form of MTBE. Oxygen in the form of ethyl ethers other than ETBE shall be evaluated as if it were in the form of ETBE. Oxygen in the form of non-methyl, non-ethyl ethers shall be evaluated as if it were in the form of ETBE. Oxygen in the form of methanol or non-alcohol, non-ether oxygenates shall not be evaluated with the Simple Model, but instead must be evaluated through vehicle testing under the Complex Model per §80.48.

(3) The following equations shall comprise the simple model for toxics emissions during the winter period:

\[
\text{TOXREDW} = 100 \times \left(55.5 - \text{EXHVEN} - \text{FORM} - \text{ACET} - \text{BUTA} - \text{POM}\right) / 55.5
\]

\[
\text{EXHVEN} = \left(1.884 + 0.949 \times \text{FBEN} + 0.113 \times \left(\text{FAROM} - \text{FBEN}\right) / 100\right) \times 1000 \times \text{EXHVOCW}
\]

\[
\text{BUTA} = 0.00056 \times \text{EXHVOCW} \times 1000
\]

\[
\text{POM} = 2.13 \times \text{EXHVOCW}
\]

(i) For any oxygenate or mixtures of oxygenates, the formaldehyde and acetaldehyde shall be calculated with the following equations:

\[
\text{FORM} = 0.01256 \times \text{EXHVOCSW} \times 1000 \times \left[1 + \left(0.421 / 2.7\right) \times \left(\text{MTBE} + \text{TAME}\right) + (0.358 / 3.55) \times \text{ETOH} + \left(0.137 / 2.7\right) \times (\text{ETBE} + \text{ETAE})\right]
\]

\[
\text{ACET} = 0.00891 \times \text{EXHVOCSW} \times 1000 \times \left[1 + \left(0.078 / 2.7\right) \times \left(\text{MTBE} + \text{TAME}\right) + (0.865 / 3.55) \times \text{ETOH} + \left(0.867 / 2.7\right) \times (\text{ETBE} + \text{ETAE})\right]
\]

(ii) When calculating formaldehyde and acetaldehyde emissions using the equations in paragraph (b)(3)(i) of this section, oxygen in the form of alcohols which are more complex or have higher molecular weights than ethanol shall be evaluated as if it were in the form of ethanol. Oxygen in the form of methyl ethers other than TAME and MTBE shall be evaluated as if it were in the form of MTBE. Oxygen in the form of ethyl ethers other than ETBE shall be evaluated as if it were in the form of ETBE. Oxygen in the form of non-methyl, non-ethyl ethers shall be evaluated as if it were in the form of ETBE. Oxygen in the form of methanol or non-alcohol, non-ether oxygenates shall not be evaluated with the Simple Model, but instead must be evaluated through vehicle testing under the Complex Model per §80.48.

(4) If the fuel aromatics content of the fuel in question is less than 10 volume percent, then an FAROM value of 10 volume percent shall be used when evaluating the toxics emissions equations given in paragraphs (b)(1), (b)(2), and (b)(3) of this section.

(c) Limits of the model. (1) The model given in paragraphs (a) and (b) of this section shall be used as given to determine VOC and toxics emissions, respectively, if the properties of the fuel being evaluated fall within the ranges shown in this paragraph (c). If the properties of the fuel being evaluated fall outside the range shown in this paragraph (c), the model may not be used to determine the VOC or toxics performance of the fuel:

<table>
<thead>
<tr>
<th>Fuel parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene content</td>
<td>0.0–4.9 vol %</td>
</tr>
<tr>
<td>RVP</td>
<td>6.6–9.0 psi</td>
</tr>
<tr>
<td>Oxygenate content</td>
<td>0–4.0 wt %</td>
</tr>
<tr>
<td>Aromatics content</td>
<td>0–55 vol %</td>
</tr>
</tbody>
</table>

For gasoline sold in California, the applicable RVP range shall be 6.4–9.0 psi.

(2) The model given in paragraphs (a) and (b) of this section shall be effective from January 1, 1995 through December 31, 1997, unless extended by action of the Administrator.

§§ 80.43–80.44 [Reserved]

§ 80.45 Complex emissions model.

(a) Definition of terms. For the purposes of this section, the following definitions shall apply:

Target fuel = The fuel which is being evaluated for its emissions performance using the complex model

- **OXY** = Oxygen content of the target fuel in terms of weight percent
- **SUL** = Sulfur content of the target fuel in terms of parts per million by weight
- **RVP** = Reid Vapor Pressure of the target fuel in terms of pounds per square inch
- **E200** = 200 °F distillation fraction of the target fuel in terms of volume percent
- **E300** = 300 °F distillation fraction of the target fuel in terms of volume percent
- **ARO** = Aromatics content of the target fuel in terms of volume percent
- **BEN** = Benzene content of the target fuel in terms of volume percent
- **OLE** = Olefins content of the target fuel in terms of weight percent
- **MTB** = Methyl tertiary butyl ether content of the target fuel in terms of weight percent oxygen
ETB = Ethyl tertiary butyl ether content of the target fuel in terms of weight percent oxygen
TAM = Tertiary amyl methyl ether content of the target fuel in terms of weight percent oxygen
\(\exp = \) The function that raises the number e (the base of the natural logarithm) to the power in its domain
Phase I = The years 1995–1999
Phase II = Year 2000 and beyond

(b) **Weightings and baselines for the complex model.** (1) The weightings for normal and higher emitters \((w_1 \text{ and } w_2, \text{ respectively})\) given in table 1 shall be used to calculate the exhaust emission performance of any fuel for the appropriate pollutant and Phase:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Normal Emitters ((w_1))</th>
<th>Higher Emitters ((w_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>0.52</td>
<td>0.48</td>
</tr>
<tr>
<td>Phase II</td>
<td>0.82</td>
<td>0.18</td>
</tr>
</tbody>
</table>

(2) The following properties of the baseline fuels shall be used when determining baseline mass emissions of the various pollutants:

<table>
<thead>
<tr>
<th>Fuel property</th>
<th>Summer (mg/mile)</th>
<th>Winter (mg/mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen (wt %)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sulfur (ppm)</td>
<td>339</td>
<td>339</td>
</tr>
<tr>
<td>RVP (psi)</td>
<td>8.7</td>
<td>11.5</td>
</tr>
</tbody>
</table>

(ii) **VOC performance.** (1) The exhaust VOC emissions performance of gasoline shall be given by the following equations:

\[
\text{VOCE} = \text{VOC}(b) + \text{VOC}(b) \times Y_{\text{VOC}}(t) / 100
\]

\[
Y_{\text{VOC}}(t) = \left[w_1 \times N_{\text{V}} \right] + \left[w_2 \times H_{\text{V}} \right] - 1 \times 100
\]

where

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Summer (mg/mile)</th>
<th>Winter (mg/mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO(_x)</td>
<td>660.0</td>
<td>1340.0</td>
</tr>
<tr>
<td>VOC</td>
<td>1306.5</td>
<td>1466.3</td>
</tr>
<tr>
<td>Toxics</td>
<td>48.61</td>
<td>86.34</td>
</tr>
</tbody>
</table>

(3) The baseline mass emissions for VOC, NO\(_x\) and toxics given in tables 3, 4 and 5 of this paragraph (b)(3) shall be used in conjunction with the complex model during the appropriate Phase and season:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>446.0</td>
<td>907.0</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>660.0</td>
<td>1341.0</td>
</tr>
<tr>
<td>Benzene</td>
<td>26.10</td>
<td>53.54</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>2.19</td>
<td>4.44</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>4.85</td>
<td>9.70</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>4.31</td>
<td>9.38</td>
</tr>
<tr>
<td>POM</td>
<td>1.50</td>
<td>3.04</td>
</tr>
</tbody>
</table>

