§ 186.1300 Ferric oxide.

(a) Ferric oxide (iron (III) oxide, Fe₂O₃, CAS Reg. No. 1309–37–1) occurs naturally as the mineral hematite. It may be prepared synthetically by heating brown iron hydroxide oxide. The product is red-brown to black trigonal crystals.

(b) In accordance with §186.1(b)(1), the ingredient is used as an indirect human food ingredient with no limitation other than current good manufacturing practice. The affirmation of this ingredient as generally recognized as safe (GRAS) as an indirect human food ingredient is based upon the following current good manufacturing practice conditions of use:

(1) The ingredient is used as a constituent of paper and paperboard used for food packaging.

(2) The ingredient is used at levels not to exceed current good manufacturing practice.

(c) Prior sanctions for this ingredient different from the uses established in this section do not exist or have been waived.


§ 186.1374 Iron oxides.

(a) Iron oxides (oxides of iron, CAS Reg. No. 1332–37–2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345–25–1, black cubic crystals) and iron (III) oxide (CAS Reg. No. 1309–37–1, red-brown to black trigonal crystals).

(b) In accordance with §186.1(b)(1), the ingredient is used as an indirect human food ingredient with no limitation other than current good manufacturing practice. The affirmation of this ingredient as generally recognized as safe (GRAS) as an indirect human food ingredient is based upon the following current good manufacturing practice conditions of use:

(1) The ingredient is used as a constituent of paper and paperboard used for food packaging.

(2) The ingredient is used at levels not to exceed current good manufacturing practice.

(c) Prior sanctions for this ingredient different from the uses established in this section do not exist or have been waived.


§ 186.1551 Hydrogenated fish oil.

(a) Hydrogenated fish oil (CAS Reg. No. 91078–95–4) is a class of oils produced by partial hydrogenation of oils expressed from fish, primarily menhaden, and secondarily herring or tuna. Hydrogenation of fish oils uses catalysts composed of either elemental nickel, elemental copper, or a mixture of these elements. The crude hydrogenated fish oil is further processed by alkaline refining, bleaching, and deodorization by steam stripping.

(b) Hydrogenation of fish oils results in a final product with a melting point greater than 32 °C as determined by Section Cc 1–25, Official and Tentative Methods of the American Oil Chemists’ Society method (reapproved 1973) or equivalent. The product has an approximate fatty acid composition of 30 to 45 percent saturated fatty acids, 40 to 55 percent monoenoic fatty acids, 7 to 15 percent dienoic fatty acids, 3 to 10 percent trienoic fatty acids, and less than 2 percent tetraenoic or higher polyenoic fatty acids. The approximate