U.S. GOVERNMENT OFFICIAL EDITION NOTICE

Legal Status and Use of Seals and Logos

The seal of the National Archives and Records Administration (NARA) authenticates the Code of Federal Regulations (CFR) as the official codification of Federal regulations established under the Federal Register Act. Under the provisions of 44 U.S.C. 1507, the contents of the CFR, a special edition of the Federal Register, shall be judicially noticed. The CFR is prima facie evidence of the original documents published in the Federal Register (44 U.S.C. 1510).

It is prohibited to use NARA’s official seal and the stylized Code of Federal Regulations logo on any republication of this material without the express, written permission of the Archivist of the United States or the Archivist’s designee. Any person using NARA’s official seals and logos in a manner inconsistent with the provisions of 36 CFR part 1200 is subject to the penalties specified in 18 U.S.C. 506, 701, and 1017.

Use of ISBN Prefix

This is the Official U.S. Government edition of this publication and is herein identified to certify its authenticity. Use of the 0–16 ISBN prefix is for U.S. Government Publishing Office Official Editions only. The Superintendent of Documents of the U.S. Government Publishing Office requests that any reprinted edition clearly be labeled as a copy of the authentic work with a new ISBN.
Table of Contents

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation</td>
<td>v</td>
</tr>
</tbody>
</table>

Title 49:

SUBTITLE B—OTHER REGULATIONS RELATING TO TRANSPORTATION (CONTINUED)

<table>
<thead>
<tr>
<th>Chapter IV—Coast Guard, Department of Homeland Security</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter V—National Highway Traffic Safety Administration, Department of Transportation</td>
<td>19</td>
</tr>
</tbody>
</table>

Finding Aids:

Table of CFR Titles and Chapters	1105
Alphabetic List of Agencies Appearing in the CFR	1125
List of CFR Sections Affected	1135
Cite this Code: CFR

To cite the regulations in this volume use title, part and section number. Thus, 49 CFR 450.1 refers to title 49, part 450, section 1.
Explanation

The Code of Federal Regulations is a codification of the general and permanent rules published in the Federal Register by the Executive departments and agencies of the Federal Government. The Code is divided into 50 titles which represent broad areas subject to Federal regulation. Each title is divided into chapters which usually bear the name of the issuing agency. Each chapter is further subdivided into parts covering specific regulatory areas.

Each volume of the Code is revised at least once each calendar year and issued on a quarterly basis approximately as follows:

- Title 1 through Title 16 as of January 1
- Title 17 through Title 27 as of April 1
- Title 28 through Title 41 as of July 1
- Title 42 through Title 50 as of October 1

The appropriate revision date is printed on the cover of each volume.

LEGAL STATUS

The contents of the Federal Register are required to be judicially noticed (44 U.S.C. 1507). The Code of Federal Regulations is prima facie evidence of the text of the original documents (44 U.S.C. 1510).

HOW TO USE THE CODE OF FEDERAL REGULATIONS

The Code of Federal Regulations is kept up to date by the individual issues of the Federal Register. These two publications must be used together to determine the latest version of any given rule.

To determine whether a Code volume has been amended since its revision date (in this case, October 1, 2016), consult the “List of CFR Sections Affected (LSA),” which is issued monthly, and the “Cumulative List of Parts Affected,” which appears in the Reader Aids section of the daily Federal Register. These two lists will identify the Federal Register page number of the latest amendment of any given rule.

EFFECTIVE AND EXPIRATION DATES

Each volume of the Code contains amendments published in the Federal Register since the last revision of that volume of the Code. Source citations for the regulations are referred to by volume number and page number of the Federal Register and date of publication. Publication dates and effective dates are usually not the same and care must be exercised by the user in determining the actual effective date. In instances where the effective date is beyond the cutoff date for the Code a note has been inserted to reflect the future effective date. In those instances where a regulation published in the Federal Register states a date certain for expiration, an appropriate note will be inserted following the text.

OMB CONTROL NUMBERS

The Paperwork Reduction Act of 1980 (Pub. L. 96-511) requires Federal agencies to display an OMB control number with their information collection request.
Many agencies have begun publishing numerous OMB control numbers as amendments to existing regulations in the CFR. These OMB numbers are placed as close as possible to the applicable recordkeeping or reporting requirements.

PAST PROVISIONS OF THE CODE

Provisions of the Code that are no longer in force and effect as of the revision date stated on the cover of each volume are not carried. Code users may find the text of provisions in effect on any given date in the past by using the appropriate List of CFR Sections Affected (LSA). For the convenience of the reader, a “List of CFR Sections Affected” is published at the end of each CFR volume. For changes to the Code prior to the LSA listings at the end of the volume, consult previous annual editions of the LSA. For changes to the Code prior to 2001, consult the List of CFR Sections Affected compilations, published for 1949-1963, 1964-1972, 1973-1985, and 1986-2000.

“[RESERVED]” TERMINOLOGY

The term “[Reserved]” is used as a place holder within the Code of Federal Regulations. An agency may add regulatory information at a “[Reserved]” location at any time. Occasionally “[Reserved]” is used editorially to indicate that a portion of the CFR was left vacant and not accidentally dropped due to a printing or computer error.

INTEGRATION BY REFERENCE

What is incorporation by reference? Incorporation by reference was established by statute and allows Federal agencies to meet the requirement to publish regulations in the Federal Register by referring to materials already published elsewhere. For an incorporation to be valid, the Director of the Federal Register must approve it. The legal effect of incorporation by reference is that the material is treated as if it were published in full in the Federal Register (5 U.S.C. 552(a)). This material, like any other properly issued regulation, has the force of law.

What is a proper incorporation by reference? The Director of the Federal Register will approve an incorporation by reference only when the requirements of 1 CFR part 51 are met. Some of the elements on which approval is based are:

(a) The incorporation will substantially reduce the volume of material published in the Federal Register.

(b) The matter incorporated is in fact available to the extent necessary to afford fairness and uniformity in the administrative process.

(c) The incorporating document is drafted and submitted for publication in accordance with 1 CFR part 51.

What if the material incorporated by reference cannot be found? If you have any problem locating or obtaining a copy of material listed as an approved incorporation by reference, please contact the agency that issued the regulation containing that incorporation. If, after contacting the agency, you find the material is not available, please notify the Director of the Federal Register, National Archives and Records Administration, 8601 Adelphi Road, College Park, MD 20740-6001, or call 202-741-6010.

