§ 173.428 Empty Class 7 (radioactive) materials packaging.

A packaging which previously contained Class 7 (radioactive) materials and has been emptied of contents as far as practical, is excepted from the shipping paper and marking (except for the UN identification number marking requirement described in §173.422(a)) requirements of this subchapter, provided that—

(a) The packaging meets the requirements of §173.421(a) (2), (3), and (5) of this subpart;

(b) The packaging is in unimpaired condition and is securely closed so that there will be no leakage of Class 7 (radioactive) material under conditions normally incident to transportation;

(c) The outer surface of any uranium or thorium in its structure is covered with an inactive sheath made of metal or some other substantial material;

(d) Internal contamination does not exceed 100 times the limits in §173.443(a);

(e) Any labels previously applied in conformance with subpart E of part 172 of this subchapter are removed, obliterated, or covered and the "Empty" label prescribed in §172.450 of this subchapter is affixed to the packaging; and

(f) The packaging is prepared for shipment as specified in §173.422.

§ 173.429 Requirements for determining basic radionuclide values, and for the listing of radionuclides on shipping papers and labels.

(a) For individual radionuclides listed in the table in §173.435 and §173.436:

(1) A_1 and A_2 values are given in the table in §173.435; and

(2) Activity concentration exemption values and consignment activity exemption values are given in the table in §173.436.

(b) For individual radionuclides which are not listed in the tables in §173.435 or §173.436 or for which no relevant data are available:

(1) the radionuclide values in Tables 7 or 8 of this section may be used; or

(2) other basic radionuclide values may be used provided they are first approved by the Associate Administrator or, for international transport, multilateral approval is obtained from the pertinent Competent Authorities.

(c) In calculating A_1 and A_2 values for approval in accordance with paragraph (b)(2) of this section:

(1) It is permissible to use an A_2 value calculated using a dose coefficient for the appropriate lung absorption type, as recommended by the International Commission on Radiological Protection, if the chemical forms of each radionuclide under both normal and accident conditions of transport are taken into consideration.

(2) A single radioactive decay chain in which the radionuclides are present in their naturally-occurring proportions, and in which no daughter nuclide has a half life either longer than 10 days or longer than that of the parent nuclide, will be considered as a single radionuclide, and the activity to be taken into account and the A_1 or A_2 value to be applied will be those corresponding to the parent nuclide of that chain. Otherwise, the parent and daughter nuclides will be considered as a mixture of different nuclides.

(d) Mixtures of radionuclides whose identities and respective activities are known must conform to the following conditions:

§ 173.431 Activity limits for Type A and Type B packages.

(a) Except for LSA material and SCO, a Type A package may not contain a quantity of Class 7 (radioactive) materials greater than A_1 for special form Class 7 (radioactive) material or A_2 for normal form Class 7 (radioactive) material as listed in §173.435, or, for Class 7 (radioactive) materials not listed in §173.435, as determined in accordance with §173.433.

(b) The limits on activity contained in a Type B(U) or Type B(M) package are those prescribed in §§173.416 and 173.417, or in the applicable approval certificate under §173.471, §173.472 or §173.473.

(1) For special form Class 7 (radioactive) material, the activity which may be transported in a Type A packaging must satisfy:

\[\sum \frac{B(i)}{A_1(i)} \leq 1 \]

Where:
- \(B(i) \) is the activity of radionuclide \(i \) in special form; and
- \(A_1(i) \) is the \(A_1 \) value for radionuclide \(i \).

(2) For normal form Class 7 (radioactive) material, the activity which may be transported in a Type A packaging must satisfy:

\[\sum \frac{C(j)}{A_2(j)} \leq 1 \]

Where:
- \(C(j) \) is the activity of radionuclide \(j \) in normal form; and
- \(A_2(j) \) is the \(A_2 \) value for radionuclide \(j \).

(3) If the package contains both special and normal form Class 7 (radioactive) material, the activity which may be transported in a Type A packaging must satisfy:

\[\sum \frac{B(i)}{A_1(i)} + \sum \frac{C(j)}{A_2(j)} \leq 1 \]

Where:
- \(B(i) \) is the activity of radionuclide \(i \) in special form; and
- \(A_1(i) \) is the \(A_1 \) value for radionuclide \(i \).

(4) Alternatively, the \(A_1 \) value for a mixture of special form material may be determined as follows:

\[A_1 \text{ for mixture} = \frac{1}{\sum f(i) A_1(i)} \]

Where:
- \(f(i) \) is the fraction of activity for radionuclide \(i \) in the mixture; and
- \(A_1(i) \) is the appropriate \(A_1 \) value for radionuclide \(i \).

