for a flight instructor with a sport pilot rating?

61.425 How do I renew my flight instructor certificate?

61.427 What must I do if my flight instructor certificate with a sport pilot rating expires?

61.429 May I exercise the privileges of a flight instructor certificate with a sport pilot rating if I hold a flight instructor certificate with another rating?

61.431 What are the awareness training requirements for a flight instructor with a sport pilot rating?

61.433 What must I do if I hold a flight instructor certificate with a sport pilot rating and then change to another rating?

61.435 What are the awareness training requirements for a flight instructor with a sport pilot rating?

61.437 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.439 What do I need to do to apply for a flight instructor certificate with a sport pilot rating?

61.441 What must I do if I hold a flight instructor certificate with a sport pilot rating and desire to operate an aircraft other than the type which is listed on my certificate?

61.443 What are the aeronautical knowledge and experience requirements for a flight instructor with a sport pilot rating?

61.445 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.447 What additional flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.449 What are the awareness training requirements for a flight instructor with a sport pilot rating?

61.451 What are the aeronautical knowledge and experience requirements for a flight instructor with a sport pilot rating?

61.453 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.455 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.457 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.459 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.461 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.463 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.465 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.467 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.469 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.471 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.473 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.475 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.477 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.479 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.481 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.483 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.485 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.487 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.489 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.491 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.493 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.495 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.497 What aeronautical knowledge must I have to apply for a flight instructor certificate with a sport pilot rating?

61.499 What flight proficiency requirements must I meet to apply for a flight instructor certificate with a sport pilot rating?

61.501 What aeronautical experience must I have to apply for a flight instructor certificate with a sport pilot rating?

61.503 What are the privileges of my flight instructor certificate with a sport pilot rating?

61.505 What are the limits of a flight instructor certificate with a sport pilot rating?

61.507 Will my flight instructor certificate with a sport pilot rating list aircraft category and class ratings?

61.509 How do I obtain privileges to provide training in an additional category or class of light aircraft?

61.511 How do I apply for an endorsement to my flight instructor certificate?

61.513 What must I do if my flight instructor certificate with a sport pilot rating expires?

61.515 May I exercise the privileges of a flight instructor certificate with a sport pilot rating if I hold a flight instructor certificate with another rating?

61.517 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.519 What are the awareness training requirements for a flight instructor with a sport pilot rating?

61.521 What are the aeronautical knowledge and experience requirements for a flight instructor with a sport pilot rating?

61.523 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.525 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.527 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.529 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.531 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.533 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.535 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.537 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.539 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.541 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.543 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.545 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.547 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.549 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.551 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.553 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.555 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.557 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.559 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.561 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.563 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.565 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.567 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.569 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.571 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.573 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.575 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.577 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.579 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.581 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.583 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.585 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.587 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.589 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.591 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.593 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.595 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.597 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.599 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.601 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.603 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.605 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.607 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.609 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?

61.611 What flight instruction requirements must I meet to apply for an endorsement to my flight instructor certificate?
(2) No person may act as pilot in command of a Robinson R–44 unless that person—
 (i) Has had at least 200 flight hours in helicopters, at least 50 flight hours of which were in the Robinson R–44. The pilot in command may credit up to 25 flight hours in the Robinson R–22 toward the 50 hour requirement in the Robinson R–44; or
 (ii) Has had at least 10 hours dual instruction in a Robinson helicopter, at least 5 hours of which must have been accomplished in the Robinson R–44 helicopter and has received an endorsement from a certified flight instructor authorized under paragraph (b)(5) of this section that instruction has been given in those maneuvers and procedures, and the instructor has found the applicant proficient to solo a Robinson R–44. This endorsement is valid for a period of 90 days. The dual instruction must include at least the following abnormal and emergency procedures:
 (A) Enhanced training in autorotation procedures;
 (B) Engine rotor RPM control without the use of the governor;
 (C) Low rotor RPM recognition and recovery; and
 (D) Effects of low G maneuvers and proper recovery procedures.
 (3) The flight review will include a review of the training required by this paragraph and is proficient to act as pilot in command of an R–44. Beginning 12 calendar months after the date of the endorsement, the individual may not act as pilot in command unless the individual has completed a flight review in a Robinson R–44 within the preceding 12 calendar months and obtained an endorsement for that flight review. The dual instruction must include at least the following abnormal and emergency procedures:
 (A) Enhanced training in autorotation procedures;
 (B) Engine rotor RPM control without the use of the governor;
 (C) Low rotor RPM recognition and recovery; and
 (D) Effects of low G maneuvers and proper recovery procedures.
 (4) No person may act as pilot in command of a Robinson R–22 unless that person—
 (i) Has had at least 200 flight hours in helicopters, at least 50 flight hours of which were in the Robinson R–22, or for the Robinson R–44, has had at least 200 flight hours in helicopters, 50 flight hours of which were in Robinson helicopters. Up to 25 flight hours of Robinson R–22 flight time may be credited toward the 50 hour requirement.
 (ii) Has had at least 10 hours dual instruction in a Robinson helicopter, at least 5 hours of which must have been accomplished in a Robinson R–22 helicopter prior to operating it in solo flight. In addition, the person must obtain an endorsement from a certified flight instructor authorized under paragraph (b)(5) of this section that instruction has been given in those maneuvers and procedures, and the instructor has found the applicant proficient to solo a Robinson R–22.
 (5) No certificated flight instructor may provide instruction or conduct a flight review in a Robinson R–22 or R–44 unless that instructor—
 (i) Completes the awareness training in paragraph 2(a) of this SFAR.
 (ii) For the Robinson R–22, has had at least 200 flight hours in helicopters, at least 50 flight hours of which were in the Robinson R–22, or for the Robinson R–44, has had at least 200 flight hours in helicopters, 50 flight hours of which were in Robinson helicopters.
 (c) Flight Review:
 (1) No flight review completed to satisfy §61.56 by an individual after becoming eligible to function as pilot in command in a Robinson R–22 helicopter shall be valid for the operation of R–22 helicopter unless that flight review was taken in an R–22.
 (2) No flight review completed to satisfy §61.56 by individual after becoming eligible to function as pilot in command in a Robinson R–44 helicopter shall be valid for the operation of R–44 helicopter unless that flight review was taken in the R–44.
 (3) The flight review will include a review of the awareness training subject areas of paragraph 2(a)(3) of this SFAR and the flight training identified in paragraph 2(b)(5)(ii) of this SFAR.
training identified in paragraph 2(b) of this SFAR.

(d) Currency Requirements: No person may act as pilot in command of a Robinson model R–22 or R–44 helicopter or carrying passengers unless the pilot in command has met the recency of flight experience requirements of §61.57 in an R–22 or R–44, as appropriate.

3. Expiration date. This SFAR No. 73 shall remain in effect until it is revised or rescinded.

SFAR No. 100–2—RELIEF FOR U.S. MILITARY AND CIVILIAN PERSONNEL WHO ARE ASSIGNED OUTSIDE THE UNITED STATES IN SUPPORT OF U.S. ARMED FORCES OPERATIONS

1. Applicability. Flight Standards District Offices are authorized to accept from an eligible person, as described in paragraph 2 of this SFAR, the following:

(a) An expired flight instructor certificate to show eligibility for renewal of a flight instructor certificate under §61.197, or an expired written test report to show eligibility under part 61 to take a practical test;

(b) An expired written test report to show eligibility under §§63.33 and 63.57 to take a practical test; and

(c) An expired written test report to show eligibility to take a practical test required under part 65 or an expired inspection authorization to show eligibility for renewal under §65.93.

2. Eligibility. A person is eligible for the relief described in paragraph 1 of this SFAR if:

(a) The person served in a U.S. military or civilian capacity outside the United States in support of the U.S. Armed Forces’ operation during some period of time from September 11, 2001, to termination of SFAR 100–2;

(b) The person’s flight instructor certificate, airman written test report, or inspection authorization expired some time between September 11, 2001, and 6 calendar months after returning to the United States, or upon termination of SFAR 100–2, whichever is earlier; and

(c) The person complies with §61.197 or §65.93 of this chapter, as appropriate, or completes the appropriate practical test within 6 calendar months after returning to the United States, or upon termination of SFAR 100–2, whichever is earlier.

3. Required documents. The person must send the Airman Certificate and/or Rating Application (FAA Form 8710–1) to the appropriate Flight Standards District Office. The person must include with the application one of the following documents, which must show the date of assignment outside the United States and the date of return to the United States:

(a) An official U.S. Government notification of personnel action, or equivalent document, showing the person was a civilian on official duty for the U.S. Government outside the United States and was assigned to a U.S. Armed Forces’ operation some time between September 11, 2001, to termination of SFAR 100–2;

(b) Military orders showing the person was assigned to duty outside the United States and was assigned to a U.S. Armed Forces’ operation some time between September 11, 2001, to termination of SFAR 100–2; or

(c) A letter from the person’s military commander or civilian supervisor providing the dates during which the person served outside the United States and was assigned to a U.S. Armed Forces’ operation some time between September 11, 2001, to termination of SFAR 100–2.

4. Expiration date. This Special Federal Aviation Regulation No. 100–2 is effective until further notice.

SPECIAL FEDERAL AVIATION REGULATION NO. 108

NOTE: For the text of SFAR No. 108, see part 91 of this chapter.

Subpart A—General

§61.1 Applicability and definitions.

(a) This part prescribes:

(1) The requirements for issuing pilot, flight instructor, and ground instructor certificates and ratings; the conditions under which those certificates and ratings are necessary; and the privileges and limitations of those certificates and ratings;

(2) The requirements for issuing pilot, flight instructor, and ground instructor authorizations; the conditions under which those authorizations are necessary; and the privileges and limitations of those authorizations;

(3) The requirements for issuing pilot, flight instructor, and ground instructor certificates and ratings for persons who have taken courses approved by the Administrator under other parts of this chapter;

(b) For the purpose of this part:

(1) Aeronautical experience means pilot time obtained in an aircraft,
flight simulator, or flight training device for meeting the appropriate training and flight time requirements for an airman certificate, rating, flight review, or recency of flight experience requirements of this part.

(2) **Authorized instructor** means—

(i) A person who holds a ground instructor certificate issued under part 61 of this chapter and is in compliance with §61.217, when conducting ground training in accordance with the privileges and limitations of his or her ground instructor certificate;

(ii) A person who holds a flight instructor certificate issued under part 61 of this chapter and is in compliance with §61.197, when conducting ground training or flight training in accordance with the privileges and limitations of his or her flight instructor certificate; or

(iii) A person authorized by the Administrator to provide ground training or flight training under SFAR No. 58, or part 61, 121, 135, or 142 of this chapter when conducting ground training or flight training in accordance with that authority.

(3) **Complex airplane** means an airplane that has a retractable landing gear, flaps, and a controllable pitch propeller, including airplanes equipped with an engine control system consisting of a digital computer and associated accessories for controlling the engine and propeller, such as a full authority digital engine control; or in the case of a seaplane, flaps and a controllable pitch propeller, including seaplanes equipped with an engine control system consisting of a digital computer and associated accessories for controlling the engine and propeller, such as a full authority digital engine control.

(4) **Cross-country time** means—

(i) Except as provided in paragraphs (b)(4)(ii) through (b)(4)(vi) of this section, time acquired during flight—

(A) Conducted by a person who holds a pilot certificate;

(B) Conducted in an aircraft;

(C) That includes a landing at a point other than the point of departure; and

(D) That involves the use of dead reckoning, pilotage, electronic navigation aids, radio aids, or other navigation systems to navigate to the landing point.

(ii) For the purpose of meeting the aeronautical experience requirements (except for a rotorcraft category rating), for a private pilot certificate (except for a powered parachute category rating), a commercial pilot certificate, or an instrument rating, or for the purpose of exercising recreational pilot privileges (except in a rotorcraft) under §61.101 (c), time acquired during a flight—

(A) Conducted in an appropriate aircraft;

(B) That includes a point of landing that was at least a straight-line distance of more than 50 nautical miles from the original point of departure; and

(C) That involves the use of dead reckoning, pilotage, electronic navigation aids, radio aids, or other navigation systems to navigate to the landing point.

(iii) For the purpose of meeting the aeronautical experience requirements for a sport pilot certificate (except for powered parachute privileges), time acquired during a flight conducted in an appropriate aircraft that—

(A) Includes a point of landing at least a straight line distance of more than 25 nautical miles from the original point of departure; and

(B) Involves, as applicable, the use of dead reckoning; pilotage; electronic navigation aids; radio aids; or other navigation systems to navigate to the landing point.

(iv) For the purpose of meeting the aeronautical experience requirements for a sport pilot certificate with powered parachute privileges or a private pilot certificate with a powered parachute category rating, time acquired during a flight conducted in an appropriate aircraft that—

(A) Includes a point of landing at least a straight line distance of more than 15 nautical miles from the original point of departure; and

(B) Involves, as applicable, the use of dead reckoning; pilotage; electronic navigation aids; radio aids; or other navigation systems to navigate to the landing point.

(v) For the purpose of meeting the aeronautical experience requirements for any pilot certificate with a rotorcraft category rating or an instrument...
helicopter rating, or for the purpose of exercising recreational pilot privileges, in a rotorcraft, under §61.101(c), time acquired during a flight—

(A) Conducted in an appropriate aircraft;

(B) That includes a point of landing that was at least a straight-line distance of more than 25 nautical miles from the original point of departure; and

(C) That involves the use of dead reckoning, pilotage, electronic navigation aids, radio aids, or other navigation systems to navigate to the landing point.

(vi) For the purpose of meeting the aeronautical experience requirements for an airline transport pilot certificate (except with a rotorcraft category rating), time acquired during a flight—

(A) Conducted in an appropriate aircraft;

(B) That is at least a straight-line distance of more than 50 nautical miles from the original point of departure; and

(C) That involves the use of dead reckoning, pilotage, electronic navigation aids, radio aids, or other navigation systems.

(vii) For a military pilot who qualifies for a commercial pilot certificate (except with a rotorcraft category rating) under §61.73 of this part, time acquired during a flight—

(A) Conducted in an appropriate aircraft;

(B) That is at least a straight-line distance of more than 50 nautical miles from the original point of departure; and

(C) That involves the use of dead reckoning, pilotage, electronic navigation aids, radio aids, or other navigation systems.

(5) Examiner means any person who is authorized by the Administrator to conduct a pilot proficiency test or a practical test for an airman certificate or rating issued under this part, or a person who is authorized to conduct a knowledge test under this part.

(6) Flight simulator means a device that—

(i) Is a full-size aircraft cockpit replica of a specific type of aircraft, or make, model, and series of aircraft;

(ii) Includes the hardware and software necessary to represent the aircraft in ground operations and flight operations;

(iii) Uses a force cueing system that provides cues at least equivalent to those cues provided by a 3 degree freedom of motion system;

(iv) Uses a visual system that provides at least a 45 degree horizontal field of view and a 30 degree vertical field of view simultaneously for each pilot; and

(v) Has been evaluated, qualified, and approved by the Administrator.

(7) Flight training means that training, other than ground training, received from an authorized instructor in flight in an aircraft.

(8) Flight training device means a device that—

(i) Is a full-size replica of the instruments, equipment, panels, and controls of an aircraft, or set of aircraft, in an open flight deck area or in an enclosed cockpit, including the hardware and software for the systems installed, that is necessary to simulate the aircraft in ground and flight operations;

(ii) Need not have a force (motion) cueing or visual system; and

(iii) Has been evaluated, qualified, and approved by the Administrator.

(9) Ground training means that training, other than flight training, received from an authorized instructor.

(10) Instrument approach means an approach procedure defined in part 97 of this chapter.

(11) Instrument training means that time in which instrument training is received from an authorized instructor under actual or simulated instrument conditions.

(12) Knowledge test means a test on the aeronautical knowledge areas required for an airman certificate or rating that can be administered in written form or by a computer.

(13) Night vision goggles means an appliance worn by a pilot that enhances the pilot’s ability to maintain visual surface reference at night.

(14) Night vision goggle operation means the portion of a flight that occurs during the time period from 1 hour after sunset to 1 hour before sunrise.
where the pilot maintains visual surface reference using night vision goggles in an aircraft that is approved for such an operation.

(15) **Pilot time** means that time in which a person—

(i) Serves as a required pilot flight crewmember;

(ii) Receives training from an authorized instructor in an aircraft, flight simulator, or flight training device; or

(iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device.

(16) **Practical test** means a test on the areas of operations for an airman certificate, rating, or authorization that is conducted by having the applicant respond to questions and demonstrate maneuvers in flight, in a flight simulator, or in a flight training device.

(17) **Set of aircraft** means aircraft that share similar performance characteristics, such as similar airspeed and altitude operating envelopes, similar handling characteristics, and the same number and type of propulsion systems.

(18) **Student pilot seeking a sport pilot certificate** means a person who has received an endorsement—

(i) To exercise student pilot privileges from a certificated flight instructor with a sport pilot rating; or

(ii) That includes a limitation for the operation of a light-sport aircraft specified in §61.89(c) issued by a certificated flight instructor with other than a sport pilot rating.

(19) **Training time** means training received—

(i) In flight from an authorized instructor;

(ii) On the ground from an authorized instructor; or

(iii) In a flight simulator or flight training device from an authorized instructor.

§ 61.2 Exercise of Privilege.

(a) **Validity.** No person may:

(1) Exercise privileges of a certificate, rating, endorsement, or authorization issued under this part if the certificate, rating or authorization is surrendered, suspended, revoked or expired.

(2) Exercise privileges of a flight instructor certificate if that flight instructor certificate is surrendered, suspended, revoked or expired.

(3) Exercise privileges of a foreign pilot certificate to operate an aircraft of foreign registry under §61.3(b) if the certificate is surrendered, suspended, revoked or expired.

(4) Exercise privileges of a pilot certificate issued under §61.75, or an authorization issued under §61.77, if the foreign pilot certificate relied upon for the issuance of the U.S. pilot certificate or authorization is surrendered, suspended, revoked or expired.

(5) Exercise privileges of a medical certificate issued under part 67 to meet any requirements of part 61 if the medical certificate is surrendered, suspended, revoked or expired according to the duration standards set forth in §61.23(d).

(6) Use an official government issued driver’s license to meet any requirements of part 61 related to holding that driver’s license, if the driver’s license is surrendered, suspended, revoked or expired.

(b) **Currency.** No person may:

(1) Exercise privileges of an airman certificate, rating, endorsement, or authorization issued under this part unless that person meets the appropriate airman and medical recency requirements of this part, specific to the operation or activity.

(2) Exercise privileges of a foreign pilot license within the United States to conduct an operation described in §61.3(b), unless that person meets the appropriate airman and medical recency requirements of the country that issued the license, specific to the operation.

§ 61.3 Requirement for certificates, ratings, and authorizations.

(a) **Pilot certificate.** No person may serve as a required pilot flight crewmember of a civil aircraft of the United States, unless that person—

(1) Has a pilot certificate or special purpose pilot authorization issued
under this part in that person's physical possession or readily accessible in the aircraft when exercising the privileges of that pilot certificate or authorization. However, when the aircraft is operated within a foreign country, a pilot license issued by that country may be held:

(2) Has a photo identification that is in that person's physical possession or readily accessible in the aircraft when exercising the privileges of that pilot certificate or authorization. The photo identification must be a:

(i) Driver's license issued by a State, the District of Columbia, or territory or possession of the United States;
(ii) Government identification card issued by the Federal government, a State, the District of Columbia, or a territory or possession of the United States;
(iii) U.S. Armed Forces' identification card;
(iv) Official passport;
(v) Credential that authorizes unescorted access to a security identification display area at an airport regulated under 49 CFR part 1542; or
(vi) Other form of identification that the Administrator finds acceptable.

(b) Required pilot certificate for operating a foreign-registered aircraft. No person may serve as a required pilot flight crewmember of a civil aircraft of foreign registry within the United States, unless that person's pilot certificate:

(1) Is in that person's physical possession, or readily accessible in the aircraft when exercising the privileges of that pilot certificate; and

(2) Has been issued under this part, or has been issued or validated by the country in which the aircraft is registered.

(c) Medical certificate. (1) A person may serve as a required pilot flight crewmember of an aircraft only if that person holds the appropriate medical certificate under part 67 of this chapter, or other documentation acceptable to the FAA, that is in that person's physical possession or readily accessible in the aircraft. Paragraph (c)(2) of this section provides certain exceptions to the requirement to hold a medical certificate.

(2) A person is not required to meet the requirements of paragraph (c)(1) of this section if that person—

(i) Is exercising the privileges of a student pilot certificate while seeking a pilot certificate with a glider category rating, a balloon class rating, or glider or balloon privileges;
(ii) Is exercising the privileges of a student pilot certificate while seeking a pilot certificate with a weight-shift-control aircraft category rating or a powered parachute category rating and holds a U.S. driver's license;
(iii) Is exercising the privileges of a student pilot certificate while seeking a pilot certificate with other than glider or balloon privileges and holds a U.S. driver's license;
(iv) Is exercising the privileges of a sport pilot certificate with glider or balloon privileges;
(v) Is exercising the privileges of a sport pilot certificate with other than glider or balloon privileges and holds a U.S. driver's license. A person who has applied for or held a medical certificate may exercise the privileges of a sport pilot certificate using a U.S. driver's license only if that person—

(A) Has been found eligible for the issuance of at least a third-class airmen medical certificate at the time of his or her most recent application; and
(B) Has not had his or her most recently issued medical certificate suspended or revoked or most recent Authorization for a Special Issuance of a Medical Certificate withdrawn.

(vi) Is holding a pilot certificate with a balloon class rating and is piloting or providing training in a balloon as appropriate;

(vii) Is holding a pilot certificate or a flight instructor certificate with a glider category rating, and is piloting or providing training in a glider, as appropriate;

(viii) Except as provided in paragraph (c)(2)(vii) of this section, is exercising the privileges of a flight instructor certificate, provided the person is not acting as pilot in command or as a required pilot flight crewmember;

(ix) Is exercising the privileges of a ground instructor certificate;

(x) Is operating an aircraft within a foreign country using a pilot license issued by that country and possesses
evidence of current medical qualification for that license; or

(xi) Is operating an aircraft with a U.S. pilot certificate, issued on the basis of a foreign pilot license, issued under §61.75, and holds a medical certificate issued by the foreign country that issued the foreign pilot license, which is in that person's physical possession or readily accessible in the aircraft when exercising the privileges of that airman certificate.

(xii) Is a pilot of the U.S. Armed Forces, has an up-to-date U.S. military medical examination, and holds military pilot flight status.

(d) Flight instructor certificate. (1) A person who holds a flight instructor certificate issued under this part must have that certificate, or other documentation acceptable to the Administrator, in that person's physical possession or readily accessible in the aircraft when exercising the privileges of that flight instructor certificate.

(2) Except as provided in paragraph (d)(3) of this section, no person other than the holder of a flight instructor certificate issued under this part with the appropriate rating on that certificate may—

(i) Give training required to qualify a person for solo flight and solo cross-country flight;

(ii) Endorse an applicant for a—

(A) Pilot certificate or rating issued under this part;

(B) Flight instructor certificate or rating issued under this part; or

(C) Ground instructor certificate or rating issued under this part;

(iii) Endorse a pilot logbook to show training given; or

(iv) Endorse a student pilot certificate and logbook for solo operating privileges.

(3) A flight instructor certificate issued under this part is not necessary—

(i) Under paragraph (d)(2) of this section, if the training is given by the holder of a commercial pilot certificate with a lighter-than-air rating, provided the training is given in accordance with the privileges of the certificate in a lighter-than-air aircraft;

(ii) Under paragraph (d)(2) of this section, if the training is given by the holder of an airline transport pilot certificate with a rating appropriate to the aircraft in which the training is given, provided the training is given in accordance with the privileges of the certificate and conducted in accordance with an approved air carrier training program approved under part 121 or part 135 of this chapter;

(iii) Under paragraph (d)(2) of this section, if the training is given by a person who is qualified in accordance with subpart C of part 142 of this chapter, provided the training is conducted in accordance with an approved part 142 training program;

(iv) Under paragraphs (d)(2)(i), (d)(2)(ii)(C), and (d)(2)(iii) of this section, if the training is given by the holder of a ground instructor certificate in accordance with the privileges of the certificate; or

(v) Under paragraph (d)(2)(iii) of this section, if the training is given by an authorized flight instructor under §61.81 of this part.

(e) Instrument rating. No person may act as pilot in command of a civil aircraft under IFR or in weather conditions less than the minimums prescribed for VFR flight unless that person holds:

(1) The appropriate aircraft category, class, type (if required), and instrument rating on that person's pilot certificate for any airplane, helicopter, or powered-lift being flown;

(2) An airline transport pilot certificate with the appropriate aircraft category, class, and type rating (if required) for the aircraft being flown;

(3) For a glider, a pilot certificate with a glider category rating and an airplane instrument rating; or

(4) For an airship, a commercial pilot certificate with a lighter-than-air category rating and airship class rating.

(f) Category II pilot authorization. Except for a pilot conducting Category II operations under part 121 or part 135, a person may not:

(1) Act as pilot in command of a civil aircraft during Category II operations unless that person—

(i) Holds a Category II pilot authorization for that category or class of aircraft, and the type of aircraft, if applicable; or

(ii) In the case of a civil aircraft of foreign registry, is authorized by the
country of registry to act as pilot in command of that aircraft in Category II operations.

(2) Act as second in command of a civil aircraft during Category II operations unless that person—

(i) Holds a pilot certificate with category and class ratings for that aircraft and an instrument rating for that category aircraft;

(ii) Holds an airline transport pilot certificate with category and class ratings for that aircraft; or

(iii) In the case of a civil aircraft of foreign registry, is authorized by the country of registry to act as second in command of that aircraft during Category II operations.

(g) Category III pilot authorization. Except for a pilot conducting Category III operations under part 121 or part 135, a person may not:

(1) Act as pilot in command of a civil aircraft during Category III operations unless that person—

(i) Holds a Category III pilot authorization for that category or class of aircraft, and the type of aircraft, if applicable; or

(ii) In the case of a civil aircraft of foreign registry, is authorized by the country of registry to act as pilot in command of that aircraft in Category III operations.

(2) Act as second in command of a civil aircraft during Category III operations unless that person—

(i) Holds a pilot certificate with category and class ratings for that aircraft and an instrument rating for that category aircraft;

(ii) Holds an airline transport pilot certificate with category and class ratings for that aircraft; or

(iii) In the case of a civil aircraft of foreign registry, is authorized by the country of registry to act as second in command of that aircraft during Category III operations.

(h) Category A aircraft pilot authorization. The Administrator may issue a certificate of authorization for a Category II or Category III operation to the pilot of a small aircraft that is a Category A aircraft, as identified in §97.3(b)(1) of this chapter if:

(1) The Administrator determines that the Category II or Category III operation can be performed safely by that pilot under the terms of the certificate of authorization; and

(2) The Category II or Category III operation does not involve the carriage of persons or property for compensation or hire.

(i) Ground instructor certificate. (1) Each person who holds a ground instructor certificate issued under this part or part 143 must have that certificate in that person’s physical possession or immediately accessible when exercising the privileges of that certificate.

(2) Except as provided in paragraph (i)(3) of this section, no person other than the holder of a ground instructor certificate, issued under this part or part 143, with the appropriate rating on that certificate may—

(i) Give ground training required to qualify a person for solo flight and solo cross-country flight;

(ii) Endorse an applicant for a knowledge test required for a pilot, flight instructor, or ground instructor certificate or rating issued under this part; or

(iii) Endorse a pilot logbook to show ground training given.

(3) A ground instructor certificate issued under this part is not necessary—

(1) Under paragraph (i)(2) of this section, if the training is given by the holder of a flight instructor certificate issued under this part in accordance with the privileges of that certificate;

(ii) Under paragraph (i)(2) of this section, if the training is given by the holder of a commercial pilot certificate with a lighter-than-air rating, provided the training is given in accordance with the privileges of the certificate in a lighter-than-air aircraft;

(iii) Under paragraph (i)(2) of this section, if the training is given by a person who is qualified in accordance with subpart C of part 142 of this chapter,
§ 61.4 Qualification and approval of flight simulators and flight training devices.

(a) Except as specified in paragraph (b) or (c) of this section, each flight simulator and flight training device used for training, and for which an airman is to receive credit to satisfy any training, testing, or checking requirement under this chapter, must be qualified and approved by the Administrator for—

(1) The training, testing, and checking for which it is used;
(2) Each particular maneuver, procedure, or crewmember function performed; and
(3) The representation of the specific category and class of aircraft, type of aircraft, particular variation within the type of aircraft, or set of aircraft for certain flight training devices.

(b) Any device used for flight training, testing, or checking that has been provided the training is conducted in accordance with an approved part 142 training program; or

(v) Under paragraph (i)(2)(iii) of this section, if the training is given by an authorized flight instructor under §61.41 of this part.

(i) Age limitation for certain operations

(1) Age limitation. No person who holds a pilot certificate issued under this part may serve as a pilot on a civil airplane of U.S. registry in the following operations if the person has reached his or her 65th birthday:

(i) Scheduled international air services carrying passengers in turbojet-powered airplanes;

(ii) Scheduled international air services carrying passengers in airplanes having a passenger-seat configuration of more than nine passenger seats, excluding each crewmember seat;

(iii) Nonscheduled international air transportation for compensation or hire in airplanes having a passenger-seat configuration of more than 30 passenger seats, excluding each crewmember seat; or

(iv) Scheduled international air services, or nonscheduled international air transportation for compensation or hire, in airplanes having a payload capacity of more than 7,500 pounds.

(2) Age Pairing Requirement. No person who has attained the age of 60 but who has not attained the age of 65 may serve as a pilot in command in any of the operations described in paragraphs (j)(1)(i) through (iv) of this section unless there is another pilot in the flight deck crew who has not yet attained 60 years of age.

(3) Definitions. (i) “International air service,” as used in this paragraph (j), means scheduled air service performed in airplanes for the public transport of passengers, mail, or cargo, in which the service passes through the airspace over the territory of more than one country.

(ii) “International air transportation,” as used in this paragraph (j), means air transportation performed in airplanes for the public transport of passengers, mail, or cargo, in which the service passes through the airspace over the territory of more than one country.

(k) Special purpose pilot authorization. Any person that is required to hold a special purpose pilot authorization, issued in accordance with §61.77 of this part, must have that authorization and the person’s foreign pilot license in that person’s physical possession or have it readily accessible in the aircraft when exercising the privileges of that authorization.

(1) Inspection of certificate. Each person who holds an airman certificate, medical certificate, authorization, or license required by this part must present it and their photo identification as described in paragraph (a)(2) of this section for inspection upon a request from:

(1) The Administrator;
(2) An authorized representative of the National Transportation Safety Board;
(3) Any Federal, State, or local law enforcement officer; or
(4) An authorized representative of the Transportation Security Administration.

§ 61.5 Certificates and ratings issued under this part.

(a) The following certificates are issued under this part to an applicant who satisfactorily accomplishes the training and certification requirements for the certificate sought:

(1) Pilot certificates—
 (i) Student pilot.
 (ii) Sport pilot.
 (iii) Recreational pilot.
 (iv) Private pilot.
 (v) Commercial pilot.
 (vi) Airline transport pilot.

(2) Flight instructor certificates.

(3) Ground instructor certificates.

(b) The following ratings are placed on a pilot certificate (other than student pilot) when an applicant satisfactorily accomplishes the training and certification requirements for the rating sought:

(1) Aircraft category ratings—
 (i) Airplane.
 (ii) Rotorcraft.
 (iii) Glider.
 (iv) Lighter-than-air.
 (v) Powered-lift.
 (vi) Powered parachute.

(2) Airplane class ratings—
 (i) Single-engine land.
 (ii) Multiengine land.
 (iii) Single-engine sea.
 (iv) Multiengine sea.

(3) Rotorcraft class ratings—
 (i) Helicopter.
 (ii) Gyroplane.

(4) Instrument ratings—
 (i) Instrument—Airplane.
 (ii) Instrument—Helicopter.
 (iii) Instrument—Powered-lift.
 (iv) Instrument—Powered-lift.

(c) The following ratings are placed on a flight instructor certificate when an applicant satisfactorily accomplishes the training and certification requirements for the rating sought:

(1) Aircraft category ratings—
 (i) Airplane.
 (ii) Rotorcraft.
 (iii) Glider.
 (iv) Lighter-than-air.
 (v) Powered-lift.

(2) Airplane class ratings—
 (i) Single-engine.
 (ii) Multiengine.

(3) Rotorcraft class ratings—
 (i) Helicopter.
 (ii) Gyroplane.

(4) Instrument ratings—
 (i) Instrument—Airplane.
 (ii) Instrument—Helicopter.
 (iii) Instrument—Powered-lift.

(d) The following ratings are placed on a ground instructor certificate when an applicant satisfactorily accomplishes the training and certification requirements for the rating sought:

(1) Basic.
 (2) Advanced.
 (3) Instrument.
§ 61.7 Obsolete certificates and ratings.

(a) The holder of a free-balloon pilot certificate issued before November 1, 1973, may not exercise the privileges of that certificate.

(b) The holder of a pilot certificate that bears any of the following category ratings without an associated class rating may not exercise the privileges of that category rating:
 (1) Rotorcraft.
 (2) Lighter-than-air.
 (3) Helicopter.
 (4) Autogyro.

§ 61.9 [Reserved]

§ 61.11 Expired pilot certificates and re-issuance.

(a) No person who holds an expired pilot certificate or rating may act as pilot in command or as a required pilot flight crewmember of an aircraft of the same category or class that is listed on that expired pilot certificate or rating.

(b) The following pilot certificates and ratings have expired and will not be reissued:
 (1) An airline transport pilot certificate issued before May 1, 1949, or an airline transport pilot certificate that contains a horsepower limitation.
 (2) A private or commercial pilot certificate issued before July 1, 1945.
 (3) A pilot certificate with a lighter-than-air or free-balloon rating issued before July 1, 1945.
 (c) An airline transport pilot certificate that was issued after April 30, 1949, and that bears an expiration date, may have that airline transport pilot certificate re-issued without an expiration date.
 (d) A private or commercial pilot certificate that was issued after June 30, 1945, and that bears an expiration date, may have that pilot certificate re-issued without an expiration date.
 (e) A pilot certificate with a lighter-than-air or free-balloon rating that was issued after June 30, 1945, and that bears an expiration date, may have that pilot certificate re-issued without an expiration date.

§ 61.13 Issuance of airman certificates, ratings, and authorizations.

(a) Application. (1) An applicant for an airman certificate, rating, or authorization under this part must make that application on a form and in a manner acceptable to the Administrator.
 (2) An applicant—
 (i) Must show evidence that the appropriate fee prescribed in appendix A to part 187 of this chapter has been paid when that person applies for airman certification services administered outside the United States.
 (A) Student pilot certificate that is issued outside the United States; or
 (B) Knowledge test or practical test for an airman certificate or rating issued under this part, if the test is administered outside the United States.
 (ii) May be refused issuance of any U.S. airman certificate, rating, or authorization by the Administrator.
 (3) Except as provided in paragraph (a)(2)(ii) of this section, an applicant who satisfactorily accomplishes the training and certification requirements for the certificate, rating, or authorization sought is entitled to receive that airman certificate, rating, or authorization.

(b) Limitations. (1) An applicant who cannot comply with certain areas of operation required on the practical test because of physical limitations may be issued an airman certificate, rating, or authorization with the appropriate limitation placed on the applicant’s airman certificate provided the—
 (i) Applicant is able to meet all other certification requirements for the airman certificate, rating, or authorization sought;
 (ii) Physical limitation has been recorded with the FAA on the applicant’s medical records; and
 (iii) Administrator determines that the applicant’s inability to perform the particular area of operation will not adversely affect safety.
 (2) A limitation placed on a person’s airman certificate may be removed, provided that person demonstrates for an examiner satisfactory proficiency in the area of operation appropriate to the airman certificate, rating, or authorization sought.

§ 61.15 Additional requirements for Category II and Category III pilot authorizations.

(1) A Category II or Category III pilot authorization is issued by a letter of authorization as part of an applicant’s instrument rating or airline transport pilot certificate.

(2) Upon original issue, the authorization contains the following limitations:

(i) For Category II operations, the limitation is 1,600 feet RVR and a 150-foot decision height; and

(ii) For Category III operations, each initial limitation is specified in the authorization document.

(3) The limitations on a Category II or Category III pilot authorization may be removed as follows:

(i) In the case of Category II limitations, a limitation is removed when the holder shows that, since the beginning of the sixth preceding month, the holder has made three Category II ILS approaches with a 150-foot decision height to a landing under actual or simulated instrument conditions.

(ii) In the case of Category III limitations, a limitation is removed as specified in the authorization.

(4) To meet the experience requirements of paragraph (c)(3) of this section, and for the practical test required by this part for a Category II or a Category III pilot authorization, a flight simulator or flight training device may be used if it is approved by the Administrator for such use.

(d) Application during suspension or revocation.

(1) Unless otherwise authorized by the Administrator, a person whose pilot, flight instructor, or ground instructor certificate has been suspended may not apply for any certificate, rating, or authorization during the period of suspension.

(2) Unless otherwise authorized by the Administrator, a person whose pilot, flight instructor, or ground instructor certificate has been revoked may not apply for any certificate, rating, or authorization for 1 year after the date of revocation.

§ 61.16 Refusal to submit to an alcohol test or to furnish test results.

A refusal to submit to a test to indicate the percentage by weight of alcohol in the blood, when requested by a law enforcement officer in accordance with §91.17(c) of this chapter, or a refusal to furnish or authorize the release of the test results requested by the Administrator in accordance with §91.17(c) or (d) of this chapter, is grounds for:

(a) Denial of an application for any certificate, rating, or authorization issued under this part for a period of up to 1 year after the date of that refusal; or

(b) Suspension or revocation of any certificate, rating, or authorization issued under this part.

§ 61.17 Temporary certificate.

(a) A temporary pilot, flight instructor, or ground instructor certificate or rating is issued for up to 120 days, at which time a permanent certificate will be issued to a person whom the Administrator finds qualified under this part.

(b) A temporary pilot, flight instructor, or ground instructor certificate or rating expires:

(1) On the expiration date shown on the certificate;

(2) Upon receipt of the permanent certificate; or

(3) Upon receipt of a notice that the certificate or rating sought is denied or revoked.

§ 61.18 Security disqualification.

(a) Eligibility standard. No person is eligible to hold a certificate, rating, or authorization issued under this part when the Transportation Security Administration (TSA) has notified the FAA in writing that the person poses a security threat.

(b) Effect of the issuance by the TSA of an Initial Notification of Threat Assessment. (1) The FAA will hold in abeyance pending the outcome of the TSA’s final threat assessment review an application for any certificate, rating, or authorization under this part by any person who has been issued an Initial Notification of Threat Assessment by the TSA.

(2) The FAA will suspend any certificate, rating, or authorization under this part after the TSA issues to the holder an Initial Notification of Threat Assessment.

(c) Effect of the issuance by the TSA of a Final Notification of Threat Assessment. (1) The FAA will deny an application for any certificate, rating, or authorization under this part to any person who has been issued a Final Notification of Threat Assessment.
(2) The FAA will revoke any certificate, rating, or authorization issued under this part after the TSA has issued to the holder a Final Notification of Threat Assessment.

§ 61.19 Duration of pilot and instructor certificates.

(a) General. The holder of a certificate with an expiration date may not, after that date, exercise the privileges of that certificate.

(b) Student pilot certificate.

(1) For student pilots who have not reached their 40th birthday, the student pilot certificate does not expire until 60 calendar months after the month of the date of examination shown on the medical certificate.

(2) For student pilots who have reached their 40th birthday, the student pilot certificate does not expire until 24 calendar months after the month of the date of examination shown on the medical certificate.

(3) For student pilots seeking a glider rating, balloon rating, or a sport pilot certificate, the student pilot certificate does not expire until 60 calendar months after the month issued, regardless of the person’s age.

(c) Other pilot certificates. A pilot certificate (other than a student pilot certificate) issued under this part is issued without a specific expiration date. The holder of a pilot certificate issued on the basis of a foreign pilot license may exercise the privileges of that certificate only while that person’s foreign pilot license is effective.

(d) Flight instructor certificate. Except as specified in §61.197(b), a flight instructor certificate expires 24 calendar months from the month in which it was issued, renewed, or reinstated, as appropriate.

(e) Ground instructor certificate. A ground instructor certificate is issued without a specific expiration date.

§ 61.23 Medical certificates: Requirement and duration.

(a) Operations requiring a medical certificate. Except as provided in paragraphs (b) and (c) of this section, a person—

(1) Must hold a first-class medical certificate:

(ii) If that person has reached his or her 60th birthday and serves as a pilot in 14 CFR part 121 operations. Notwithstanding the provisions of §61.23(d)(1)(iii), that person’s first-class medical certificate expires, for 14 CFR part 121 operations, at the end of the last day of the 6th month after the
§61.23 14 CFR Ch. I (1–1–12 Edition)

month of the date of examination shown on the medical certificate.
(2) Must hold at least a second-class medical certificate when exercising the privileges of a commercial pilot certificate; or
(3) Must hold at least a third-class medical certificate—
 (i) When exercising the privileges of a private pilot certificate;
 (ii) When exercising the privileges of a recreational pilot certificate;
 (iii) When exercising the privileges of a student pilot certificate;
 (iv) When exercising the privileges of a flight instructor certificate and acting as the pilot in command;
 (v) When exercising the privileges of a flight instructor certificate and serving as a required pilot flight crewmember;
 (vi) When taking a practical test in an aircraft for a recreational pilot, private pilot, commercial pilot, or airline transport pilot certificate, or for a flight instructor certificate; or
 (vii) When performing the duties as an Examiner in an aircraft when administering a practical test or proficiency check for an airman certificate, rating, or authorization.

(b) Operations not requiring a medical certificate.
A person is not required to hold a medical certificate—
(1) When exercising the privileges of a student pilot certificate while seeking—
 (i) A sport pilot certificate with glider or balloon privileges; or
 (ii) A pilot certificate with a glider category rating or balloon class rating;
(2) When exercising the privileges of a sport pilot certificate with privileges in a glider or balloon;
(3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate;
(4) When exercising the privileges of a flight instructor certificate with—
 (i) A sport pilot rating in a glider or balloon; or
 (ii) A glider category rating;
(5) When exercising the privileges of a flight instructor certificate if the person is not acting as pilot in command or serving as a required pilot flight crewmember;
(6) When exercising the privileges of a ground instructor certificate;
(7) When serving as an Examiner or check airman and administering a practical test or proficiency check for an airman certificate, rating, or authorization conducted in a glider, balloon, flight simulator, or flight training device;
(8) When taking a practical test or a proficiency check for a certificate, rating, authorization or operating privilege conducted in a glider, balloon, flight simulator, or flight training device; or
(9) When a military pilot of the U.S. Armed Forces can show evidence of an up-to-date medical examination authorizing pilot flight status issued by the U.S. Armed Forces and—
 (i) The flight does not require higher than a third-class medical certificate; and
 (ii) The flight conducted is a domestic flight operation within U.S. airspace.

(c) Operations requiring either a medical certificate or U.S. driver’s license. (1) A person must hold and possess either a medical certificate issued under part 67 of this chapter or a U.S. driver’s license when—
 (i) Exercising the privileges of a student pilot certificate while seeking sport pilot privileges in a light-sport aircraft other than a glider or balloon;
 (ii) Exercising the privileges of a sport pilot certificate in a light-sport aircraft other than a glider or balloon;
 (iii) Exercising the privileges of a flight instructor certificate with a sport pilot rating while acting as pilot in command or serving as a required flight crewmember of a light-sport aircraft other than a glider or balloon; or
 (iv) Serving as an Examiner and administering a practical test for the issuance of a sport pilot certificate in a light-sport aircraft other than a glider or balloon.

(d) Duration of a medical certificate. Use the following table to determine duration for each class of medical certificate:
If you hold and you are conducting an operation requiring then your medical certificate expires, for that operation, at the end of the last day of the

<table>
<thead>
<tr>
<th>Medical Certificate Type</th>
<th>Age</th>
<th>Expiration Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) A first-class medical certificate.</td>
<td>Under age 40</td>
<td>12th month after the month of the date of examination shown on the medical certificate.</td>
</tr>
<tr>
<td></td>
<td>Age 40 or older</td>
<td>6th month after the month of the date of examination shown on the medical certificate.</td>
</tr>
<tr>
<td></td>
<td>Any age</td>
<td>12th month after the month of the date of examination shown on the medical certificate.</td>
</tr>
<tr>
<td></td>
<td>Under age 40</td>
<td>24th month after the month of the date of examination shown on the medical certificate.</td>
</tr>
<tr>
<td></td>
<td>Age 40 or older</td>
<td>24th month after the month of the date of examination shown on the medical certificate.</td>
</tr>
<tr>
<td>(2) A second-class medical certificate.</td>
<td>Any age</td>
<td>12th month after the month of the date of examination shown on the medical certificate.</td>
</tr>
<tr>
<td></td>
<td>Under age 40</td>
<td>60th month after the month of the date of examination shown on the medical certificate.</td>
</tr>
<tr>
<td></td>
<td>Age 40 or older</td>
<td>24th month after the month of the date of examination shown on the medical certificate.</td>
</tr>
<tr>
<td>(3) A third-class medical certificate.</td>
<td>Under age 40</td>
<td>60th month after the month of the date of examination shown on the medical certificate.</td>
</tr>
<tr>
<td></td>
<td>Age 40 or older</td>
<td>24th month after the month of the date of examination shown on the medical certificate.</td>
</tr>
</tbody>
</table>
§ 61.25 Change of name.

(a) An application to change the name on a certificate issued under this part must be accompanied by the applicant’s:

(1) Airman certificate; and

(2) A copy of the marriage license, court order, or other document verifying the name change.

(b) The documents in paragraph (a) of this section will be returned to the applicant after inspection.

§ 61.27 Voluntary surrender or exchange of certificate.

(a) The holder of a certificate issued under this part may voluntarily surrender it for:

(1) Cancellation;

(2) Issuance of a lower grade certificate; or

(3) Another certificate with specific ratings deleted.

(b) Any request made under paragraph (a) of this section must include the following signed statement or its equivalent: “This request is made for my own reasons, with full knowledge that my (insert name of certificate or rating, as appropriate) may not be re-issued to me unless I again pass the tests prescribed for its issuance.”

§ 61.29 Replacement of a lost or destroyed airman or medical certificate or knowledge test report.

(a) A request for the replacement of a lost or destroyed airman certificate issued under this part must be made by letter to the Department of Transportation, FAA, Airman Certification Branch, P.O. Box 25082, Oklahoma City, OK 73125, and must be accompanied by a check or money order for the appropriate fee payable to the FAA.

(c) A request for the replacement of a lost or destroyed knowledge test report must be made by letter to the Department of Transportation, FAA, Aerospace Medical Certification Division, P.O. Box 26200, Oklahoma City, OK 73125, and must be accompanied by a check or money order for the appropriate fee payable to the FAA.

(d) The letter requesting replacement of a lost or destroyed airman certificate, medical certificate, or knowledge test report must state:

(1) The name of the person;

(2) The permanent mailing address (including ZIP code), or if the permanent mailing address includes a post office box number, then the person’s current residential address;

(3) The certificate holder’s date and place of birth; and

(4) Any information regarding the—

(i) Grade, number, and date of issuance of the airman certificate and ratings, if appropriate;

(ii) Class of medical certificate, the place and date of the medical exam, name of the Airman Medical Examiner (AME), and the circumstances concerning the loss of the original medical certificate, as appropriate; and

(iii) Date the knowledge test was taken, if appropriate.

(e) A person who has lost an airman certificate, medical certificate, or knowledge test report may obtain a facsimile from FAA Aeromedical Certification Branch or the Airman Certification Branch, as appropriate, confirming that it was issued and the:

(1) Facsimile may be carried as an airman certificate, medical certificate, or knowledge test report, as appropriate, for up to 60 days pending the person’s receipt of a duplicate under paragraph (a), (b), or (c) of this section, unless the person has been notified that the certificate has been suspended or revoked.

(2) Request for such a facsimile must include the date on which a duplicate
Type rating requirements, additional training, and authorization requirements.

(a) Type ratings required. A person who acts as a pilot in command of any of the following aircraft must hold a type rating for that aircraft:

(1) Large aircraft (except lighter-than-air).

(2) Turbojet-powered airplanes.

(3) Other aircraft specified by the Administrator through aircraft type certificate procedures.

(b) Authorization in lieu of a type rating. A person may be authorized to operate without a type rating for up to 60 days an aircraft requiring a type rating, provided—

(1) The Administrator has authorized the flight or series of flights;

(2) The Administrator has determined that an equivalent level of safety can be achieved through the operating limitations on the authorization;

(3) The person shows that compliance with paragraph (a) of this section is impracticable for the flight or series of flights; and

(4) The flight—

(i) Involves only a ferry flight, training flight, test flight, or practical test for a pilot certificate or rating;

(ii) Is within the United States;

(iii) Does not involve operations for compensation or hire unless the compensation or hire involves payment for the use of the aircraft for training or taking a practical test; and

(iv) Involves only the carriage of flight crewmembers considered essential for the flight.

(5) If the flight or series of flights cannot be accomplished within the time limit of the authorization, the Administrator may authorize an additional period of up to 60 days to accomplish the flight or series of flights.

(c) Aircraft category, class, and type ratings: Limitations on the carriage of persons, or operating for compensation or hire. Unless a person holds a category, class, and type rating (if a class and type rating is required) that applies to the aircraft, that person may not act as pilot in command of an aircraft that is carrying another person, or is operated for compensation or hire. That person also may not act as pilot in command of that aircraft for compensation or hire.

(d) Aircraft category, class, and type ratings: Limitations on operating an aircraft as the pilot in command. To serve as the pilot in command of an aircraft, a person must—

(1) Hold the appropriate category, class, and type rating (if a class or type rating is required) for the aircraft to be flown; or

(2) Have received training required by this part that is appropriate to the pilot certification level, aircraft category, class, and type rating (if a class or type rating is required) for the aircraft to be flown, and have received an endorsement for solo flight in that aircraft from an authorized instructor.

(e) Additional training required for operating complex airplanes. (1) Except as provided in paragraph (e)(2) of this section, no person may act as pilot in command of a complex airplane, unless the person has—

(i) Received and logged ground and flight training from an authorized instructor in a complex airplane, or in a flight simulator or flight training device that is representative of a complex airplane, and has been found proficient in the operation and systems of the airplane; and

(ii) Received a one-time endorsement in the pilot’s logbook from an authorized instructor who certifies the person is proficient to operate a complex airplane.

(2) The training and endorsement required by paragraph (e)(1) of this section is not required if the person has logged flight time as pilot in command of a complex airplane, or in a flight simulator or flight training device that is representative of a complex airplane prior to August 4, 1997.

(f) Additional training required for operating high-performance airplanes. (1) Except as provided in paragraph (f)(2) of this section, no person may act as
§ 61.31 14 CFR Ch. I (1–1–12 Edition)
pilot in command of a high-performance airplane (an airplane with an engine of more than 200 horsepower), unless the person has—
(i) Received and logged ground and flight training from an authorized instructor in a high-performance airplane, or in a flight simulator or flight training device that is representative of a high-performance airplane, and has been found proficient in the operation and systems of the airplane; and
(ii) Received a one-time endorsement in the pilot’s logbook from an authorized instructor who certifies the person is proficient to operate a high-performance airplane.
(2) The training and endorsement required by paragraph (f)(1) of this section is not required if the person has logged flight time as pilot in command of a high-performance airplane, or in a flight simulator or flight training device that is representative of a high-performance airplane prior to August 4, 1997.
(g) Additional training required for operating pressurized aircraft capable of operating at high altitudes. (1) Except as provided in paragraph (g)(3) of this section, no person may act as pilot in command of a pressurized aircraft unless that person has received and logged ground training from an authorized instructor and obtained an endorsement in the person’s logbook or training record from an authorized instructor who certifies the person has satisfactorily accomplished the ground training. The ground training must include at least the following subjects:
(i) High-altitude aerodynamics and meteorology;
(ii) Respiration;
(iii) Effects, symptoms, and causes of hypoxia and any other high-altitude sickness;
(iv) Duration of consciousness without supplemental oxygen;
(v) Effects of prolonged usage of supplemental oxygen;
(vi) Causes and effects of gas expansion and gas bubble formation;
(vii) Preventive measures for eliminating gas expansion, gas bubble formation, and high-altitude sickness;
(viii) Physical phenomena and incidents of decompression; and
(ix) Any other physiological aspects of high-altitude flight.
(2) Except as provided in paragraph (g)(3) of this section, no person may act as pilot in command of a pressurized aircraft unless that person has received and logged training from an authorized instructor in a pressurized aircraft, or in a flight simulator or flight training device that is representative of a pressurized aircraft, and obtained an endorsement in the person’s logbook or training record from an authorized instructor who found the person proficient in the operation of a pressurized aircraft. The flight training must include at least the following subjects:
(i) Normal cruise flight operations while operating above 25,000 feet MSL;
(ii) Proper emergency procedures for simulated rapid decompression without actually depressurizing the aircraft; and
(iii) Emergency descent procedures.
(3) The training and endorsement required by paragraphs (g)(1) and (g)(2) of this section are not required if that person can document satisfactory accomplishment of any of the following in a pressurized aircraft, or in a flight simulator or flight training device that is representative of a pressurized aircraft:
(i) Serving as pilot in command before April 15, 1991;
(ii) Completing a pilot proficiency check for a pilot certificate or rating before April 15, 1991;
(iii) Completing an official pilot-in-command check conducted by the military services of the United States; or
(iv) Completing a pilot-in-command proficiency check under part 121, 125, or 135 of this chapter conducted by the Administrator or by an approved pilot check airman.
(h) Additional aircraft type-specific training. No person may serve as pilot in command of an aircraft that the Administrator has determined requires aircraft type-specific training unless that person has—
(1) Received and logged type-specific training in the aircraft, or in a flight simulator or flight training device that is representative of that type of aircraft; and
(2) Received a logbook endorsement from an authorized instructor who has found the person proficient in the operation of the aircraft and its systems.

(i) Additional training required for operating tailwheel airplanes. (1) Except as provided in paragraph (i)(2) of this section, no person may act as pilot in command of a tailwheel airplane unless that person has received and logged flight training from an authorized instructor in a tailwheel airplane and received an endorsement in the person’s logbook from an authorized instructor who found the person proficient in the operation of a tailwheel airplane. The flight training must include at least the following maneuvers and procedures:

(i) Normal and crosswind takeoffs and landings;

(ii) Wheel landings (unless the manufacturer has recommended against such landings); and

(iii) Go-around procedures.

(2) The training and endorsement required by paragraph (i)(1) of this section is not required if the person logged pilot-in-command time in a tailwheel airplane before April 15, 1991.

(j) Additional training required for operating a glider. (1) No person may act as pilot in command of a glider—

(i) Using ground-tow procedures, unless that person has satisfactorily accomplished ground and flight training on ground-tow procedures and operations, and has received an endorsement from an authorized instructor who certifies in that pilot’s logbook that the pilot has been found proficient in ground-tow procedures and operations;

(ii) Using aerotow procedures, unless that person has satisfactorily accomplished ground and flight training on aerotow procedures and operations, and has received an endorsement from an authorized instructor who certifies in that pilot’s logbook that the pilot has been found proficient in aerotow procedures and operations; or

(iii) Using self-launch procedures, unless that person has satisfactorily accomplished ground and flight training on self-launch procedures and operations, and has received an endorsement from an authorized instructor who certifies in that pilot’s logbook that the pilot has been found proficient in self-launch procedures and operations.

