§ 91.417 Fuel flow measurement specifications.
(a) Fuel flow measurement is required only for raw testing but is allowed for dilute testing.
(b) The fuel flow rate measurement instrument must have a minimum accuracy of ±2 percent of full-scale flow rate for each measurement range used.

§ 91.418 Data evaluation for gaseous emissions.
For the evaluation of the gaseous emissions recording, record the last two minutes of each mode and determine the average values for HC, CO, CO₂, and NOₓ during each mode from the average concentration readings determined from the corresponding calibration data.

§ 91.419 Raw emission sampling calculations.
(a) Derive the final test results through the steps described in this section.
(b) Air and fuel flow method. If both air and fuel flow mass rates are measured, the following equations are used to determine the weighted emission values for the test engine:

\[W_{NO_X} = \left(G_{AIRD} + G_{FUEL} \right) \times \frac{M_{NO_Y}}{M_{exh}} \times W_{NO_X} \times K_H \times \frac{1}{10^6} \]
\[W_{HC} = \left(G_{AIRD} + G_{FUEL} \right) \times \frac{M_{HC_{exh}}}{M_{exh}} \times WHC \times \frac{1}{10^6} \]
\[W_{CO} = \left(G_{AIRD} + G_{FUEL} \right) \times \frac{M_{CO}}{M_{exh}} \times WCO \times \frac{1}{10^2} \]

Where:
- \(W_{HC} \) = Mass rate of HC in exhaust [g/hr],
- \(G_{AIRD} \) = Intake air mass flow rate on dry basis [g/hr],
- \(G_{FUEL} \) = Fuel mass flow rate [g/hr],
- \(M_{HC_{exh}} \) = Molecular weight of hydrocarbons in the exhaust; see the following equation:

\[M_{exh} = \frac{M_{HC_{exh}} \times WHC}{10^6} + \frac{28.01 \times WCO}{10^2} + \frac{44.1 \times WCO}{10^2} + \frac{46.01 \times WNO_X}{10^6} + \frac{2.016 \times WH_2}{10^2} + 18.01 \times (1 - K) + 28.01 \times \left[\frac{100 - WHC}{10^4} - WCO - WCO_2 - \frac{WNO_X}{10^4} - WH_2 - 100 \times (1 - K) \right] \]

Where:
- WHC = HC volume concentration in exhaust, ppmC wet
- WCO = CO percent concentration in the exhaust, wet
- WCO₂ = CO₂ percent concentration in the exhaust, wet
- DCO = CO percent concentration in the exhaust, dry
- \(M_{HC_{exh}} = 12.01 + 1.008 \times \alpha \)
 Where:
 \(\alpha \) = Hydrocarbon/carbon atomic ratio of the fuel.
 \(M_{exh} \) = Molecular weight of the total exhaust; see the following equation: