area (e.g., pit, waste lagoon, or evaporation pond), or a leak onto soil from a single drum or tank. Single point source contamination may be from a one-time or continuous contamination. Composites come from two stages: an initial compositing area centered in the area to be sampled, and subsequent compositing areas forming concentric square zones around the initial compositing area. The center of the initial compositing area and each of the subsequent compositing areas is the origin of the grid axes.

(A) Definition of the initial compositing area. The initial compositing area is based on a square that contains nine grid points, is centered on the grid origin, and has sides two grid intervals long. The initial compositing area has the same center as this square and sides one half a grid interval more distant from the center than the square. The initial compositing area has sides three grid intervals long.

(B) Definition of subsequent compositing areas. Subsequent composite sampling areas are in concentric square zones one grid interval wide around the initial compositing area and around each successive subsequent compositing area. The inner boundary of the first subsequent compositing area is the outer boundary of the initial compositing area. The outer boundary of the first subsequent compositing area is centered on the grid origin, has sides one grid interval more distant from the grid origin than the inner boundary, and is two grid intervals longer on a side than the inner boundary. The inner boundary of each further subsequent compositing area is the outer boundary of the previous subsequent compositing area. The outer boundary of each further subsequent compositing area is centered on the grid origin, has sides one grid interval more distant from the grid origin than the inner boundary, and is two grid intervals longer on a side than the inner boundary.

(C) Taking composite samples from the initial and subsequent compositing areas. (1) Select composite sampling areas from the initial compositing area and subsequent compositing areas such that all grid points in the initial compositing area and subsequent compositing areas are part of a composite or individual sample.

(2) A person may include in a single composite sample a maximum of all nine grid points in the initial compositing area. The maximum number of grid points in a composite sample taken from a subsequent compositing area is eight. These eight grid points must be adjacent to one another in the subsequent compositing area, but need not be collinear.

(2) Compositing from samples taken at grid points or pairs of coordinates in accordance with § 761.283(c). Samples collected at small sites are based on selecting pairs of coordinates or using the sample site selection procedure for grid sampling with a smaller grid interval.

(i) Samples collected from a grid having a smaller grid interval. Use the procedure in paragraph (b)(1)(i) of this section to composite samples and determine the area of inference for composite samples.

(ii) Samples collected from pairs of coordinates. All three samples must be composited. The area of inference for the composite is the entire area sampled.

§ 761.292 Chemical extraction and analysis of individual samples and composite samples.

Use either Method 3500B/3540C or Method 3500B/3550B from EPA’s SW-846, Test Methods for Evaluating Solid Waste, or a method validated under subpart Q of this part, for chemical extraction of PCBs from individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart Q of this part, to analyze these extracts for PCBs.

§ 761.295 Reporting and recordkeeping of the PCB concentrations in samples.

(a) Report all sample concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs per gram of sample (ppm by weight).

(b) Record and keep on file for 3 years the PCB concentration for each sample or composite sample.