(2) The holder of a glider rating issued prior to August 4, 1997, is considered to be in compliance with the training and logbook endorsement requirements of this paragraph for the specific operating privilege for which the holder is already qualified.

(k) Additional training required for night vision goggle operations. (1) Except as provided under paragraph (k)(3) of this section, a person may act as pilot in command of an aircraft using night vision goggles only if that person receives and logs ground training from an authorized instructor and obtains a logbook or training record endorsement from an authorized instructor who certifies the person completed the ground training. The ground training must include the following subjects:

(i) Applicable portions of this chapter that relate to night vision goggle limitations and flight operations;

(ii) Aeromedical factors related to the use of night vision goggles, including how to protect night vision, how the eyes adapt to night, self-imposed stresses that affect night vision, effects of lighting on night vision, cues used to estimate distance and depth perception at night, and visual illusions;

(iii) Normal, abnormal, and emergency operations of night vision goggle equipment;

(iv) Night vision goggle performance and scene interpretation; and

(v) Night vision goggle operation flight planning, including night terrain interpretation and factors affecting terrain interpretation.

(2) Except as provided under paragraph (k)(3) of this section, a person may act as pilot in command of an aircraft using night vision goggles only if that person receives and logs flight training from an authorized instructor and obtains a logbook or training record endorsement from an authorized instructor who found the person proficient in the use of night vision goggles. The flight training must include the following tasks:

(i) Preflight and use of internal and external aircraft lighting systems for night vision goggle operations;
 § 61.33 Tests: General procedure.

Tests prescribed by or under this part are given at times and places, and by persons designated by the Administrator.

§ 61.35 Knowledge test: Prerequisites and passing grades.

(a) An applicant for a knowledge test must have:

(1) Received an endorsement, if required by this part, from an authorized instructor certifying that the applicant accomplished the appropriate ground training or a home-study course required by this part for the certificate or rating sought and is prepared for the knowledge test; and

(2) Proper identification at the time of application that contains the applicant’s—

(i) Photograph;

(ii) Signature;

(iii) Date of birth, which shows the applicant meets or will meet the age requirements of this part for the certificate sought before the expiration date of the airman knowledge test report; and

(iv) If the permanent mailing is a post office box number, then the applicant must provide a current residential address.

(b) The Administrator shall specify the minimum passing grade for the knowledge test.

§ 61.37 Knowledge tests: Cheating or other unauthorized conduct.

(a) An applicant for a knowledge test may not:

(1) Copy or intentionally remove any knowledge test;
(2) Give to another applicant or receive from another applicant any part or copy of a knowledge test;
(3) Give assistance on, or receive assistance on, a knowledge test during the period that test is being given;
(4) Take any part of a knowledge test on behalf of another person;
(5) Be represented by, or represent, another person for a knowledge test;
(6) Use any material or aid during the period that the test is being given, unless specifically authorized to do so by the Administrator; and
(7) Intentionally cause, assist, or participate in any act prohibited by this paragraph.

(b) An applicant who the Administrator finds has committed an act prohibited by paragraph (a) of this section is prohibited, for 1 year after the date of committing that act, from:

(1) Applying for any certificate, rating, or authorization issued under this chapter; and
(2) Applying for and taking any test under this chapter.

(c) Any certificate or rating held by an applicant may be suspended or revoked if the Administrator finds that person has committed an act prohibited by paragraph (a) of this section.

§61.39 Prerequisites for practical tests.

(a) Except as provided in paragraphs (b) and (c) of this section, to be eligible for a practical test for a certificate or rating issued under this part, an applicant must:

(1) Pass the required knowledge test within the 24-calendar-month period preceding the month the applicant completes the practical test, if a knowledge test is required;

(2) Present the knowledge test report at the time of application for the practical test, if a knowledge test is required;

(3) Have satisfactorily accomplished the required training and obtained the aeronautical experience prescribed by this part for the certificate or rating sought;

(4) Hold at least a third-class medical certificate, if a medical certificate is required;

(5) Meet the prescribed age requirement of this part for the issuance of the certificate or rating sought;

(6) Have an endorsement, if required by this part, in the applicant’s logbook or training record that has been signed by an authorized instructor who certifies that the applicant—

(i) Has received and logged training time within 2 calendar months preceding the month of application in preparation for the practical test;

(ii) Is prepared for the required practical test; and

(iii) Has demonstrated satisfactory knowledge of the subject areas in which the applicant was deficient on the airmen knowledge test; and

(7) Have a completed and signed application form.

(b) Notwithstanding the provisions of paragraphs (a)(1) and (2) of this section, an applicant for an airline transport pilot certificate or an additional rating to an airline transport certificate may take the practical test for that certificate or rating with an expired knowledge test report, provided that the applicant:

(1) Is employed as a flight crewmember by a certificate holder under part 121, 125, or 135 of this chapter at the time of the practical test and has satisfactorily accomplished that operator’s approved—

(i) Pilot in command aircraft qualification training program that is appropriate to the certificate and rating sought; and

(ii) Qualification training requirements appropriate to the certificate and rating sought; or

(2) Is employed by the U.S. Armed Forces as a flight crewmember in U.S. military air transport operations at the time of the practical test and has completed the pilot in command aircraft qualification training program that is appropriate to the pilot certificate and rating sought.

(c) A person is not required to comply with the provisions of paragraph (a)(6) of this section if that person:

(1) Holds a foreign pilot license issued by a contracting State to the Convention on International Civil Aviation that authorizes at least the privileges of the pilot certificate sought;
§ 61.41 Flight training received from flight instructors not certificated by the FAA.

(a) A person may credit flight training toward the requirements of a pilot certificate or rating issued under this part, if that person received the training from:

(1) A flight instructor of an Armed Force in a program for training military pilots of either—

(i) The United States; or

(ii) A foreign contracting State to the Convention on International Civil Aviation.

(2) A flight instructor who is authorized to give such training by the licensing authority of a foreign contracting State to the Convention on International Civil Aviation, and the flight training is given outside the United States.

(b) A flight instructor described in paragraph (a) of this section is only authorized to give endorsements to show training given.

§ 61.43 Practical tests: General procedures.

(a) Completion of the practical test for a certificate or rating consists of—

(1) Performing the tasks specified in the areas of operation for the airman certificate or rating sought within the approved practical test standards;

(2) Demonstrating mastery of the aircraft by performing each task successfully;

(3) Demonstrating proficiency and competency within the approved standards; and

(4) Demonstrating sound judgment.

(b) The pilot flight crew complement required during the practical test is based on one of the following requirements that applies to the aircraft being used on the practical test:

(1) If the aircraft’s FAA-approved flight manual requires the pilot flight crew complement be a single pilot, then the applicant must demonstrate single pilot proficiency on the practical test.

(2) If the aircraft’s type certification data sheet requires the pilot flight crew complement be a single pilot, then the applicant must demonstrate single pilot proficiency on the practical test.

(3) If the FAA Flight Standardization Board report, FAA-approved aircraft flight manual, or aircraft type certification data sheet allows the pilot flight crew complement to be either a single pilot, or a pilot and a copilot, then the applicant may demonstrate single pilot proficiency or have a copilot on the practical test. If the applicant performs the practical test with a copilot, the limitation of “Second in Command Required” will be placed on the applicant’s pilot certificate. The limitation may be removed if the applicant passes the practical test by demonstrating single-pilot proficiency in the aircraft in which single-pilot privileges are sought.

(c) If an applicant fails any area of operation, that applicant fails the practical test.

(d) An applicant is not eligible for a certificate or rating sought until all the areas of operation are passed.

(e) The examiner or the applicant may discontinue a practical test at any time:

(1) When the applicant fails one or more of the areas of operation; or

(2) If all increments of the practical test for a certificate or rating are not completed on the same date, then all the remaining increments of the test must be completed within 2 calendar months after the month the applicant began the test.

(f) If all increments of the practical test for a certificate or rating are not completed within 2 calendar months after the month the applicant began the test, the applicant must retake the entire practical test.

§ 61.45 Practical tests: Required aircraft and equipment.

(a) General. Except as provided in paragraph (a)(2) of this section or when permitted to accomplish the entire flight increment of the practical test in a flight simulator or a flight training device, an applicant for a certificate or rating issued under this part must furnish:

(1) An aircraft of U.S. registry for each required test that—

(i) Is of the category, class, and type, if applicable, for which the applicant is applying for a certificate or rating; and

(ii) Has a standard airworthiness certificate or special airworthiness certificate in the limited, primary, or light-sport category.

(2) At the discretion of the examiner who administers the practical test, the applicant may furnish—

(i) An aircraft that has an airworthiness certificate other than a standard airworthiness certificate or special airworthiness certificate in the limited, primary, or light-sport category, but that otherwise meets the requirements of paragraph (a)(1) of this section;

(ii) An aircraft of the same category, class, and type, if applicable, of foreign registry that is properly certificated by the country of registry; or

(iii) A military aircraft of the same category, class, and type, if aircraft class and type are appropriate, for which the applicant is applying for a certificate or rating, and provided—

(A) The aircraft is under the direct operational control of the U.S. Armed Forces;

(B) The aircraft is airworthy under the maintenance standards of the U.S. Armed Forces; and

(C) The applicant has a letter from his or her commanding officer authorizing the use of the aircraft for the practical test.

(b) Required equipment (other than controls). (1) Except as provided in paragraph (b)(2) of this section, an aircraft used for a practical test must have—

(i) The equipment for each area of operation required for the practical test;

(ii) No prescribed operating limitations that prohibit its use in any of the areas of operation required for the practical test;

(iii) Except as provided in paragraphs (e) and (f) of this section, at least two pilot stations with adequate visibility for each person to operate the aircraft safely; and

(iv) Cockpit and outside visibility adequate to evaluate the performance of the applicant when an additional jump seat is provided for the examiner.

(2) An applicant for a certificate or rating may use an aircraft with operating characteristics that preclude the applicant from performing all of the tasks required for the practical test. However, the applicant’s certificate or rating, as appropriate, will be issued with an appropriate limitation.

(c) Required controls. Except for lighter-than-air aircraft, and a glider without an engine, an aircraft used for a practical test must have engine power controls and flight controls that are easily reached and operable in a conventional manner by both pilots, unless the Examiner determines that the practical test can be conducted safely in the aircraft without the controls easily reached by the Examiner.

(d) Simulated instrument flight equipment. An applicant for a practical test that involves maneuvering an aircraft
§ 61.47 Status of an examiner who is authorized by the Administrator to conduct practical tests.

(a) An examiner represents the Administrator for the purpose of conducting practical tests for certificates and ratings issued under this part and to observe an applicant’s ability to perform the areas of operation on the practical test.

(b) The examiner is not the pilot in command of the aircraft during the practical test unless the examiner agrees to act in that capacity for the flight or for a portion of the flight by prior arrangement with:

(1) The applicant; or

(2) A person who would otherwise act as pilot in command of the flight or for a portion of the flight.

(c) Notwithstanding the type of aircraft used during the practical test, the applicant and the examiner (and any other occupants authorized to be on board by the examiner) are not subject to the requirements or limitations for the carriage of passengers that are specified in this chapter.

§ 61.49 Retesting after failure.

(a) An applicant for a knowledge or practical test who fails that test may reapply for the test only after the applicant has received:

(1) The necessary training from an authorized instructor who has determined that the applicant is proficient to pass the test; and

(2) An endorsement from an authorized instructor who gave the applicant the additional training.

(b) An applicant for a flight instructor certificate with an airplane category rating or, for a flight instructor certificate with a glider category rating, who has failed the practical test due to deficiencies in instructional proficiency on stall awareness, spin entry, spins, or spin recovery must:

(1) Comply with the requirements of paragraph (a) of this section before being retested;

(2) Bring an aircraft to the retest that is of the appropriate aircraft category for the rating sought and is certified for spins; and

(3) Demonstrate satisfactory instructional proficiency on stall awareness, spin entry, spins, and spin recovery to an examiner during the retest.

§ 61.51 Pilot logbooks.

(a) Training time and aeronautical experience. Each person must document and record the following time in a manner acceptable to the Administrator:

(1) Training and aeronautical experience used to meet the requirements for
a certificate, rating, or flight review of this part.

(2) The aeronautical experience required for meeting the recent flight experience requirements of this part.

(b) Logbook entries. For the purposes of meeting the requirements of paragraph (a) of this section, each person must enter the following information for each flight or lesson logged:

(1) General—
(i) Date.
(ii) Total flight time or lesson time.
(iii) Location where the aircraft departed and arrived, or for lessons in a flight simulator or flight training device, the location where the lesson occurred.
(iv) Type and identification of aircraft, flight simulator, flight training device, or aviation training device, as appropriate.
(v) The name of a safety pilot, if required by §91.109 of this chapter.

(2) Type of pilot experience or training—
(i) Solo.
(ii) Pilot in command.
(iii) Second in command.
(iv) Flight and ground training received from an authorized instructor.
(v) Training received in a flight simulator, flight training device, or aviation training device from an authorized instructor.

(3) Conditions of flight—
(i) Day or night.
(ii) Actual instrument.
(iii) Simulated instrument conditions in flight, a flight simulator, flight training device, or aviation training device.

(iv) Use of night vision goggles in an aircraft in flight, in a flight simulator, or in a flight training device.

(c) Logging of pilot time. The pilot time described in this section may be used to:

(1) Apply for a certificate or rating issued under this part or a privilege authorized under this part; or
(2) Satisfy the recent flight experience requirements of this part.

(d) Logging of solo flight time. Except for a student pilot performing the duties of pilot in command of an airship requiring more than one pilot flight crewmember, a pilot may log as solo flight time only that flight time when the pilot is the sole occupant of the aircraft.

(e) Logging pilot-in-command flight time. (1) A sport, recreational, private, commercial, or airline transport pilot may log pilot in command flight time for flights:
(i) When the pilot is the sole manipulator of the controls of an aircraft for which the pilot is rated, or has sport pilot privileges for that category and class of aircraft, if the aircraft class rating is appropriate;
(ii) When the pilot is the sole occupant in the aircraft;
(iii) When the pilot, except for a holder of a sport or recreational pilot certificate, acts as pilot in command of an aircraft for which more than one pilot is required under the type certification of the aircraft or the regulations under which the flight is conducted; or
(iv) When the pilot performs the duties of pilot in command while under the supervision of a qualified pilot in command provided—
(A) The pilot performing the duties of pilot in command holds a commercial or airline transport pilot certificate and aircraft rating that is appropriate to the category and class of aircraft being flown, if a class rating is appropriate;
(B) The pilot performing the duties of pilot in command is undergoing an approved pilot in command training program that includes ground and flight training on the following areas of operation—
(1) Preflight preparation;
(2) Preflight procedures;
(3) Takeoff and departure;
(4) In-flight maneuvers;
(5) Instrument procedures;
(6) Landings and approaches to landings;
(7) Normal and abnormal procedures;
(8) Emergency procedures; and
(C) The supervising pilot in command holds—
(1) A commercial pilot certificate and flight instructor certificate, and aircraft rating that is appropriate to the category, class, and type of aircraft being flown, if a class or type rating is required; or
§ 61.51

(2) An airline transport pilot certificate and aircraft rating that is appropriate to the category, class, and type of aircraft being flown, if a class or type rating is required; and

(D) The supervising pilot in command logs the pilot in command training in the pilot’s logbook and attests to that certification with his or her signature, and flight instructor certificate number.

(2) If rated to act as pilot in command of the aircraft, an airline transport pilot may log all flight time while acting as pilot in command of an operation requiring an airline transport pilot certificate.

(3) A certificated flight instructor may log pilot in command flight time for all flight time while serving as the authorized instructor in an operation if the instructor is rated to act as pilot in command of that aircraft.

(4) A student pilot may log pilot-in-command time only when the student pilot—

(i) Is the sole occupant of the aircraft or is performing the duties of pilot in command of an airship requiring more than one pilot flight crewmember;

(ii) Has a solo flight endorsement as required under §61.87 of this part; and

(iii) Is undergoing training for a pilot certificate or rating.

(f) Logging second-in-command flight time. A person may log second-in-command flight time only for that flight time during which that person:

(1) Is qualified in accordance with the second-in-command requirements of §61.55 of this part, and occupies a crewmember station in an aircraft that requires more than one pilot by the aircraft’s type certificate; or

(2) Holds the appropriate category, class, and instrument rating (if an instrument rating is required for the flight) for the aircraft being flown, and more than one pilot is required under the type certification of the aircraft or the regulations under which the flight is being conducted.

(g) Logging instrument time. (1) A person may log instrument time only for that flight time when the person operates the aircraft solely by reference to instruments under actual or simulated instrument flight conditions.

(2) An authorized instructor may log instrument time when conducting instrument flight instruction in actual instrument flight conditions.

(3) For the purposes of logging instrument time to meet the recent instrument experience requirements of §61.57(c) of this part, the following information must be recorded in the person’s logbook—

(i) The location and type of each instrument approach accomplished; and

(ii) The name of the safety pilot, if required.

(4) A person can use time in a flight simulator, flight training device, or aviation training device for acquiring instrument aeronautical experience for a pilot certificate, rating, or instrument recency experience, provided an authorized instructor is present to observe that time and signs the person’s logbook or training record to verify the time and the content of the training session.

(h) Logging training time. (1) A person may log training time when that person receives training from an authorized instructor in an aircraft, flight simulator, or flight training device.

(2) The training time must be logged in a logbook and must:

(i) Be endorsed in a legible manner by the authorized instructor; and

(ii) Include a description of the training given, the length of the training lesson, and the authorized instructor’s signature, certificate number, and certificate expiration date.

(1) Presentation of required documents. (1) Persons must present their pilot certificate, medical certificate, logbook, or any other record required by this part for inspection upon a reasonable request by—

(i) The Administrator;

(ii) An authorized representative from the National Transportation Safety Board; or

(iii) Any Federal, State, or local law enforcement officer.

(2) A student pilot must carry the following items in the aircraft on all solo cross-country flights as evidence of the required authorized instructor clearances and endorsements—

(i) Pilot logbook;

(ii) Student pilot certificate; and
§ 61.52 Use of aeronautical experience obtained in ultralight vehicles.

(a) Before January 31, 2012, a person may use aeronautical experience obtained in an ultralight vehicle to meet the requirements for the following certificates and ratings issued under this part:

1. A sport pilot certificate.
2. A flight instructor certificate with a sport pilot rating.
3. A private pilot certificate with a weight-shift-control or powered parachute category rating.

(b) Before January 31, 2012, a person may use aeronautical experience obtained in an ultralight vehicle to meet the provisions of §61.69.

(c) A person using aeronautical experience obtained in an ultralight vehicle to meet the requirements for a certificate or rating specified in paragraph (a) of this section or the requirements of paragraph (b) of this section must—

1. Have been a registered ultralight pilot with an FAA-recognized ultralight organization when that aeronautical experience was obtained;
§ 61.53 Prohibition on operations during medical deficiency.

(a) Operations that require a medical certificate. Except as provided for in paragraph (b) of this section, no person who holds a medical certificate issued under part 67 of this chapter may act as pilot in command, or in any other capacity as a required pilot flight crewmember, while that person:

(1) Knows or has reason to know of any medical condition that would make the person unable to meet the requirements for the medical certificate necessary for the pilot operation; or

(2) Is taking medication or receiving other treatment for a medical condition that results in the person being unable to meet the requirements for the medical certificate necessary for the pilot operation.

(b) Operations that do not require a medical certificate. For operations provided for in § 61.23(b) of this part, a person shall not act as pilot in command, or in any other capacity as a required pilot flight crewmember, while that person knows or has reason to know of any medical condition that would make the person unable to operate the aircraft in a safe manner.

(c) Operations requiring a medical certificate or a U.S. driver’s license. For operations provided for in § 61.23(c), a person must meet the provisions of—

(1) Paragraph (a) of this section if that person holds a medical certificate issued under part 67 of this chapter and does not hold a U.S. driver’s license.

(2) Paragraph (b) of this section if that person holds a U.S. driver’s license.

§ 61.55 Second-in-command qualifications.

(a) A person may serve as a second-in-command of an aircraft type certificated for more than one required pilot flight crewmember or in operations requiring a second-in-command pilot flight crewmember only if that person holds:

(1) At least a private pilot certificate with the appropriate category and class rating; and

(2) An instrument rating or privilege that applies to the aircraft being flown if the flight is under IFR; and

(3) The appropriate pilot type rating for the aircraft unless the flight will be conducted as domestic flight operations within United States airspace.

(b) Except as provided in paragraph (e) of this section, no person may serve as a second-in-command of an aircraft type certificated for more than one required pilot flight crewmember or in operations requiring a second-in-command pilot flight crewmember only if that person:

(1) Become familiar with the following information for the specific type aircraft for which second-in-command privileges are requested—

(i) Operational procedures applicable to the powerplant, equipment, and systems.

(ii) Performance specifications and limitations.

(iii) Normal, abnormal, and emergency operating procedures.

(iv) Flight manual.

(v) Placards and markings.

(2) Except as provided in paragraph (g) of this section, perform and log pilot time in the type of aircraft
Federal Aviation Administration, DOT § 61.55

or in a flight simulator that represents the type of aircraft for which second-in-command privileges are requested, which includes—

(i) Three takeoffs and three landings to a full stop as the sole manipulator of the flight controls;

(ii) Engine-out procedures and maneuvering with an engine out while executing the duties of pilot in command; and

(iii) Crew resource management training.

(c) If a person complies with the requirements in paragraph (b) of this section in the calendar month before or the calendar month after the month in which compliance with this section is required, then that person is considered to have accomplished the training and practice in the month it is due.

(d) A person may receive a second-in-command pilot type rating for an aircraft after satisfactorily completing the second-in-command familiarization training requirements under paragraph (b) of this section in that type of aircraft provided the training was completed within the 12 calendar months before the month of application for the SIC pilot type rating. The person must comply with the following application and pilot certification procedures:

(1) The person who provided the training must sign the applicant’s logbook or training record after each lesson in accordance with § 61.51(h)(2) of this part. In lieu of the trainer, it is permissible for a qualified management official within the organization to sign the applicant’s training records or logbook and make the required endorsement. The qualified management official must hold the position of Chief Pilot, Director of Training, Director of Operations, or another comparable management position within the organization to sign the applicant’s training records or logbook and make the required endorsement. The qualified management official must hold the position of Chief Pilot, Director of Training, Director of Operations, or another comparable management position within the organization to sign the applicant’s training records or logbook and make the required endorsement.

(2) The trainer or qualified management official must make an endorsement in the applicant’s logbook that states “[Applicant’s Name and Pilot Certificate Number] has demonstrated the skill and knowledge required for the safe operation of the [Type of Aircraft], relevant to the duties and responsibilities of a second in command.”

(3) If the applicant’s flight experience and/or training records are in an electronic form, the applicant must present a paper copy of those records containing the signature of the trainer or qualified management official to an FAA Flight Standards District Office or Examiner.

(4) The applicant must complete and sign an Airman Certificate and/or Rating Application, FAA Form 8710–1, and present the application to an FAA Flight Standards District Office or to an Examiner.

(5) The person who provided the ground and flight training to the applicant must sign the “Instructor’s Recommendation” section of the Airman Certificate and/or Rating Application, FAA Form 8710–1. In lieu of the trainer, it is permissible for a qualified management official within the organization to sign the applicant’s FAA Form 8710–1.

(6) The applicant must appear in person at a FAA Flight Standards District Office or to an Examiner with his or her logbook/training records and with the completed and signed FAA Form 8710–1.

(7) There is no practical test required for the issuance of the “SIC Privileges Only” pilot type rating.

(e) A person may receive a second-in-command pilot type rating for the type of aircraft after satisfactorily completing an approved second-in-command training program, proficiency check, or competency check under subpart K of part 91, part 121, part 125, or part 135, as appropriate, in that type of aircraft provided the training was completed within the 12 calendar months before the month of application for the SIC pilot type rating. The person must comply with the following application and pilot certification procedures:

(1) The person who provided the training must sign the applicant’s logbook or training record after each lesson in accordance with § 61.51(h)(2) of this part. In lieu of the trainer, it is permissible for a qualified management official within the organization to sign
§61.55 14 CFR Ch. I (1–1–12 Edition)

the applicant’s training records or log-

book and make the required endorse-

ment. The qualified management official must hold the position of Chief Pilot, Director of Training, Director of Operations, or another comparable management position within the organization that provided the training and must be in a position to verify the applicant’s training records and that the training was given.

(2) The trainer or qualified management official must make an endorsement in the applicant’s logbook that states “[Applicant’s Name and Pilot Certificate Number] has demonstrated the skill and knowledge required for the safe operation of the [Type of Aircraft], relevant to the duties and responsibilities of a second in command.”

(3) If the applicant’s flight experience and/or training records are in an electronic form, the applicant must provide a paper copy of those records containing the signature of the trainer or qualified management official to an FAA Flight Standards District Office, an Examiner, or an Aircrew Program Designee.

(4) The applicant must complete and sign an Airman Certificate and/or Rating Application, FAA Form 8710–1, and present the application to an FAA Flight Standards District Office or to an Examiner or to an authorized Aircrew Program Designee.

(5) The person who provided the ground and flight training to the applicant must sign the “Instructor’s Recommendation” section of the Airman Certificate and/or Rating Application, FAA Form 8710–1. In lieu of the trainer, it is permissible for a qualified management official within the organization to sign the applicant’s FAA Form 8710–1.

(6) The applicant must appear in person at an FAA Flight Standards District Office or to an Examiner or to an authorized Aircrew Program Designee with his or her logbook/training records and with the completed and signed FAA Form 8710–1.

(7) There is no practical test required for the issuance of the “SIC Privileges Only” pilot type rating.

(f) The familiarization training requirements of paragraph (b) of this section do not apply to a person who is:

(1) Designated and qualified as pilot in command under subpart K of part 91, part 121, 125, or 135 of this chapter in that specific type of aircraft;

(2) Designated as the second in command under subpart K of part 91, part 121, 125, or 135 of this chapter in that specific type of aircraft;

(3) Designated as the second in command in that specific type of aircraft for the purpose of receiving flight training required by this section, and no passengers or cargo are carried on the aircraft; or

(4) Designated as a safety pilot for purposes required by §91.109 of this chapter.

(g) The holder of a commercial or airline transport pilot certificate with the appropriate category and class rating is not required to meet the requirements of paragraph (b)(2) of this section, provided the pilot:

(1) Is conducting a ferry flight, aircraft flight test, or evaluation flight of an aircraft’s equipment; and

(2) Is not carrying any person or property on board the aircraft, other than necessary for conduct of the flight.

(h) For the purpose of meeting the requirements of paragraph (b) of this section, a person may serve as second in command in that specific type aircraft, provided:

(1) The flight is conducted under day VFR or day IFR; and

(2) No person or property is carried on board the aircraft, other than necessary for conduct of the flight.

(i) The training under paragraphs (b) and (d) of this section and the training, proficiency check, and competency check under paragraph (e) of this section may be accomplished in a flight simulator that is used in accordance with an approved training course conducted by a training center certificated under part 142 of this chapter or under subpart K of part 91, part 121 or part 135 of this chapter.

(j) When an applicant for an initial second-in-command qualification for a particular type of aircraft receives all the training in a flight simulator, that applicant must satisfactorily complete
one takeoff and one landing in an aircraft of the same type for which the qualification is sought. This requirement does not apply to an applicant who completes a proficiency check under part 121 or competency check under subpart K, part 91, part 125, or part 135 for the particular type of aircraft.

§ 61.56 Flight review.

(a) Except as provided in paragraphs (b) and (f) of this section, a flight review consists of a minimum of 1 hour of flight training and 1 hour of ground training. The review must include:

(1) A review of the current general operating and flight rules of part 91 of this chapter; and

(2) A review of those maneuvers and procedures that, at the discretion of the person giving the review, are necessary for the pilot to demonstrate the safe exercise of the privileges of the pilot certificate.

(b) Glider pilots may substitute a minimum of three instructional flights in a glider, each of which includes a flight to traffic pattern altitude, in lieu of the 1 hour of flight training required in paragraph (a) of this section.

(c) Except as provided in paragraphs (d), (e), and (g) of this section, no person may act as pilot in command of an aircraft unless, since the beginning of the 24th calendar month before the month in which that pilot acts in command, that person has—

(1) Accomplished a flight review given in an aircraft for which that pilot is rated by an authorized instructor and

(2) A logbook endorsed from an authorized instructor who gave the review certifying that the person has satisfactorily completed the review.

(d) A person who has, within the period specified in paragraph (c) of this section, passed a pilot proficiency check conducted by an examiner, an approved pilot check airman, or a U.S. Armed Force, for a pilot certificate, rating, or operating privilege need not accomplish the flight review required by this section.

(e) A person who has, within the period specified in paragraph (c) of this section, satisfactorily accomplished one or more phases of an FAA-sponsored pilot proficiency award program need not accomplish the flight review required by this section.

(f) A person who holds a flight instructor certificate and who has, within the period specified in paragraph (c) of this section, satisfactorily completed a renewal of a flight instructor certificate under the provisions in §61.197 need not accomplish the one hour of ground training specified in paragraph (a) of this section.

(g) A student pilot need not accomplish the flight review required by this section provided the student pilot is undergoing training for a certificate and has a current solo flight endorsement as required under §61.87 of this part.

(h) The requirements of this section may be accomplished in combination with the requirements of §61.57 and other applicable recent experience requirements at the discretion of the authorized instructor conducting the flight review.

(i) A flight simulator or flight training device may be used to meet the flight review requirements of this section subject to the following conditions:

(1) The flight simulator or flight training device must be used in accordance with an approved course conducted by a training center certificated under part 142 of this chapter.

(2) Unless the flight review is undertaken in a flight simulator that is approved for landings, the applicant must meet the takeoff and landing requirements of §61.57(a) or §61.57(b) of this part.

(3) The flight simulator or flight training device used must represent an aircraft or set of aircraft for which the pilot is rated.

§ 61.57 Recent flight experience: Pilot in command.

(a) General experience. (1) Except as provided in paragraph (e) of this section, no person may act as a pilot in command of an aircraft carrying passengers or of an aircraft certificated for more than one pilot flight crewmember unless that person has made at least three takeoffs and three landings within the preceding 90 days, and—
 (i) The person acted as the sole manipulator of the flight controls; and
 (ii) The required takeoffs and landings were performed in an aircraft of the same category, class, and type (if a type rating is required), and, if the aircraft to be flown is an airplane with a tailwheel, the takeoffs and landings must have been made to a full stop in an airplane with a tailwheel.

(2) For the purpose of meeting the requirements of paragraph (a)(1) of this section, a person may act as a pilot in command of an aircraft under day VFR or day IFR, provided no persons or property are carried on board the aircraft, other than those necessary for the conduct of the flight.

(3) The takeoffs and landings required by paragraph (a)(1) of this section may be accomplished in a flight simulator or flight training device that is—
 (i) Approved by the Administrator for landings; and
 (ii) Used in accordance with an approved course conducted by a training center certificated under part 142 of this chapter.

(b) Night takeoff and landing experience. (1) Except as provided in paragraph (e) of this section, no person may act as pilot in command of an aircraft under day VFR or day IFR, provided no persons or property are carried on board the aircraft, other than those necessary for the conduct of the flight.

(2) For the purpose of meeting the requirements of paragraph (a)(1) of this section, a person may act as a pilot in command of an aircraft under day VFR or day IFR, provided no persons or property are carried on board the aircraft, other than those necessary for the conduct of the flight.

(3) The takeoffs and landings required by paragraph (a)(1) of this section may be accomplished in a flight simulator that is—
 (i) Approved by the Administrator for takeoffs and landings, if the visual system is adjusted to represent the period described in paragraph (b)(1) of this section; and
 (ii) Used in accordance with an approved course conducted by a training center certificated under part 142 of this chapter.

(c) Instrument experience. Except as provided in paragraph (e) of this section, a person may act as pilot in command under IFR or weather conditions less than the minimums prescribed for VFR only if:

(1) Use of an airplane, powered-lift, helicopter, or airship for maintaining instrument experience. Within the 6 calendar months preceding the month of the flight, that person performed and logged at least the following tasks and iterations in an airplane, powered-lift, helicopter, or airship, as appropriate, for the instrument rating privileges to be maintained in actual weather conditions, or under simulated conditions using a view-limiting device that involves having performed the following—
 (i) Six instrument approaches.
 (ii) Holding procedures and tasks.
 (iii) Intercepting and tracking courses through the use of navigational electronic systems.

(2) Use of a flight simulator or flight training device for maintaining instrument experience. Within the 6 calendar months preceding the month of the flight, that person performed and logged at least the following tasks and iterations in a flight simulator or flight training device, provided the flight simulator or flight training device represents the category of aircraft for the instrument rating privileges to be maintained and involves having performed the following—
 (i) Six instrument approaches.
 (ii) Holding procedures and tasks.
 (iii) Intercepting and tracking courses through the use of navigational electronic systems.

(3) Use of an aviation training device for maintaining instrument experience.
Within the 2 calendar months preceding the month of the flight, that person performed and logged at least the following tasks, iterations, and time in an aviation training device and has performed the following—

(i) Three hours of instrument experience.
(ii) Holding procedures and tasks.
(iii) Six instrument approaches.
(iv) Two unusual attitude recoveries while in a descending, V_w airspeed condition and two unusual attitude recoveries while in an ascending, stall speed condition.
(v) Interception and tracking courses through the use of navigational electronic systems.

(4) Combination of completing instrument experience in an aircraft and a flight simulator, flight training device, and aviation training device. A person who elects to complete the instrument experience with a combination of an aircraft, flight simulator or flight training device, and aviation training device must have performed and logged the following within the 6 calendar months preceding the month of the flight—

(i) Instrument experience in an airplane, powered-lift, helicopter, or airship, as appropriate, for the instrument rating privileges to be maintained, performed in actual weather conditions, or under simulated weather conditions while using a view-limiting device, on the following instrument currency tasks:
 (A) Instrument approaches.
 (B) Holding procedures and tasks.
 (C) Interception and tracking courses through the use of navigational electronic systems.

(ii) Instrument experience in a flight simulator or flight training device that represents the category of aircraft for the instrument rating privileges to be maintained and involves performing at least the following tasks—
 (A) Six instrument approaches.
 (B) Holding procedures and tasks.
 (C) Interception and tracking courses through the use of navigational electronic systems.

(iii) Instrument experience in an aviation training device that represents the category of aircraft for the instrument rating privileges to be maintained and involves performing at least the following tasks—
 (A) Six instrument approaches.
 (B) Holding procedures and tasks.
 (C) Interception and tracking courses through the use of navigational electronic systems.

(D) Two unusual attitude recoveries while in a descending, V_w airspeed condition and two unusual attitude recoveries while in an ascending, stall speed condition.

(5) Combination of completing instrument experience in a flight simulator or flight training device, and an aviation training device. A person who elects to complete the instrument experience with a combination of a flight simulator, flight training device, and aviation training device must have performed the following within the 6 calendar months preceding the month of the flight—

(i) Instrument recency experience in a flight simulator or flight training device that represents the category of aircraft for the instrument rating privileges to be maintained and involves having performed the following tasks:
 (A) Six instrument approaches.
 (B) Holding procedures and tasks.
 (C) Interception and tracking courses through the use of navigational electronic systems.

(ii) Three hours of instrument experience in an aviation training device that represents the category of aircraft for the instrument rating privileges to be maintained and involves performing at least the following tasks—
 (A) Six instrument approaches.
 (B) Holding procedures and tasks.
 (C) Interception and tracking courses through the use of navigational electronic systems.

(6) Maintaining instrument recent experience in a glider.

(i) Within the 6 calendar months preceding the month of the flight, that person must have performed and logged at least the following instrument currency tasks, iterations, and flight time, and the instrument currency must have been performed in actual weather conditions or under simulated weather conditions—
 (A) One hour of instrument flight time in a glider or in a single engine
airplane using a view-limiting device while performing interception and tracking courses through the use of navigation electronic systems.

(B) Two hours of instrument flight time in a glider or a single engine airplane with the use of a view-limiting device while performing straight glides, turns to specific headings, steep turns, flight at various airspeeds, navigation, and slow flight and stalls.

(ii) Before a pilot is allowed to carry a passenger in a glider under IFR or in weather conditions less than the minimums prescribed for VFR, that pilot must—

(A) Have logged and performed 2 hours of instrument flight time in a glider within the 6 calendar months preceding the month of the flight

(B) Use a view-limiting-device while practicing performance maneuvers, performance airspeeds, navigation, slow flight, and stalls.

(d) Instrument proficiency check. Except as provided in paragraph (e) of this section, a person who has failed to meet the instrument experience requirements of paragraph (c) for more than six calendar months may reestablish instrument currency only by completing an instrument proficiency check. The instrument proficiency check must consist of the areas of operation and instrument tasks required in the instrument rating practical test standards.

(1) The instrument proficiency check must be—

(i) In an aircraft that is appropriate to the aircraft category;

(ii) For other than a glider, in a flight simulator or flight training device that is representative of the aircraft category; or

(iii) For a glider, in a single-engine airplane or a glider.

(2) The instrument proficiency check must be given by—

(i) An examiner;

(ii) A person authorized by the U.S. Armed Forces to conduct instrument flight tests, provided the person being tested is a member of the U.S. Armed Forces;

(iii) A company check pilot who is authorized to conduct instrument flight tests under part 121, 123, or 135 of this chapter or subpart K of part 91 of this chapter, and provided that both the check pilot and the pilot being tested are employees of that operator or fractional ownership program manager, as applicable;

(iv) An authorized instructor; or

(v) A person approved by the Administrator to conduct instrument practical tests.

(e) Exceptions. (1) Paragraphs (a) and (b) of this section do not apply to a pilot in command who is employed by a certificate holder under part 125 and engaged in a flight operation for that certificate holder if the pilot is in compliance with §§125.261 and 125.265 of this chapter.

(2) This section does not apply to a pilot in command who is employed by an air carrier certificated under part 121 or 135 and is engaged in a flight operation under part 91, 121, or 135 for that air carrier if the pilot is in compliance with §§121.437 and 121.439, or §§135.243 and 135.247 of this chapter, as appropriate.

(3) Paragraph (b) of this section does not apply to a pilot in command of a turbine-powered airplane that is type certificated for more than one pilot crewmember, provided that pilot has complied with the requirements of paragraph (e)(3)(i) or (ii) of this section:

(1) The pilot in command must hold at least a commercial pilot certificate with the appropriate category, class, and type rating for each airplane that is type certificated for more than one pilot crewmember that the pilot seeks to operate under this alternative, and:

(A) That pilot must have logged at least 1,500 hours of aeronautical experience as a pilot;

(B) In each airplane that is type certificated for more than one pilot crewmember that the pilot seeks to operate under this alternative, that pilot must have accomplished and logged the daytime takeoff and landing recent flight experience of paragraph (a) of this section, as the sole manipulator of the flight controls;

(C) Within the preceding 90 days prior to the operation of that airplane that is type certificated for more than one pilot crewmember, the pilot must have accomplished and logged at least 15
hours of flight time in the type of airplane that the pilot seeks to operate under this alternative; and

(D) That pilot has accomplished and logged at least 3 takeoffs and 3 landings to a full stop, as the sole manipulator of the flight controls, in a turbine-powered airplane that requires more than one pilot crewmember. The pilot must have performed the takeoffs and landings during the period beginning 1 hour after sunset and ending 1 hour before sunrise within the preceding 6 months prior to the month of the flight.

(ii) The pilot in command must hold at least a commercial pilot certificate with the appropriate category, class, and type rating for each airplane that is type certificated for more than one pilot crewmember that the pilot seeks to operate under this alternative, and:

(A) That pilot must have logged at least 1,500 hours of aeronautical experience as a pilot;

(B) In each airplane that is type certificated for more than one pilot crewmember that the pilot seeks to operate under this alternative, that pilot must have accomplished and logged the daytime takeoff and landing recent flight experience of paragraph (a) of this section, as the sole manipulator of the flight controls;

(C) Within the preceding 90 days prior to the operation of that airplane that is type certificated for more than one pilot crewmember, the pilot must have accomplished and logged at least 15 hours of flight time in the type of airplane that the pilot seeks to operate under this alternative; and

(D) Within the preceding 12 months prior to the month of the flight, the pilot must have completed a training program that is approved under part 142 of this chapter. The approved training program must have required and the pilot must have performed, at least 6 takeoffs and 6 landings to a full stop as the sole manipulator of the controls in a flight simulator that is representative of a turbine-powered airplane that requires more than one pilot crewmember. The flight simulator’s visual system must have been adjusted to represent the period beginning 1 hour after sunset and ending 1 hour before sunrise.

(f) **Night vision goggle operating experience.** (1) A person may act as pilot in command in a night vision goggle operation with passengers on board only if, within 2 calendar months preceding the month of the flight, that person performs and logs the following tasks as the sole manipulator of the controls on a flight during a night vision goggle operation—

(i) Three takeoffs and three landings, with each takeoff and landing including a climbout, cruise, descent, and approach phase of flight (only required if the pilot wants to use night vision goggles during the takeoff and landing phases of the flight).

(ii) Three hovering tasks (only required if the pilot wants to use night vision goggles when operating helicopters or powered-lifts during the hovering phase of flight).

(iii) Three area departure and area arrival tasks.

(iv) Three tasks of transitioning from aided night flight (**aided night flight** means that the pilot uses night vision goggles to maintain visual surface reference) to unaided night flight (**unaided night flight** means that the pilot does not use night vision goggles) and back to aided night flight.

(v) Three night vision goggle operations, or when operating helicopters or powered-lifts, six night vision goggle operations.

(2) A person may act as pilot in command using night vision goggles only if, within the 4 calendar months preceding the month of the flight, that person performs and logs the tasks listed in paragraph (f)(1)(i) through (v) of this section as the sole manipulator of the controls during a night vision goggle operation.

(g) **Night vision goggle proficiency check.** A person must either meet the night vision goggle experience requirements of paragraphs (f)(1) or (f)(2) of this section or pass a night vision goggle proficiency check to act as pilot in command using night vision goggles. The proficiency check must be performed in the category of aircraft that is appropriate to the night vision goggle operation for which the person is seeking the night vision goggle privilege or in a flight simulator or flight training device that is representative...
§ 61.58 Pilot-in-command proficiency check: Operation of an aircraft that requires more than one pilot flight crewmember or is turbojet-powered.

(a) Except as otherwise provided in this section, to serve as pilot in command of an aircraft that is type certificated for more than one required pilot flight crewmember or is turbojet-powered, a person must—

(1) Within the preceding 12 calendar months, complete a pilot-in-command proficiency check in an aircraft that is type certificated for more than one required pilot flight crewmember or is turbojet-powered; and

(2) Within the preceding 24 calendar months, complete a pilot-in-command proficiency check in the particular type of aircraft in which that person will serve as pilot in command, that is type certificated for more than one required pilot flight crewmember or is turbojet-powered.

(b) This section does not apply to persons conducting operations under subpart K of part 91, part 121, 125, 133, 135, or 137 of this chapter, or persons maintaining continuing qualification under an Advanced Qualification program approved under subpart Y of part 121 of this chapter.

(c) The pilot-in-command proficiency check given in accordance with the provisions of subpart K of part 91, part 121, 125, or 135 of this chapter may be used to satisfy the requirements of this section.

(d) The pilot-in-command proficiency check required by paragraph (a) of this section may be accomplished by satisfactory completion of one of the following:

(1) A pilot-in-command proficiency check conducted by a person authorized by the Administrator, consisting of the aeronautical knowledge areas, areas of operations, and tasks required for a type rating, in an aircraft that is type certificated for more than one pilot flight crewmember or is turbojet-powered;

(2) The practical test required for a type rating, in an aircraft that is type certificated for more than one required pilot flight crewmember or is turbojet-powered;

(3) The initial or periodic practical test required for the issuance of a pilot examiner or check airman designation, in an aircraft that is type certificated for more than one required pilot flight crewmember or is turbojet-powered;

(4) A pilot proficiency check administered by a U.S. Armed Force that qualifies the military pilot for pilot-in-command designation with instrument privileges, and was performed in a military aircraft that the military requires to be operated by more than one pilot flight crewmember or is turbojet-powered;

(5) For a pilot authorized by the Administrator to operate an experimental turbojet-powered aircraft that possesses, by original design or through modification, more than a single seat, the required proficiency check for all
Federal Aviation Administration, DOT § 61.58

of the experimental turbojet-powered aircraft for which the pilot holds an authorization may be accomplished by completing any one of the following:

(i) A single proficiency check, conducted by an examiner authorized by the Administrator, in any one of the experimental turbojet-powered aircraft for which the airman holds an authorization to operate if conducted within the prior 12 months;

(ii) A single proficiency check, conducted by an examiner authorized by the Administrator, in any experimental turbojet-powered aircraft (e.g., if a pilot acquires a new authorization to operate an additional experimental turbojet-powered aircraft, the check for that new authorization will meet the intent), if conducted within the prior 12 months;

(iii) Current qualification under an Advanced Qualification Program (AQP) under subpart Y of part 121 of this chapter;

(iv) Any proficiency check conducted under subpart K of part 91, part 121, or part 135 of this chapter within the prior 12 months if conducted in a turbojet-powered aircraft; or

(v) Any other § 61.58 proficiency check conducted within the prior 12 months if conducted in a turbojet-powered aircraft.

(e) The pilot of a multi-seat experimental turbojet-powered aircraft who has not received a proficiency check within the prior 12 months in accordance with this section may continue to operate such aircraft in accordance with the pilot’s authorizations. However, the pilot is prohibited from carriage of any persons in any experimental turbojet-powered aircraft with the exception of those individuals authorized by the Administrator to conduct training, conduct flight checks, or perform pilot certification functions in such aircraft, and only during flights specifically related to training, flight checks, or certification in such aircraft.

(f) This section will not apply to a pilot authorized by the Administrator to serve as pilot in command in experimental turbojet-powered aircraft that possesses, by original design, a single seat, when operating such single-seat aircraft.

(g) A check or test described in paragraphs (d)(1) through (5) of this section may be accomplished in a flight simulator under part 142 of this chapter, subject to the following:

(1) Except as provided for in paragraphs (g)(2) and (3) of this section, if an otherwise qualified and approved flight simulator used for a pilot-in-command proficiency check is not qualified and approved for a specific required maneuver—

(i) The training center must annotate, in the applicant’s training record, the maneuver or maneuvers omitted; and

(ii) Prior to acting as pilot in command, the pilot must demonstrate proficiency in each omitted maneuver in an aircraft or flight simulator qualified and approved for each omitted maneuver.

(2) If the flight simulator used pursuant to paragraph (g) of this section is not qualified and approved for circling approaches—

(i) The applicant’s record must include the statement, “Proficiency in circling approaches not demonstrated”; and

(ii) The applicant may not perform circling approaches as pilot in command when weather conditions are less than the basic VFR conditions described in § 91.155 of this chapter, until proficiency in circling approaches has been successfully demonstrated in a flight simulator qualified and approved for circling approaches or in an aircraft to a person authorized by the Administrator to conduct the check required by this section.

(3) If the flight simulator used pursuant to paragraph (g) of this section is not qualified and approved for landings, the applicant must—

(i) Hold a type rating in the airplane represented by the simulator; and

(ii) Have completed within the preceding 90 days at least three takeoffs and three landings (one to a full stop) as the sole manipulator of the flight controls in the type airplane for which the pilot-in-command proficiency check is sought.
§ 61.59 Falsification, reproduction, or alteration of applications, certificates, logbooks, reports, or records.

(a) No person may make or cause to be made:

(1) Any fraudulent or intentionally false statement on any application for a certificate, rating, authorization, or duplicate thereof, issued under this part;

(2) Any fraudulent or intentionally false entry in any logbook, record, or report that is required to be kept, made, or used to show compliance with any requirement for the issuance or exercise of the privileges of any certificate, rating, or authorization under this part;

(3) Any reproduction for fraudulent purpose of any certificate, rating, or authorization, under this part; or

(4) Any alteration of any certificate, rating, or authorization under this part.

(b) The commission of an act prohibited under paragraph (a) of this section is a basis for suspending or revoking any airman certificate, rating, or authorization held by that person.

§ 61.60 Change of address.

The holder of a pilot, flight instructor, or ground instructor certificate who has made a change in permanent mailing address may not, after 30 days from that date, exercise the privileges of the certificate unless the holder has notified in writing the FAA, Airman Certification Branch, P.O. Box 25082, Oklahoma City, OK 73125, of the new permanent mailing address, or if the permanent mailing address includes a post office box number, then the holder’s current residential address.

Subpart B—Aircraft Ratings and Pilot Authorizations

§ 61.61 Applicability.

This subpart prescribes the requirements for the issuance of additional aircraft ratings after a pilot certificate is issued, issuance of a type rating concurrently with a pilot certificate, and the requirements for and limitations of pilot authorizations issued by the Administrator.

§ 61.63 Additional aircraft ratings (other than for ratings at the airline transport pilot certification level).

(a) General. For an additional aircraft rating on a pilot certificate, other than for an airline transport pilot certificate, a person must meet the requirements of this section appropriate to the additional aircraft rating sought.

(b) Additional aircraft category rating. A person who applies to add a category rating to a pilot certificate:

(1) Must complete the training and have the applicable aeronautical experience.
(2) Must have a logbook or training record endorsement from an authorized instructor attesting that the person was found competent in the appropriate aeronautical knowledge areas and proficient in the appropriate areas of operation.

(3) Must pass the practical test.

(4) Need not take an additional knowledge test, provided the applicant holds an airplane, rotorcraft, powered-lift, weight-shift-control aircraft, powered parachute, or airship rating at that pilot certificate level.

(c) Additional aircraft class rating. A person who applies for an additional class rating on a pilot certificate:

(1) Must have a logbook or training record endorsement from an authorized instructor attesting that the person was found competent in the appropriate aeronautical knowledge areas and proficient in the appropriate areas of operation.

(2) Must pass the practical test.

(3) Need not meet the specified training time requirements prescribed by this part that apply to the pilot certificate for the aircraft class rating sought; unless, the person only holds a lighter-than-air category rating with a balloon class rating and is seeking an airship class rating, then that person must receive the specified training time requirements and possess the appropriate aeronautical experience.

(4) Need not take an additional knowledge test, provided the applicant holds an airplane, rotorcraft, powered-lift, weight-shift-control aircraft, powered parachute, or airship rating at that pilot certificate level.

(d) Additional aircraft type rating. Except as provided under paragraph (d)(6) of this section, a person who applies for an aircraft type rating or an aircraft type rating to be completed concurrently with an aircraft category or class rating—

(1) Must hold or concurrently obtain an appropriate instrument rating, except as provided in paragraph (e) of this section.

(2) Must have a logbook or training record endorsement from an authorized instructor attesting that the person is competent in the appropriate aeronautical knowledge areas and proficient in the appropriate areas of operation at the airline transport pilot certification level.

(3) Must pass the practical test at the airline transport pilot certification level.

(4) Must perform the practical test in actual or simulated instrument conditions, except as provided in paragraph (e) of this section.

(5) Need not take an additional knowledge test if the applicant holds an airplane, rotorcraft, powered-lift, or airship rating on the pilot certificate.

(6) In the case of a pilot employee of a part 121 or part 135 certificate holder or of a fractional ownership program manager under subpart K of part 91 of this chapter, the pilot must—

(i) Meet the appropriate requirements under paragraphs (d)(1), (d)(3), and (d)(4) of this section; and

(ii) Receive a flight training record endorsement from the certificate holder attesting that the person completed the certificate holder’s approved ground and flight training program.

(e) Aircraft not capable of instrument maneuvers and procedures. (1) An applicant for a type rating or a type rating in addition to an aircraft category and/or class rating who provides an aircraft that is not capable of the instrument maneuvers and procedures required on the practical test:

(i) May apply for the type rating, but the rating will be limited to “VFR only.”

(ii) May have the “VFR only” limitation removed for that aircraft type after the applicant:

(A) Passes a practical test in that type of aircraft in actual or simulated instrument conditions;

(B) Passes a practical test in that type of aircraft on the appropriate instrument maneuvers and procedures in §61.157; or

(C) Becomes qualified under §61.73(d) for that type of aircraft.

(2) When an instrument rating is issued to a person who holds one or more type ratings, the amended pilot certificate must bear the “VFR only” limitation for each aircraft type rating that the person did not demonstrate instrument competency.

(f) Multiengine airplane with a single-pilot station. An applicant for a type
rating, at other than the ATP certification level, in a multieengine airplane with a single-pilot station must perform the practical test in the multi-seat version of that airplane, or the practical test may be performed in the single-seat version of that airplane if the Examiner is in a position to observe the applicant during the practical test and there is no multi-seat version of that multieengine airplane.

(g) Single engine airplane with a single-pilot station. An applicant for a type rating, at other than the ATP certification level, in a single engine airplane with a single-pilot station must perform the practical test in the multi-seat version of that single engine airplane, or the practical test may be performed in the single-seat version of that airplane if the Examiner is in a position to observe the applicant during the practical test and there is no multi-seat version of that single engine airplane.

(h) Aircraft category and class rating for the operation of aircraft with an experimental certificate. A person holding a recreational, private, or commercial pilot certificate may apply for a category and class rating limited to a specific make and model of experimental aircraft, provided—

(1) The person logged 5 hours flight time while acting as pilot in command in the same category, class, make, and model of aircraft.

(2) The person received a logbook endorsement from an authorized instructor who determined the pilot’s proficiency to act as pilot in command of the same category, class, make, and model of aircraft.

(3) The flight time specified under paragraph (h)(1) of this section was logged between September 1, 2004 and August 31, 2005.

(i) Waiver authority. An Examiner who conducts a practical test may waive any task for which the FAA has provided waiver authority.

§ 61.64 Use of a flight simulator and flight training device.

(a) Use of a flight simulator or flight training device. If an applicant for a certificate or rating uses a flight simulator or flight training device for training or any portion of the practical test, the flight simulator and flight training device—

(1) Must represent the category, class, and type (if a type rating is applicable) for the rating sought; and

(2) Must be qualified and approved by the Administrator and used in accordance with an approved course of training under part 141 or part 142 of this chapter; or under part 121 or part 135 of this chapter, provided the applicant is a pilot employee of that air carrier operator.

(b) Except as provided in paragraph (f) of this section, if an airplane is not used during the practical test for a type rating for a turbojet airplane (except for preflight inspection), an applicant must accomplish the entire practical test in a Level C or higher flight simulator and the applicant must—

(1) Hold a type rating in a turbojet airplane of the same class of airplane for which the type rating is sought, and that type rating may not contain a supervised operating experience limitation;

(2) Have 1,000 hours of flight time in two different turbojet airplanes of the same class of airplane for which the type rating is sought;

(3) Have been appointed by the U.S. Armed Forces as pilot in command in a turbojet airplane of the same class of airplane for which the type rating is sought;

(4) Have 500 hours of flight time in the same type of airplane for which the type rating is sought; or

(5) Have logged at least 2,000 hours of flight time, of which 500 hours were in turbine-powered airplanes of the same class of airplane for which the type rating is sought.

