may be considered an acceptable alternative.

[59 FR 61805, Dec. 2, 1994; 60 FR 29485, June 5, 1995, as amended at 64 FR 67799, Dec. 3, 1999; 68 FR 37349, June 23, 2003]

§63.463 Batch vapor and in-line cleaning machine standards.

(a) Except as provided in 63.464 for all cleaning machines, each owner or operator of a solvent cleaning machine subject to the provisions of this subpart shall ensure that each existing or new batch vapor or in-line solvent cleaning machine subject to the provisions of this subpart conforms to the design requirements specified in paragraphs (a)(1) through (7) of this section. The owner or operator of a continuous web cleaning machine shall comply with the requirements of paragraph (g) or (h) of this section, as appropriate, in lieu of complying with this paragraph.

(1) Each cleaning machine shall be designed or operated to meet the control equipment or technique requirements in paragraph (a)(1)(i) or (a)(1)(i) of this section.

(i) An idling and downtime mode cover, as described in $\S63.463(d)(1)(i)$, that may be readily opened or closed, that completely covers the cleaning machine openings when in place, and is free of cracks, holes, and other defects.

(ii) A reduced room draft as described in §63.463(e)(2)(ii).

(2) Each cleaning machine shall have a freeboard ratio of 0.75 or greater.

(3) Each cleaning machine shall have an automated parts handling system capable of moving parts or parts baskets at a speed of 3.4 meters per minute (11 feet per minute) or less from the initial loading of parts through removal of cleaned parts.

(4) Each vapor cleaning machine shall be equipped with a device that shuts off the sump heat if the sump liquid solvent level drops to the sump heater coils. This requirement does not apply to a vapor cleaning machine that uses steam to heat the solvent.

(5) Each vapor cleaning machine shall be equipped with a vapor level control device that shuts off sump heat if the vapor level in the vapor cleaning machine rises above the height of the primary condenser. (6) Each vapor cleaning machine shall have a primary condenser.

(7) Each cleaning machine that uses a lip exhaust shall be designed and operated to route all collected solvent vapors through a properly operated and maintained carbon adsorber that meets the requirements of paragraph (e)(2)(vii) of this section.

(b) Except as provided in §63.464, each owner or operator of an existing or new batch vapor cleaning machine shall comply with either paragraph (b)(1) or (b)(2) of this section.

(1) Each owner or operator of a batch vapor cleaning machine with a solvent/ air interface area of 1.21 square meters (13 square feet) or less shall comply with the requirements specified in either paragraph (b)(1)(i) or (b)(1)(ii) of this section.

(i) Employ one of the control combinations listed in table 1 of this subpart or other equivalent methods of control as determined using the procedure in §63.469, equivalent methods of control.

TABLE 1—CONTROL COMBINATIONS FOR BATCH VAPOR SOLVENT CLEANING MACHINES WITH A SOLVENT/AIR INTERFACE AREA OF 1.21 SQUARE METERS (13 SQUARE FEET) OR LESS

Option	Control combinations
1	Working-mode cover, freeboard ratio of 1.0, superheated vapor.
2	Freeboard refrigeration device, superheated vapor.
3	Working-mode cover, freeboard refrigeration device.
4	Reduced room draft, freeboard ratio of 1.0, superheated vapor.
5	Freeboard refrigeration device, reduced room draft.
6	Freeboard refrigeration device, freeboard ratio of 1.0.
7	Freeboard refrigeration device, dwell.
8	Reduced room draft, dwell, freeboard ratio of 1.0.
9	Freeboard refrigeration device, carbon adsorber.
10	Freeboard ratio of 1.0, superheated vapor, car- bon adsorber.

NoTE: Unlike most of the control techniques available for complying with this rule, carbon adsorbers are not considered to be a pollution prevention measure. Use of such units may impose additional cost and burden for a number of reasons. First, carbon adsorption units are generally more expensive than other controls listed in the options. Second, these units may present cross-media impacts such as effluent discharges if not properly operated and maintained, and spent carbon beds have to be disposed of as hazardous waste. When making decisions about what controls to install on halogenated solvent cleaning machines to meet the requirements of this rule, all of these factors should be weighed and pollution prevention measures are encouraged wherever possible.