CFR INDEXES AND TABULAR GUIDES

A subject index to the Code of Federal Regulations is contained in a separate volume, revised annually as of January 1, entitled CFR INDEX AND FINDING AIDS. This volume contains the Parallel Table of Authorities and Rules. A list of CFR titles, chapters, subchapters, and parts and an alphabetical list of agencies publishing in the CFR are also included in this volume.
An index to the text of “Title 3—The President” is carried within that volume.

The Federal Register Index is issued monthly in cumulative form. This index is based on a consolidation of the “Contents” entries in the daily Federal Register.

A List of CFR Sections Affected (LSA) is published monthly, keyed to the revision dates of the 50 CFR titles.

REPUBLICATION OF MATERIAL

There are no restrictions on the republication of material appearing in the Code of Federal Regulations.

INQUIRIES

For a legal interpretation or explanation of any regulation in this volume, contact the issuing agency. The issuing agency’s name appears at the top of odd-numbered pages.

For inquiries concerning CFR reference assistance, call 202-741-6000 or write to the Director, Office of the Federal Register, National Archives and Records Administration, 8601 Adelphi Road, College Park, MD 20740-6001 or e-mail fedreg.info@nara.gov.

SALES

The Government Publishing Office (GPO) processes all sales and distribution of the CFR. For payment by credit card, call toll-free, 866-512-1800, or DC area, 202-512-1800, M-F 8 a.m. to 4 p.m. e.s.t. or fax your order to 202-512-2104, 24 hours a day. For payment by check, write to: US Government Publishing Office – New Orders, P.O. Box 979060, St. Louis, MO 63197-9000.

ELECTRONIC SERVICES

The full text of the Code of Federal Regulations, the LSA (List of CFR Sections Affected), The United States Government Manual, the Federal Register, Public Laws, Public Papers of the Presidents of the United States, Compilation of Presidential Documents and the Privacy Act Compilation are available in electronic format via www.ofr.gov. For more information, contact the GPO Customer Contact Center, U.S. Government Publishing Office. Phone 202-512-1800, or 866-512-1800 (toll-free). E-mail, ContactCenter@gpo.gov.

OLIVER A. POTTS,
Director,
Office of the Federal Register.
October 1, 2016.
Title 49—Transportation is composed of nine volumes. The parts in these volumes are arranged in the following order: Parts 1–99, parts 100–177, parts 178–199, parts 200–299, parts 300–399, parts 400–571, parts 572–999, parts 1000–1199, and part 1200 to end. The first volume (parts 1–99) contains current regulations issued under subtitle A—Office of the Secretary of Transportation; the second volume (parts 100–177) and the third volume (parts 178–199) contain the current regulations issued under chapter I—Pipeline and Hazardous Materials Safety Administration (DOT); the fourth volume (parts 200–299) contains the current regulations issued under chapter II—Federal Railroad Administration (DOT); the fifth volume (parts 300–399) contains the current regulations issued under chapter III—Federal Motor Carrier Safety Administration (DOT); the sixth volume (parts 400–571) contains the current regulations issued under chapter IV—Coast Guard (DHS), and some of chapter V—National Highway Traffic Safety Administration (DOT); the seventh volume (parts 572–999) contains the rest of the regulations issued under chapter IV, and the current regulations issued under chapter VI—Federal Transit Administration (DOT), chapter VII—National Railroad Passenger Corporation (AMTRAK), and chapter VIII—National Transportation Safety Board; the eighth volume (parts 1000–1199) contains the current regulations issued under chapter X—Surface Transportation Board and the ninth volume (part 1200 to end) contains the current regulations issued under chapter X—Surface Transportation Board, chapter XI—Research and Innovative Technology Administration, and chapter XII—Transportation Security Administration, Department of Transportation. The contents of these volumes represent all current regulations codified under this title of the CFR as of October 1, 2016.

In the volume containing parts 100–177, see § 172.101 for the Hazardous Materials Table. The Federal Motor Vehicle Safety Standards appear in part 571.

Redesignation tables for chapter III—Federal Motor Carrier Safety Administration, Department of Transportation and chapter XII—Transportation Security Administration, Department of Transportation appear in the Finding Aids section of the fifth and ninth volumes.

For this volume, Robert J. Sheehan, III was Chief Editor. The Code of Federal Regulations publication program is under the direction of John Hyrum Martinez, assisted by Stephen J. Frattini.
SUBTITLE B—OTHER REGULATIONS RELATING TO TRANSPORTATION (CONTINUED)

CHAPTER IV—Coast Guard, Department of Homeland Security .. 450

CHAPTER V—National Highway Traffic Safety Administration, Department of Transportation 501
Subtitle B—Other Regulations Relating to Transportation (Continued)
CHAPTER IV—COAST GUARD, DEPARTMENT OF HOMELAND SECURITY

SUBCHAPTER A [RESERVED]

SUBCHAPTER B—SAFETY APPROVAL OF CARGO CONTAINERS

<table>
<thead>
<tr>
<th>Part</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>400–449</td>
<td>[Reserved]</td>
</tr>
<tr>
<td>450</td>
<td>General ... 7</td>
</tr>
<tr>
<td>451</td>
<td>Testing and approval of containers 10</td>
</tr>
<tr>
<td>452</td>
<td>Examination of containers 13</td>
</tr>
<tr>
<td>453</td>
<td>Control and enforcement ... 16</td>
</tr>
<tr>
<td>454–499</td>
<td>[Reserved]</td>
</tr>
</tbody>
</table>
SUBCHAPTER A [RESERVED]
SUBCHAPTER B—SAFETY APPROVAL OF CARGO CONTAINERS

PARTS 400–449 [RESERVED]

PART 450—GENERAL

Subpart A—General Provisions

§ 450.1 Purpose.
This subchapter establishes requirements and procedures for safety approval and periodic examination of cargo containers used in international transport, as defined in the International Safe Container Act.

§ 450.3 Definitions.
(a) In this subchapter: (1) Approval Authority means a delegate of the Commandant authorized to approve containers within the terms of the convention, the International Safe Container Act and this subchapter.
(b) Container means an article of transport equipment:
(i) Of a permanent character and suitable for a repeated use.
(ii) Specially design to facilitate the transport of goods, by one or more modes of transport, without intermediate reloading.
(iii) Designed to be secured and readily handled, having corner fittings for these purposes.
(iv) Of a size that the area enclosed by the four outer bottom corners is either:
(A) At least 14 sq.m. (150 sq.ft.), or
(B) At least 7 sq.m. (75 sq.ft.) if it has top corner fittings.
(v) The term container includes neither vehicles nor packaging; however, containers when carried on chassis are included.
(4) District Commander means the Coast Guard officer designated by the Commandant to command a Coast Guard District.
(5) New Container means a container, the construction of which began on or after September 6, 1977.
(6) Existing Container means a container that is not a new container.

