§ 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

(a) Use EPA Reference Method 9 in appendix A of this part to determine compliance with the opacity limit.

(b) Conduct an initial test for opacity as specified in §60.8.

(c) After the initial test for opacity, conduct annual tests no more than 13 calendar months following the date of your previous test.

§ 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste?

(a) Provide a notice of construction that includes four items:

(1) Your intent to construct the air curtain incinerator.

(2) Your planned initial startup date.

(3) Types of fuels you plan to combust in your air curtain incinerator.

(4) The capacity of your incinerator, including supporting capacity calculations, as specified in §60.1935(d) and (e).

(b) Keep records of results of all opacity tests onsite in either paper copy or electronic format unless the Administrator approves another format.

(c) Keep all records for each incinerator for at least 5 years.

(d) Make all records available for submittal to the Administrator or for onsite review by an inspector.

(e) Submit the results (each 6-minute average) of the opacity tests by February 1 of the year following the year of the opacity emission test.

(f) Submit reports as a paper copy on or before the applicable submittal date. If the Administrator agrees, you may submit reports on electronic media.

(g) If the Administrator agrees, you may change the annual reporting dates (see §60.19(c)).

(h) Keep a copy of all reports onsite for a period of 5 years.

§ 60.1935 What equations must I use?

(a) **Concentration correction to 7 percent oxygen.** Correct any pollutant concentration to 7 percent oxygen using equation 1 of this section:

\[C_{7\%} = C_{unc} \times (13.9 \times \left(\frac{1}{20.9 - CO_2}\right)) \]

(Eq. 1)

Where:

- \(C_{7\%} \) = concentration corrected to 7 percent oxygen.
- \(C_{unc} \) = uncorrected pollutant concentration.
- \(CO_2 \) = concentration of oxygen (percent).

(b) **Percent reduction in potential mercury emissions.** Calculate the percent reduction in potential mercury emissions (\(%P_{Hg} \)) using equation 2 of this section:

\[%P_{Hg} = \left(\frac{E_i - E_o}{E_i}\right) \times 100 \]

(Eq. 2)