Solvent/solvent blend	CAS. No.	Average organic HAP mass fraction	Typical organic HAP, percent by mass
2. Xylene(s) | 1330–20–7 | 1.0 | Xylenes, ethylbenzene.
3. Hexane | 110–54–3 | 0.5 | n-hexane.
4. n-Hexane | 110–54–3 | 1.0 | n-hexane.
5. Ethylbenzene | 100–41–4 | 1.0 | Ethylbenzene.
6. Aliphatic 140 | | | None.
7. Aromatic 100 | | | 0.02 | 1% xylene, 1% cumene.
8. Aromatic 150 | | | 0.09 | Naphthalene.
9. Aromatic naphtha | | | 0.02 | 1% xylene, 1% cumene.
10. Aromatic solvent | | | 0.09 | Naphthalene.
11. Exempt mineral spirits | | | 0.01 | Xylenes.
12. Lignoines (VM & P) | | | 0.01 | Toluene.
13. Laccol spirits | | | 0.15 | Toluene.
14. Low aromatic white spirit | | | 0.01 | Xylenes.
15. Mineral spirits | | | 0.01 | Xylenes.
16. Hydrotreated naphtha | | | 0.01 | Toluene.
17. Hydrotreated light distillate | | | 0.01 | Toluene.
18. Stoddard solvent | | | 0.01 | Xylenes.
19. Super high-flash naphtha | | | 0.05 | Xylenes.
20. Solvent | | | 0.01 | 0.5% xylenes, 0.5% ethylbenzene.
21. VM & P naphtha | | | 0.06 | 3% toluene, 3% xylene.
22. Petroleum distillate mixture | | | 0.08 | 4% naphthalene, 4% biphenyl.

TABLE 4 TO SUBPART MMMM OF PART 63—DEFAULT ORGANIC HAP MASS FRACTION FOR PETROLEUM SOLVENT GROUPS

You may use the mass fraction values in the following table for solvent blends for which you do not have test data or manufacturer’s formulation data.

<table>
<thead>
<tr>
<th>Solvent type</th>
<th>Average organic HAP mass fraction</th>
<th>Typical organic HAP, percent by mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliphatic b</td>
<td>0.03</td>
<td>1% Xylene, 1% Toluene, and 1% Ethylbenzene.</td>
</tr>
<tr>
<td>Aromatic c</td>
<td>0.06</td>
<td>4% Xylene, 1% Toluene, and 1% Ethylbenzene.</td>
</tr>
</tbody>
</table>

*Use this table only if the solvent blend does not match any of the solvent blends in Table 3 to this subpart by either solvent blend name or CAS number and you only know whether the blend is aliphatic or aromatic.

APPENDIX A TO SUBPART MMMM OF PART 63—ALTERNATIVE CAPTURE EFFICIENCY AND DESTRUCTION EFFICIENCY MEASUREMENT AND MONITORING PROCEDURES FOR MAGNET WIRE COATING OPERATIONS

1.0 Introduction.

1.1 These alternative procedures for capture efficiency and destruction efficiency measurement and monitoring are intended principally for newer magnet wire coating machines where the control device is internal and integral to the oven so that it is difficult or infeasible to make gas measurements at the inlet to the control device.

1.2 In newer gas fired magnet wire ovens with thermal control (no catalyst), the burn-er tube serves as the control device (thermal oxidizer) for the process. The combustion of solvents in the burner tube is the principal source of heat for the oven.

1.3 In newer magnet wire ovens with a catalyst there is either a burner tube (gas fired ovens) or a tube filled with electric heating elements (electric heated oven) before the catalyst. A large portion of the solvent is often oxidized before reaching the catalyst. The combustion of solvents in the tube and across the catalyst is the principal source of heat for the oven. The internal catalyst in these ovens cannot be accessed without disassembly of the oven. This disassembly includes removal of the oven insulation. Oven reassembly often requires the installation of new oven insulation.

1.4 Some older magnet wire ovens have external afterburners. A significant portion of the solvent is oxidized within these ovens as well.

1.5 The alternative procedure for destruction efficiency determines the organic carbon content of the volatiles entering the