(4) **Non-exhaust polluant.** (1) The exhaust VOC performance of gasoline shall be given by the following equations:

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>860.48</td>
<td>559.31</td>
</tr>
<tr>
<td>Benzene</td>
<td>9.66</td>
<td>6.24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO(_x)</td>
<td>660.0</td>
<td>1341.0</td>
</tr>
<tr>
<td>VOC</td>
<td>1306.5</td>
<td>1466.3</td>
</tr>
<tr>
<td>Toxics</td>
<td>48.61</td>
<td>86.34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>446.0</td>
<td>907.0</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>660.0</td>
<td>1341.0</td>
</tr>
<tr>
<td>Benzene</td>
<td>26.10</td>
<td>53.54</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>2.19</td>
<td>4.44</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>4.85</td>
<td>9.70</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>4.31</td>
<td>9.38</td>
</tr>
<tr>
<td>POM</td>
<td>1.50</td>
<td>3.04</td>
</tr>
</tbody>
</table>

(4) **VOC performance.** (1) The exhaust VOC emissions performance of gasoline shall be given by the following equations:

\[
\text{VOCE} = \text{VOC}(b) + \text{VOC}(b) \times Y_{\text{VOC}}(t) / 100
\]

\[
Y_{\text{VOC}}(t) = \left[w_1 \times N_{\text{V}} \right] + \left[w_2 \times H_{\text{V}} \right] - 1 \times 100
\]

where

\[
\text{VOCE} = \text{Exhaust VOC emissions in milligrams/mile}
\]

\[
Y_{\text{VOC}}(t) = \text{Exhaust VOC performance of the target fuel in terms of percentage change from baseline}
\]

\[
\text{VOC}(b) = \text{Baseline exhaust VOC emissions as defined in paragraph (b)(2) of this section for the appropriate Phase and season}
\]

\[
N_{\text{V}} = \left[\exp v_{1}(t) \right] / \left[\exp v_{1}(b) \right]
\]

641
§ 80.45 40 CFR Ch. I (7–1–13 Edition)

H = [exp v₁(t)] [exp v₂(b)]

w₁ = Weighting factor for normal emitters as defined in paragraph (b)(1) of this section for the appropriate Phase

w₂ = Weighting factor for higher emitters as defined in paragraph (b)(1) of this section for the appropriate Phase

v₁(t) = Normal emitter VOC equation as defined in paragraph (c)(1)(i) of this section, evaluated using the target fuel’s properties subject to paragraphs (c)(1)(i) and (ii) of this section

v₂(t) = Higher emitter VOC equation as defined in paragraph (c)(1)(ii) of this section, evaluated using the target fuel’s properties subject to paragraphs (c)(1)(i) and (ii) of this section

v₁(b) = Normal emitter VOC equation as defined in paragraph (c)(1)(i) of this section, evaluated using the base fuel’s properties

v₂(b) = Higher emitter VOC equation as defined in paragraph (c)(1)(ii) of this section, evaluated using the base fuel’s properties

(i) Consolidated VOC equation for normal emitters.

\[v₁ = (-0.003641 \times \text{OXY}) + (0.0005219 \times \text{SUL}) + (0.014470 \times \text{E200}) + (-0.000287 \times \text{ARO}) \]

(ii) VOC equation for higher emitters.

\[v₂ = (-0.003626 \times \text{OXY}) + (-5.40 \times 10^{-5} \times \text{SUL}) + (0.013504 \times \text{RVP}) + (-0.002927 \times \text{E300}) + (0.000348 \times \text{ARO}) \]

(iii) Flat line extrapolations. (A) During Phase I, fuels with E200 values greater than 65.83 percent shall be evaluated with the E200 fuel parameter set equal to 65.83 percent when calculating \(Y_\text{VOC}(t) \) and VOCE using the equations described in paragraphs (c)(1)(i) and (ii) of this section. Fuels with E300 values greater than E300* (calculated using the equation \(E300^* = 79.75 + (0.385 \times \text{ARO}) \)) shall be evaluated with the E300 parameter set equal to E300* when calculating VOCE using the equations described in paragraphs (c)(1)(i) and (ii) of this section. For E300* values greater than 94, the linearly extrapolated model presented in paragraph (c)(1)(iv) of this section shall be used.

(B) During Phase II, fuels with E200 values greater than 65.52 percent shall be evaluated with the E200 fuel parameter set equal to 65.52 percent when calculating VOCE using the equations described in paragraphs (c)(1)(i) and (ii) of this section. Fuels with E300 values greater than E300* (calculated using the equation \(E300^* = 79.75 + (0.385 \times \text{ARO}) \)) shall be evaluated with the E300 parameter set equal to E300* when calculating VOCE using the equations described in paragraphs (c)(1)(i) and (ii) of this section. For E300* values greater than 94, the linearly extrapolated model presented in paragraph (c)(1)(iv) of this section shall be used.

(C) During Phase II, fuels with an oxygen concentration greater than 4.0 weight percent and not more than 5.8 weight percent shall be evaluated with the OXY fuel parameter set equal to 4.0 percent by weight when calculating VOCE using the equations described in paragraphs (c)(1)(i) and (c)(1)(ii) of this section.

(iv) Linear extrapolations. (A) The equations in paragraphs (c)(1)(i) and (ii) of this section shall be used within the allowable range of E300, E200, and ARO for the appropriate Phase, as defined in table 6:

<table>
<thead>
<tr>
<th>Fuel parameter</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower limit</td>
<td>Higher limit</td>
</tr>
<tr>
<td>E200</td>
<td>33.00</td>
<td>65.83</td>
</tr>
<tr>
<td>E300</td>
<td>72.00 Variable 1</td>
<td>72.00 Variable 2</td>
</tr>
<tr>
<td>ARO</td>
<td>46.00</td>
<td>64.00</td>
</tr>
</tbody>
</table>

1 Higher E300 limit lower of 94.0 or 80.32 + (0.385 x ARO).
2 Higher E300 limit lower of 94.0 or 79.75 + (0.385 x ARO).

(B) For fuels with E200, E300 and/or ARO levels outside the ranges defined in table 6, \(Y_\text{VOC}(t) \) shall be defined:

(J) For Phase I:

\[Y_\text{VOC}(t) = 100\% \times 0.52 \times \frac{[\exp(v_1(t))] \times [\exp(v_2(b)) - 1]}{[\exp(v_2(t))] \times [\exp(v_2(b)) - 1]} + 100\% \times 0.48 \times \frac{[\exp(v_2(t))] \times [\exp(v_2(b)) - 1]}{[\exp(v_2(t))] \times [\exp(v_2(b)) - 1]} \times [0.0002144 \times E200] - 0.014470 \times \Delta E200] + [0.0008174 \times E300] - 0.068624 - [0.000348 \times ARO] \times \Delta E200] + [0.000348 \times E300] + 0.0323712 \times \Delta ARO] + [100\% \times 0.48 \times
Environmental Protection Agency § 80.45

[exp(v_{1}(et)) / exp(v_{2}(b))] ×

\[\left\{\left[\frac{1}{2} \times 0.000212 \times 200_{a} - 0.01350 \times \Delta E200 + \left[\frac{1}{2} \times 0.000816 \times 200_{a} - 0.06233 \times 100 \times ARO_{a} \times \Delta E300\right] + \left[(-0.00029 \times 200_{a}) + 0.028204\right] \times \Delta ARO\right\}\]

