Environmental Protection Agency

(b) You must report CO₂, N₂O and CH₄ emissions from each stationary combustion unit. You must calculate and report these emissions under subpart C of this part (General Stationary Fuel Combustion Sources) by following the requirements of subpart C of this part.

§ 98.453 Calculating GHG emissions.

(a) For each electrical equipment manufacturer or refurbisher, estimate the annual SF₆ and PFC emissions using the mass-balance approach in Equation SS-1 of this section:

User Emissions = (Decrease in SF_6 Inventory) + (Acquisitions of SF_6) - (Disbursements of SF_6) (Eq. SS-1)

where:

Decrease in SF_6 Inventory = (Pounds of SF_6 stored in containers at the beginning of the year) – (Pounds of SF_6 stored in containers at the end of the year).

Acquisitions of SF_6 = (Pounds of SF_6 purchased from chemical producers or suppliers in bulk) + (Pounds of SF_6 returned by equipment users) + (Pounds of SF_6 returned to site after off-site recycling).

- Disbursements of SF₆ = (Pounds of SF₆ contained in new equipment delivered to customers) + (Pounds of SF₆ delivered to equipment users in containers) + (Pounds of SF₆ returned to suppliers) + (Pounds of SF₆ sent off site for recycling) + (Pounds of SF₆ sent off-site for destruction).
- (b) Use the mass-balance method in paragraph (a) of this section to estimate emissions of PFCs associated with the manufacture or refurbishment of power transformers, substituting the relevant PFC(s) for SF₆ in Equation SS-1 of this section.
- (c) Estimate the disbursements of SF₆ or PFCs sent to customers in new equipment or cylinders or sent off-site for other purposes including for recycling, for destruction or to be returned to suppliers using Equation SS-2 of this section:

$$D_{GHG} = \sum_{p=1}^{n} Q_{p} \quad (\text{Eq. SS-2})$$

where:

 D_{GHG} = The annual disbursement of SF₆ or PFCs sent to customers in new equipment or cylinders or sent off-site for other purposes including for recycling, for destruction or to be returned to suppliers.

 $Q_{\rm p}$ = The mass of the SF₆ or PFCs charged into equipment or containers over the period p sent to customers or sent offsite for other purposes including for recycling, for destruction or to be returned to suppliers.

n = The number of periods in the year.

(d) Estimate the mass of SF $_6$ or PFCs disbursed to customers in new equipment or cylinders over the period p by monitoring the mass flow of the SF $_6$ or PFCs into the new equipment or cylinders using a flowmeter, or by weighing containers before and after gas from containers is used to fill equipment or cylinders, or by using the nameplate capacity of the equipment.

(e) If the mass of SF_6 or the PFC disbursed to customers in new equipment or cylinders over the period p is estimated by weighing containers before and after gas from containers is used to fill equipment or cylinders, estimate this quantity using Equation SS-3 of this section:

$$Q_p = M_B - M_E - E_L$$
 (Eq. SS-3)

where:

Q_p = The mass of SF₆ or the PFC charged into equipment or containers over the period p sent to customers or sent offsite for other purposes including for recycling, for destruction or to be returned to suppliers.

 M_B = The mass of the contents of the containers used to fill equipment or cylinders at the beginning of period p.

§ 98.453

 M_E = The mass of the contents of the containers used to fill equipment or cylinders at the end of period p.

 E_{L} = The mass of SF_6 or the PFC emitted during the period p downstream of the containers used to fill equipment or cylinders and in cases where a flowmeter is used, downstream of the flowmeter during the period p (e.g., emissions from hoses or other flow lines that connect

the container to the equipment or cylinder that is being filled).

(f) If the mass of SF_6 or the PFC disbursed to customers in new equipment or cylinders over the period p is determined using a flowmeter, estimate this quantity using Equation SS-4 of this section:

$$Q_p = M_{mr} - E_L \quad (\text{Eq. SS-4})$$

where

Q_p = The mass of SF₆ or the PFC charged into equipment or containers over the period p sent to customers or sent offsite for other purposes including for recycling, for destruction or to be returned to suppliers.

 $M_{\rm mr}$ = The mass of the SF $_6$ or the PFC that has flowed through the flowmeter during the period p.

 E_{L} = The mass of SF_{6} or the PFC emitted during the period p downstream of the containers used to fill equipment or cylinders and in cases where a flowmeter is

used, downstream of the flowmeter during the period p (e.g., emissions from hoses or other flow lines that connect the container to the equipment that is being filled).

