§ 111.35–1
110.10–1), except that each one for mobile offshore drilling units must meet the requirements in Part 4, Chapter 3, section 4/3.5.3 of ABS MODU Rules (incorporated by reference; see 46 CFR 110.10–1).

Subpart 111.35—Electric Propulsion

§ 111.35–1 Electrical propulsion installations.

Each electric propulsion installation must meet sections 4–8–5/5.5, 4–8–5/5.11, 4–8–5/5.13, 4–8–5/5.17.8(e), 4–8–5/5.17.9, and 4–8–5/5.17.10 of ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 110.10–1), except that each one for mobile offshore drilling units must meet the requirements in part 4, chapter 3, section 4/3.5.3 of ABS MODU Rules (incorporated by reference; see 46 CFR 110.10–1).

Subpart 111.40—Panelboards

§ 111.40–1 Panelboard standard.

Each panelboard must meet section 17.1 of IEEE 45–2002 (incorporated by reference; see 46 CFR 110.10–1).

§ 111.40–5 Enclosure.

Each panelboard must have a non-combustible enclosure that meets §§ 111.01–7 and 111.01–9.

[CGD 94–108, 61 FR 28279, June 4, 1996]

§ 111.40–7 Location.

Each panelboard must be accessible but not in a bunker or a cargo hold, except a cargo hold on a roll-on/roll-off vessel.

[CGD 94–108, 61 FR 28279, June 4, 1996]

§ 111.40–9 Locking device.

The door of each panelboard enclosure that is accessible to any passenger must have a locking device.

§ 111.40–11 Numbered switching unit and panelboard directory.

(a) Each panelboard switching unit must be numbered.

(b) Each panelboard must have:
(1) A circuit directory cardholder; and
(2) A circuit directory that has:
(i) The circuit designation of each circuit;
(ii) A description of the load of each circuit; and
(iii) The rating or setting of the overcurrent protective device for each circuit.

§ 111.40–13 Rating.

Each panelboard must have a current rating not less than the feeder circuit capacity.

§ 111.40–15 Overcurrent device.

The total load on any overcurrent device located in a panelboard must not exceed 80 percent of its rating if, in normal operation, the load will continue for 3 hours or more; except if the assembly, including the overcurrent device, is rated for continuous duty at 100% of its rating.

Subpart 111.50—Overcurrent Protection

§ 111.50–1 Protection of equipment.

Overcurrent protection of electric equipment must meet the following listed subparts of this chapter:
(a) Appliances, Subpart 111.77.
(b) Generators, Subpart 111.12.
(c) Motors, motor circuits, and controllers, Subpart 111.70.
(d) Transformers, Subpart 111.20.

§ 111.50–2 Systems integration.

The electrical characteristics of each overcurrent protective device must be compatible with other devices and its coordination must be considered in the design of the entire protective system.

Note to §111.50–2: The electrical characteristics of overcurrent protective devices may differ between standards. The interchangeability and compatibility of components complying with differing standards cannot be assumed.

[CGD 94–108, 61 FR 28279, June 4, 1996]

§ 111.50–3 Protection of conductors.

(a) Purpose. The purpose of overcurrent protection for conductors is to open the electric circuit if the current
reaches a value that will cause an excessive or dangerous temperature in the conductor or conductor insulation. A grounded conductor is protected from overcurrent if a protective device of a suitable rating or setting is in each ungrounded conductor of the same circuit.

(b) Overcurrent protection of conductors. Each conductor must be protected in accordance with its current carrying capacity, except a conductor for the following circuits which must meet the following listed subparts of this chapter:

1. Propulsion circuits, Subpart 111.35.
2. Steering circuits, subchapter F of this chapter.
3. Motor circuits, Subpart 111.70.
4. Flexible cord and fixture wire for lighting circuits, Subpart 111.75.
5. Switchboard circuits, Subpart 111.30.

(c) Fuses and circuitbreakers. If the allowable current-carrying capacity of the conductor does not correspond to a standard rating for fuses or circuitbreakers that meets Section 240.6 of NFPA NEC 2002 or IEC 60092–202 (both incorporated by reference; see 46 CFR 110.10–1), then the next larger such rating is acceptable, except that:

1. This rating must not be larger than 150 percent of the current-carrying capacity of the conductor; and
2. The effect of temperature on the operation of fuses and thermally controlled circuitbreakers must be taken into consideration.

(d) Parallel overcurrent protective devices. An overcurrent protective device must not be connected in parallel with another overcurrent protective device.

(e) Thermal devices. No thermal cutout, thermal relay, or other device not designed to open a short circuit may be used for protection of a conductor against overcurrent due to a short circuit or ground, except in a motor circuit as described in Article 430 of NFPA NEC 2002 or in IEC 60092–302.

(f) Ungrounded conductors. A fuse or overcurrent trip unit of a circuit breaker must be in each ungrounded conductor. A branch switch or circuit breaker must open all conductors of the circuit, except grounded conductors.

(g) Grounded conductor. An overcurrent device must not be in a permanently grounded conductor, except:

1. An overcurrent device that simultaneously opens all conductors of the circuit, unless prohibited by §111.05–17 for the bus-tie feeder connecting the emergency and main switchboards; and

§111.50–5 Location of overcurrent protective devices.

(a) Location in circuit. Overcurrent devices must be at the point where the conductor to be protected receives its supply, except as follows:

1. The generator overcurrent protective device must be on the ship’s service generator switchboard. (See §111.12–11(g) for additional requirements.)
2. The overcurrent protection for the shore connection conductors must meet §111.30–25.
3. If the overcurrent device that protects the larger conductors also protects the smaller conductors, an overcurrent device is not required at the supply to the smaller conductors.
4. If the overcurrent device protecting the primary side of a single phase transformer (two wire with single-voltage secondary) also protects the conductors connected to the secondary side, as determined by multiplying the current-carrying capacity of the secondary conductor by the secondary to primary transformer voltage ratio, and this protection meets §111.20–15 of this chapter, an overcurrent device is not required at the supply to the secondary side conductors.

(b) Location on vessel. Each overcurrent device:

1. Must be:
 (i) Readily accessible; and
 (ii) In a distribution panelboard, switchboard, motor controller, or similar enclosure; and
2. Must not be:
 (i) Exposed to mechanical damage; and