(2) For Phase II:

\[Y_{\text{VOC}}(t) = 100\% \times 0.444 \times \frac{\exp(v_{1}(et))}{\exp(v_{2}(b))} - 1 + 100\% \times 0.556 \times \frac{\exp(v_{1}(et))}{\exp(v_{2}(b))} - 1 + \left[100\% \times 0.444 \times \frac{\exp(v_{1}(et))}{\exp(v_{2}(b))}\right] \times \frac{\left[\left(0.000214 \times 200_{a} - 0.014470 \times \Delta E200\right) + \left(0.000817 \times 200_{a} - 0.066624 \times \Delta E300\right) + \left[(-0.000348 \times 200_{a}) + 0.032371\right] \times \Delta ARO\right]}{\exp(v_{1}(et))} \times \frac{\left[\left(0.000212 \times 200_{a} - 0.01350 \times \Delta E200\right) + \left(0.000816 \times 200_{a} - 0.06233 \times 200_{a} + 0.00029 \times \Delta ARO\right) \times \Delta E300\right]}{100 \times 0.444 \times \frac{\exp(v_{1}(et))}{\exp(v_{2}(b))}} \times \frac{\left([\exp(v_{1}(et)) / \exp(v_{2}(b))] \times \left[\left(0.000212 \times 200_{a} - 0.01350 \times \Delta E200\right) + \left(0.000816 \times 200_{a} - 0.06233 \times 200_{a} + 0.00029 \times \Delta ARO\right) \times \Delta E300\right]\right]}{100 \times 0.444 \times \frac{\exp(v_{1}(et))}{\exp(v_{2}(b))}}

(C) During Phase I, the “edge target” fuel shall be identical to the target fuel for all fuel parameters, with the following exceptions:

(1) If the E200 level of the target fuel is less than 33 volume percent, then the E200 value for the “edge target” fuel shall be set equal to 33 volume percent.

(2) If the aromatics level of the target fuel is less than 18 volume percent, then the ARO value for the “edge target” fuel shall be set equal to 18 volume percent.

(3) If the aromatics level of the target fuel is greater than 95 volume percent, then the ARO value for the “edge target” fuel shall be set equal to zero.

(4) If the aromatics level of the target fuel is less than 33 volume percent, then the aromatics level of the “edge target” fuel shall be set equal to 33 volume percent.

(D) During Phase II, the “edge target” fuel is identical to the target fuel for all fuel parameters, with the following exceptions:

(1) If the E200 level of the target fuel is less than 72 volume percent, then the aromatics level of the “edge target” fuel shall be set equal to zero.

(2) If the aromatics level of the target fuel is greater than 95 volume percent, then the aromatics level of the “edge target” fuel shall be set equal to zero.

(3) If the aromatics level of the target fuel is greater than 95 volume percent, then the aromatics level of the “edge target” fuel shall be set equal to 94 volume percent.

(6) If [80.32 + (0.390 \times ARO)] exceeds 94 for the target fuel, and the target fuel value for E300 exceeds 94, then the aromatics level of the “edge target” fuel shall be set equal to 94 volume percent.

(7) If the E200 level of the target fuel is less than 33 volume percent, then the E200 value for the “edge target” fuel shall be set equal to (E200 – 33 volume percent).

(8) If the aromatics level of the target fuel equals or exceeds 33 volume percent, then the aromatics level of the “edge target” fuel shall be set equal to zero.

(9) If the aromatics level of the target fuel is greater than 95 volume percent, then the aromatics level of the “edge target” fuel shall be set equal to 94 volume percent.

(10) If the aromatics level of the target fuel is greater than 46 volume percent, then the aromatics level of the “edge target” fuel shall be set equal to 46 volume percent.

(11) If neither of the conditions established in paragraphs (c)(1)(iv)(C)(9) and (10) of this section are met, then the aromatics level of the “edge target” fuel shall be set equal to zero.

(12) If the E300 level of the target fuel is less than 72 percent, then the E300 value for the “edge target” fuel shall be set equal to (E300 – 72 percent).

(13) If the E300 level of the target fuel is greater than 94 volume percent and [80.32 + (0.390 \times ARO)] also is greater than 94, then the E300 value for the “edge target” fuel shall be set equal to (E300 – 94 volume percent).

(14) If neither of the conditions established in paragraphs (c)(1)(iv)(C)(12) and (13) of this section are met, then the E300 value for the “edge target” fuel shall be set equal to zero.

(15) If the aromatics level of the target fuel is greater than 95 volume percent and [80.32 + (0.390 \times ARO)] also is greater than 94, then the aromatics level of the “edge target” fuel shall be set equal to 94 volume percent.
§ 80.45

(4) If the E300 level of the target fuel is less than 72 volume percent, then the E300 value for the “edge target” fuel shall be set equal to 72 volume percent.

(5) If the E300 level of the target fuel is greater than 95 volume percent, then the E300 value of the target fuel shall be set equal to 95 volume percent for the purposes of calculating VOC emissions with the Phase II equation given in paragraph (c)(1)(iv)(B) of this section.

(6) If [79.75 + (0.385 × ARO)] exceeds 94 for the target fuel, and the target fuel value for E200 exceeds 94, then the E200 value for the “edge target” fuel shall be set equal to 94 volume percent. If the aromatics level of the target fuel is less than 18 volume percent, then AARO shall be set equal to (ARO − 18 volume percent). If the aromatics level of the target fuel is less than 10 volume percent, then AARO shall be set equal to −8 volume percent.

(10) If the aromatics level of the target fuel is greater than 46 volume percent, then AARO shall be set equal to (ARO − 46 volume percent).

(11) If the E300 level of the target fuel is greater than 94 volume percent and (79.75 + (0.385 × ARO)) also is greater than 94, then ΔE300 shall be set equal to (E300 − 94 volume percent). If the E300 level of the target fuel is greater than 95 volume percent and (79.75 + (0.385 × ARO)) also is greater than 94, then ΔE300 shall be set equal to 1 volume percent.

(2) The winter exhaust VOC emissions performance of gasolines shall be given by the equations presented in paragraph (c)(1) of this section with the RVP value set to 8.7 psi for both the baseline and target fuels.

(3) The nonexhaust VOC emissions performance of gasolines in VOC Control Region 1 shall be given by the following equations, where:

\[
\text{VOCNE1} = \text{Total nonexhaust emissions of volatile organic compounds in VOC Control Region 1 in grams per mile}
\]

\[
\text{VOCRF} = \text{Refueling emissions of volatile organic compounds in VOC Control Region 1 in grams per mile}
\]

\[
\text{VOCHS1} = \text{Hot soak emissions of volatile organic compounds in VOC Control Region 1 in grams per mile}
\]

\[
\text{VOCRL1} = \text{Running loss emissions of volatile organic compounds in VOC Control Region 1 in grams per mile}
\]

\[
\text{VOCNE2} = \text{Total nonexhaust emissions of volatile organic compounds in VOC Control Region 2 in grams per mile}
\]

\[
\text{VOCDF} = \text{Diurnal emissions of volatile organic compounds in VOC Control Region 2 in grams per mile}
\]

\[
\text{VOCHS2} = \text{Hot soak emissions of volatile organic compounds in VOC Control Region 2 in grams per mile}
\]

\[
\text{VOCRF2} = \text{Refueling emissions of volatile organic compounds in VOC Control Region 2 in grams per mile}
\]