§63.463

(ii) Demonstrate that their solvent cleaning machine can achieve and maintain an idling emission limit of 0.22 kilograms per hour per square meter (0.045 pounds per hour per square foot) of solvent/air interface area as determined using the procedures in §63.465(a) and appendix A to this part.

(2) Each owner or operator of a batch vapor cleaning machine with a solvent/ air interface area greater than 1.21 square meters (13 square feet) shall comply with the requirements specified in either paragraph (b)(2)(i) or (b)(2)(ii) of this section.

(i) Employ one of the control combinations listed in table 2 of this subpart or other equivalent methods of control as determined using the procedure in §63.469, equivalent methods of control.

TABLE 2—CONTROL COMBINATIONS FOR BATCH VAPOR SOLVENT CLEANING MACHINES WITH A SOLVENT/AIR INTERFACE AREA GREATER THAN 1.21 SQUARE METERS (13 SQUARE FEET)

Option	Control combinations
1	Freeboard refrigeration device, freeboard ratio of 1.0, superheated vapor.
2	Dwell, freeboard refrigeration device, reduced room draft.
3	Working-mode cover, freeboard refrigeration device, superheated vapor.
4	Freeboard ratio of 1.0, reduced room draft, superheated vapor.
5	Freeboard refrigeration device, reduced room draft, superheated vapor.
6	Freeboard refrigeration device, reduced room draft, freeboard ratio of 1.0.
7	Freeboard refrigeration device, superheated vapor, carbon adsorber.

NoTE: Unlike most of the control techniques available for complying with this rule, carbon adsorbers are not considered to be a pollution prevention measure. Use of such units may impose additional cost and burden for a number of reasons. First, carbon adsorption units are generally more expensive than other controls listed in the options. Second, these units may present cross-media impacts such as effluent discharges if not properly operated and maintained, and spent carbon beds have to be disposed of as hazardous waste. When making decisions about what controls to install on halogenated solvent cleaning machines to meet the requirements of this rule, all of these factors should be weighed and pollution prevention measures are encouraged wherever possible.

(ii) Demonstrate that their solvent cleaning machine can achieve and maintain an idling emission limit of 0.22 kilograms per hour per square meter (0.045 pounds per hour per square foot) of solvent/air interface area as determined using the procedures in §63.465(a) and appendix A of this part.

40 CFR Ch. I (7–1–12 Edition)

(c) Except as provided in 63.464 for all cleaning machines, each owner or operator of an in-line cleaning machine shall comply with paragraph (c)(1) or (2) of this section as appropriate. The owner or operator of a continuous web cleaning machine shall comply with the requirements of paragraph (g) or (h) of this section, as appropriate, in lieu of complying with this paragraph.

(1) Each owner or operator of an existing in-line cleaning machine shall comply with the requirements specified in either paragraph (c)(1)(i) or (c)(1)(i) of this section.

(i) Employ one of the control combinations listed in table 3 of this subpart or other equivalent methods of control as determined using the procedure in §63.469, equivalent methods of control.

TABLE 3—CONTROL COMBINATIONS FOR EXISTING IN-LINE SOLVENT CLEANING MACHINES

Option	Control combinations
1 2	Superheated vapor, freeboard ratio of 1.0. Freeboard refrigeration device, freeboard ratio
3 4	of 1.0. Dwell, freeboard refrigeration device. Dwell, carbon adsorber.

NOTE: Unlike most of the control techniques available for complying with this rule, carbon adsorbers are not considered to be a pollution prevention measure. Use of such units may impose additional cost and burden for a number of reasons. First, carbon adsorption units are generally more expensive than other controls listed in the options. Second, these units may present cross-media impacts such as effluent discharges if not properly operated and maintained, and spent carbon beds have to be disposed of as hazardous waste. When making decisions about what controls to install on halogenated solvent cleaning machines to meet the requirements of this rule, all of these factors should be weighed and pollution prevention measures are encouraged wherever possible.

(ii) Demonstrate that their solvent cleaning machine can achieve and maintain an idling emission limit of 0.10 kilograms per hour per square meter (0.021 pounds per hour per square foot) of solvent/air interface area as determined using the procedures in §63.465(a) and appendix A to this part.

(2) Each owner or operator of a new in-line cleaning machine shall comply with the requirements specified in either paragraph (c)(2)(i) or (c)(2)(i) of this section.

