§ 63.5995

using cements and solvents that are representative of cements and solvents typically used at your tire production affected source.

- (3) Establish an operating range that corresponds to the control efficiency as described in Table 5 to this subpart.
- (e) How to take credit for HAP emissions reductions from add-on control devices. If you want to take credit in Equations 2 and 4 of this section for HAP emissions reduced using a control system, you must meet the requirements in paragraphs (e)(1) and (2) of this section.
- (1) Monitor the established operating parameters as appropriate.
- (i) If you use a thermal oxidizer, monitor the firebox secondary chamber temperature.
- (ii) If you use a carbon adsorber, monitor the total regeneration stream mass or volumetric flow for each regeneration cycle, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle.
- (iii) If you use a control device other than a thermal oxidizer or a regenerative carbon adsorber, install and operate a continuous parameter monitoring system according to your site-specific performance test plan submitted according to §63.7(c)(2)(i).
- (iv) If you use a permanent total enclosure, monitor the face velocity across the natural draft openings (NDO) in the enclosure. Also, if you use an enclosure, monitor to ensure that the sizes of the NDO have not changed, that there are no new NDO, and that a HAP emission source has not been moved closer to an NDO since the last compliance demonstration was conducted.
- (v) If you use other capture systems, monitor the parameters identified in your monitoring plan.
- (2) Maintain the operating parameters within the operating range established during the compliance demonstration.
- (f) How to take credit for HAP emissions reductions when streams are combined. When performing material balances to demonstrate compliance, if the storage of materials, exhaust, or the wastewater from more than one affected source are combined at the point where

control systems are applied, any credit for emissions reductions needs to be prorated among the affected sources based on the ratio of their contribution to the uncontrolled emissions.

[67 FR 45598, July 9, 2002, as amended at 68 FR 11747, Mar. 12, 2003]

§ 63.5995 What are my monitoring installation, operation, and maintenance requirements?

- (a) For each operating parameter that you are required by \$63.5994(e)(1) to monitor, you must install, operate, and maintain a continuous parameter monitoring system (CPMS) according to the requirements in \$63.5990(e) and (f) and in paragraphs (a)(1) through (6) of this section.
- (1) You must operate your CPMS at all times that the process is operating.
- (2) You must collect data from at least four equally spaced periods each hour.
- (3) For at least 75 percent of the hours in an operating day, you must have valid data (as defined in your site-specific monitoring plan) for at least four equally spaced periods each hour.
- (4) For each hour that you have valid data from at least four equally spaced periods, you must calculate the hourly average value using all valid data.
- (5) You must calculate the daily average using all of the hourly averages calculated according to paragraph (a)(3) of this section for the 24-hour period.
- (6) You must record the results for each inspection, calibration, and validation check as specified in your site-specific monitoring plan.
- (b) For each temperature monitoring device, you must meet the requirements in paragraphs (a) and (b)(1) through (8) of this section.
- (1) Locate the temperature sensor in a position that provides a representative temperature.
- (2) For a non-cryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity of 2.2 degrees centigrade or 0.75 percent of the temperature value, whichever is larger
- (3) For a cryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity of 2.2 degrees centigrade or 2 percent of

Environmental Protection Agency

the temperature value, whichever is larger.

- (4) Shield the temperature sensor system from electromagnetic interference and chemical contaminants.
- (5) If a chart recorder is used, it must have a sensitivity in the minor division of at least 20 degrees Fahrenheit.
- (6) Perform an electronic calibration at least semiannually according to the procedures in the manufacturer's owners manual. Following the electronic calibration, you must conduct a temperature sensor validation check in which a second or redundant temperature sensor placed near the process temperature sensor must yield a reading within 16.7 degrees centigrade of the process temperature sensor's reading.
- (7) Conduct calibration and validation checks any time the sensor exceeds the manufacturer's specified maximum operating temperature range or install a new temperature sensor.
- (8) At least monthly, inspect all components for integrity and all electrical connections for continuity, oxidation, and galvanic corrosion.
- (c) For each integrating regeneration stream flow monitoring device associated with a carbon adsorber, you must meet the requirements in paragraphs (a) and (c)(1) and (2) of this section.
- (1) Use a device that has an accuracy of ±10 percent or better.
- (2) Use a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle.
- (d) For any other control device, or for other capture systems, ensure that the CPMS is operated according to a monitoring plan submitted to the Administrator with the compliance status report required by §63.9(h). The monitoring plan must meet the requirements in paragraphs (a) and (d)(1) through (3) of this section. Conduct monitoring in accordance with the plan submitted to the Administrator unless comments received from the Administrator require an alternate monitoring scheme.
- (1) Identify the operating parameter to be monitored to ensure that the control or capture efficiency measured during the initial compliance test is maintained.

- (2) Discuss why this parameter is appropriate for demonstrating ongoing compliance.
- (3) Identify the specific monitoring procedures.
- (e) For each pressure differential monitoring device, you must meet the requirements in paragraphs (a) and (e)(1) and (2) of this section.
- (1) Conduct a quarterly EPA Method 2 procedure (found in 40 CFR part 60, appendix A) on the applicable NDOs and use the results to calibrate the pressure monitor if the difference in results are greater than 10 percent.
- (2) Inspect the NDO monthly to ensure that their size has not changed, that there are no new NDO, and that no HAP sources have been moved closer to the NDO than when the last performance test was conducted.

§ 63.5996 How do I demonstrate initial compliance with the emission limits for tire production affected sources?

- (a) You must demonstrate initial compliance with each emission limit that applies to you according to Table 6 to this subpart.
- (b) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in §63.6009(e).

TESTING AND INITIAL COMPLIANCE REQUIREMENTS FOR TIRE CORD PRODUCTION AFFECTED SOURCES

§ 63.5997 How do I conduct tests and procedures for tire cord production affected sources?

(a) Methods to determine the mass percent of each HAP in coatings. (1) To determine the HAP content in the coating used at your tire cord production affected source, use EPA Method 311 of appendix A of this part, an approved alternative method, or any other reasonable means for determining the HAP content of your coatings. Other reasonable means include, but are not limited to: an MSDS, provided it contains appropriate information; a CPDS; or a manufacturer's HAP data sheet. You are not required to test the materials that you use, but the Administrator may require a test using EPA Method 311 (or an approved alternative method)