(5) Alternatively, the \(A_2 \) value for mixtures of normal form material may be determined as follows:

\[A_2 \text{ for mixture} = \frac{1}{\sum f(i) A_2(i)} \]

Where:
- \(f(i) \) is the fraction of activity for normal form radionuclide \(i \) in the mixture; and
- \(A_2(i) \) is the appropriate \(A_2 \) value for radionuclide \(i \).

(6) The exempt activity concentration for mixtures of nuclides may be determined as follows:

\[\text{Exempt activity concentration limit for mixture} = \frac{1}{\sum f(i) [A](i)} \]

Where:
- \(f(i) \) is the fraction of activity concentration of nuclide \(i \) in the mixture; and
- \([A](i)\) is the activity concentration for exempt material containing nuclide \(i \).

(7) The activity limit for an exempt consignment for mixtures of nuclides may be determined as follows:

\[\text{Exempt consignment activity limit for mixture} = \frac{1}{\sum f(i) A(i)} \]

Where:
- \(f(i) \) is the fraction of activity of nuclide \(i \) in the mixture; and
- \(A(i) \) is the activity limit for exempt consignments for nuclide \(i \).
(e) When the identity of each nuclide is known but the individual activities of some of the radionuclides are not known, the radionuclides may be grouped and the lowest A_1 or A_2 value, as appropriate, for the radionuclides in each group may be used in applying the formulas in paragraphs (d)(1) through (d)(5) of this section. Groups may be based on the total alpha activity and the total beta/gamma activity when these are known, using the lowest A_1 or A_2 values for the alpha emitters or beta/gamma emitters, respectively.

(f) When the identity of each nuclide is known but the individual activities of some of the radionuclides are not known, the radionuclides may be grouped and the lowest $[A]$ (activity concentration for exempt material) or A (activity limit for exempt consignment) value, as appropriate, for the radionuclides in each group may be used in applying the formulas in paragraphs (d)(6) and (d)(7) of this section. Groups may be based on the total alpha activity and the total beta/gamma activity when these are known, using the lowest A_1 or A_2 values for the alpha emitters or beta/gamma emitters, respectively.

(g) *Shipping papers and labeling.* For mixtures of radionuclides, the radionuclides (n) that must be shown on shipping papers and labels in accordance with §§172.203 and 172.403 of this subchapter, respectively, must be determined on the basis of the following formula:

$$\sum_{i=1}^{n} \frac{a_{(i)}}{A_{(i)}} \geq 0.95 \sum_{i=1}^{n+m} \frac{a_{(i)}}{A_{(i)}}$$

Where:

- $n + m$ represents all the radionuclides in the mixture;
- m are the radionuclides that do not need to be considered;
- $a_{(i)}$ is the activity of radionuclide i in the mixture; and
- $A_{(i)}$ is the A_1 or A_2 value, as appropriate for radionuclide i.

(h) Tables 7 and 8 are as follows:

Table 7—General Values for A_1 and A_2

<table>
<thead>
<tr>
<th>Radioactive contents</th>
<th>A_1 (TBq)</th>
<th>A_1 (Ci)</th>
<th>A_2 (TBq)</th>
<th>A_2 (Ci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Only beta or gamma emitting nuclides are known to be present</td>
<td>1×10^{-1}</td>
<td>2.7×10^1</td>
<td>2×10^{-2}</td>
<td>5.4×10^{-1}</td>
</tr>
<tr>
<td>2. Alpha emitting nuclides, but no beta, gamma, or neutron emitters, are known to be present</td>
<td>2×10^{-1}</td>
<td>5.4×10^0</td>
<td>9×10^{-3}</td>
<td>2.4×10^{-3}</td>
</tr>
<tr>
<td>3. Neutron emitting nuclides are known to be present or no relevant data are available</td>
<td>1×10^{-2}</td>
<td>2.7×10^{-2}</td>
<td>9×10^{-5}</td>
<td>2.4×10^{-5}</td>
</tr>
</tbody>
</table>

1. If beta or gamma emitting nuclides are also known to be present, the A_1 value of 0.1 TBq (2.7 Ci) should be used.

Table 8—General Exemption Values

<table>
<thead>
<tr>
<th>Radioactive contents</th>
<th>Activity concentration for exempt material</th>
<th>Activity limits for exempt consignments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Bq/g)</td>
<td>(Ci/g)</td>
</tr>
<tr>
<td>1. Only beta or gamma emitting nuclides are known to be present</td>
<td>1×10^{0}</td>
<td>2.7×10^{-10}</td>
</tr>
<tr>
<td>2. Alpha emitting nuclides, but no neutron emitters, are known to be present</td>
<td>1×10^{-1}</td>
<td>2.7×10^{-12}</td>
</tr>
<tr>
<td>3. Neutron emitting nuclides are known to be present or no relevant data are available</td>
<td>1×10^{-1}</td>
<td>2.7×10^{-12}</td>
</tr>
</tbody>
</table>