(c) Except as provided in paragraph (f) of this section, if an airplane is not used during the practical test for a type rating for a turbo-propeller airplane (except for preflight inspection), an applicant must accomplish the entire practical test in a Level C or higher flight simulator and the applicant must—

(1) Hold a type rating in a turbo-propeller airplane of the same class of airplane for which the type rating is
sought, and that type rating may not contain a supervised operating experience limitation;

(2) Have 1,000 hours of flight time in two different turbo-propeller airplanes of the same class of airplane for which the type rating is sought;

(3) Have been appointed by the U.S. Armed Forces as pilot in command in a turbo-propeller airplane of the same class of airplane for which the type rating is sought;

(4) Have 500 hours of flight time in the same type of airplane for which the type rating is sought; or

(5) Have logged at least 2,000 hours of flight time, of which 500 hours were in turbine-powered airplanes of the same class of airplane for which the type rating is sought.

(d) Except as provided in paragraph (f) of this section, if a helicopter is not used during the practical test for a type rating in a helicopter (except for preflight inspection), an applicant must accomplish the entire practical test in a Level C or higher flight simulator and the applicant must meet one of the following requirements—

(1) Hold a type rating in a helicopter and that type rating may not contain the supervised operating experience limitation;

(2) Have been appointed by the U.S. Armed Forces as pilot in command of a helicopter;

(3) Have 500 hours of flight time in the type of helicopter; or

(4) Have 1,000 hours of flight time in two different types of helicopters.

(e) Except as provided in paragraph (f) of this section, if a powered-lift is not used during the practical test for a type rating in a powered-lift (except for preflight inspection), an applicant must accomplish the entire practical test in a Level C or higher flight simulator and the applicant must meet one of the following requirements—

(1) Hold a type rating in a powered-lift without a supervised operating experience limitation;

(2) Have been appointed by the U.S. Armed Forces as pilot in command of a powered-lift;

(3) Have 500 hours of flight time in the type of powered-lift for which the rating is sought; or

(4) Have 1,000 hours of flight time in two different types of powered-lifts.

(f) If the applicant does not meet one of the experience requirements of paragraphs (b)(1) through (5), (c)(1) through (5), (d)(1) through (4) or (e)(1) through (4) of this section, as appropriate to the type rating sought, then—

(1) The applicant must complete the following tasks on the practical test in an aircraft appropriate to category, class, and type for the rating sought: Preflight inspection, normal takeoff, normal instrument landing system approach, missed approach, and normal landing; or

(2) The applicant’s pilot certificate will be issued with a limitation that states: “The [name of the additional type rating] is subject to pilot in command limitations,” and the applicant is restricted from serving as pilot in command in an aircraft of that type.

(g) The limitation described under paragraph (f)(2) of this section may be removed from the pilot certificate if the applicant complies with the following—

(1) Performs 25 hours of flight time in an aircraft of the category, class, and type for which the limitation applies under the direct observation of the pilot in command who holds a category, class, and type rating, without limitations, for the aircraft;

(2) Logs each flight and the pilot in command who observed the flight attests in writing to each flight;

(3) Obtains the flight time while performing the duties of pilot in command; and

(4) Presents evidence of the supervised operating experience to any Examiner or FAA Flight Standards District Office to have the limitation removed.

(2) Be able to read, speak, write, and understand the English language. If the applicant is unable to meet any of these requirements due to a medical condition, the Administrator may place such operating limitations on the applicant's pilot certificate as are necessary for the safe operation of the aircraft;

(3) Receive and log ground training from an authorized instructor or accomplish a home-study course of training on the aeronautical knowledge areas of paragraph (b) of this section that apply to the instrument rating sought;

(4) Receive a logbook or training record endorsement from an authorized instructor certifying that the person is prepared to take the required knowledge test;

(5) Receive and log training on the areas of operation of paragraph (c) of this section from an authorized instructor in an aircraft, flight simulator, or flight training device that represents an airplane, helicopter, or powered-lift appropriate to the instrument rating sought;

(6) Receive a logbook or training record endorsement from an authorized instructor certifying that the person is prepared to take the required practical test;

(7) Pass the required knowledge test on the aeronautical knowledge areas of paragraph (b) of this section; however, an applicant is not required to take another knowledge test when that person already holds an instrument rating; and

(8) Pass the required practical test on the areas of operation in paragraph (c) of this section in—
 (i) An airplane, helicopter, or powered-lift appropriate to the rating sought; or
 (ii) A flight simulator or a flight training device appropriate to the rating sought and for the specific maneuver or instrument approach procedure performed. If an approved flight training device is used for the practical test, the instrument approach procedures conducted in that flight training device are limited to one precision and one nonprecision approach, provided the flight training device is approved for the procedure performed.

(b) Aeronautical knowledge. A person who applies for an instrument rating must have received and logged ground training from an authorized instructor or accomplished a home-study course on the following aeronautical knowledge areas that apply to the instrument rating sought:

(1) Federal Aviation Regulations of this chapter that apply to flight operations under IFR;

(2) Appropriate information that applies to flight operations under IFR in the "Aeronautical Information Manual;"

(3) Air traffic control system and procedures for instrument flight operations;

(4) IFR navigation and approaches by use of navigation systems;

(5) Use of IFR en route and instrument approach procedure charts;

(6) Procurement and use of aviation weather reports and forecasts and the elements of forecasting weather trends based on that information and personal observation of weather conditions;

(7) Safe and efficient operation of aircraft under instrument flight rules and conditions;

(8) Recognition of critical weather situations and windshear avoidance;

(9) Aeronautical decision making and judgment; and

(10) Crew resource management, including crew communication and coordination.

(c) Flight proficiency. A person who applies for an instrument rating must receive and log training from an authorized instructor in an aircraft, or in a flight simulator or flight training device, in accordance with paragraph (g) of this section, that includes the following areas of operation:

(1) Preflight preparation;

(2) Preflight procedures;

(3) Air traffic control clearances and procedures;

(4) Flight by reference to instruments;

(5) Navigation systems;

(6) Instrument approach procedures;

(7) Emergency operations; and

(8) Postflight procedures.

(d) Aeronautical experience for the instrument-airplane rating. A person who applies for an instrument-airplane rating must have logged:
(1) Except as provided in paragraph (g) of this section, 50 hours of cross-country flight time as pilot in command, of which 10 hours must have been in an airplane; and

(2) Forty hours of actual or simulated instrument time in the areas of operation listed in paragraph (c) of this section, of which 15 hours must have been received from an authorized instructor who holds an instrument-airplane rating, and the instrument time includes:

(i) Three hours of instrument flight training from an authorized instructor in an airplane that is appropriate to the instrument-airplane rating within 2 calendar months before the date of the practical test; and

(ii) Instrument flight training on cross country flight procedures, including one cross country flight in an airplane with an authorized instructor that is performed under instrument flight rules and a flight plan has been filed with an air traffic control facility, and involves—

(A) A flight of 100 nautical miles along airways or by directed routing from an air traffic control facility;

(B) An instrument approach at each airport; and

(C) Three different kinds of approaches with the use of navigation systems.

(e) Aeronautical experience for the instrument-helicopter rating. A person who applies for an instrument-helicopter rating must have logged:

(1) Except as provided in paragraph (g) of this section, 50 hours of cross-country flight time as pilot in command, of which 10 hours must have been in a helicopter; and

(2) Forty hours of actual or simulated instrument time in the areas of operation listed under paragraph (c) of this section, of which 15 hours must have been received from an authorized instructor who holds an instrument-helicopter rating, and the instrument time includes:

(i) Three hours of instrument flight training from an authorized instructor in a helicopter that is appropriate to the instrument-helicopter rating within 2 calendar months before the date of the practical test; and

(ii) Instrument flight training on cross country flight procedures, including one cross country flight in a helicopter with an authorized instructor that is performed under instrument flight rules and a flight plan has been filed with an air traffic control facility, and involves—

(A) A flight of 100 nautical miles along airways or by directed routing from an air traffic control facility;

(B) An instrument approach at each airport; and

(C) Three different kinds of approaches with the use of navigation systems.

(f) Aeronautical experience for the instrument-powered-lift rating. A person who applies for an instrument-powered-lift rating must have logged:

(1) Except as provided in paragraph (g) of this section, 50 hours of cross-country flight time as pilot in command, of which 10 hours must have been in a powered-lift; and

(2) Forty hours of actual or simulated instrument time in the areas of operation listed under paragraph (c) of this section, of which 15 hours must have been received from an authorized instructor who holds an instrument-powered-lift rating, and the instrument time includes:

(i) Three hours of instrument flight training from an authorized instructor in a powered-lift that is appropriate to the instrument-powered-lift rating within 2 calendar months before the date of the practical test; and

(ii) Instrument flight training on cross country flight procedures, including one cross country flight in a powered-lift with an authorized instructor that is performed under instrument flight rules and a flight plan has been filed with an air traffic control facility, that involves—

(A) A flight of 250 nautical miles along airways or by directed routing from an air traffic control facility;

(B) An instrument approach at each airport; and

(C) Three different kinds of approaches with the use of navigation systems.

(g) An applicant for a combined private pilot certificate with an instrument rating may satisfy the cross-
§ 61.67 Category II pilot authorization requirements.

(a) General. A person who applies for a Category II pilot authorization must hold:

(1) At least a private or commercial pilot certificate with an instrument rating or an airline transport pilot certificate;

(2) A type rating for the aircraft for which the authorization is sought if that aircraft requires a type rating; and

(3) A category and class rating for the aircraft for which the authorization is sought.

(b) Experience requirements. An applicant for a Category II pilot authorization must have at least—

(1) 50 hours of night flight time as pilot in command.

(2) 75 hours of instrument time under actual or simulated instrument conditions that may include not more than—

(i) A combination of 25 hours of simulated instrument flight time in a flight simulator or flight training device;

(ii) 40 hours of simulated instrument flight time if accomplished in an approved course conducted by an appropriately rated training center certified under part 142 of this chapter.

(3) 250 hours of cross-country flight time as pilot in command.

(c) Practical test requirements. (1) A practical test must be passed by a person who applies for—

(i) Issuance or renewal of a Category II pilot authorization; and

(ii) The addition of another type aircraft to the applicant's Category II pilot authorization.

(2) To be eligible for the practical test for an authorization under this section, an applicant must—

(i) Meet the requirements of paragraphs (a) and (b) of this section; and

(ii) If the applicant has not passed a practical test for this authorization during the 12 calendar months preceding the month of the test, then that person must—

(A) Meet the requirements of § 61.57(c); and

(B) Have performed at least six ILS approaches during the 6 calendar months preceding the month of the
test, of which at least three of the approaches must have been conducted without the use of an approach coupler.

(3) The approaches specified in paragraph (c)(2)(ii)(B) of this section—

(i) Must be conducted under actual or simulated instrument flight conditions;

(ii) Must be conducted to the decision height for the ILS approach in the type aircraft in which the practical test is to be conducted;

(iii) Need not be conducted to the decision height authorized for Category II operations;

(iv) Must be conducted to the decision height authorized for Category II operations only if conducted in a flight simulator or flight training device; and

(v) Must be accomplished in an aircraft of the same category and class, and type, as applicable, as the aircraft in which the practical test is to be conducted or in a flight simulator that—

(A) Represents an aircraft of the same category and class, and type, as applicable, as the aircraft in which the authorization is sought; and

(B) Is used in accordance with an approved course conducted by a training center certificated under part 142 of this chapter.

(4) The flight time acquired in meeting the requirements of paragraph (c)(2)(ii)(B) of this section may be used to meet the requirements of paragraph (c)(2)(ii)(A) of this section.

(d) Practical test procedures. The practical test consists of an oral increment and a flight increment.

(1) Oral increment. In the oral increment of the practical test an applicant must demonstrate knowledge of the following:

(i) Required landing distance;

(ii) Recognition of the decision height;

(iii) Missed approach procedures and techniques using computed or fixed attitude guidance displays;

(iv) Use of visual clues, their availability or limitations, and altitude at which they are normally discernible at reduced RVR readings;

(v) Procedures and techniques related to transition from nonvisual to visual flight during a final approach under reduced RVR;

(vi) Effects of vertical and horizontal windshear;

(vii) Characteristics and limitations of the ILS and runway lighting system;

(ix) Characteristics and limitations of the flight director system, auto approach coupler (including split axis type if equipped), auto throttle system (if equipped), and other required Category II equipment;

(x) Assigned duties of the second in command during Category II approaches, unless the aircraft for which authorization is sought does not require a second in command; and

(xi) Instrument and equipment failure warning systems.

(2) Flight increment. The following requirements apply to the flight increment of the practical test:

(i) The flight increment must be conducted in an aircraft of the same category and class, and type, as applicable, as the aircraft in which the authorization is sought or in a flight simulator that—

(A) Represents an aircraft of the same category and class, and type, as applicable, as the aircraft in which the authorization is sought; and

(B) Is used in accordance with an approved course conducted by a training center certificated under part 142 of this chapter.

(ii) The flight increment must consist of at least two ILS approaches to 100 feet AGL including at least one landing and one missed approach.

(iii) All approaches performed during the flight increment must be made with the use of an approved flight control guidance system, except if an approved auto approach coupler is installed, at least one approach must be hand flown using flight director commands.

(iv) If a multiengine airplane with the performance capability to execute a missed approach with one engine inoperative is used for the practical test, the flight increment must include the performance of one missed approach with an engine, which shall be the most critical engine, if applicable, set at idle or zero thrust before reaching the middle marker.

(v) If a multiengine flight simulator or multiengine flight training device is
used for the practical test, the applicant must execute a missed approach with the most critical engine, if applicable, failed.

(vi) For an authorization for an aircraft that requires a type rating, the practical test must be performed in coordination with a second in command who holds a type rating in the aircraft in which the authorization is sought.

(vii) Oral questioning may be conducted at any time during a practical test.

§ 61.68 Category III pilot authorization requirements.

(a) General. A person who applies for a Category III pilot authorization must hold:

(1) At least a private pilot certificate or commercial pilot certificate with an instrument rating or an airline transport pilot certificate;

(2) A type rating for the aircraft for which the authorization is sought if that aircraft requires a type rating; and

(3) A category and class rating for the aircraft for which the authorization is sought.

(b) Experience requirements. An applicant for a Category III pilot authorization must have at least—

(1) 50 hours of night flight time as pilot in command.

(2) 75 hours of instrument flight time during actual or simulated instrument conditions that may include not more than—

(i) A combination of 25 hours of simulated instrument flight time in a flight simulator or flight training device; or

(ii) 40 hours of simulated instrument flight time if accomplished in an approved course conducted by an appropriately rated training center certified under part 142 of this chapter.

(3) 250 hours of cross-country flight time as pilot in command.

(c) Practical test requirements. (1) A practical test must be passed by a person who applies for—

(i) Issuance or renewal of a Category III pilot authorization; and

(ii) The addition of another type of aircraft to the applicant’s Category III pilot authorization.

(ii) If the applicant has not passed a practical test for this authorization during the 12 calendar months preceding the month of the test, then that person must—

(A) Meet the requirements of §61.57(c); and

(B) Have performed at least six ILS approaches during the 6 calendar months preceding the month of the test, of which at least three of the approaches must have been conducted without the use of an approach coupler.

(3) The approaches specified in paragraph (c)(2)(ii)(B) of this section—

(i) Must be conducted under actual or simulated instrument flight conditions;

(ii) Must be conducted to the alert height or decision height for the ILS approach in the type aircraft in which the practical test is to be conducted;

(iii) Need not be conducted to the decision height authorized for Category III operations;

(iv) Must be conducted to the alert height or decision height, as applicable, authorized for Category III operations only if conducted in an aircraft of the same category and class, and type, as applicable, as the aircraft in which the practical test is to be conducted or in a flight simulator that—

(A) Represents an aircraft of the same category and class, and type, as applicable, as the aircraft for which the authorization is sought; and

(B) Is used in accordance with an approved course conducted by a training center certified under part 142 of this chapter.

(4) The flight time acquired in meeting the requirements of paragraph (c)(2)(ii)(B) of this section may be used to meet the requirements of paragraph (c)(2)(ii)(A) of this section.

(d) Practical test procedures. The practical test consists of an oral increment and a flight increment.

(1) Oral increment. In the oral increment of the practical test an applicant
must demonstrate knowledge of the following:

(i) Required landing distance;
(ii) Determination and recognition of the alert height or decision height, as applicable, including use of a radar altimeter;
(iii) Recognition of and proper reaction to significant failures encountered prior to and after reaching the alert height or decision height, as applicable;
(iv) Missed approach procedures and techniques using computed or fixed altitude guidance displays and expected height loss as they relate to manual go-around or automatic go-around, and initiation altitude, as applicable;
(v) Use and limitations of RVR, including determination of controlling RVR and required transmissometers;
(vi) Use, availability, or limitations of visual cues and the altitude at which they are normally discernible at reduced RVR readings including—
 (A) Unexpected deterioration of conditions to less than minimum RVR during approach, flare, and rollout;
 (B) Demonstration of expected visual references with weather at minimum conditions;
 (C) The expected sequence of visual cues during an approach in which visibility is at or above landing minima; and
 (D) Procedures and techniques for making a transition from instrument reference flight to visual flight during a final approach under reduced RVR.
(vii) Effects of vertical and horizontal windshear;
(viii) Characteristics and limitations of the ILS and runway lighting system;
(ix) Characteristics and limitations of the flight director system auto approach coupler (including split axis type if equipped), auto throttle system (if equipped), and other Category III equipment;
(x) Assigned duties of the second in command during Category III operations, unless the aircraft for which authorization is sought does not require a second in command;
(xi) Recognition of the limits of acceptable aircraft position and flight path tracking during approach, flare, and, if applicable, rollout; and
(xii) Recognition of, and reaction to, airborne or ground system faults or abnormalities, particularly after passing alert height or decision height, as applicable.

(2) Flight increment. The following requirements apply to the flight increment of the practical test—

(i) The flight increment may be conducted in an aircraft of the same category and class, and type, as applicable, as the aircraft for which the authorization is sought, or in a flight simulator that—
 (A) Represents an aircraft of the same category and class, and type, as applicable, as the aircraft in which the authorization is sought; and
 (B) Is used in accordance with an approved course conducted by a training center certificated under part 142 of this chapter.
(ii) The flight increment must consist of at least two ILS approaches to 100 feet AGL, including one landing and one missed approach initiated from a very low altitude that may result in a touchdown during the go-around maneuver;
(iii) All approaches performed during the flight increment must be made with the approved automatic landing system or an equivalent landing system approved by the Administrator;
(iv) If a multiengine aircraft with the performance capability to execute a missed approach with one engine inoperative is used for the practical test, the flight increment must include the performance of one missed approach with the most critical engine, if applicable, set at idle or zero thrust before reaching the middle or outer marker;
(v) If a multiengine flight simulator or multiengine flight training device is used, a missed approach must be executed with an engine, which shall be the most critical engine, if applicable, failed;
(vi) For an authorization for an aircraft that requires a type rating, the practical test must be performed in coordination with a second in command who holds a type rating in the aircraft in which the authorization is sought;
(vii) Oral questioning may be conducted at any time during the practical test;
§ 61.69 Glider and unpowered ultralight vehicle towing: Experience and training requirements.

(a) No person may act as pilot in command for towing a glider or unpowered ultralight vehicle unless that person—

(1) Holds a private, commercial or airline transport pilot certificate with a category rating for powered aircraft;

(2) Has logged at least 100 hours of pilot-in-command time in the aircraft category, class and type, if required, that the pilot is using to tow a glider or unpowered ultralight vehicle;

(3) Has a logbook endorsement from an authorized instructor who certifies that the person has received ground and flight training in gliders or unpowered ultralight vehicles and is proficient in—

(i) The techniques and procedures essential to the safe towing of gliders or unpowered ultralight vehicles, including airspeed limitations;

(ii) Emergency procedures;

(iii) Signals used; and

(iv) Maximum angles of bank.

(d) If the pilot described in paragraph (a)(4) of this section holds only a private pilot certificate, then that pilot must have—

(1) Logbook endorsement from the pilot, described in paragraph (a)(4) of this section, certifying that the person has accomplished at least 3 flights in a glider or unpowered ultralight vehicle while towing a glider or unpowered ultralight vehicle, or while simulating towing flight procedures; and

(2) Logbook endorsement from the pilot, described in paragraph (a)(4) of this section, certifying that the person has accomplished at least 3 flights as pilot in command of a glider or unpowered ultralight vehicle towed by an aircraft.
§ 61.73 Military pilots or former military pilots: Special rules.

(a) General. Except for a person who has been removed from flying status for lack of proficiency or because of a disciplinary action involving aircraft operations, a U.S. military pilot or former military pilot who meets the requirements of this section may apply, on the basis of his or her military pilot qualifications, for:

1. A commercial pilot certificate with the appropriate aircraft category and class rating.
2. An instrument rating with the appropriate aircraft rating.
3. A type rating.

(b) Military pilots and former military pilots in the U.S. Armed Forces. A person who qualifies as a military pilot or former military pilot in the U.S. Armed Forces may apply for a pilot certificate and ratings under paragraph (a) of this section if that person—

1. Presents evidentiary documents described under paragraphs (h)(1), (2), and (3) of this section that show the person’s status in the U.S. Armed Forces.
2. Has passed the military competency aeronautical knowledge test on the appropriate parts of this chapter for commercial pilot privileges and limitations, air traffic and general operating rules, and accident reporting rules.
3. Presents official U.S. military records that show compliance with one of the following requirements—
 (i) Before the date of the application, passing an official U.S. military pilot and instrument proficiency check in a military aircraft of the kind of aircraft category, class, and type, if class or type of aircraft is applicable, for the ratings sought; or
 (ii) Before the date of application, logging 10 hours of pilot time as a military pilot in a U.S. military aircraft in the kind of aircraft category, class, and type, if a class rating or type rating is applicable, for the aircraft rating sought.

(c) A military pilot in the Armed Forces of a foreign contracting State to the Convention on International Civil Aviation. A person who is a military pilot in the Armed Forces of a foreign contracting State to the Convention on International Civil Aviation applies for the military pilot certificate under paragraph (a)(3) of this section.
§ 61.73

14 CFR Ch. I (1–1–12 Edition)

State to the Convention on International Civil Aviation and is assigned to pilot duties in the U.S. Armed Forces, for purposes other than receiving flight training, may apply for a commercial pilot certificate and ratings under paragraph (a) of this section, provided that person—

(1) Presents evidentiary documents described under paragraph (h)(4) of this section that show the person is a military pilot in the Armed Forces of a foreign contracting State to the Convention on International Civil Aviation, and is assigned to pilot duties in the U.S. Armed Forces, for purposes other than receiving flight training.

(2) Has passed the military competency aeronautical knowledge test on the appropriate parts of this chapter for commercial pilot privileges and limitations, air traffic and general operating rules, and accident reporting rules.

(3) Presents official U.S. military records that show compliance with one of the following requirements:

(i) Before the date of the application, passed an official U.S. military pilot and instrument proficiency check in a military aircraft of the kind of aircraft category, class, or type, if class or type of aircraft is applicable, for the ratings; or

(ii) Before the date of the application, logged 10 hours of pilot time as a military pilot in a U.S. military aircraft of the kind of category, class, and type of aircraft, if a class rating or type rating is applicable, for the aircraft rating.

(d) Instrument rating. A person who is qualified as a U.S. military pilot or former military pilot may apply for an instrument rating to be added to a pilot certificate if that person—

(1) Has passed an instrument proficiency check in the U.S. Armed Forces in the aircraft category for the instrument rating sought; and

(2) Has an official U.S. Armed Forces record that shows the person is instrument pilot qualified by the U.S. Armed Forces to conduct instrument flying on Federal airways in that aircraft category and class for the instrument rating sought.

(e) Aircraft type rating. An aircraft type rating may only be issued for a type of aircraft that has a comparable civilian type designation by the Administrator.

(f) Aircraft type rating placed on an airline transport pilot certificate. A person who is a military pilot or former military pilot of the U.S. Armed Forces and requests an aircraft type rating to be placed on an existing U.S. airline transport pilot certificate may be issued the rating at the airline transport pilot certification level, provided that person:

(1) Holds a category and class rating for that type of aircraft at the airline transport pilot certification level; and

(2) Has passed an official U.S. military pilot check and instrument proficiency check in that type of aircraft.

(g) Flight instructor certificate and ratings. A person who can show official U.S. military documentation of being a U.S. military instructor pilot or U.S. military pilot examiner, or a former instructor pilot or pilot examiner may apply for and be issued a flight instructor certificate with the appropriate ratings if that person:

(1) Holds a commercial or airline transport pilot certificate with the appropriate aircraft category and class rating, if a class rating is appropriate, for the flight instructor rating sought;

(2) Holds an instrument rating, or has instrument privileges, on the pilot certificate that is appropriate to the flight instructor rating sought; and

(3) Presents the following documents:

(i) A knowledge test report that shows the person passed a knowledge test on the aeronautical knowledge areas listed under § 61.185(a) appropriate to the flight instructor rating sought and the knowledge test was passed within the preceding 24 calendar months prior to the month of application. If the U.S. military instructor pilot or pilot examiner already holds a flight instructor certificate, holding of a flight instructor certificate suffices for the knowledge test report.

(ii) An official U.S. Armed Forces record or order that shows the person is or was qualified as a U.S. Armed Forces military instructor pilot or pilot examiner for the flight instructor rating sought.

(iii) An official U.S. Armed Forces record or order that shows the person
completed a U.S. Armed Forces’ instructor pilot or pilot examiner training course and received an aircraft rating qualification as a military instructor pilot or pilot examiner that is appropriate to the flight instructor rating sought.

(iv) An official U.S. Armed Forces record or order that shows the person passed a U.S. Armed Forces instructor pilot or pilot examiner proficiency check in an aircraft as a military instructor pilot or pilot examiner that is appropriate to the flight instructor rating sought.

(h) **Documents for qualifying for a pilot certificate and rating.** The following documents are required for a person to apply for a pilot certificate and rating:

(1) An official U.S. Armed Forces record that shows the person is or was a military pilot.

(2) An official U.S. Armed Forces record that shows the person graduated from a U.S. Armed Forces undergraduate pilot training school and received a rating qualification as a military pilot.

(3) An official U.S. Armed Forces record that shows the pilot passed a pilot proficiency check and instrument proficiency check in an aircraft as a military pilot.

(4) If a person is a military pilot in the Armed Forces from a foreign contracting State to the Convention on International Civil Aviation and is applying for a U.S. private pilot certificate with the appropriate ratings if the foreign pilot license meets the requirements of this section.

(b) **Certificate issued.** A U.S. private pilot certificate issued under this section must specify the person’s foreign license number and country of issuance. A person who holds a foreign pilot license issued by a contracting State to the Convention on International Civil Aviation may be issued a U.S. private pilot certificate based on the foreign pilot license without any further showing of proficiency, provided the applicant:

(1) Meets the requirements of this section;

(2) Holds a foreign pilot license, at the private pilot license level or higher, that does not contain a limitation stating that the applicant has not met all of the standards of ICAO for that license;

(3) Does not hold a U.S. pilot certificate other than a U.S. student pilot certificate;

(4) Holds a medical certificate issued under part 67 of this chapter or a medical license issued by the country that issued the person’s foreign pilot license; and

(5) Is able to read, speak, write, and understand the English language. If the applicant is unable to meet one of these requirements due to medical reasons, then the Administrator may place such operating limitations on that applicant’s pilot certificate as are necessary for the safe operation of the aircraft.

(c) **Aircraft ratings issued.** Aircraft ratings listed on a person’s foreign pilot license, in addition to any issued after testing under the provisions of
§ 61.77 Special purpose pilot authorization: Operation of a civil aircraft of the United States and leased by a non-U.S. citizen.

(a) General. The holder of a foreign pilot license issued by a contracting State to the Convention on International Civil Aviation who meets the requirements of this section may be issued a special purpose pilot authorization by the Administrator for the purpose of performing pilot duties—

(1) On a civil aircraft of U.S. registry that is leased to a person who is not a citizen of the United States, and

(2) For carrying persons or property for compensation or hire for operations in—

(i) Scheduled international air services in turbojet-powered airplanes of U.S. registry;

(ii) Scheduled international air services in airplanes of U.S. registry having a configuration of more than nine passenger seats, excluding crewmember seats;

(iii) Nonscheduled international transportation in airplanes of U.S. registry having a configuration of more than 30 passenger seats, excluding crewmember seats; or

(iv) Scheduled international air services, or nonscheduled international air transportation, in airplanes of U.S. registry having a payload capacity of more than 7,500 pounds.

(b) Eligibility. To be eligible for the issuance or renewal of a special purpose pilot authorization, an applicant must present the following to an FAA Flight Standards District Office:

(1) A foreign pilot license issued by the aeronautical authority of a contracting State to the Convention on International Civil Aviation that contains the appropriate aircraft category, class, type rating, if appropriate, and

(g) Limitation placed on a U.S. pilot certificate. A U.S. pilot certificate issued under this section can only be exercised when the pilot has the foreign pilot license, upon which the issuance of the U.S. pilot certificate was based, in the holder’s possession or readily accessible in the aircraft.

Federal Aviation Administration, DOT

§ 61.77

Instrument rating for the aircraft to be flown;
(2) A certification by the lessee of the aircraft—
 (i) Stating that the applicant is employed by the lessee;
 (ii) Specifying the aircraft type on which the applicant will perform pilot duties; and
 (iii) Stating that the applicant has received ground and flight instruction that qualifies the applicant to perform the duties to be assigned on the aircraft.
(3) Documentation showing when the applicant will reach the age of 65 years (an official copy of the applicant’s birth certificate or other official documentation);
(4) Documentation the applicant meets the medical standards for the issuance of the foreign pilot license from the aeronautical authority of that contracting State to the Convention on International Civil Aviation;
and
(5) A statement that the applicant does not already hold a special purpose pilot authorization; however, if the applicant already holds a special purpose pilot authorization, then that special purpose pilot authorization must be surrendered to either the FAA Flight Standards District Office that issued it, or the FAA Flight Standards District Office processing the application for the authorization, prior to being issued another special purpose pilot authorization.

(c) Privileges. A person issued a special purpose pilot authorization under this section—
(1) May exercise the privileges prescribed on the special purpose pilot authorization; and
(2) Must comply with the limitations specified in this section and any additional limitations specified on the special purpose pilot authorization.

(d) General limitations. A special purpose pilot authorization may be used only—
(1) For flights between foreign countries or for flights in foreign air commerce within the time period allotted on the authorization.
(2) If the foreign pilot license required by paragraph (b)(1) of this section, the medical documentation required by paragraph (b)(4) of this section, and the special purpose pilot authorization issued under this section are in the holder’s physical possession or immediately accessible in the aircraft.
(3) While the holder is employed by the person to whom the aircraft described in the certification required by paragraph (b)(2) of this section is leased.
(4) While the holder is performing pilot duties on the U.S.-registered aircraft described in the certification required by paragraph (b)(2) of this section.
(5) If the holder has only one special purpose pilot authorization as provided in paragraph (b)(5) of this section.

(e) Age limitation. No person who holds a special purpose pilot authorization as provided in paragraph (b)(5) of this section,
(1) Scheduled international air services carrying passengers in turbojet-powered airplanes;
(2) Scheduled international air services carrying passengers in airplanes having a passenger-seat configuration of more than nine passenger seats, excluding each crewmember seat;
(3) Nonscheduled international transportation for compensation or hire in airplanes having a passenger-seat configuration of more than 30 passenger seats, excluding each crewmember seat; or
(4) Scheduled international air services, or nonscheduled international air transportation for compensation or hire in airplanes having a passenger-seat configuration of more than 30 passenger seats, excluding each crewmember seat;

(f) Definitions. (1) International air service, as used in paragraph (e) of this section, means scheduled air service performed in airplanes for the public transport of passengers, mail, or cargo, in which the service passes through the air space over the territory of more than one country.
(2) International air transportation, as used in paragraph (e) of this section, means air transportation performed in airplanes for the public transport of passengers, mail, or cargo, in which service passes through the air space...
over the territory of more than one country.

(g) Age Pairing Requirement. No person who has attained the age of 60 but who has not attained the age of 65 may serve as a pilot in command in any of the operations described in §61.3(j)(1)(i) through (iv) unless there is another pilot in the flight deck crew who has not yet attained 60 years of age.

(h) Expiration date. Each special purpose pilot authorization issued under this section expires—

(1) 60 calendar months from the month it was issued, unless sooner suspended or revoked;

(2) When the lease agreement for the aircraft expires or the lessee terminates the employment of the person who holds the special purpose pilot authorization;

(3) Whenever the person’s foreign pilot license has been suspended, revoked, or is no longer valid; or

(4) When the person no longer meets the medical standards for the issuance of the foreign pilot license.

(i) Renewal. A person exercising the privileges of a special purpose pilot authorization may apply for a 60-cal-endar-month extension of that authorization, provided the person—

(1) Continues to meet the requirements of this section; and

(2) Surrenders the expired special purpose pilot authorization upon receipt of the new authorization.

(j) Surrender. The holder of a special purpose pilot authorization must surrender the authorization to the Administrator within 7 days after the date the authorization terminates.

Subpart C—Student Pilots

§ 61.81 Applicability.

This subpart prescribes the requirements for the issuance of student pilot certificates, the conditions under which those certificates are necessary, and the general operating rules and limitations for the holders of those certificates.

§ 61.83 Eligibility requirements for student pilots.

To be eligible for a student pilot certificate, an applicant must:

(a) Be at least 16 years of age for other than the operation of a glider or balloon.

(b) Be at least 14 years of age for the operation of a glider or balloon.

(c) Be able to read, speak, write, and understand the English language. If the applicant is unable to meet one of these requirements due to medical reasons, then the Administrator may place such operating limitations on that applicant’s pilot certificate as are necessary for the safe operation of the aircraft.

§ 61.85 Application.

An application for a student pilot certificate is made on a form and in a manner provided by the Administrator and is submitted to:

(a) A designated aviation medical examiner if applying for an FAA medical certificate under part 67 of this chapter;

(b) An examiner; or

(c) A Flight Standards District Office.

§ 61.87 Solo requirements for student pilots.

(a) General. A student pilot may not operate an aircraft in solo flight unless that student has met the requirements of this section. The term “solo flight” as used in this subpart means that flight time during which a student pilot is the sole occupant of the aircraft or that flight time during which the student performs the duties of a pilot in command of a gas balloon or an airship requiring more than one pilot flight crewmember.

(b) Aeronautical knowledge. A student pilot must demonstrate satisfactory aeronautical knowledge on a knowledge test that meets the requirements of this paragraph:

(1) The test must address the student pilot’s knowledge of—

(i) Applicable sections of parts 61 and 91 of this chapter;

(ii) Airspace rules and procedures for the airport where the solo flight will be performed; and
Federal Aviation Administration, DOT § 61.87

(iii) Flight characteristics and operational limitations for the make and model of aircraft to be flown.

(2) The student’s authorized instructor must—

(i) Administer the test; and

(ii) At the conclusion of the test, review all incorrect answers with the student before authorizing that student to conduct a solo flight.

(c) Pre-solo flight training. Prior to conducting a solo flight, a student pilot must have:

(1) Received and logged flight training for the maneuvers and procedures of this section that are appropriate to the make and model of aircraft to be flown; and

(2) Demonstrated satisfactory proficiency and safety, as judged by an authorized instructor, on the maneuvers and procedures required by this section in the make and model of aircraft or similar make and model of aircraft to be flown.

(d) Maneuvers and procedures for pre-solo flight training in a single-engine airplane. A student pilot who is receiving training for a single-engine airplane rating or privileges must receive and log flight training for the following maneuvers and procedures:

(1) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation, and aircraft systems;

(2) Taxiing or surface operations, including runups;

(3) Takeoffs and landings, including normal and crosswind;

(4) Straight and level flight, and turns in both directions;

(5) Climbs and climbing turns;

(6) Airport traffic patterns, including entry and departure procedures;

(7) Collision avoidance, windshear avoidance, and wake turbulence avoidance;

(8) Descents, with and without turns, using high and low drag configurations;

(9) Flight at various airspeeds from cruise to slow flight;

(10) Stall entries from various flight attitudes and power combinations with recovery initiated at the first indication of a stall, and recovery from a full stall;

(11) Emergency procedures and equipment malfunctions;

(12) Ground reference maneuvers;

(13) Approaches to a landing area with simulated engine malfunctions;

(14) Slips to a landing; and

(15) Go-arounds.

(e) Maneuvers and procedures for pre-solo flight training in a multiengine airplane. A student pilot who is receiving training for a multiengine airplane rating must receive and log flight training for the following maneuvers and procedures:

(1) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation, and aircraft systems;

(2) Taxing or surface operations, including runups;

(3) Takeoffs and landings, including normal and crosswind;

(4) Straight and level flight, and turns in both directions;

(5) Climbs and climbing turns;

(6) Airport traffic patterns, including entry and departure procedures;

(7) Collision avoidance, windshear avoidance, and wake turbulence avoidance;

(8) Descents, with and without turns, using high and low drag configurations;

(9) Flight at various airspeeds from cruise to slow flight;

(10) Stall entries from various flight attitudes and power combinations with recovery initiated at the first indication of a stall, and recovery from a full stall;

(11) Emergency procedures and equipment malfunctions;

(12) Ground reference maneuvers;

(13) Approaches to a landing area with simulated engine malfunctions; and

(14) Go-arounds.

(f) Maneuvers and procedures for pre-solo flight training in a helicopter. A student pilot who is receiving training for a helicopter rating must receive and log flight training for the following maneuvers and procedures:

(1) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation, and aircraft systems;

(2) Taxiing or surface operations, including runups;

(3) Takeoffs and landings, including normal and crosswind;
§61.87

(4) Straight and level flight, and turns in both directions;

(5) Climbs and climbing turns;

(6) Airport traffic patterns, including entry and departure procedures;

(7) Collision avoidance, windshear avoidance, and wake turbulence avoidance;

(8) Descents with and without turns;

(9) Flight at various airspeeds;

(10) Emergency procedures and equipment malfunctions;

(11) Ground reference maneuvers;

(12) Approaches to the landing area;

(13) Hovering and hovering turns;

(14) Go-arounds;

(15) Simulated emergency procedures, including autorotational descents with a power recovery and power recovery to a hover;

(16) Rapid decelerations; and

(17) Simulated one-engine-inoperative approaches and landings for multiengine helicopters.

(g) Maneuvers and procedures for presolo flight training in a gyroplane. A student pilot who is receiving training for a gyroplane rating or privileges must receive and log flight training for the following maneuvers and procedures:

(1) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation, and aircraft systems;

(2) Taxiing or surface operations, including runups;

(3) Takeoffs and landings, including normal and crosswind;

(4) Straight and level flight, and turns in both directions;

(5) Climbs and climbing turns;

(6) Airport traffic patterns, including entry and departure procedures;

(7) Collision avoidance, windshear avoidance, and wake turbulence avoidance;

(8) Descents with and without turns;

(9) Flight at various airspeeds;

(10) Stall entries from various flight attitudes and power combinations with recovery initiated at the first indication of a stall, and recovery from a full stall;

(i) Emergency procedures and equipment malfunctions;

(12) Ground reference maneuvers;

(13) Approaches to a landing with simulated engine malfunctions;

(14) Go-arounds;

(15) Approaches to the landing area;

(16) Hovering and hovering turns; and

(17) For multiengine powered-lifts, simulated one-engine-inoperative approaches and landings.

(h) Maneuvers and procedures for presolo flight training in a powered-lift. A student pilot who is receiving training for a powered-lift rating must receive and log flight training in the following maneuvers and procedures:

(1) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation, and aircraft systems;

(2) Taxiing or surface operations, including runups;

(3) Takeoffs and landings, including normal and crosswind;

(4) Straight and level flight, and turns in both directions;

(5) Climbs and climbing turns;

(6) Airport traffic patterns, including entry and departure procedures;

(7) Collision avoidance, windshear avoidance, and wake turbulence avoidance;

(8) Descents with and without turns;

(9) Flight at various airspeeds;

(10) Emergency procedures and equipment malfunctions;

(11) Ground reference maneuvers;

(12) Approaches to the landing area;

(13) High rates of descent with power on and with simulated power off, and recovery from those flight configurations;

(14) Go-arounds; and

(15) Simulated emergency procedures, including simulated power-off landings and simulated power failure during departures.

(i) Maneuvers and procedures for presolo flight training in a glider. A student pilot who is receiving training for a glider rating or privileges must receive and log flight training for the following maneuvers and procedures:

(1) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation, aircraft systems, and, if appropriate, powerplant operations;

(2) Taxiing or surface operations, including runups, if applicable;

(3) Launches, including normal and crosswind;

(4) Straight and level flight, and turns in both directions;

(5) Climbs and climbing turns;

(6) Approaches to the landing area;

(7) Hovering and hovering turns; and

(8) For multiengine powered-lifts, simulated one-engine-inoperative approaches and landings.
(5) Airport traffic patterns, including entry procedures;
(6) Collision avoidance, windshear avoidance, and wake turbulence avoidance;
(7) Descents with and without turns using high and low drag configurations;
(8) Flight at various airspeeds;
(9) Emergency procedures and equipment malfunctions;
(10) Ground reference maneuvers, if applicable;
(11) Inspection of towline rigging and review of signals and release procedures, if applicable;
(12) Aerotow, ground tow, or self-launch procedures;
(13) Procedures for disassembly and assembly of the glider;
(14) Stall entry, stall, and stall recovery;
(15) Straight glides, turns, and spirals;
(16) Landings, including normal and crosswind;
(17) Slips to a landing;
(18) Procedures and techniques for thermalling; and
(19) Emergency operations, including towline break procedures.

(j) Maneuvers and procedures for pre-solo flight training in an airship. A student pilot who is receiving training for an airship rating or privileges must receive and log flight training for the following maneuvers and procedures:
(1) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation, and aircraft systems;
(2) Taxiing or surface operations, including run-ups;
(3) Takeoffs and landings, including normal and crosswind;
(4) Straight and level flight, and turns in both directions;
(5) Climbs and climbing turns;
(6) Airport traffic patterns, including entry and departure procedures;
(7) Collision avoidance, windshear avoidance, and wake turbulence avoidance;
(8) Descents with and without turns;
(9) Flight at various airspeeds from cruise to slow flight;
(10) Emergency procedures and equipment malfunctions;
(11) Ground reference maneuvers;
(12) Rigging, ballasting, and controlling pressure in the ballonets, and superheating; and
(13) Landings with positive and with negative static trim.

(k) Maneuvers and procedures for pre-solo flight training in a balloon. A student pilot who is receiving training in a balloon must receive and log flight training for the following maneuvers and procedures:
(1) Layout and assembly procedures;
(2) Proper flight preparation procedures, including preflight planning and preparation, and aircraft systems;
(3) Ascents and descents;
(4) Landing and recovery procedures;
(5) Emergency procedures and equipment malfunctions;
(6) Operation of hot air or gas source, ballast, valves, vents, and rip panels, as appropriate;
(7) Use of deflation valves or rip panels for simulating an emergency;
(8) The effects of wind on climb and approach angles; and
(9) Obstruction detection and avoidance techniques.

(l) Maneuvers and procedures for pre-solo flight training in a powered parachute. A student pilot who is receiving training for a powered parachute rating or privileges must receive and log flight training for the following maneuvers and procedures:
(1) Proper flight preparation procedures, including preflight planning and preparation, preflight assembly and rigging, aircraft systems, and powerplant operations;
(2) Taxiing or surface operations, including run-ups;
(3) Takeoffs and landings, including normal and crosswind;
(4) Straight and level flight, and turns in both directions;
(5) Climbs, and climbing turns in both directions.

Federal Aviation Administration, DOT § 61.87
§61.89 General limitations.

(a) A student pilot may not act as pilot in command of an aircraft:

(1) That is carrying a passenger;
§ 61.93 Solo cross-country flight requirements.

(a) General. (1) Except as provided in paragraph (b) of this section, a student pilot must meet the requirements of this section before—

(i) Conducting a solo cross-country flight, or any flight greater than 25 nautical miles from the airport from where the flight originated.

(ii) Making a solo flight and landing at any location other than the airport of origin.

(2) Except as provided in paragraph (b) of this section, a student pilot who seeks solo cross-country flight privileges must:

(i) Have received flight training from an instructor authorized to provide flight training on the maneuvers and procedures of this section that are appropriate to the make and model of aircraft for which solo cross-country privileges are sought;

(ii) Have demonstrated cross-country proficiency on the appropriate maneuvers and procedures of this section to an authorized instructor;

(iii) Have satisfactorily accomplished the pre-solo flight maneuvers and procedures required by § 61.87 of this part in the make and model of aircraft or similar make and model of aircraft for which solo cross-country privileges are sought; and

(iv) Comply with any limitations included in the authorized instructor’s endorsement that are required by paragraph (c) of this section.

(3) A student pilot who seeks solo cross-country flight privileges must have received ground and flight training specified in § 61.94 and an endorsement from an authorized instructor.

(b) Authorization to perform certain solo flights and cross-country flights. A student pilot must obtain an endorsement from an authorized instructor to make solo flights from the airport where the student pilot normally receives training to another location. A student pilot who receives this endorsement must comply with the requirements of this paragraph.
(1) Solo flights may be made to another airport that is within 25 nautical miles from the airport where the student pilot normally receives training, provided—
 (i) An authorized instructor has given the student pilot flight training at the other airport, and that training includes flight in both directions over the route, entering and exiting the traffic pattern, and takeoffs and landings at the other airport;
 (ii) The authorized instructor who gave the training endorses the student pilot's logbook authorizing the flight;
 (iii) The student pilot has a solo flight endorsement in accordance with §61.87 of this part;
 (iv) The authorized instructor has determined that the student pilot is proficient to make the flight; and
 (v) The purpose of the flight is to practice takeoffs and landings at that other airport.

(2) Repeated specific solo cross-country flights may be made to another airport that is within 50 nautical miles of the airport from which the flight originated, provided—
 (i) The authorized instructor has given the student flight training in both directions over the route, including entering and exiting the traffic patterns, takeoffs, and landings at the airports to be used;
 (ii) The authorized instructor who gave the training has endorsed the student's logbook certifying that the student is proficient to make such flights;
 (iii) The student has a solo flight endorsement in accordance with §61.87 of this part; and
 (iv) The purpose of the flight is to practice takeoffs and landings at that other airport.

(c) Endorsements for solo cross-country flights. Except as specified in paragraph (b)(2) of this section, a student pilot must have the endorsements prescribed in this paragraph for each cross-country flight:
 (1) Student pilot certificate endorsement. A student pilot must have a solo cross-country endorsement from the authorized instructor who conducted the training, and that endorsement must be placed on that person's student pilot certificate for the specific category of aircraft to be flown.
 (2) Logbook endorsement. (i) A student pilot must have a solo cross-country endorsement from an authorized instructor that is placed in the student pilot's logbook for the specific make and model of aircraft to be flown.
 (ii) For each cross-country flight, the authorized instructor who reviews the cross-country planning must make an endorsement in the person's logbook after reviewing that person's cross-country planning, as specified in paragraph (d) of this section. The endorsement must—
 (A) Specify the make and model of aircraft to be flown;
 (B) State that the student's preflight planning and preparation is correct and that the student is prepared to make the flight safely under the known conditions; and
 (C) State that any limitations required by the student's authorized instructor are met.
 (d) Limitations on authorized instructors to permit solo cross-country flights. An authorized instructor may not permit a student pilot to conduct a solo cross-country flight unless that instructor has:
 (1) Determined that the student's cross-country planning is correct for the flight;
 (2) Reviewed the current and forecast weather conditions and has determined that the flight can be completed under VFR;
 (3) Determined that the student is proficient to conduct the flight safely;
 (4) Determined that the student has the appropriate solo cross-country endorsement for the make and model of aircraft to be flown; and
 (5) Determined that the student's solo flight endorsement is current for the make and model aircraft to be flown.
 (e) Manuevers and procedures for cross-country flight training in a single-engine airplane. A student pilot who is receiving training for cross-country flight in a single-engine airplane must receive and log flight training in the following maneuvers and procedures:
(1) Use of aeronautical charts for VFR navigation using pilotage and dead reckoning with the aid of a magnetic compass;
(2) Use of aircraft performance charts pertaining to cross-country flight;
(3) Procurement and analysis of aeronautical weather reports and forecasts, including recognition of critical weather situations and estimating visibility while in flight;
(4) Emergency procedures;
(5) Traffic pattern procedures that include area departure, area arrival, entry into the traffic pattern, and approach;
(6) Procedures and operating practices for collision avoidance, wake turbulence precautions, and windshear avoidance;
(7) Recognition, avoidance, and operational restrictions of hazardous terrain features in the geographical area where the cross-country flight will be flown;
(8) Procedures for operating the instruments and equipment installed in the aircraft to be flown, including recognition and use of the proper operational procedures and indications;
(9) Use of radios for VFR navigation and two-way communication, except that a student pilot seeking a sport pilot certificate must only receive and log flight training on the use of radios installed in the aircraft to be flown;
(10) Takeoff, approach, and landing procedures, including short-field, soft-field, and crosswind takeoffs, approaches, and landings;
(11) Climbs at best angle and best rate; and
(12) Control and maneuvering solely by reference to flight instruments, including straight and level flight, turns, descents, climbs, use of radio aids, and ATC directives.

(f) Maneuvers and procedures for cross-country flight training in a multiengine airplane. A student pilot who is receiving training for cross-country flight in a multiengine airplane must receive and log flight training in the following maneuvers and procedures:
(1) Use of aeronautical charts for VFR navigation using pilotage and dead reckoning with the aid of a magnetic compass;
(2) Use of aircraft performance charts pertaining to cross-country flight;
(3) Procurement and analysis of aeronautical weather reports and forecasts, including recognition of critical weather situations and estimating visibility while in flight;
(4) Emergency procedures;
(5) Traffic pattern procedures that include area departure, area arrival, entry into the traffic pattern, and approach;
(6) Procedures and operating practices for collision avoidance, wake turbulence precautions, and windshear avoidance;
(7) Recognition, avoidance, and operational restrictions of hazardous terrain features in the geographical area where the cross-country flight will be flown;
(8) Procedures for operating the instruments and equipment installed in the aircraft to be flown, including recognition and use of the proper operational procedures and indications;
(9) Use of radios for VFR navigation and two-way communications;
(10) Takeoff, approach, and landing procedures, including short-field, soft-field, and crosswind takeoffs, approaches, and landings;
(11) Climbs at best angle and best rate; and
(12) Control and maneuvering solely by reference to flight instruments, including straight and level flight, turns, descents, climbs, use of radio aids, and ATC directives.

(g) Maneuvers and procedures for cross-country flight training in a helicopter. A student pilot who is receiving training for cross-country flight in a helicopter must receive and log flight training for the following maneuvers and procedures:
(1) Use of aeronautical charts for VFR navigation using pilotage and dead reckoning with the aid of a magnetic compass;
(2) Use of aircraft performance charts pertaining to cross-country flight;
(3) Procurement and analysis of aeronautical weather reports and forecasts,
§61.93

including recognition of critical weather situations and estimating visibility while in flight;

(4) Emergency procedures;

(5) Traffic pattern procedures that include area departure, area arrival, entry into the traffic pattern, and approach;

(6) Procedures and operating practices for collision avoidance, wake turbulence precautions, and windshear avoidance;

(7) Recognition, avoidance, and operational restrictions of hazardous terrain features in the geographical area where the cross-country flight will be flown;

(8) Procedures for operating the instruments and equipment installed in the aircraft to be flown, including recognition and use of the proper operational procedures and indications;

(9) Use of radios for VFR navigation and two-way communication, except that a student pilot seeking a sport pilot certificate must only receive and log flight training on the use of radios installed in the aircraft to be flown; and

(10) Takeoff, approach, and landing procedures, including short-field and soft-field takeoffs, approaches, and landings.

(i) Maneuvers and procedures for cross-country flight training in a powered-lift. A student pilot who is receiving training for cross-country flight training in a powered-lift must receive and log flight training in the following maneuvers and procedures:

(1) Use of aeronautical charts for VFR navigation using pilotage and dead reckoning with the aid of a magnetic compass;

(2) Use of aircraft performance charts pertaining to cross-country flight;

(3) Procurement and analysis of aeronautical weather reports and forecasts, including recognition of critical weather situations and estimating visibility while in flight;

(4) Emergency procedures;

(5) Traffic pattern procedures that include area departure, area arrival, entry into the traffic pattern, and approach;

(6) Procedures and operating practices for collision avoidance, wake turbulence precautions, and windshear avoidance;

(7) Recognition, avoidance, and operational restrictions of hazardous terrain features in the geographical area where the cross-country flight will be flown;

(8) Procedures for operating the instruments and equipment installed in the aircraft to be flown, including recognition and use of the proper operational procedures and indications;

(9) Use of radios for VFR navigation and two-way communications;

(10) Takeoff, approach, and landing procedures that include high-altitude, steep, and shallow takeoffs, approaches, and landings; and
(11) Control and maneuvering solely by reference to flight instruments, including straight and level flight, turns, descents, climbs, use of radio aids, and ATC directives.

(j) Maneuvers and procedures for cross-country flight training in a glider. A student pilot who is receiving training for cross-country flight in a glider must receive and log flight training in the following maneuvers and procedures:

(1) Use of aeronautical charts for VFR navigation using pilotage and dead reckoning with the aid of a magnetic compass;

(2) Use of aircraft performance charts pertaining to cross-country flight;

(3) Procurement and analysis of aeronautical weather reports and forecasts, including recognition of critical weather situations and estimating visibility while in flight;

(4) Emergency procedures;

(5) Traffic pattern procedures that include area departure, area arrival, entry into the traffic pattern, and approach;

(6) Procedures and operating practices for collision avoidance, wake turbulence precautions, and windshear avoidance;

(7) Recognition, avoidance, and operational restrictions of hazardous terrain features in the geographical area where the cross-country flight will be flown;

(8) Procedures for operating the instruments and equipment installed in the aircraft to be flown, including recognition and use of the proper operational procedures and indications;

(9) Use of radios for VFR navigation and two-way communication, except that a student pilot seeking a sport pilot certificate must only receive and log flight training on the use of radios installed in the aircraft to be flown;

(10) Control of air pressure with regard to ascending and descending flight; and

(11) Control of the airship solely by reference to flight instruments, except for a student pilot seeking a sport pilot certificate; and

(l) Maneuvers and procedures for cross-country flight training in a powered parachute. A student pilot who is receiving training for cross-country flight in a powered parachute must receive and log flight training in the following maneuvers and procedures:

(1) Use of aeronautical charts for VFR navigation using pilotage and dead reckoning with the aid of a magnetic compass;

(2) Use of aircraft performance charts pertaining to cross-country flight;

(3) Procurement and analysis of aeronautical weather reports and forecasts, including recognizing critical weather
§ 61.94 Student pilot seeking a sport pilot certificate or a recreational pilot certificate: Operations at airports within, and in airspace located within, Class B, C, and D airspace, or at airports with an operational control tower in other airspace.

(a) A student pilot seeking a sport pilot certificate or a recreational pilot certificate who wants to obtain privileges to operate in Class B, C, and D airspace, at an airport located in Class B, C, or D airspace, and to, from, through, or at an airport having an operational control tower, must receive and log ground and flight training from an authorized instructor in the following aeronautical knowledge areas and areas of operation:

(1) The use of radios, communications, navigation systems and facilities, and radar services.