(g) Estimate the mass of SF_6 or the PFC emitted during the period p downstream of the containers used to fill equipment or cylinders (e.g., emissions from hoses or other flow lines that connect the container to the equipment or cylinder that is being filled) using Equation SS-5 of this section:

$$E_L = \sum_{i=1}^{n} F_{Ci} \times EF_{Ci} \quad (Eq. SS-5)$$

where:

 $E_L = \mbox{The mass of $\rm SF_6$ or the PFC emitted during the period p downstream of the containers used to fill equipment or cylinders and in cases where a flowmeter is used, downstream of the flowmeter during the period p (e.g., emissions from hoses or other flow lines that connect the container to the equipment or cylinder that is being filled)$

 F_{Ci} = The total number of fill operations over the period p for the valve-hose combination Ci.

 $\mathrm{EF}_{\mathrm{Ci}} = \mathrm{The}$ emission factor for the valve-hose combination Ci.

n = The number of different valve-hose combinations C used during the period p.

(h) If the mass of SF_6 or the PFC disbursed to customers in new equipment or cylinders over the period p is determined by using the nameplate capacity, or by using the nameplate capacity of the equipment and calculating the partial shipping charge, use the meth-

ods in either paragraph (h)(1) or (h)(2) of this section.

(1) Determine the equipment's actual nameplate capacity, by measuring the nameplate capacities of a representative sample of each make and model and calculating the mean value for each make and model as specified at §98.454(f).

(2) If equipment is shipped with a partial charge, calculate the partial shipping charge by multiplying the nameplate capacity of the equipment by the ratio of the densities of the partial charge to the full charge.

(i) Estimate the annual SF_6 and PFC emissions from the equipment that is installed at an off-site electric power transmission or distribution location before the title to the equipment is transferred by using Equation SS-6 of this section:

$$EI = M_F + M_c - N_I$$
 (Eq. SS-6)

where:

 ${\rm EI}$ = Total annual SF $_6$ or PFC emissions from equipment installation at electric transmission or distribution facilities.

MF = The total annual mass of the SF6 or PFCs, in pounds, used to fill equipment during equipment installation at electric transmission or distribution facilities.

MC = The total annual mass of the SF_6 or PFCs, in pounds, used to charge the equipment prior to leaving the electrical equipment manufacturer facility.

NI = The total annual nameplate capacity of the equipment, in pounds, installed at electric transmission or distribution facilities.

[75 FR 75078, Dec. 1, 2010, as amended at 78 FR 71979, Nov. 29, 2013]

§ 98.454 Monitoring and QA/QC requirements.

(a) For calendar year 2011 monitoring, you may follow the provisions of §98.3(d)(1) through (d)(2) for best available monitoring methods rather than follow the monitoring requirements of this section. For purposes of this subpart, any reference in §98.3(d)(1) through (d)(2) to 2010 means 2011, March 31 means June 30, and April 1 means July 1. Any reference to the effective date in §98.3(d)(1) through (d)(2) means February 28, 2011.

(b) Ensure that all the quantities required by the equations of this subpart have been measured using either flowmeters with an accuracy and precision of ±1 percent of full scale or better or scales with an accuracy and precision of ±1 percent of the filled weight (gas plus tare) of the containers of SF₆ or PFCs that are typically weighed on the scale. For scales that are generally used to weigh cylinders containing 115 pounds of gas when full, this equates to ±1 percent of the sum of 115 pounds and approximately 120 pounds tare, or slightly more than ±2 pounds. Account for the tare weights of the containers. You may accept gas masses or weights provided by the gas supplier e.g., for the contents of cylinders containing new gas or for the heels remaining in cylinders returned to the gas supplier) if the supplier provides documentation verifying that accuracy standards are met; however, you remain responsible

for the accuracy of these masses and weights under this subpart.

(c) All flow meters, weigh scales, and combinations of volumetric and density measures that are used to measure or calculate quantities under this subpart must be calibrated using calibration procedures specified by the flowmeter, scale, volumetric or density measure equipment manufacturer. Calibration must be performed prior to the first reporting year. After the initial calibration, recalibration must be performed at the minimum frequency specified by the manufacturer.

(d) For purposes of Equations SS-5 of this subpart, the emission factor for the valve-hose combination (EF_C) must be estimated using measurements and/ or engineering assessments or calculations based on chemical engineering principles or physical or chemical laws or properties. Such assessments or calculations may be based on, as applicable, the internal volume of hose or line that is open to the atmosphere during coupling and decoupling activities, the internal pressure of the hose or line, the time the hose or line is open to the atmosphere during coupling and decoupling activities, the frequency with which the hose or line is purged and the flow rate during purges. You must develop a value for EFc (or use an industry-developed value) for each combination of hose and valve fitting, to use in Equation SS-5 of this subpart. The value for EFC must be determined for each combination of hose and valve fitting of a given diameter or size. The calculation must be recalculated annually to account for changes to the specifications of the valves or hoses that may occur throughout the year.

(e) Electrical equipment manufacturers and refurbishers must account for SF_6 or PFC emissions that occur as a result of unexpected events or accidental losses, such as a malfunctioning hose or leak in the flow line, during the filling of equipment or containers for disbursement by including these losses in the estimated mass of SF_6 or the