(i) Employ one of the control combinations listed in table 4 of this subpart or other equivalent methods of control as determined using the procedure in §63.469, equivalent methods of control section.

TABLE 4—CONTROL COMBINATIONS FOR NEW IN-LINE SOLVENT CLEANING MACHINES

Option	Control combinations		
	Superheated vapor, freeboard refrigeration de- vice.		
2	Freeboard refrigeration device, carbon adsorber.		
3	Superheated vapor, carbon adsorber.		

NoTE: Unlike most of the control techniques available for complying with this rule, carbon adsorbers are not considered to be a pollution prevention measure. Use of such units may impose additional cost and burden for a number of reasons. First, carbon adsorption units are generally more expensive than other controls listed in the options. Second, these units may present cross-media impacts such as effluent discharges if not properly operated and maintained, and spent carbon beds have to be disposed of as hazardous waste. When making decisions about what controls to install on halogenated solvent cleaning machines to meet the requirements of this rule, all of these factors should be weighed and pollution prevention measures are encouraged wherever possible.

(ii) Demonstrate that their solvent cleaning machine can achieve and maintain an idling emission limit of 0.10 kilograms per hour per square meter (0.021 pounds per hour per square foot) of solvent/air interface area as determined using the procedures in §63.465(a) and appendix A to this part.

(d) Except as provided in §63.464 for all cleaning machines, each owner or operator of an existing or new batch vapor or in-line solvent cleaning machine shall meet all of the following required work and operational practices specified in paragraphs (d)(1) through (12) of this section as applicable. The owner or operator of a continuous web cleaning machine shall comply with the requirements of paragraph (g) or (h) of this section, as appropriate, in lieu of complying with this paragraph.

(1) Control air disturbances across the cleaning machine opening(s) by incorporating the control equipment or techniques in paragraph (d)(1)(i) or (d)(1)(i) of this section.

(i) Cover(s) to each solvent cleaning machine shall be in place during the idling mode, and during the downtime mode unless either the solvent has been removed from the machine or maintenance or monitoring is being performed that requires the cover(s) to not be in place.

(ii) A reduced room draft as described in 63.463(e)(2)(ii).

(2) The parts baskets or the parts being cleaned in an open-top batch vapor cleaning machine shall not occupy more than 50 percent of the solvent/air interface area unless the parts baskets or parts are introduced at a speed of 0.9 meters per minute (3 feet per minute) or less.

(3) Any spraying operations shall be done within the vapor zone or within a section of the solvent cleaning machine that is not directly exposed to the ambient air (i.e., a baffled or enclosed area of the solvent cleaning machine).

(4) Parts shall be oriented so that the solvent drains from them freely. Parts having cavities or blind holes shall be tipped or rotated before being removed from any solvent cleaning machine unless an equally effective approach has been approved by the Administrator.

(5) Parts baskets or parts shall not be removed from any solvent cleaning machine until dripping has stopped.

(6) During startup of each vapor cleaning machine, the primary condenser shall be turned on before the sump heater.

(7) During shutdown of each vapor cleaning machine, the sump heater shall be turned off and the solvent vapor layer allowed to collapse before the primary condenser is turned off.

(8) When solvent is added or drained from any solvent cleaning machine, the solvent shall be transferred using threaded or other leakproof couplings and the end of the pipe in the solvent sump shall be located beneath the liquid solvent surface.

(9) Each solvent cleaning machine and associated controls shall be maintained as recommended by the manufacturers of the equipment or using alternative maintenance practices that have been demonstrated to the Administrator's satisfaction to achieve the same or better results as those recommended by the manufacturer.

(10) Each operator of a solvent cleaning machine shall complete and pass the applicable sections of the test of solvent cleaning procedures in appendix A to this part if requested during an inspection by the Administrator.

(11) Waste solvent, still bottoms, and sump bottoms shall be collected and stored in closed containers. The closed containers may contain a device that would allow pressure relief, but would not allow liquid solvent to drain from the container.

40 CFR Ch. I (7–1–12 Edition)

(12) Sponges, fabric, wood, and paper products shall not be cleaned.

(e) Each owner or operator of a solvent cleaning machine complying with paragraph (b), (c), (g), or (h) of this section shall comply with the requirements specified in paragraphs (e)(1) through (4) of this section.

