§ 258.51 §§ 258.55(g)(1)(iv) and 258.56(a), pertaining to assessment of corrective measures; §258.57(a), pertaining to selection of remedy and notification of placement in record; §258.58(c)(4), pertaining to notification of placement in record (alternative corrective action measures); and §258.58(f), pertaining to notification of placement in record (certification of remedy completed). [56 FR 51016, Oct. 9, 1991; 57 FR 28628, June 26, 1992, as amended at 58 FR 51547, Oct. 1, 1993; 60 FR 52342, Oct. 6, 1995] ## § 258.51 Ground-water monitoring systems. - (a) A ground-water monitoring system must be installed that consists of a sufficient number of wells, installed at appropriate locations and depths, to yield ground-water samples from the uppermost aquifer (as defined in §258.2) that: - (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of wells that are not hydraulically upgradient of the waste management area where: - (i) Hydrogeologic conditions do not allow the owner or operator to determine what wells are hydraulically ungradient; or - (ii) Sampling at other wells will provide an indication of background ground-water quality that is as representative or more representative than that provided by the upgradient wells: and - (2) Represent the quality of ground water passing the relevant point of compliance specified by Director of an approved State under §258.40(d) or at the waste management unit boundary in unapproved States. The downgradient monitoring system must be installed at the relevant point of compliance specified by the Director of an approved State under §258.40(d) or at the waste management unit boundary in unapproved States that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles preclude installation of ground-water monitoring wells at the relevant point of compliance at existing units, the down-gradient monitoring system may be installed at the closest practicable distance hydraulically down-gradient from the relevant point of compliance specified by the Director of an approved State under §258.40 that ensure detection of groundwater contamination in the uppermost aquifer. - (b) The Director of an approved State may approve a multiunit ground-water monitoring system instead of separate ground-water monitoring systems for each MSWLF unit when the facility has several units, provided the multiunit ground-water monitoring system meets the requirement of §258.51(a) and will be as protective of human health and the environment as individual monitoring systems for each MSWLF unit, based on the following factors: - (1) Number, spacing, and orientation of the MSWLF units; - (2) Hydrogeologic setting; - (3) Site history; - (4) Engineering design of the MSWLF units, and - (5) Type of waste accepted at the MSWLF units. - (c) Monitoring wells must be cased in a manner that maintains the integrity of the monitoring well bore hole. This casing must be screened or perforated and packed with gravel or sand, where necessary, to enable collection of ground-water samples. The annular space (i.e., the space between the bore hole and well casing) above the sampling depth must be sealed to prevent contamination of samples and the ground water. - (1) The owner or operator must notify the State Director that the design, installation, development, and decommission of any monitoring wells, piezometers and other measurement, sampling, and analytical devices documentation has been placed in the operating record; and - (2) The monitoring wells, piezometers, and other measurement, sampling, and analytical devices must be operated and maintained so that they perform to design specifications throughout the life of the monitoring program. - (d) The number, spacing, and depths of monitoring systems shall be: - (1) Determined based upon site-specific technical information that must include thorough characterization of: ### **Environmental Protection Agency** - (i) Aquifer thickness, ground-water flow rate, ground-water flow direction including seasonal and temporal fluctuations in ground-water flow; and - (ii) Saturated and unsaturated geologic units and fill materials overlying the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer; including, but not limited to: Thicknesses, stratigraphy, lithology, hydraulic conductivities, porosities and effective porosities. - (2) Certified by a qualified ground-water scientist or approved by the Director of an approved State. Within 14 days of this certification, the owner or operator must notify the State Director that the certification has been placed in the operating record. #### § 258.52 [Reserved] # § 258.53 Ground-water sampling and analysis requirements. - (a) The ground-water monitoring program must include consistent sampling and analysis procedures that are designed to ensure monitoring results that provide an accurate representation of ground-water quality at the background and downgradient wells installed in compliance with §258.51(a) of this part. The owner or operator must notify the State Director that the sampling and analysis program documentation has been placed in the operating record and the program must include procedures and techniques for: - (1) Sample collection; - (2) Sample preservation and shipment: - (3) Analytical procedures; - (4) Chain of custody control; and - (5) Quality assurance and quality control. - (b) The ground-water monitoring program must include sampling and analytical methods that are appropriate for ground-water sampling and that accurately measure hazardous constituents and other monitoring parameters in ground-water samples. Ground-water samples shall not be field-filtered prior to laboratory analysis. - (c) The sampling procedures and frequency must be protective of human health and the environment. - (d) Ground-water elevations must be measured in each well immediately prior to purging, each time ground water is sampled. The owner or operator must determine the rate and direction of ground-water flow each time ground water is sampled. Ground-water elevations in wells which monitor the same waste management area must be measured within a period of time short enough to avoid temporal variations in ground-water flow which could preclude accurate determination of ground-water flow rate and direction. - (e) The owner or operator must establish background ground-water quality in a hydraulically upgradient or background well(s) for each of the monitoring parameters or constituents required in the particular ground-water monitoring program that applies to the MSWLF unit, as determined under §258.54(a) or §258.55(a) of this part. Background ground-water quality may be established at wells that are not located hydraulically upgradient from the MSWLF unit if it meets the requirements of §258.51(a)(1). - (f) The number of samples collected to establish ground-water quality data must be consistent with the appropriate statistical procedures determined pursuant to paragraph (g) of this section. The sampling procedures shall be those specified under §258.54(b) for detection monitoring, §258.55 (b) and (d) for assessment monitoring, and §258.56(b) of corrective action. - (g) The owner or operator must specify in the operating record one of the following statistical methods to be used in evaluating ground-water monitoring data for each hazardous constituent. The statistical test chosen shall be conducted separately for each hazardous constituent in each well. - (1) A parametric analysis of variance (ANOVA) followed by multiple comparisons procedures to identify statistically significant evidence of contamination. The method must include estimation and testing of the contrasts between each compliance well's mean and the background mean levels for each constituent. - (2) An analysis of variance (ANOVA) based on ranks followed by multiple