(i) During Phase I:

\[
\text{VOCNE1} = \text{VOCDF1} + \text{VOCHS1} + \text{VOCRF1} + \text{VOCR}
\]

\[
\text{VOCDF1} = [0.00736 \times (\text{RVP})] - [0.0790 \times \text{RVP}] + 0.2533
\]

\[
\text{VOCHS1} = [0.01557 \times (\text{RVP})] - [0.1671 \times \text{RVP}] + 0.5399
\]

\[
\text{VOCR} = [0.00279 \times (\text{RVP})] + [0.1096 \times \text{RVP}] - 0.7340
\]

\[
\text{VOCR} = [0.006668 \times \text{RVP}] - 0.0180
\]

(ii) During Phase II:

\[
\text{VOCNE1} = \text{VOCDF1} + \text{VOCHS1} + \text{VOCRF1} + \text{VOCR}
\]

\[
\text{VOCDF1} = [0.00736 \times (\text{RVP})] - [0.08981 \times \text{RVP}] + 0.3158
\]

\[
\text{VOCHS1} = [0.006664 \times (\text{RVP})] - [0.08094 \times \text{RVP}] + 0.2846
\]

\[
\text{VOCR} = [0.017768 \times (\text{RVP})] - [0.18746 \times \text{RVP}] + 0.6146
\]

\[
\text{VOCR} = [0.004767 \times \text{RVP}] + 0.011859
\]

(4) The nonexhaust VOC emissions performance of gasolines in VOC Control Region 2 shall be given by the following equations, where:

\[
\text{VOCNE2} = \text{Total nonexhaust emissions of volatile organic compounds in VOC Control Region 2 in grams per mile}
\]

\[
\text{VOCDF2} = \text{Diurnal emissions of volatile organic compounds in VOC Control Region 2 in grams per mile}
\]

\[
\text{VOCHS2} = \text{Hot soak emissions of volatile organic compounds in VOC Control Region 2 in grams per mile}
\]

\[
\text{VOCR2} = \text{Refueling emissions of volatile organic compounds in VOC Control Region 2 in grams per mile}
\]

(i) During Phase I:
Environmental Protection Agency

\[\text{VOCNE2} = \text{VOCDI2} + \text{VOCHS2} + \text{VOCRL2} + \text{VOCR2} \]
\[\text{VOCDI2} = (0.006813 \times (\text{RVP}^2)) - (0.07682 \times \text{RVP}) + 0.2610 \]
\[\text{VOCHS2} = (0.014421 \times (\text{RVP}^2)) - (0.16248 \times \text{RVP}) + 0.5520 \]
\[\text{VOCRL2} = (0.016255 \times (\text{RVP}^2)) - (0.1306 \times \text{RVP}) + 0.2963 \]
\[\text{VOCR2} = (0.006666 \times \text{RVP}) - 0.0180 \]

(ii) During Phase II:
\[\text{VOCNE2} = \text{VOCDI2} + \text{VOCHS2} + \text{VOCRL2} + \text{VOCR2} \]
\[\text{VOCDI2} = (0.004775 \times (\text{RVP}^2)) - (0.05872 \times \text{RVP}) + 0.21306 \]
\[\text{VOCHS2} = (0.006078 \times (\text{RVP}^2)) - (0.07474 \times \text{RVP}) + 0.27117 \]
\[\text{VOCRL2} = (0.016369 \times (\text{RVP}^2)) - (0.17206 \times \text{RVP}) + 0.56724 \]
\[\text{VOCR2} = (0.004767 \times \text{RVP}) + 0.011859 \]

(5) Winter VOC emissions shall be given by VOCE, as defined in paragraph (c)(2) of this section, using the appropriate baseline emissions given in paragraph (b)(3) of this section. Total non-exhaust VOC emissions shall be set equal to zero under winter conditions.

(6) Total VOC emissions. (i) Total summer VOC emissions shall be given by the following equations:
\[\text{VOCS1} = \text{VOCE} / 1000 + \text{VOCNE1} \]
\[\text{VOCS2} = \text{VOCE} / 1000 + \text{VOCNE2} \]
\[\text{VOCS1} = \text{Total summer VOC emissions in VOC Control Region 1 in terms of grams per mile} \]
\[\text{VOCS2} = \text{Total summer VOC emissions in VOC Control Region 2 in terms of grams per mile} \]

(ii) Total winter VOC emissions shall be given by the following equations:
\[\text{VOCV} = (\text{VOCE}/1000) \]
\[\text{VOCV} = \text{Total winter VOC emissions in terms of grams per mile} \]

(7) Phase I total VOC emissions performance. (i) The total summer VOC emissions performance of the target fuel in percentage terms from baseline levels shall be given by the following equations during Phase I:
\[\text{VOCS1}\% = [100\% \times (\text{VOCS1} - 1.306 \text{ g/mi})] / (1.306 \text{ g/mi}) \]
\[\text{VOCS2}\% = [100\% \times (\text{VOCS2} - 1.215 \text{ g/mi})] / (1.215 \text{ g/mi}) \]
\[\text{VOC1}\% = \text{Percentage change in VOC emissions from baseline levels in VOC Control Region 1} \]
\[\text{VOC2}\% = \text{Percentage change in VOC emissions from baseline levels in VOC Control Region 2} \]

(ii) The total winter VOC emissions performance of the target fuel in percentage terms from baseline levels shall be given by the following equations during Phase I:
\[\text{VOCW}\% = [100\% \times (\text{VOCW} - 0.660 \text{ g/mi})] / (0.660 \text{ g/mi}) \]
\[\text{VOCW}\% = \text{Percentage change in winter VOC emissions from baseline levels} \]

(8) Phase II total VOC emissions performance. (i) The total summer VOC emissions performance of the target fuel in percentage terms from baseline levels shall be given by the following equations during Phase II:
\[\text{VOCS1}\% = [100\% \times (\text{VOCS1} - 1.4663 \text{ g/mi})] / (1.4663 \text{ g/mi}) \]
\[\text{VOCS2}\% = [100\% \times (\text{VOCS2} - 1.3991 \text{ g/mi})] / (1.3991 \text{ g/mi}) \]

(ii) The total winter VOC emissions performance of the target fuel in percentage terms from baseline levels shall be given by the following equation during Phase II:
\[\text{VOCW}\% = [100\% \times (\text{VOCW} - 1.341 \text{ g/mi})] / (1.341 \text{ g/mi}) \]

(d) \text{NOx} \text{ performance.} \ (i) \ The \ summer \ \text{NOx} \text{ emissions performance of gaso-}
\text{lines shall be given by the following equations:}
\[\text{NOx} = \text{NOx}(b) + \text{NOx}(b) \times \text{Y}(t)/100 \]
\[\text{Y}_{\text{NOx}}(t) = [(w_1 \times N_a) + (w_2 \times H_a)] - 1 \times 100 \]

where
\[\text{NOx} = \text{NOx} \text{ emissions in milligrams/mile} \]
\[\text{Y}_{\text{NOx}}(t) = \text{NOx performance of target fuel in terms of percentage change from baseline} \]
\[\text{NOx}(b) = \text{Baseline NOx emissions as defined in paragraph (b)(2) of this section for the appropriate phase and season} \]
\[n_a = \exp n_a(t)/\exp n_a(b) \]
\[n_a = \text{Weighting factor for normal emitters as defined in paragraph (b)(1) of this section for the appropriate Phase} \]
\[w_1 = \text{Weighting factor for normal emitters as defined in paragraph (b)(1) of this section for the appropriate Phase} \]
\[n_b = \text{Normal emitter NOx equation as defined in paragraph (d)(1)(i) of this section, evaluated using the target fuel's properties subject to paragraphs (d)(1)(iii) and (iv) of this section} \]
\[n_b = \text{Higher emitter NOx equation as defined in paragraph (d)(1)(ii) of this section, evaluated using the target fuel's properties subject to paragraphs (d)(1)(iii) and (iv) of this section} \]
\(n_1(b) = \) Normal emitter NO\(_x\) equation as defined in paragraph (d)(1)(i) of this section, evaluated using the base fuel's properties.