(1) Conduct monitoring of each control device used to comply with §63.463 of this subpart as provided in §63.466.

(2) Determine during each monitoring period whether each control device used to comply with these standards meets the requirements specified in paragraphs (e)(2)(i) through (xi) of this section.

(i) If a freeboard refrigeration device is used to comply with these standards, the owner or operator shall ensure that the chilled air blanket temperature (in °F), measured at the center of the air blanket, is no greater than 30 percent of the solvent's boiling point.

(ii) If a reduced room draft is used to comply with these standards, the owner or operator shall comply with the requirements specified in paragraphs (e)(2)(ii)(A) and (e)(2)(ii)(B) of this section.

(A) Ensure that the flow or movement of air across the top of the freeboard area of the solvent cleaning machine or within the solvent cleaning machine enclosure does not exceed 15.2 meters per minute (50 feet per minute) at any time as measured using the procedures in §63.466(d).

(B) Establish and maintain the operating conditions under which the wind speed was demonstrated to be 15.2 meters per minute (50 feet per minute) or less as described in \S 63.466(d).

(iii) If a working-mode cover is used to comply with these standards, the owner or operator shall comply with the requirements specified in paragraphs (e)(2)(iii)(A) and (e)(2)(iii)(B) of this section.

(A) Ensure that the cover opens only for part entrance and removal and completely covers the cleaning machine openings when closed.

(B) Ensure that the working-mode cover is maintained free of cracks, holes, and other defects.

(iv) If an idling-mode cover is used to comply with these standards, the owner or operator shall comply with the requirements specified in paragraphs (e)(2)(iv)(A) and (e)(2)(iv)(B) of this section.

(A) Ensure that the cover is in place whenever parts are not in the solvent cleaning machine and completely covers the cleaning machine openings when in place.

(B) Ensure that the idling-mode cover is maintained free of cracks, holes, and other defects.

(v) If a dwell is used to comply with these standards, the owner or operator shall comply with the requirements specified in paragraphs (e)(2)(v)(A) and (e)(2)(v)(B) of this section.

(A) Determine the appropriate dwell time for each type of part or parts basket, or determine the maximum dwell time using the most complex part type or parts basket, as described in §63.465(d).

(B) Ensure that, after cleaning, each part is held in the solvent cleaning machine freeboard area above the vapor zone for the dwell time determined for that particular part or parts basket, or for the maximum dwell time determined using the most complex part type or parts basket.

(vi) If a superheated vapor system is used to comply with these standards, the owner or operator shall comply with the requirements specified in paragraphs (e)(2)(vi)(A) through (e)(2)(vi)(C) of this section.

(A) Ensure that the temperature of the solvent vapor at the center of the superheated vapor zone is at least 10 $^{\circ}$ F above the solvent's boiling point.

(B) Ensure that the manufacturer's specifications for determining the minimum proper dwell time within the superheated vapor system is followed.

(C) Ensure that parts remain within the superheated vapor for at least the minimum proper dwell time.

(vii) If a carbon adsorber in conjunction with a lip exhaust or other exhaust internal to the cleaning machine is used to comply with these standards, the owner or operator shall comply with the following requirements:

(A) Ensure that the concentration of organic solvent in the exhaust from this device does not exceed 100 parts per million of any halogenated HAP compound as measured using the procedure in §63.466(e). If the halogenated

HAP solvent concentration in the carbon adsorber exhaust exceeds 100 parts per million, the owner or operator shall adjust the desorption schedule or replace the disposable canister, if not a regenerative system, so that the exhaust concentration of halogenated HAP solvent is brought below 100 parts per million.

(B) Ensure that the carbon adsorber bed is not bypassed during desorption.

(C) Ensure that the lip exhaust is located above the solvent cleaning machine cover so that the cover closes below the lip exhaust level.

(viii) If a superheated part system is used to comply with the standards for continuous web cleaning machines in paragraph (g) of this section, the owner or operator shall ensure that the temperature of the continuous web part is at least 10 degrees Fahrenheit above the solvent boiling point while the part is traveling through the cleaning machine.

(ix) If a squeegee system is used to comply with the continuous web cleaning requirements of paragraph (g)(3)(iii) or (h)(2)(i) of this section, the owner or operator shall comply with the following requirements.