(2) Operations at airports with an operating control tower, to include three takeoffs and landings to a full stop, with each landing involving a flight in the traffic pattern, at an airport with an operating control tower.

(3) Applicable flight rules of part 91 of this chapter for operations in Class B, C, and D airspace and air traffic control clearances.

(4) Ground and flight training for the specific Class B, C, or D airspace for which the solo flight is authorized, if applicable, within the 90-day period.
§ 61.95 Operations in Class B airspace and at airports located within Class B airspace.

(a) A student pilot may not operate an aircraft on a solo flight in Class B airspace unless:

1. The student pilot has received both ground and flight training from an authorized instructor on that Class B airspace area, and the flight training was received in the specific Class B airspace area for which solo flight is authorized;

2. The logbook of that student pilot has been endorsed by the authorized instructor who gave the student pilot flight training, and the endorsement is dated within the 90-day period preceding the date of the flight in that specific airspace area; and

3. The logbook endorsement specifies that the student pilot has received the required ground and flight training, and has been found proficient to conduct solo flight in that specific Class B airspace area.

(b) A student pilot may not operate an aircraft on a solo flight to, from, or at an airport located within Class B airspace pursuant to §91.131(b) of this chapter unless:

1. The student pilot has received both ground and flight training from an instructor authorized to provide training to operate at that airport, and the flight and ground training has been received at the specific airport for which the solo flight is authorized;

2. The logbook of that student pilot has been endorsed by an authorized instructor who gave the student pilot flight training, and the endorsement is dated within the 90-day period preceding the date of the flight at that airport; and

3. The logbook endorsement specifies that the student pilot has received the required ground and flight training, and has been found proficient to conduct solo flight operations at that specific airport.

(c) This section does not apply to a student pilot seeking a sport pilot certificate or a recreational pilot certificate.

§ 61.96 Applicability and eligibility requirements: General.

(a) This subpart prescribes the requirement for the issuance of recreational pilot certificates and ratings, the conditions under which those certificates and ratings are necessary, and the general operating rules for persons who hold those certificates and ratings.

(b) To be eligible for a recreational pilot certificate, a person who applies for that certificate must:

1. Be at least 17 years of age;

2. Be able to read, speak, write, and understand the English language. If the applicant is unable to meet one of these requirements due to medical reasons, then the Administrator may place such operating limitations on that applicant’s pilot certificate as are necessary for the safe operation of the aircraft;

3. Receive a logbook endorsement from an authorized instructor who—

 (i) Conducted the training or reviewed the applicant’s home study on the aeronautical knowledge areas listed in §61.97(b) of this part that apply to the aircraft category and class rating sought; and
§ 61.97 Aeronautical knowledge.

(a) General. A person who applies for a recreational pilot certificate must receive and log ground training from an authorized instructor or complete a home-study course on the aeronautical knowledge areas of paragraph (b) of this section that apply to the aircraft category and class rating sought.

(b) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that relate to recreational pilot privileges, limitations, and flight operations;

(2) Accident reporting requirements of the National Transportation Safety Board;

(3) Use of the applicable portions of the “Aeronautical Information Manual” and FAA advisory circulars;

(4) Use of aeronautical charts for VFR navigation using pilotage with the aid of a magnetic compass;

(5) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical weather reports and forecasts;

(6) Safe and efficient operation of aircraft, including collision avoidance, and recognition and avoidance of wake turbulence;

(7) Effects of density altitude on takeoff and climb performance;

(8) Weight and balance computations;

(9) Principles of aerodynamics, powerplants, and aircraft systems;

(10) Stall awareness, spin entry, spins, and spin recovery techniques, if applying for an airplane single-engine rating;

(11) Aeronautical decision making and judgment; and

(12) Preflight action that includes—

(i) How to obtain information on runway lengths at airports of intended use, data on takeoff and landing distances, weather reports and forecasts, and fuel requirements; and

(ii) How to plan for alternatives if the planned flight cannot be completed or delays are encountered.

§ 61.98 Flight proficiency.

(a) General. A person who applies for a recreational pilot certificate must receive and log ground and flight training from an authorized instructor on the areas of operation of this section that apply to the aircraft category and class rating sought.

(b) Areas of operation. (1) For a single-engine airplane rating: (i) Preflight preparation;

(ii) Preflight procedures;

(iii) Airport operations;

(iv) Takeoffs, landings, and go-arounds;

(v) Performance maneuvers;

(vi) Ground reference maneuvers;

(vii) Navigation;

(viii) Slow flight and stalls;

(ix) Emergency operations; and

(x) Postflight procedures.

(2) For a helicopter rating: (i) Preflight preparation;

(ii) Preflight procedures;

(iii) Airport and heliport operations;

(iv) Hovering maneuvers;

(v) Takeoffs, landings, and go-arounds;

(vi) Performance maneuvers;
Federal Aviation Administration, DOT § 61.101

(vii) Ground reference maneuvers;
(viii) Navigation;
(ix) Emergency operations; and
(x) Postflight procedures.

(3) For a gyroplane rating:
(i) Preflight preparation;
(ii) Preflight procedures;
(iii) Airport operations;
(iv) Takeoffs, landings, and go-arounds;
(v) Performance maneuvers;
(vi) Ground reference maneuvers;
(vii) Navigation;
(viii) Flight at slow airspeeds;
(ix) Emergency operations; and
(x) Postflight procedures.

§ 61.99 Aeronautical experience.

A person who applies for a recreational pilot certificate must receive and log at least 30 hours of flight time that includes at least—

(a) 15 hours of flight training from an authorized instructor on the areas of operation listed in § 61.98 of this part that consists of at least:
 (1) Except as provided in § 61.100 of this part, 2 hours of flight training en route to an airport that is located more than 25 nautical miles from the airport where the applicant normally trains, which includes at least three takeoffs and three landings at the airport located more than 25 nautical miles from the applicant normally trains; and
 (2) Three hours of flight training with an authorized instructor in the aircraft for the rating sought in preparation for the practical test within the preceding 2 calendar months from the month of the test.

(b) 3 hours of solo flying in the aircraft for the rating sought, on the areas of operation listed in § 61.98 of this part that apply to the aircraft category and class rating sought.

§ 61.101 Recreational pilot privileges and limitations.

(a) A person who holds a recreational pilot certificate may:
 (1) Carry no more than one passenger; and
 (2) Not pay less than the pro rata share of the operating expenses of a flight with a passenger, provided the expenses involve only fuel, oil, airport expenses, or aircraft rental fees.

(b) A person who holds a recreational pilot certificate may act as pilot in command of an aircraft on a flight within 50 nautical miles from the departure airport, provided that person has—
 (1) Received ground and flight training for takeoff, departure, arrival, and landing procedures at the departure airport;
 (2) Received ground and flight training for the area, terrain, and aids to navigation that are in the vicinity of the departure airport;
 (3) Been found proficient to operate the aircraft at the departure airport.

for more than 10 nautical miles from the nearest shoreline need not comply with the requirements of that section. However, if other airports that permit civil operations are available to which a flight may be made without flying over water for more than 10 nautical miles from the nearest shoreline, the applicant must show completion of a dual flight between two airports, which must include three landings at the other airport.

(b) An applicant who complies with paragraph (a) of this section and meets all requirements for the issuance of a recreational pilot certificate, except the requirements of § 61.99(a)(1) of this part, will be issued a pilot certificate with an endorsement containing the following limitation, “Passenger carrying prohibited on flights more than 10 nautical miles from (the appropriate island).” The limitation may be subsequently amended to include another island if the applicant complies with the requirements of paragraph (a) of this section for another island.

(c) Upon meeting the requirements of § 61.99(a)(1) of this part, the applicant may have the limitation(s) in paragraph (b) of this section removed.

§ 61.100 Pilots based on small islands.

(a) An applicant located on an island from which the flight training required in § 61.99(a)(1) of this part cannot be accomplished without flying over water

VerDate Mar<15>2010 18:16 Mar 01, 2012 Jkt 226045 PO 00000 Frm 00463 Fmt 8010 Sfmt 8002 Q:
453
and the area within 50 nautical miles from that airport; and

(4) Received from an authorized instructor a logbook endorsement, which is carried in the person’s possession in the aircraft, that permits flight within 50 nautical miles from the departure airport.

(c) A person who holds a recreational pilot certificate may act as pilot in command of an aircraft on a flight that exceeds 50 nautical miles from the departure airport, provided that person has—

(1) Received ground and flight training from an authorized instructor on the cross-country training requirements of subpart E of this part that apply to the aircraft rating held;

(2) Been found proficient in cross-country flying; and

(3) Received from an authorized instructor a logbook endorsement, which certifies the person has received and been found proficient in those aeronautical knowledge areas and areas of operation specified in paragraph (d)(1) of this section.

(d) A person who holds a recreational pilot certificate may act as pilot in command of an aircraft—

(1) That is certificated—

(i) For more than four occupants;

(ii) With more than one powerplant;

(iii) With a powerplant of more than 180 horsepower, except aircraft certificated in the rotorcraft category; or

(iv) With retractable landing gear;

(2) That is classified as a multi-engine airplane, powered-lift, glider, airship, balloon, powered parachute, or weight-shift-control aircraft;

(3) That is carrying a passenger or property for compensation or hire;

(4) For compensation or hire;

(5) In furtherance of a business;

(6) Between sunset and sunrise;

(7) In Class A, B, C, and D airspace, at an airport located in Class B, C, or D airspace, or to, from, through, or at an airport having an operational control tower;

(8) At an altitude of more than 10,000 feet MSL or 2,000 feet AGL, whichever is higher;

(9) When the flight or surface visibility is less than 3 statute miles;

(10) Without visual reference to the surface;

(11) On a flight outside the United States, unless authorized by the country in which the flight is conducted;

(12) To demonstrate that aircraft in flight as an aircraft salesperson to a prospective buyer;

(13) That is used in a passenger-carrying airlift and sponsored by a charitable organization; and

(14) That is towing any object.

(f) A recreational pilot may not act as a pilot flight crewmember on any aircraft for which more than one pilot is required by the type certificate of the aircraft or the regulations under
which the flight is conducted, except when:
(1) Receiving flight training from a person authorized to provide flight training on board an airship; and
(2) No person other than a required flight crewmember is carried on the aircraft.

(g) A person who holds a recreational pilot certificate, has logged fewer than 400 flight hours, and has not logged pilot-in-command time in an aircraft within the 180 days preceding the flight shall not act as pilot in command of an aircraft until the pilot receives flight training and a logbook endorsement from an authorized instructor, and the instructor certifies that the person is proficient to act as pilot in command of the aircraft. This requirement can be met in combination with the requirements of §§61.56 and 61.57 of this part, at the discretion of the authorized instructor.

(h) A recreational pilot certificate issued under this subpart carries the notation, “Holder does not meet ICAO requirements.”

(i) For the purpose of obtaining additional certificates or ratings while under the supervision of an authorized instructor, a recreational pilot may fly as the sole occupant of an aircraft:
(1) For which the pilot does not hold an appropriate category or class rating;
(2) Within airspace that requires communication with air traffic control; or
(3) Between sunset and sunrise, provided the flight or surface visibility is at least 5 statute miles.

(j) In order to fly solo as provided in paragraph (i) of this section, the recreational pilot must meet the appropriate aeronautical knowledge and flight training requirements of §61.87 for that aircraft. When operating an aircraft under the conditions specified in paragraph (i) of this section, the recreational pilot shall carry the logbook that has been endorsed for each flight by an authorized instructor who:
(1) Has given the recreational pilot training in the make and model of aircraft in which the solo flight is to be made;
(2) Has found that the recreational pilot has met the applicable requirements of §61.87; and
(3) Has found that the recreational pilot is competent to make solo flights in accordance with the logbook endorsement.

Subpart E—Private Pilots

§61.102 Applicability.
This subpart prescribes the requirements for the issuance of private pilot certificates and ratings, the conditions under which those certificates and ratings are necessary, and the general operating rules for persons who hold those certificates and ratings.

§61.103 Eligibility requirements: General.
To be eligible for a private pilot certificate, a person must:
(a) Be at least 17 years of age for a rating in other than a glider or balloon.
(b) Be at least 16 years of age for a rating in a glider or balloon.
(c) Be able to read, speak, write, and understand the English language. If the applicant is unable to meet one of these requirements due to medical reasons, then the Administrator may place such operating limitations on the applicant’s pilot certificate as are necessary for the safe operation of the aircraft.
(d) Receive a logbook endorsement from an authorized instructor who:
(1) Conducted the training or reviewed the person’s home study on the aeronautical knowledge areas listed in §61.105(b) of this part that apply to the aircraft rating sought; and
(2) Certified that the person is prepared for the required knowledge test.
(e) Pass the required knowledge test on the aeronautical knowledge areas listed in §61.105(b) of this part.
(f) Receive flight training and a logbook endorsement from an authorized instructor who:
(1) Conducted the training in the areas of operation listed in §61.107(b) of
this part that apply to the aircraft rating sought; and
(2) Certified that the person is prepared for the required practical test.

(g) Meet the aeronautical experience requirements of this part that apply to the aircraft rating sought before applying for the practical test.

(h) Pass a practical test on the areas of operation listed in §61.107(b) of this part that apply to the aircraft rating sought.

(i) Comply with the appropriate sections of this part that apply to the aircraft category and class rating sought.

(j) Hold a U.S. student pilot certificate, sport pilot certificate, or recreational pilot certificate.

§61.107 Flight proficiency.

(a) General. A person who applies for a private pilot certificate must receive and log ground and flight training from an authorized instructor on the areas of operation of this section that apply to the aircraft category and class rating sought.

(b) Areas of operation. (1) For an airplane category rating with a single-engine class rating:

(i) Preflight preparation;
(ii) Preflight procedures;
(iii) Airport and seaplane base operations;
(iv) Takeoffs, landings, and go-arounds;
(v) Performance maneuvers;
(vi) Ground reference maneuvers;
(vii) Navigation;
(viii) Slow flight and stalls;
(ix) Basic instrument maneuvers;
(x) Emergency operations;
(xi) Night operations, except as provided in §61.110 of this part; and
(xii) Postflight procedures.

(2) For an airplane category rating with a multiengine class rating:

(i) Preflight preparation;
(ii) Preflight procedures;
(iii) Airport and seaplane base operations;
(iv) Takeoffs, landings, and go-arounds;
(v) Performance maneuvers;
(vi) Ground reference maneuvers;
(vii) Navigation;
(viii) Slow flight and stalls;
(ix) Basic instrument maneuvers;
Federal Aviation Administration, DOT

§ 61.107

(x) Emergency operations;
(xi) Multiengine operations;
(xii) Night operations, except as provided in §61.110 of this part; and
(xiii) Postflight procedures.

(3) For a rotorcraft category rating with a helicopter class rating:
(i) Preflight preparation;
(ii) Preflight procedures;
(iii) Airport and heliport operations;
(iv) Hovering maneuvers;
(v) Takeoffs, landings, and go-arounds;
(vi) Performance maneuvers;
(vii) Navigation;
(viii) Emergency operations;
(ix) Night operations, except as provided in §61.110 of this part; and
(x) Postflight procedures.

(4) For a rotorcraft category rating with a gyroplane class rating:
(i) Preflight preparation;
(ii) Preflight procedures;
(iii) Airport operations;
(iv) Takeoffs, landings, and go-arounds;
(v) Performance maneuvers;
(vi) Navigation;
(vii) Emergency operations; and
(viii) Night operations, except as provided in §61.110 of this part; and
(x) Postflight procedures.

(5) For a powered-lift category rating:
(i) Preflight preparation;
(ii) Preflight procedures;
(iii) Airport and heliport operations;
(iv) Hovering maneuvers;
(v) Takeoffs, landings, and go-arounds;
(vi) Performance maneuvers;
(vii) Navigation;
(viii) Flight at slow airspeeds;
(ix) Emergency operations;
(x) Night operations, except as provided in §61.110 of this part; and
(xi) Postflight procedures.

(6) For a glider category rating:
(i) Preflight preparation;
(ii) Preflight procedures;
(iii) Airport and gliderport operations;
(iv) Launches and landings;
(v) Performance maneuvers;
(vi) Navigation;
(vii) Slow flight and stalls;
(viii) Basic instrument maneuvers;
(ix) Emergency operations; and
(x) Postflight procedures.

(7) For a lighter-than-air category rating with an airship class rating:
(i) Preflight preparation;
(ii) Preflight procedures;
(iii) Airport operations;
(iv) Takeoffs, landings, and go-arounds;
(v) Performance maneuvers;
(vi) Ground reference maneuvers;
(vii) Navigation;
(viii) Emergency operations; and
(ix) Postflight procedures.

(8) For a lighter-than-air category rating with a balloon class rating:
(i) Preflight preparation;
(ii) Preflight procedures;
(iii) Airport operations;
(iv) Launches and landings;
(v) Performance maneuvers;
(vi) Navigation;
(vii) Emergency operations; and
(viii) Postflight procedures.

(9) For a powered parachute category rating—
(i) Preflight preparation;
(ii) Preflight procedures;
(iii) Airport and seaplane base operations, as applicable;
(iv) Takeoffs, landings, and go-arounds;
(v) Performance maneuvers;
(vi) Ground reference maneuvers;
(vii) Navigation;
(viii) Night operations, except as provided in §61.110;
(ix) Emergency operations; and
(x) Post-flight procedures.

(10) For a weight-shift-control air-
craft category rating—
(i) Preflight preparation;
(ii) Preflight procedures;
(iii) Airport and seaplane base operations, as applicable;
(iv) Takeoffs, landings, and go-arounds;
(v) Performance maneuvers;
(vi) Ground reference maneuvers;
(vii) Navigation;
(viii) Night operations, except as provided in §61.110;
(ix) Emergency operations; and
(x) Postflight procedures.
§ 61.109 Aeronautical experience.

(a) For an airplane single-engine rating. Except as provided in paragraph (k) of this section, a person who applies for a private pilot certificate with an airplane category and single-engine class rating must log at least 40 hours of flight time that includes at least 20 hours of flight training from an authorized instructor and 10 hours of solo flight training in the areas of operation listed in § 61.107(b)(1) of this part, and the training must include at least—

(1) 3 hours of cross-country flight training in a single-engine airplane;

(2) Except as provided in § 61.110 of this part, 3 hours of night flight training in a single-engine airplane that includes—

(i) One cross-country flight of over 100 nautical miles total distance; and

(ii) 10 takeoffs and 10 landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport.

(3) 3 hours of flight training in a single-engine airplane on the control and maneuvering of an airplane solely by reference to instruments, including straight and level flight, constant airspeed climbs and descents, turns to a heading, recovery from unusual flight attitudes, radio communications, and the use of navigation systems/facilities and radar services appropriate to instrument flight;

(4) 3 hours of flight training with an authorized instructor in a single-engine airplane in preparation for the practical test, which must have been performed within the preceding 2 calendar months from the month of the test; and

(5) 10 hours of solo flight time in a single-engine airplane, consisting of at least—

(i) 5 hours of solo cross-country time;

(ii) One solo cross country flight of 150 nautical miles total distance, with full-stop landings at three points, and one segment of the flight consisting of a straight-line distance of more than 50 nautical miles between the takeoff and landing locations; and

(iii) Three takeoffs and three landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport with an operating control tower.

(b) For an airplane multiengine rating. Except as provided in paragraph (k) of this section, a person who applies for a private pilot certificate with an airplane category and multiengine class rating must log at least 40 hours of flight time that includes at least 20 hours of flight training from an authorized instructor and 10 hours of solo flight training in the areas of operation listed in § 61.107(b)(2) of this part, and the training must include at least—

(1) 3 hours of cross-country flight training in a multiengine airplane;

(2) Except as provided in § 61.110 of this part, 3 hours of night flight training in a multiengine airplane that includes—

(i) One cross-country flight of over 100 nautical miles total distance; and

(ii) 10 takeoffs and 10 landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport.

(3) 3 hours of flight training in a multiengine airplane on the control and maneuvering of an airplane solely by reference to instruments, including straight and level flight, constant airspeed climbs and descents, turns to a heading, recovery from unusual flight attitudes, radio communications, and the use of navigation systems/facilities and radar services appropriate to instrument flight;

(4) 3 hours of flight training with an authorized instructor in a multiengine airplane in preparation for the practical test, which must have been performed within the preceding 2 calendar months from the month of the test; and

(5) 10 hours of solo flight time in an airplane consisting of at least—

(i) 5 hours of solo cross-country time;

(ii) One solo cross country flight of 150 nautical miles total distance, with full-stop landings at three points, and one segment of the flight consisting of a straight-line distance of more than 50 nautical miles between the takeoff and landing locations; and

(iii) Three takeoffs and three landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport with an operating control tower.
involving a flight in the traffic pattern) at an airport with an operating control tower.

(c) For a helicopter rating. Except as provided in paragraph (k) of this section, a person who applies for a private pilot certificate with rotorcraft category and helicopter class rating must log at least 40 hours of flight time that includes at least 20 hours of flight training from an authorized instructor and 10 hours of solo flight training in the areas of operation listed in §61.107(b)(3) of this part, and the training must include at least—

(1) 3 hours of cross-country flight training in a helicopter;
(2) Except as provided in §61.110 of this part, 3 hours of night flight training in a helicopter that includes—
 (i) One cross-country flight of over 50 nautical miles total distance; and
 (ii) 10 takeoffs and 10 landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport.
(3) 3 hours of flight training with an authorized instructor in a helicopter in preparation for the practical test, which must have been performed within the preceding 2 calendar months from the month of the test; and
(4) 10 hours of solo flight time in a helicopter, consisting of at least—
 (i) 3 hours cross-country time;
 (ii) One solo cross country flight of 100 nautical miles total distance, with landings at three points, and one segment of the flight being a straight-line distance of more than 25 nautical miles between the takeoff and landing locations; and
 (iii) Three takeoffs and three landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport with an operating control tower.

(d) For a gyroplane rating. Except as provided in paragraph (k) of this section, a person who applies for a private pilot certificate with rotorcraft category and gyroplane class rating must log at least 40 hours of flight time that includes at least 20 hours of flight training from an authorized instructor and 10 hours of solo flight training in the areas of operation listed in §61.107(b)(5) of this part, and the training must include at least—

(1) 3 hours of cross-country flight training in a gyroplane;
(2) Except as provided in §61.110 of this part, 3 hours of night flight training in a gyroplane that includes—
 (i) One cross-country flight of over 50 nautical miles total distance; and
 (ii) 10 takeoffs and 10 landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport.
(3) 3 hours of flight training with an authorized instructor in a gyroplane in preparation for the practical test, which must have been performed within the preceding 2 calendar months from the month of the test; and
(4) 10 hours of solo flight time in a gyroplane, consisting of at least—
 (i) 3 hours cross-country time;
 (ii) One solo cross country flight of 100 nautical miles total distance, with landings at three points, and one segment of the flight being a straight-line distance of more than 25 nautical miles between the takeoff and landing locations; and
 (iii) Three takeoffs and three landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport with an operating control tower.

(e) For a powered-lift rating. Except as provided in paragraph (k) of this section, a person who applies for a private pilot certificate with a powered-lift category rating must log at least 40 hours of flight time that includes at least 20 hours of flight training from an authorized instructor and 10 hours of solo flight training in the areas of operation listed in §61.107(b)(5) of this part, and the training must include at least—

(1) 3 hours of cross-country flight training in a powered-lift;
(2) Except as provided in §61.110 of this part, 3 hours of night flight training in a powered-lift that includes—
 (i) One cross-country flight of over 100 nautical miles total distance; and
 (ii) 10 takeoffs and 10 landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport.
(3) 3 hours of flight training in a powered-lift on the control and maneuvering of a powered-lift solely by reference to instruments, including
§61.109

straight and level flight, constant airspeed climbs and descents, turns to a heading, recovery from unusual flight attitudes, radio communications, and the use of navigation systems/facilities and radar services appropriate to instrument flight;

(4) 3 hours of flight training with an authorized instructor in a powered-lift in preparation for the practical test, which must have been performed within the preceding 2 calendar months from the month of the test; and

(5) 10 hours of solo flight time in an airplane or powered-lift consisting of at least—

(i) 5 hours cross-country time;

(ii) One solo cross country flight of 150 nautical miles total distance, with full-stop landings at three points, and one segment of the flight consisting of a straight-line distance of more than 50 nautical miles between the takeoff and landing locations; and

(iii) Three takeoffs and three landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport with an operating control tower.

(f) For a glider category rating. (1) If the applicant for a private pilot certificate with a glider category rating has not logged at least 40 hours of flight time as a pilot in a heavier-than-air aircraft, the applicant must log at least 10 hours of flight time in a glider in the areas of operation listed in §61.107(b)(6) of this part, and that flight time must include at least—

(i) 20 flights in a glider in the areas of operations listed in §61.107(b)(6) of this part, including at least 3 training flights with an authorized instructor in a glider in preparation for the practical test within the preceding 2 calendar months from the month of the test; and

(ii) 2 hours of solo flight time in a glider in the areas of operation listed in §61.107(b)(6) of this part, with not less than 10 launches and landings being performed.

(2) If the applicant has logged at least 40 hours of flight time in a heavier-than-air aircraft, the applicant must log at least 3 hours of flight time in a glider in the areas of operation listed in §61.107(b)(6) of this part, and that flight time must include at least—

(i) 10 solo flights in a glider in the areas of operation listed in §61.107(b)(6) of this part; and

(ii) 3 training flights with an authorized instructor in a glider in preparation for the practical test that must have been performed within the preceding 2 calendar months from the month of the test.

(g) For an airship rating. A person who applies for a private pilot certificate with a lighter-than-air category and airship class rating must log at least:

(1) 25 hours of flight training in airships on the areas of operation listed in §61.107(b)(7) of this part, which consists of at least:

(i) 3 hours of cross-country flight training in an airship;

(ii) Except as provided in §61.110 of this part, 3 hours of night flight training in an airship that includes:

(A) A cross-country flight of over 25 nautical miles total distance; and

(B) Five takeoffs and five landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport.

(2) 3 hours of flight training in an airship on the control and maneuvering of an airship solely by reference to instruments, including straight and level flight, constant airspeed climbs and descents, turns to a heading, recovery from unusual flight attitudes, radio communications, and the use of navigation systems/facilities and radar services appropriate to instrument flight;

(3) Three hours of flight training with an authorized instructor in an airship in preparation for the practical test within the preceding 2 calendar months from the month of the test; and

(4) 5 hours performing the duties of pilot in command in an airship with an authorized instructor.

(h) For a balloon rating. A person who applies for a private pilot certificate with a lighter-than-air category and balloon class rating must log at least 10 hours of flight training that includes at least six training flights with an authorized instructor in the areas of operation listed in §61.107(b)(8) of this part, that includes—

(1) Gas balloon. If the training is being performed in a gas balloon, at
least two flights of 2 hours each that consists of—

(i) At least one training flight with an authorized instructor in a gas balloon in preparation for the practical test within the preceding 2 calendar months from the month of the test;

(ii) At least one flight performing the duties of pilot in command in a gas balloon with an authorized instructor; and

(iii) At least one flight involving a controlled ascent to 3,000 feet above the launch site.

(2) Balloon with an airborne heater. If the training is being performed in a balloon with an airborne heater, at least—

(i) At least two training flights of 1 hour each with an authorized instructor in a balloon with an airborne heater in preparation for the practical test within the preceding 2 calendar months from the month of the test;

(ii) One solo flight in a balloon with an airborne heater; and

(iii) At least one flight involving a controlled ascent to 2,000 feet above the launch site.

(i) For a powered parachute rating. A person who applies for a private pilot certificate with a powered parachute category rating must log at least 25 hours of flight time in a powered parachute that includes at least 10 hours of flight training with an authorized instructor, including 30 takeoffs and landings, and 10 hours of solo flight training in the areas of operation listed in §61.107(b)(9) and the training must include at least—

(1) One hour of cross-country flight training in a powered parachute that includes a 1-hour cross-country flight with a landing at an airport at least 25 nautical miles from the airport of departure;

(2) Except as provided in §61.110, 3 hours of night flight training in a powered parachute that includes 10 takeoffs and landings (with each landing involving a flight in the traffic pattern) at an airport;

(3) Three hours of flight training with an authorized instructor in a powered parachute in preparation for the practical test, which must have been performed within the preceding 2 calendar months from the month of the test;

(4) Three hours of solo flight time in a powered parachute, consisting of at least—

(i) One solo cross-country flight with a landing at an airport at least 25 nautical miles from the departure airport; and

(ii) Twenty solo takeoffs and landings to a full stop (with each landing involving a flight in a traffic pattern) at an airport; and

(5) Three takeoffs and landings (with each landing involving a flight in the traffic pattern) in an aircraft at an airport with an operating control tower.

(2) For a weight-shift-control aircraft rating. A person who applies for a private pilot certificate with a weight-shift-control rating must log at least 40 hours of flight time that includes at least 20 hours of flight training with an authorized instructor and 10 hours of solo flight training in the areas of operation listed in §61.107(b)(10) and the training must include at least—

(1) Three hours of cross-country flight training in a weight-shift-control aircraft;

(2) Except as provided in §61.110, 3 hours of night flight training in a weight-shift-control aircraft that includes—

(i) One cross-country flight of over 75 nautical miles total distance that includes a point of landing that is a straight-line distance of more than 50 nautical miles from the original point of departure; and

(ii) Ten takeoffs and landings (with each landing involving a flight in the traffic pattern) at an airport;

(3) Three hours of flight training with an authorized instructor in a weight-shift-control aircraft in preparation for the practical test, which must have been performed within the preceding 2 calendar months from the month of the test;

(4) Ten hours of solo flight time in a weight-shift-control aircraft, consisting of at least—

(i) Five hours of solo cross-country time; and

(ii) One solo cross-country flight over 100 nautical miles total distance, with landings at a minimum of three points, and one segment of the flight being a straight line distance of at least 50
§ 61.110 Night flying exceptions.

(a) Subject to the limitations of paragraph (b) of this section, a person is not required to comply with the night flight training requirements of this subpart if the person receives flight training in and resides in the State of Alaska.

(b) A person who receives flight training in and resides in the State of Alaska but does not meet the night flight training requirements of this section:

(1) May be issued a pilot certificate with a limitation “Night flying prohibited”; and

(2) Must comply with the appropriate night flight training requirements of this subpart within the 12-calendar-month period after the issuance of the pilot certificate. At the end of that period, the certificate will become invalid for use until the person complies with the appropriate night training requirements of this subpart. The person may have the “Night flying prohibited” limitation removed if the person—

(i) Accomplishes the appropriate night flight training requirements of this subpart; and

(ii) Presents to an examiner a logbook or training record endorsement from an authorized instructor that verifies accomplishment of the appropriate night flight training requirements of this subpart.

(c) A person who does not meet the night flying requirements in § 61.109(d)(2), (i)(2), or (j)(2) may be issued a private pilot certificate with the limitation “Night flying prohibited.” This limitation may be removed by an examiner if the holder complies with the requirements of § 61.109(d)(2), (i)(2), or (j)(2), as appropriate.

§ 61.111 Cross-country flights: Pilots based on small islands.

(a) Except as provided in paragraph (b) of this section, an applicant located on an island from which the cross-country flight training required in § 61.109 of this part cannot be accomplished without flying over water for more than 10 nautical miles from the nearest shoreline need not comply with the requirements of that section.

(b) If other airports that permit civil operations are available to which a flight may be made without flying over water for more than 10 nautical miles from the nearest shoreline, the applicant must show completion of two round-trip solo flights between those two airports that are farthest apart, including a landing at each airport on both flights.
§ 61.115 Balloon rating: Limitations.

(a) If a person who applies for a private pilot certificate with a balloon rating takes a practical test in a balloon with an airborne heater:

(1) The flight is only incidental to that business or employment; and

(2) The aircraft does not carry passengers or property for compensation or hire.

(c) A private pilot may not pay less than the prorata share of the operating expenses of a flight with passengers, provided the expenses involve only fuel, oil, airport expenditures, or rental fees.

(d) A private pilot may act as pilot in command of a charitable, nonprofit, or community event flight described in §91.146, if the sponsor and pilot comply with the requirements of §91.146.

(e) A private pilot may be reimbursed for aircraft operating expenses that are directly related to search and location operations, provided the expenses involve only fuel, oil, airport expenditures, or rental fees, and the operation is sanctioned and under the direction and control of:

(1) A local, State, or Federal agency; or

(2) An organization that conducts search and location operations.

(f) A private pilot who is an aircraft salesman and who has at least 200 hours of logged flight time may demonstrate an aircraft in flight to a prospective buyer.

(g) A private pilot who meets the requirements of §61.69 may act as pilot in command of an aircraft towing a glider or unpowered ultralight vehicle.

(h) A private pilot may act as pilot in command for the purpose of conducting a production flight test in a light-sport aircraft intended for certification in the light-sport category under §21.190 of this chapter, provided that—

(1) The aircraft is a powered parachute or a weight-shift-control aircraft;

(2) The person has at least 100 hours of pilot-in-command time in the category and class of aircraft flown; and

(3) The person is familiar with the processes and procedures applicable to the conduct of production flight testing, to include operations conducted under a special flight permit and any associated operating limitations.
§ 61.117 Private pilot privileges and limitations: Second in command of aircraft requiring more than one pilot.

Except as provided in §61.113 of this part, no private pilot may, for compensation or hire, act as second in command of an aircraft that is type certificated for more than one pilot, nor may that pilot act as second in command of such an aircraft that is carrying passengers or property for compensation or hire.

§ 61.118–61.120 [Reserved]

Subpart F—Commercial Pilots

§ 61.121 Applicability.

This subpart prescribes the requirements for the issuance of commercial pilot certificates and ratings, the conditions under which those certificates and ratings are necessary, and the general operating rules for persons who hold those certificates and ratings.

§ 61.123 Eligibility requirements: General.

To be eligible for a commercial pilot certificate, a person must:
(a) Be at least 18 years of age;
(b) Be able to read, speak, write, and understand the English language. If the applicant is unable to meet one of these requirements due to medical reasons, then the Administrator may place such operating limitations on that applicant's pilot certificate as are necessary for the safe operation of the aircraft.

(c) Receive a logbook endorsement from an authorized instructor who:
(1) Conducted the required ground training or reviewed the person's home study on the aeronautical knowledge areas listed in §61.125 of this part that apply to the aircraft category and class rating sought; and
(2) Certified that the person is prepared for the required knowledge test that applies to the aircraft category and class rating sought.

(d) Pass the required knowledge test on the aeronautical knowledge areas listed in §61.125 of this part;

(e) Receive the required training and a logbook endorsement from an authorized instructor who:
(1) Conducted the training on the areas of operation listed in §61.127(b) of this part that apply to the aircraft category and class rating sought; and
(2) Certified that the person is prepared for the required practical test.

(f) Meet the aeronautical experience requirements of this subpart that apply to the aircraft category and class rating sought before applying for the practical test;

(g) Pass the required practical test on the areas of operation listed in §61.127(b) of this part that apply to the aircraft category and class rating sought;

(h) Hold at least a private pilot certificate issued under this part or meet the requirements of §61.73; and

(i) Comply with the sections of this part that apply to the aircraft category and class rating sought.

§ 61.125 Aeronautical knowledge.

(a) General. A person who applies for a commercial pilot certificate must receive and log ground training from an authorized instructor, or complete a home-study course, on the aeronautical knowledge areas of paragraph (b) of this section that apply to the aircraft category and class rating sought.

(b) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that relate to commercial pilot privileges, limitations, and flight operations;
81.127 Flight proficiency.

(a) General. A person who applies for a commercial pilot certificate must receive and log ground and flight training from an authorized instructor on the areas of operation of this section that apply to the aircraft category and class rating sought.

(b) Areas of operation. (1) For an airplane category rating with a single-engine class rating:
 (i) Preflight preparation;
 (ii) Preflight procedures;
 (iii) Airport and seaplane base operations;
 (iv) Takeoffs, landings, and go-arounds;
 (v) Performance maneuvers;
 (vi) Ground reference maneuvers;
 (vii) Navigation;
 (viii) Slow flight and stalls;
 (ix) Emergency operations;
 (x) High-altitude operations; and
 (xi) Postflight procedures.

(2) For an airplane category rating with a multiengine class rating:
 (i) Preflight preparation;
 (ii) Preflight procedures;
 (iii) Airport and seaplane base operations;
 (iv) Takeoffs, landings, and go-arounds;
 (v) Performance maneuvers;
 (vi) Navigation;
 (vii) Slow flight and stalls;
 (viii) Emergency operations;
 (ix) Multiengine operations;
 (x) High-altitude operations; and
 (xi) Postflight procedures.

(3) For a rotorcraft category rating with a helicopter class rating:
 (i) Preflight preparation;
 (ii) Preflight procedures;
 (iii) Airport and heliport operations;
 (iv) Hovering maneuvers;
 (v) Takeoffs, landings, and go-arounds;
 (vi) Performance maneuvers;
 (vii) Navigation;
 (viii) Emergency operations;
 (ix) Multiengine operations;
 (x) High-altitude operations; and
 (xi) Postflight procedures.

(4) For a rotorcraft category rating with a gyroplane class rating:
 (i) Preflight preparation;
 (ii) Preflight procedures;
 (iii) Airport operations;
 (iv) Takeoffs, landings, and go-arounds;
 (v) Performance maneuvers;
 (vi) Ground reference maneuvers;
 (vii) Navigation;
 (viii) Flight at slow airspeeds;
 (ix) Emergency operations; and
 (x) Postflight procedures.

(5) For a powered-lift category rating:
 (i) Preflight preparation;
 (ii) Preflight procedures;
 (iii) Airport and heliport operations;
 (iv) Hovering maneuvers;
 (v) Takeoffs, landings, and go-arounds;
 (vi) Performance maneuvers;
 (vii) Navigation;
 (viii) Slow flight and stalls;
 (ix) Emergency operations;
 (x) High-altitude operations;
 (xi) Special operations; and
 (xii) Postflight procedures.

(6) For a glider category rating:
 (i) Preflight preparation;
 (ii) Preflight procedures;
 (iii) Preflight procedures;
§ 61.129 Aeronautical experience.

(a) For an airplane single-engine rating. Except as provided in paragraph (i) of this section, a person who applies for a commercial pilot certificate with an airplane category and single-engine class rating must log at least 250 hours of flight time as a pilot that consists of at least:

1. 100 hours in powered aircraft, of which 50 hours must be in airplanes.
2. 100 hours of pilot-in-command flight time, which includes at least—
 1. 50 hours in airplanes; and
 2. 50 hours in cross-country flight of which at least 10 hours must be in airplanes.
3. 20 hours of training on the areas of operation listed in §61.127(b)(1) of this part that includes at least—
 1. Ten hours of instrument training using a view-limiting device including attitude instrument flying, partial panel skills, recovery from unusual flight attitudes, and intercepting and tracking navigational systems. Five hours of the 10 hours required on instrument training must be in a single engine airplane;
 2. 10 hours of training in an airplane that has a retractable landing gear, flaps, and a controllable pitch propeller, or is turbine-powered, or for an applicant seeking a single-engine seaplane rating, 10 hours of training in a seaplane that has flaps and a controllable pitch propeller;
 3. One 2-hour cross country flight in a single engine airplane in daytime conditions that consists of a total straight-line distance of more than 100 nautical miles from the original point of departure;
 4. One 2-hour cross country flight in a single engine airplane in nighttime conditions that consists of a total straight-line distance of more than 100 nautical miles from the original point of departure; and
 5. Three hours in a single-engine airplane with an authorized instructor in preparation for the practical test within the preceding 2 calendar months from the month of the test.
4. Ten hours of solo flight time in a single engine airplane or 10 hours of flight time performing the duties of pilot in command in a single engine airplane with an authorized instructor on board (either of which may be credited towards the flight time requirement under paragraph (a)(2) of this section), on the areas of operation listed under §61.127(b)(1) that include—
 1. One cross-country flight of not less than 300 nautical miles total distance, with landings at a minimum of three points, one of which is a straight-line distance of at least 250 nautical miles from the original departure point. However, if this requirement is being met in Hawaii, the longest segment need only have a straight-line distance of at least 100 nautical miles from the original departure point.
 2. One cross-country flight of not less than 300 nautical miles total distance, with landings at a minimum of three points, one of which is a straight-line distance of at least 250 nautical miles from the original departure point. However, if this requirement is being met in Hawaii, the longest segment need only have a straight-line distance of at least 100 nautical miles from the original departure point.

(b) For a lighter-than-air category rating with an airship class rating:

1. Fundamentals of instructing;
2. Technical subjects;
3. Preflight preparation;
4. Preflight lesson on a maneuver to be performed in flight;
5. Preflight procedures;
6. Airport operations;
7. Takeoffs, landings, and go-arounds;
8. Performance maneuvers;
9. Navigation;
10. Emergency operations; and
11. Postflight procedures.

(7) For a lighter-than-air category rating with a balloon class rating:

1. Fundamentals of instructing;
2. Technical subjects;
3. Preflight preparation;
4. Preflight lesson on a maneuver to be performed in flight;
5. Preflight procedures;
6. Airport operations;
7. Launches and landings;
8. Performance maneuvers;
9. Navigation;
10. Emergency operations; and
11. Postflight procedures.

Federal Aviation Administration, DOT § 61.129

distance of at least 150 nautical miles; and

(ii) 5 hours in night VFR conditions with 10 takeoffs and 10 landings (with each landing involving a flight in the traffic pattern) at an airport with an operating control tower.

(b) For an airplane multiengine rating. Except as provided in paragraph (i) of this section, a person who applies for a commercial pilot certificate with an airplane category and multiengine class rating must log at least 250 hours of flight time as a pilot that consists of at least:

(1) 100 hours in powered aircraft, of which 50 hours must be in airplanes.

(2) 100 hours of pilot-in-command flight time, which includes at least—

(i) 50 hours in airplanes; and

(ii) 50 hours in cross-country flight of which at least 10 hours must be in airplanes.

(3) 20 hours of training on the areas of operation listed in §61.127(b)(2) of this part that includes at least—

(i) Ten hours of instrument training using a view-limiting device including attitude instrument flying, partial panel skills, recovery from unusual flight attitudes, and intercepting and tracking navigational systems. Five hours of the 10 hours required on instrument training must be in a multi-engine airplane;

(ii) 10 hours of training in a multiengine airplane that has a retractable landing gear, flaps, and controllable pitch propellers, or is turbine-powered, or for an applicant seeking a multiengine seaplane rating, 10 hours of training in a multiengine seaplane that has flaps and a controllable pitch propeller;

(iii) One 2-hour cross country flight in a multiengine airplane in daytime conditions that consists of a total straight-line distance of more than 100 nautical miles from the original point of departure;

(iv) One 2-hour cross country flight in a multiengine airplane in nighttime conditions that consists of a total straight-line distance of more than 100 nautical miles from the original point of departure; and

(v) Three hours in a multiengine airplane with an authorized instructor in preparation for the practical test with-

in the preceding 2 calendar months from the month of the test.

(4) 10 hours of solo flight time in a multiengine airplane or 10 hours of flight time performing the duties of pilot in command in a multiengine airplane with an authorized instructor (either of which may be credited towards the flight time requirement in paragraph (b)(2) of this section), on the areas of operation listed in §61.127(b)(2) of this part that includes at least—

(i) One cross-country flight of not less than 300 nautical miles total distance with landings at a minimum of three points, one of which is a straight-line distance of at least 250 nautical miles from the original departure point. However, if this requirement is being met in Hawaii, the longest segment need only have a straight-line distance of at least 150 nautical miles; and

(ii) 5 hours in night VFR conditions with 10 takeoffs and 10 landings (with each landing involving a flight with a traffic pattern) at an airport with an operating control tower.

(c) For a helicopter rating. Except as provided in paragraph (i) of this section, a person who applies for a commercial pilot certificate with a rotorcraft category and helicopter class rating must log at least 150 hours of flight time as a pilot that consists of at least:

(1) 100 hours in powered aircraft, of which 50 hours must be in helicopters.

(2) 100 hours of pilot-in-command flight time, which includes at least—

(i) 35 hours in helicopters; and

(ii) 10 hours in cross-country flight in helicopters.

(3) 20 hours of training on the areas of operation listed in §61.127(b)(3) of this part that includes at least—

(i) Five hours on the control and maneuvering of a helicopter solely by reference to instruments using a view-limiting device including attitude instrument flying, partial panel skills, recovery from unusual flight attitudes, and intercepting and tracking navigational systems. This aeronautical experience may be performed in an aircraft, flight simulator, flight training device, or an aviation training device;

(ii) One 2-hour cross country flight in a helicopter in daytime conditions that
§ 61.129 14 CFR Ch. I (1–1–12 Edition)

consists of a total straight-line distance of more than 50 nautical miles from the original point of departure;

(iii) One 2-hour cross country flight in a helicopter in nighttime conditions that consists of a total straight-line distance of more than 50 nautical miles from the original point of departure; and

(iv) Three hours in a helicopter with an authorized instructor in preparation for the practical test within the preceding 2 calendar months from the month of the test.

(4) Ten hours of solo flight time in a helicopter or 10 hours of flight time performing the duties of pilot in command in a helicopter with an authorized instructor on board (either of which may be credited towards the flight time requirement under paragraph (c)(2) of this section), on the areas of operation listed under § 61.127(b)(3) that includes—

(i) One cross-country flight with landings at a minimum of three points, with one segment consisting of a straight-line distance of at least 50 nautical miles from the original point of departure; and

(ii) 5 hours in night VFR conditions with 10 takeoffs and 10 landings (with each landing involving a flight in the traffic pattern).

(d) For a gyroplane rating. A person who applies for a commercial pilot certificate with a rotorcraft category and gyroplane class rating must log at least 150 hours of flight time as a pilot (of which 5 hours may have been accomplished in a flight simulator or flight training device that is representative of a gyroplane) that consists of at least:

(1) 100 hours in powered aircraft, of which 25 hours must be in gyroplanes.

(2) 100 hours of pilot-in-command flight time, which includes at least—

(i) 10 hours in gyroplanes; and

(ii) 3 hours in cross-country flight in gyroplanes.

(3) 20 hours of training on the areas of operation listed in § 61.127(b)(4) of this part that includes at least—

(i) 2.5 hours on the control and maneuvering of a gyroplane solely by reference to instruments using a view-limiting device including attitude instrument flying, partial panel skills, recovery from unusual flight attitudes, and intercepting and tracking navigational systems. This aeronautical experience may be performed in an aircraft, flight simulator, flight training device, or an aviation training device;

(ii) One 2-hour cross country flight in a gyroplane in daytime conditions that consists of a total straight-line distance of more than 50 nautical miles from the original point of departure;

(iii) Two hours of flight training during nighttime conditions in a gyroplane at an airport, that includes 10 takeoffs and 10 landings to a full stop (with each landing involving a flight in the traffic pattern); and

(iv) Three hours in a gyroplane with an authorized instructor in preparation for the practical test within the preceding 2 calendar months from the month of the test.

(4) Ten hours of solo flight time in a gyroplane or 10 hours of flight time performing the duties of pilot in command in a gyroplane with an authorized instructor on board (either of which may be credited towards the flight time requirement under paragraph (d)(2) of this section), on the areas of operation listed in § 61.127(b)(4) that includes—

(i) One cross-country flight with landings at a minimum of three points, with one segment consisting of a straight-line distance of at least 50 nautical miles from the original point of departure; and

(ii) 5 hours in night VFR conditions with 10 takeoffs and 10 landings (with each landing involving a flight in the traffic pattern).

(e) For a powered-lift rating. Except as provided in paragraph (i) of this section, a person who applies for a commercial pilot certificate with a powered-lift category rating must log at least 250 hours of flight time as a pilot that consists of at least:

(1) 100 hours in powered aircraft, of which 50 hours must be in a powered-lift.

(2) 100 hours of pilot-in-command flight time, which includes at least—

(i) 50 hours in a powered-lift; and

(ii) 50 hours in cross-country flight of which 10 hours must be in a powered-lift.
§ 61.129

(3) 20 hours of training on the areas of operation listed in § 61.127(b)(5) of this part that includes at least—

(i) Ten hours of instrument training using a view-limiting device including attitude instrument flying, partial panel skills, recovery from unusual flight attitudes, and intercepting and tracking navigational systems. Five hours of the 10 hours required on instrument training must be in a powered-lift;

(ii) One 2-hour cross country flight in a powered-lift in daytime conditions that consists of a total straight-line distance of more than 100 nautical miles from the original point of departure;

(iii) One 2-hour cross country flight in a powered-lift in nighttime conditions that consists of a total straight-line distance of more than 100 nautical miles from the original point of departure; and

(iv) 3 hours in a powered-lift with an authorized instructor in preparation for the practical test within the preceding 2 calendar months from the month of the test.

(4) Ten hours of solo flight time in a powered-lift or 10 hours of flight time performing the duties of pilot in command in a powered-lift with an authorized instructor on board (either of which may be credited towards the flight time requirement under paragraph (e)(2) of this section, on the areas of operation listed in § 61.127(b)(5) that includes—

(i) One cross-country flight of not less than 300 nautical miles total distance with landings at a minimum of three points, one of which is a straight-line distance of at least 250 nautical miles from the original departure point. However, if this requirement is being met in Hawaii the longest segment need only have a straight-line distance of at least 150 nautical miles; and

(ii) 5 hours in night VFR conditions with 10 takeoffs and 10 landings (with each landing involving a flight in the traffic pattern) at an airport with an operating control tower.

(f) For a glider rating. A person who applies for a commercial pilot certificate with a glider category rating must log at least—

(i) Three hours of flight training in a glider with an authorized instructor or 10 training flights in a glider with an authorized instructor on the areas of operation listed in § 61.127(b)(6) of this part, including at least 3 training flights in a glider with an authorized instructor in preparation for the practical test within the preceding 2 calendar months from the month of the test;

(ii) 2 hours of solo flight that include at least 10 solo flights in a glider on the areas of operation listed in § 61.127(b)(6) of this part; or

(2) 200 hours of flight time as a pilot in heavier-than-air aircraft and at least 20 flights in a glider as pilot in command, including at least—

(i) Three hours of flight training in a glider or 10 training flights in a glider with an authorized instructor on the areas of operation listed in § 61.127(b)(6) of this part including at least 3 training flights in a glider with an authorized instructor in preparation for the practical test within the preceding 2 calendar months from the month of the test; and

(ii) 5 solo flights in a glider on the areas of operation listed in § 61.127(b)(6) of this part.

(g) For an airship rating. A person who applies for a commercial pilot certificate with a lighter-than-air category and airship class rating must log at least the following hours:

(1) 50 hours in airships.

(2) Thirty hours of pilot in command flight time in airships or performing the duties of pilot in command in an airship with an authorized instructor aboard, which consists of—

(i) 10 hours of cross-country flight time in airships; and

(ii) 10 hours of night flight time in airships.

(3) Forty hours of instrument time to include—

(i) Instrument training using a view-limiting device for attitude instrument flying, partial panel skills, recovery from unusual flight attitudes, and
intercepting and tracking navigational systems; and
(ii) Twenty hours of instrument flight time, of which 10 hours must be in flight in airships.
(4) 20 hours of flight training in airships on the areas of operation listed in §61.127(b)(7) of this part, which includes at least—
(i) Three hours in an airship with an authorized instructor in preparation for the practical test within the preceding 2 calendar months from the month of the test;
(ii) One hour cross country flight in an airship in daytime conditions that consists of a total straight-line distance of more than 25 nautical miles from the point of departure; and
(iii) One hour cross country flight in an airship in nighttime conditions that consists of a total straight-line distance of more than 25 nautical miles from the point of departure.
(5) 10 hours of flight training performing the duties of pilot in command with an authorized instructor on the areas of operation listed in §61.127(b)(7) of this part, which includes at least—
(i) One cross-country flight with landings at a minimum of three points, with one segment consisting of a straight-line distance of at least 25 nautical miles from the original point of departure; and
(ii) 5 hours in night VFR conditions with 10 takeoffs and 10 landings (with each landing involving a flight in the traffic pattern).
(h) For a balloon rating. A person who applies for a commercial pilot certificate with a lighter-than-air category and a balloon class rating must log at least 35 hours of flight time as a pilot, which includes at least the following requirements:
(1) 20 hours in balloons;
(2) 10 flights in balloons;
(3) Two flights in balloons as the pilot in command; and
(4) 10 hours of flight training that includes at least 10 training flights with an authorized instructor in balloons on the areas of operation listed in §61.127(b)(8) of this part, which consists of at least—
(i) For a gas balloon—
(A) Two training flights of 2 hours each in a gas balloon with an authorized instructor in preparation for the practical test within the preceding 2 calendar months from the month of the test;
(B) 2 flights performing the duties of pilot in command in a gas balloon with an authorized instructor on the appropriate areas of operation; and
(C) One flight involving a controlled ascent to 5,000 feet above the launch site.
(ii) For a balloon with an airborne heater—
(A) Two training flights of 1 hour each in a balloon with an airborne heater with an authorized instructor in preparation for the practical test within the preceding 2 calendar months from the month of the test;
(B) Two solo flights in a balloon with an airborne heater on the appropriate areas of operation; and
(C) One flight involving a controlled ascent to 3,000 feet above the launch site.
(i) Permitted credit for use of a flight simulator or flight training device. (1) Except as provided in paragraph (i)(2) of this section, an applicant who has not accomplished the training required by this section in a course conducted by a training center certificated under part 142 of this chapter may:
(i) Credit a maximum of 50 hours toward the total aeronautical experience requirements for an airplane or powered-lift rating, provided the aeronautical experience was obtained from an authorized instructor in a flight simulator or flight training device that represents that class of airplane or powered-lift category and type, if applicable, appropriate to the rating sought; and
(ii) Credit a maximum of 25 hours toward the total aeronautical experience requirements of this section for a helicopter rating, provided the aeronautical experience was obtained from an authorized instructor in a flight simulator or flight training device that represents a helicopter and type, if applicable, appropriate to the rating sought.
(2) An applicant who has accomplished the training required by this section in a course conducted by a training center certificated under part 142 of this chapter may:
§ 61.133 Commercial pilot privileges and limitations.

(a) Privileges—(1) General. A person who holds a commercial pilot certificate may act as pilot in command of an aircraft—

(i) Carrying persons or property for compensation or hire, provided the person is qualified in accordance with this part and with the applicable parts of this chapter that apply to the operation; and

(ii) For compensation or hire, provided the person is qualified in accordance with this part and with the applicable parts of this chapter that apply to the operation; and

(2) Must comply with the appropriate night flight training requirements of this subpart within the 12-calendar-month period after the issuance of the pilot certificate. At the end of that period, the certificate will become invalid for use until the person complies with the appropriate night flight training requirements of this subpart. The person may have the “night flying prohibited” limitation removed if the person—

(i) Accomplishes the appropriate night flight training requirements of this subpart; and

(ii) Presents to an examiner a logbook or training record endorsement from an authorized instructor that verifies accomplishment of the appropriate night flight training requirements of this subpart.