§ 450.5 General requirements and applicability.
(a) Every owner of a new or existing container used or offered for movement in international transport shall have the container approved in accordance with the procedures established by the Administration of any contracting party to the convention, except that existing containers need not be approved until September 6, 1982.
(b) Every owner of an approved container used or offered for movement in international transport who:
(1) Is domiciled in the United States and has the head office in the United States, or
(2) Is domiciled in a country which is not a contracting party to the convention but has the principal office in the United States, and
(3) Has a principal office in a country which is not a contracting party to the convention but has the principal office in the United States, or
(4) Has a principal office in a country which is not a contracting party to the convention but has the principal office in the United States.

§ 450.7

United States, shall have the container periodically examined in accordance with part 452 of this subchapter.

(c) Every owner of an approved container used or offered for movement in international transport who:

(1) Is domiciled in the United States but has the principal office in the jurisdiction of another contracting party to the convention, or

(2) Is domiciled in the jurisdiction of another contracting party to the convention but has the principal office in the United States, shall have the container examined in accordance with part 452 of this subchapter.

(d) Every owner of an approved container used or offered for movement in international transport who is neither domiciled in nor has the principal office in the jurisdiction of a contracting party to the convention, but elected to have the container examined in accordance with procedures prescribed by the United States, shall conform to part 452 of this subchapter.

[45 FR 37213, June 2, 1980]

§ 450.7 Marking.

(a) On each container that construction begins on or after January 1, 1984, all maximum gross weight markings on the container must be consistent with the maximum gross weight information on the safety approval plate.

(b) On each container that construction begins before January 1, 1984, all maximum gross weight markings on the container must be consistent with the gross weight information on the safety approval plate no later than January 1, 1989.

(Approved by the Office of Management and Budget under OMB control number 1625–0024)

[49 FR 15562, Apr. 19, 1984, as amended at 71 FR 55747, Sept. 25, 2006]

Subpart B—Procedure for Delegation to Approval Authorities

§ 450.11 Application for delegation of authority.

(a) Any person or organization seeking delegation of authority to act as an Approval Authority may apply to the Commandant (CG–OES), Attn: Office of Operating and Environmental Standards, U.S. Coast Guard Stop 7509, 2703 Martin Luther King Jr. Avenue SE., Washington, DC 20593–7509. Each application must be signed and certified by the applicant or, if the applicant is an organization, by an authorized officer of the organization. A list of delegated approval authorities may be obtained from the Commandant (CG–OES).

(b) The application must include the following information:

(1) Name and address, including place of incorporation, if a corporation.

(2) A description of the organization, including the ownership, managerial structure, organizational components and directly affiliated agencies and their functions utilized for supporting technical services.

(3) A listing of the basic technical services offered.

(4) A general description of the geographic area served.

(5) A general description of the clients being served or intended to be served.

(6) A description of the types of work performed by the applicant in the past, noting the amount and extent of such work performed within the previous three years.

(7) A description of the personnel to be utilized, indicating general background and qualifications, particularly for the surveyors to be involved in the actual witnessing of tests.

(8) A description of its means of assuring continued competence of its personnel.

(9) A detailed schedule of the fees proposed to be charged for the approval service.

(10) Evidence of financial stability.

(11) At least three business references who will furnish information regarding work performed by the applicant.

(12) A statement that the Coast Guard may inspect the applicant’s facilities and records of approvals under the convention and these regulations.

(c) The application may contain any additional information the applicant deems to be pertinent.

(d) The applicant must furnish any additional information to evaluate the applicant’s qualifications, if requested by the Chief, Office of Operating and
§ 450.14 Conditions of delegation.

(a) The following conditions are part of every delegation: (1) The Approval Authority shall use only testing equipment that it has determined by inspection to be suitable for the purpose.

(2) All approval numbers issued by the Approval Authority must contain the identification code, assigned to the Approval Authority by the Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard.

(3) Each Approval Authority shall maintain the following records for a period of at least 15 years from the date of approval. (When the Approval Authority’s delegation is withdrawn before such time, the records relating to the approvals issued within the prior 15 years must be turned over to the Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard):

(1) Each notice of approval issued.

(2) A copy of each report of test.

(3) A copy of each report of nonconformity.

(4) A copy of each report of withdrawal.

(5) A copy of each report of modification.

(6) A copy of each report of recall.

(b) The Approval Authority shall keep a record of each approval issued, including the name and address of the owner of the containers, the date of approval, the type of containers, and the number of containers approved.

(3) If an applicant satisfies all the criteria for delegation the Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard sends the applicant a letter of delegation, and assigns to the Approval Authority an alphabetic Approval Authority identification code.

(d) If an applicant fails to satisfy all the criteria for delegation, the Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard gives the applicant written notice of denial of his application. The notice contains all the reasons for the denial. The applicant may contest the denial by submitting additional oral or written evidence in support of his qualifications. Upon review of the evidence, the Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard notifies the applicant of the final decision.
§ 450.15
(i) A copy of the application and final approved drawings (if applicable) to which each approval refers.

(ii) The manufacturer’s serial numbers and the owner’s identification numbers of all containers covered by each approval.

(4) Each Approval Authority shall establish and make available to the public a schedule of fees for the approval services performed under these regulations. The fees must not be disproportionate to the costs (including transportation expense, if any) actually incurred.

(5) The Approval Authority shall grant the Coast Guard the right to inspect records and shall cooperate in the conduct of such inspections.

(6) The Approval Authority shall comply with any other term or condition stated in its letter of delegation.

§ 450.16 Termination of delegation.

(a) An Approval Authority may voluntarily terminate its delegation by giving written notice of its intent to the Chief, Office of Operating and Environmental Standards (CG-OES), U.S. Coast Guard. This notice must contain the date on which the termination is to be effective.

§ 450.16 Withdrawal of delegation.

(a) The Chief, Office of Operating and Environmental Standards (CG-OES), U.S. Coast Guard withdraws a delegation if: (1) It is determined that the application for delegation contained a material misrepresentation.

(2) An Approval Authority fails to comply with a condition of delegation.

(3) An Approval Authority is incompetent.

(b) When a delegation is withdrawn, the Chief, Office of Operating and Environmental Standards (CG-OES), U.S. Coast Guard gives to the Approval Authority:

(1) Written notice of the facts or conduct believed to warrant the withdrawal.

(2) Opportunity to submit oral or written evidence.