(A) Determine the appropriate maximum product throughput for the squeegees used in the squeegee system, as described in 63.465(f).

(B) Conduct the weekly monitoring required by 63.466(a)(3). Record the results required by 63.467(a)(6).

(C) Calculate the total amount of continuous web product processed since the squeegees were replaced and compare to the maximum product throughput for the squeegees.

(D) Ensure squeegees are replaced at or before the maximum product throughput is attained.

(E) Redetermine the maximum product throughput for the squeegees if any solvent film is visible on the continuous web part immediately after it exits the cleaning machine.

(x) If an air knife system is used to comply with the continuous web cleaning requirements of paragraph (g)(3)(iii) or (h)(2)(i) of this section, the owner or operator shall comply with the following requirements.

(A) Determine the air knife parameter and parameter value that dem-

onstrate to the Administrator's satisfaction that the air knife is properly operating. An air knife is properly operating if no visible solvent film remains on the continuous web part after it exits the cleaning machine.

(B) Maintain the selected air knife parameter value at the level determined in paragraph (a) of this section.

(C) Conduct the weekly monitoring required by $\S63.466(a)(3)$.

(D) Redetermine the proper air knife parameter value if any solvent film is visible on the continuous web part immediately after it exits the cleaning machine.

(xi) If a combination squeegee and air knife system is used to comply with the continuous web cleaning requirements of paragraph (g)(3)(iii) or (h)(2)(i) of this section, the owner or operator shall comply with the following requirements.

(A) Determine the system parameter and value that demonstrate to the Administrator's satisfaction that the system is properly operating.

(B) Maintain the selected parameter value at the level determined in paragraph (a) of this section.

(C) Conduct the weekly monitoring required by §63.466(a)(3).

(D) Redetermine the proper parameter value if any solvent film is visible on the continuous web part immediately after it exits the cleaning machine.

(3) If any of the requirements of paragraph (e)(2) of this section are not met, determine whether an exceedance has occurred using the criteria in paragraphs (e)(3)(i) and (e)(3)(ii) of this section.

(i) An exceedance has occurred if the requirements of paragraphs (e)(2)(ii)(B), (e)(2)(iii)(A), (e)(2)(iv)(A), (e)(2)(v), (e)(2)(v)(B), (e)(2)(vi)(C), (e)(2)(vii)(B), or (e)(2)(vii)(C) of this section have not been met.

(ii) An exceedance has occurred if the requirements of paragraphs (e)(2)(i), (e)(2)(i)(A), (e)(2)(ii)(B), (e)(2)(iv)(B), (e)(2)(vi)(A), or (e)(2)(vi)(A) of this section have not been met and are not corrected within 15 days of detection. Adjustments or repairs shall be made to the solvent cleaning system or control device to reestablish required levels.

The parameter must be remeasured immediately upon adjustment or repair and demonstrated to be within required limits.

(4) The owner or operator shall report all exceedances and all corrections and adjustments made to avoid an exceedance as specified in §63.468(h).

(f) Each owner or operator of a batch vapor or in-line solvent cleaning machine complying with the idling emission limit standards in paragraphs (b)(1)(ii), (b)(2)(ii), (c)(1)(ii), or (c)(2)(ii) of this section shall comply with the requirements specified in paragraphs (f)(1) through (f)(5) of this section.

(1) Conduct an initial performance test to comply with the requirements specified in paragraphs (f)(1)(i) and (f)(1)(i) of this section.

(i) Demonstrate compliance with the applicable idling emission limit.

(ii) Establish parameters that will be monitored to demonstrate compliance. If a control device is used that is listed in paragraph (e)(2) of this section, then the requirements for that control device as listed in paragraph (e)(2) of this section shall be used unless the owner or operator can demonstrate to the Administrator's satisfaction that an alternative strategy is equally effective.

(2) Conduct the periodic monitoring of the parameters used to demonstrate compliance as described in $\S63.466(f)$.

(3) Operate the solvent cleaning machine within parameters identified in the initial performance test.

(4) If any of the requirements in paragraphs (f)(1) through (f)(3) of this section are not met, determine whether an exceedance has occurred using the criteria in paragraphs (f)(4)(i) and (f)(4)(ii) of this section.