\(n_2(b) = \) Higher emitter NO\(_x\) equation as defined in paragraph (d)(1)(ii) of this section, evaluated using the base fuel's properties.

(i) Consolidated equation for normal emitters.

\[
n_1 = \left(0.0018371 \times OXY\right) + \left(0.0006921 \times SUL\right) + \left(0.0009744 \times RVP\right) + \left(0.0009310 \times E200\right) + \left(0.0008460 \times E300\right) + \left(0.0003632 \times ARO\right) + \left(-0.002774 \times OLE\right) + \left(-6.63 \times 10^{-7} \times SUL^2\right) + \left(-0.000119 \times ARO^2\right) + \left(0.0003665 \times OLE^2\right)
\]

(ii) Equation for higher emitters.

\[
n_2 = \left(-0.00913 \times OXY\right) + \left(0.000252 \times SUL\right) + \left(-0.01397 \times RVP\right) + \left(0.000931 \times E200\right) + \left(-0.00401 \times E300\right) + \left(0.007097 \times ARO\right) + \left(-0.00276 \times OLE\right) + \left(0.0003665 \times OLE^2\right) + \left(-7.995 \times 10^{-5} \times ARO^2\right)
\]

(iii) Flat line extrapolations. (A) During Phase I, fuels with olefin levels less than 3.77 volume percent shall be evaluated with the OLE fuel parameter set equal to 3.77 volume percent when calculating NO\(_x\) performance using the equations described in paragraphs (d)(1)(i) and (ii) of this section. Fuels with aromatics levels greater than 36.2 volume percent shall be evaluated with the ARO fuel parameter set equal to 36.2 volume percent when calculating NO\(_x\) performance using the equations described in paragraphs (d)(1)(i) and (ii) of this section.

(B) During Phase II, fuels with olefin levels less than 3.77 volume percent shall be evaluated with the OLE fuel parameter set equal to 3.77 volume percent when calculating NO\(_x\) performance using the equations described in paragraphs (d)(1)(i) and (ii) of this section. Fuels with aromatics levels greater than 36.8 volume percent shall be evaluated with the ARO fuel parameter set equal to 36.8 volume percent when calculating NO\(_x\) performance using the equations described in paragraphs (d)(1)(i) and (ii) of this section.

(iv) Linear extrapolations. (A) The equations in paragraphs (d)(1)(i) and (ii) of this section shall be used within the allowable range of SUL, OLE, and ARO for the appropriate Phase, as defined in the following table 7:

<table>
<thead>
<tr>
<th>Fuel parameter</th>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low end</td>
<td>High end</td>
</tr>
<tr>
<td>SUL</td>
<td>10.0</td>
<td>450.0</td>
</tr>
<tr>
<td>OLE</td>
<td>3.77</td>
<td>19.0</td>
</tr>
<tr>
<td>ARO</td>
<td>18.0</td>
<td>36.2</td>
</tr>
</tbody>
</table>

(2) For fuels with SUL, OLE, and/or ARO levels outside the ranges defined in Table 7 of paragraph (d)(1)(iv)(A) of this section, \(Y_{NOx}(t) \) shall be defined as:

\[
Y_{NOx}(t) = 100\% \times 0.82 \times \frac{[\exp(n_1(t))] - [\exp(n_1(b))] - 1}{[\exp(n_2(t))] - [\exp(n_2(b))] - 1}
\]

(3) For Phase I:

\[
Y_{NOx}(t) = 100\% \times 0.82 \times \frac{[\exp(n_1(t))] - [\exp(n_1(b))] - 1}{[\exp(n_2(t))] - [\exp(n_2(b))] - 1}
\]

Where:

\(n_1, n_2 = \) The equations defined in paragraphs (d)(1) (i) and (ii) of this section.
§ 80.45

et = Collection of fuel parameters for the “edge target” fuel. These parameters are defined in paragraphs (d)(1)(iv)(C) and (D) of this section.

\(n_1(et) = \) The function \(n_1 \) evaluated with “edge target” fuel parameters, which are defined in paragraph (d)(1)(iv)(C) of this section.

\(n_2(et) = \) The function \(n_2 \) evaluated with “edge target” fuel parameters, which are defined in paragraph (d)(1)(iv)(C) of this section.

\(n_1(b) = \) The function \(n_1 \) evaluated with the appropriate baseline fuel parameters defined in paragraph (b)(2) of this section.

\(n_2(b) = \) The function \(n_2 \) evaluated with the appropriate baseline fuel parameters defined in paragraph (b)(2) of this section.

\(SUL_{et} = \) The value of SUL for the “edge target” fuel, as defined in paragraph (d)(1)(iv)(C) of this section.

\(ARO_{et} = \) The value of ARO for the “edge target” fuel, as defined in paragraph (d)(1)(iv)(C) of this section.

\(OLE_{et} = \) The value of OLE for the “edge target” fuel, as defined in paragraph (d)(1)(iv)(C) of this section.

(C) For both Phase I and Phase II, the “edge target” fuel is identical to the target fuel for all fuel parameters, with the following exceptions:

1. If the sulfur level of the target fuel is less than 10 parts per million, then the value of SUL for the “edge target” fuel shall be set equal to 10 parts per million.

2. If the sulfur level of the target fuel is greater than 50 parts per million, then the value of SUL for the “edge target” fuel shall be set equal to 50 parts per million.

3. If the aromatics level of the target fuel is less than 18 volume percent, then the value of ARO for the “edge target” fuel shall be set equal to zero.

4. If the aromatics level of the target fuel is greater than 19 volume percent, then the value of ARO for the “edge target” fuel shall be set equal to zero.

5. If the olefins level of the target fuel is greater than 450 parts per million, then the value of OLE for the “edge target” fuel shall be set equal to zero.

6. If the sulfur level of the target fuel is less than 10 parts per million, then ASUL shall be set equal to (SUL − 10 parts per million).

7. If the sulfur level of the target fuel is greater than 450 parts per million, then ASUL shall be set equal to (SUL − 450 parts per million).

8. If the sulfur level of the target fuel is neither less than 10 parts per million nor greater than 450 parts per million, then ASUL shall be set equal to zero.

9. If the aromatics level of the target fuel is less than 18 volume percent and greater than 10 volume percent, then \(\Delta ARO \) shall be set equal to (ARO − 18 volume percent). If the aromatics level of the target fuel is less than 10 volume percent, then \(\Delta ARO \) shall be set equal to −8 volume percent.

10. If the aromatics level of the target fuel is greater than or equal to 18 volume percent, then \(\Delta ARO \) shall be set equal to zero.

11. If the olefins level of the target fuel is greater than 19 volume percent, then \(\Delta OLE \) shall be set equal to (OLE − 19 volume percent).

12. If the olefins level of the target fuel is less than or equal to 19 volume percent, then \(\Delta OLE \) shall be set equal to zero.

2. The winter \(NO_X \) emissions performance of gasolines shall be given by the equations presented in paragraph (d)(1) of this section with the RVP value set to 8.7 psi.