(3) Opportunity to demonstrate or achieve compliance with the applicable requirement.

PART 451—TESTING AND APPROVAL OF CONTAINERS

Subpart A—Approval of Existing Containers

Sec. 451.1 Application for approval.
451.3 Action by Approval Authority.
451.5 Resubmission or appeal.
451.7 Alternative approval of existing containers.

Subpart B—Approval of New Containers

451.11 Application for approval—general.
451.12 Application for approval by design type.
451.13 Action by approval authority—approval by design type.
451.14 Alternative approval of new containers by design type.
451.15 Application for individual approval.
451.16 Action by approval authority—individual approval.
451.18 Review of denials of approval.

Subpart C—Safety Approval Plate

451.21 Safety approval plate required.
451.23 Plate specifications.
451.25 Required information.

SOURCE: 45 FR 37214, June 2, 1980, unless otherwise noted.

Subpart A—Approval of Existing Containers

§ 451.1 Application for approval.

(a) Any owner of an existing container may apply for approval to the Commandant (CG–OES), Attn: Office of Operating and Environmental Standards, U.S. Coast Guard Stop 7509, 2703 Martin Luther King Jr. Avenue SE., Washington, DC 20593–7509 or to any Approval Authority.

(b) Each application must include the following for each container:
§ 451.11 Application for approval—general.

(a) An owner of a new container, or a manufacturer acting on behalf of an owner of a new container, shall apply for approval of the container to the Approval Authority (or to the Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard, if the application was submitted to the Coast Guard) under this subpart. The application must contain the following information:

(1) Date and place of manufacture.
(2) Manufacturer’s identification number, if available.
(3) Maximum operating gross weight capacity.
(4) Allowable stacking weight for 1.8G (1.8 × Gross weight in kilograms or pounds).

NOTE: This value is the total load the container is designed to support when subjected to a vertical acceleration of 1.8G.

(5) A statement that the owner possesses documentary evidence that:
 (i) Container of this type has been safely used in marine or inland transport for a period of at least two years; or
 (ii) The container was manufactured to a design type which had been tested and found to comply with the technical conditions set out in Annex II to the convention with the exception of those technical conditions relating to the end-wall and side-wall strength tests; or
 (iii) The container was constructed to standards that were equivalent to the technical conditions set out in Annex II to the convention with the exception of those technical conditions relating to end-wall and side-wall strength tests.

(6) A certification by the owner, or, if the owner is a corporation, partnership or unincorporated association, by a person authorized to make such statements for the organization, that the information provided in the application is true and correct.

owner, may apply for approval to any approval authority.

§ 451.12 Application for approval by design type.

(a) For approval of new containers by design type, each application must include the following:
(1) Engineering drawings and plans showing platform, end framing, welds and hardware, connections of cross-members, top and bottom rails, roof bows, detailed subassemblies of major structural components and attachments, and any other plans and drawings required by the approval authority.
(2) Design and material specifications including type and size of materials. Material specifications of the safety approval plate must also be given.
(3) The manufacturer’s identification number assigned to each container in the type series.
(4) The identification code assigned to each container in the series by the owner, lessee, or bailee responsible for maintenance.
(5) The written assurance from the manufacturer, that the manufacturer will:
 (i) Produce to the approval authority such containers as the approval authority may wish to examine;
 (ii) Advise the approval authority of any change in the design or specification and await its approval before affixing the Safety Approval Plate to the container;
 (iii) Affix the Safety Approval Plate to each container in the design type and to no others;
 (iv) Keep a record of containers manufactured to the approved design type containing at least the manufacturer’s identification numbers, date of delivery, and names and addresses of customers to whom the containers are delivered; and
 (v) Supply to the approval authority the information contained in paragraphs (a)(3) and (4) of this section if not available at the time of original application.
(6) A statement as to whether this design type has been examined by any approval authority previously and judged unacceptable. Affirmative statements must be documented with the name of the approving authority, the reason for nonacceptance, and the nature of modifications made to the design type.

§ 451.13 Action by approval authority—approval by design type.

(a) The approval authority arranges with the manufacturer, with notification to the owner, to witness the prototype tests required by the convention, and to examine any number of containers that the approval authority considers appropriate. Upon witnessing successful completion of prototype tests and examination of several containers the approval authority issues to the owner, a notice of approval which authorizes the attachment of safety approval plates to the containers. Absence of individual inspections will not relieve the manufacturer of any responsibility to maintain proper quality control. If a prototype container fails to pass the tests, the approval authority may require testing of as many further representative containers as necessary to ensure the adequacy of the design.

§ 451.14 Alternative approval of new containers by design type.

(a) New containers manufactured before June 16, 1978 without being approved under the preceding section may be approved by submission to an approval authority of an application corresponding to that required under § 451.1(b) for existing containers. All new containers so approved must have safety approval plates affixed and receive their first periodic examination in accordance with the procedures prescribed in § 452.3 by January 1, 1985.

§ 451.15 Application for individual approval.

(a) For approval of new containers by individual approval, each application must include the following:
(1) The manufacturer’s identification number.
(2) The identification code of the owner, lessee, or bailee responsible for maintenance of the container.
§ 451.16 Action by approval authority—individual approval.

(a) The approval authority arranges with the manufacturer or owner to witness testing in accordance with Annex II to the convention. Upon witnessing successful completion of the tests, the approval authority issues to the owner a notice of approval that authorizes the attachment of a safety approval plate.

(b) The date upon which approval was granted must be the same for all containers of a design-type or type-series covered by one notice of approval.

(c) The safety approval number must be the same for all containers of a design-type or type-series covered by one notice of approval.

(d) The owner’s International Organization for Standardization (ISO) alpha numeric identification numbers may be used in place of the manufacturer’s identification numbers on line 3 of the safety approval plate. If owner’s identification numbers are used and the manufacturer’s are available, the owner shall keep records correlating the owner’s identification numbers used with the manufacturer’s number. If a container marked with owner’s identification numbers changes ownership, and the owner’s identification number is changed as a result, the new owner must add the new owner’s identification number, following the original owner’s identification number on line 3 of the safety approval plate. In the event that the new owner’s identification number cannot be legibly added to line 3 of the safety approval plate following the original owner’s identification number, the new owner is authorized to put a new safety approval plate on the freight container provided that all the information contained on the original safety approval plate is retained in the owners files.

§ 451.18 Review of denials of approval.

(a) An applicant aggrieved by a decision of an approval authority may obtain review of the decision by the Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard. The decision of the Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard is a final agency action.

Subpart C—Safety Approval Plate

§ 451.21 Safety approval plate required.