(i) If using a control listed in paragraph (e) of this section, the owner or operator shall comply with the appropriate parameter values in paragraph (e)(2) and the exceedance delineations in paragraphs (e)(3)(i) and (e)(3)(ii) of this section.

(ii) If using a control not listed in paragraph (e) of this section, the owner or operator shall indicate whether the exceedance of the parameters that are monitored to determine the proper functioning of this control would be classified as an immediate exceedance or whether a 15 day repair period would 40 CFR Ch. I (7–1–12 Edition)

be allowed. This information must be submitted to the Administrator for approval.

(5) The owner or operator shall report all exceedances and all corrections and adjustments made to avoid an exceedance as specified in 63.468(h).

(g) Except as provided in $\S63.464$ and in paragraph (h) of this section for remote reservoir continuous web cleaning machines, each owner or operator of a continuous web cleaning machine shall comply with paragraphs (g)(1) through (4) of this section for each continuous web cleaning machine.

(1) Except as provided in paragraph (g)(2) of this section, install, maintain, and operate one of the following control combinations on each continuous web cleaning machine.

(i) For each existing continuous web cleaning machine, the following control combinations are allowed:

(A) Superheated vapor or superheated part technology, and a freeboard ratio of 1.0 or greater.

(B) Freeboard refrigeration device and a freeboard ratio of 1.0 or greater.

(C) Carbon adsorption system meeting the requirements of paragraph (e)(2)(vii) of this section.

(ii) For each new continuous web cleaning machine, the following control combinations are allowed:

(A) Superheated vapor or superheated part technology, and a freeboard refrigeration device.

(B) A freeboard refrigeration device and a carbon adsorber meeting the requirements of paragraph (e)(2)(vii) of this section.

(C) Superheated vapor or superheated part technology, and a carbon adsorber meeting the requirements of paragraph (e)(2)(vii) of this section.

(2) If a carbon adsorber system can be demonstrated to the Administrator's satisfaction to have an overall solvent control efficiency (i.e., capture efficiency removal efficiency) of 70 percent or greater, this system is equivalent to the options in paragraph (g) of this section.

(3) In lieu of complying with the provisions of paragraph (a) of this section, the owner or operator of a continuous web cleaning machine shall comply with the following provisions:

(i) Each cleaning machine shall meet one of the following control equipment or technique requirements:

(A) An idling and downtime mode cover, as described in paragraph (d)(1)(i) of this section, that may be readily opened or closed; that completely covers the cleaning machine openings when in place; and is free of cracks, holes, and other defects. A continuous web part that completely occupies an entry or exit port when the machine is idle is considered to meet this requirement.

(B) A reduced room draft as described in paragraph (e)(2)(ii) of this section.

(C) Gasketed or leakproof doors that separate both the continuous web part feed reel and take-up reel from the room atmosphere if the doors are checked according to the requirements of paragraph (e)(2)(iii) of this section.

(D) A cleaning machine that is demonstrated to the Administrator's satisfaction to be under negative pressure during idling and downtime and is vented to a carbon adsorption system that meets the requirements of either paragraph (e)(2)(vii) of this section or paragraph (g)(2) of this section.

(ii) Each continuous web cleaning machine shall have a freeboard ratio of 0.75 or greater unless that cleaning machine is a remote reservoir continuous web cleaning machine.

(iii) Each cleaning machine shall have an automated parts handling system capable of moving parts or parts baskets at a speed of 3.4 meters per minute (11 feet per minute) or less from the initial loading of parts through removal of cleaned parts, unless the cleaning machine is a continuous web cleaning machine that has a squeegee system or air knife system installed, maintained, and operated on the continuous web cleaning machine meeting the requirements of paragraph (e) of this section.

(iv) Each vapor cleaning machine shall be equipped with a device that shuts off the sump heat if the sump liquid solvent level drops to the sump heater coils. This requirement does not apply to a vapor cleaning machine that uses steam to heat the solvent.

(v) Each vapor cleaning machine shall be equipped with a vapor level control device that shuts off sump heat if the vapor level in the vapor cleaning machine rises above the height of the primary condenser.

(vi) Each vapor cleaning machine shall have a primary condenser.