(b) General pilots with lighter-than-air category ratings. A person with a commercial pilot certificate with a lighter-than-air category rating may—

(i) For an airship—(A) Give flight and ground training in an airship for the issuance of a certificate or rating;

(B) Give an endorsement for a pilot certificate with an airship rating;

(C) Endorse a student pilot certificate or logbook for solo operating privileges in an airship;

(D) Act as pilot in command of an airship under IFR or in weather conditions less than the minimum prescribed for VFR flight; and

(E) Give flight and ground training and endorsements that are required for...
§§ 61.135–61.141

472

a flight review, an operating privilege or recency-of-experience requirements of this part.

(ii) For a balloon—(A) Give flight and ground training in a balloon for the issuance of a certificate or rating;

(B) Give an endorsement for a pilot certificate with a balloon rating;

(C) Endorse a student pilot certificate or logbook for solo operating privileges in a balloon; and

(D) Give ground and flight training and endorsements that are required for a flight review, an operating privilege, or recency-of-experience requirements of this part.

(b) Limitations. (1) A person who applies for a commercial pilot certificate with an airplane category or powered-lift category rating and does not hold an instrument rating in the same category and class will be issued a commercial pilot certificate that contains the limitation, “The carriage of passengers for hire in (airplanes) (powered-lifts) on cross-country flights in excess of 50 nautical miles or at night is prohibited.” The limitation may be removed when the person satisfactorily accomplishes the requirements listed in §61.65 of this part for an instrument rating in the same category and class of aircraft listed on the person’s commercial pilot certificate.

(2) If a person who applies for a commercial pilot certificate with a balloon rating takes a practical test in a balloon with an airborne heater—

(i) The pilot certificate will contain a limitation restricting the exercise of the privileges of that certificate to a gas balloon.

(ii) The limitation specified in paragraph (b)(3)(i) of this section may be removed when the person obtains the required aeronautical experience in a balloon with an airborne heater and receives a logbook endorsement from an authorized instructor who attests to the person’s accomplishment of the required aeronautical experience and ability to satisfactorily operate a balloon with an airborne heater.

§§ 61.135–61.141 [Reserved]

Subpart G—Airline Transport Pilots

§ 61.151 Applicability.

This subpart prescribes the requirements for the issuance of airline transport pilot certificates and ratings, the conditions under which those certificates and ratings are necessary, and the general operating rules for persons who hold those certificates and ratings.

§ 61.153 Eligibility requirements: General.

To be eligible for an airline transport pilot certificate, a person must:

(a) Be at least 23 years of age;

(b) Be able to read, speak, write, and understand the English language. If the applicant is unable to meet one of these requirements due to medical reasons, then the Administrator may place such operating limitations on that applicant’s pilot certificate as are necessary for the safe operation of the aircraft;

(c) Be of good moral character;

(d) Meet at least one of the following requirements:

(1) Holds a commercial pilot certificate with an instrument rating issued under this part;

(2) Meet the military experience requirements under §61.73 of this part to qualify for a commercial pilot certificate, and an instrument rating if the person is a rated military pilot or former rated military pilot of an Armed Force of the United States; or

(3) Holds either a foreign airline transport pilot license with instrument privileges, or a foreign commercial
§ 61.157 Flight proficiency.

(a) General. (1) The practical test for an airline transport pilot certificate is given for—
 (i) An airplane category and single engine class rating;
 (ii) An airplane category and multi-engine class rating;
 (iii) A rotorcraft category and helicopter class rating;
 (iv) A powered-lift category rating;
 (v) An aircraft type rating.

 (2) A person who is applying for an airline transport pilot practical test must meet—
 (i) The eligibility requirements of §61.153; and
 (ii) The aeronautical knowledge and aeronautical experience requirements of this subpart that apply to the aircraft category and class rating sought.

(b) Aircraft type rating. Except as provided in paragraph (c) of this section, a person who applies for an aircraft type rating to be added to an airline transport pilot certificate or applies for a type rating to be concurrently completed with an airline transport pilot certificate:

 (i) Was issued by a contracting State to the Convention on International Civil Aviation; and
 (ii) Contains no geographical limitations.

 (e) Meet the aeronautical experience requirements of this subpart that apply to the aircraft category and class rating sought before applying for the practical test;

 (f) Pass a knowledge test on the aeronautical knowledge areas of §61.155(c) of this part that apply to the aircraft category and class rating sought;

 (g) Pass the practical test on the areas of operation listed in §61.157(e) of this part that apply to the aircraft category and class rating sought; and

 (h) Comply with the sections of this subpart that apply to the aircraft category and class rating sought.

§ 61.155 Aeronautical knowledge.

(a) General. The knowledge test for an airline transport pilot certificate is based on the aeronautical knowledge areas listed in paragraph (c) of this section that are appropriate to the aircraft category and class rating sought.

(b) Aircraft type rating. A person who is applying for an additional aircraft type rating to be added to an airline transport pilot certificate is not required to pass a knowledge test if that person’s airline transport pilot certificate lists the aircraft category and class rating that is appropriate to the type rating sought.

(c) Aeronautical knowledge areas. (1) Applicable Federal Aviation Regulations of this chapter that relate to airline transport pilot privileges, limitations, and flight operations;

 (2) Meteorology, including knowledge of and effects of fronts, frontal characteristics, cloud formations, icing, and upper-air data;

 (3) General system of weather and NOTAM collection, dissemination, interpretation, and use;

 (4) Interpretation and use of weather charts, maps, forecasts, sequence reports, abbreviations, and symbols;

 (5) National Weather Service functions as they pertain to operations in the National Airspace System;

 (6) Windshear and microburst awareness, identification, and avoidance;

 (7) Principles of air navigation under instrument meteorological conditions in the National Airspace System;

 (8) Air traffic control procedures and pilot responsibilities as they relate to en route operations, terminal area and radar operations, and instrument departure and approach procedures;

 (9) Aircraft loading, weight and balance, use of charts, graphs, tables, formulas, and computations, and their effect on aircraft performance;

 (10) Aerodynamics relating to an aircraft’s flight characteristics and performance in normal and abnormal flight regimes;

 (11) Human factors;

 (12) Aeronautical decision making and judgment; and

 (13) Crew resource management to include crew communication and coordination.
§61.157 14 CFR Ch. I (1–1–12 Edition)

(1) Must receive and log ground and flight training from an authorized instructor on the areas of operation under this section that apply to the aircraft type rating;

(2) Must receive a logbook endorsement from an authorized instructor that certifies the applicant completed the training on the areas of operation listed under paragraph (e) of this section that apply to the aircraft type rating; and

(3) Must perform the practical test in actual or simulated instrument conditions, except as provided under paragraph (g) of this section.

(c) Exceptions. A person who applies for an aircraft type rating to be added to an airline transport pilot certificate or an aircraft type rating concurrently with an airline transport pilot certificate, and who is an employee of a certificate holder operating under part 121 or part 135 of this chapter, does not need to comply with the requirements of paragraph (b) of this section if the applicant presents a training record that shows completion of that certificate holder’s approved pilot in command training program for the aircraft type rating.

(d) Upgrading type ratings. Any type rating(s) and limitations on a pilot certificate of an applicant who completes an airline transport pilot practical test will be included at the airline transport pilot certification level, provided the applicant passes the practical test in the same category and class of aircraft for which the applicant holds the type rating(s).

(e) Areas of operation. (1) For an airplane category—single engine class rating:

(i) Preflight preparation;

(ii) Preflight procedures;

(iii) Takeoff and departure phase;

(iv) In-flight maneuvers;

(v) Instrument procedures;

(vi) Landings and approaches to landings;

(vii) Normal and abnormal procedures;

(viii) Emergency procedures; and

(ix) Postflight procedures.

(2) For an airplane category—multi-engine class rating:

(i) Preflight preparation;

(ii) Preflight procedures;

(iii) Takeoff and departure phase;

(iv) In-flight maneuvers;

(v) Instrument procedures;

(vi) Landings and approaches to landings;

(vii) Normal and abnormal procedures;

(viii) Emergency procedures; and

(ix) Postflight procedures.

(3) For a powered-lift category rating:

(i) Preflight preparation;

(ii) Preflight procedures;

(iii) Takeoff and departure phase;

(iv) In-flight maneuvers;

(v) Instrument procedures;

(vi) Landings and approaches to landings;

(vii) Normal and abnormal procedures;

(viii) Emergency procedures; and

(ix) Postflight procedures.

(4) For a rotorcraft category—helicopter class rating:

(i) Preflight preparation;

(ii) Preflight procedures;

(iii) Takeoff and departure phase;

(iv) In-flight maneuvers;

(v) Instrument procedures;

(vi) Landings and approaches to landings;

(vii) Normal and abnormal procedures;

(viii) Emergency procedures; and

(ix) Postflight procedures.

(f) Proficiency and competency checks conducted under part 121, part 135, or subpart K of part 91. (1) Successful completion of any of the following checks satisfies the flight proficiency requirements of this section for the issuance of an airline transport pilot certificate and/or the appropriate aircraft rating:

(i) A proficiency check under §121.441 of this chapter.

(ii) Both a competency check under §135.293(a)(2) and §135.293(b) of this chapter and pilot-in-command instrument proficiency check under §135.297 of this chapter.

(iii) Both a competency check under §91.1065 of this chapter and a pilot-in-command instrument proficiency check under §91.1069 of this chapter.

(2) The checks specified in paragraph (f)(1) of this section must be conducted by one of the following:

(i) An FAA Aviation Safety Inspector.
(i) An Aircrew Program Designee who is authorized to perform proficiency and/or competency checks for the air carrier whose approved training program has been satisfactorily completed by the pilot applicant.

(ii) A Training Center Evaluator with appropriate certification authority who is also authorized to perform the portions of the competency and/or proficiency checks required by paragraph (f)(1) of this section for the air carrier whose approved training program has been satisfactorily completed by the pilot applicant.

(iii) A Training Center Evaluator with appropriate certification authority who is also authorized to perform the portions of the competency and/or proficiency checks required by paragraph (f)(1) of this section for the air carrier whose approved training program has been satisfactorily completed by the pilot applicant.

(g) Aircraft not capable of instrument maneuvers and procedures. An applicant may add a type rating to an airline transport pilot certificate with an aircraft that is not capable of the instrument maneuvers and procedures required on the practical test under the following circumstances—

(1) The rating is limited to “VFR only.”

(2) The type rating is added to an airline transport pilot certificate that has instrument privileges in that category and class of aircraft.

(3) The “VFR only” limitation may be removed for that aircraft type after the applicant:

(i) Passes a practical test in that type of aircraft on the appropriate instrument maneuvers and procedures in §61.157; or

(ii) Becomes qualified in §61.73(d) for that type of aircraft.

(h) Multiengine airplane with a single-pilot station. An applicant for a type rating, at the ATP certification level, in a multiengine airplane with a single-pilot station must perform the practical test in the multi-seat version of that airplane. The practical test may be performed in the single-seat version of that airplane if the Examiner is in a position to observe the applicant during the practical test in the case where there is no multi-seat version of that single engine airplane.

(j) Waiver authority. An Examiner who conducts a practical test may waive any task for which the FAA has provided waiver authority.

§61.158 [Reserved]

§61.159 Aeronautical experience: Airplane category rating.

(a) Except as provided in paragraphs (b), (c), and (d) of this section, a person who is applying for an airline transport pilot certificate with an airplane category and class rating must have at least 1,500 hours of total time as a pilot that includes at least:

(1) 500 hours of cross-country flight time.

(2) 100 hours of night flight time.

(3) 75 hours of instrument flight time, in actual or simulated instrument conditions, subject to the following:

(i) Except as provided in paragraph (a)(3)(ii) of this section, an applicant may not receive credit for more than a total of 25 hours of simulated instrument time in a flight simulator or flight training device.

(ii) A maximum of 50 hours of training in a flight simulator or flight training device may be credited toward the instrument flight time requirements of paragraph (a)(3) of this section if the training was accomplished in a course conducted by a training center certified under part 141 of this chapter.

(iii) Training in a flight simulator or flight training device must be accomplished in a flight simulator or flight training device, representing an airplane.

(4) 250 hours of flight time in an airplane as a pilot in command, or as second in command performing the duties of pilot in command while under the supervision of a pilot in command, or any combination thereof, which includes at least—

(i) 100 hours of cross-country flight time; and
§ 61.161 Aeronautical experience: Rotorcraft category and helicopter class rating.

(a) A person who is applying for an airline transport pilot certificate with a rotorcraft category and helicopter class rating, must have at least 1,200 hours of total time as a pilot that includes at least:

(1) 500 hours of cross-country flight time;

(2) 100 hours of night flight time, of which 15 hours are in helicopters;

(3) 200 hours of flight time for a total credited time of no more than 500 hours.

(b) A person who has performed at least 20 night takeoffs and landings to a full stop may substitute each additional night takeoff and landing to a full stop for 1 hour of night flight time to satisfy the requirements of paragraph (a)(2) of this section; however, not more than 25 hours of night flight time may be credited in this manner.

(c) A commercial pilot may credit the following second-in-command flight time or flight-engineer flight time toward the 1,500 hours of total time as a pilot required by paragraph (a) of this section:

(1) Second-in-command time, provided the time is acquired in an airplane—

(i) Required to have more than one pilot flight crewmember by the airplane’s flight manual, type certificate, or the regulations under which the flight is being conducted;

(ii) Engaged in operations under subpart K of part 91, part 121, or part 135 of this chapter for which a second in command is required; or

(iii) That is required by the operating rules of this chapter to have more than one pilot flight crewmember.

(2) Flight-engineer time, provided the time—

(i) Is acquired as a U.S. Armed Forces’ flight engineer crewmember in an airplane that requires a flight engineer crewmember by the flight manual;

(ii) Is acquired while the person is participating in a flight engineer crewmember training program for the U.S. Armed Forces; and

(iii) Does not exceed 1 hour for each 3 hours of flight engineer flight time for a total credited time of no more than 500 hours.

(d) An applicant is issued an airline transport pilot certificate with the limitation, “Holder does not meet the pilot in command aeronautical experience requirements of ICAO,” as prescribed under Article 39 of the Convention on International Civil Aviation, if the applicant does not meet the ICAO requirements contained in Annex 1 “Personnel Licensing” to the Convention on International Civil Aviation, but otherwise meets the aeronautical experience requirements of this section.

(e) An applicant is entitled to an airline transport pilot certificate without the ICAO limitation specified under paragraph (d) of this section when the applicant presents satisfactory evidence of having met the ICAO requirements under paragraph (d) of this section and otherwise meets the aeronautical experience requirements of this section.

hours as a pilot in command, or as second in command performing the duties of a pilot in command under the supervision of a pilot in command, or any combination thereof; and

(4) 75 hours of instrument flight time in actual or simulated instrument meteorological conditions, of which at least 50 hours are obtained in flight with at least 25 hours in helicopters as a pilot in command, or as second in command performing the duties of a pilot in command under the supervision of a pilot in command, or any combination thereof.

(b) Training in a flight simulator or flight training device may be credited toward the instrument flight time requirements of paragraph (a)(4) of this section, subject to the following:

(1) Training in a flight simulator or a flight training device must be accomplished in a flight simulator or flight training device that represents a rotorcraft.

(2) Except as provided in paragraph (b)(3) of this section, an applicant may receive credit for not more than a total of 25 hours of simulated instrument time in a flight simulator and flight training device.

(3) A maximum of 50 hours of training in a flight simulator or flight training device may be credited toward the instrument flight time requirements of paragraph (a)(4) of this section if the aeronautical experience is accomplished in an approved course conducted by a training center certificated under part 142 of this chapter.

(ii) A maximum of 50 hours of training in a flight simulator or flight training device may be credited toward the instrument flight time requirements of paragraph (a)(4) of this section if the training was accomplished in a course conducted by a training center certificated under part 142 of this chapter.

(iii) Training in a flight simulator or flight training device must be accomplished in a flight simulator or flight training device that represents a powered-lift.

(b) Not more than 100 hours of the total aeronautical experience requirements of paragraph (a) of this section may be obtained in a flight simulator or flight training device that represents a powered-lift, provided the aeronautical experience was obtained in an approved course conducted by a training center certificated under part 142 of this chapter.

§ 61.165 Additional aircraft category and class ratings.

(a) Rotorcraft category and helicopter class rating. A person applying for an airline transport pilot certificate with a rotorcraft category and helicopter class rating who holds an airline transport pilot certificate with another aircraft category rating must:

(1) Meet the eligibility requirements of §61.153 of this part;

(2) Pass a knowledge test on the aeronautical knowledge areas of §61.155(c) of this part;

(3) Comply with the requirements in §61.157(b) of this part, if appropriate;
(4) Meet the applicable aeronautical experience requirements of § 61.161 of this part; and
(5) Pass the practical test on the areas of operation of § 61.157(e)(4) of this part.

(b) Airplane category rating with a single-engine class rating. A person applying for an airline transport certificate with an airplane category and single-engine class rating who holds an airline transport pilot certificate with another aircraft category rating must:
(1) Meet the eligibility requirements of § 61.153 of this part;
(2) Pass a knowledge test on the aeronautical knowledge areas of § 61.155(c) of this part;
(3) Comply with the requirements in § 61.157(b) of this part, if appropriate;
(4) Meet the applicable aeronautical experience requirements of § 61.159 of this part; and
(5) Pass the practical test on the areas of operation of § 61.157(e)(1) of this part.

(c) Airplane category rating with a multiengine class rating. A person applying for an airline transport certificate with an airplane category and multiengine class rating who holds an airline transport certificate with another aircraft category rating must:
(1) Meet the eligibility requirements of § 61.153 of this part;
(2) Pass a knowledge test on the aeronautical knowledge areas of § 61.155(c) of this part;
(3) Comply with the requirements in § 61.157(b) of this part, if appropriate;
(4) Meet the applicable aeronautical experience requirements of § 61.159 of this part; and
(5) Pass the practical test on the areas of operation of § 61.157(e)(1) of this part.

(d) Powered-lift category. A person applying for an airline transport pilot certificate with a powered-lift category rating who holds an airline transport certificate with another aircraft category rating must:
(1) Meet the eligibility requirements of § 61.153 of this part;
(2) Pass a required knowledge test on the aeronautical knowledge areas of § 61.155(c) of this part;
(3) Comply with the requirements in § 61.157(b) of this part, if appropriate;
(4) Meet the applicable aeronautical experience requirements of § 61.163 of this part; and
(5) Pass the required practical test on the areas of operation of § 61.157(e)(3) of this part.

(e) Additional class rating within the same aircraft category. A person applying for an airline transport certificate with an additional class rating who holds an airline transport certificate in the same aircraft category must—
(1) Meet the eligibility requirements of § 61.153, except paragraph (f) of that section;
(2) Comply with the requirements in § 61.157(b) of this part, if applicable;
(3) Meet the applicable aeronautical experience requirements of subpart G of this part; and
(4) Pass a practical test on the areas of operation of § 61.157(e)(1) appropriate to the aircraft rating sought.

(f) Category class ratings for the operation of aircraft with experimental certificates. Notwithstanding the provisions of paragraphs (a) through (e) of this section, a person holding an airline transport certificate may apply for a category and class rating limited to a specific make and model of experimental aircraft, provided—
(1) The person has logged at least 5 hours flight time while acting as pilot in command in the same category, class, make, and model of aircraft that has been issued an experimental certificate;
(2) The person has received a logbook endorsement from an authorized instructor who has determined that he or she is proficient to act as pilot in command of the same category, class, make, and model of aircraft for which application is made; and
(3) The flight time specified in paragraph (f)(1) of this section must be logged between September 1, 2004 and August 31, 2005.

§ 61.167 Privileges.

(a) A person who holds an airline transport pilot certificate is entitled to the same privileges as a person who holds a commercial pilot certificate with an instrument rating.
§ 61.183 Eligibility requirements.

To be eligible for a flight instructor certificate or rating a person must:

(a) Be at least 18 years of age;
(b) Be able to read, speak, write, and understand the English language. If the applicant is unable to meet one of these requirements due to medical reasons, then the Administrator may place such operating limitations on that applicant’s flight instructor certificate as are necessary;
(c) Hold either a commercial pilot certificate or airline transport pilot certificate with:
 (1) An aircraft category and class rating that is appropriate to the flight instructor rating sought; and
 (2) An instrument rating, or privileges on that person’s pilot certificate that are appropriate to the flight instructor rating sought, if applying for—
 (i) A flight instructor certificate with an airplane category and single-engine class rating;
 (ii) A flight instructor certificate with an airplane category and multi-engine class rating;
 (iii) A flight instructor certificate with a powered-lift rating; or
 (iv) A flight instructor certificate with an instrument rating.
(d) Receive a logbook endorsement from an authorized instructor on the fundamentals of instructing listed in § 61.185 of this part appropriate to the required knowledge test;
(e) Pass a knowledge test on the areas listed in § 61.185(a)(1) of this part, unless the applicant:
 (1) Holds a flight instructor certificate or ground instructor certificate issued under this part;
 (2) Holds a teacher’s certificate issued by a State, county, city, or municipality that authorizes the person to teach at an educational level of the 7th grade or higher; or
 (3) Is employed as a teacher at an accredited college or university.
(f) Pass a knowledge test on the aeronautical knowledge areas listed in

Subpart H—Flight Instructors Other than Flight Instructors With a Sport Pilot Rating

§61.181 Applicability.

This subpart prescribes the requirements for the issuance of flight instructor certificates and ratings (except for flight instructor certificates with a sport pilot rating), the conditions under which those certificates and ratings are necessary, and the limitations on those certificates and ratings.
§ 61.185 Aeronautical knowledge.

(a) A person who is applying for a flight instructor certificate must receive and log ground training from an authorized instructor on:

(1) Except as provided in paragraph (b) of this section, the fundamentals of instructing, including:
 (i) The learning process;
 (ii) Elements of effective teaching;
 (iii) Student evaluation and testing;
 (iv) Course development;
 (v) Lesson planning; and
 (vi) Classroom training techniques.

(b) The following applicants do not need to comply with paragraph (a)(1) of this section:

(1) The holder of a flight instructor certificate or ground instructor certificate issued under this part;

(2) The holder of a current teacher’s certificate issued by a State, county, city, or municipality that authorizes the person to teach at an educational level of the 7th grade or higher; or

(3) A person employed as a teacher at an accredited college or university.

§ 61.187 Flight proficiency.

(a) General. A person who is applying for a flight instructor certificate must receive and log flight and ground training from an authorized instructor on the areas of operation listed in this
section that apply to the flight instructor rating sought. The applicant’s logbook must contain an endorsement from an authorized instructor certifying that the person is proficient to pass a practical test on those areas of operation.

(b) Areas of operation. (1) For an airplane category rating with a single-engine class rating:
 (i) Fundamentals of instructing;
 (ii) Technical subject areas;
 (iii) Preflight preparation;
 (iv) Preflight lesson on a maneuver to be performed in flight;
 (v) Preflight procedures;
 (vi) Airport and seaplane base operations;
 (vii) Takeoffs, landings, and go-arounds;
 (viii) Fundamentals of flight;
 (ix) Performance maneuvers;
 (x) Ground reference maneuvers;
 (xi) Slow flight, stalls, and spins;
 (xii) Basic instrument maneuvers;
 (xiii) Emergency operations; and
 (xiv) Postflight procedures.

(2) For an airplane category rating with a multiengine class rating:
 (i) Fundamentals of instructing;
 (ii) Technical subject areas;
 (iii) Preflight preparation;
 (iv) Preflight lesson on a maneuver to be performed in flight;
 (v) Preflight procedures;
 (vi) Airport and seaplane base operations;
 (vii) Takeoffs, landings, and go-arounds;
 (viii) Fundamentals of flight;
 (ix) Performance maneuvers;
 (x) Ground reference maneuvers;
 (xi) Slow flight and stalls;
 (xii) Basic instrument maneuvers;
 (xiii) Emergency operations; and
 (xiv) Multiengine operations; and
 (xv) Postflight procedures.

(3) For a rotorcraft category rating with a helicopter class rating:
 (i) Fundamentals of instructing;
 (ii) Technical subject areas;
 (iii) Preflight preparation;
 (iv) Preflight lesson on a maneuver to be performed in flight;
 (v) Preflight procedures;
 (vi) Airport and heliport operations;
 (vii) Hovering maneuvers;
 (viii) Takeoffs, landings, and go-arounds;
 (ix) Fundamentals of flight;
 (x) Performance maneuvers;
 (xi) Ground reference maneuvers;
 (xii) Slow flight and stalls;
 (xiii) Basic instrument maneuvers;
 (xiv) Emergency operations;
 (xv) Special operations; and
 (xvi) Postflight procedures.

(4) For a rotorcraft category rating with a gyroplane class rating:
 (i) Fundamentals of instructing;
 (ii) Technical subject areas;
 (iii) Preflight preparation;
 (iv) Preflight lesson on a maneuver to be performed in flight;
 (v) Preflight procedures;
 (vi) Airport operations;
 (vii) Takeoffs, landings, and go-arounds;
 (viii) Fundamentals of flight;
 (ix) Performance maneuvers;
 (x) Flight at slow airspeeds;
 (xi) Ground reference maneuvers;
 (xii) Emergency operations; and
 (xiii) Postflight procedures.

(5) For a powered-lift category rating:
 (i) Fundamentals of instructing;
 (ii) Technical subject areas;
 (iii) Preflight preparation;
 (iv) Preflight lesson on a maneuver to be performed in flight;
 (v) Preflight procedures;
 (vi) Airport and heliport operations;
 (vii) Hovering maneuvers;
 (viii) Takeoffs, landings, and go-arounds;
 (ix) Fundamentals of flight;
 (x) Performance maneuvers;
 (xi) Ground reference maneuvers;
 (xii) Slow flight and stalls;
 (xiii) Basic instrument maneuvers;
 (xiv) Emergency operations;
 (xv) Special operations; and
 (xvi) Postflight procedures.

(6) For a glider category rating:
 (i) Fundamentals of instructing;
 (ii) Technical subject areas;
 (iii) Preflight preparation;
 (iv) Preflight lesson on a maneuver to be performed in flight;
 (v) Preflight procedures;
 (vi) Airport and gliderport operations;
 (vii) Launches and landings;
 (viii) Fundamentals of flight;
 (ix) Performance speeds;
 (x) Soaring techniques;
 (xi) Performance maneuvers;
 (xii) Slow flight, stalls, and spins;
 (xiii) Emergency operations; and
 (xiv) Postflight procedures.
(7) For an instrument rating with the appropriate aircraft category and class rating:
 (i) Fundamentals of instructing;
 (ii) Technical subject areas;
 (iii) Preflight preparation;
 (iv) Preflight lesson on a maneuver to be performed in flight;
 (v) Air traffic control clearances and procedures;
 (vi) Flight by reference to instruments;
 (vii) Navigation aids;
 (viii) Instrument approach procedures;
 (ix) Emergency operations; and
 (x) Postflight procedures.

(c) The flight training required by this section may be accomplished:
 (1) In an aircraft that is representative of the category and class of aircraft for the rating sought; or
 (2) In a flight simulator or flight training device representative of the category and class of aircraft for the rating sought, and used in accordance with an approved course at a training center certificated under part 142 of this chapter.

§ 61.189 Flight instructor records.

(a) A flight instructor must sign the logbook of each person to whom that instructor has given flight training or ground training.

(b) A flight instructor must maintain a record in a logbook or a separate document that contains the following:
 (1) The name of each person whose logbook or student pilot certificate that instructor has endorsed for solo flight privileges, and the date of the endorsement; and
 (2) The name of each person that instructor has endorsed for a knowledge test or practical test, and the record shall also indicate the kind of test, the date, and the results.

(c) Each flight instructor must retain the records required by this section for at least 3 years.

§ 61.191 Additional flight instructor ratings.

(a) A person who applies for an additional flight instructor rating on a flight instructor certificate must meet the eligibility requirements listed in §61.183 of this part that apply to the flight instructor rating sought.

(b) A person who applies for an additional rating on a flight instructor certificate is not required to pass the knowledge test on the areas listed in §61.185(a)(1) of this part.

§ 61.193 Flight instructor privileges.

A person who holds a flight instructor certificate is authorized within the limitations of that person’s flight instructor certificate and ratings to train and issue endorsements that are required for:
 (a) A student pilot certificate;
 (b) A pilot certificate;
 (c) A flight instructor certificate;
 (d) A ground instructor certificate;
 (e) An aircraft rating;
 (f) An instrument rating;
 (g) A flight review, operating privilege, or recency of experience requirement of this part;
 (h) A practical test; and
 (i) A knowledge test.

§ 61.195 Flight instructor limitations and qualifications.

A person who holds a flight instructor certificate is subject to the following limitations:
 (a) Hours of training. In any 24-consecutive-hour period, a flight instructor may not conduct more than 8 hours of flight training.
 (b) Aircraft Ratings. A flight instructor may not conduct flight training in any aircraft for which the flight instructor does not hold:
 (1) A pilot certificate and flight instructor certificate with the applicable category and class rating; and
 (2) If appropriate, a type rating.
 (c) Instrument Rating. A flight instructor who provides instrument training for the issuance of an instrument rating, a type rating not limited to VFR, or the instrument training required for commercial pilot and airline transport pilot certificates must hold
an instrument rating on his or her pilot certificate and flight instructor certificate that is appropriate to the category and class of aircraft used for the training provided.

d) Limitations on endorsements. A flight instructor may not endorse a:

(1) Student pilot’s certificate or logbook for solo flight privileges, unless that flight instructor has—

(i) Given that student the flight training required for solo flight privileges required by this part; and

(ii) Determined that the student is prepared to conduct the flight safely under known circumstances, subject to any limitations listed in the student’s logbook that the instructor considers necessary for the safety of the flight.

(2) Student pilot’s certificate and logbook for a solo cross-country flight, unless that flight instructor has determined the student’s flight preparation, planning, equipment, and proposed procedures are adequate for the proposed flight under the existing conditions and within any limitations listed in the logbook that the instructor considers necessary for the safety of the flight;

(3) Student pilot’s logbook for solo flight in a Class B airspace area or at an airport within Class B airspace unless that flight instructor has—

(i) Given that student ground and flight training in that Class B airspace or at that airport; and

(ii) Determined that the student is proficient to operate the aircraft safely.

(4) Logbook of a recreational pilot, unless that flight instructor has—

(i) Given that pilot the ground and flight training required by this part; and

(ii) Determined that the recreational pilot is proficient to operate the aircraft safely.

(5) Logbook of a pilot for a flight review, unless that instructor has conducted a review of that pilot in accordance with the requirements of §61.56(a) of this part; or

(6) Logbook of a pilot for an instrument proficiency check, unless that instructor has tested that pilot in accordance with the requirements of §61.57(d) of this part.

(e) Training in an aircraft that requires a type rating. A flight instructor may not give flight training in an aircraft that requires the pilot in command to hold a type rating unless the flight instructor holds a type rating for that aircraft on his or her pilot certificate.

(f) Training received in a multiengine airplane, a helicopter, or a powered-lift. A flight instructor may not give training required for the issuance of a certificate or rating in a multiengine airplane, a helicopter, or a powered-lift unless that flight instructor has at least 5 flight hours of pilot-in-command time in the specific make and model of multiengine airplane, helicopter, or powered-lift, as appropriate.

(g) Position in aircraft and required pilot stations for providing flight training. (1) A flight instructor who provides flight training for a pilot certificate or rating issued under this part must provide that flight training in an aircraft that meets the following requirements—

(i) The aircraft must have at least two pilot stations and be of the same category, class, and type, if appropriate, that applies to the pilot certificate or rating sought.

(ii) For single-place aircraft, the presolo flight training must have been provided in an aircraft that has two pilot stations and is of the same category, class, and type, if appropriate.

(h) Qualifications of the flight instructor for training first-time flight instructor applicants. (1) The ground training provided to an initial applicant for a flight instructor certificate must be given by an authorized instructor who—

(i) Holds a ground or flight instructor certificate with the appropriate rating, has held that certificate for at least 24 calendar months, and has given at least 40 hours of ground training; or

(ii) Holds a ground or flight instructor certificate with the appropriate rating, and has given at least 100 hours of ground training in an FAA-approved course.

(2) Except for an instructor who meets the requirements of paragraph
(h)(3)(ii) of this section, a flight instructor who provides training to an initial applicant for a flight instructor certificate must—

(i) Meet the eligibility requirements prescribed in §61.183 of this part;

(ii) Hold the appropriate flight instructor certificate and rating;

(iii) Have held a flight instructor certificate for at least 24 months;

(iv) For training in preparation for an airplane, rotorcraft, or powered-lift rating, have given at least 200 hours of flight training as a flight instructor; and

(v) For training in preparation for a glider rating, have given at least 80 hours of flight training as a flight instructor.

(3) A flight instructor who serves as a flight instructor in an FAA-approved course for the issuance of a flight instructor rating must hold a flight instructor certificate with the appropriate rating and pass the required initial and recurrent flight instructor proficiency tests, in accordance with the requirements of the part under which the FAA-approved course is conducted, and must—

(i) Meet the requirements of paragraph (h)(2) of this section; or

(ii) Have trained and endorsed at least five applicants for a practical test for a pilot certificate, flight instructor certificate, ground instructor certificate, or an additional rating, and at least 80 percent of those applicants passed that test on their first attempt; and

(A) Given at least 400 hours of flight training as a flight instructor for training in an airplane, a rotorcraft, or for a powered-lift rating; or

(B) Given at least 100 hours of flight training as a flight instructor, for training in a glider rating.

(i) Prohibition against self-endorsements. A flight instructor shall not make any self-endorsement for a certificate, rating, flight review, authorization, operating privilege, practical test, or knowledge test that is required by this part.

(j) Additional qualifications required to give training in Category II or Category III operations. A flight instructor may not give training in Category II or Category III operations unless the flight instructor has been trained and tested in Category II or Category III operations, pursuant to §61.67 or §61.68 of this part, as applicable.

(k) Training for night vision goggle operations. A flight instructor may not conduct training for night vision goggle operations unless the flight instructor:

(1) Has a pilot and flight instructor certificate with the applicable category and class rating for the training;

(2) If appropriate, has a type rating on his or her pilot certificate for the aircraft;

(3) Is pilot in command qualified for night vision goggle operations, in accordance with §61.31(k);

(4) Has logged 100 night vision goggle operations as the sole manipulator of the controls;

(5) Has logged 20 night vision goggle operations as the sole manipulator of the controls in the category and class, and type of aircraft, if aircraft class and type is appropriate, that the training will be given in;

(6) Is qualified to act as pilot in command in night vision goggle operations under §61.57(f) or (g); and

(7) Has a logbook endorsement from an FAA Aviation Safety Inspector or a person who is authorized by the FAA to provide that logbook endorsement that states the flight instructor is authorized to perform the night vision goggle pilot in command qualification and recent flight experience requirements under §61.31(k) and §61.57(f) and (g).

§61.197 Renewal requirements for flight instructor certification.

(a) A person who holds a flight instructor certificate that has not expired may renew that flight instructor certificate by—

(1) Passing a practical test for—

(i) One of the ratings listed on the current flight instructor certificate; or

(ii) An additional flight instructor rating; or

(2) Submitting a completed and signed application with the FAA and satisfactorily completing one of the following renewal requirements—
§ 61.211 Applicability.

This subpart prescribes the requirements for the issuance of ground instructor certificates and ratings, the conditions under which such certificates and ratings are necessary, and the limitations upon those certificates and ratings.

§ 61.199 Reinstatement requirements of an expired flight instructor certificate.

(a) Flight instructor certificates. The holder of an expired flight instructor certificate who has not complied with the flight instructor renewal requirements of §61.197 may reinstate that flight instructor certificate and ratings by filing a completed and signed application with the FAA and satisfactorily completing one of the following reinstatement requirements:

(1) A flight instructor certification practical test, as prescribed by §61.183(h), for one of the ratings held on the expired flight instructor certificate.

(2) A flight instructor certification practical test for an additional rating.

(b) Flight instructor ratings. (1) A flight instructor rating or a limited flight instructor rating on a pilot certificate is no longer valid and may not be exchanged for a similar rating or a flight instructor certificate.

(2) The holder of a flight instructor rating or a limited flight instructor rating on a pilot certificate may be issued a flight instructor certificate with the current ratings, but only if the person passes the required knowledge and practical test prescribed in this subpart for the issuance of the current flight instructor certificate and rating.

§ 61.201 [Reserved]
§ 61.213 Eligibility requirements.

(a) To be eligible for a ground instructor certificate or rating a person must:

(1) Be at least 18 years of age;
(2) Be able to read, write, speak, and understand the English language. If the applicant is unable to meet one of these requirements due to medical reasons, then the Administrator may place such operating limitations on that applicant’s ground instructor certificate as are necessary;
(3) Except as provided in paragraph (b) of this section, pass a knowledge test on the fundamentals of instructing to include—
(i) The learning process;
(ii) Elements of effective teaching;
(iii) Student evaluation and testing;
(iv) Course development;
(v) Lesson planning; and
(vi) Classroom training techniques.
(4) Pass a knowledge test on the aeronautical knowledge areas in—
(i) For a basic ground instructor rating §§ 61.97, 61.105, and 61.309;
(ii) For an advanced ground instructor rating §§ 61.97, 61.105, 61.125, 61.155, and 61.309; and
(iii) For an instrument ground instructor rating, § 61.65.
(b) The knowledge test specified in paragraph (a)(3) of this section is not required if the applicant:

(1) Holds a ground instructor certificate or flight instructor certificate issued under this part;
(2) Holds a teacher’s certificate issued by a State, county, city, or municipality that authorizes the person to teach at an educational level of the 7th grade or higher; or
(3) Is employed as a teacher at an accredited college or university.

§ 61.215 Ground instructor privileges.

(a) A person who holds a basic ground instructor rating is authorized to provide—

(1) Ground training in the aeronautical knowledge areas required for the issuance of a sport pilot certificate, recreational pilot certificate, private pilot certificate, or associated ratings under this part;
(2) Ground training required for a sport pilot, recreational pilot, and private pilot flight review; and
(3) A recommendation for a knowledge test required for the issuance of a sport pilot certificate, recreational pilot certificate, or private pilot certificate under this part.

(b) A person who holds an advanced ground instructor rating is authorized to provide:

(1) Ground training on the aeronautical knowledge areas required for the issuance of any certificate or rating under this part except for the aeronautical knowledge areas required for an instrument rating.
(2) The ground training required for any flight review except for the training required for an instrument rating.
(3) A recommendation for a knowledge test required for the issuance of any certificate or rating under this part except for an instrument rating.

(c) A person who holds an instrument ground instructor rating is authorized to provide:

(1) Ground training in the aeronautical knowledge areas required for the issuance of an instrument rating under this part;
(2) Ground training required for an instrument proficiency check; and
(3) A recommendation for a knowledge test required for the issuance of an instrument rating under this part.

(d) A person who holds a ground instructor certificate is authorized, within the limitations of the ratings on the ground instructor certificate, to endorse the logbook or other training record of a person to whom the holder has provided the training or recommendation specified in paragraphs (a) through (c) of this section.

§ 61.217 Recent experience requirements.

The holder of a ground instructor certificate may not perform the duties of a ground instructor unless the person can show that one of the following
Federal Aviation Administration, DOT

§ 61.303

occurred during the preceding 12 calendar months:

(a) Employment or activity as a ground instructor giving pilot, flight instructor, or ground instructor training;
(b) Employment or activity as a flight instructor giving pilot, flight instructor, or ground instructor ground or flight training;
(c) Completion of an approved flight instructor refresher course and receipt of a graduation certificate for that course; or
(d) An endorsement from an authorized instructor certifying that the person has demonstrated knowledge in the subject areas prescribed under §61.213(a)(3) and (a)(4), as appropriate.

Subpart J—Sport Pilots

§ 61.301 What is the purpose of this subpart and to whom does it apply?

(a) This subpart prescribes the following requirements that apply to a sport pilot certificate:

(1) Eligibility.
(2) Aeronautical knowledge.
(3) Flight proficiency.
(4) Aeronautical experience.
(5) Endorsements.
(6) Privileges and limits.
(b) Other provisions of this part apply to the logging of flight time and testing.
(c) This subpart applies to applicants for, and holders of, sport pilot certificates. It also applies to holders of recreational pilot certificates and higher, as provided in §61.303.

§ 61.303 If I want to operate a light-sport aircraft, what operating limits and endorsement requirements in this subpart must I comply with?

(a) Use the following table to determine what operating limits and endorsement requirements in this subpart, if any, apply to you when you operate a light-sport aircraft. The medical certificate specified in this table must be in compliance with §61.2 in regards to currency and validity. If you hold a recreational pilot certificate, but not a medical certificate, you must comply with cross country requirements in §61.101 (c), even if your flight does not exceed 50 nautical miles from your departure airport. You must also comply with requirements in other subparts of this part that apply to your certificate and the operation you conduct.

<table>
<thead>
<tr>
<th>If you hold</th>
<th>And you hold</th>
<th>Then you may operate</th>
<th>And</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) A medical certificate...</td>
<td>(i) A sport pilot certificate, ...</td>
<td>(A) Any light-sport aircraft for which you hold the endorsements required for its category and class</td>
<td>(f) You must hold any other endorsements required by this subpart, and comply with the limitations in §61.315.</td>
</tr>
<tr>
<td></td>
<td>(ii) At least a recreational pilot certificate with a category and class rating.</td>
<td>(A) Any light-sport aircraft in that category and class,</td>
<td>(f) You do not have to hold any of the endorsements required by this subpart, nor do you have to comply with the limitations in §61.315.</td>
</tr>
<tr>
<td>(2) Only a U.S. driver's license</td>
<td>(i) A sport pilot certificate,</td>
<td>(A) That light-sport aircraft, only if you hold the endorsements required in §61.321 for its category and class,</td>
<td>(f) You must comply with the limitations in §61.315, except §61.315(c)(14) and, if a private pilot or higher, §61.315(c)(7).</td>
</tr>
<tr>
<td></td>
<td>(ii) At least a recreational pilot certificate but not a rating for the category and class of light sport aircraft you operate.</td>
<td>(A) Any light-sport aircraft for which you hold the endorsements required for its category and class.</td>
<td>(f) You must hold any other endorsements required by this subpart, and comply with the limitations in §61.315.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A) Any light-sport aircraft in that category and class,</td>
<td>(f) You do not have to hold any of the endorsements required by this subpart, but you must comply with the limitations in §61.315.</td>
</tr>
</tbody>
</table>
(3) Neither a medical certificate nor a U.S. driver’s license

(b) A person using a U.S. driver’s license to meet the requirements of this paragraph must—

(1) Comply with each restriction and limitation imposed by that person’s U.S. driver’s license and any judicial or administrative order applying to the operation of a motor vehicle;

(2) Have been found eligible for the issuance of at least a third-class airman medical certificate at the time of his or her most recent application (if the person has applied for a medical certificate);

(3) Not have had his or her most recently issued medical certificate (if the person has held a medical certificate) suspended or revoked or most recent Authorization for a Special Issuance of a Medical Certificate withdrawn; and

(4) Not know or have reason to know of any medical condition that would make that person unable to operate a light-sport aircraft in a safe manner.

§ 61.305 What are the age and language requirements for a sport pilot certificate?

(a) To be eligible for a sport pilot certificate you must:

(1) Be at least 17 years old (or 16 years old if you are applying to operate a glider or balloon).

(2) Be able to read, speak, write, and understand English. If you cannot read, speak, write, and understand English because of medical reasons, the FAA may place limits on your certificate as are necessary for the safe operation of light-sport aircraft.

§ 61.307 What tests do I have to take to obtain a sport pilot certificate?

To obtain a sport pilot certificate, you must pass the following tests:

(a) Knowledge test. You must pass a knowledge test on the applicable aeronautical knowledge areas listed in §61.309. Before you may take the knowledge test for a sport pilot certificate, you must receive a logbook endorsement from the authorized instructor who trained you or reviewed and evaluated your home-study course on the aeronautical knowledge areas listed in §61.309 certifying you are prepared for the test.

(b) Practical test. You must pass a practical test on the applicable areas of operation listed in §§61.309 and 61.311. Before you may take the practical test for a sport pilot certificate, you must receive a logbook endorsement from the authorized instructor who provided you with flight training on the areas of operation specified in §§61.309 and 61.311 in preparation for the practical test. This endorsement certifies that you meet the applicable aeronautical knowledge and experience requirements and are prepared for the practical test.
§ 61.309 What aeronautical knowledge must I have to apply for a sport pilot certificate?

To apply for a sport pilot certificate, you must receive and log ground training from an authorized instructor or complete a home-study course on the following aeronautical knowledge areas:

(a) Applicable regulations of this chapter that relate to sport pilot privileges, limits, and flight operations.
(b) Accident reporting requirements of the National Transportation Safety Board.
(c) Use of the applicable portions of the aeronautical information manual and FAA advisory circulaires.
(d) Use of aeronautical charts for VFR navigation using pilotage, dead reckoning, and navigation systems, as appropriate.
(e) Recognition of critical weather situations from the ground and in flight, windshear avoidance, and the procurement and use of aeronautical weather reports and forecasts.
(f) Safe and efficient operation of aircraft, including collision avoidance, and recognition and avoidance of wake turbulence.
(g) Effects of density altitude on takeoff and climb performance.
(h) Weight and balance computations.
(i) Principles of aerodynamics, powerplants, and aircraft systems.
(j) Stall awareness, spin entry, spins, and spin recovery techniques, as applicable.
(k) Aeronautical decision making and risk management.
(l) Preflight actions that include—
(1) How to get information on runway lengths at airports of intended use, data on takeoff and landing distances, weather reports and forecasts, and fuel requirements; and
(2) How to plan for alternatives if the planned flight cannot be completed or if you encounter delays.

§ 61.311 What flight proficiency requirements must I meet to apply for a sport pilot certificate?

To apply for a sport pilot certificate, you must receive and log ground and flight training from an authorized instructor on the following areas of operation, as appropriate, for airplane single-engine land or sea, glider, gyroplane, airship, balloon, powered parachute land or sea, and weight-shift-control aircraft land or sea privileges:

(a) Preflight preparation.
(b) Preflight procedures.
(c) Airport, seaplane base, and gliderport operations, as applicable.
(d) Takeoffs (or launches), landings, and go-arounds.
(e) Performance maneuvers, and for gliders, performance speeds.
(f) Ground reference maneuvers (not applicable to gliders and balloons).
(g) Soaring techniques (applicable only to gliders).
(h) Navigation.
(i) Slow flight (not applicable to lighter-than-air aircraft and powered parachutes).
(j) Stalls (not applicable to lighter-than-air aircraft, gyroplanes, and powered parachutes).
(k) Emergency operations.
(l) Post-flight procedures.

§ 61.313 What aeronautical experience must I have to apply for a sport pilot certificate?

Use the following table to determine the aeronautical experience you must have to apply for a sport pilot certificate:
If you are applying for a sport pilot certificate with . . . Then you must log at least . . . Which must include at least . . .

(a) Airplane category and single-engine land or sea class privileges,

(1) 20 hours of flight time, including at least 15 hours of flight training from an authorized instructor in a single-engine airplane and at least 5 hours of solo flight training in the areas of operation listed in § 61.311,

(i) 2 hours of cross-country flight training,

(ii) 10 takeoffs and landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport,

(iii) One solo cross-country flight of at least 75 nautical miles total distance, with a full-stop landing at a minimum of two points and one segment of the flight consisting of a straight-line distance of at least 25 nautical miles between the takeoff and landing locations, and

(iv) 2 hours of flight training with an authorized instructor on those areas of operation specified in § 61.311 in preparation for the practical test within the preceding 2 calendar months from the month of the test.

(b) Glider category privileges, and you have not logged at least 20 hours of flight time in a heavier-than-air aircraft,

(1) 10 hours of flight time in a glider, including 10 flights in a glider receiving flight training from an authorized instructor and at least 2 hours of solo flight training in the areas of operation listed in § 61.311,

(i) Five solo launches and landings, and

(ii) At least 3 training flights with an authorized instructor on those areas of operation specified in § 61.311 in preparation for the practical test within the preceding 2 calendar months from the month of the test.

(c) Glider category privileges, and you have logged 20 hours flight time in a heavier-than-air aircraft,

(1) 3 hours of flight time in a glider, including five flights in a glider while receiving flight training from an authorized instructor and at least 1 hour of solo flight training in the areas of operation listed in § 61.311,

(i) Three solo launches and landings, and

(ii) At least 3 training flights with an authorized instructor on those areas of operation specified in § 61.311 in preparation for the practical test within the preceding 2 calendar months from the month of the test.

(d) Rotorcraft category and gyroplane class privileges,

(1) 20 hours of flight time, including 15 hours of flight training from an authorized instructor in a gyroplane and at least 5 hours of solo flight training in the areas of operation listed in § 61.311,

(i) 2 hours of cross-country flight training,

(ii) 10 takeoffs and landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport,

(iii) One solo cross-country flight of at least 50 nautical miles total distance, with a full-stop landing at a minimum of two points, and one segment of the flight consisting of a straight-line distance of at least 25 nautical miles between the takeoff and landing locations, and

(iv) 2 hours of flight training with an authorized instructor on those areas of operation specified in § 61.311 in preparation for the practical test within the preceding 2 calendar months from the month of the test.

(e) Lighter-than-air category and airship class privileges,

(1) 20 hours of flight time, including 15 hours of flight training from an authorized instructor in an airship and at least 3 hours performing the duties of pilot in command in an airship with an authorized instructor in the areas of operation listed in § 61.311,

(i) 2 hours of cross-country flight training,

(ii) Three takeoffs and landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport,

(iii) One cross-country flight of at least 25 nautical miles between the takeoff and landing locations, and

(iv) 2 hours of flight training with an authorized instructor on those areas of operation specified in § 61.311 in preparation for the practical test within the preceding 2 calendar months from the month of the test.

(f) Lighter-than-air category and balloon class privileges,

(1) 7 hours of flight time in a balloon, including three flights with an authorized instructor and one flight performing the duties of pilot in command in a balloon with an authorized instructor in the areas of operation listed in § 61.311,

(i) 2 hours of cross-country flight training,

(ii) Three takeoffs and landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport,

(iii) One cross-country flight of at least 50 nautical miles total distance, with a full-stop landing at a minimum of two points, and one segment of the flight consisting of a straight-line distance of at least 25 nautical miles between the takeoff and landing locations, and

(iv) 2 hours of flight training with an authorized instructor on those areas of operation specified in § 61.311 in preparation for the practical test within the preceding 2 calendar months from the month of the test.
If you are applying for a sport pilot certificate with . . . Then you must log at least . . . Which must include at least . . .

(g) Powered parachute category land or sea class privileges,

| (1) 12 hours of flight time in a powered parachute, including 10 hours of flight training from an authorized instructor in a powered parachute, and at least 2 hours of solo flight training in the areas of operation listed in § 61.311 |
| (i) 1 hour of cross-country flight training, (ii) 20 takeoffs and landings to a full stop in a powered parachute with each landing involving flight in the traffic pattern at an airport; (iii) 10 solo takeoffs and landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport, (iv) One solo flight with a landing at a different airport and one segment of the flight consisting of a straight-line distance of at least 10 nautical miles between takeoff and landing locations, and (v) 1 hours of flight training with an authorized instructor on those areas of operation specified in § 61.311 in preparation for the practical test within the preceding 2 calendar months from the month of the test. |

(h) Weight-shift-control aircraft category land or sea class privileges,

| (1) 20 hours of light time, including 15 hours of flight training from an authorized instructor in a weight-shift-control aircraft and at least 5 hours of solo flight training in the areas of operation listed in § 61.311, |
| (i) 2 hours of cross-country flight training, (ii) 10 takeoffs and landings to a full stop (with each landing involving a flight in the traffic pattern) at an airport, (iii) One solo cross-country flight of at least 50 nautical miles total distance, with a full-stop landing at a minimum of two points, and one segment of the flight consisting of a straight-line distance of at least 25 nautical miles between takeoff and landing locations, and (iv) 2 hours of flight training with an authorized instructor on those areas of operation specified in § 61.311 in preparation for the practical test within the preceding 2 calendar months from the month of the test. |

§ 61.315 What are the privileges and limits of my sport pilot certificate?

(a) If you hold a sport pilot certificate you may act as pilot in command of a light-sport aircraft, except as specified in paragraph (c) of this section.

(b) You may share the operating expenses of a flight with a passenger, provided the expenses involve only fuel, oil, airport expenses, or aircraft rental fees. You must pay at least half the operating expenses of the flight.

(c) You may not act as pilot in command of a light-sport aircraft:

(1) That is carrying a passenger or property for compensation or hire.
(2) For compensation or hire.
(3) In furtherance of a business.
(4) While carrying more than one passenger.
(5) At night.
(6) In Class A airspace.

(7) In Class B, C, and D airspace, at an airport located in Class B, C, or D airspace, and to, from, through, or at an airport having an operational control tower unless you have met the requirements specified in § 61.325.

(8) Outside the United States, unless you have prior authorization from the country in which you seek to operate. Your sport pilot certificate carries the limit “Holder does not meet ICAO requirements.”

(9) To demonstrate the aircraft in flight to a prospective buyer if you are an aircraft salesperson.

(10) In a passenger-carrying airlift sponsored by a charitable organization.

(11) At an altitude of more than 10,000 feet MSL or 2,000 feet AGL, whichever is higher.

(12) When the flight or surface visibility is less than 3 statute miles.

§ 61.317

(13) Without visual reference to the surface.
(14) If the aircraft:
 (i) Has a V_{h} greater than 87 knots CAS, unless you have met the requirements of § 61.327(b).
 (ii) Has a V_{h} less than or equal to 87 knots CAS, unless you have met the requirements of § 61.327(a) or have logged flight time as pilot in command of an airplane with a V_{h} less than or equal to 87 knots CAS before April 2, 2010.
(15) Contrary to any operating limitation placed on the airworthiness certificate of the aircraft being flown.
(16) Contrary to any limit on your pilot certificate or airman medical certificate, or any other limit or endorsement from an authorized instructor.
(17) Contrary to any restriction or limitation on your U.S. driver’s license or any restriction or limitation imposed by judicial or administrative order when using your driver’s license to satisfy a requirement of this part.
(18) While towing any object.
(19) As a pilot flight crewmember on any aircraft for which more than one pilot is required by the type certificate of the aircraft or the regulations under which the flight is conducted.

§ 61.317 Is my sport pilot certificate issued with aircraft category and class ratings?

Your sport pilot certificate does not list aircraft category and class ratings. When you successfully pass the practical test for a sport pilot certificate, regardless of the light-sport aircraft privileges you seek, the FAA will issue you a sport pilot certificate without any category and class ratings. The FAA will provide you with a logbook endorsement for the category and class of aircraft in which you are authorized to act as pilot in command.

§ 61.319 [Reserved]

§ 61.321 How do I obtain privileges to operate an additional category or class of light-sport aircraft?

If you hold a sport pilot certificate and seek to operate an additional category or class of light-sport aircraft, you must—
 (a) Receive a logbook endorsement from the authorized instructor who trained you on the applicable aeronautical knowledge areas specified in §§ 61.309 and areas of operation specified in § 61.311. The endorsement certifies you have met the aeronautical knowledge and flight proficiency requirements for the additional light-sport aircraft privilege you seek;
 (b) Successfully complete a proficiency check from an authorized instructor other than the instructor who trained you on the aeronautical knowledge areas and areas of operation specified in §§ 61.309 and 61.311 for the additional light-sport aircraft privilege you seek;
 (c) Complete an application for those privileges on a form and in a manner acceptable to the FAA and present this application to the authorized instructor who conducted the proficiency check specified in paragraph (b) of this section; and
 (d) Receive a logbook endorsement from the instructor who conducted the proficiency check specified in paragraph (b) of this section certifying you are proficient in the applicable areas of operation and aeronautical knowledge areas, and that you are authorized for the additional category and class light-sport aircraft privilege.