(a) The safety approval plate must be supplied by the owner or manufacturer.

§ 451.23 Plate specifications.

(a) The safety approval plate must be of the size and in the format specified in the appendix to Annex I to the convention.

(b) The safety approval plate must be:

(1) Designed to withstand and remain legible after a 15 minute exposure to a medium intensity fire producing a temperature of 1,000 °F (540 °C), when mounted on the specified material of construction of the container.

(2) Designed to resist the corrosive effects of its environment, both at sea and ashore, so as to remain legible for the working life of the container.

(3) Designed to have a legible life expectancy equal to or greater than the life expectancy of the container to which the plate is affixed.

§ 451.25 Required information.

(a) The safety approval number appearing on line 1 of the safety approval plate must be of the form “USA/(approval number, which includes the approval authority identification code)/(year in which approval was granted).”

(b) The date upon which approval was granted must be the same for all containers of a design-type or type-series covered by one notice of approval.

(c) The safety approval number must be the same for all containers of a design-type or type-series covered by one notice of approval.

(d) The owner’s International Organization for Standardization (ISO) alpha numeric identification numbers may be used in place of the manufacturer’s identification numbers on line 3 of the safety approval plate. If owner’s identification numbers are used and the manufacturer’s are available, the owner shall keep records correlating the owner’s identification numbers used with the manufacturer’s number. If a container marked with owner’s identification numbers changes ownership, and the owner’s identification number is changed as a result, the new owner must add the new owner’s identification number, following the original owner’s identification number on line 3 of the safety approval plate. In the event that the new owner’s identification number cannot be legibly added to line 3 of the safety approval plate following the original owner’s identification number, the new owner is authorized to put a new safety approval plate on the freight container provided that all the information contained on the original safety approval plate is retained in the owners files.

PART 452—EXAMINATION OF CONTAINERS

Sec. 452.1 Periodic examination required.

452.3 Elements of periodic examinations.

452.5 Examinations made in conjunction with other inspections.

452.7 Continuous examination program.

452.9 Elements of a continuous examination program.

§ 452.1 Periodic examination required.

(a) Except as provided for in §452.7, each owner of an approved container
subject to this part shall examine the container or have it examined in accordance with the procedures prescribed in §452.3 at intervals of not more than 30 months, except that for containers approved as new containers, the interval from the date of manufacture to the date of the first examination must not exceed five years. For containers approved, examined and plated as existing containers before January 1, 1985 and containers approved and plated as new containers before January 1, 1985, the subsequent examination must be carried out in accordance with the following schedule:

<table>
<thead>
<tr>
<th>Date of initial plating</th>
<th>Subsequent examination</th>
</tr>
</thead>
</table>

NOTE: Containers plated under §451.14 are considered existing containers in the above schedule.

(b) Upon completion of an examination required by this part, the owner shall mark on the safety approval plate, or on the container itself as close as practicable to the safety approval plate, the month and year before which the container must next be examined. This marking may be by a decal, sticker, stencil, or other means so long as it is capable of remaining legible for at least 24 months. Affixing such a marking to a container that has not been examined in accordance with §452.3 constitutes a misrepresentation in a matter within the jurisdiction of an agency of the United States, and makes the owner punishable under 18 U.S.C. 1001.

(c) The owner of containers subject to this section shall have those containers examined in accordance with the program prescribed in this section regardless of whether the examinations are preformed within or outside the United States.

§452.3 Elements of periodic examinations.

(a) Periodic examinations required by §452.1 must conform to the following minimum requirements:

1. Each examination must include a detailed visual inspection for defects such as cracks, failures, corrosion, missing or deteriorated fasteners, and any other safety related deficiency or damage which could place any person in danger. Any such deficiencies disclosed by the examination must be corrected by the owner before the container is continued in service.

2. Each examination must take into account the particular characteristics of various kinds of containers and materials of construction.

3. Each examination must be performed by qualified personnel, trained and experienced in the detection of container structural damage.

4. The examinations must be scheduled so as to allow adequate time for thorough performance.

5. Each examination must apply owner established or industry accepted pass/fail criteria to determine whether a container has any deficiency that must be remedied before the container is returned to service.

(b) Examinations must be documented, and the records retained by the owner, until the next examination is completed and recorded. The records must include, in addition to identification of the container, a record of the date of last examination and a means of identifying the examiner. The records must be maintained in an office under the control of the owner and be made available for inspection by the Coast Guard upon demand. If the original records are maintained outside the United States, its territories or possessions, supplementary records must be available in written or data processing form to be produced on demand of the Commandant or his representative.
§ 452.5 Examinations made in conjunction with other inspections.

(a) Periodic examinations may be made in conjunction with or as part of routine change-of-custody inspections, or in any other manner convenient to the owner so long as the examinations conform to the requirements of § 452.3.

[45 FR 37216, June 2, 1980]

§ 452.7 Continuous examination program.

(a) In lieu of a periodic examination under § 452.1, each owner of an approved container meeting § 450.5 may examine the container or have it examined using an approved continuous examination program. An owner must submit the continuous examination program for approval to the Commandant (CG–OES), Attn: Office of Operating and Environmental Standards, U.S. Coast Guard Stop 7509, 2703 Martin Luther King Jr. Avenue SE., Washington, DC 20593–7509. When submitting a continuous examination program for approval the owner must show the continuous examination complies with § 452.9.

(b) The owner must mark the container with the letters “ACEP/USA/ (year continuous examination program is approved)” to indicate the container is being periodically examined under an approved continuous examination program. This marking must be as close as practicable to the safety approval plate. This marking must be on all containers covered by a continuous examination program by January 1, 1987.

(c) The owner of containers subject to this section shall have those containers examined in accordance with the program prescribed in this section regardless of whether the examinations are performed within or outside the United States.

(The information collection requirements contained in paragraphs (a) and (b) have been approved by the Office of Management and Budget under OMB control number 1625–0024)

§ 452.9 Elements of a continuous examination program.

(a) Examinations required by § 452.7 must conform to the following minimum requirements:

1. A thorough examination that must include a detailed visual inspection for defects such as cracks, failures, corrosion, missing or deteriorated fasteners, and any other safety related deficiency or damage that could place any person in danger. Any such deficiencies disclosed by the examination must be corrected by the owner before the container is continued in service. A thorough examination must be done each time a container undergoes a major repair, refurbishment or on-hire/off-hire interchange. In no case is the time period between thorough examinations to exceed 30 months.

2. Each thorough examination must be performed by qualified personnel, trained and experienced in the detection of container structural damage.

