§ 63.1293 Research and development process
means a laboratory or pilot plant oper-
ation whose primary purpose is to con-
duct research and development into
new processes and products, where the
operations are under the close super-
vision of technically trained personnel,
and which is not engaged in the manu-
facture of products for commercial sale
except in a de minimis manner.

Run of foam means a continuous pro-
duction of foam, which may consist of
several grades of foam.

Sealless pump means a canned-motor
pump, diaphragm pump, or magnetic
drive pump, as defined in this section.

Slabstock flexible polyurethane foam
means flexible polyurethane foam that
is produced in large continuous buns
that are then cut into the desired size
and shape.

Slabstock flexible polyurethane foam
production line includes all portions of
the flexible polyurethane foam process
from the mixhead to the point in the
process where the foam is completely
cured.

Storage vessel means a tank or other
vessel that is used to store diisocyanate
or HAP ABA for use in
the production of flexible polyurethane
foam. Storage vessels do not include
vessels with capacities smaller than 38
cubic meters (or 10,000 gallons).

Transfer pump means all pumps used
to transport diisocyanate or HAP ABA
that are not metering pumps.

Transfer vehicle means a railcar, tank
truck, or other vehicle used to trans-
port HAP ABA to the flexible poly-
urethane foam facility.

§ 63.1294 Standards for slabstock flexi-
bble polyurethane foam production—
diisocyanate emissions.

Each new and existing slabstock af-
rected source shall comply with the
provisions of this section.

(a) Disocyanate storage vessels.
Disocyanate storage vessels shall be
equipped with either a system meeting
the requirements in paragraph (a)(1) of
this section, or a carbon adsorption
system meeting the requirements of
paragraph (a)(2) of this section.

(1) The storage vessel shall be
equipped with a vapor return line from
the storage vessel to the tank truck or
rail car that is connected during un-
loading.

(i) During each unloading event, the
vapor return line shall be inspected for
leaks by visual, audible, or any other
detection method.

(ii) When a leak is detected, it shall
be repaired as soon as practicable, but
not later than the subsequent unload-
ing event.

(2) The storage vessel shall be
equipped with a carbon adsorption sys-
tem, meeting the monitoring require-
ments of § 63.1303(a), that routes dis-
placed vapors through activated carbon
before being discharged to the atmos-
phere. The owner or operator shall re-
place the existing carbon with fresh
carbon upon indication of break-
through before the next unloading
event.

(b) Transfer pumps in diisocyanate
service. Each transfer pump in
disocyanate service shall meet the re-
quirements of paragraph (b)(1) or (b)(2)
of this section.

(1) The pump shall be a sealless
pump, or

(2) The pump shall be a submerged
pump system meeting the require-
ments in paragraphs (b)(2)(i) through
(iii) of this section.

(i) The pump shall be completely im-
mersed in bis(2-ethylhexyl)phthalate
(DEHP, CAS #118–81–7),
2(methyloctyl)phthalate (DINP, CAS
#68515–48–0), or another neutral oil.

(ii) The pump shall be visually mon-
titored weekly to detect leaks.

(iii) When a leak is detected, it shall
be repaired in accordance with the pro-
cedures in paragraphs (b)(2)(iii)(A) and
(B) of this section, except as provided in paragraph (d) of this section.

(A) The leak shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected.

(B) A first attempt at repair shall be made no later than 5 calendar days after the leak is detected. First attempts at repair include, but are not limited to, the following practices where practicable:

(1) Tightening of packing gland nuts.

(2) Ensuring that the seal flush is operating at design pressure and temperature.

(c) Other components in diisocyanate service. If evidence of a leak is found by visual, audible, or any other detection method, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in paragraph (d) of this section. The first attempt at repair shall be made no later than 5 calendar days after each leak is detected.

(d) Delay of repair. (1) Delay of repair of equipment for which leaks have been detected is allowed for equipment that is isolated from the process and that does not remain in diisocyanate service.

(2) Delay of repair for valves and connectors is also allowed if:

(i) The owner or operator determines that diisocyanate emissions of purged material resulting from immediate repair are greater than the fugitive emissions likely to result from delay of repair, and

(ii) The purged material is collected and destroyed or recovered in a control device when repair procedures are effected.

(3) Delay of repair for pumps is also allowed if repair requires replacing the existing seal design with a sealless pump, and repair is completed as soon as practicable, but not later than 6 months after the leak was detected.

§ 63.1296 Standards for slabstock flexible polyurethane foam production—HAP ABA equipment leaks.

Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in §63.1293(a) shall control HAP ABA emissions from leaks from transfer pumps, valves, connectors, pressure-relief valves, and open-ended lines in accordance with this section.

(a) Pumps. Each pump in HAP ABA service shall be controlled in accordance with either paragraph (a)(1) or (a)(2) of this section.

(1) The pump shall be a sealless pump, or

(2) Each pump shall be monitored for leaks in accordance with paragraphs (a)(2)(i) and (ii) of this section. Leaks shall be repaired in accordance with paragraph (a)(2)(iii) of this section.

§ 63.1295 Standards for slabstock flexible polyurethane foam production—HAP ABA storage vessels.

Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in §63.1293(a) shall control HAP ABA storage vessels in accordance with the provisions of this section.

(a) Each HAP ABA storage vessel shall be equipped with either a vapor balance system meeting the requirements in paragraph (b) of this section, or a carbon adsorption system meeting the requirements of paragraph (c) of this section.

(b) The storage vessel shall be equipped with a vapor balance system. The owner or operator shall ensure that the vapor return line from the storage vessel to the tank truck or rail car is connected during unloading.

(1) During each unloading event, the vapor return line shall be inspected for leaks by visual, audible, olfactory, or any other detection method.

(2) When a leak is detected, it shall be repaired as soon as practicable, but not later than the subsequent unloading event.

(c) The storage vessel shall be equipped with a carbon adsorption system, meeting the monitoring requirements of §63.1303(a), that routes displaced vapors through activated carbon before discharging to the atmosphere. The owner or operator shall replace the existing carbon with fresh carbon upon indication of breakthrough before the next unloading event.