(vii) Each cleaning machine that uses a lip exhaust or any other exhaust within the solvent cleaning machine shall be designed and operated to route all collected solvent vapors through a properly operated and maintained carbon adsorber that meets the requirements of either paragraph (e)(2)(vii) or (g)(2) of this section.

(4) In lieu of complying with the provisions of paragraph (d) of this section, the owner or operator of a continuous web cleaning machine shall comply with the following provisions:

(i) Control air disturbances across the cleaning machine opening(s) by incorporating one of the following control equipment or techniques:

(A) Cover(s) to each solvent cleaning machine shall be in place during the idling mode and during the downtime mode unless either the solvent has been removed from the machine or maintenance or monitoring is being performed that requires the cover(s) in place. A continuous web part that completely occupies an entry or exit port when the machine is idle is considered to meet this requirement.

(B) A reduced room draft as described in paragraph (e)(2)(ii) of this section.

(C) Gasketed or leakproof doors or covers that separate both the continuous web part feed reel and take-up reel from the room atmosphere if the doors are checked according to the requirements of paragraph (e)(2)(iii) of this section.

(D) A cleaning machine that is demonstrated to the Administrator's satisfaction to be under negative pressure during idling and downtime and is vented to a carbon adsorption system that meets either the requirements of paragraph (e)(2)(vii) of this section or paragraph (g)(2) of this section.

(ii) Any spraying operations shall be conducted in a section of the solvent cleaning machine that is not directly exposed to the ambient air (i.e., a baffled or enclosed area of the solvent cleaning machine) or within a machine having a door or cover that meets the requirements of paragraph (g)(4)(i)(C) of this section.

(iii) During startup of each vapor cleaning machine, the primary condenser shall be turned on before the sump heater.

(iv) During shutdown of each vapor cleaning machine, the sump heater shall be turned off and the solvent vapor layer allowed to collapse before the primary condenser is turned off.

(v) When solvent is added or drained from any solvent cleaning machine, the solvent shall be transferred using threaded or other leakproof couplings, and the end of the pipe in the solvent sump shall be located beneath the liquid solvent surface.

(vi) Each solvent cleaning machine and associated controls shall be maintained as recommended by the manufacturers of the equipment or using alternative maintenance practices that have been demonstrated to the Administrator's satisfaction to achieve the same or better results as those recommended by the manufacturer.

(vii) Waste solvent, still bottoms, sump bottoms, and waste absorbent materials used in the cleaning process for continuous web cleaning machines shall be collected and stored in waste containers. The closed containers may contain a device that would allow pressure relief, but would not allow liquid solvent to drain from the container.

(viii) Except as provided in paragraph (g)(4)(ix) of this section, sponges, fabric, wood, and paper products shall not be cleaned.

(ix) The prohibition in paragraph (g)(4)(viii) of this section does not apply to absorbent materials that are used as part of the cleaning process of continuous web cleaning machines, including rollers and roller covers.

(h) Except as provided in §63.464, each owner or operator of a remote reservoir continuous web cleaning machine shall comply with paragraphs (h)(1) through (4) of this section.

(1) Except as provided in paragraph (h)(2) of this section, install, maintain, and operate one of the following controls on each new remote reservoir continuous web cleaning machine.

(i) Superheated vapor or superheated part technology.

40 CFR Ch. I (7–1–12 Edition)

(ii) A carbon adsorber meeting the requirements of paragraph (e)(2)(vii) of this section.

(iii) If a carbon adsorber system can be demonstrated to the Administrator's satisfaction to have an overall solvent control efficiency (i.e., capture efficiency removal efficiency) of 70 percent or greater, this system is equivalent to the options in paragraphs (h)(1)(i) and (h)(1)(ii) of this section.

(2) In lieu of complying with the provisions of paragraph (a) of this section, the owner or operator of a remote reservoir continuous web cleaning machine shall comply with the following provisions:

(i) Each cleaning machine shall have an automated parts handling system capable of moving parts or parts baskets at a speed of 3.4 meters per minute (11 feet per minute) or less from the initial loading of parts through removal of cleaned parts, unless the cleaning machine is a continuous web cleaning machine that has a squeegee system or air knife system installed, maintained, and operated on the continuous web cleaning machine meeting the requirements of paragraph (e) of this section.

(ii) Each vapor cleaning machine shall be equipped with a device that shuts off the sump heat if the sump liquid solvent level drops to the sump heater coils.