3. Each thorough examination must apply owner established or industry accepted pass/fail criteria to determine whether a container has any deficiency that must be remedied before the container is returned to service.

(b) Thorough examinations must be documented, and the records retained by the owner, until the next examination is completed and recorded. The records must include, in addition to identification of the container, a record of the date of last examination and a means of identifying the examiner. The records must be maintained in an office under the control of the owner and be made available for inspection by the Coast Guard upon demand. If the original records are maintained outside the United States, its territories or possessions, supplementary records must be available in written or data processing form to be produced on demand of the Commandant or his representative.

(The information collection requirements contained in paragraph (b) have been approved by the Office of Management and Budget under OMB control number 1625–0024)

PART 453—CONTROL AND ENFORCEMENT

Sec.
453.1 Unsafe and noncomplying containers subject to detention or control.
453.3 Detention orders and other orders.
453.5 Termination of detention orders and other orders.
453.7 Appeal provisions.

§ 453.1 Unsafe and noncomplying containers subject to detention or control.

(a) Any container used in or offered for movement in international transport which does not have a valid safety approval plate attached to it is subject to detention or other control by a District Commander or Captain of the Port. However, upon receipt of evidence that a container which does not have a valid safety approval plate attached to it meets the standards of the convention, the District Commander or Captain of the Port may authorize limited movement of such container under conditions he deems appropriate. This paragraph becomes effective on January 3, 1979 for new containers and on January 1, 1985 for existing containers.

(b) If a District Commander or Captain of the Port finds that a container used in or offered for movement in international transport, even though it has a valid safety approval plate attached to it, is in a condition that creates an obvious risk to safety, he issues a detention order causing the container to be removed from service until it is restored to a safe condition. In addition to removing a container from transport, a detention order may require any special handling, including unloading prior to movement, necessary to ensure safety.

(c) If a District Commander or Captain of the Port finds that a container used or offered for movement in international transport has not been timely examined, the District Commander or Captain of the Port affixes to the container, at a place on the container where it will be readily noticeable to anyone loading or unloading the container, a mark or tag indicating that the container must be examined before being reloaded and again used in international transport. The mark or tag affixed by the District Commander or Captain of the Port indicates the place and the date on which it was affixed, and is capable of remaining legible and in place for at least 12 months. Such mark or tag must not be removed until the container is examined in accordance with §452.3 of this subchapter. If a District Commander or Captain of the Port finds that a container marked or tagged as provided for in this paragraph was reloaded and used or offered for movement in international transport without having been examined, the District Commander or Captain of the Port issues a detention order causing the container to be removed from service until it is brought into compliance.

[45 FR 37217, June 2, 1980, as amended at 47 FR 50496, Nov. 8, 1982]

§ 453.3 Detention orders and other orders.

(a) The terms of any detention order or other order issued under §453.1, to the maximum extent practicable, make provisions to avoid loss or damage to cargo.

(b) Written notice of any detention order or other order issued under §453.1 is given immediately to the terminal operator, stevedore, or other person having actual control over the container involved. Prompt notification is also given to the owner of the container, or his agent. The notification identifies the container involved, its location, and describes the condition which gave rise to the order.

[45 FR 37217, June 2, 1980]

§ 453.5 Termination of detention orders and other orders.

(a) When a container, which is the subject of a detention order or other order, is restored to a safe condition or otherwise brought into compliance, it must be examined in accordance with §452.3 and a new re-examination date marked on the container in accordance with §452.1(b) of this subchapter.

(b) The owner or the owner’s agent shall notify the District Commander or
Coast Guard, DHS

§ 453.7 Appeal provisions.

(a) The owner, his agent, or the custodian of a container subject to a detention order or other order, may petition the Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard to review that order.

(b) The Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard requires independent surveys to determine the extent of deficiencies, if necessary. Upon completion of his review, including review of the results of any required independent surveys, the Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard affirms, sets aside, or modifies the order.

(c) The owner of a container is liable for any costs incident to a petition for review including any independent surveys, and for any other costs incident to or resulting from detention or other control of a container.

(d) Unless otherwise determined by the Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard, a detention order or other order remains in effect pending the outcome of any petition or appeal of that order.

(e) The Chief, Office of Operating and Environmental Standards (CG–OES), U.S. Coast Guard acts on all appeals within ten days of receipt.

PARTS 454–499 [RESERVED]
CHAPTER V—NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION

<table>
<thead>
<tr>
<th>Part</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>[Reserved]</td>
</tr>
<tr>
<td>501</td>
<td>Organization and delegation of powers and duties</td>
</tr>
<tr>
<td>509</td>
<td>OMB control numbers for information collection requirements</td>
</tr>
<tr>
<td>510</td>
<td>Information gathering powers</td>
</tr>
<tr>
<td>511</td>
<td>Adjudicative procedures</td>
</tr>
<tr>
<td>512</td>
<td>Confidential business information</td>
</tr>
<tr>
<td>520</td>
<td>Procedures for considering environmental impacts</td>
</tr>
<tr>
<td>523</td>
<td>Vehicle classification</td>
</tr>
<tr>
<td>525</td>
<td>Exemptions from average fuel economy standards</td>
</tr>
<tr>
<td>526</td>
<td>Petitions and plans for relief under the Automobile Fuel Efficiency Act of 1980</td>
</tr>
<tr>
<td>529</td>
<td>Manufacturers of multistage automobiles</td>
</tr>
<tr>
<td>531</td>
<td>Passenger automobile average fuel economy standards</td>
</tr>
<tr>
<td>533</td>
<td>Light truck fuel economy standards</td>
</tr>
<tr>
<td>534</td>
<td>Rights and responsibilities of manufacturers in the context of changes in corporate relationships</td>
</tr>
<tr>
<td>535</td>
<td>Medium- and heavy-duty vehicle fuel efficiency program</td>
</tr>
<tr>
<td>536</td>
<td>Transfer and trading of fuel economy credits</td>
</tr>
<tr>
<td>537</td>
<td>Automotive fuel economy reports</td>
</tr>
<tr>
<td>538</td>
<td>Manufacturing incentives for alternative fuel vehicles</td>
</tr>
<tr>
<td>541</td>
<td>Federal motor vehicle theft prevention standard</td>
</tr>
<tr>
<td>542</td>
<td>Procedures for selecting light duty truck lines to be covered by the theft prevention standard</td>
</tr>
<tr>
<td>543</td>
<td>Exemption from vehicle theft prevention standard</td>
</tr>
<tr>
<td>545</td>
<td>Federal motor vehicle theft prevention standard phase-in and small-volume line reporting requirements</td>
</tr>
<tr>
<td>551</td>
<td>Procedural rules</td>
</tr>
<tr>
<td>Part</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>552</td>
<td>193</td>
</tr>
<tr>
<td>553</td>
<td>197</td>
</tr>
<tr>
<td>554</td>
<td>209</td>
</tr>
<tr>
<td>555</td>
<td>211</td>
</tr>
<tr>
<td>556</td>
<td>218</td>
</tr>
<tr>
<td>557</td>
<td>220</td>
</tr>
<tr>
<td>562</td>
<td>221</td>
</tr>
<tr>
<td>563</td>
<td>222</td>
</tr>
<tr>
<td>564</td>
<td>231</td>
</tr>
<tr>
<td>565</td>
<td>235</td>
</tr>
<tr>
<td>566</td>
<td>247</td>
</tr>
<tr>
<td>567</td>
<td>248</td>
</tr>
<tr>
<td>568</td>
<td>255</td>
</tr>
<tr>
<td>569</td>
<td>257</td>
</tr>
<tr>
<td>570</td>
<td>258</td>
</tr>
<tr>
<td>571</td>
<td>269</td>
</tr>
</tbody>
</table>
PART 501—ORGANIZATION AND DELEGATION OF POWERS AND DUTIES

