this section, an owner or operator may elect to implement the following alternative data accuracy assessment procedures. For SO\textsubscript{2}, CO\textsubscript{2}, and O\textsubscript{2} CEMS and for NO\textsubscript{X} CEMS, RATAs may be performed in accordance with section 2.3 of appendix B to part 75 of this chapter instead of following the procedures described in Procedure 1, section 5.1.1 of appendix F to this part. If this option is selected: The frequency of each RATA shall be as specified in section 2.3.1 of appendix B to part 75 of this chapter; the applicable relative accuracy specifications shown in Figure 2 in appendix B to part 75 of this chapter shall be met; the data validation and out-of-control criteria in section 2.3.2 of appendix B to part 75 of this chapter shall be followed instead of the excessive audit inaccuracy and out-of-control criteria in Procedure 1, section 5.2 of appendix F to this part; and the grace period provisions in section 2.3.3 of appendix B to part 75 of this chapter shall apply. For the purposes of data validation under this subpart, the relative accuracy specification in section 13.2 of Performance Specification 2 in appendix B to this part shall be met on a lb/MMBtu basis for SO\textsubscript{2} (regardless of the SO\textsubscript{2} emission level during the RATA), and for NO\textsubscript{X} when the average NO\textsubscript{X} emission rate measured by the reference method during the RATA is less than 0.100 lb/MMBtu.

(5) If the owner or operator elects to implement the alternative data assessment procedures described in paragraphs (w)(2) through (w)(4) of this section, each data assessment report shall include a summary of the results of all of the RATAs, linearity checks, CGAs, and calibration error or drift assessments required by paragraphs (w)(2) through (w)(4) of this section.

§60.51Da

reconstruction, or modification commenced after May 3, 2011, shall measure condensable PM using Method 202 of appendix M of part 51.

(3) Method 9 of appendix A of this part and the procedures in §60.11 shall be used to determine opacity.

(c) The owner or operator shall determine compliance with the SO\textsubscript{2} standards in §60.43Da as follows:

(1) The percent of potential SO\textsubscript{2} emissions (%Ps) to the atmosphere shall be computed using the following equation:

\[
\%P_s = \frac{\left(100 - \%R_f\right) \left(100 - \%R_g\right)}{100}
\]

Where:

%Ps = Percent of potential SO\textsubscript{2} emissions, percent;
%Rf = Percent reduction from fuel pretreatment, percent; and
%Rg = Percent reduction by SO\textsubscript{2} control system, percent.

(2) The procedures in Method 19 of appendix A of this part may be used to determine percent reduction (%R\textsubscript{f}) of sulfur by such processes as fuel pretreatment (physical coal cleaning, hydrodesulfurization of fuel oil, etc.), coal pulverizers, and bottom and fly ash interactions. This determination is optional.

(3) The procedures in Method 19 of appendix A of this part shall be used to determine the percent SO\textsubscript{2} reduction (%R\textsubscript{g}) of any SO\textsubscript{2} control system. Alternatively, a combination of an “as fired” fuel monitor and emission rates measured after the control system, following the procedures in Method 19 of appendix A of this part, may be used if the percent reduction is calculated using the average emission rate from the SO\textsubscript{2} control device and the average SO\textsubscript{2} input rate from the “as fired” fuel analysis for 30 successive boiler operating days.

(4) The appropriate procedures in Method 19 of appendix A of this part shall be used to determine the emission rate.

(5) The CEMS in §60.49Da(b) and (d) shall be used to determine the concentrations of SO\textsubscript{2} and CO\textsubscript{2} or O\textsubscript{2}.

(d) The owner or operator shall determine compliance with the NO\textsubscript{X} standard in §60.44Da as follows:

(1) The appropriate procedures in Method 19 of appendix A of this part shall be used to determine the emission rate of NO\textsubscript{X}.

(2) The continuous monitoring system in §60.49Da(c) and (d) shall be used to determine the concentrations of NO\textsubscript{X} and CO\textsubscript{2} or O\textsubscript{2}.

(e) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section:

(1) For Method 5 or 5B of appendix A–3 of this part, Method 17 of appendix A–6 of this part may be used at facilities with or without wet FGD systems if the stack temperature at the sampling location does not exceed an average temperature of 160 °C (320 °F). The procedures of sections 8.1 and 11.1 of Method 5B of appendix A–3 of this part may be used in Method 17 of appendix A–6 of this part only if it is used after wet FGD systems. Method 17 of appendix A–6 of this part shall not be used after wet FGD systems if the effluent is saturated or laden with water droplets.

(2) The F\textsubscript{c} factor (CO\textsubscript{2}) procedures in Method 19 of appendix A of this part may be used to compute the emission rate of PM under the stipulations of §60.46(d)(1). The CO\textsubscript{2} shall be determined in the same manner as the O\textsubscript{2} concentration.

(f) Electric utility combined cycle gas turbines that are not designed to burn fuels containing 50 percent (by heat input) or more solid derived fuel not meeting the definition of natural gas are performance tested for PM, SO\textsubscript{2}, and NO\textsubscript{X} using the procedures of Method 19 of appendix A–7 of this part. The SO\textsubscript{2} and NO\textsubscript{X} emission rates calculations from the gas turbine used in Method 19 of appendix A–7 of this part are determined when the gas turbine is performance tested under subpart GG of this part. The potential uncontrolled PM emission rate from a gas turbine is defined as 17 ng/J (0.04 lb/MMBtu) heat input.

§60.51Da Reporting requirements.

(a) For SO\textsubscript{2}, NO\textsubscript{X}, PM, and NO\textsubscript{X} plus CO emissions, the performance test data from the initial and subsequent