Environmental Protection Agency

For each control device used to meet the emission limit in Table 1 or 2 to this subpart for the following pollutant . . . You must . . . Using . . .

5. Dioxin/furan
 a. Measure dioxin/furan concentrations on a toxic equivalency basis (and report total mass per isomer) at the outlet of the final control device or in the stack.
 Method 23 at 40 CFR part 60, appendix A–7 and collect 5 dry standard cubic meters of gas per test run.
 b. Determine gas velocity and volumetric flow rate.
 c. Conduct gas molecular weight analysis and correct concentrations the specified percent oxygen in Table 1 or 2 to this subpart.
 d. Measure gas moisture content.

6. Any pollutant from a continuous, batch, or combination of continuous and batch process vent(s).
 a. Select sampling port locations and the number of traverse points.
 Method 1 or 1A at 40 CFR part 60, appendix A–1.
 b. Determine gas velocity and volumetric flow rate.
 Method 2, 2A, 2C, 2D, 2F, or 2G at 40 CFR part 60, appendix A–1.
 c. Conduct gas molecular weight analysis and correct concentrations the specified percent oxygen in Table 1 or 2 to this subpart.
 d. Measure gas moisture content.

For each control device used to meet the emission limit in Table 1 or 2 to this subpart for the following pollutant . . . You must . . . Using . . .

Table 9 to Subpart HHHHHHH of Part 63—Procedures for Conducting Sampling of Stripped Resin and Process Wastewater

<table>
<thead>
<tr>
<th>For demonstrating . . .</th>
<th>For the following emission points and types of processes . . .</th>
<th>Collect samples according to the following schedule . . .</th>
</tr>
</thead>
</table>
| Each stripped resin stream

1. Initial compliance . . .
 a. Continuous
 b. Batch

2. Continuous compliance . . .
 a. Continuous
 b. Batch

3. Initial compliance . . .
 4. Continuous compliance . . .

| Each process wastewater stream

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>HAP</th>
<th>Analyte category</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>107211</td>
<td>Ethylene glycol</td>
<td>Alcohol</td>
<td>SW–846–8015C.³</td>
</tr>
<tr>
<td>67561</td>
<td>Methanol</td>
<td>Alcohol</td>
<td>SW–846–8015C.³</td>
</tr>
<tr>
<td>75070</td>
<td>Acetaldehyde</td>
<td>Aldehyde</td>
<td>SW–846–8315A.³</td>
</tr>
<tr>
<td>50000</td>
<td>Formaldehyde</td>
<td>Aldehyde</td>
<td>SW–846–8315A.³</td>
</tr>
<tr>
<td>51285</td>
<td>2,4-dinitrophenol</td>
<td>SVOC</td>
<td>SW–846–8270D.³</td>
</tr>
<tr>
<td>98862</td>
<td>Acetophenone</td>
<td>SVOC</td>
<td>SW–846–8270D.³</td>
</tr>
<tr>
<td>117817</td>
<td>Bis(2-ethylhexyl) phthalate (DEHP)</td>
<td>SVOC</td>
<td>SW–846–8270D.³</td>
</tr>
</tbody>
</table>

TABLE 10 TO SUBPART HHHHHHH OF PART 63—HAP SUBJECT TO THE RESIN AND PROCESS WASTEWATER PROVISIONS AT NEW AND EXISTING SOURCES

VerDate Sep<11>2014 08:51 Sep 17, 2014 Jkt 232163 PO 00000 Frm 00637 Fmt 8010 Sfmt 8002 Y:\SGML\232163.XXX 232163pmangrum on DSK3VPTVN1PROD with CFR