Sec.
501.1 Purpose.
501.2 General.
501.3 Organization and general responsibilities.
501.4 Succession to Administrator.
501.5 Exercise of authority.
501.6 Secretary’s reservations of authority.
501.7 Administrator’s reservations of authority.
501.8 Delegations.

SOURCE: 81 FR 5938, Feb. 4, 2016, unless otherwise noted.

§ 501.1 Purpose.

This part describes the organization of the National Highway Traffic Safety Administration (NHTSA), an operating administration within the U.S. Department of Transportation, and provides for the performance of duties imposed on, and the exercise of powers vested in, the Administrator of NHTSA.

§ 501.2 General.

The responsibilities and authorities delegated to NHTSA and the Administrator are set forth in §§ 1.81, 1.94, and 1.95 of this title.

§ 501.3 Organization and general responsibilities.

NHTSA consists of a headquarters organization located in Washington, DC, a unified field organization consisting of ten geographic regions with a Regional Office located in each region, the Vehicle Research and Test Center located in East Liberty, Ohio, and the Uniform Tire Quality Grading Test Facility located in San Angelo, Texas. The organization of, and general spheres of responsibility within, NHTSA are as follows:

(a) Office of the Administrator—(1) Administrator. (i) Represents the Department and is the principal advisor to the Secretary in all matters related to 49 U.S.C. chapters 301, 303, 321, 323, 325, 327, 329 and 331; 23 U.S.C. chapter 4, except section 409; 23 U.S.C. 153, 154, 158, 161, 163, 164 and 313 (with respect to matters within the primary responsibility of NHTSA); and such other responsibilities and authorities as are delegated by the Secretary of Transportation (49 CFR 1.94 and 1.95);

(ii) Establishes NHTSA program policies, objectives, and priorities and directs the development of action plans to accomplish the NHTSA mission;

(iii) Directs, controls, and evaluates the organization, program activities, performance of NHTSA staff, program and field offices;

(iv) Approves broad legislative, budgetary, fiscal and program proposals and plans; and

(v) Takes management actions of major significance, such as those relating to changes in basic organizational structure, appointment of key personnel, allocation of resources, and matters of special political or public interest or sensitivity.

(2) Deputy Administrator. Assists the Administrator in discharging responsibilities. Directs and coordinates the Administration’s management and operational programs, and related policies and procedures at headquarters and in the field.

(3) Executive Director. As the principal advisor to the Administrator and Deputy Administrator, provides direction on internal management and mission support programs. Provides executive direction over the Associate Administrators, Chief Financial Officer, and Chief Information Officer.

(4) Director, Office of Civil Rights. As the principal advisor to the Administrator and Deputy Administrator on all matters pertaining to civil rights, serves as Director of Equal Employment Opportunity and of Title VI Compliance (Civil Rights Act of 1964, as amended, and related regulations). Assures agency compliance with Section 504 of the Rehabilitation Act of 1973, the Americans with Disabilities Act (ADA), and other nondiscrimination statutes, regulations, Executive Orders, and policies. Periodically reviews and evaluates the civil rights programs of State Department of Motor Vehicles and Highway Safety Offices to ensure that recipients of
NHTSA financial assistance meet applicable Federal civil rights requirements. Monitors the implementation of and compliance with civil rights requirements, investigates complaints of discrimination, conducts compliance reviews, provides technical assistance to recipients of NHTSA financial assistance and stakeholders, and provides assistance to the Office of the Secretary in investigating and adjudicating formal complaints of discrimination.

(5) Director, Office of Governmental Affairs, Policy & Strategic Planning. As the principal advisor to the Administrator and Deputy Administrator on all intergovernmental matters, including communications with Congress, communicates agency policy and serves as coordinator on legislative affairs. Also, serves as coordinator of agency policy discussions and activities and communicates with other operating administrations and the Office of Secretary on strategic planning efforts.

(6) Director of Communications. As the principal advisor to the Administrator and Deputy Administrator on external communications and information dissemination, serves as coordinator on public affairs.

(b) Chief Counsel. As chief legal officer for the Administrator and the Administration, provides general legal services and legal services related to legislative activities; prepares litigation and issues subpoenas; and effects rulemaking actions.

(c) Associate Administrators, Chief Financial Officer, and Chief Information Officer—(1) Associate Administrator for Administration. Administers and conducts NHTSA’s personnel management activities; initiates and oversees a comprehensive program of administrative support services to meet agency requirements, including development, maintenance, and operation of NHTSA’s manuals, notices, and orders, property management, and the purchase, delivery, and administration of a range of supplies, equipment, and other support services; is responsible for administrative operational expenses and working capital fund operations; serves as the agency’s technical expert for all administrative activities; and administers an executive correspondence program and maintains policy files for the Administrator and Deputy Administrator.

(2) Associate Administrator for Communications and Consumer Information. Represents NHTSA to the general public and others; provides reliable, timely, and accurate traffic safety information to the general public, consumers, partner organizations, and citizens groups through media and public education efforts; and provides scheduling and speechwriting support for the Administrator.

(3) Associate Administrator for Enforcement. Directs matters related to the enforcement of motor vehicle safety, fuel economy, theft prevention, damageability, consumer information, and odometer laws and regulations; conducts testing, inspection, and investigation necessary for the identification and correction of safety-related defects in motor vehicles and motor vehicle equipment; and ensures recalls of noncomplying and defective vehicles and motor vehicle equipment are effective and are conducted in accordance with Federal law and regulations.