(iii) Each vapor cleaning machine shall be equipped with a vapor level control device that shuts off sump heat if the vapor level in the vapor cleaning machine rises above the height of the primary condenser.

(iv) Each vapor cleaning machine shall have a primary condenser.

(v) Each cleaning machine that uses a lip exhaust or any other exhaust within the solvent cleaning machine shall be designed and operated to route all collected solvent vapors through a properly operated and maintained carbon adsorber that meets the requirements of either paragraph (e)(2)(vii) or (g)(2) of this section.

(3) In lieu of complying with the provisions of paragraph (d) of this section, the owner or operator of a remote reservoir continuous web cleaning machine shall comply with the following provisions:

(i) Any spraying operations shall be conducted in a section of the solvent cleaning machine that is not directly exposed to the ambient air (i.e., a baffled or enclosed area of the solvent cleaning machine) or within a machine having a door or cover that meets the requirements of paragraph (g)(4)(i)(C)of this section.

(ii) During startup of each vapor cleaning machine, the primary condenser shall be turned on before the sump heater.

(iii) During shutdown of each vapor cleaning machine, the sump heater shall be turned off and the solvent vapor layer allowed to collapse before the primary condenser is turned off.

(iv) When solvent is added or drained from any solvent cleaning machine, the solvent shall be transferred using threaded or other leakproof couplings, and the end of the pipe in the solvent sump shall be located beneath the liquid solvent surface.

(v) Each solvent cleaning machine and associated controls shall be maintained as recommended by the manufacturers of the equipment or using alternative maintenance practices that have been demonstrated to the Administrator's satisfaction to achieve the same or better results as those recommended by the manufacturer.

(vi) Waste solvent, still bottoms, sump bottoms, and waste absorbent materials used in the cleaning process for continuous web cleaning machines shall be collected and stored in waste containers. The closed containers may contain a device that would allow pressure relief, but would not allow liquid solvent to drain from the container.

(vii) Except as provided in paragraph (h)(3)(viii) of this section, sponges, fabric, wood, and paper products shall not be cleaned.

(viii) The prohibition in paragraph (h)(3)(vii) of this section does not apply to absorbent materials that are used as part of the cleaning process of continuous web cleaning machines, including rollers and roller covers.

[59 FR 61805, Dec. 2, 1994; 60 FR 29485, June 5, 1995, as amended at 64 FR 67799, Dec. 3, 1999; 65 FR 54422, Sept. 8, 2000; 68 FR 37349, June 23, 2003]

§63.464 Alternative standards.

(a) As an alternative to meeting the requirements in §63.463, each owner or operator of a batch vapor or in-line solvent cleaning machine can elect to comply with the requirements of §63.464. An owner or operator of a solvent cleaning machine who elects to comply with §63.464 shall comply with the requirements specified in either paragraph (a)(1) or (a)(2) of this section.

(1) If the cleaning machine has a solvent/air interface, as defined in §63.461, the owner or operator shall comply with the requirements specified in paragraphs (a)(1)(i) and (a)(1)(i) of this section.

(i) Maintain a log of solvent additions and deletions for each solvent cleaning machine.

(ii) Ensure that the emissions from each solvent cleaning machine are equal to or less than the applicable emission limit presented in table 5 of this subpart as determined using the procedures in $\S63.465(b)$ and (c).

TABLE 5—EMISSION LIMITS FOR BATCH VAPOR AND IN-LINE SOLVENT CLEANING MACHINES WITH A SOLVENT/AIR INTERFACE

Solvent cleaning machine	3-month rolling av- erage monthly emission limit (kilo- grams/ square meters/ month)
Batch vapor solvent cleaning machines	150
Existing in-line solvent cleaning machines	153
New in-line solvent cleaning machines	99

(2) If the cleaning machine is a batch vapor cleaning machine and does not have a solvent/air interface, the owner or operator shall comply with the requirements specified in paragraphs (a)(2)(i) and (a)(2)(ii) of this section.

(i) Maintain a log of solvent additions and deletions for each solvent cleaning machine.

(ii) Ensure that the emissions from each solvent cleaning machine are equal to or less than the appropriate limits as described in paragraphs (a)(2)(ii)(A) and (a)(2)(ii)(B) of this section.