Federal Aviation Administration, DOT - (1) Design precautions must be taken to minimize the hazards to the rotorcraft in the event of an engine rotor failure; and - (2) The powerplant systems associated with engine control devices, systems, and instrumentation must be designed to give reasonable assurance that those engine operating limitations that adversely affect engine rotor structural integrity will not be exceeded in service. - (e) Restart capability. (1) A means to restart any engine in flight must be provided. - (2) Except for the in-flight shutdown of all engines, engine restart capability must be demonstrated throughout a flight envelope for the rotorcraft. - (3) Following the in-flight shutdown of all engines, in-flight engine restart capability must be provided. (Secs. 313(a), 601, and 603, 72 Stat. 752, 775, 49 U.S.C. 1354(a), 1421, and 1423; sec. 6(c), 49 U.S.C. 1655(c)) [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–12, 41 FR 55472, Dec. 20, 1976; Amdt. 29–26, 53 FR 34215, Sept. 2, 1988; Amdt. 29–31, 55 FR 38967, Sept. 21, 1990; 55 FR 41309, Oct. 10, 1990; Amdt. 29–36, 60 FR 55776, Nov. 2, 19951 # §29.907 Engine vibration. - (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. - (b) The addition of the rotor and the rotor drive system to the engine may not subject the principal rotating parts of the engine to excessive vibration stresses. This must be shown by a vibration investigation. ## §29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: - (a) Category A. For cooling fans installed in Category A rotorcraft, it must be shown that a fan blade failure will not prevent continued safe flight either because of damage caused by the failed blade or loss of cooling air. - (b) Category B. For cooling fans installed in category B rotorcraft, there must be means to protect the rotorcraft and allow a safe landing if a fan blade fails. It must be shown that— - (1) The fan blade would be contained in the case of a failure; - (2) Each fan is located so that a fan blade failure will not jeopardize safety; or - (3) Each fan blade can withstand an ultimate load of 1.5 times the centrifugal force expected in service, limited by either— - (i) The highest rotational speeds achievable under uncontrolled conditions; or - (ii) An overspeed limiting device. - (c) Fatigue evaluation. Unless a fatigue evaluation under §29.571 is conducted, it must be shown that cooling fan blades are not operating at resonant conditions within the operating limits of the rotorcraft. (Secs. 313(a), 601, and 603, 72 Stat. 752, 775, 49 U.S.C. 1354(a), 1421, and 1423; sec. 6(c), 49 U.S.C. 1655 (c)) [Amdt. 29–13, 42 FR 15046, Mar. 17, 1977, as amended by Amdt. 29–26, 53 FR 34215, Sept. 2, 1988] #### ROTOR DRIVE SYSTEM #### § 29.917 Design. - (a) General. The rotor drive system includes any part necessary to transmit power from the engines to the rotor hubs. This includes gear boxes, shafting, universal joints, couplings, rotor brake assemblies, clutches, supporting bearings for shafting, any attendant accessory pads or drives, and any cooling fans that are a part of, attached to, or mounted on the rotor drive system. - (b) Design assessment. A design assessment must be performed to ensure that the rotor drive system functions safely over the full range of conditions for which certification is sought. The design assessment must include a detailed failure analysis to identify all failures that will prevent continued safe flight or safe landing and must identify the means to minimize the likelihood of their occurrence. - (c) *Arrangement*. Rotor drive systems must be arranged as follows: - (1) Each rotor drive system of multiengine rotorcraft must be arranged so that each rotor necessary for operation and control will continue to be driven by the remaining engines if any engine fails. # § 29.921 - (2) For single-engine rotorcraft, each rotor drive system must be so arranged that each rotor necessary for control in autorotation will continue to be driven by the main rotors after disengagement of the engine from the main and auxiliary rotors. - (3) Each rotor drive system must incorporate a unit for each engine to automatically disengage that engine from the main and auxiliary rotors if that engine fails. - (4) If a torque limiting device is used in the rotor drive system, it must be located so as to allow continued control of the rotorcraft when the device is operating. - (5) If the rotors must be phased for intermeshing, each system must provide constant and positive phase relationship under any operating condition. - (6) If a rotor dephasing device is incorporated, there must be means to keep the rotors locked in proper phase before operation. [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29–12, 41 FR 55472, Dec. 20, 1976; Amdt. 29–40, 61 FR 21908, May 10, 1996] #### §29.921 Rotor brake. If there is a means to control the rotation of the rotor drive system independently of the engine, any limitations on the use of that means must be specified, and the control for that means must be guarded to prevent inadvertent operation. # § 29.923 Rotor drive system and control mechanism tests. - (a) Endurance tests, general. Each rotor drive system and rotor control mechanism must be tested, as prescribed in paragraphs (b) through (n) and (p) of this section, for at least 200 hours plus the time required to meet the requirements of paragraphs (b)(2), (b)(3), and (k) of this section. These tests must be conducted as follows: - (1) Ten-hour test cycles must be used, except that the test cycle must be extended to include the OEI test of paragraphs (b)(2) and (k), of this section if OEI ratings are requested. - (2) The tests must be conducted on the rotorcraft. - (3) The test torque and rotational speed must be— - (i) Determined by the powerplant limitations; and - (ii) Absorbed by the rotors to be approved for the rotorcraft. - (b) Endurance tests; takeoff run. The takeoff run must be conducted as follows: - (1) Except as prescribed in paragraphs (b)(2) and (b)(3) of this section, the takeoff torque run must consist of 1 hour of alternate runs of 5 minutes at takeoff torque and the maximum speed for use with takeoff torque, and 5 minutes at as low an engine idle speed as practicable. The engine must be declutched from the rotor drive system, and the rotor brake, if furnished and so intended, must be applied during the first minute of the idle run. During the remaining 4 minutes of the idle run, the clutch must be engaged so that the engine drives the rotors at the minimum practical r.p.m. The engine and the rotor drive system must be accelerated at the maximum rate. When declutching the engine, it must be decelerated rapidly enough to allow the operation of the overrunning clutch. - (2) For helicopters for which the use of a 2½-minute OEI rating is requested, the takeoff run must be conducted as prescribed in paragraph (b)(1) of this section, except for the third and sixth runs for which the takeoff torque and the maximum speed for use with takeoff torque are prescribed in that paragraph. For these runs, the following apply: - (i) Each run must consist of at least one period of $2\frac{1}{2}$ minutes with takeoff torque and the maximum speed for use with takeoff torque on all engines. - (ii) Each run must consist of at least one period, for each engine in sequence, during which that engine simulates a power failure and the remaining engines are run at the $2\frac{1}{2}$ -minute OEI torque and the maximum speed for use with $2\frac{1}{2}$ -minute OEI torque for $2\frac{1}{2}$ minutes. - (3) For multiengine, turbine-powered rotorcraft for which the use of 30-second/2-minute OEI power is requested, the takeoff run must be conducted as prescribed in paragraph (b)(1) of this section except for the following: - (i) Immediately following any one 5-minute power-on run required by paragraph (b)(1) of this section, simulate a