§ 61.323 [Reserved]

§ 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in other airspace with an airport having an operational control tower?

If you hold a sport pilot certificate and seek privileges to operate a light-sport aircraft in Class B, C, or D airspace, at an airport located in Class B, C, or D airspace, or to, from, through, or at an airport having an operational control tower, you must receive and
log ground and flight training. The authorized instructor who provides this training must provide a logbook endorsement that certifies you are proficient in the following aeronautical knowledge areas and areas of operation:

(a) The use of radios, communications, navigation system/facilities, and radar services.

(b) Operations at airports with an operating control tower to include three takeoffs and landings to a full stop, with each landing involving a flight in the traffic pattern, at an airport with an operating control tower.

(c) Applicable flight rules of part 91 of this chapter for operations in Class B, C, and D airspace and air traffic control clearances.

§ 61.403 What are the age, language, and pilot certificate requirements for a flight instructor certificate with a sport pilot rating?

To be eligible for a flight instructor certificate with a sport pilot rating you must:

(a) Be at least 18 years old.

(b) Be able to read, speak, write, and understand English. If you cannot read, speak, write, and understand English because of medical reasons, the FAA may place limits on your certificate as are necessary for the safe operation of light-sport aircraft.

(c) Hold at least a sport pilot certificate with category and class ratings or privileges, as applicable, that are appropriate to the flight instructor privileges sought.

§ 61.405 What tests do I have to take to obtain a flight instructor certificate with a sport pilot rating?

To obtain a flight instructor certificate with a sport pilot rating you must pass the following tests:

(a) Knowledge test. Before you take a knowledge test, you must receive a logbook endorsement certifying you are prepared for the test from an authorized instructor who trained you or evaluated your home-study course on the aeronautical knowledge areas listed in §61.407. You must pass knowledge tests on—

(1) The fundamentals of instructing listed in §61.407(a), unless you meet the requirements of §61.407(c); and

(2) The aeronautical knowledge areas for a sport pilot certificate applicable to the aircraft category and class for which flight instructor privileges are sought.

(b) Practical test. (1) Before you take the practical test, you must—

(i) Receive a logbook endorsement from the authorized instructor who provided you with flight training on the areas of operation specified in §61.409 that apply to the category and class of aircraft privileges you seek. This endorsement certifies you meet the applicable aeronautical knowledge and experience requirements and are prepared for the practical test;

(ii) If you are seeking privileges to provide instruction in an airplane or glider, receive a logbook endorsement from an authorized instructor indicating that you are competent and possess instructional proficiency in stall awareness, spin entry, spins, and spin recovery procedures after you have received flight training in those training areas in an airplane or glider, as appropriate, that is certificated for spins;

(2) You must pass a practical test—

(i) On the areas of operation listed in §61.409 that are appropriate to the category and class of aircraft privileges you seek;

(ii) In an aircraft representative of the category and class of aircraft for the privileges you seek;

(iii) In which you demonstrate that you are able to teach stall awareness, spin entry, spins, and spin recovery procedures if you are seeking privileges to provide instruction in an airplane or glider. If you have not failed a practical test based on deficiencies in your ability to demonstrate knowledge or skill in these areas and you provide the endorsement required by paragraph (b)(1)(ii) of this section, an examiner may accept the endorsement instead of the demonstration required by this paragraph. If you are taking a test because you previously failed a test based on not meeting the requirements of this paragraph, you must pass a practical test on stall awareness, spin entry, spins, and spin recovery instructional competency and proficiency in the applicable category and class of aircraft that is certificated for spins.

§ 61.407 What aeronautical knowledge must I have to apply for a flight instructor certificate with a sport pilot rating?

(a) Except as specified in paragraph (c) of this section you must receive and log ground training from an authorized instructor on the fundamentals of instruction that includes:

(1) The learning process.

(2) Elements of effective teaching.

(3) Student evaluation and testing.

(4) Course development.

(5) Lesson planning.

(6) Classroom training techniques.

(b) You must receive and log ground training from an authorized instructor on the aeronautical knowledge areas applicable to a sport pilot certificate for the aircraft category and class in which you seek flight instructor privileges.

(c) You do not have to meet the requirements of paragraph (a) of this section if you—

(1) Hold a flight instructor certificate or ground instructor certificate issued under this part;

(2) Hold a teacher’s certificate issued by a State, county, city, or municipality; or

(3) Are employed as a teacher at an accredited college or university.

§ 61.409 What flight proficiency requirements must I meet to apply for a flight instructor certificate with a sport pilot rating?

You must receive and log ground and flight training from an authorized instructor on the following areas of operation for the aircraft category and class in which you seek flight instructor privileges:

(a) Technical subject areas.
(b) Preflight preparation.
(c) Preflight lesson on a maneuver to be performed in flight.
(d) Preflight procedures.
(e) Airport, seaplane base, and gliderport operations, as applicable.
(f) Takeoffs (or launches), landings, and go-arounds.
(g) Fundamentals of flight.
(h) Performance maneuvers and for gliders, performance speeds.
(i) Ground reference maneuvers (except for gliders and lighter-than-air).
(j) Soaring techniques.
(k) Slow flight (not applicable to lighter-than-air and powered parachutes).
(l) Stalls (not applicable to lighter-than-air, powered parachutes, and gyroplanes).
(m) Spins (applicable to airplanes and gliders).
(n) Emergency operations.
(o) Tumble entry and avoidance techniques (applicable to weight-shift-control aircraft).
(p) Post-flight procedures.

§ 61.411 What aeronautical experience must I have to apply for a flight instructor certificate with a sport pilot rating?

Use the following table to determine the experience you must have for each aircraft category and class:

<table>
<thead>
<tr>
<th>If you are applying for a flight instructor certificate with a sport pilot rating for</th>
<th>Then you must log at least . . .</th>
<th>Which must include at least . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Airplane category and single-engine class privileges,</td>
<td>(1) 150 hours of flight time as a pilot,</td>
<td>(i) 100 hours of flight time as pilot in command in powered aircraft,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ii) 50 hours of flight time in a single-engine airplane,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(iii) 25 hours of cross-country flight time,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(iv) 10 hours of cross-country flight time in a single-engine airplane, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(v) 15 hours of flight time as pilot in command in a single-engine airplane that is a light-sport aircraft.</td>
</tr>
<tr>
<td>(b) Glider category privileges,</td>
<td>(1) 25 hours of flight time as pilot in command in a glider, 100 flights in a glider, and 15 flights as pilot in command in a glider that is a light-sport aircraft, or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 100 hours in heavier-than-air aircraft, 20 flights in a glider, and 15 flights as pilot in command in a glider that is a light-sport aircraft,</td>
<td></td>
</tr>
<tr>
<td>(c) Rotorcraft category and gyroplane class privileges,</td>
<td>(1) 125 hours of flight time as a pilot,</td>
<td>(i) 100 hours of flight time as pilot in command in powered aircraft,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ii) 50 hours of flight time in a gyroplane,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(iii) 10 hours of cross-country flight time,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(iv) 3 hours of cross-country flight time in a gyroplane, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(v) 15 hours of flight time as pilot in command in a gyroplane that is a light-sport aircraft.</td>
</tr>
<tr>
<td>(d) Lighter-than-air category and airship class privileges,</td>
<td>(1) 100 hours of flight time as a pilot,</td>
<td>(i) 40 hours of flight time in an airship,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ii) 20 hours of pilot in command time in an airship,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(iii) 10 hours of cross-country flight time,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(iv) 5 hours of cross-country flight time in an airship, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(v) 15 hours of flight time as pilot in command in an airship that is a light-sport aircraft.</td>
</tr>
<tr>
<td>(e) Lighter-than-air category and balloon class privileges,</td>
<td>(1) 35 hours of flight time as pilot-in-command,</td>
<td>(i) 20 hours of flight time in a balloon,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ii) 10 flights in a balloon, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(iii) 5 flights as pilot in command in a balloon that is a light-sport aircraft.</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>§61.413</td>
<td>What are the privileges of my flight instructor certificate with a sport pilot rating?</td>
<td></td>
</tr>
</tbody>
</table>

If you hold a flight instructor certificate with a sport pilot rating, you are authorized, within the limits of your certificate and rating, to provide training and endorsements that are required for, and relate to—

(a) A student pilot seeking a sport pilot certificate;
(b) A sport pilot certificate;
(c) A flight instructor certificate with a sport pilot rating;
(d) A powered parachute or weight-shift-control aircraft rating;
(e) Sport pilot privileges;
(f) A flight review or operating privilege for a sport pilot;
(g) A practical test for a sport pilot certificate, a private pilot certificate with a powered parachute or weight-shift-control aircraft rating or a flight instructor certificate with a sport pilot rating;
(h) A knowledge test for a sport pilot certificate, a private pilot certificate with a powered parachute or weight-shift-control aircraft rating or a flight instructor certificate with a sport pilot rating; and
(i) A proficiency check for an additional category or class privilege for a sport pilot certificate or a flight instructor certificate with a sport pilot rating.

§61.415 What are the limits of a flight instructor certificate with a sport pilot rating?

If you hold a flight instructor certificate with a sport pilot rating, you may only provide flight training in a light-sport aircraft and are subject to the following limits:

(a) You may not provide ground or flight training in any aircraft for which you do not hold:
 (1) A sport pilot certificate with applicable category and class privileges or a pilot certificate with the applicable category and class rating; and
 (2) Applicable category and class privileges for your flight instructor certificate with a sport pilot rating.

(b) You may not provide ground or flight training for a private pilot certificate with a powered parachute or weight-shift-control aircraft rating unless you hold:
 (1) At least a private pilot certificate with the applicable category and class rating; and
 (2) Applicable category and class privileges for your flight instructor certificate with a sport pilot rating.
§ 61.419 How do I obtain privileges to provide training in an additional category or class of light-sport aircraft?

If you hold a flight instructor certificate with a sport pilot rating and seek to provide training in an additional category or class of light-sport aircraft, you must—

(a) Receive a logbook endorsement from the authorized instructor who

authorized to operate that light-sport aircraft.

(g) You may not provide training in a light-sport aircraft with a V_H greater than 87 knots CAS unless you have the endorsement specified in §61.327 (b), or are otherwise authorized to operate that light-sport aircraft.

(h) You must perform all training in an aircraft that complies with the requirements of §91.109 of this chapter.

(i) If you provide flight training for a certificate, rating or privilege, you must provide that flight training in an aircraft that meets the following:

(1) The aircraft must have at least two pilot stations and be of the same category and class appropriate to the certificate, rating or privilege sought.

(2) For single place aircraft, pre-solo flight training must be provided in an aircraft that has two pilot stations and is of the same category and class appropriate to the certificate, rating, or privilege sought.
§ 61.421 May I give myself an endorsement?

No. If you hold a flight instructor certificate with a sport pilot rating, you may not give yourself an endorsement for any certificate, privilege, rating, flight review, authorization, practical test, knowledge test, or proficiency check required by this part.

§ 61.423 What are the recordkeeping requirements for a flight instructor with a sport pilot rating?

(a) As a flight instructor with a sport pilot rating you must:

(1) Sign the logbook of each person to whom you have given flight training or ground training.

(2) Keep a record of the name, date, and type of endorsement for:

(i) Each person whose logbook you have endorsed as proficient to operate—

(A) An additional category or class of light-sport aircraft;

(B) In Class B, C, and D airspace; at an airport located in Class B, C, or D airspace; and to, from, through, or at an airport having an operational control tower;

(C) A light-sport aircraft that is an airplane with a V_H less than or equal to 87 knots CAS; and

(D) A light-sport aircraft with a V_H greater than 87 knots CAS.

(ii) Each person whose logbook you have endorsed as proficient to provide flight training in an additional category and class of light-sport aircraft.

(b) Within 10 days after providing an endorsement for a person to operate or provide training in an additional category and class of light-sport aircraft you must—

(1) Complete, sign, and submit to the FAA the application presented to you to obtain those privileges; and

(2) Retain a copy of the form.

(c) You must keep the records listed in this section for 3 years. You may keep these records in a logbook or a separate document.

§ 61.425 How do I renew my flight instructor certificate?

If you hold a flight instructor certificate with a sport pilot rating you may renew your certificate in accordance with the provisions of § 61.197.

§ 61.427 What must I do if my flight instructor certificate with a sport pilot rating expires?

You may exchange your expired flight instructor certificate with a sport pilot rating for a new certificate with a sport pilot rating and any other rating on that certificate by passing a practical test as prescribed in § 61.405(b) or § 61.183(h) for one of the ratings listed on the expired flight instructor certificate. The FAA will reinstate any privilege authorized by the expired certificate.
§ 61.429 May I exercise the privileges of a flight instructor certificate with a sport pilot rating if I hold a flight instructor certificate with another rating?

If you hold a flight instructor certificate, a commercial pilot certificate with an airship rating, or a commercial pilot certificate with a balloon rating issued under this part, and you seek to exercise the privileges of a flight instructor certificate with a sport pilot rating, you may do so without any further showing of proficiency, subject to the following limits:

(a) You are limited to the aircraft category and class ratings listed on your flight instructor certificate, commercial pilot certificate with an airship rating, or commercial pilot certificate with a balloon rating, as appropriate, when exercising your flight instructor privileges and the privileges specified in §61.413.

(b) You must comply with the limits specified in §61.415 and the record-keeping requirements of §61.423.

(c) If you want to exercise the privileges of your flight instructor certificate in a category or class of light-sport aircraft for which you are not currently rated, you must meet all applicable requirements to provide training in an additional category or class of light-sport aircraft specified in §61.419.

§ 63.2 Certification of foreign flight crewmembers other than pilots.

A person who is neither a United States citizen nor a resident alien is issued a certificate under this part (other than under §63.23 or §63.42) outside the United States only when the Administrator finds that the certificate is needed for the operation of a U.S.-registered civil aircraft.

(Secs. 313, 601, 602, Federal Aviation Act of 1958, as amended (49 U.S.C. 1354, 1421, and 1422); sec. 6(c), Department of Transportation Appropriations Act of 1952 (31 U.S.C. 483(a)); sec. 28, International Air Transportation Competition Act of 1979 (49 U.S.C. 1159(b)))

[Doc. No. 22052, 47 FR 35693, Aug. 18, 1982]

§ 63.3 Certificates and ratings required.

(a) No person may act as a flight engineer of a civil aircraft of U.S. registry unless he has in his personal possession a current flight engineer certificate with appropriate ratings issued to him under this part and a second-class (or higher) medical certificate issued to him under part 67 of this chapter within the preceding 12 months. However, when the aircraft is operated within a foreign country, a current flight engineer certificate issued by the country in which the aircraft is operated, with evidence of current medical qualification for that certificate, may be used. Also, in the case of a flight engineer certificate issued under §63.42, evidence of current medical qualification accepted for the issue of that certificate is used in place of a medical certificate.

(b) No person may act as a flight navigator of a civil aircraft of U.S. registry unless he has in his personal possession a current flight navigator certificate issued to him under this part and a second-class (or higher) medical certificate issued to him under part 67 of this chapter within the preceding 12 months. However, when the aircraft is operated within a foreign country, a current flight navigator certificate issued by the country in which the aircraft is operated, with evidence of current medical qualification for that certificate, may be used.

(See Secs. 3, 6, 9, 80 Stat. 931, 49 U.S.C. 1652, 1655, 1657)

§ 63.11 Application and issue.

(a) An application for a certificate and appropriate class rating, or for an additional rating, under this part must be made on a form and in a manner prescribed by the Administrator. Each person who applies for airman certification services to be administered outside the United States for any certificate or rating issued under this part must show evidence that the fee prescribed in appendix A of part 187 of this chapter has been paid.

(b) An applicant who meets the requirements of this part is entitled to an appropriate certificate and appropriate class ratings.

(c) Unless authorized by the Administrator, a person whose flight engineer certificate is suspended may not apply for any rating to be added to that certificate during the period of suspension.

(d) Unless the order of revocation provides otherwise, a person whose flight engineer or flight navigator certificate is revoked may not apply for
§ 63.12 Offenses involving alcohol or drugs.

(a) A conviction for the violation of any Federal or state statute relating to the growing, processing, manufacture, sale, disposition, possession, transportation, or importation of narcotic drugs, marihuana, or depressant or stimulant drugs or substances is grounds for—

(1) Denial of an application for any certificate or rating issued under this part for a period of up to 1 year after the date of final conviction; or

(2) Suspension or revocation of any certificate or rating issued under this part.

(b) The commission of an act prohibited by §91.17(a) or §91.19(a) of this chapter is grounds for—

(1) Denial of an application for a certificate or rating issued under this part for a period of up to 1 year after the date of that act; or

(2) Suspension or revocation of any certificate or rating issued under this part.

§ 63.12a Refusal to submit to an alcohol test or to furnish test results.

A refusal to submit to a test to indicate the percentage by weight of alcohol in the blood, when requested by a law enforcement officer in accordance with §91.11(c) of this chapter, or a refusal to furnish or authorize the release of the test results when requested by the Administrator in accordance with §91.17(c) or (d) of this chapter, is grounds for—

(a) Denial of an application for any certificate or rating issued under this part for a period of up to 1 year after the date of that refusal; or

(b) Suspension or revocation of any certificate or rating issued under this part.

§ 63.13 Temporary certificate.

A certificate effective for a period of not more than 120 days may be issued to a qualified applicant, pending review of his application and supplementary documents and the issue of the certificate for which he applied.

§ 63.14 Security disqualification.

(a) Eligibility standard. No person is eligible to hold a certificate, rating, or authorization issued under this part when the Transportation Security Administration (TSA) has notified the FAA in writing that the person poses a security threat.

(b) Effect of the issuance by the TSA of an Initial Notification of Threat Assessment. (1) The FAA will hold in abeyance pending the outcome of the TSA’s final threat assessment review an application for any certificate, rating, or authorization under this part by any person who has been issued an Initial Notification of Threat Assessment by the TSA.

(2) The FAA will suspend any certificate, rating, or authorization issued under this part after the TSA issues to the holder an Initial Notification of Threat Assessment.

(c) Effect of the issuance by the TSA of a Final Notification of Threat Assessment. (1) The FAA will deny an application for any certificate, rating, or authorization under this part to any person who has been issued a Final Notification of Threat Assessment.

(2) The FAA will revoke any certificate, rating, or authorization issued under this part after the TSA has
§ 63.15 Duration of certificates.

(a) Except as provided in §63.23 and paragraph (b) of this section, a certificate or rating issued under this part is effective until it is surrendered, suspended, or revoked.

(b) A flight engineer certificate (with any amendment thereto) issued under §63.42 expires at the end of the 24th month after the month in which the certificate was issued or renewed. However, the holder may exercise the privileges of that certificate only while the foreign flight engineer license on which that certificate is based is effective.

(c) Any certificate issued under this part ceases to be effective if it is surrendered, suspended, or revoked. The holder of any certificate issued under this part that is suspended or revoked shall, upon the Administrator’s request, return it to the Administrator.

(d) Except for temporary certificate issued under §63.13, the holder of a paper certificate issued under this part may not exercise the privileges of that certificate after March 31, 2013.

§ 63.16 Change of name; replacement of lost or destroyed certificate.

(a) An application for a change of name on a certificate issued under this part must be accompanied by the applicant’s current certificate and the marriage license, court order, or other document verifying the change. The documents are returned to the applicant after inspection.

(b) An application for a replacement of a lost or destroyed certificate is made by letter to the Department of Transportation, Federal Aviation Administration, Airman Certification Branch, Post Office Box 25082, Oklahoma City, OK 73125. The letter must—(1) Contain the name in which the certificate was issued, the permanent mailing address (including zip code), social security number (if any), and date and place of birth of the certificate holder, and any available information regarding the grade, number, and date of issue of the certificate, and the ratings on it; and

(2) Be accompanied by a check or money order for $2, payable to the Federal Aviation Administration.

(c) An application for a replacement of a lost or destroyed medical certificate is made by letter to the Department of Transportation, Federal Aviation Administration, Civil Aeromedical Institute, Aeromedical Certification Branch, Post Office Box 25082, Oklahoma City, OK 73125, accompanied by a check or money order for $2.00.

(d) A person whose certificate issued under this part or medical certificate, or both, has been lost may obtain a telegram from the Federal Aviation Administration confirming that it was issued. The telegram may be carried as a certificate for a period not to exceed 60 days pending his receiving a duplicate under paragraph (b) or (c) of this section, unless he has been notified that the certificate has been suspended or revoked. The request for such a telegram may be made by prepaid telegram, stating the date upon which a duplicate certificate was requested, or including the request for a duplicate and a money order for the necessary amount. The request for a telegraphic certificate should be sent to the office prescribed in paragraph (b) or (c) of this section, as appropriate. However, a request for both at the same time should be sent to the office prescribed in paragraph (b) of this section.

§ 63.17 Tests: General procedure.

(a) Tests prescribed by or under this part are given at times and places, and by persons, designated by the Administrator.
§ 63.18 Written tests; Cheating or other unauthorized conduct.

(a) Except as authorized by the Administrator, no person may—
(1) Copy, or intentionally remove, a written test under this part;
(2) Give to another, or receive from another, any part or copy of that test;
(3) Give help on that test to, or receive help on that test from, any person during the period that test is being given;
(4) Take any part of that test in behalf of another person;
(5) Use any material or aid during the period that test is being given; or
(6) Intentionally cause, assist, or participate in any act prohibited by this paragraph.

(b) No person who commits an act prohibited by paragraph (a) of this section is eligible for any airman or ground instructor certificate or rating under this chapter for a period of 1 year after the date of that act. In addition, the commission of that act is a basis for suspending or revoking any airman or ground instructor certificate or rating held by that person.

[Doc. No. 4086, 30 FR 2196, Feb. 18, 1965]

§ 63.19 Operations during physical deficiency.

No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical requirements for his current medical certificate.

§ 63.20 Applications, certificates, logbooks, reports, and records; falsification, reproduction, or alteration.

(a) No person may make or cause to be made—
(1) Any fraudulent or intentionally false statement on any application for a certificate or rating under this part;
(2) Any fraudulent or intentionally false entry in any logbook, record, or report that is required to be kept, made, or used, to show compliance with any requirement for any certificate or rating under this part;
(3) Any reproduction, for fraudulent purpose, of any certificate or rating under this part; or
(4) Any alteration of any certificate or rating under this part.

(b) No person who commits an act prohibited by paragraph (a) of this section is eligible for any airman or ground instructor certificate or rating under this chapter for a period of 1 year after the date of that act. In addition, the commission of that act is a basis for suspending or revoking any airman or ground instructor certificate or rating held by that person.

[Doc. No. 4086, 30 FR 2196, Feb. 18, 1965]

§ 63.21 Change of address.

Within 30 days after any change in his permanent mailing address, the holder of a certificate issued under this part shall notify the Department of Transportation, Federal Aviation Administration, Airman Certification Branch, Post Office Box 25082, Oklahoma City, OK 73125, in writing of his new address.

[Doc. No. 10536, 35 FR 14075, Sept. 4, 1970]

§ 63.23 Special purpose flight engineer and flight navigator certificates: Operation of U.S.-registered civil airplanes leased by a person not a U.S. citizen.

(a) General. The holder of a current foreign flight engineer or flight navigator certificate, license, or authorization issued by a foreign contracting State to the Convention on International Civil Aviation, who meets the requirements of this section, may hold a special purpose flight engineer or flight navigator certificate, as appropriate, authorizing the holder to perform flight engineer or flight navigator duties on a civil airplane of U.S. registry, leased to a person not a citizen of the United States, carrying persons or property for compensation or hire. Special purpose flight engineer and flight navigator certificates are issued under this section only for airplane types that can have a maximum passenger seating configuration, excluding any flight crewmember seat, of more than 30 seats or a maximum payload capacity (as defined in §135.2(e) of this chapter) of more than 7,500 pounds.

(b) Eligibility. To be eligible for the issuance, or renewal, of a certificate under this section, an applicant must present the following to the Administrator:
§ 63.23 14 CFR Ch. I (1–1–12 Edition)

(1) A current foreign flight engineer or flight navigator certificate, license, or authorization issued by the aeronautical authority of a foreign contracting State to the Convention on International Civil Aviation or a facsimile acceptable to the Administrator. The certificate or license must authorize the applicant to perform the flight engineer or flight navigator duties to be authorized by a certificate issued under this section on the same airplane type as the leased airplane.

(2) A current certification by the lessee of the airplane—
 (i) Stating that the applicant is employed by the lessee;
 (ii) Specifying the airplane type on which the applicant will perform flight engineer or flight navigator duties; and
 (iii) Stating that the applicant has received ground and flight instruction which qualifies the applicant to perform the duties to be assigned on the airplane.

(3) Documentation showing that the applicant currently meets the medical standards for the foreign flight engineer or flight navigator certificate, license, or authorization required by paragraph (b)(1) of this section, except that a U.S. medical certificate issued under part 67 of this chapter is not evidence that the applicant meets those standards unless the State which issued the applicant’s foreign flight engineer or flight navigator certificate, license, or authorization accepts a U.S. medical certificate as evidence of medical fitness for a flight engineer or flight navigator certificate, license, or authorization.

(c) Privileges. The holder of a special purpose flight engineer or flight navigator certificate issued under this section may exercise the same privileges as those shown on the certificate, license, or authorization specified in paragraph (b)(1) of this section, subject to the limitations specified in this section.

(d) Limitations. Each certificate issued under this section is subject to the following limitations:
 (1) It is valid only—
 (i) For flights between foreign countries and for flights in foreign air commerce;
 (ii) While it and the certificate, license, or authorization required by paragraph (b)(1) of this section are in the certificate holder’s personal possession and are current;
 (iii) While the certificate holder is employed by the person to whom the airplane described in the certification required by paragraph (b)(2) of this section is leased;
 (iv) While the certificate holder is performing flight engineer or flight navigator duties on the U.S.-registered civil airplane described in the certification required by paragraph (b)(2) of this section; and
 (v) While the medical documentation required by paragraph (b)(3) of this section is in the certificate holder’s personal possession and is currently valid.

(2) Each certificate issued under this section contains the following:
 (i) The name of the person to whom the U.S.-registered civil airplane is leased;
 (ii) The type of airplane;
 (iii) The limitation: “Issued under, and subject to, § 63.23 of the Federal Aviation Regulations.”
 (iv) The limitation: “Subject to the privileges and limitations shown on the holder’s foreign flight (engineer or navigator) certificate, license, or authorization.”

(3) Any additional limitations placed on the certificate which the Administrator considers necessary.

(e) Termination. Each special purpose flight engineer or flight navigator certificate issued under this section terminates—
 (1) When the lease agreement for the airplane described in the certification required by paragraph (b)(2) of this section terminates;
 (2) When the foreign flight engineer or flight navigator certificate, license, or authorization, or the medical documentation required by paragraph (b) of this section is suspended, revoked, or no longer valid; or
 (3) After 24 months after the month in which the special purpose flight engineer or flight navigator certificate was issued.

(f) Surrender of certificate. The certificate holder shall surrender the special purpose flight engineer or flight navigator certificate to the Administrator
within 7 days after the date it terminates.

(g) **Renewal.** The certificate holder may have the certificate renewed by complying with the requirements of paragraph (b) of this section at the time of application for renewal.

(49 U.S.C. 1354, 1421, 1422; sec. 6(c), Department of Transportation Act (49 U.S.C. 1655(c)))

[Doc. No. 19300, 45 FR 5672, Jan. 24, 1980]

Subpart B—Flight Engineers

AUTHORITY: Secs. 313(a), 601, and 602, Federal Aviation Act of 1958; 49 U.S.C. 1354, 1421, 1422.

SOURCE: Docket No. 6458, 30 FR 14559, Nov. 23, 1965, unless otherwise noted.

§ 63.31 Eligibility requirements; general.

To be eligible for a flight engineer certificate, a person must—

(a) Be at least 21 years of age;
(b) Be able to read, speak, and understand the English language, or have an appropriate limitation placed on his flight engineer certificate;
(c) Hold at least a second-class medical certificate issued under part 67 of this chapter within the 12 months before the date he applies, or other evidence of medical qualification accepted for the issue of a flight engineer certificate under § 63.42; and
(d) Comply with the requirements of this subpart that apply to the rating he seeks.

(Sec. 6, 80 Stat. 937, 49 U.S.C. 1655)

§ 63.33 Aircraft ratings.

(a) The aircraft class ratings to be placed on flight engineer certificates are—

(1) Reciprocating engine powered;
(2) Turbopropeller powered; and
(3) Turbojet powered.

(b) To be eligible for an additional aircraft class rating after his flight engineer certificate with a class rating is issued to him, an applicant must pass the written test that is appropriate to the class of airplane for which an additional rating is sought, and—

(1) Pass the flight test for that class of aircraft; or
(2) Satisfactorily complete an approved flight engineer training program that is appropriate to the additional class rating sought.

§ 63.35 Knowledge requirements.

(a) An applicant for a flight engineer certificate must pass a written test on the following:

(1) The regulations of this chapter that apply to the duties of a flight engineer.
(2) The theory of flight and aerodynamics.
(3) Basic meteorology with respect to engine operations.
(4) Center of gravity computations.
(b) An applicant for the original or additional issue of a flight engineer class rating must pass a written test for that airplane class on the following:

(1) Preflight.
(2) Airplane equipment.
(3) Airplane systems.
(4) Airplane loading.
(5) Airplane procedures and engine operations with respect to limitations.
(6) Normal operating procedures.
(7) Emergency procedures.
(8) Mathematical computation of engine operations and fuel consumption.
(c) Before taking the written tests prescribed in paragraphs (a) and (b) of this section, an applicant for a flight engineer certificate must present satisfactory evidence of having completed one of the experience requirements of § 63.37. However, he may take the written tests before acquiring the flight training required by § 63.37.
(d) An applicant for a flight engineer certificate or rating must have passed the written tests required by paragraphs (a) and (b) of this section since the beginning of the 24th calendar month before the month in which the flight is taken. However, this limitation does not apply to an applicant for a flight engineer certificate or rating if—

(1) The applicant—

(1) Within the period ending 24 calendar months after the month in which the applicant passed the written test, is employed as a flight crewmember or
§ 63.37 Aeronautical experience requirements.

(a) Except as otherwise specified therein, the flight time used to satisfy the aeronautical experience requirements of paragraph (b) of this section must have been obtained on an airplane—

(1) On which a flight engineer is required by this chapter; or

(2) That has at least three engines that are rated at least 800 horsepower each or the equivalent in turbine-powered engines.

(b) An applicant for a flight engineer certificate with a class rating must present, for the class rating sought, satisfactory evidence of one of the following:

(1) At least 3 years of diversified practical experience in aircraft and aircraft engine maintenance (of which at least 1 year was in maintaining multi-engine aircraft with engines rated at least 800 horsepower each, or the equivalent in turbine engine powered aircraft), and at least 5 hours of flight training in the duties of a flight engineer.

(2) Graduation from at least a 2-year specialized aeronautical training course in maintaining aircraft and aircraft engines (of which at least 6 calendar months were in maintaining multi-engine aircraft with engines rated at least 800 horsepower each, or the equivalent in turbine engine powered aircraft), and at least 5 hours of flight training in the duties of a flight engineer.

(3) A degree in aeronautical, electrical, or mechanical engineering from a recognized college, university, or engineering school; at least 6 calendar months of practical experience in maintaining multi-engine aircraft with engines rated at least 800 horsepower each, or the equivalent in turbine engine powered aircraft; and at least 5 hours of flight training in the duties of a flight engineer.

(4) At least a commercial pilot certificate with an instrument rating and at least 5 hours of flight training in the duties of a flight engineer.

(5) At least 200 hours of flight time in a transport category airplane (or in a military airplane with at least two engines and at least equivalent weight and horsepower) as pilot in command or second in command performing the functions of a pilot in command under the supervision of a pilot in command.

(6) At least 100 hours of flight time as a flight engineer.

(7) Within the 90-day period before he applies, successful completion of an approved flight engineer ground and flight course of instruction as provided in appendix C of this part.
§ 63.39 Skill requirements.
(a) An applicant for a flight engineer certificate with a class rating must pass a practical test on the duties of a flight engineer in the class of airplane for which a rating is sought. The test may only be given on an airplane specified in § 63.37(a).
(b) The applicant must—
(1) Show that he can satisfactorily perform preflight inspection, servicing, starting, pretakeoff, and postlanding procedures;
(2) In flight, show that he can satisfactorily perform the normal duties and procedures relating to the airplane, airplane engines, propellers (if appropriate), systems, and appliances; and
(3) In flight, in an airplane simulator, or in an approved flight engineer training device, show that he can satisfactorily perform emergency duties and procedures and recognize and take appropriate action for malfunctions of the airplane, engines, propellers (if appropriate), systems and appliances.

§ 63.41 Retesting after failure.
An applicant for a flight engineer certificate who fails a written test or practical test for that certificate may apply for retesting—
(a) After 30 days after the date he failed that test; or
(b) After he has received additional practice or instruction (flight, synthetic trainer, or ground training, or any combination thereof) that is necessary, in the opinion of the Administrator or the applicant’s instructor (if the Administrator has authorized him to determine the additional instruction necessary) to prepare the applicant for retesting.

§ 63.42 Flight engineer certificate issued on basis of a foreign flight engineer license.
(a) Certificates issued. The holder of a current foreign flight engineer license issued by a contracting State to the Convention on International Civil Aviation, who meets the requirements of this section, may have a flight engineer certificate issued to him for the operation of civil aircraft of U.S. registry. Each flight engineer certificate issued under this section specifies the number and State of issuance of the foreign flight engineer license on which it is based. If the holder of the certificate cannot read, speak, or understand the English language, the Administrator may place any limitation on the certificate that he considers necessary for safety.
(b) Medical standards and certification. An applicant must submit evidence that he currently meets the medical standards for the foreign flight engineer license on which the application for a certificate under this section is based. A current medical certificate issued under part 67 of this chapter will be excepted as evidence that the applicant meets those standards. However, a medical certificate issued under part 67 of this chapter is not evidence that the applicant meets those standards outside the United States unless the State that issued the applicant’s foreign flight engineer license also accepts medical certificate as evidence of the applicant’s physical fitness for his foreign flight engineer license.
(c) Ratings issued. Aircraft class ratings listed on the applicant’s foreign flight engineer license, in addition to any issued to him after testing under the provisions of this part, are placed on his flight engineer certificate. An applicant without an aircraft class rating on his foreign flight engineer license may be issued a class rating if he shows that he currently meets the requirements for exercising the privileges of his foreign flight engineer license on that class of aircraft.
(d) Privileges and limitations. The holder of a flight engineer certificate issued under this section may act as a flight engineer of a civil aircraft of U.S. registry subject to the limitations of this part and any additional limitations placed on his certificate by the Administrator. He is subject to these limitations while he is acting as a flight engineer of the aircraft within or outside the United States. However, he may not act as flight engineer or in any other capacity as a required flight crewmember, of a civil aircraft of U.S. registry that is carrying persons or property for compensation or hire.
(e) Renewal of certificate and ratings. The holder of a certificate issued under this section may have that certificate
and the ratings placed thereon renewed if, at the time of application for renewal, the foreign flight engineer license on which that certificate is based is in effect. Application for the renewal of the certificate and ratings thereon must be made before the expiration of the certificate.

(Sec. 6, 80 Stat. 937, 49 U.S.C. 1655)

§ 63.43 Flight engineer courses.

An applicant for approval of a flight engineer course must submit a letter to the Administrator requesting approval, and must also submit three copies of each course outline, a description of the facilities and equipment, and a list of the instructors and their qualifications. An air carrier or commercial operator with an approved flight engineer training course under part 121 of this chapter may apply for approval of a training course under this part by letter without submitting the additional information required by this paragraph. Minimum requirements for obtaining approval of a flight engineer course are set forth in appendix C of this part.

Subpart C—Flight Navigators

AUTHORITY: Secs. 313(a), 314, 601, and 607; 49 U.S.C. 1354(a), 1355, 1421, and 1427.

SOURCE: Docket No. 1179, 27 FR 7970, Aug. 10, 1962, unless otherwise noted.

§ 63.51 Eligibility requirements; general.

To be eligible for a flight navigator certificate, a person must—

(a) Be at least 21 years of age;

(b) Be able to read, write, speak, and understand the English language;

(c) Hold at least a second-class medical certificate issued under part 67 of this chapter within the 12 months before the date he applies; and

(d) Comply with §§63.53, 63.55, and 63.57.

§ 63.53 Knowledge requirements.

(a) An applicant for a flight navigator certificate must pass a written test on—

(1) The regulations of this chapter that apply to the duties of a flight navigator;

(2) The fundamentals of flight navigation, including flight planning and cruise control;

(3) Practical meteorology, including analysis of weather maps, weather reports, and weather forecasts; and weather sequence abbreviations, symbols, and nomenclature;

(4) The types of air navigation facilities and procedures in general use;

(5) Calibrating and using air navigation instruments;

(6) Navigation by dead reckoning;

(7) Navigation by celestial means;

(8) Navigation by radio aids;

(9) Pilotage and map reading; and

(10) Interpretation of navigation aid identification signals.

(b) A report of the test is mailed to the applicant. A passing grade is evidence, for a period of 24 months after the test, that the applicant has complied with this section.

§ 63.55 Experience requirements.

(a) An applicant for a flight navigator certificate must be a graduate of a flight navigator course approved by the Administrator or present satisfactory documentary evidence of—

(1) Satisfactory determination of his position in flight at least 25 times by night by celestial observations and at least 25 times by day by celestial observations in conjunction with other aids; and

(2) At least 200 hours of satisfactory flight navigation including celestial and radio navigation and dead reckoning.

A pilot who has logged 500 hours of cross-country flight time, of which at least 100 hours were at night, may be credited with more than 100 hours for the purposes of paragraph (a)(2) of this section.

(b) Flight time used exclusively for practicing long-range navigation methods, with emphasis on celestial navigation and dead reckoning, is considered to be satisfactory navigation experience for the purposes of paragraph (a)
§ 63.57 Skill requirements.

(a) An applicant for a flight navigator certificate must pass a practical test in navigating aircraft by—
 (1) Dead reckoning;
 (2) Celestial means; and
 (3) Radio aids to navigation.

(b) An applicant must pass the written test prescribed by §63.53 before taking the test under this section. However, if a delay in taking the test under this section would inconvenience the applicant or an air carrier, he may take it before he receives the result of the written test, or after he has failed the written test.

(c) The test requirements for this section are set forth in appendix A of this part.

§ 63.59 Retesting after failure.

(a) An applicant for a flight navigator certificate who fails a written or practical test for that certificate may apply for retesting—
 (1) After 30 days after the date he failed that test; or
 (2) Before the 30 days have expired if the applicant presents a signed statement from a certificated flight navigator, certificated ground instructor, or any other qualified person approved by the Administrator, certifying that that person has given the applicant additional instruction in each of the subjects failed and that person considers the applicant ready for retesting.

(b) A statement from a certificated flight navigator, or from an operations official of an approved navigator course, is acceptable, for the purposes of paragraph (a)(2) of this section, for the written test and for the flight test.

(c) If the applicant failed the flight test, the additional instruction must have been administered in flight.

§ 63.61 Flight navigator courses.

An applicant for approval of a flight navigator course must submit a letter to the Administrator requesting approval, and must also submit three copies of the course outline, a description of his facilities and equipment, and a list of the instructors and their qualifications. Requirements for the course are set forth in appendix B to this part.

APPENDIX A TO PART 63—TEST REQUIREMENTS FOR FLIGHT NAVIGATOR CERTIFICATE

(a) Demonstration of skill. An applicant will be required to pass practical tests on the prescribed subjects. These tests may be given by FAA inspectors and designated flight navigator examiners.

(b) The examination. The practical examination consists of a ground test and a flight test as itemized on the examination check sheet. Each item must be completed satisfactorily in order for the applicant to obtain a passing grade. Items 5, 6, 7 of the ground test may be completed orally, and items 17, 22, 23, 34, 36, 37, 38, and 39 of the flight test may be completed by an oral examination when a lack of ground facilities or navigation equipment makes such procedure necessary. In these cases a notation to that effect shall be made in the “Remarks” space on the check sheet.

(c) Examination procedure. (1) An applicant will provide an aircraft in which celestial observations can be taken in all directions. Minimum equipment shall include a table for plotting, a drift meter or absolute altimeter, an instrument for taking visual bearings, and a radio direction finder.

(2) More than one flight may be used to complete the flight test and any type of flight pattern may be used. The test will be conducted chiefly over water whenever practicable, and without regard to radio range legs or radials. If the test is conducted chiefly over land, a chart should be used which shows very little or no topographical and aeronautical data. The total flight time will cover a period of at least four hours. Only one applicant may be examined at one time, and no applicant may perform other than navigator duties during the examination.
(3) When the test is conducted with an aircraft belonging to an air carrier, the navigation procedures should conform with those set forth in the carrier’s operations manual. Examinations which are not performed during the routine navigation of the flight will be completed by oral examination after the flight or at times during flight which the applicant indicates may be used for tests on those items. Since in-flight weather conditions, the reliability of the weather forecast, and the stability of the aircraft will have considerable effect on an applicant’s performance, good judgment must be used by the agent or examiner in evaluating the tests.

(d) Ground test. For the ground test, in the order of the numbered items on the examination check sheet, an applicant will be required to:

(1) Identify without a star identifier, at least six navigational stars and all planets available for navigation at the time of the examination and explain the method of identification.

(2) Identify two additional stars with a star identifier or sky diagrams and explain identification procedure.

(3) Precompute a time-altitude curve for a period of about 20 minutes and take 10 single observations of a celestial body which is rising or setting rapidly. The intervals between observations should be at least one minute. Mark each observation on the graph to show accuracy. All observations, after corrections, shall plot within 8 minutes of arc from the time-altitude curve, and the average error shall not exceed 5 minutes of arc.

(4) Take and plot one 3-star fix and 3 LOP’s of the sun. Plotted fix or an average of LOP’s must fall within 5 miles of the actual position of the observer.

(5) Demonstrate or explain the compensation and swinging of a liquid-type magnetic compass.

(6) Demonstrate or explain a method of aligning one type of drift meter.

(7) Demonstrate or explain a method of aligning an astro-compass or periscope sextant.

(e) Flight test. For the flight test, in the order of the numbered items on the examination check sheet, an applicant will be required to:

(1) Demonstrate his ability to read weather symbols and interpret synoptic surface and upper air weather maps with particular emphasis being placed on winds.

(2) Prepare a flight plan by zones from the forecast winds or pressure data of an upper air chart and the operator’s data.

(3) Compute from the operator’s data the predicted fuel consumption for each zone of the flight, including the alternate.

(4) Determine the point-of-no-return for the flight with all engines running and the equitime point with one engine inoperative.

(5) Prepare a cruise control (howgozit) chart from the operator’s data.

(6) Enter actual fuel consumed on the cruise control chart and interpret the variations of the actual curve from the predicted curve.

(7) Check the presence on board and operating condition of all navigation equipment. Normally a check list will be used. This check will include a time tick or chronometer comparison. Any lack of thoroughness during this check will justify this item being graded unsatisfactory.

(8) Locate emergency equipment, such as, the nearest fire extinguisher, life preserver, life rafts, exits, axe, first aid kits, etc.

(9) Recite the navigator’s duties and stations during emergencies for the type of aircraft used for the test.

(10) Demonstrate the proper use of a flux gate compass or gyrosyn compass (when available), with special emphasis on the caging methods and the location of switches, circuit breakers, and fuses. If these compasses are not part of the aircraft’s equipment, an oral examination will be given.

(11) Be accurate and use good judgment when setting and altering headings. Erroneous application of variation, deviation, or drift correction, or incorrect measurement of course on the chart will be graded as unsatisfactory.

(12) Demonstrate or explain the use of characteristics of various chart projections used in long-range air navigation, including the plotting of courses and bearings, and the measuring of distances.

(13) Demonstrate ability to identify designated landmarks by the use of a sectional or WAC chart.

(14) Use a computer with facility and accuracy for the computation of winds, drift correction and drift angles, ground speeds, ETA’s, fuel loads, etc.

(15) Determine track, ground speed, and wind by the double drift method. When a drift meter is not part of the aircraft’s equipment, an oral examination on the use of the drift meter and a double drift problem shall be completed.

(16) Determine ground speed and wind by the timing method with a drift meter. When a drift meter is not part of the aircraft’s equipment, an oral examination on the procedure and a problem shall be completed.

(17) Demonstrate the use of air plot for determining wind between fixes and for plotting pressure lines of position when using pressure and absolute altimeter comparisons.

(18) Give ETA’s to well defined check points at least once each hour after the second hour of flight. The average error shall
not be more than 5 percent of the intervening time intervals, and the maximum error of any one ETA shall not be more than 10 percent.

(19) Demonstrate knowledge and use of D/F equipment and radio facility information. Grading on this item will be based largely on the applicant’s selection of those radio aids which will be of most value to his navigation, the manner with which he uses equipment, including filter box controls, and the precision with which he reads bearings. The aircraft’s compass heading and all compass corrections must be considered for each bearing.

(20) Use care in tuning to radio stations to insure maximum reception of signal and check for interference signals. Receiver will be checked to ascertain that antenna and BFO (Voice-CW) switches are in correct positions.

(21) Identify at least three radio stations using International Morse code only for identification. The agent or examiner will tune in these stations so that the applicant will have no knowledge of the direction, distance, or frequency of the stations.

(22) Take at least one radio bearing by manual use of the loop. The agent or examiner will check the applicant’s bearing by taking a manual bearing on the same station immediately after the applicant.

(23) Show the use of good judgment in evaluating radio bearings, and explain why certain bearings may be of doubtful value.

(24) Determine and apply correctly the correction required to be made to radio bearings before plotting them on a Mercator chart, and demonstrate the ability to plot bearings accurately on charts of the Mercator and Lambert conformal projections.

(25) Compute the compass heading, ETA, and fuel remaining if it is assumed that the flight would be diverted to an alternate airport at a time specified by the agent or examiner.

(26) Check the counter scales of a Loran receiver for accuracy, and explain the basic (face) adjustments which affect tuning and counter alignment. A guide sheet may be used for this test.

(27) Demonstrate a knowledge of the basic principle of Loran and the ability to tune a Loran receiver, to match signals, to read time differences, to plot Loran LOP’s, and to identify and use sky waves.

(28) Take and plot bearings from a consol station and explain the precautions which must be taken when using a radio receiver for consol signals. Also, discuss those conditions which affect the reliability of consol bearings.

(29) Demonstrate the ability to properly operate and read an absolute altimeter.

(30) Determine the “D” factors for a series of compared readings of an absolute altimeter and a pressure altimeter.

(31) Determine drift angle or lateral displacement from the true heading line by application of Bellamy’s formula or a variation thereof.

(32) Interpret the altimeter comparison data with respect to the pressure system found at flight level. From this data evaluate the accuracy of the prognostic weather map used for flight planning and apply this analysis to the navigation of the flight.

(33) Interpret single LOP’s for most probable position, and show how a series of single LOP’s of the same body may be used to indicate the probable track and ground speed. Also, show how a series of single LOP’s (celestial or radio) from the same celestial body or radio station may be used to determine position when the change of azimuth or bearing is 30° or more between observations.

(34) Select one of the celestial LOP’s used during the flight and explain how to make a single line of position approach to a point selected by the agent or examiner, giving headings, times, and ETA’s.

(35) Demonstrate the proper use of an astro-compas or periscopic sextant for taking bearings.

(36) Determine compass deviation as soon as possible after reaching cruising altitude and whenever there is a change of compass heading of 15° or more.

(37) Take celestial fixes at hourly intervals when conditions permit. The accuracy of these fixes shall be checked by means of a Loran, radio, or visual fix whenever practicable. After allowing for the probable error of a Loran, radio, or visual fix, a celestial fix under favorable conditions should plot within 10 miles of the actual position.

(38) Select celestial bodies for observation, when possible, whose azimuths will differ by approximately 120° for a 3-body fix and will differ by approximately 90° for a 2-body fix. The altitudes of the selected bodies should be between 25° and 75° whenever practicable.

(39) Have POMAR and any other required reports ready for transmission at time of schedule, and be able to inform the pilot in command promptly with regard to the aircraft’s position and progress in comparison with the flight plan.

(40) Keep a log with sufficient legible entries to provide a record from which the flight could be retraced.

(41) Note significant weather changes which might influence the drift or ground speed of the aircraft, such as, temperature, “D” factors, frontal conditions, turbulence, etc.

(42) Determine the wind between fixes as a regular practice.

(43) Estimate the time required and average ground speed during a letdown, under conditions specified by the pilot in command.
Pt. 63, App. B

(44) Work with sufficient speed to determine the aircraft’s position hourly by celestial means and also make all other observations and records pertinent to the navigation. The applicant should be able to take the observation, compute, and plot a celestial LOP within a time limit of 8 minutes; take and plot a Loran LOP within a time limit of 3 minutes for ground waves and 4 minutes for sky waves; observe the absolute and pressure altimeters and compute the drift or lateral displacement within a time limit of 3 minutes.

(45) Be accurate in reading instruments and making computations. Errors which are made and corrected without affecting the navigation will be disregarded unless they cause considerable loss of time.

An uncorrected error in computation (including reading instruments and books) which will affect the reported position more than 25 miles, the heading more than 3°, or any ETA more than 15 minutes will cause this item to be graded unsatisfactory.

(46) Be alert to changing weather or other conditions during flight which might affect the navigation. An applicant should not fail to take celestial observations just prior to encountering a broken or overcast sky condition; and he should not fail to take a bearing on a radio station, which operates at scheduled intervals and which would be a valuable aid to the navigation.

(47) Show a logical choice and sequence in using the various navigation methods according to time and accuracy, and check the positions determined by one method against positions determined by other methods.

(48) Use a logical sequence in performing the various duties of a navigator and plan work according to a schedule. The more important duties should not be neglected for others of less importance.

APPENDIX B TO PART 63—FLIGHT NAVIGATOR TRAINING COURSE REQUIREMENTS

(a) Training course outline. (1) Format. The ground course outline and the flight course outline shall be combined in one looseleaf binder and shall include a table of contents, divided into two parts—ground course and flight course. Each part of the table of contents must contain a list of the major subjects, together with hours allotted to each subject and the total classroom and flight hours.

(2) Ground course outline. (i) It is not mandatory that a course outline have the subject headings arranged exactly as listed in this paragraph. Any arrangement of general headings and subheadings will be satisfactory provided all the subject material listed here is included and the acceptable minimum number of hours is assigned to each subject. Each general subject shall be broken down into detail showing items to be covered.

(ii) If any agency desires to include additional subjects in the ground training curriculum, such as international law, flight hygiene, or others which are not required, the hours allotted these additional subjects may not be included in the minimum classroom hours.

(iii) The following subjects with classroom hours are considered the minimum coverage for a ground training course for flight navigators:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Classroom hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Aviation Administration</td>
<td>5</td>
</tr>
<tr>
<td>To include Parts 63, 91, and 121 of this chapter.</td>
<td></td>
</tr>
<tr>
<td>Meteorology</td>
<td>40</td>
</tr>
<tr>
<td>To include:</td>
<td></td>
</tr>
<tr>
<td>Basic weather principles.</td>
<td></td>
</tr>
<tr>
<td>Temperature.</td>
<td></td>
</tr>
<tr>
<td>Pressure.</td>
<td></td>
</tr>
<tr>
<td>Winds.</td>
<td></td>
</tr>
<tr>
<td>Moisture in the atmosphere.</td>
<td></td>
</tr>
<tr>
<td>Stability.</td>
<td></td>
</tr>
<tr>
<td>Clouds.</td>
<td></td>
</tr>
<tr>
<td>Hazards.</td>
<td></td>
</tr>
<tr>
<td>Air masses.</td>
<td></td>
</tr>
<tr>
<td>Front weather.</td>
<td></td>
</tr>
<tr>
<td>Fog.</td>
<td></td>
</tr>
<tr>
<td>Thunderstorms.</td>
<td></td>
</tr>
<tr>
<td>Icing.</td>
<td></td>
</tr>
<tr>
<td>World weather and climate.</td>
<td></td>
</tr>
<tr>
<td>Weather maps and weather reports.</td>
<td></td>
</tr>
<tr>
<td>Forecasting.</td>
<td></td>
</tr>
<tr>
<td>International Morse code:</td>
<td></td>
</tr>
<tr>
<td>Ability to receive code groups of letters and numerals at a speed of eight words per minute</td>
<td>20</td>
</tr>
<tr>
<td>Navigation instruments (exclusive of radio and radar)</td>
<td></td>
</tr>
<tr>
<td>To include:</td>
<td></td>
</tr>
<tr>
<td>Compasses.</td>
<td></td>
</tr>
<tr>
<td>Pressure altimeters.</td>
<td></td>
</tr>
<tr>
<td>Airspeed indicators.</td>
<td></td>
</tr>
<tr>
<td>Driftmeters.</td>
<td></td>
</tr>
<tr>
<td>Bearing indicators.</td>
<td></td>
</tr>
<tr>
<td>Aircraft octants.</td>
<td></td>
</tr>
<tr>
<td>Instrument calibration and alignment.</td>
<td></td>
</tr>
<tr>
<td>Charts and piloting</td>
<td>15</td>
</tr>
<tr>
<td>To include:</td>
<td></td>
</tr>
<tr>
<td>Chart projections.</td>
<td></td>
</tr>
<tr>
<td>Chart symbols.</td>
<td></td>
</tr>
<tr>
<td>Principles of piloting.</td>
<td></td>
</tr>
<tr>
<td>Dead reckoning</td>
<td>30</td>
</tr>
<tr>
<td>To include:</td>
<td></td>
</tr>
<tr>
<td>Air plot.</td>
<td></td>
</tr>
<tr>
<td>Ground plot.</td>
<td></td>
</tr>
<tr>
<td>Calculation of ETA.</td>
<td></td>
</tr>
<tr>
<td>Vector analysis.</td>
<td></td>
</tr>
<tr>
<td>Use of computer.</td>
<td></td>
</tr>
<tr>
<td>Search.</td>
<td></td>
</tr>
<tr>
<td>Absolute altimeter with:</td>
<td>15</td>
</tr>
<tr>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>To include:</td>
<td></td>
</tr>
<tr>
<td>Principles of construction.</td>
<td></td>
</tr>
<tr>
<td>Operating instructions.</td>
<td></td>
</tr>
<tr>
<td>Use of Bellamy’s formula.</td>
<td></td>
</tr>
<tr>
<td>Flight planning with single drift correction.</td>
<td></td>
</tr>
<tr>
<td>Radio and long-range navigational aids</td>
<td>35</td>
</tr>
</tbody>
</table>

512
The approved course operator may contract to insure that the flight training may be completed without undue delay.

(2) At least one ground instructor must hold a valid flight navigator certificate, and be utilized to coordinate instruction of ground school subjects.

(3) Each instructor who conducts flight training must hold a valid flight navigator certificate.

