§ 111.50–3 Protection of conductors.

(a) Purpose. The purpose of overcurrent protection for conductors is to open the electric circuit if the current reaches a value that will cause an excessive or dangerous temperature in the conductor or conductor insulation. A grounded conductor is protected from overcurrent if a protective device of a suitable rating or setting is in each ungrounded conductor of the same circuit.

(b) Overcurrent protection of conductors. Each conductor must be protected in accordance with its current carrying capacity, except a conductor for the following circuits which must meet the following listed subparts of this chapter:

(1) Propulsion circuits, Subpart 111.35.

(2) Steering circuits, subchapter F of this chapter.

(3) Motor circuits, Subpart 111.70.

(4) Flexible cord and fixture wire for lighting circuits, Subpart 111.75.

(5) Switchboard circuits, Subpart 111.30.

(c) Fuses and circuit breakers. If the allowable current-carrying capacity of the conductor does not correspond to a standard rating for fuses or circuit breakers that meets Section 240.6 of NFPA NEC 2002 or IEC 92–202 (both incorporated by reference; see 46 CFR 110.10–1), then the next larger such rating is acceptable, except that:

(1) This rating must not be larger than 150 percent of the current-carrying capacity of the conductor; and

(2) The effect of temperature on the operation of fuses and thermally controlled circuit breakers must be taken into consideration.

(d) Parallel overcurrent protective devices. An overcurrent protective device must not be connected in parallel with another overcurrent protective device.

(e) Thermal devices. No thermal cut-out, thermal relay, or other device not designed to open a short circuit may be used for protection of a conductor against overcurrent due to a short circuit or ground, except in a motor circuit as described in Article 430 of NFPA NEC 2002 or in IEC 92–202.

(f) Ungrounded conductors. A fuse or overcurrent trip unit of a circuit breaker must be in each ungrounded conductor. A branch switch or circuit breaker must open all conductors of the circuit, except grounded conductors.

Subpart 111.50—Overcurrent Protection

§ 111.50–1 Protection of equipment.

Overcurrent protection of electric equipment must meet the following listed subparts of this chapter:

(a) Appliances, Subpart 111.77.

(b) Generators, Subpart 111.12.

(c) Motors, motor circuits, and controllers, Subpart 111.70.

(d) Transformers, Subpart 111.20.

§ 111.50–2 Systems integration.

The electrical characteristics of each overcurrent protective device must be compatible with other devices and its coordination must be considered in the design of the entire protective system.

Note to § 111.50–2: The electrical characteristics of overcurrent protective devices may differ between standards. The interchangeability and compatibility of components complying with differing standards cannot be assumed.

[CGD 94–108, 61 FR 28279, June 4, 1996]

§ 111.50–3 Protection of conductors.

(a) Purpose. The purpose of overcurrent protection for conductors is to open the electric circuit if the current reaches a value that will cause an excessive or dangerous temperature in the conductor or conductor insulation. A grounded conductor is protected from overcurrent if a protective device of a suitable rating or setting is in each ungrounded conductor of the same circuit.

(b) Overcurrent protection of conductors. Each conductor must be protected in accordance with its current carrying capacity, except a conductor for the following circuits which must meet the following listed subparts of this chapter:

(1) Propulsion circuits, Subpart 111.35.

(2) Steering circuits, subchapter F of this chapter.

(3) Motor circuits, Subpart 111.70.

(4) Flexible cord and fixture wire for lighting circuits, Subpart 111.75.

(5) Switchboard circuits, Subpart 111.30.

(c) Fuses and circuit breakers. If the allowable current-carrying capacity of the conductor does not correspond to a standard rating for fuses or circuit breakers that meets Section 240.6 of NFPA NEC 2002 or IEC 92–202 (both incorporated by reference; see 46 CFR 110.10–1), then the next larger such rating is acceptable, except that:

(1) This rating must not be larger than 150 percent of the current-carrying capacity of the conductor; and

(2) The effect of temperature on the operation of fuses and thermally controlled circuit breakers must be taken into consideration.

(d) Parallel overcurrent protective devices. An overcurrent protective device must not be connected in parallel with another overcurrent protective device.

(e) Thermal devices. No thermal cut-out, thermal relay, or other device not designed to open a short circuit may be used for protection of a conductor against overcurrent due to a short circuit or ground, except in a motor circuit as described in Article 430 of NFPA NEC 2002 or in IEC 92–202.

(f) Ungrounded conductors. A fuse or overcurrent trip unit of a circuit breaker must be in each ungrounded conductor. A branch switch or circuit breaker must open all conductors of the circuit, except grounded conductors.
§ 111.50–5

(g) Grounded conductor. An overcurrent device must not be in a permanently grounded conductor, except:

(1) An overcurrent device that simultaneously opens all conductors of the circuit, unless prohibited by § 111.05–17 for the bus-tie feeder connecting the emergency and main switchboards; and


§ 111.50–7 Enclosures.

(a) Each enclosure of an overcurrent protective device must meet Sections 240–30 and 240–33 of NFPA NEC 2002 (incorporated by reference; see 46 CFR 110.10–1).

(b) No enclosure may be exposed to the weather unless accepted by the Commandant.


§ 111.50–9 Disconnecting and guarding.

Disconnecting and guarding of overcurrent protective devices must meet Part IV of Article 240 of NFPA NEC 2002 (incorporated by reference; see 46 CFR 110.10–1).


Subpart 111.51—Coordination of Overcurrent Protective Devices

§ 111.51–1 Purpose.

The purpose of this subpart is to provide continuity of service for equipment vital to the propulsion, control or safety of the vessel under short-circuit conditions through coordination and selective operation of overcurrent protective devices.

§ 111.51–3 Protection of vital equipment.

(a) The coordination of overcurrent protective devices must be demonstrated for all potential plant configurations.

(b) Overcurrent protective devices must be installed so that:

(1) A short-circuit on a circuit that is not vital to the propulsion, control, or safety of the vessel does not trip equipment that is vital; and

(2) A short-circuit on a circuit that is vital to the propulsion, control, or safety of the vessel is cleared only by the protective device that is closest to the point of the short-circuit.