3. The \(NO_X \) emissions performance of the target fuel in percentage terms from baseline levels shall be given by the following equations:

For Phase I:

- Summer \(NO_X \%) = \left[\frac{100\% \times (NO_X - 0.660 \text{ g/mi})}{0.660 \text{ g/mi}}\right] \times 100\%
- Winter \(NO_X \%) = \left[\frac{100\% \times (NO_X - 0.750 \text{ g/mi})}{0.750 \text{ g/mi}}\right] \times 100\%

For Phase II:

- Summer \(NO_X \%) = \left[\frac{100\% \times (NO_X - 1.340 \text{ g/mi})}{1.340 \text{ g/mi}}\right] \times 100\%
- Winter \(NO_X \%) = \left[\frac{100\% \times (NO_X - 1.540 \text{ g/mi})}{1.540 \text{ g/mi}}\right] \times 100\%
Winter NO\textsubscript{X}% = Percentage change in NO\textsubscript{X} emissions from winter baseline levels

(e) Toxics performance—(1) Summer toxics performance. (i) Summer toxic emissions performance of gasolines in VOC Control Regions 1 and 2 shall be given by the following equations:

\[
\text{TOXICS1} = \text{EXHBZ} + \text{FORM} + \text{ACET} + \text{BUTA} + \text{POM} + \text{NEBZ1}
\]

\[
\text{TOXICS2} = \text{EXHBZ} + \text{FORM} + \text{ACET} + \text{BUTA} + \text{POM} + \text{NEBZ2}
\]

where

\text{TOXICS1} = \text{Summer toxics performance in VOC Control Region 1 in terms of milligrams per mile.}

\text{TOXICS2} = \text{Summer toxics performance in VOC Control Region 2 in terms of milligrams per mile.}

\text{EXHBZ} = \text{Exhaust emissions of benzene in terms of milligrams per mile, as determined in paragraph (e)(4) of this section.}

\text{FORM} = \text{Emissions of formaldehyde in terms of milligrams per mile, as determined in paragraph (e)(5) of this section.}

\text{ACET} = \text{Emissions of acetaldehyde in terms of milligrams per mile, as determined in paragraph (e)(6) of this section.}

\text{BUTA} = \text{Emissions of 1,3-butadiene in terms of milligrams per mile, as determined in paragraph (e)(7) of this section.}

\text{POM} = \text{Polycyclic organic matter emissions in terms of milligrams per mile, as determined in paragraph (e)(8) of this section.}

\text{NEBZ1} = \text{Nonexhaust emissions of benzene in VOC Control Region 1 in milligrams per mile, as determined in paragraph (e)(9) of this section.}

\text{NEBZ2} = \text{Nonexhaust emissions of benzene in VOC Control Region 2 in milligrams per mile, as determined in paragraph (e)(10) of this section.}

(ii) The percentage change in summer toxics performance in VOC Control Regions 1 and 2 shall be given by the following equations:

For Phase I:

\[
\text{TOXICS1\%} = [100\% \times (\text{TOXICS1} - 48.61 \text{mg/mi})] / (48.61 \text{mg/mi})
\]

\[
\text{TOXICS2\%} = [100\% \times (\text{TOXICS2} - 47.58 \text{mg/mi})] / (47.58 \text{mg/mi})
\]

For Phase II:

\[
\text{TOXICS1\%} = [100\% \times (\text{TOXICS1} - 86.34 \text{mg/mi})] / (86.34 \text{mg/mi})
\]

\[
\text{TOXICS2\%} = [100\% \times (\text{TOXICS2} - 85.61 \text{mg/mi})] / (85.61 \text{mg/mi})
\]

where

\text{TOXICS1\%} = \text{Percentage change in summer toxics emissions in VOC Control Region 1 from baseline levels.}

\text{TOXICS2\%} = \text{Percentage change in summer toxics emissions in VOC Control Region 2 from baseline levels.}

(2) Winter toxics performance. (i) Winter toxic emissions performance of gasolines in VOC Control Regions 1 and 2 shall be given by the following equation, evaluated with the RVP set at 8.7 psi:

\[
\text{TOXICW} = [\text{EXHBZ} + \text{FORM} + \text{ACET} + \text{BUTA} + \text{POM}]
\]

where

\text{TOXICW} = \text{Winter toxics performance in VOC Control Regions 1 and 2 in terms of milligrams per mile.}

\text{EXHBZ} = \text{Exhaust emissions of benzene in terms of milligrams per mile, as determined in paragraph (e)(4) of this section.}

\text{FORM} = \text{Emissions of formaldehyde in terms of milligrams per mile, as determined in paragraph (e)(5) of this section.}

\text{ACET} = \text{Emissions of acetaldehyde in terms of milligrams per mile, as determined in paragraph (e)(6) of this section.}

\text{BUTA} = \text{Emissions of 1,3-butadiene in terms of milligrams per mile, as determined in paragraph (e)(7) of this section.}

\text{POM} = \text{Polycyclic organic matter emissions in terms of milligrams per mile, as determined in paragraph (e)(8) of this section.}

(ii) The percentage change in winter toxics performance in VOC Control Regions 1 and 2 shall be given by the following equation:

For Phase I:

\[
\text{TOXICW\%} = [100\% \times (\text{TOXICW} - 58.36 \text{mg/mi})] / (58.36 \text{mg/mi})
\]

For Phase II:

\[
\text{TOXICW\%} = [100\% \times (\text{TOXICW} - 120.55 \text{mg/mi})] / (120.55 \text{mg/mi})
\]

where

\text{TOXICW\%} = \text{Percentage change in winter toxics emissions in VOC Control Regions 1 and 2 from baseline levels.}

(3) The year-round toxics performance in VOC Control Regions 1 and 2 shall be derived from volume-weighted performances of individual batches of fuel as described in §80.67(g).

(4) Exhaust benzene emissions shall be given by the following equation, subject to paragraph (e)(4)(iii) of this section:
Environmental Protection Agency

§ 80.45

EXHBZ = BENZ(b) + (BENZ(b) × Y_{BEN(t)}/100)

Y_{BEN(t)} = [(w_1 \times N_B) + (w_2 \times H_B) - 1] \times 100

where

EXHBZ = Exhaust benzene emissions in milligrams/mile

Y_{BEN(t)} = Benzene performance of target fuel in terms of percentage change from baseline.

BENZ(b) = Baseline benzene emissions as defined in paragraph (b)(2) of this section for the appropriate phase and season.

N_B = \exp b_1(t) \exp h_1(b)

H_B = \exp b_2(t) \exp h_2(b)

f_1 = Weighting factor for normal emitters as defined in paragraph (b)(1) of this section for the appropriate Phase.

f_2 = Weighting factor for higher emitters as defined in paragraph (b)(1) of this section for the appropriate Phase.

b_1(t) = Normal emitter benzene equation as defined in paragraph (e)(4)(i) of this section, evaluated using the target fuel's properties subject to paragraph (e)(4)(iii) of this section.

b_2(t) = Higher emitter benzene equation as defined in paragraph (e)(4)(ii) of this section, evaluated using the target fuel's properties subject to paragraph (e)(4)(iii) of this section.

b_1(b) = Normal emitter benzene equation as defined in paragraph (e)(4)(i) of this section, evaluated for the base fuel's properties.

b_2(b) = Higher emitter benzene equation as defined in paragraph (e)(4)(ii) of this section, evaluated for the base fuel's properties.