(4) Revision of training course. (1) Requests for revisions to course outlines, facilities, and equipment shall follow procedures for original approval of the course. Revisions should be submitted in such form that an entire page or pages of the approved outline can be removed and replaced by the revisions.

(5) Credit for previous training and experience. (1) Credit may be granted by an operator to students for previous training and experience which is provable and comparable to portions of the approved curriculum. When granting such credit, the approved course operator should be fully cognizant of the fact that he is responsible for the proficiency of his graduates in accordance with subdivision (i) of paragraph (3) of this section.

(2) Where advanced credit is allowed, the operator shall evaluate the student’s previous training and experience in accordance with the normal practices of accredited technical schools. Before credit is given for any ground school subject or portion thereof, the student must pass an appropriate examination.

(3) Credit up to a maximum of 50 hours toward the flight training requirement may be given to pilots who have logged at least 500 hours while a member of a flight crew which required a certificated flight navigator or the Armed Forces equivalent. A similar credit may also be given to a licensed deck officer of the Maritime Service who has served as such for at least one year on ocean-going vessels. One-half of the flight time credited under the terms of this paragraph may be applied toward the 50 hours of flight training required at night.

Subject Classroom

<table>
<thead>
<tr>
<th>Subject</th>
<th>Classroom hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of radio transmission and reception.</td>
<td></td>
</tr>
<tr>
<td>Radio aids to navigation.</td>
<td></td>
</tr>
<tr>
<td>Government publications.</td>
<td></td>
</tr>
<tr>
<td>Airborne D/F equipment.</td>
<td></td>
</tr>
<tr>
<td>Errors of radio bearings.</td>
<td></td>
</tr>
<tr>
<td>Quadrantal correction.</td>
<td></td>
</tr>
<tr>
<td>Plotting radio bearings.</td>
<td></td>
</tr>
<tr>
<td>ICAO Q code for direction finding.</td>
<td></td>
</tr>
<tr>
<td>Loran. Consol.</td>
<td></td>
</tr>
<tr>
<td>Celestial navigation</td>
<td>150</td>
</tr>
<tr>
<td>The solar system.</td>
<td></td>
</tr>
<tr>
<td>The celestial sphere.</td>
<td></td>
</tr>
<tr>
<td>The astronomical triangle.</td>
<td></td>
</tr>
<tr>
<td>Theory of lines of position.</td>
<td></td>
</tr>
<tr>
<td>Use of the Air Almanac.</td>
<td></td>
</tr>
<tr>
<td>Time and its applications.</td>
<td></td>
</tr>
<tr>
<td>Navigation tables.</td>
<td></td>
</tr>
<tr>
<td>Precomputation.</td>
<td></td>
</tr>
<tr>
<td>Celestial line of position approach.</td>
<td></td>
</tr>
<tr>
<td>Star identification.</td>
<td></td>
</tr>
<tr>
<td>Corrections to celestial observations.</td>
<td></td>
</tr>
<tr>
<td>Flight planning and cruise control</td>
<td>25</td>
</tr>
<tr>
<td>The flight plan.</td>
<td></td>
</tr>
<tr>
<td>Fuel consumption charts.</td>
<td></td>
</tr>
<tr>
<td>Methods of cruise control.</td>
<td></td>
</tr>
<tr>
<td>Flight progress chart.</td>
<td></td>
</tr>
<tr>
<td>Point-of-no-return.</td>
<td></td>
</tr>
<tr>
<td>Equitime point.</td>
<td></td>
</tr>
<tr>
<td>Long-range flight problems</td>
<td>15</td>
</tr>
<tr>
<td>Total (exclusive of final examinations)</td>
<td>350</td>
</tr>
</tbody>
</table>
(l) Students records and reports. Approval of a course shall not be continued in effect unless the course operator keeps an accurate record of each student, including a chronologically arranged table of contents for each course. Separate outline are independent. Each must be contained in a looseleaf binder to include a title of the subject material listed here is included exactly as listed in this paragraph. Any arrangement of subjects may not be included in the minimum programmed classroom hours.

(2) Change in name. An approved course operator changes location if the change is reported without delay by the operator to the local Flight Standards District Office, which will inspect the facilities to be used. If they are found to be adequate, a letter of approval showing the new location will be issued by the regional office.

(3) Change in location. An approved course shall remain in effect even though the approved course operator changes location if the change is reported without delay by the operator to the local Flight Standards District Office, which will inspect the facilities to be used. If they are found to be adequate, a letter of approval showing the new location will be issued by the regional office.

(k) Cancellation of approval. (1) Failure to meet or maintain any of the requirements set forth in this section for the approval or operation of an approved flight navigator course shall be considered sufficient reason for cancellation of the approval.

(2) If an operator should desire voluntary cancellation of his approved course, he should submit the effective letter of approval and a written request for cancellation to the Administrator through the local Flight Standards District Office.

(l) Duration. The authority to operate an approved flight navigator course shall expire 24 months after the last day of the month of issuance.

(m) Renewal. Application for renewal of authority to operate an approved flight navigator course may be made by letter to the local Flight Standards District Office at any time within 60 days before to the expiration date. Renewal of approval will depend upon the course operator meeting the current conditions for approval and having a satisfactory record as an operator.

APPENDIX C TO PART 63—FLIGHT ENGINEER TRAINING COURSE REQUIREMENTS

(a) Training course outline—(1) Format. The ground course outline and the flight course outline are independent. Each must be contained in a looseleaf binder to include a table of contents. If an applicant desires approval of both a ground school course and a flight school course, they must be combined in one looseleaf binder that includes a separate table of contents for each course. Separate course outlines are required for each type of airplane.

(2) Ground course outline. (i) It is not mandatory that the subject headings be arranged exactly as listed in this paragraph. Any arrangement of subjects is satisfactory if all the subject material listed here is included and at least the minimum programmed hours are assigned to each subject. Each general subject must be broken down into detail showing the items to be covered.

(ii) If any course operator desires to include additional subjects in the ground course curriculum, such as international law, flight hygiene, or others that are not required, the hours allotted these additional subjects may not be included in the minimum programmed classroom hours.

(iii) The following subjects and classroom hours are the minimum programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to initial approval of a ground training course an applicant may apply to the Administrator for a reduction in the programmed hours. Approval of a reduction in the approved programmed hours is based on improved training effectiveness due to improvements in methods, training aids, quality of instruction, or any combination thereof.
<table>
<thead>
<tr>
<th>Subject</th>
<th>Classroom hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Aviation Regulations</td>
<td>10</td>
</tr>
<tr>
<td>To include the regulations of this chapter that apply to flight engineers</td>
<td></td>
</tr>
<tr>
<td>Theory of Flight and Aerodynamics</td>
<td>10</td>
</tr>
<tr>
<td>Airplane Familiarization</td>
<td>90</td>
</tr>
<tr>
<td>To include as appropriate:</td>
<td></td>
</tr>
<tr>
<td>Specifications.</td>
<td></td>
</tr>
<tr>
<td>Construction features.</td>
<td></td>
</tr>
<tr>
<td>Flight controls.</td>
<td></td>
</tr>
<tr>
<td>Hydraulic systems.</td>
<td></td>
</tr>
<tr>
<td>Pneumatic systems.</td>
<td></td>
</tr>
<tr>
<td>Electrical systems.</td>
<td></td>
</tr>
<tr>
<td>Anti-icing and de-icing systems.</td>
<td></td>
</tr>
<tr>
<td>Pressuregulation and air-conditioning systems.</td>
<td></td>
</tr>
<tr>
<td>Vacuum systems.</td>
<td></td>
</tr>
<tr>
<td>Pilot static systems.</td>
<td></td>
</tr>
<tr>
<td>Instrument systems.</td>
<td></td>
</tr>
<tr>
<td>Fuel and oil systems.</td>
<td></td>
</tr>
<tr>
<td>Emergency equipment.</td>
<td></td>
</tr>
<tr>
<td>Engine Familiarization</td>
<td>45</td>
</tr>
<tr>
<td>To include as appropriate:</td>
<td></td>
</tr>
<tr>
<td>Specifications.</td>
<td></td>
</tr>
<tr>
<td>Construction features.</td>
<td></td>
</tr>
<tr>
<td>Ignition.</td>
<td></td>
</tr>
<tr>
<td>Carburetor and induction, supercharging and fuel control systems</td>
<td></td>
</tr>
<tr>
<td>Accessories.</td>
<td></td>
</tr>
<tr>
<td>Propellers.</td>
<td></td>
</tr>
<tr>
<td>Instrumentation.</td>
<td></td>
</tr>
<tr>
<td>Emergency equipment.</td>
<td></td>
</tr>
<tr>
<td>Normal Operations (Ground and Flight)</td>
<td>50</td>
</tr>
<tr>
<td>To include as appropriate:</td>
<td></td>
</tr>
<tr>
<td>Servicing methods and procedures.</td>
<td></td>
</tr>
<tr>
<td>Operation of all the airplane systems.</td>
<td></td>
</tr>
<tr>
<td>Operation of all the engine systems.</td>
<td></td>
</tr>
<tr>
<td>Loading and center of gravity computations.</td>
<td></td>
</tr>
<tr>
<td>Cruise control (normal, long range, maximum endurance)</td>
<td></td>
</tr>
<tr>
<td>Power and fuel computation.</td>
<td></td>
</tr>
<tr>
<td>Meteorology as applicable to engine operation</td>
<td></td>
</tr>
<tr>
<td>Emergency Operations</td>
<td>80</td>
</tr>
<tr>
<td>To include as appropriate:</td>
<td></td>
</tr>
<tr>
<td>Landing gear, brakes, flaps, speed brakes, and leading edge devices</td>
<td></td>
</tr>
<tr>
<td>Pressurization and air-conditioning.</td>
<td></td>
</tr>
<tr>
<td>Portable fire extinguishers.</td>
<td></td>
</tr>
<tr>
<td>Fuselage fire and smoke control.</td>
<td></td>
</tr>
<tr>
<td>Loss of electrical power.</td>
<td></td>
</tr>
<tr>
<td>Engine fire control.</td>
<td></td>
</tr>
<tr>
<td>Engine shut-down and restart.</td>
<td></td>
</tr>
<tr>
<td>Use of oxygen.</td>
<td></td>
</tr>
<tr>
<td>Recognition and correction of in-flight malfunctions</td>
<td>80</td>
</tr>
<tr>
<td>To include:</td>
<td></td>
</tr>
<tr>
<td>Analysis of abnormal engine operation.</td>
<td></td>
</tr>
<tr>
<td>Analysis of abnormal operation of all systems.</td>
<td></td>
</tr>
<tr>
<td>Corrective action.</td>
<td></td>
</tr>
<tr>
<td>Emergency Operations in Flight</td>
<td></td>
</tr>
<tr>
<td>To include as appropriate:</td>
<td></td>
</tr>
<tr>
<td>Engine fire control.</td>
<td></td>
</tr>
<tr>
<td>Fuselage fire control.</td>
<td></td>
</tr>
<tr>
<td>Smoke control.</td>
<td></td>
</tr>
<tr>
<td>Loss of power or pressure in each system.</td>
<td></td>
</tr>
<tr>
<td>Engine overspeed.</td>
<td></td>
</tr>
<tr>
<td>Fuel dumping.</td>
<td></td>
</tr>
<tr>
<td>Landing gear, spoilers, speed brakes, and flap extension and retraction</td>
<td></td>
</tr>
<tr>
<td>Engine shut-down and restart.</td>
<td></td>
</tr>
<tr>
<td>Use of oxygen.</td>
<td></td>
</tr>
<tr>
<td>(iv) If the Administrator finds a simulator or flight engineer training device to accurately reproduce the design, function, and control characteristics, as pertaining to the duties and responsibilities of a flight engineer on the type of airplane to be flown, the flight training time may be reduced by a ratio of 1 hour of flight time to 2 hours of airplane simulator time, or 3 hours of flight engineer training device time, as the case may be, subject to the following limitations: (a) Except as provided in subdivision (b) of this paragraph, the required flight instruction time in an airplane may not be less than 5 hours. (b) As to a flight engineer student holding at least a commercial pilot certificate with an instrument rating, airplane simulator or a combination of airplane simulator and flight engineer training device time may be submitted for up to all 10 hours of the required flight instruction time in an airplane. However, not more than 15 hours of flight engineer training device time may be substituted for flight instruction time. (v) To obtain credit for flight training time, airplane simulator time, or flight engineer training device time, the student must</td>
<td></td>
</tr>
</tbody>
</table>

The above subjects, except Theory of Flight and Aerodynamics, and Regulations must apply to the same type of airplane in which the student flight engineer is to receive flight training.

(3) Flight Course Outline. (i) The flight training curriculum must include at least 10 hours of flight instruction in an airplane specified in §63.37(a). The flight time required for the practical test may not be credited as part of the required flight instruction.

(ii) All of the flight training must be given in the same type airplane.
occupy the flight engineer station and operate the controls.

(b) Classroom equipment. Classroom equipment should consist of systems and procedures satisfactory to the Administrator, that duplicate the operation of the systems of the airplane in which the student is to receive his flight training.

(c) Contracts or agreements. (1) An approved flight engineer course operator may contract with other persons to obtain suitable airplanes, airplane simulators, or other training devices or equipment.

(2) An operator who is approved to conduct both the flight engineer ground course and the flight engineer flight course may contract with other persons to conduct one course or the other in its entirety but may not contract with others to conduct both courses for the same airplane type.

(3) An operator who has approval to conduct a flight engineer ground course or flight course for a type of airplane, but not both courses, may not contract with another person to conduct that course in whole or in part.

(4) An operator who contracts with another to conduct a flight engineer course may not authorize or permit the course to be conducted in whole or in part by a third person.

(5) In all cases, the course operator who is approved to operate the course is responsible for the nature and quality of the instruction given.

(6) A copy of each contract authorized under this paragraph must be attached to each of the 3 copies of the course outline submitted for approval.

(d) Instructors. (1) Only certificated flight engineers may give the flight instruction required by this appendix in an airplane, simulator, or flight engineer training device.

(2) There must be a sufficient number of qualified instructors available to prevent an excess ratio of students to instructors.

(e) Revisions. (1) Requests for revisions of the course outlines, facilities or equipment must follow the procedures for original approval of the course. Revisions must be submitted in such form that an entire page or pages of the approved outline can be removed and replaced by the revisions.

(2) The list of instructors may be revised at any time without request for approval, if the requirements of paragraph (d) of this appendix are maintained.

(f) Ground school credits. (1) Credit may be granted a student in the ground school course by the course operator for comparable previous training or experience that the student can show by written evidence: however, the course operator must still meet the quality of instruction as described in paragraph (h) of this appendix.

(2) Before credit for previous training or experience may be given, the student must pass a test given by the course operator on the subject for which the credit is to be given. The course operator shall incorporate results of the test, the basis for credit allowance, and the hours credited as part of the student’s records.

(g) Records and reports. (1) The course operator must maintain, for at least two years after a student graduates, fails, or drops from a course, a record of the student’s training, including a chronological log of the subject course, attendance examinations, and grades.

(2) Except as provided in paragraph (3) of this section, the course operator must submit to the Administrator, not later than January 31 of each year, a report for the previous calendar year’s training, to include:

(i) Name, enrollment and graduation date of each student;

(ii) Ground school hours and grades of each student;

(iii) Flight, airplane simulator, flight engineer training device hours, and grades of each student; and

(iv) Names of students failed or dropped, together with their school grades and reasons for dropping.

(3) Upon request, the Administrator may waive the reporting requirements of paragraph (2) of this section for an approved flight engineer course that is part of an approved training course under subpart N of part 121 of this chapter.

(h) Quality of instruction. (1) Approval of a ground course is discontinued whenever less than 80 percent of the students pass the FAA written test on the first attempt.

(2) Approval of a flight course is discontinued whenever less than 80 percent of the students pass the FAA practical test on the first attempt.

(3) Notwithstanding paragraphs (1) and (2) of this section, approval of a ground or flight course may be continued when the Administrator finds—

(i) That the failure rate was based on less than a representative number of students; or

(ii) That the course operator has taken satisfactory means to improve the effectiveness of the training.

(i) Time limitation. Each student must apply for the written test and the flight test within 90 days after completing the ground school course.

(j) Statement of course completion. (1) The course operator shall give to each student who successfully completes an approved flight engineer ground school training course, and passes the FAA written test, a statement of successful completion of the course that indicates the date of training, the type of airplane on which the ground course training was based, and the number of hours received in the ground school course.

(2) The course operator shall give each student who successfully completes an approved flight engineer flight course, and passed the
FAA practical test, a statement of successful completion of the flight course that indicates the dates of the training, the type of airplane used in the flight course, and the number of hours received in the flight course.

(3) A course operator who is approved to conduct both the ground course and the flight course may include both courses in a single statement of course completion if the provisions of paragraphs (1) and (2) of this section are included.

(4) The requirements of this paragraph do not apply to an air carrier or commercial operator with an approved training course under part 121 of this chapter providing the student receives a flight engineer certificate upon completion of that course.

(k) Inspections. Each course operator shall allow the Administrator at any time or place, to make any inspection necessary to ensure that the quality and effectiveness of the instruction are maintained at the required standards.

(i) Change of ownership, name, or location. (1) Approval of a flight engineer ground course or flight course is conditioned upon the course operator with an approved training course under part 121 of this chapter providing the student receives a flight engineer certificate upon completion of that course.

(2) Approval of a flight engineer ground course or flight course does not terminate upon a change in the name of the course that is reported to the Administrator within 30 days. The Administrator issues a new letter of approval, using the new name, upon receipt of notice within that time.

(3) Approval of a flight engineer ground course or flight course does not terminate upon a change in location of the course that is reported to the Administrator within 30 days. The Administrator issues a new letter of approval, showing the new location, upon receipt of notice within that time, if he finds the new facilities to be adequate.

(m) Cancellation of approval. (1) Failure to meet or maintain any of the requirements of this appendix for the approval of a flight engineer ground course or flight course is reason for cancellation of the approval.

(2) If a course operator desires to voluntarily terminate the course, he should notify the Administrator in writing and return the last letter of approval.

(n) Duration. Except for a course operated as part of an approved training course under subpart N of part 121 of this chapter, the approval to operate a flight engineer ground course or flight course terminates 24 months after the last day of the month of issue.

(o) Renewal. (1) Renewal of approval to operate a flight engineer ground course or flight course is conditioned upon the course operator’s meeting the requirements of this appendix.

(2) Application for renewal may be made to the Administrator at any time after 60 days before the termination date.

(p) Course operator approvals. An applicant for approval of a flight engineer ground course, or flight course, or both, must meet all of the requirements of this appendix concerning application, approval, and continuing approval of that course or courses.

(q) Practical test eligibility. An applicant for a flight engineer certificate and class rating under the provisions of §63.37(b)(6) is not eligible to take the practical test unless he has successfully completed an approved flight engineer ground school course in the same type of airplane for which he has completed an approved flight engineer flight course.
Pt. 65, SFAR 103

65.43 Rating privileges and exchange.
65.45 Performance of duties.
65.46–65.46b [Reserved]
65.47 Maximum hours.
65.49 General operating rules.
65.50 Currency requirements.

Subpart C—Aircraft Dispatchers

65.51 Certificate required.
65.53 Eligibility requirements: General.
65.55 Knowledge requirements.
65.57 Experience or training requirements.
65.59 Skill requirements.
65.61 Aircraft dispatcher certification courses: Content and minimum hours.
65.63 Aircraft dispatcher certification courses: Application, duration, and other general requirements.
65.65 Aircraft dispatcher certification courses: Training facilities.
65.67 Aircraft dispatcher certification courses: Personnel.
65.70 Aircraft dispatcher certification courses: Records.

Subpart D—Mechanics

65.71 Eligibility requirements: General.
65.73 Ratings.
65.75 Knowledge requirements.
65.77 Experience requirements.
65.79 Skill requirements.
65.80 Certificated aviation maintenance technician school students.
65.81 General privileges and limitations.
65.83 Recent experience requirements.
65.85 Airframe rating; additional privileges.
65.87 Powerplant rating; additional privileges.
65.89 Display of certificate.
65.91 Inspection authorization.
65.92 Inspection authorization: Duration.
65.93 Inspection authorization: Renewal.
65.95 Inspection authorization: Privileges and limitations.

Subpart E—Repairmen

65.101 Eligibility requirements: General.
65.103 Repairman certificate: Privileges and limitations.
65.104 Repairman certificate—experimental aircraft builder—Eligibility, privileges and limitations.
65.105 Display of certificate.

Subpart F—Parachute Riggers

65.111 Certificate required.
65.113 Eligibility requirements: General.
65.115 Senior parachute rigger certificate: Experience, knowledge, and skill requirements.

14 CFR Ch. I (1–1–12 Edition)

65.117 Military riggers or former military riggers: Special certification rule.
65.119 Master parachute rigger certificate: Experience, knowledge, and skill requirements.
65.121 Type ratings.
65.123 Additional type ratings: Requirements.
65.125 Certificates: Privileges.
65.127 Facilities and equipment.
65.129 Performance standards.
65.131 Records.
65.133 Seal.

Appendix A to Part 65—Aircraft Dispatcher Courses

Source: Docket No. 1179, 27 FR 7973, Aug. 10, 1962, unless otherwise noted.

SPECIAL FEDERAL AVIATION REGULATION No. 100–2

Editorial Note: For the text of SFAR No. 100–2, see part 61 of this chapter.

Special Federal Aviation Regulation No. 103—Process for Requesting Waiver of Mandatory Separation Age for a Federal Aviation Administration Air Traffic Control Specialist in Flight Service Stations, Enroute or Terminal Facilities, and the David J. Hurley Air Traffic Control System Command Center

1. To whom does this SFAR apply? This Special Federal Aviation Regulation (SFAR) applies to you if you are an air traffic control specialist (ATCS) employed by the FAA in flight service stations, enroute facilities, terminal facilities, or at the David J. Hurley Air Traffic Control System Command Center who wishes to obtain a waiver of the mandatory separation age as provided by 5 U.S.C. section 8335(a).

2. When must I file for a waiver? No earlier than the beginning of the twelfth month before, but no later than the beginning of the sixth month before, the month in which you turn 56, your official chain-of-command must receive your written request asking for a waiver of mandatory separation.

3. What if I do not file a request before six months before the month in which I turn 56? If your official chain-of-command does not receive your written request for a waiver of mandatory separation before the beginning of the sixth month before the month in which you turn 56, your request will be denied.
Federal Aviation Administration, DOT
Pl. 65, SFAR 103

4. How will the FAA determine if my request meets the filing time requirements of this SFAR?
 a. We consider your request to be filed in a timely manner under this SFAR if your official chain-of-command receives it or it is postmarked:
 i. After 12 a.m. on the first day of the twelfth month before the month in which you turn 56; and
 ii. Before 12 a.m. of the first day of the sixth month before the month in which you turn 56.
 b. If you file your request by mail and the postmark is not legible, we will consider it to comply with paragraph a.2 of this section if we receive it by 12 p.m. of the fifth day of the sixth month before the month in which you turn 56.
 c. If the last day of the time period specified in paragraph a.2 or paragraph b falls on a Saturday, Sunday, or Federal holiday, we will consider the time period to end at 12 p.m. of the next business day.

5. Where must I file my request for waiver and what must it include?
 a. You must file your request for waiver of mandatory separation in writing with the Air Traffic Manager in flight service stations, enroute facilities, terminal facilities, or the David J. Hurley Air Traffic Control System Command Center in which you are employed.
 b. Your request for waiver must include all of the following:
 i. Your name.
 ii. Your current facility.
 iii. Your starting date at the facility.
 iv. A list of positions at the facility that you are certified in and how many hours it took to achieve certification at the facility.
 v. Your area of specialty at the facility.
 vi. Your shift schedule.
 vii. [Reserved]
 viii. A list of all facilities where you have worked as a certified professional controller (CPC) including facility level and dates at each facility.
 ix. Evidence of your exceptional skills and experience as a controller; and
 x. Your signature.

6. How will my waiver request be reviewed?
 a. Upon receipt of your request for waiver, the Air Traffic Manager of your facility will make a written recommendation that the Administrator either approve or deny your request. If the manager recommends approval of your request, he or she will certify in writing the accuracy of the information you have provided as evidence of exceptional skills and experience.
 d. The senior executive manager in the regional chain-of-command will then forward his or her recommendation with a copy of your request to the appropriate Vice President at FAA Headquarters. Depending on the facility in which you are employed, the request will be forwarded to either the Vice President for Flight Services, the Vice President for Enroute and Oceanic Services, the Vice President for Terminal Services or the Vice President for Systems Operations. For example, if you work at a flight service station at the time that you request a waiver, the request will be forwarded to the Vice President for Flight Services.
 e. The appropriate Vice President will review your request and make a written recommendation that the Administrator either approve or deny your request, which will be forwarded to the Administrator.
 f. The Administrator will issue the final decision on your request.

7. If I am granted a waiver, when will it expire?
 a. Waivers will be granted for a period of one year.
 b. No later than 90-days prior to expiration of a waiver, you may request that the waiver be extended using the same process identified in section 6.
 c. If you timely request an extension of the waiver and it is denied, you will receive a 60-day advance notice of your separation date simultaneously with notification of the denial.
 d. If you do not request an extension of the waiver granted, you will receive a 60-day advance notice of your separation date.
 e. Action to separate you from your covered position becomes effective on the last day of the month in which the 60-day notice expires.

8. Under what circumstances may my waiver be terminated?
 a. The FAA/DOT may terminate your waiver under the following circumstances:
 i. The needs of the FAA; or
 ii. If you are identified as a primary contributor to an operational error/deviation or runway incursion.
 b. If the waiver is terminated for either of the reasons identified in paragraph 1 of this section, the air traffic control specialist will receive a 60-day advance notice.
 c. Action to separate you from your covered position becomes effective on the last day of the month in which the 60-day notice expires.
9. Appeal of denial or termination of waiver request: The denial or termination of a waiver of mandatory separation request is neither appealable nor grievable.

Subpart A—General

§ 65.1 Applicability.

This part prescribes the requirements for issuing the following certificates and associated ratings and the general operating rules for the holders of those certificates and ratings:

(a) Air-traffic control-tower operators.
(b) Aircraft dispatchers.
(c) Mechanics.
(d) Repairmen.
(e) Parachute riggers.

§ 65.3 Certification of foreign airmen other than flight crewmembers.

A person who is neither a U.S. citizen nor a resident alien is issued a certificate under subpart D of this part, outside the United States, only when the Administrator finds that the certificate is needed for the operation or continued airworthiness of a U.S.-registered civil aircraft.

[Doc. 65–28, 47 FR 35693, Aug. 16, 1982]

§ 65.11 Application and issue.

(a) Application for a certificate and appropriate class rating, or for an additional rating, under this part must be made on a form and in a manner prescribed by the Administrator. Each person who applies for airmen certification services to be administered outside the United States or for any certificate or rating issued under this part must show evidence that the fee prescribed in appendix A of part 187 of this chapter has been paid.

(b) An applicant who meets the requirements of this part is entitled to an appropriate certificate and rating.

(c) Unless authorized by the Administrator, a person whose air traffic control tower operator, mechanic, or parachute rigger certificate is suspended may not apply for any rating to be added to that certificate during the period of suspension.

(d) Unless the order of revocation provides otherwise—

(1) A person whose air traffic control tower operator, aircraft dispatcher, or parachute rigger certificate is revoked may not apply for the same kind of certificate for 1 year after the date of revocation; and

(2) A person whose mechanic or repairman certificate is revoked may not apply for either of those kinds of certificates for 1 year after the date of revocation.

§ 65.12 Offenses involving alcohol or drugs.

(a) A conviction for the violation of any Federal or state statute relating to the growing, processing, manufacture, sale, disposition, possession, transportation, or importation of narcotic drugs, marihuana, or depressant or stimulant drugs or substances is grounds for—

(1) Denial of an application for any certificate or rating issued under this part for a period of up to 1 year after the date of final conviction; or

(2) Suspension or revocation of any certificate or rating issued under this part.

(b) The commission of an act prohibited by § 91.19(a) of this chapter is grounds for—

(1) Denial of an application for a certificate or rating issued under this part for a period of up to 1 year after the date of that act; or

(2) Suspension or revocation of any certificate or rating issued under this part.

§ 65.13 Temporary certificate.

A certificate and ratings effective for a period of not more than 120 days may be issued to a qualified applicant, pending review of his application and supplementary documents and the issue of
§ 65.14 Security disqualification.

(a) Eligibility standard. No person is eligible to hold a certificate, rating, or authorization issued under this part when the Transportation Security Administration (TSA) has notified the FAA in writing that the person poses a security threat.

(b) Effect of the issuance by the TSA of an Initial Notification of Threat Assessment. (1) The FAA will hold in abeyance pending the outcome of the TSA’s final threat assessment review an application for any certificate, rating, or authorization under this part by any person who has been issued an Initial Notification of Threat Assessment by the TSA.

(2) The FAA will suspend any certificate, rating, or authorization issued under this part after the TSA issues to the holder an Initial Notification of Threat Assessment.

(c) Effect of the issuance by the TSA of a Final Notification of Threat Assessment. (1) The FAA will deny an application for any certificate, rating, or authorization under this part to any person who has been issued a Final Notification of Threat Assessment.

(2) The FAA will revoke any certificate, rating, or authorization issued under this part after the TSA has issued to the holder a Final Notification of Threat Assessment.

§ 65.15 Duration of certificates.

(a) Except for repairman certificates, a certificate or rating issued under this part is effective until it is surrendered, suspended, or revoked.

(b) Unless it is sooner surrendered, suspended, or revoked, a repairman certificate is effective until the holder is relieved from the duties for which the holder was employed and certified.

(c) The holder of a certificate issued under this part that is suspended, revoked, or no longer effective shall return it to the Administrator.

(d) Except for temporary certificates issued under §65.13, the holder of a paper certificate issued under this part may not exercise the privileges of that certificate after March 31, 2013.

§ 65.16 Change of name: Replacement of lost or destroyed certificate.

(a) An application for a change of name on a certificate issued under this part must be accompanied by the applicant’s current certificate and the marriage license, court order, or other document verifying the change. The documents are returned to the applicant after inspection.

(b) An application for a replacement of a lost or destroyed certificate is made by letter to the Department of Transportation, Federal Aviation Administration, Airman Certification Branch, Post Office Box 25082, Oklahoma City, OK 73125. The letter must—

(1) Contain the name in which the certificate was issued, the permanent mailing address (including zip code), social security number (if any), and date and place of birth of the certificate holder, and any available information regarding the grade, number, and date of issue of the certificate, and the ratings on it; and

(2) Be accompanied by a check or money order for $2, payable to the Federal Aviation Administration.

(c) An application for a replacement of a lost or destroyed medical certificate is made by letter to the Department of Transportation, Federal Aviation Administration, Aerospace Medical Certification Division, Post Office Box 26200, Oklahoma City, OK 73125, accompanied by a check or money order for $2.00.

(d) A person whose certificate issued under this part or medical certificate, or both, has been lost may obtain a telegram from the FAA confirming that it was issued. The telegram may be carried as a certificate for a period not to exceed 60 days pending his receiving a duplicate certificate under...
paragraph (b) or (c) of this section, unless he has been notified that the certificate has been suspended or revoked. The request for such a telegram may be made by prepaid telegram, stating the date upon which a duplicate certificate was requested, or including the request for a duplicate and a money order for the necessary amount. The request for a telegraphic certificate should be sent to the office prescribed in paragraph (b) or (c) of this section, as appropriate. However, a request for both at the same time should be sent to the office prescribed in paragraph (b) of this section.

§ 65.18 Written tests: Cheating or other unauthorized conduct.

(a) Except as authorized by the Administrator, no person may—

(1) Copy, or intentionally remove, a written test under this part;
(2) Give to another, or receive from another, any part or copy of that test;
(3) Give help on that test to, or receive help on that test from, any person during the period that test is being given;
(4) Take any part of that test on behalf of another person;
(5) Use any material or aid during the period that test is being given; or
(6) Intentionally cause, assist, or participate in any act prohibited by this paragraph.

(b) No person who commits an act prohibited by paragraph (a) of this section is eligible for any airman or ground instructor certificate or rating held by that person.

§ 65.19 Retesting after failure.

An applicant for a written, oral, or practical test for a certificate and rating, or for an additional rating under this part, may apply for retesting—

(a) After 30 days after the date the applicant failed the test; or

(b) Before the 30 days have expired if the applicant presents a signed statement from an airman holding the certificate and rating sought by the applicant, certifying that the airman has given the applicant additional instruction in each of the subjects failed and that the airman considers the applicant ready for retesting.

§ 65.20 Applications, certificates, logbooks, reports, and records: Falsification, reproduction, or alteration.

(a) No person may make or cause to be made—

(1) Any fraudulent or intentionally false statement on any application for a certificate or rating under this part;
(2) Any fraudulent or intentionally false entry in any logbook, record, or report that is required to be kept, made, or used, to show compliance with any requirement for any certificate or rating under this part;
(3) Any reproduction, for fraudulent purpose, of any certificate or rating under this part; or
(4) Any alteration of any certificate or rating under this part.

(b) The commission by any person of an act prohibited under paragraph (a) of this section is a basis for suspending or revoking any airman or ground instructor certificate or rating held by that person.

§ 65.21 Change of address.

Within 30 days after any change in his permanent mailing address, the holder of a certificate issued under this chapter shall notify the Department of Transportation, Federal Aviation Administration, Airman Certification
Federal Aviation Administration, DOT

Branch, Post Office Box 25082, Oklahoma City, OK 73125, in writing, of his new address.

[Doc. No. 10536, 35 FR 14075, Sept. 4, 1970]

§ 65.23 [Reserved]

Subpart B—Air Traffic Control Tower Operators

SOURCE: Docket No. 10193, 35 FR 12326, Aug. 1, 1970, unless otherwise noted.

§ 65.31 Required certificates, and rating or qualification.

No person may act as an air traffic control tower operator at an air traffic control tower in connection with civil aircraft unless he—

(a) Holds an air traffic control tower operator certificate issued to him under this subpart;

(b) Holds a facility rating for that control tower issued to him under this subpart, or has qualified for the operating position at which he acts and is under the supervision of the holder of a facility rating for that control tower; and

For the purpose of this subpart, operating position means an air traffic control function performed within or directly associated with the control tower;

(c) Except for a person employed by the FAA or employed by, or on active duty with, the Department of the Air Force, Army, or Navy or the Coast Guard, holds at least a second-class medical certificate issued under part 67 of this chapter.

§ 65.33 Eligibility requirements: General.

To be eligible for an air traffic control tower operator certificate a person must—

(a) Be at least 18 years of age;

(b) Be of good moral character;

(c) Be able to read, write, and understand the English language and speak it without accent or impediment of speech that would interfere with two-way radio conversation;

(d) Except for a person employed by the FAA or employed by, or on active duty with, the Department of the Air Force, Army, or Navy or the Coast Guard, hold at least a second-class medical certificate issued under part 67 of this chapter within the 12 months before the date application is made; and

(e) Comply with § 65.35.

§ 65.37 Skill requirements: Operating positions.

No person may act as an air traffic control tower operator at any operating position unless he has passed a practical test on—

(a) The flight rules in part 91 of this chapter;

(b) Airport traffic control procedures, and this subpart;

(c) En route traffic control procedures;

(d) Communications operating procedures;

(e) Flight assistance service;

(f) Air navigation, and aids to air navigation; and

(g) Aviation weather.

§ 65.35 Knowledge requirements.

Each applicant for an air traffic control tower operator certificate must pass a written test on—

(a) The flight rules in part 91 of this chapter;

(b) Airport traffic control procedures, and this subpart;

(c) En route traffic control procedures;

(d) Communications operating procedures;

(e) Flight assistance service;

(f) Air navigation, and aids to air navigation; and

(g) Aviation weather.

§ 65.37 Skill requirements: Operating positions.

No person may act as an air traffic control tower operator at any operating position unless he has passed a practical test on—

(a) Control tower equipment and its use;

(b) Weather reporting procedures and use of reports;

(c) Notices to Airmen, and use of the Airmen’s Information Manual;

(d) Use of operational forms;

(e) Performance of noncontrol operational duties; and

(f) Each of the following procedures that is applicable to that operating position and is required by the person performing the examination:

(1) The airport, including rules, equipment, runways, taxiways, and obstructions.

(2) The terrain features, visual checkpoints, and obstructions within the lateral boundaries of the surface areas of Class B, Class C, Class D, or Class E airspace designated for the airport.
§ 65.39 Practical experience requirements: Facility rating.

Each applicant for a facility rating at any air traffic control tower must have satisfactorily served—

(a) As an air traffic control tower operator at that control tower without a facility rating for at least 6 months; or

(b) As an air traffic control tower operator with a facility rating at a different control tower for at least 6 months before the date he applies for the rating.

However, an applicant who is a member of an Armed Force of the United States meets the requirements of this section if he has satisfactorily served as an air traffic control tower operator for at least 6 months.

§ 65.41 Skill requirements: Facility ratings.

Each applicant for a facility rating at an air traffic control tower must have passed a practical test on each item listed in §65.37 of this part that is applicable to each operating position at the control tower at which the rating is sought.

§ 65.43 Rating privileges and exchange.

(a) The holder of a senior rating on August 31, 1970, may at any time after that date exchange his rating for a facility rating at the same air traffic control tower. However, if he does not do so before August 31, 1971, he may not thereafter exercise the privileges of his senior rating at the control tower concerned until he makes the exchange.

(b) The holder of a junior rating on August 31, 1970, may not control air traffic, at any operating position at the control tower concerned, until he has met the applicable requirements of §65.37 of this part. However, before meeting those requirements he may control air traffic under the supervision, where required, of an operator with a senior rating (or facility rating) in accordance with §65.41 of this part in effect before August 31, 1970.

§ 65.45 Performance of duties.

(a) An air traffic control tower operator shall perform his duties in accordance with the limitations on his certificate and the procedures and practices prescribed in air traffic control manuals of the FAA, to provide for the safe, orderly, and expeditious flow of air traffic.

(b) An operator with a facility rating may control traffic at any operating position at the control tower at which he holds a facility rating. However, he may not issue an air traffic clearance for IFR flight without authorization from the appropriate facility exercising IFR control at that location.

(c) An operator who does not hold a facility rating for a particular control tower may act at each operating position for which he has qualified, under the supervision of an operator holding a facility rating for that control tower.

§§ 65.46–65.46b [Reserved]

§ 65.47 Maximum hours.

Except in an emergency, a certified air traffic control tower operator must be relieved of all duties for at least 24 consecutive hours at least once during each 7 consecutive days. Such
§ 65.53 Eligibility requirements: General.

(a) To be eligible to take the aircraft dispatcher knowledge test, a person must be at least 21 years of age.

(b) To be eligible for an aircraft dispatcher certificate, a person must—

(1) Be at least 23 years of age;
§ 65.55 Knowledge requirements.

(a) A person who applies for an aircraft dispatcher certificate must pass a knowledge test on the following aeronautical knowledge areas:

(1) Applicable Federal Aviation Regulations of this chapter that relate to airline transport pilot privileges, limitations, and flight operations;
(2) Meteorology, including knowledge of and effects of fronts, frontal characteristics, cloud formations, icing, and upper-air data;
(3) General system of weather and NOTAM collection, dissemination, interpretation, and use;
(4) Interpretation and use of weather charts, maps, forecasts, sequence reports, abbreviations, and symbols;
(5) National Weather Service functions as they pertain to operations in the National Airspace System;
(6) Windshear and microburst awareness, identification, and avoidance;
(7) Principles of air navigation under instrument meteorological conditions in the National Airspace System;
(8) Air traffic control procedures and pilot responsibilities as they relate to enroute operations, terminal area and radar operations, and instrument departure and approach procedures;
(9) Aircraft loading, weight and balance, use of charts, graphs, tables, formulas, and computations, and their effect on aircraft performance;
(10) Aerodynamics relating to an aircraft’s flight characteristics and performance in normal and abnormal flight regimes;
(11) Human factors;
(12) Aeronautical decision making and judgment; and
(13) Crew resource management, including crew communication and coordination.

(b) The applicant must present documentary evidence satisfactory to the administrator of having passed an aircraft dispatcher knowledge test within the preceding 24 calendar months.

§ 65.57 Experience or training requirements.

An applicant for an aircraft dispatcher certificate must present documentary evidence satisfactory to the Administrator that he or she has the experience prescribed in paragraph (a) of this section or has accomplished the training described in paragraph (b) of this section as follows:

(a) A total of at least 2 years experience in the 3 years before the date of application, in any one or in any combination of the following areas:

(1) In military aircraft operations as—
 (i) Pilot;
 (ii) Flight navigator; or
 (iii) Meteorologist.
(2) In aircraft operations conducted under part 121 of this chapter as—
 (i) An assistant in dispatching air carrier aircraft, under the direct supervision of a dispatcher certificated under this subpart;
 (ii) A pilot;
 (iii) A flight engineer; or
 (iv) A meteorologist.
(3) In aircraft operations as—
 (i) An Air Traffic Controller; or
 (ii) A Flight Service Specialist.
(4) In aircraft operations, performing other duties that the Administrator finds provide equivalent experience.

(b) A statement of graduation issued or revalidated in accordance with §65.70(b) of this part, showing that the person has successfully completed an approved aircraft dispatcher course.

§ 65.59 Skill requirements.

An applicant for an aircraft dispatcher certificate must pass a practical test given by the Administrator, with respect to any one type of large aircraft used in air carrier operations. The practical test must be based on the aircraft dispatcher practical test standards, as published by the FAA, on the items outlined in appendix A of this part.
§ 65.61 Aircraft dispatcher certification courses: Content and minimum hours.

(a) An approved aircraft dispatcher certification course must:

(1) Provide instruction in the areas of knowledge and topics listed in appendix A of this part;

(2) Include a minimum of 200 hours of instruction.

(b) An applicant for approval of an aircraft dispatcher course must submit an outline that describes the major topics and subtopics to be covered and the number of hours proposed for each.

(c) Additional subject headings for an aircraft dispatcher certification course may also be included, however the hours proposed for any subjects not listed in appendix A of this part must be in addition to the minimum 200 course hours required in paragraph (a) of this section.

(d) For the purpose of completing an approved course, a student may substitute previous experience or training for a portion of the minimum 200 hours of training. The course operator determines the number of hours of credit based on an evaluation of the experience or training to determine if it is comparable to portions of the approved course curriculum. The credit allowed, including the total hours and the basis for it, must be placed in the student’s record required by §65.70(a) of this part.

§ 65.63 Aircraft dispatcher certification courses: Application, duration, and other general requirements.

(a) Application. Application for original approval of an aircraft dispatcher certification course or the renewal of approval of an aircraft dispatcher certification course under this part must be:

(1) Made in writing to the Administrator;

(2) Accompanied by two copies of the course outline required under §65.61(b) of this part, for which approval is sought;

(3) Accompanied by a description of the equipment and facilities to be used; and

(4) Accompanied by a list of the instructors and their qualifications.

(b) Duration. Unless withdrawn or canceled, an approval of an aircraft dispatcher certification course of study expires:

(1) On the last day of the 24th month from the month the approval was issued; or

(2) Except as provided in paragraph (f) of this section, on the date that any change in ownership of the school occurs.

(c) Renewal. Application for renewal of an approved aircraft dispatcher certification course must be made within 30 days preceding the month the approval expires, provided the course operator meets the following requirements:

(1) At least 80 percent of the graduates from that aircraft dispatcher certification course, who applied for the practical test required by §65.59 of this part, passed the practical test on their first attempt; and

(2) The aircraft dispatcher certification course continues to meet the requirements of this subpart for course approval.

(d) Course revisions. Requests for approval of a revision of the course outline, facilities, or equipment must be in accordance with paragraph (a) of this section. Proposed revisions of the course outline or the description of facilities and equipment must be submitted in a format that will allow an entire page or pages of the approved outline or description to be removed and replaced by any approved revision. The list of instructors may be revised at any time without request for approval, provided the minimum requirements of §65.67 of this part are maintained and the Administrator is notified in writing.

(e) Withdrawal or cancellation of approval. Failure to continue to meet the requirements of this subpart for the approval or operation of an approved aircraft dispatcher certification course is grounds for withdrawal of approval of the course. A course operator may request cancellation of course approval by a letter to the Administrator. The operator must forward any records to the FAA as requested by the Administrator.
§ 65.65 Aircraft dispatcher certification courses: Training facilities.

An applicant for approval of authority to operate an aircraft dispatcher course of study must have facilities, equipment, and materials adequate to provide each student the theoretical and practical aspects of aircraft dispatching. Each room, training booth, or other space used for instructional purposes must be temperature controlled, lighted, and ventilated to conform to local building, sanitation, and health codes. In addition, the training facility must be so located that the students in that facility are not distracted by the instruction conducted in other rooms.

§ 65.67 Aircraft dispatcher certification courses: Personnel.

(a) Each applicant for an aircraft dispatcher certification course must meet the following personnel requirements:

(1) Each applicant must have adequate personnel, including one instructor who holds an aircraft dispatcher certificate and is available to coordinate all training course instruction.

(2) Each applicant must not exceed a ratio of 25 students for one instructor.

(b) The instructor who teaches the practical dispatch applications area of the appendix A course must hold an aircraft dispatchers certificate.

§ 65.70 Aircraft dispatcher certification courses: Records.

(a) The operator of an aircraft dispatcher course must maintain a record for each student, including a chronological log of all instructors, subjects covered, and course examinations and results. The record must be retained for at least 3 years after graduation. The course operator also must prepare, for its records, and transmit to the Administrator not later than January 31 of each year, a report containing the following information for the previous year:

(1) The names of all students who graduated, together with the results of their aircraft dispatcher certification courses.

(2) The names of all the students who failed or withdrew, together with the results of their aircraft dispatcher certification courses or the reasons for their withdrawal.

(b) Each student who successfully completes the approved aircraft dispatcher certification course must be given a written statement of graduation, which is valid for 90 days. After 90 days, the course operator may revalidate the graduation certificate for an additional 90 days if the course operator determines that the student remains proficient in the subject areas listed in appendix A of this part.

Subpart D—Mechanics

§ 65.71 Eligibility requirements: General.

(a) To be eligible for a mechanic certificate and associated ratings, a person must—

(1) Be at least 18 years of age;

(2) Be able to read, write, speak, and understand the English language, or in the case of an applicant who does not meet this requirement and who is employed outside of the United States by a U.S. air carrier, have his certificate endorsed “Valid only outside the United States”;

(3) Have passed all of the prescribed tests within a period of 24 months; and

(4) Comply with the sections of this subpart that apply to the rating he seeks.

(b) A certificated mechanic who applies for an additional rating must
§ 65.73 Ratings.

(a) The following ratings are issued under this subpart:

(1) Airframe.

(2) Powerplant.

(b) A mechanic certificate with an aircraft or aircraft engine rating, or both, that was issued before, and was valid on, June 15, 1952, is equal to a mechanic certificate with an airframe or powerplant rating, or both, as the case may be, and may be exchanged for such a corresponding certificate and rating or ratings.

§ 65.75 Knowledge requirements.

(a) Each applicant for a mechanic certificate or rating must, after meeting the applicable experience requirements of §65.77, pass a written test covering the construction and maintenance of aircraft appropriate to the rating he seeks, the regulations in this subpart, and the applicable provisions of parts 43 and 91 of this chapter. The basic principles covering the installation and maintenance of propellers are included in the powerplant test.

(b) The applicant must pass each section of the test before applying for the oral and practical tests prescribed by §65.79. A report of the written test is sent to the applicant.

§ 65.77 Experience requirements.

Each applicant for a mechanic certificate or rating must present either an appropriate graduation certificate or certificate of completion from a certificated aviation maintenance technician school or documentary evidence, satisfactory to the Administrator, of—

(a) At least 18 months of practical experience with the procedures, practices, materials, tools, machine tools, and equipment generally used in constructing, maintaining, or altering airframes, or powerplants appropriate to the rating sought; or

(b) At least 30 months of practical experience concurrently performing the duties appropriate to both the airframe and powerplant ratings.

§ 65.79 Skill requirements.

Each applicant for a mechanic certificate or rating must pass an oral and a practical test on the rating he seeks. The tests cover the applicant’s basic skill in performing practical projects on the subjects covered by the written test for that rating. An applicant for a powerplant rating must show his ability to make satisfactory minor repairs to, and minor alterations of, propellers.

§ 65.80 Certificated aviation maintenance technician school students.

Whenever an aviation maintenance technician school certificated under part 147 of this chapter shows to an FAA inspector that any of its students has made satisfactory progress at the school and is prepared to take the oral and practical tests prescribed by §65.79, that student may take those tests during the final subjects of his training in the approved curriculum, before he meets the applicable experience requirements of §65.77 and before he passes each section of the written test prescribed by §65.75.

§ 65.81 General privileges and limitations.

(a) A certificated mechanic may perform or supervise the maintenance, preventive maintenance or alteration of an aircraft or appliance, or a part thereof, for which he is rated (but excluding major repairs to, and major alterations of, propellers, and any repair to, or alteration of, instruments), and may perform additional duties in accordance with §§65.85, 65.87, and 65.95. However, he may not supervise the maintenance, preventive maintenance, or alteration of, or approve and return to service, any aircraft or appliance, or part thereof, for which he is rated unless he has satisfactorily performed the
§ 65.83 Recent experience requirements.

A certificated mechanic may not exercise the privileges of his certificate and rating unless he understands the current instructions of the manufacturer, and the maintenance manuals, for the specific operation concerned.

(b) A certificated mechanic may not exercise the privileges of his certificate and rating unless he has performed that work at an earlier date, if he has not so performed that work at an earlier date, he may show his ability to do it by performing it to the satisfaction of the Administrator, or under the direct supervision of a certificated and appropriately rated mechanic, or a certificated repairman, who has had previous experience in the specific operation concerned.

§ 65.85 Airframe rating; additional privileges.

(a) Except as provided in paragraph (b) of this section, a certificated mechanic with an airframe rating may approve and return to service an airframe, or any related part or appliance, after he has performed, supervised, or inspected its maintenance or alteration (excluding major repairs and major alterations). In addition, he may perform the 100-hour inspection required by part 91 of this chapter on an airframe, or any part thereof, and approve and return it to service.

(b) A certificated mechanic with an airframe rating can approve and return to service an airframe, or any related part or appliance, of an aircraft with a special airworthiness certificate in the light-sport category after performing and inspecting a major repair or major alteration for products that are not produced under an FAA approval provided the work was performed in accordance with instructions developed by the manufacturer or a person acceptable to the FAA.

§ 65.87 Powerplant rating; additional privileges.

(a) Except as provided in paragraph (b) of this section, a certificated mechanic with a powerplant rating may approve and return to service a powerplant or propeller or any related part or appliance, after he has performed, supervised, or inspected its maintenance or alteration (excluding major repairs and major alterations). In addition, he may perform the 100-hour inspection required by part 91 of this chapter on a powerplant or propeller, or any part thereof, and approve and return it to service.

(b) A certificated mechanic with a powerplant rating can approve and return to service a powerplant or propeller, or any related part or appliance, of an aircraft with a special airworthiness certificate in the light-sport category after performing and inspecting a major repair or major alteration for products that are not produced under an FAA approval, provided the work was performed in accordance with instructions developed by the manufacturer or a person acceptable to the FAA.

§ 65.89 Display of certificate.

Each person who holds a mechanic certificate shall keep it within the immediate area where he normally exercises the privileges of the certificate and shall present it for inspection upon the request of the Administrator or an authorized representative of the National Transportation Safety Board, or...
Federal Aviation Administration, DOT

§ 65.91 Inspection authorization.

(a) An application for an inspection authorization is made on a form and in a manner prescribed by the Administrator.

(b) An applicant who meets the requirements of this section is entitled to an inspection authorization.

(c) To be eligible for an inspection authorization, an applicant must—

(1) Hold a currently effective mechanic certificate with both an airframe rating and a powerplant rating, each of which is currently effective and has been in effect for a total of at least 3 years;

(2) Have been actively engaged, for at least the 2-year period before the date he applies, in maintaining aircraft certificated and maintained in accordance with this chapter;

(3) Have a fixed base of operations at which he may be located in person or by telephone during a normal working week but it need not be the place where he will exercise his inspection authority;

(4) Have available to him the equipment, facilities, and inspection data necessary to properly inspect airframes, powerplants, propellers, or any related part or appliance; and

(5) Pass a written test on his ability to inspect according to safety standards for returning aircraft to service after major repairs and major alterations and annual and progressive inspections performed under part 43 of this chapter.

An applicant who fails the test prescribed in paragraph (c)(5) of this section may not apply for retesting until at least 90 days after the date he failed the test.

§ 65.92 Inspection authorization: Duration.

(a) Each inspection authorization expires on March 31 of each odd-numbered year. However, the holder may exercise the privileges of that authorization only while he holds a currently effective mechanic certificate with both a currently effective airframe rating and a currently effective powerplant rating.

(b) An inspection authorization ceases to be effective whenever any of the following occurs:

(1) The authorization is surrendered, suspended, or revoked.

(2) The holder no longer has a fixed base of operation.

(3) The holder no longer has the equipment, facilities, and inspection data required by §65.91(c)(3) and (4) for issuance of his authorization.

(c) The holder of an inspection authorization that is suspended or revoked shall, upon the Administrator’s request, return it to the Administrator.

§ 65.93 Inspection authorization: Renewal.

(a) To be eligible for renewal of an inspection authorization for a 2-year period an applicant must present evidence during the month of March of each odd-numbered year, at an FAA Flight Standards District Office or an International Field Office, that the applicant still meets the requirements of §65.91(c) (1) through (4). In addition, during the time the applicant held the inspection authorization, the applicant must show completion of one of the activities in §65.93(a)(1) through (5) below by March 31 of the first year of the 2-year inspection authorization period, and completion of one of the five activities during the second year of the 2-year period:

(1) Performed at least one annual inspection for each 90 days that the applicant held the current authority; or

(2) Performed at least two major repairs or major alterations for each 90 days that the applicant held the current authority; or

(3) Performed or supervised and approved at least one progressive inspection in accordance with standards prescribed by the Administrator; or
§ 65.95 Inspection authorization: Privileges and limitations.

(a) The holder of an inspection authorization may—
(1) Inspect and approve for return to service any aircraft or related part or appliance (except any aircraft maintained in accordance with a continuous airworthiness program under part 121 of this chapter) after a major repair or major alteration to it in accordance with part 43 [New] of this chapter, if the work was done in accordance with technical data approved by the Administrator; and
(2) Perform an annual, or perform or supervise a progressive inspection according to §§ 43.13 and 43.15 of this chapter.

(b) When he exercises the privileges of an inspection authorization the holder shall keep it available for inspection by the aircraft owner, the mechanic submitting the aircraft, repair, or alteration for approval (if any), and shall present it upon the request of the Administrator or an authorized representative of the National Transportation Safety Board, or of any Federal, State, or local law enforcement officer.

(c) If the holder of an inspection authorization changes his fixed base of operation, he may not exercise the privileges of the authorization until he has notified the FAA Flight Standards District Office or International Field Office for the area in which the new base is located, in writing, of the change.

Subpart E—Repairmen

§ 65.101 Eligibility requirements: General.

