TABLE 111.60-7—DEMAND LOADS—Continued

Type of circuit	Demand load
Grounded neutral of a dual voltage feeder	100 percent of the capacity of the ungrounded conductors when grounded neutral is not protected by a circuit breaker overcurrent trip, or not less than 50 percent of the capacity of the ungrounded conductors when the grounded neutral is protected by a circuit breaker overcurrent trip or overcurrent alarm.

[CGD 74–125A, 47 FR 15236, Apr. 8, 1982, as amended by USCG–2004–18884, 69 FR 58348, Sept. 30, 2004; USCG–2003–16630, 73 FR 65198, Oct. 31, 2008]

§111.60-9 Segregation of vital circuits.

- (a) General. A branch circuit that supplies equipment vital to the propulsion, control, or safety of the vessel must not supply any other equipment.
- (b) Passenger vessels. (1) Each passenger vessel with firescreen bulkheads that form main fire zones must have distribution systems arranged so that fire in a main fire zone does not interfere with essential services in another main fire zone.
- (2) Main and emergency feeders passing through a main fire zone must be separated vertically and horizontally as much as practicable.

§111.60-11 Wire.

- (a) Wire must be in an enclosure.
- (b) Wire must be component insulated.
- (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7 and 24.8 of IEEE 45–2002, NPFC MIL-W-76D, UL 44, UL 83 (all four standards incorporated by reference; see 46 CFR 110.10–1), or equivalent standard.
- (d) Switchboard wire must meet subpart 111.30 of this part.
- (e) Wire must be of the copper stranded type.

[CGD 94–108, 61 FR 28281, June 4, 1996, as amended at 62 FR 23908, May 1, 1997; 62 FR 27659, May 20, 1997; USCG–2003–16630, 73 FR 65198, Oct. 31, 2008]

§ 111.60–13 Flexible electric cord and cables.

(a) Construction and testing. Each flexible cord and cable must meet the requirements in section 24.6.1 of IEEE 45–2002, Article 400 of NFPA NEC 2002, NEMA WC-3, NEMA WC-70, or UL 62

- (all five standards incorporated by reference; see 46 CFR 110.10-1).
- (b) *Application*. No flexible cord may be used except:
- (1) As allowed under Sections 400-7 and 400-8 of NFPA NEC 2002; and
- (2) In accordance with Table 400-4 in NFPA NEC 2002.
- (c) Allowable current-carrying capacity. No flexible cord may carry more current than allowed under Table 400–5 in NFPA NEC 2002, NEMA WC–3, or NEMA WC–70.
- (d) Conductor size. Each flexible cord must be No. 18 AWG (0.82 mm²) or larg-
- (e) *Splices*. Each flexible cord and cable must be without splices or taps except for a cord or cable No. 12 AWG (3.3 mm²) or larger spliced for repairs in accordance with §111.60–19.
- (f) Pull at joints and terminals. Each flexible cord and cable must be connected to a device or fitting by a knot, tape, or special fitting so that tension is not transmitted to joints or terminal screws.

[CGD 74–125A, 47 FR 15236, Apr. 8, 1982, as amended by CGD 94–108, 61 FR 28281, June 4, 1996; USCG–2003–16630, 73 FR 65198, Oct. 31, 2008]

§ 111.60–17 Connections and terminations.

- (a) In general, connections and terminations to all conductors must retain the original electrical, mechanical, flame-retarding, and, where necessary, fire-resisting properties of the cable. All connecting devices must be suitable for copper stranded conductors.
- (b) If twist-on type of connectors are used, the connections must be made within an enclosure and the insulated cap of the connector must be secured to prevent loosening due to vibration.
- (c) Twist-on type of connectors may not be used for making joints in cables,

§ 111.60-19

facilitating a conductor splice, or extending the length of a circuit.

[CGD 94-108, 61 FR 28281, June 4, 1996]

§111.60-19 Cable splices.

- (a) A cable must not be spliced in a hazardous location, except in intrinsically safe systems.
- (b) Each cable splice must be made in accordance with section 25.11 of IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1).

[CGD 94–108, 61 FR 28281, June 4, 1996, as amended by USCG–2003–16630, 73 FR 65198, Oct. 31, 2008]

§111.60-21 Cable insulation tests.

All cable for electric power and lighting and associated equipment must be checked for proper insulation resistance to ground and between conductors. The insulation resistance must not be less than that in section 34.2.1 of IEEE 45–2002 (incorporated by reference; see 46 CFR 110.10–1).

 $[{\tt USCG\!-\!2003\!-\!16630,\,73\;FR~65199,\,Oct.\,31,\,2008}]$

§ 111.60–23 Metal-clad (Type MC) cable.

- (a) Metal-clad (Type MC) cable permitted on board a vessel must be continuous corrugated metal-clad cable.
- (b) The cable must have a corrugated gas-tight, vapor-tight, and watertight sheath of aluminum or other suitable metal that is close-fitting around the conductors and fillers and that has an overall jacket of an impervious PVC or thermoset material.
- (c) The cable is not allowed in areas or applications exposed to high vibration, festooning, repeated flexing, excessive movement, or twisting, such as in engine rooms, on elevators, or in the area of drill floors, draw works, shakers, and mud pits.
- (d) The cable must be installed in accordance with Article 326 of NFPA NEC 2002 (incorporated by reference; see 46 CFR 110.10–1). The ampacity values found in table 25 of IEEE 45–2002 (incorporated by reference; see 46 CFR 110.10–1) may not be used.
- (e) The side wall pressure on the cable must not exceed 1,000 pounds per foot of radius.
- (f) Equipment grounding conductors in the cable must be sized in accord-

ance with Section 250.122 of NFPA NEC 2002. System grounding conductors must be of a cross-sectional area not less than that of the normal current carrying conductors of the cable. The metal sheath must be grounded but must not be used as a required grounding conductor.

- (g) On an offshore floating drilling and production facility, the cable may be used as interconnect cable between production modules and between fixed distribution panels within the production modules, except that interconnection between production and temporary drilling packages is prohibited. Also, the cable may be used within columns, provided that the columns are not subject to the conditions described in paragraph (c) of this section.
- (h) When the cable is used within a hazardous (classified) location, terminations or fittings must be listed, and must be appropriate, for the particular Type MC cable used and for the environment in which they are installed.

[CGD 94-108, 62 FR 23908, May 1, 1997, as amended by USCG-2003-16630, 73 FR 65199, Oct. 31, 2008]

Subpart 111.70—Motor Circuits, Controllers, and Protection

§111.70-1 General.

- (a) Each motor circuit, controller, and protection must meet the requirements of ABS Steel Vessel Rules, sections 4-8-2/9.17, 4-8-3/5.7.3, 4-8-4/9.5, and 4-8-3/5; ABS MODU Rules, Part 4, Chapter 3, sections 4/7.11 and 4/7.17; or IEC 60092-301 (all three standards incorporated by reference; see 46 CFR 110.10-1), as appropriate, except for the following circuits:
- (1) Each steering gear motor circuit and protection must meet part 58, subpart 58.25, of this chapter.
- (2) Each propulsion motor circuit and protection must meet subpart 111.35 of this part.
- (b) In ungrounded three-phase alternating current systems, only two motor-running protective devices (overload coil or heater type relay within the motor and controller) need be used in any two ungrounded conductors, except when a wye-delta or a delta-wye transformer is used.