(i) Consolidated equation for normal emitters.

b_1 = (0.0006197 × SUL) + (-0.003376 × E200) + (0.0265500 × ARO) + (0.003376 × BEN)

(ii) Equation for higher emitters.

b_2 = (-0.096047 × OXY) + (0.0006197 × SUL) + (0.0112510 × E200) + (0.0102261 × ARO) + (0.0223900 × BEN)

(iii) If the aromatics value of the target fuel is less than 10 volume percent, then an aromatics value of 10 volume percent shall be used when evaluating the equations given in paragraphs (e)(4)(i) and (ii) of this section. If the E300 value of the target fuel is greater than 95 volume percent, then an E300 value of 95 volume percent shall be used when evaluating the equations given in paragraphs (e)(4)(i) and (ii) of this section.

(5) Formaldehyde mass emissions shall be given by the following equation, subject to paragraphs (e)(5)(i) and (iv) of this section:

FORM = FORM(b) + (FORM(b) × Y_{FORM(t)}/100)

Y_{FORM(t)} = [(w_1 \times N_F) + (w_2 \times H_F) - 1] \times 100

where

FORM = Exhaust formaldehyde emissions in terms of milligrams/mile.

Y_{FORM(t)} = Formaldehyde performance of target fuel in terms of percentage change from baseline.

FORM(b) = Baseline formaldehyde emissions as defined in paragraph (b)(2) of this section for the appropriate Phase and season.

N_F = \exp f_1(t) \exp h_1(b)

H_F = \exp f_2(t) \exp h_2(b)

f_1 = Weighting factor for normal emitters as defined in paragraph (b)(1) of this section for the appropriate Phase.

f_2 = Weighting factor for higher emitters as defined in paragraph (b)(1) of this section for the appropriate Phase.

f_1(t) = Normal emitter formaldehyde equation as defined in paragraph (e)(5)(i) of this section, evaluated using the target fuel's properties subject to paragraphs (e)(5)(ii) and (iv) of this section.

f_2(t) = Higher emitter formaldehyde equation as defined in paragraph (e)(5)(ii) of this section, evaluated using the target fuel's properties subject to paragraphs (e)(5)(ii) and (iv) of this section.

f_1(b) = Normal emitter formaldehyde equation as defined in paragraph (e)(5)(i) of this section, evaluated for the base fuel's properties.

f_2(b) = Higher emitter formaldehyde equation as defined in paragraph (e)(5)(ii) of this section, evaluated for the base fuel's properties.

(i) Consolidated equation for normal emitters.

f_1 = (-0.010226 × E300) + (-0.007166 × ARO) + (0.0462131 × MTB)

(ii) Equation for higher emitters.

f_2 = (-0.010226 × E300) + (-0.007166 × ARO) + (-0.031352 × OLE) + (0.0462131 × MTB)

(iii) If the aromatics value of the target fuel is less than 10 volume percent, then an aromatics value of 10 volume percent shall be used when evaluating the equations given in paragraphs (e)(5)(i) and (ii) of this section. If the E300 value of the target fuel is greater than 95 volume percent, then an E300 value
of 95 volume percent shall be used when evaluating the equations given in paragraphs (e)(5)(i) and (ii) of this section.

(iv) When calculating formaldehyde emissions and emissions performance, oxygen in the form of alcohols which are more complex or have higher molecular weights than ethanol shall be evaluated as if it were in the form of ethanol. Oxygen in the form of methyl ethers other than TAME and MTBE shall be evaluated as if it were in the form of MTBE. Oxygen in the form of ethyl ethers other than ETBE shall be evaluated as if it were in the form of ETBE. Oxygen in the form of non-methyl, non-ethyl ethers shall be evaluated as if it were in the form of ETBE. Oxygen in the form of methanol or non-alcohol, non-ether oxygenates shall not be evaluated with the Complex Model, but instead must be evaluated through vehicle testing per §80.48.

(6) Acetaldehyde mass emissions shall be given by the following equation, subject to paragraphs (e)(6)(iii) and (iv) of this section:

\[
ACET = ACET(b) + (ACET(b) \times Y_{ACET(t)})/100
\]

\[
Y_{ACET(t)} = [(w_1 \times N_A) + (w_2 \times H_L) - 1] \times 100
\]

where

- \(ACET\) = Exhaust acetaldehyde emissions in terms of milligrams/mile
- \(Y_{ACET(t)}\) = Acetaldehyde performance of target fuel in terms of percentage change from baseline
- \(ACET(b)\) = Baseline acetaldehyde emissions as defined in paragraph (b)(2) of this section for the appropriate phase and season
- \(N_A\) = \(\exp(\alpha_1(t) / \alpha_2(b))\)
- \(H_L\) = \(\exp(\alpha_1(t) / \alpha_2(b))\)
- \(w_1\) = Weighting factor for normal emitters as defined in paragraph (b)(1) of this section for the appropriate phase
- \(w_2\) = Weighting factor for higher emitters as defined in paragraph (b)(1) of this section for the appropriate phase
- \(\alpha_1(t)\) = Normal emitter acetaldehyde equation as defined in paragraph (e)(6)(i) of this section, evaluated using the target fuel’s properties, subject to paragraphs (e)(6)(iii) and (iv) of this section
- \(\alpha_2(t)\) = Higher emitter acetaldehyde equation as defined in paragraph (e)(6)(ii) of this section, evaluated using the target fuel’s properties, subject to paragraphs (e)(6)(ii) and (iv) of this section
- \(\alpha_1(b)\) = Normal emitter acetaldehyde equation as defined in paragraph (e)(6)(i) of this section, evaluated for the base fuel’s properties

\(f_2(b) = \text{Higher emitter acetaldehyde equation as defined in paragraph (e)(6)(ii) of this section, evaluated for the base fuel’s properties}\)

(i) Consolidated equation for normal emitters.

\[
a_1 = (0.0002631 \times \text{SUL}) + (0.039768 \times \text{RVP}) + (-0.012172 \times \text{E300}) + (-0.005525 \times \text{ARO}) + (-0.009594 \times \text{MTB}) + (0.316580 \times \text{ETB}) + (0.249250 \times \text{ETH})
\]

(ii) Equation for higher emitters.

\[
a_2 = (0.0002627 \times \text{SUL}) + (-0.012157 \times \text{E300}) + (-0.005548 \times \text{ARO}) + (-0.005980 \times \text{MTB}) + (0.316466 \times \text{ETB}) + (0.249326 \times \text{ETH})
\]

(iii) If the aromatics value of the target fuel is less than 10 volume percent, then an aromatics value of 10 volume percent shall be used when evaluating the equations given in paragraphs (e)(6)(i) and (ii) of this section. If the E300 value of the target fuel is greater than 95 volume percent, then an E300 value of 95 volume percent shall be used when evaluating the equations given in paragraphs (e)(6)(i) and (ii) of this section.

(iv) When calculating acetaldehyde emissions and emissions performance, oxygen in the form of alcohols which are more complex or have higher molecular weights than ethanol shall be evaluated as if it were in the form of ethanol. Oxygen in the form of methyl ethers other than TAME and MTBE shall be evaluated as if it were in the form of MTBE. Oxygen in the form of ethyl ethers other than ETBE shall be evaluated as if it were in the form of ETBE. Oxygen in the form of non-methyl, non-ethyl ethers shall not be evaluated with the Complex Model, but instead must be evaluated through vehicle testing per §80.48.

(7) 1,3-butadiene mass emissions shall be given by the following equations, subject to paragraph (e)(7)(iii) of this section:

\[
\text{BUTA} = \text{BUTA}(b) + (\text{BUTA}(b) \times Y_{\text{BUTA}(t)})/100
\]

\[
Y_{\text{BUTA}(t)} = [(w_1 \times N_A) + (w_2 \times H_L) - 1] \times 100
\]

where

\(\text{BUTA}\) = Exhaust 1,3-butadiene emissions in terms of milligrams/mile
Y_{BUTA(t)} = 1.3-butadiene performance of target fuel in terms of percentage change from baseline.

$\text{BUTA}(b) = \text{Baseline 1.3-butadiene emissions as defined in paragraph (b)(2) of this section for the appropriate phase and season}$

$\text{N}_d = \exp \text{d}_1(t) / \exp \text{d}_b(b)$

$\text{H}_d = \exp \text{d}_2(t) / \exp \text{d}_b(b)$

$\text{w}_1 = \text{Weighting factor for normal emitters as defined in paragraph (b)(1) of this section for the appropriate phase}$

$\text{w}_2 = \text{Weighting factor for higher emitters as defined in paragraph (b)(1) of this section for the appropriate phase}$

$d_{t(t)} = \text{Normal emitter 1,3-butadiene equation as defined in paragraph (e)(7)(i) of this section, evaluated using the target fuel's properties, subject to paragraph (e)(7)(ii) of this section.}$

$d_{t(t)} = \text{Higher emitter 1,3-butadiene equation as defined in paragraph (e)(7)(ii) of this section, evaluated using the target fuel's properties, subject to paragraph (e)(7)(iii) of this section.}$

$d_{b(b)} = \text{Normal emitter 1,3-butadiene equation as defined in paragraph (e)(7)(i) of this section, evaluated for the base fuel's properties.}$

$d_{b(b)} = \text{Higher emitter 1,3-butadiene equation as defined in paragraph (e)(7)(ii) of this section, evaluated for the base fuel's properties.}$

(i) Consolidated equation for normal emitters.

$d_1 = (0.005155 \times \text{SUL}) + (-0.007253 \times \text{E200}) + (-0.014866 \times \text{E300}) + (-0.004005 \times \text{ARO}) + (0.0282350 \times \text{OLE})$

(ii) Equation for higher emitters.

$d_2 = (-0.060711 \times \text{OXY}) + (-0.007311 \times \text{E200}) + (-0.000058 \times \text{E300}) + (-0.004005 \times \text{ARO}) + (0.0436960 \times \text{OLE})$

(iii) If the aromatics value of the target fuel is less than 10 volume percent, then an aromatics value of 10 volume percent shall be used when evaluating the equations given in paragraphs (e)(7)(i) and (ii) of this section. If the E300 value of the target fuel is greater than 95 volume percent, then an E300 value of 95 volume percent shall be used when evaluating the equations given in paragraphs (e)(7)(i) and (ii) of this section.

(8) Polycyclic organic matter mass emissions shall be given by the following equation:

$\text{POM} = 0.003355 \times \text{VOCE}$

$\text{POM} = \text{Polycyclic organic matter emissions in terms of milligrams per mile}$

VOCE = Non-methane, non-ethane exhaust emissions of volatile organic compounds in grams per mile.

(9) Nonexhaust benzene emissions in VOC Control Region 1 shall be given by the following equations for both Phase I and Phase II:

$\text{NEBZ1} = \text{DIBZ1} + \text{HSBZ1} + \text{RLBZ1} + \text{RFBZ1}$

$\text{HSBZ1} = 10 \times \text{BEN} \times \text{VOCHS1} \times [((-0.0342 \times \text{MTB}) + (-0.080274 \times \text{RVP}) + 1.4448]$

$\text{DIBZ1} = 10 \times \text{BEN} \times \text{VOCD11} \times [((-0.0290 \times \text{MTB}) + (-0.080274 \times \text{RVP}) + 1.3758]$

$\text{RLBZ1} = 10 \times \text{BEN} \times \text{VOCR11} \times [((-0.0342 \times \text{MTB}) + (-0.080274 \times \text{RVP}) + 1.4448]$

$\text{RFBZ1} = 10 \times \text{BEN} \times \text{VOCRF1} \times [((-0.0290 \times \text{MTB}) + (-0.081507 \times \text{RVP}) + 1.3972$

where

$\text{NEBZ1} = \text{Nonexhaust emissions of volatile organic compounds in VOC Control Region 1 in milligrams per mile.}$

$\text{DIBZ1} = \text{Diurnal emissions of volatile organic compounds in VOC Control Region 1 in milligrams per mile.}$

$\text{HSBZ1} = \text{Hot soak emissions of volatile organic compounds in VOC Control Region 1 in milligrams per mile.}$

$\text{RLBZ1} = \text{Running loss emissions of volatile organic compounds in VOC Control Region 1 in milligrams per mile.}$

$\text{RFBZ1} = \text{Refueling loss emissions of volatile organic compounds in VOC Control Region 1 in grams per mile.}$

$\text{VOCD11} = \text{Diurnal emissions of volatile organic compounds in VOC Control Region 1 in milligrams per mile, as determined in paragraph (c)(3) of this section.}$

$\text{VOCHS1} = \text{Hot soak emissions of volatile organic compounds in VOC Control Region 1 in milligrams per mile, as determined in paragraph (c)(3) of this section.}$

$\text{VOCR11} = \text{Running loss emissions of volatile organic compounds in VOC Control Region 1 in milligrams per mile, as determined in paragraph (c)(3) of this section.}$

(10) Nonexhaust benzene emissions in VOC Control Region 2 shall be given by the following equations for both Phase I and Phase II:

$\text{NEBZ2} = \text{DIBZ2} + \text{HSBZ2} + \text{RLBZ2} + \text{RFBZ2}$

$\text{HSBZ2} = 10 \times \text{BEN} \times \text{VOCHS2} \times [((-0.0342 \times \text{MTB}) + (-0.080274 \times \text{RVP}) + 1.4448]$
§ 80.46 Measurement of reformulated gasoline fuel parameters.

(a) Sulfur. Sulfur content of gasoline and butane must be determined by use of the following methods:

(1) The sulfur content of gasoline must be determined by use of American Society for Testing and Materials (ASTM) standard method D2622 (incorporated by reference, see paragraph (h) of this section) or by one of the alternative methods specified in paragraph (a)(3) of this section.

(2) Beginning January 1, 2004, the sulfur content of butane must be determined by the use of ASTM standard test method D 6667–01, entitled, ‘Standard Test Method for Determination of Total Volatile Sulfur in Gaseous Hydrocarbons and Liquefied Petroleum Gases by Ultraviolet Fluorescence’ or by the alternative method specified in paragraph (a)(3) of this section.

(b) Aromatics. Aromatics content of gasoline and butane must be determined by use of the following methods:

(1) ASTM standard method D5453 (incorporated by reference, see paragraph (h) of this section) or

(ii) For conventional gasoline:

<table>
<thead>
<tr>
<th>Fuel property</th>
<th>Acceptable range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>0.0–5.8 weight percent.</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.0–1000.0 parts per million by weight.</td>
</tr>
<tr>
<td>RVP</td>
<td>6.4–11.0 pounds per square inch.</td>
</tr>
<tr>
<td>E200</td>
<td>30.0–70.0 percent evaporated.</td>
</tr>
<tr>
<td>E300</td>
<td>70.0–100.0 percent evaporated.</td>
</tr>
<tr>
<td>Aromatics</td>
<td>0.0–55.0 volume percent.</td>
</tr>
<tr>
<td>Olefins</td>
<td>0.0–30.0 volume percent.</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.0–4.9 volume percent.</td>
</tr>
</tbody>
</table>

(2) Fuels with one or more properties that do not fall within the ranges described in above shall not be certified or evaluated for their emissions performance using the complex emissions model described in paragraphs (c), (d), and (e) of this section.