(a) To be eligible for a repairman certificate a person must—
(1) Be at least 18 years of age;
(2) Be specially qualified to perform maintenance on aircraft or components thereof, appropriate to the job for which he is employed;
(3) Be employed for a specific job requiring those special qualifications by a certificated repair station, or by a certificated commercial operator or certificated air carrier, that is required by its operating certificate or approved operations specifications to provide a continuous airworthiness maintenance program according to its maintenance manuals;
(4) Be recommended for certification by his employer, to the satisfaction of the Administrator, as able to satisfactorily maintain aircraft or components, appropriate to the job for which he is employed; and
(5) Have either—
§ 65.103 Repairman certificate: Privileges and limitations.

(a) A certificated repairman may perform or supervise the maintenance, preventive maintenance, or alteration of aircraft or aircraft components appropriate to the job for which the repairman was employed and certified, but only in connection with duties for the certificate holder by whom the repairman was employed and recommended.

(b) A certificated repairman may not perform or supervise duties under the repairman certificate unless the repairman understands the current instructions of the certificate holder by whom the repairman is employed and the manufacturer’s instructions for continued airworthiness relating to the specific operations concerned.

(c) This section does not apply to the holder of a repairman certificate (light-sport aircraft) while that repairman is performing work under that certificate.

§ 65.104 Repairman certificate—experimental aircraft builder—Eligibility, privileges and limitations.

(a) To be eligible for a repairman certificate (experimental aircraft builder), an individual must—

(1) Be at least 18 years of age;

(2) Be the primary builder of the aircraft to which the privileges of the certificate are applicable;

(3) Show to the satisfaction of the Administrator that the individual has the requisite skill to determine whether the aircraft is in a condition for safe operations; and

(4) Be a citizen of the United States or an individual citizen of a foreign country who has lawfully been admitted for permanent residence in the United States.

(b) This section does not apply to the holder of a repairman certificate (experimental aircraft builder) while performing under that certificate.

§ 65.105 Display of certificate.

Each person who holds a repairman certificate shall keep it within the immediate area where he normally exercises the privileges of the certificate and shall present it for inspection upon the request of the Administrator or an authorized representative of the National Transportation Safety Board, or of any Federal, State, or local law enforcement officer.

§ 65.107 Repairman certificate (light-sport aircraft): Eligibility, privileges, and limits.

(a) Use the following table to determine your eligibility for a repairman
§ 65.107

Certificate (light-sport aircraft) and appropriate rating:

<table>
<thead>
<tr>
<th>To be eligible for</th>
<th>You must</th>
</tr>
</thead>
</table>
| (1) A repairman certificate (light-sport aircraft). | (i) Be at least 18 years old,
(ii) Be able to read, speak, write, and understand English. If for medical reasons you cannot meet one of these requirements, the FAA may place limits on your repairman certificate necessary to safely perform the actions authorized by the certificate and rating,
(iii) Demonstrate the requisite skill to determine whether a light-sport aircraft is in a condition for safe operation, and
(iv) Be a citizen of the United States, or a citizen of a foreign country who has been lawfully admitted for permanent residence in the United States. |
| (2) A repairman certificate (light-sport aircraft) with an inspection rating. | (i) Meet the requirements of paragraph (a)(1) of this section, and
(ii) Complete a 16-hour training course acceptable to the FAA on inspecting the particular class of experimental light-sport aircraft for which you intend to exercise the privileges of this rating. |
| (3) A repairman certificate (light-sport aircraft) with a maintenance rating | (i) Meet the requirements of paragraph (a)(1) of this section, and
(ii) Complete a training course acceptable to the FAA on maintaining the particular class of light-sport aircraft for which you intend to exercise the privileges of this rating. The training course must, at a minimum, provide the following number of hours of instruction:
(A) For airplane class privileges—120 hours,
(B) For weight-shift control aircraft class privileges—104 hours,
(C) For powered parachute class privileges—104 hours,
(D) For lighter than air class privileges—80 hours,
(E) For glider class privileges—80 hours. |

(b) The holder of a repairman certificate (light-sport aircraft) with an inspection rating may perform the annual condition inspection on a light-sport aircraft:

(1) That is owned by the holder;
(2) That has been issued an experimental certificate for operating a light-sport aircraft under § 21.191(i) of this chapter; and
(3) That is in the same class of light-sport-aircraft for which the holder has completed the training specified in paragraph (a)(2)(ii) of this section.

(c) The holder of a repairman certificate (light-sport aircraft) with a maintenance rating may—
(1) Approve and return to service an aircraft that has been issued a special airworthiness certificate in the light-sport category under § 21.190 of this chapter, or any part thereof, after performing or inspecting maintenance (to include the annual condition inspection and the 100-hour inspection required by § 91.327 of this chapter), preventive maintenance, or an alteration (excluding a major repair or a major alteration on a product produced under an FAA approval);
(2) Perform the annual condition inspection on a light-sport aircraft that has been issued an experimental certificate for operating a light-sport aircraft under § 21.191(i) of this chapter; and
(3) Only perform maintenance, preventive maintenance, and an alteration on a light-sport aircraft that is in the same class of light-sport aircraft for which the holder has completed the training specified in paragraph (a)(3)(ii) of this section. Before performing a major repair, the holder must complete additional training acceptable to the FAA and appropriate to the repair performed.

d) The holder of a repairman certificate (light-sport aircraft) with a maintenance rating may not approve for return to service any aircraft or part thereof unless that person has previously performed the work concerned satisfactorily. If that person has not previously performed that work, the person may show the ability to do the work by performing it to the satisfaction of the FAA, or by performing it under the direct supervision of a certificated and appropriately rated mechanic, or a certificated repairman, who has had previous experience in the...
specific operation concerned. The repairman may not exercise the privileges of the certificate unless the repairman understands the current instructions of the manufacturer and the maintenance manuals for the specific operation concerned.

Subpart F—Parachute Riggers

§ 65.111 Certificate required.

(a) No person may pack, maintain, or alter any personnel-carrying parachute intended for emergency use in connection with civil aircraft of the United States (including the reserve parachute of a dual parachute system to be used for intentional parachute jumping) unless that person holds an appropriate current certificate and type rating issued under this subpart and complies with §§ 65.127 through 65.133.

(b) No person may pack any main parachute of a dual-parachute system to be used for intentional parachute jumping in connection with civil aircraft of the United States unless that person—

(1) Has an appropriate current certificate issued under this subpart;

(2) Is under the supervision of a current certificated parachute rigger;

(3) Is the person making the next parachute jump with that parachute in accordance with § 105.43(a) of this chapter; or

(4) Is the parachutist in command making the next parachute jump with that parachute in a tandem parachute operation conducted under § 105.45(b)(1) of this chapter.

(c) No person may maintain or alter any main parachute of a dual-parachute system to be used for intentional parachute jumping in connection with civil aircraft of the United States unless that person—

(1) Has an appropriate current certificate issued under this subpart; or

(2) Is under the supervision of a current certificated parachute rigger;

(d) Each person who holds a parachute rigger certificate shall present it for inspection upon the request of the Administrator or an authorized representative of the National Transportation Safety Board, or of any Federal, State, or local law enforcement officer.

(e) The following parachute rigger certificates are issued under this part:

(1) Senior parachute rigger.

(2) Master parachute rigger.

(f) Sections 65.127 through 65.133 do not apply to parachutes packed, maintained, or altered for the use of the armed forces.

§ 65.113 Eligibility requirements: General.

(a) To be eligible for a parachute rigger certificate, a person must—

(1) Be at least 18 years of age;

(2) Be able to read, write, speak, and understand the English language, or, in the case of a citizen of Puerto Rico, or a person who is employed outside of the United States by a U.S. air carrier, and who does not meet this requirement, be issued a certificate that is valid only in Puerto Rico or while he is employed outside of the United States by that air carrier, as the case may be; and

(3) Comply with the sections of this subpart that apply to the certificate and type rating he seeks.

(b) Except for a master parachute rigger certificate, a parachute rigger certificate that was issued before, and was valid on, October 31, 1962, is equal to a senior parachute rigger certificate, and may be exchanged for such a corresponding certificate.

§ 65.115 Senior parachute rigger certificate: Experience, knowledge, and skill requirements.

Except as provided in § 65.117, an applicant for a senior parachute rigger certificate must—

(a) Present evidence satisfactory to the Administrator that he has packed at least 20 parachutes of each type for which he seeks a rating, in accordance with the manufacturer’s instructions and under the supervision of a certificated parachute rigger holding a rating for that type or a person holding an appropriate military rating:
§65.117 Military riggers or former military riggers: Special certification rule.

In place of the procedure in §65.115, an applicant for a senior parachute rigger certificate is entitled to it if he passes a written test on the regulations of this subpart and presents satisfactory documentary evidence that he—
(a) Is a member or civilian employee of an Armed Force of the United States, is a civilian employee of a regular armed force of a foreign country, or has, within the 12 months before he applies, been honorably discharged or released from any status covered by this paragraph;
(b) Is serving, or has served within the 12 months before he applies, as a parachute rigger for such an Armed Force; and
(c) Has the experience required by §65.115(a).

§65.119 Master parachute rigger certificate: Experience, knowledge, and skill requirements.

An applicant for a master parachute rigger certificate must meet the following requirements:
(a) Present evidence satisfactory to the Administrator that he has had at least 3 years of experience as a parachute rigger and has satisfactorily packed at least 100 parachutes of each of two types in common use, in accordance with the manufacturer’s instructions—
(1) While a certificated and appropriately rated senior parachute rigger; or
(2) While under the supervision of a certificated and appropriately rated parachute rigger or a person holding appropriate military ratings.

An applicant may combine experience specified in paragraphs (a) (1) and (2) of this section to meet the requirements of this paragraph.
(b) If the applicant is not the holder of a senior parachute rigger certificate, pass a written test, with respect to parachutes in common use, on—
(1) Their construction, packing, and maintenance;
(2) The manufacturer’s instructions; and
(3) The regulations of this subpart.
(c) Pass an oral and practical test showing his ability to pack and maintain at least one type of parachute in common use, appropriate to the type rating he seeks.

[Doc. No. 10468, 37 FR 13251, July 6, 1972]

§65.121 Type ratings.

(a) The following type ratings are issued under this subpart:
(1) Seat.
(2) Back.
(3) Chest.
(4) Lap.
(b) The holder of a senior parachute rigger certificate who qualifies for a master parachute rigger certificate is entitled to have placed on his master parachute rigger certificate the ratings that were on his senior parachute rigger certificate.

§65.123 Additional type ratings: Requirements.

A certificated parachute rigger who applies for an additional type rating must—
(a) Present evidence satisfactory to the Administrator that he has packed at least 20 parachutes of the type for which he seeks a rating, in accordance with the manufacturer’s instructions and under the supervision of a certificated parachute rigger holding a rating for that type or a person holding an appropriate military rating; and
(b) Pass a practical test, to the satisfaction of the Administrator, showing his ability to pack and maintain the type of parachute for which he seeks a rating.

§ 65.125 Certificates: Privileges.

(a) A certificated senior parachute rigger may—
(1) Pack or maintain (except for major repair) any type of parachute for which he is rated; and
(2) Supervise other persons in packing any type of parachute for which that person is rated in accordance with §105.43(a) or §105.45(b)(1) of this chapter.

(b) A certificated master parachute rigger may—
(1) Pack, maintain, or alter any type of parachute for which he is rated; and
(2) Supervise other persons in packing, maintaining, or altering any type of parachute for which the certificated parachute rigger is rated in accordance with §105.43(a) or §105.45(b)(1) of this chapter.

(c) A certificated parachute rigger need not comply with §§65.127 through 65.133 (relating to facilities, equipment, performance standards, records, recent experience, and seal) in packing, maintaining, or altering (if authorized) the main parachute of a dual parachute pack to be used for intentional jumping.

§ 65.127 Facilities and equipment.

No certificated parachute rigger may exercise the privileges of his certificate unless he has at least the following facilities and equipment available to him:

(a) A smooth top table at least three feet wide by 40 feet long.
(b) Suitable housing that is adequately heated, lighted, and ventilated for drying and airing parachutes.
(c) Enough packing tools and other equipment to pack and maintain the types of parachutes that he services.
(d) Adequate housing facilities to perform his duties and to protect his tools and equipment.

§ 65.129 Performance standards.

No certificated parachute rigger may—

(a) Pack, maintain, or alter any parachute unless he is rated for that type;
(b) Pack a parachute that is not safe for emergency use;
(c) Pack a parachute that has not been thoroughly dried and aired;
(d) Alter a parachute in a manner that is not specifically authorized by the Administrator or the manufacturer;
(e) Pack, maintain, or alter a parachute in any manner that deviates from procedures approved by the Administrator or the manufacturer of the parachute; or
(f) Exercise the privileges of his certificate and type rating unless he understands the current manufacturer’s instructions for the operation involved and has—
(1) Performed duties under his certificate for at least 90 days within the preceding 12 months; or
(2) Shown the Administrator that he is able to perform those duties.

§ 65.131 Records.

(a) Each certificated parachute rigger shall keep a record of the packing, maintenance, and alteration of parachutes performed or supervised by him. He shall keep in that record, with respect to each parachute worked on, a statement of—
(1) Its type and make;
(2) Its serial number;
(3) The name and address of its owner;
(4) The kind and extent of the work performed;
(5) The date when and place where the work was performed; and
(6) The results of any drop tests made with it.

(b) Each person who makes a record under paragraph (a) of this section shall keep it for at least 2 years after the date it is made.

(c) Each certificated parachute rigger who packs a parachute shall write, on the parachute packing record attached to the parachute, the date and place of the packing and a notation of any defects he finds on inspection. He shall sign that record with his name and the number of his certificate.
§ 65.133 Seal.

Each certificated parachute rigger must have a seal with an identifying mark prescribed by the Administrator, and a seal press. After packing a parachute he shall seal the pack with his seal in accordance with the manufacturer’s recommendation for that type of parachute.

APPENDIX A TO PART 65—AIRCRAFT DISPATCHER COURSES

Overview

This appendix sets forth the areas of knowledge necessary to perform dispatcher functions. The items listed below indicate the minimum set of topics that must be covered in a training course for aircraft dispatcher certification. The order of coverage is at the discretion of the approved school. For the latest technological advancements refer to the Practical Test Standards as published by the FAA.

I. Regulations
 A. Subpart C of this part;
 B. Parts 1, 25, 61, 71, 91, 121, 139, and 175, of this chapter;
 C. 49 CFR part 830;

II. Meteorology
 A. Basic Weather Studies
 (1) The earth’s motion and its effects on weather.
 (2) Analysis of the following regional weather types, characteristics, and structures, or combinations thereof:
 (a) Maritime.
 (b) Continental.
 (c) Polar.
 (d) Tropical.
 (3) Analysis of the following local weather types, characteristics, and structures or combinations thereof:
 (a) Coastal.
 (b) Mountainous.
 (c) Island.
 (d) Plains.
 (4) The following characteristics of the atmosphere:
 (a) Layers.
 (b) Composition.
 (c) Global Wind Patterns.
 (d) Ozone.
 (5) Pressure:
 (a) Units of Measure.
 (b) Weather Systems Characteristics.
 (c) Temperature Effects on Pressure.
 (d) Altimeters.
 (6) Wind:
 (a) Major Wind Systems and Coriolis Force.
 (b) Jetstreams and their Characteristics.

 (c) Local Wind and Related Terms.
 (7) States of Matter:
 (a) Solids, Liquid, and Gases.
 (b) Causes of change of state.
 (8) Clouds:
 (a) Composition, Formation, and Dissipation.
 (b) Types and Associated Precipitation.
 (c) Use of Cloud Knowledge in Forecasting.
 (9) Fog:
 (a) Causes, Formation, and Dissipation.
 (b) Types.
 (10) Ice:
 (a) Causes, Formation, and Dissipation.
 (b) Types.
 (11) Stability/Instability:
 (a) Temperature Lapse Rate, Convection.
 (b) Adiabatic Processes.
 (c) Lifting Processes.
 (d) Convergence.
 (e) Convergence.
 (12) Turbulence:
 (a) Jetstream Associated.
 (b) Pressure Pattern Recognition.
 (c) Low Level Windshear.
 (d) Mountain Waves.
 (e) Thunderstorms.
 (f) Clear Air Turbulence.
 (13) Airmasses:
 (a) Classification and Characteristics.
 (b) Source Regions.
 (c) Use of Airmass Knowledge in Forecasting.
 (14) Fronts:
 (a) Structure and Characteristics, Both Vertical and Horizontal.
 (b) Frontal Types.
 (c) Frontal Weather Flying.
 (15) Theory of Storm Systems:
 (a) Thunderstorms.
 (b) Tornadoes.
 (c) Hurricanes and Typhoons.
 (d) Microbursts.
 (e) Causes, Formation, and Dissipation.
 B. Weather, Analysis, and Forecasts
 (1) Observations:
 (a) Surface Observations.
 (i) Observations made by certified weather observer.
 (ii) Automated Weather Observations.
 (b) Terminal Forecasts.
 (c) Significant En route Reports and Forecasts.
 (i) Pilot Reports.
 (ii) Area Forecasts.
 (iii) Sigmets, Airmets.
 (iv) Center Weather Advisories.
 (d) Weather Imagery.
 (i) Surface Analysis.
 (ii) Weather Depiction.
 (iii) Significant Weather Prognosis.
 (iv) Winds and Temperature Aloft.
 (v) Composite Moisture Stability Chart.
 (vi) Composite Moisture Stability Chart.
 (vii) Surface Weather Prognostic Chart.
 (viii) Radar Meteorology.
 (ix) Satellite Meteorology.
Federal Aviation Administration, DOT

(x) Other charts as applicable.
(e) Meteorological Information Data Collection Systems.
(2) Data Collection, Analysis, and Forecast Facilities.
(3) Service Outlets Providing Aviation Weather Products.
C. Weather Related Aircraft Hazards
(1) Crosswinds and Gusts.
(2) Contaminated Runways.
(3) Restrictions to Surface Visibility.
(4) Turbulence and Windshear.
(5) Icing.
(6) Thunderstorms and Microburst.
(7) Volcanic Ash.
III. Navigation
A. Study of the Earth
(1) Time reference and location (0 Longitude, UTC).
(2) Definitions.
(3) Projections.
(4) Charts.
B. Chart Reading, Application, and Use.
C. National Airspace Plan.
E. Airborne Navigation Instruments.
F. Instrument Approach Procedures.
(1) Transition Procedures.
(2) Precision Approach Procedures.
(3) Non-precision Approach Procedures.
(4) Minimums and the relationship to weather.
G. Special Navigation and Operations.
(1) North Atlantic.
(2) Pacific.
(3) Global Differences.
IV. AIRCRAFT
A. Aircraft Flight Manual.
B. Systems Overview.
(1) Flight controls.
(2) Hydraulics.
(3) Electrical.
(4) Air Conditioning and Pressurization.
(5) Ice and Rain protection.
(7) Powerplants and Auxiliary Power Units.
(8) Emergency and Abnormal Procedures.
(9) Fuel Systems and Sources.
C. Minimum Equipment List/Configuration Deviation List (MEL/CDL) and Applications.
D. Performance.
(1) Aircraft in general.
(2) Principles of flight:
(a) Group one aircraft.
(b) Group two aircraft.
(3) Aircraft Limitations.
(4) Weight and Balance.
(5) Flight instrument errors.
(6) Aircraft performance:
(a) Take-off performance.
(b) En route performance.
(c) Landing performance.
V. Communications
A. Regulatory requirements.
B. Communication Protocol.
C. Voice and Data Communications.
D. Notice to Airmen (NOTAMS).
E. Aeronautical Publications.
F. Abnormal Procedures.
VI. Air Traffic Control
A. Responsibilities.
B. Facilities and Equipment.
C. Airspace classification and route structure.
D. Flight Plans.
(1) Domestic.
(2) International.
E. Separation Minimums.
F. Priority Handling.
G. Holding Procedures.
H. Traffic Management.
VII. Emergency and Abnormal Procedures
A. Security measures on the ground.
B. Security measures in the air.
C. FAA responsibility and services.
D. Collection and dissemination of information on overdue or missing aircraft.
E. Means of declaring an emergency.
F. Responsibility for declaring an emergency.
G. Required reporting of an emergency.
H. NTSB reporting requirements.
VIII. Practical Dispatch Applications
A. Human Factors.
(1) Decisionmaking:
(a) Situation Assessment.
(b) Generation and Evaluation of Alternatives.
(ii) Tradeoffs and Prioritization.
(ii) Contingency Planning.
(c) Support Tools and Technologies.
(2) Human Error:
(a) Causes.
(i) Individual and Organizational Factors.
(ii) Technology-Induced Error.
(ii) Prevention.
(c) Detection and Recovery.
(3) Teamwork:
(a) Communication and Information Exchange.
(b) Cooperative and Distributed Problem-Solving.
(c) Resource Management.
(i) Air Traffic Control (ATC) activities and workload.
(ii) Flightcrew activities and workload.
(iii) Maintenance activities and workload.
(iv) Operations Control Staff activities and workload.
B. Applied Dispatching.
(1) Briefing techniques, Dispatcher, Pilot.
(2) Preflight:
(a) Safety.
(b) Weather Analysis.
(i) Satellite imagery.
(ii) Upper and lower altitude charts.
(iii) Significant en route reports and forecasts.
(iv) Surface charts.
(v) Surface observations.
(vi) Terminal forecasts and orientation to Enhanced Weather Information System (EWINS).
(c) NOTAMS and airport conditions.
(d) Crew.
(i) Qualifications.
(ii) Limitations.
(e) Aircraft.
(i) Systems.
(ii) Navigation instruments and avionics systems.
(iii) Flight instruments.
(iv) Operations manuals and MEL/CDL.
(v) Performance and limitations.
(f) Flight Planning.
(i) Route of flight.
2. En route charts.
3. Operational altitude.
4. Departure and arrival charts.
(ii) Minimum departure fuel.
1. Climb.
2. Cruise.
3. Descent.
(g) Weight and balance.
(h) Economics of flight overview (Performance, Fuel Tankering).
(i) Decision to operate the flight.
(j) ATC flight plan filing.
(k) Flight documentation.
(i) Flight plan.
(ii) Dispatch release.
(3) Authorize flight departure with concurrence of pilot in command.
(i) In-flight operational control:
(a) Current situational awareness.
(b) Information exchange.
(c) Amend original flight release as required.
(5) Post-Flight:
(a) Arrival verification.
(b) Weather debrief.
(c) Flight irregularity reports as required.

PART 67—MEDICAL STANDARDS AND CERTIFICATION

Subpart A—General

Sec. 67.1 Applicability.
67.3 Issue.
67.4 Application.
67.7 Access to the National Driver Register.

Subpart B—First-Class Airman Medical Certificate

67.101 Eligibility.
67.103 Eye.
67.105 Ear, nose, throat, and equilibrium.
67.107 Mental.
67.109 Neurologic.
67.111 Cardiovascular.
67.113 General medical condition.
67.115 Discretionary issuance.

Subpart C—Second-Class Airman Medical Certificate

67.201 Eligibility.
67.203 Eye.
67.205 Ear, nose, throat, and equilibrium.
67.207 Mental.
67.209 Neurologic.
67.211 Cardiovascular.
67.213 General medical condition.
67.215 Discretionary issuance.

Subpart D—Third-Class Airman Medical Certificate

67.301 Eligibility.
67.303 Eye.
67.305 Ear, nose, throat, and equilibrium.
67.307 Mental.
67.309 Neurologic.
67.311 Cardiovascular.
67.313 General medical condition.
67.315 Discretionary issuance.

Subpart E—Certification Procedures

67.401 Special issuance of medical certificates.
67.403 Applications, certificates, logbooks, reports, and records: Falsification, reproduction, or alteration; incorrect statements.
67.405 Medical examinations: Who may perform?
67.407 Delegation of authority.
67.409 Denial of medical certificate.
67.411 [Reserved]
67.413 Medical records.
67.415 Return of medical certificate after suspension or revocation.

SOURCE: Docket No. 27940, 61 FR 11256, Mar. 19, 1996, unless otherwise noted.

Subpart A—General

§ 67.1 Applicability.

This part prescribes the medical standards and certification procedures for issuing medical certificates for airmen and for remaining eligible for a medical certificate.

§ 67.3 Issue.

A person who meets the medical standards prescribed in this part, based on medical examination and evaluation of the person’s history and condition,
§ 67.103 Eye.

Eye standards for a first-class airman medical certificate are:

(a) Distant visual acuity of 20/20 or better in each eye separately, with or without corrective lenses. If corrective lenses (spectacles or contact lenses) are necessary for 20/20 vision, the person may be eligible only on the condition that corrective lenses are worn while exercising the privileges of an airman certificate.

(b) Near vision of 20/40 or better, Snellen equivalent, at 16 inches in each eye separately, with or without corrective lenses. If age 50 or older, near vision of 20/40 or better, Snellen equivalent, at both 16 inches and 32 inches in each eye separately, with or without corrective lenses.

(c) Ability to perceive those colors necessary for the safe performance of airman duties.

(d) Normal fields of vision.

(e) No acute or chronic pathological condition of either eye or adnexa that interferes with the proper function of an eye, that may reasonably be expected to progress to that degree, or that may reasonably be expected to be aggravated by flying.

(f) Bifoveal fixation and vergence-phoria relationship sufficient to prevent a break in fusion under conditions that may reasonably be expected to occur in performing airman duties. Tests for the factors named in this paragraph are not required except for persons found to have more than 1 prism diopter of hyperphoria, 6 prism diopeters of exophoria, or 6 prism diopeters of exophoria. If any of these values are exceeded, the Federal Air Surgeon may require the person to be examined by a qualified eye specialist to determine if there is bifoveal fixation and an adequate vergence-phoria relationship. However, if otherwise eligible, the person is issued a medical certificate.

Subpart B—First-Class Airman Medical Certificate

§ 67.101 Eligibility.

To be eligible for a first-class airman medical certificate, and to remain eligible for a first-class airman medical certificate, a person must meet the requirements of this subpart.

§ 67.103 Eye.

Eye standards for a first-class airman medical certificate are:

(a) Distant visual acuity of 20/20 or better in each eye separately, with or without corrective lenses. If corrective lenses (spectacles or contact lenses) are necessary for 20/20 vision, the person may be eligible only on the condition that corrective lenses are worn while exercising the privileges of an airman certificate.

(b) Near vision of 20/40 or better, Snellen equivalent, at 16 inches in each eye separately, with or without corrective lenses. If age 50 or older, near vision of 20/40 or better, Snellen equivalent, at both 16 inches and 32 inches in each eye separately, with or without corrective lenses.

(c) Ability to perceive those colors necessary for the safe performance of airman duties.

(d) Normal fields of vision.

(e) No acute or chronic pathological condition of either eye or adnexa that interferes with the proper function of an eye, that may reasonably be expected to progress to that degree, or that may reasonably be expected to be aggravated by flying.

(f) Bifoveal fixation and vergence-phoria relationship sufficient to prevent a break in fusion under conditions that may reasonably be expected to occur in performing airman duties. Tests for the factors named in this paragraph are not required except for persons found to have more than 1 prism diopter of hyperphoria, 6 prism diopeters of exophoria, or 6 prism diopeters of exophoria. If any of these values are exceeded, the Federal Air Surgeon may require the person to be examined by a qualified eye specialist to determine if there is bifoveal fixation and an adequate vergence-phoria relationship. However, if otherwise eligible, the person is issued a medical certificate.
§ 67.105 Ear, nose, throat, and equilibrium.

Ear, nose, throat, and equilibrium standards for a first-class airman medical certificate are:

(a) The person shall demonstrate acceptable hearing by at least one of the following tests:
(1) Demonstrate an ability to hear an average conversational voice in a quiet room, using both ears, at a distance of 6 feet from the examiner, with the back turned to the examiner.
(2) Demonstrate an acceptable understanding of speech as determined by audiometric speech discrimination testing to a score of at least 70 percent obtained in one ear or in a sound field environment.
(3) Provide acceptable results of pure tone audiometric testing of unaided hearing acuity according to the following table of worst acceptable thresholds, using the calibration standards of the American National Standards Institute, 1969 (11 West 42d Street, New York, NY 10036):

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Better ear (Db)</th>
<th>Poorer ear (Db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 Hz</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>2000 Hz</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>3000 Hz</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

(b) No disease or condition of the middle or internal ear, nose, oral cavity, pharynx, or larynx that—
(1) Interferes with, or is aggravated by, flying or may reasonably be expected to do so; or
(2) Interferes with, or may reasonably be expected to interfere with, clear and effective speech communication.

(c) No disease or condition manifested by, or that may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium.

§ 67.107 Mental.

Mental standards for a first-class airman medical certificate are:

(a) No established medical history or clinical diagnosis of any of the following:
(1) A personality disorder that is severe enough to have repeatedly manifested itself by overt acts.
(2) A psychosis. As used in this section, “psychosis” refers to a mental disorder in which:
(i) The individual has manifested delusions, hallucinations, grossly bizarre or disorganized behavior, or other commonly accepted symptoms of this condition; or
(ii) The individual may reasonably be expected to manifest delusions, hallucinations, grossly bizarre or disorganized behavior, or other commonly accepted symptoms of this condition.
(3) A bipolar disorder.
(4) Substance dependence, except where there is established clinical evidence, satisfactory to the Federal Air Surgeon, of recovery, including sustained total abstinence from the substance(s) for not less than the preceding 2 years. As used in this section—
(i) “Substance” includes: Alcohol; other sedatives and hypnotics; anxiolytics; opioids; central nervous system stimulants such as cocaine, amphetamines, and similarly acting sympathomimetics; hallucinogens; phencyclidine or similarly acting arylcyclohexylamines; cannabis; inhalants; and other psychoactive drugs and chemicals; and
(ii) “Substance dependence” means a condition in which a person is dependent on a substance, other than tobacco or ordinary xanthine-containing (e.g., caffeine) beverages, as evidenced by—
(A) Increased tolerance;
(B) Manifestation of withdrawal symptoms;
(C) Impaired control of use; or
(D) Continued use despite damage to physical health or impairment of social, personal, or occupational functioning.

(b) No substance abuse within the preceding 2 years defined as:
(1) Use of a substance in a situation in which that use was physically hazardous, if there has been at any other time an instance of the use of a substance also in a situation in which that use was physically hazardous;
(2) A verified positive drug test result, an alcohol test result of 0.04 or greater alcohol concentration, or a refusal to submit to a drug or alcohol test required by the U.S. Department
of Transportation or an agency of the U.S. Department of Transportation; or

(3) Misuse of a substance that the Federal Air Surgeon, based on case history and appropriate, qualified medical judgment relating to the substance involved, finds—

(i) Makes the person unable to safely perform the duties or exercise the privileges of the airman certificate applied for or held; or

(ii) May reasonably be expected, for the maximum duration of the airman medical certificate applied for or held, to make the person unable to perform those duties or exercise those privileges.

(c) No other personality disorder, neurosis, or other mental condition that the Federal Air Surgeon, based on the case history and appropriate, qualified medical judgment relating to the condition involved, finds—

(1) Makes the person unable to safely perform the duties or exercise the privileges of the airman certificate applied for or held; or

(2) May reasonably be expected, for the maximum duration of the airman medical certificate applied for or held, to make the person unable to perform those duties or exercise those privileges.

§ 67.109 Neurologic.

Neurologic standards for a first-class airman medical certificate are:

(a) No established medical history or clinical diagnosis of any of the following:

(1) Epilepsy;

(2) A disturbance of consciousness without satisfactory medical explanation of the cause; or

(3) A transient loss of control of nervous system function(s) without satisfactory medical explanation of the cause.

(b) No other seizure disorder, disturbance of consciousness, or neurologic condition that the Federal Air Surgeon, based on the case history and appropriate, qualified medical judgment relating to the condition involved, finds—

(1) Makes the person unable to safely perform the duties or exercise the privileges of the airman certificate applied for or held; or

(2) May reasonably be expected, for the maximum duration of the airman medical certificate applied for or held, to make the person unable to perform those duties or exercise those privileges.

§ 67.111 Cardiovascular.

Cardiovascular standards for a first-class airman medical certificate are:

(a) No established medical history or clinical diagnosis of any of the following:

(1) Myocardial infarction;

(2) Angina pectoris;

(3) Coronary heart disease that has required treatment or, if untreated, that has been symptomatic or clinically significant;

(4) Cardiac valve replacement;

(5) Permanent cardiac pacemaker implantation; or

(6) Heart replacement;

(b) A person applying for first-class medical certification must demonstrate an absence of myocardial infarction and other clinically significant abnormality on electrocardiographic examination:

(1) At the first application after reaching the 35th birthday; and

(2) On an annual basis after reaching the 40th birthday.

(c) An electrocardiogram will satisfy a requirement of paragraph (b) of this section if it is dated no earlier than 60 days before the date of the application it is to accompany and was performed and transmitted according to acceptable standards and techniques.

§ 67.113 General medical condition.

The general medical standards for a first-class airman medical certificate are:

(a) No established medical history or clinical diagnosis of diabetes mellitus that requires insulin or any other hypoglycemic drug for control.

(b) No other organic, functional, or structural disease, defect, or limitation that the Federal Air Surgeon, based on the case history and appropriate, qualified medical judgment relating to the condition involved, finds—
§67.115 Discretionary issuance.

A person who does not meet the provisions of §§67.103 through 67.113 may apply for the discretionary issuance of a certificate under §67.401.

Subpart C—Second-Class Airman Medical Certificate

§67.201 Eligibility.

To be eligible for a second-class airman medical certificate, and to remain eligible for a second-class airman medical certificate, a person must meet the requirements of this subpart.

§67.203 Eye.

Eye standards for a second-class airman medical certificate are:

(a) Distant visual acuity of 20/20 or better in each eye separately, with or without corrective lenses. If corrective lenses (spectacles or contact lenses) are necessary for 20/20 vision, the person may be eligible only on the condition that corrective lenses are worn while exercising the privileges of an airman certificate.

(b) Near vision of 20/40 or better, Snellen equivalent, at 16 inches in each eye separately, with or without corrective lenses. If age 50 or older, near vision of 20/40 or better, Snellen equivalent, at both 16 inches and 32 inches in each eye separately, with or without corrective lenses.

(c) Ability to perceive those colors necessary for the safe performance of airman duties.

(d) Normal fields of vision.

(e) Normal fields of vision.

(f) Bifoveal fixation and vergence-phoria relationship sufficient to prevent a break in fusion under conditions that may reasonably be expected to occur in performing airman duties. Tests for the factors named in this paragraph are not required except for persons found to have more than 1 prism diopter of hyperphoria, 6 prism dipters of esophoria, or 6 prism dipters of exophoria. If any of these values are exceeded, the Federal Air Surgeon may require the person to be examined by a qualified eye specialist to determine if there is bifoveal fixation and an adequate vergence-phoria relationship. However, if otherwise eligible, the person is issued a medical certificate pending the results of the examination.

§67.205 Ear, nose, throat, and equilibrium.

Ear, nose, throat, and equilibrium standards for a second-class airman medical certificate are:

(a) The person shall demonstrate acceptable hearing by at least one of the following tests:

(1) Demonstrate an ability to hear an average conversational voice in a quiet room, using both ears, at a distance of 6 feet from the examiner, with the back turned to the examiner.

(2) Demonstrate an acceptable understanding of speech as determined by audiometric speech discrimination testing to a score of at least 70 percent obtained in one ear or in a sound field environment.

(3) Provide acceptable results of pure tone audiometric testing of unaided hearing acuity according to the following table of worst acceptable
Federal Aviation Administration, DOT

§ 67.207 Mental.

Mental standards for a second-class airman medical certificate are:

(a) No established medical history or clinical diagnosis of any of the following:

(1) A personality disorder that is severe enough to have repeatedly manifested itself by overt acts.

(2) A psychosis. As used in this section, “psychosis” refers to a mental disorder in which:

(i) The individual has manifested delusions, hallucinations, grossly bizarre or disorganized behavior, or other commonly accepted symptoms of this condition; or

(ii) The individual may reasonably be expected to manifest delusions, hallucinations, grossly bizarre or disorganized behavior, or other commonly accepted symptoms of this condition.

(3) A bipolar disorder.

(4) Substance dependence, except where there is established clinical evidence, satisfactory to the Federal Air Surgeon, of recovery, including sustained total abstinence from the substance(s) for not less than the preceding 2 years. As used in this section—

(i) “Substance” includes: Alcohol; other sedatives and hypnotics; anxiolytics; opioids; central nervous system stimulants such as cocaine, amphetamines, and similarly acting sympathomimetics; hallucinogens; phencyclidine or similarly acting aryliclohexylamines; cannabis; inhalants; and other psychoactive drugs and chemicals; and

(ii) “Substance dependence” means a condition in which a person is dependent on a substance, other than tobacco or ordinary xanthine-containing (e.g., caffeine) beverages, as evidenced by—

(A) Increased tolerance;

(B) Manifestation of withdrawal symptoms;

(C) Impaired control of use; or

(D) Continued use despite damage to physical health or impairment of social, personal, or occupational functioning.

(b) No disease or condition of the middle or internal ear, nose, oral cavity, pharynx, or larynx that—

(1) Interferes with, or is aggravated by, flying or may reasonably be expected to do so; or

(2) Interferes with, or may reasonably be expected to interfere with, clear and effective speech communication.

(c) No disease or condition manifested by, or that may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium.
(2) May reasonably be expected, for the maximum duration of the airman medical certificate applied for or held, to make the person unable to perform those duties or exercise those privileges.

§ 67.209 Neurologic.

Neurologic standards for a second-class airman medical certificate are:
(a) No established medical history or clinical diagnosis of any of the following:
 (1) Epilepsy;
 (2) A disturbance of consciousness without satisfactory medical explanation of the cause; or
 (3) A transient loss of control of nervous system function(s) without satisfactory medical explanation of the cause;
 (b) No other seizure disorder, disturbance of consciousness, or neurologic condition that the Federal Air Surgeon, based on the case history and appropriate, qualified medical judgment relating to the condition involved, finds—
 (1) Makes the person unable to safely perform the duties or exercise the privileges of the airman certificate applied for or held; or
 (2) May reasonably be expected, for the maximum duration of the airman medical certificate applied for or held, to make the person unable to perform those duties or exercise those privileges.

§ 67.211 Cardiovascular.

Cardiovascular standards for a second-class medical certificate are no established medical history or clinical diagnosis of any of the following:
(a) Myocardial infarction;
(b) Angina pectoris;
(c) Coronary heart disease that has required treatment or, if untreated, that has been symptomatic or clinically significant;
(d) Cardiac valve replacement;
(e) Permanent cardiac pacemaker implantation; or
(f) Heart replacement.

§ 67.213 General medical condition.
The general medical standards for a second-class airman medical certificate are:
(a) No established medical history or clinical diagnosis of diabetes mellitus that requires insulin or any other hypoglycemic drug for control.
(b) No other organic, functional, or structural disease, defect, or limitation that the Federal Air Surgeon, based on the case history and appropriate, qualified medical judgment relating to the condition involved, finds—
 (1) Makes the person unable to safely perform the duties or exercise the privileges of the airman certificate applied for or held; or
 (2) May reasonably be expected, for the maximum duration of the airman medical certificate applied for or held, to make the person unable to perform those duties or exercise those privileges.

(c) No medication or other treatment that the Federal Air Surgeon, based on the case history and appropriate, qualified medical judgment relating to the medication or other treatment involved, finds—
 (1) Makes the person unable to safely perform the duties or exercise the privileges of the airman certificate applied for or held; or
 (2) May reasonably be expected, for the maximum duration of the airman medical certificate applied for or held, to make the person unable to perform those duties or exercise those privileges.

§ 67.215 Discretionary issuance.

A person who does not meet the provisions of §§67.203 through 67.213 may apply for the discretionary issuance of a certificate under §67.401.

Subpart D—Third-Class Airman Medical Certificate

§ 67.301 Eligibility.

To be eligible for a third-class airman medical certificate, or to remain eligible for a third-class airman medical certificate, a person must meet the requirements of this subpart.
§ 67.303 Eye.

Eye standards for a third-class airman medical certificate are:

(a) Distant visual acuity of 20/40 or better in each eye separately, with or without corrective lenses. If corrective lenses (spectacles or contact lenses) are necessary for 20/40 vision, the person may be eligible only on the condition that corrective lenses are worn while exercising the privileges of an airman certificate.

(b) Near vision of 20/40 or better, Snellen equivalent, at 16 inches in each eye separately, with or without corrective lenses.

(c) Ability to perceive those colors necessary for the safe performance of airman duties.

(d) No acute or chronic pathological condition of either eye or adnexa that interferes with the proper function of an eye, that may reasonably be expected to progress to that degree, or that may reasonably be expected to be aggravated by flying.

§ 67.305 Ear, nose, throat, and equilibrium.

Ear, nose, throat, and equilibrium standards for a third-class airman medical certificate are:

(a) The person shall demonstrate acceptable hearing by at least one of the following tests:

(1) Demonstrate an ability to hear an average conversational voice in a quiet room, using both ears, at a distance of 6 feet from the examiner, with the back turned to the examiner.

(2) Demonstrate an acceptable understanding of speech as determined by audiometric speech discrimination testing to a score of at least 70 percent obtained in one ear or in a sound field environment.

(3) Provide acceptable results of pure tone audiometric testing of unaided hearing acuity according to the following table of worst acceptable thresholds, using the calibration standards of the American National Standards Institute, 1969:

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>500 Hz</th>
<th>1000 Hz</th>
<th>2000 Hz</th>
<th>3000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better ear (Db)</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Poorer ear (Db)</td>
<td>35</td>
<td>50</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

(b) No disease or condition of the middle or internal ear, nose, oral cavity, pharynx, or larynx that—

(1) Interferes with, or is aggravated by, flying or may reasonably be expected to do so; or

(2) Interferes with clear and effective speech communication.

(c) No disease or condition manifested by, or that may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium.

§ 67.307 Mental.

Mental standards for a third-class airman medical certificate are:

(a) No established medical history or clinical diagnosis of any of the following:

(1) A personality disorder that is severe enough to have repeatedly manifested itself by overt acts.

(2) A psychosis. As used in this section, “psychosis” refers to a mental disorder in which—

(i) The individual has manifested delusions, hallucinations, grossly bizarre or disorganized behavior, or other commonly accepted symptoms of this condition; or

(ii) The individual may reasonably be expected to manifest delusions, hallucinations, grossly bizarre or disorganized behavior, or other commonly accepted symptoms of this condition.

(3) A bipolar disorder.

(4) Substance dependence, except where there is established clinical evidence, satisfactory to the Federal Air Surgeon, of recovery, including sustained total abstinence from the substance(s) for not less than the preceding 2 years. As used in this section—

(i) “Substance” includes: alcohol; other sedatives and hypnotics; anxiolytics; opioids; central nervous system stimulants such as cocaine, amphetamines, and similarly acting sympathomimetics; hallucinogens; phencyclidine or similarly acting arylcyclohexylamines; cannabis; inhalants; and other psychoactive drugs and chemicals; and

(ii) “Substance dependence” means a condition in which a person is dependent on a substance, other than tobacco or ordinary xanthine-containing (e.g., caffeine) beverages, as evidenced by—
§ 67.309 Neurologic.

Neurologic standards for a third-class airman medical certificate are:

(a) No established medical history or clinical diagnosis of any of the following:

(1) Epilepsy;

(2) A disturbance of consciousness without satisfactory medical explanation of the cause; or

(3) A transient loss of control of nervous system function(s) without satisfactory medical explanation of the cause.

(b) No other seizure disorder, disturbance of consciousness, or neurologic condition that the Federal Air Surgeon, based on the case history and appropriate, qualified medical judgment relating to the condition involved, finds—

(1) Makes the person unable to safely perform the duties or exercise the privileges of the airman certificate applied for or held; or

(2) May reasonably be expected, for the maximum duration of the airman medical certificate applied for or held, to make the person unable to perform those duties or exercise those privileges.

§ 67.311 Cardiovascular.

Cardiovascular standards for a third-class airman medical certificate are no established medical history or clinical diagnosis of any of the following:

(a) Myocardial infarction;

(b) Angina pectoris;

(c) Coronary heart disease that has required treatment or, if untreated, that has been symptomatic or clinically significant;

(d) Cardiac valve replacement;

(e) Permanent cardiac pacemaker implantation; or

(f) Heart replacement.

§ 67.313 General medical condition.

The general medical standards for a third-class airman medical certificate are:

(a) No established medical history or clinical diagnosis of diabetes mellitus that requires insulin or any other hypoglycemic drug for control.

(b) No other organic, functional, or structural disease, defect, or limitation that the Federal Air Surgeon, based on
the case history and appropriate, qualified medical judgment relating to the condition involved, finds—

(1) Makes the person unable to safely perform the duties or exercise the privileges of the airman certificate applied for or held; or

(2) May reasonably be expected, for the maximum duration of the airman medical certificate applied for or held, to make the person unable to perform those duties or exercise those privileges.

(c) No medication or other treatment that the Federal Air Surgeon, based on the case history and appropriate, qualified medical judgment relating to the medication or other treatment involved, finds—

(1) Makes the person unable to safely perform the duties or exercise the privileges of the airman certificate applied for or held; or

(2) May reasonably be expected, for the maximum duration of the airman medical certificate applied for or held, to make the person unable to perform those duties or exercise those privileges.

§ 67.401 Special issuance of medical certificates.

(a) At the discretion of the Federal Air Surgeon, an Authorization for Special Issuance of a Medical Certificate (Authorization), valid for a specified period, may be granted to a person who does not meet the provisions of subparts B, C, or D of this part if the person shows to the satisfaction of the Federal Air Surgeon that the duties authorized by the class of medical certificate applied for can be performed without endangering public safety during the period in which the Authorization would be in force. The Federal Air Surgeon may authorize a special medical flight test, practical test, or medical evaluation for this purpose. A medical certificate of the appropriate class may be issued to a person who does not meet the provisions of subparts B, C, or D of this part if that person possesses a valid Authorization and is otherwise eligible. An airman medical certificate issued in accordance with this section shall expire no later than the end of the validity period or upon the withdrawal of the Authorization upon which it is based. At the end of its specified validity period, for grant of a new Authorization, the person must again show to the satisfaction of the Federal Air Surgeon that the duties authorized by the class of medical certificate applied for can be performed without endangering public safety during the period in which the Authorization would be in force.

(b) At the discretion of the Federal Air Surgeon, a Statement of Demonstrated Ability (SODA) may be granted, instead of an Authorization, to a person whose disqualifying condition is static or nonprogressive and who has been found capable of performing airman duties without endangering public safety. A SODA does not expire and authorizes a designated aviation medical examiner to issue a medical certificate of a specified class if the examiner finds that the condition described on its face has not adversely changed.

(c) In granting an Authorization or SODA, the Federal Air Surgeon may consider the person’s operational experience and any medical facts that may affect the ability of the person to perform airman duties including—

(1) The combined effect on the person of failure to meet more than one requirement of this part; and

(2) The prognosis derived from professional consideration of all available information regarding the person.

(d) In granting an Authorization or SODA under this section, the Federal Air Surgeon specifies the class of medical certificate authorized to be issued and may do any or all of the following:

(1) Limit the duration of an Authorization;

(2) Condition the granting of a new Authorization on the results of subsequent medical tests, examinations, or evaluations;

(3) State on the Authorization or SODA, and any medical certificate
based upon it, any operational limitation needed for safety; or

(4) Condition the continued effect of an Authorization or SODA, and any second- or third-class medical certificate based upon it, on compliance with a statement of functional limitations issued to the person in coordination with the Director of Flight Standards or the Director's designee.

(e) In determining whether an Authorization or SODA should be granted to an applicant for a third-class medical certificate, the Federal Air Surgeon considers the freedom of an airman, exercising the privileges of a private pilot certificate, to accept reasonable risks to his or her person and property that are not acceptable in the exercise of commercial or airline transport pilot privileges, and, at the same time, considers the need to protect the safety of persons and property in other aircraft and on the ground.

(f) An Authorization or SODA granted under the provisions of this section to a person who does not meet the applicable provisions of subparts B, C, or D of this part may be withdrawn, at the discretion of the Federal Air Surgeon, at any time if—

(1) There is adverse change in the holder's medical condition;

(2) The holder fails to comply with a statement of functional limitations or operational limitations issued as a condition of certification under this section;

(3) Public safety would be endangered by the holder's exercise of airman privileges;

(4) The holder fails to provide medical information reasonably needed by the Federal Air Surgeon for certification under this section; or

(5) The holder makes or causes to be made a statement or entry that is the basis for withdrawal of an Authorization or SODA under §67.403.

(g) A person who has been granted an Authorization or SODA under this section based on a special medical flight or practical test need not take the test again during later physical examinations unless the Federal Air Surgeon determines or has reason to believe that the physical deficiency has or may have degraded to a degree to require another special medical flight test or practical test.

(h) The authority of the Federal Air Surgeon under this section is also exercised by the Manager, Aeromedical Certification Division, and each Regional Flight Surgeon.

(i) If an Authorization or SODA is withdrawn under paragraph (f) of this section the following procedures apply:

(1) The holder of the Authorization or SODA will be served a letter of withdrawal, stating the reason for the action;

(2) By not later than 60 days after the service of the letter of withdrawal, the holder of the Authorization or SODA may request, in writing, that the Federal Air Surgeon provide for review of the decision to withdraw. The request for review may be accompanied by supporting medical evidence;

(3) Within 60 days of receipt of a request for review, a written final decision either affirming or reversing the decision to withdraw will be issued; and

(4) A medical certificate rendered invalid pursuant to a withdrawal, in accordance with paragraph (a) of this section, shall be surrendered to the Administrator upon request.

(j) An Authorization or SODA granted under the provisions of this section to a person who does not meet the applicable provisions of subparts B, C, or D of this part must be in that person's physical possession or readily accessible in the aircraft.

compliance with any requirement for any medical certificate or for any Authorization or SODA under this part;

(3) A reproduction, for fraudulent purposes, of any medical certificate under this part; or

(4) An alteration of any medical certificate under this part.

(b) The commission by any person of an act prohibited under paragraph (a) of this section is a basis for—

(1) Suspending or revoking all airman, ground instructor, and medical certificates and ratings held by that person;

(2) Withdrawing all Authorizations or SODA’s held by that person; and

(3) Denying all applications for medical certification and requests for Authorizations or SODA’s.

(c) The following may serve as a basis for suspending or revoking a medical certificate; withdrawing an Authorization or SODA; or denying an application for a medical certificate or request for an authorization or SODA:

(1) An incorrect statement, upon which the FAA relied, made in support of an application for a medical certificate or request for an Authorization or SODA.

(2) An incorrect entry, upon which the FAA relied, made in any logbook, record, or report that is kept, made, or used to show compliance with any requirement for a medical certificate or an Authorization or SODA.

§ 67.405 Medical examinations: Who may perform?

(a) First-class. Any aviation medical examiner who is specifically designated for the purpose may perform examinations for the first-class medical certificate.

(b) Second- and third-class. Any aviation medical examiner may perform examinations for the second or third-class medical certificate.

§ 67.407 Delegation of authority.

(a) The authority of the Administrator under 49 U.S.C. 4703 to issue or deny medical certificates is delegated to the Federal Air Surgeon to the extent necessary to—

(1) Examine applicants for and holders of medical certificates to determine whether they meet applicable medical standards; and

(2) Issue, renew, and deny medical certificates, and issue, renew, deny, and withdraw Authorizations for Special Issuance of a Medical Certificate and Statements of Demonstrated Ability to a person based upon meeting or failing to meet applicable medical standards.

(b) Subject to limitations in this chapter, the delegated functions of the Federal Air Surgeon to examine applicants for and holders of medical certificates for compliance with applicable medical standards and to issue, renew, and deny medical certificates are also delegated to aviation medical examiners and to authorized representatives of the Federal Air Surgeon within the FAA.

(c) The authority of the Administrator under 49 U.S.C. 4702, to reconsider the action of an aviation medical examiner is delegated to the Federal Air Surgeon; the Manager, Aeromedical Certification Division; and each Regional Flight Surgeon.

Where the person does not meet the standards of §§ 67.107(b)(3) and (c), 67.109(b), 67.113(b) and (c), 67.207(b)(3) and (c), 67.209(b), 67.213(b) and (c), 67.307(b)(3) and (c), 67.309(b), or 67.313(b) and (c), any action taken under this paragraph other than by the Federal Air Surgeon is subject to reconsideration by the Federal Air Surgeon. A certificate issued by an aviation medical examiner is considered to be affirmed as issued unless an FAA official named in this paragraph (authorized official) reverses that issuance within 60 days after the date of issuance. However, if within 60 days after the date of issuance an authorized official requests the certificate holder to submit additional medical information, an authorized official may reverse the issuance within 60 days after receipt of the requested information.

(d) The authority of the Administrator under 49 U.S.C. 4709 to re-examine any civil airman to the extent necessary to determine an airman’s qualification to continue to hold an airman medical certificate, is delegated to the
§ 67.409 Denial of medical certificate.

(a) Any person who is denied a medical certificate by an aviation medical examiner may, within 30 days after the date of the denial, apply in writing and in duplicate to the Federal Air Surgeon, Attention: Manager, Aeromedical Certification Division, AAM–300, Federal Aviation Administration, P.O. Box 26080, Oklahoma City, Oklahoma 73126, for reconsideration of that denial. If the person does not ask for reconsideration during the 30-day period after the date of the denial, he or she is considered to have withdrawn the application for a medical certificate.

(b) The denial of a medical certificate—

(1) By an aviation medical examiner is not a denial by the Administrator under 49 U.S.C. 44703.

(2) By the Federal Air Surgeon is considered to be a denial by the Administrator under 49 U.S.C. 44703.

(3) By the Manager, Aeromedical Certification Division, or a Regional Flight Surgeon is considered to be a denial by the Administrator under 49 U.S.C. 44703 except where the person does not meet the standards of §§67.107(b)(3) and (c), 67.109(b), or 67.113(b) and (c); 67.207(b)(3) and (c), 67.209(b), or 67.213(b) and (c); or 67.307(b)(3) and (c), 67.309(b), or 67.313(b) and (c).

(c) Any action taken under §67.407(c) that wholly or partly reverses the issue of a medical certificate by an aviation medical examiner is the denial of a medical certificate under paragraph (b) of this section.

(d) If the issue of a medical certificate is wholly or partly reversed by the Federal Air Surgeon; the Manager, Aeromedical Certification Division; or a Regional Flight Surgeon, the person holding that certificate shall surrender it, upon request of the FAA.

§ 67.411 [Reserved]

§ 67.413 Medical records.

(a) Whenever the Administrator finds that additional medical information or history is necessary to determine whether you meet the medical standards required to hold a medical certificate, you must:

(1) Furnish that information to the FAA; or

(2) Authorize any clinic, hospital, physician, or other person to release to the FAA all available information or records concerning that history.

(b) If you fail to provide the requested medical information or history or to authorize its release, the FAA may suspend, modify, or revoke your medical certificate or, in the case of an applicant, deny the application for a medical certificate.

(c) If your medical certificate is suspended, modified, or revoked under paragraph (b) of this section, that suspension or revocation remains in effect until you provide the requested information, history, or authorization to the FAA and until the FAA determines that you meet the medical standards set forth in this part.

§ 67.415 Return of medical certificate after suspension or revocation.

The holder of any medical certificate issued under this part that is suspended or revoked shall, upon the Administrator’s request, return it to the Administrator.