(iii) A cable of large diameter or exceptional length may be spliced to facilitate its installation.
(iv) A cable may be spliced to replace a damaged section of itself if, before replacement of the damaged section, the insulation resistance of the remainder of the cable is measured, and the condition of the insulation is unimpaired.
(m) All material in a cable splice must be chemically compatible with other material in the splice and with the materials in the cable.
(n) Ampacities for conductors must comply with Section 310–15 of the NEC (NFPA 70), or with IEEE Standard 45, as appropriate.
(o) Each conductor must be sized so that the voltage drop at the load terminals does not exceed 10 percent.
(p) Each metallic covering of armored cable must—
 (1) Be electrically continuous; and
 (2) Be grounded at each end of the run to the—
 (i) Hull (on a metallic vessel); or
 (ii) Common ground plate (on a nonmetallic vessel); and
 (3) Have final sub-circuits grounded at the supply end only.
(q) Each portable or temporary electric cord or cable must be constructed and used in compliance with the requirements of §111.60–13 of this chapter for flexible electric cord or cable.

§ 129.350 Batteries—general.
(a) Wherever a battery is charged, there must be natural or induced ventilation to dissipate the gases generated.
(b) Each battery must be located as high above the bilge as practicable within the space the battery is located in and be secured to protect against shifting due to roll, pitch, and heave motions or vibration of the vessel, and free from exposure to splash or spray of water.
(c) Each battery must be accessible for maintenance and removal.
(d) Each connection to a battery terminal must be made with a permanent connector, rather than with spring clips or other temporary clamps.
(e) Each battery must be mounted in a tray lined with, or constructed of, lead or other material resistant to damage by the electrolyte.
(f) Each battery charger must have an ammeter connected in the charging circuit.
(g) Unless the battery is adjacent to its distribution panel or switchboard that distributes power to the lighting, motor, and appliance circuits, the battery leads must have fuses in series with and as close as practicable to the battery.
(h) Each battery used for starting an engine must be located as close as possible to the engine or engines served.

§ 129.353 Battery categories.
This section applies to batteries installed to meet the requirements of §129.310(a) for secondary sources of power to vital loads.
(a) Large. A large battery-installation is one connected to a battery charger having an output of more than 2 kW, computed from the highest possible charging current and rated voltage of the battery installed.
(b) Small. A small battery-installation is one connected to a battery charger having an output of 2 kW or less, computed from the highest possible charging current and rated voltage of the battery installed.

§ 129.356 Battery installations.
(a) Large. Each large battery-installation must be located in a locker, room, or enclosed box dedicated solely to the storage of batteries. Ventilation must be provided in accordance with §111.15–10 of this chapter. Electrical equipment located within the battery enclosure must be approved by an independent laboratory for hazardous locations of Class I, Division 1, Group B, and must meet subpart 111.105 of this chapter.
(b) Small. Each small battery-installation must be located in a well-ventilated space and protected from falling objects. No small battery-installation may be in a closet, storeroom, or similar space.

§ 129.360 Semiconductor-rectifier systems.
(a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating.