Food and Drug Administration, HHS

pickling spice that is added to the pickling brine.

[56 FR 6968, Feb. 21, 1991]

§ 172.560 Modified hop extract.

The food additive modified hop extract may be safely used in beer in accordance with the following prescribed conditions:

(a) The food additive is used or intended for use as a flavoring agent in the brewing of beer.

(b) The food additive is manufactured by one of the following processes:

(i) The additive is manufactured from an hexane extract of hops by simultaneous isomerization and selective reduction in an alkaline aqueous medium with sodium borohydride, whereby the additive meets the following specifications:

- A solution of the food additive solids is made up in approximately 0.012 n alkaline methyl alcohol (6 milliliters of 1 n sodium hydroxide diluted to 500 milliliters with methyl alcohol) to show an absorbance at 253 millimicrons of 0.6 to 0.9 per centimeter. (This absorbance is obtained by approximately 0.03 milligram solids permilliliter.) The ultraviolet absorption spectrum of this solution exhibits the following characteristics: An absorption peak at 253 millimicrons; no absorption peak at 325 to 330 millimicrons; the absorbance at 268 millimicrons does not exceed the absorbance at 272 millimicrons.

(ii) The boron content of the food additive does not exceed 0.310 parts per million (0.0310 percent), calculated as boron.

(ii) The additive is manufactured from hops by a sequence of extractions and fractionations, using benzene, light petroleum spirits, methyl alcohol, n-butyl alcohol, and ethyl acetate as solvents, followed by isomerization by potassium carbonate treatment. Residues of solvents in the modified hop extract shall not exceed 1.0 part per million of benzene, 1.0 part per million of light petroleum spirits, 50 parts per million of methyl alcohol, 50 parts per million of n-butyl alcohol, and 1 part per million of ethyl acetate. The light petroleum spirits and benzene solvents shall comply with the specifications in §172.250 except that the boiling point range for light petroleum spirits is 150°F to 300°F.

(5) The additive is manufactured from hops by an initial extraction and fractionation using one or more of the following solvents: Ethylene dichloride, hexane, isopropyl alcohol, methyl alcohol, methylene chloride, trichloroethylene, and water; followed by isomerization by calcium chloride or magnesium chloride treatment. The residues of the solvents in the modified hop extract shall be as specified in §172.250 except that the boiling point range for light petroleum spirits is 150°F to 300°F.

(6) The additive is manufactured from hops by a sequence of extractions and fractionations, using methylene chloride, hexane, and methyl alcohol as solvents, followed by isomerization by sodium hydroxide treatment. Residues of the solvents in the modified hop extract shall not exceed 5 parts per million of methylene chloride, 25 parts per million of hexane, and 100 parts per million of methyl alcohol.

(7) The additive is manufactured from hops by a sequence of extractions and fractionations, using benzene, light petroleum spirits, methyl alcohol, n-butyl alcohol, and ethyl acetate as solvents, followed by isomerization by potassium carbonate treatment. Residues of solvents in the modified hop extract shall not exceed 1.0 part per million of benzene, 1.0 part per million of light petroleum spirits, 50 parts per million of methyl alcohol, 50 parts per million of n-butyl alcohol, and 1 part per million of ethyl acetate. The light petroleum spirits and benzene solvents shall comply with the specifications in §172.250 except that the boiling point range for light petroleum spirits is 150°F to 300°F.

(8) The additive is manufactured from hops by an initial extraction and fractionation using one or more of the following solvents: Ethylene dichloride, hexane, isopropyl alcohol, methyl alcohol, methylene chloride, trichloroethylene, and water; followed by isomerization by calcium chloride or magnesium chloride treatment. The residues of the solvents in the modified hop extract shall be as specified in §172.250 except that the boiling point range for light petroleum spirits is 150°F to 300°F.

(9) The additive is manufactured from hops by a sequence of extractions and fractionations, using methylene chloride, hexane, and methyl alcohol as solvents, followed by isomerization by sodium hydroxide treatment. Residues of the solvents in the modified hop extract shall not exceed 5 parts per million of methylene chloride, 25 parts per million of hexane, and 100 parts per million of methyl alcohol.
peracetic acid; isomerization by calcium chloride or magnesium chloride treatment in ethylene dichloride, methylene chloride, or trichloroethylene (alternatively, the hydrogenation and isomerization steps may be performed in reverse order); and a further sequence of extractions and fractionations using one or more of the solvents listed in paragraph (b)(5) of this section. The additive shall meet the residue limitations as prescribed in paragraph (b)(5) of this section.

(7) The additive is manufactured from hops as set forth in paragraph (b)(6) of this section followed by reduction with sodium borohydride in aqueous alkaline methyl alcohol, and a sequence of extractions and fractionations using one or more of the solvents listed in paragraph (b)(5) of this section. The additive shall meet the residue limitations as prescribed in paragraph (b)(5) of this section, and a boron content level not in excess of 300 parts per million (0.0300 percent), calculated as boron.

(8) The additive is manufactured from hops as a nonisomerizable nonvolatile hop resin by an initial extraction and fractionation using one or more of the solvents listed in paragraph (b)(5) of this section followed by aqueous extractions and removal of nonaqueous solvents to less than 0.5 percent. The additive is added to the wort before or during cooking in the manufacture of beer.

§ 172.575 Quinine.

Quinine, as the hydrochloride salt or sulfate salt, may be safely used in food in accordance with the following conditions:

<table>
<thead>
<tr>
<th>Uses</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>In carbonated beverages as a flavor.</td>
<td>Not to exceed 83 parts per million, as quinine. Label shall bear a prominent declaration of the presence of quinine either by the use of the word “quinine” in the name of the article or through a separate declaration.</td>
</tr>
</tbody>
</table>

§ 172.580 Safrole-free extract of sassafras.

The food additive safrole-free extract of sassafras may be safely used in accordance with the following prescribed conditions:

(a) The additive is the aqueous extract obtained from the root bark of the plant Sassafras albidum (Nuttall) Nees (Fam. Lauraceae).

(b) It is obtained by extracting the bark with dilute alcohol, first concentrating the alcoholic solution by vacuum distillation, then diluting the concentrate with water and discarding the oily fraction.

(c) The purified aqueous extract is safrole-free.

(d) It is used as a flavoring in food.

§ 172.585 Sugar beet extract flavor base.

Sugar beet extract flavor base may be safely used in food in accordance with the provisions of this section.

(a) Sugar beet extract flavor base is the concentrated residue of soluble sugar beet extractives from which sugar and glutamic acid have been recovered, and which has been subjected to ion exchange to minimize the concentration of naturally occurring trace minerals.

(b) It is used as a flavor in food.

§ 172.590 Yeast-malt sprout extract.

Yeast-malt sprout extract, as described in this section, may be safely used in food in accordance with the following prescribed conditions:

(a) The additive is produced by partial hydrolysis of yeast extract (derived from Saccharomyces cerevisiae, Saccharomyces fragilis, or Candida utilis) using the sprout portion of malt barley as the source of enzymes. The additive contains a maximum of 6 percent 5’ nucleotides by weight.

(b) The additive may be used as a flavor enhancer in food at a level not in excess of that reasonably required to produce the intended effect.

Subpart G—Gums, Chewing Gum Bases and Related Substances

§ 172.610 Arabinogalactan.

Arabinogalactan may be safely used in food in accordance with the following conditions:

(a) Arabinogalactan is a polysaccharide extracted by water from Western larch wood, having galactose units and arabinose units in the approximate ratio of six to one.