(4) Associate Administrator for National Center for Statistics and Analysis. Provides the data, analysis, and evaluation to support determination of the nature, causes, and injury outcomes of motor vehicle traffic crashes, the strategies and interventions that will reduce crashes and their consequences, and the potential impact, costs, and benefits of highway safety programs and regulatory activities; targets the collection and analysis of data and the dissemination of information to identify potential highway safety problems, evaluate expected program and regulatory impact and actual goal achievement, and support data driven decisions; and identifies, advances, and promotes new methodologies, technologies, systems, and procedures that improve the completeness, accuracy, timeliness, and accessibility of data collection, analysis, and evaluation.

(5) Associate Administrator for Regional Operations and Program Delivery. Directs the management of State and community highway safety programs; administers and coordinates all Regional activities, including activities...
having a headquarters-regional interface; develops, reviews, implements, and coordinates related programs, policies, and procedures; and coordinates with the Federal Highway Administration, the Federal Motor Carrier Safety Administration, and other Federal agencies on traffic safety programs, as appropriate.

(6) **Associate Administrator for Research and Program Development.** Administers traffic safety programs and provides national leadership and technical assistance to States, local communities, national organizations, and other partners in the identification, research, planning, development, demonstration, implementation, evaluation, and dissemination of highway safety programs designed to prevent or reduce traffic-related crashes and the resulting deaths, injuries, property damage, and associated costs. Coordinates with the Federal Highway Administration, the Federal Motor Carrier Safety Administration, and other Federal agencies on traffic safety programs, as appropriate.

(7) **Associate Administrator for Rulemaking.** Develops and promulgates Federal standards dealing with motor vehicle safety, theft prevention, consumer information, the National Driver Register, and fuel economy, and directs programs relating to bumper standards, safety performance standards, and other regulations for new and used motor vehicles and equipment, including tires. Develops and conducts the New Car Assessment Program.

(8) **Associate Administrator for Vehicle Safety Research.** Develops and conducts research, development, test, and evaluation programs and projects necessary to support consumer information programs, guidelines, industry voluntary standards, and Federal motor vehicle regulations; manages the facilities and programs related to these activities; and conducts crash data analyses in defining safety problems.

(9) **Chief Financial Officer.** Administers the agency planning and budget activities in coordination with the Department of Transportation, the Office of Management and Budget, and Congress; assures the appropriate development of budget requests and the subsequent execution of operating budgets within the agency to meet all programmatic requirements; conducts all necessary accounting transactions to assure full and accurate accountability for all financial resources of the agency; initiates and oversees a comprehensive program of acquisition support for agency buying and supplier requirements, including acquisition planning, purchasing, payments, and administration; facilitates, coordinates, tracks, and monitors all external audits, reviews, and other oversight activities of agency programs, finances, transactions, or activities—working closely with responsible program and operational officials; facilitates and oversees the agency travel program, including the administration and operation of the travel management system, the travel card program, and the provision of travel management advice and guidance; and serves as the agency’s technical expert for all financial management activities.

(10) **Chief Information Officer.** Administers all NHTSA Information Technology functions and needs to ensure that IT resources are effectively acquired and managed to maximize mission performance and return on IT investments.

§ 501.4 Succession to Administrator.

(a) The Deputy Administrator is the “first assistant” to the Administrator for purposes of the Federal Vacancies Reform Act of 1998 (5 U.S.C. 3345–3349d) and shall, in the event the Administrator dies, resigns, or is otherwise unable to perform the functions and duties of the office, serve as the Acting Administrator, subject to the limitations established by law.

(b) In the event both the Administrator and the Deputy Administrator die, resign, and/or are otherwise unable to perform the functions and duties of their respective offices, or in the event that both positions are vacant, and shall, in the event the Administrator dies, resigns, or is otherwise unable to perform the functions and duties of the office, serve as the Acting Administrator, subject to the limitations established by law. (c) and in the order indicated, shall serve as Acting Deputy Administrator and shall perform the functions and duties of the Administrator, except for any non-delegable statutory and/or regulatory functions and duties:

(1) The Chief Counsel;

(2) The Executive Director;
§ 501.5 Exercise of authority.

(a) All authorities lawfully vested in and reserved to the Administrator in this title, part, or other NHTSA regulation or directive may be exercised by the Deputy Administrator and, in the absence or disability of both officials, by the Chief Counsel, unless specifically prohibited by statute, regulation, or order.

(b) In exercising the powers and performing the duties delegated by this part, officers of NHTSA and their delegates are governed by applicable laws, executive orders, regulations, and other directives, and by policies, objectives, plans, standards, procedures, and limitations as may be issued from time to time by or on behalf of the Secretary of Transportation, the Administrator, the Deputy Administrator, the Chief Counsel, and the Executive Director or, with respect to matters under their jurisdiction, by or on behalf of the Associate Administrators, the Regional Administrators, and the Directors of Staff Offices.

(c) Each officer to whom authority is delegated by this part may redelegate and authorize successive redelegations of that authority subject to any conditions the officer prescribes.

(d) Each officer to whom authority is delegated will administer and perform the functions described in the officer’s respective functional statements.

§ 501.6 Secretary’s reservations of authority.

The authorities reserved to the Secretary of Transportation are set forth in §1.21 of this title.

§ 501.7 Administrator’s reservations of authority.

The delegations of authority in this part do not extend to the following authority, which is reserved to the Administrator, except when exercised pursuant to §§501.4 and 501.5(a):

(a) The authority under 23 U.S.C. chapter 4 (except section 403) and any unmodified provision of law to apportion authorization amounts and distribute obligation limitations or award grants to States for highway safety programs or other highway safety purposes;

(b) The authority to issue, amend, or revoke uniform State highway safety guidelines and rules identifying highly effective highway safety programs under 23 U.S.C. 402;

(c) The authority to fix the rate of compensation for non-government members of agency sponsored committees which are entitled to compensation.

(d) The authority under 49 U.S.C. chapter 301 to:

(1) Issue, amend, or revoke final Federal motor vehicle safety standards and regulations;

(2) Make final decisions concerning alleged safety-related defects and noncompliances with Federal motor vehicle safety standards;

(3) Grant or renew temporary exemptions from Federal motor vehicle safety standards; and

(4) Grant or deny appeals from determinations upon a manufacturer’s petition for decision of inconsequential defect or noncompliance and exemption from the notification and remedy requirements of 49 U.S.C. chapter 301 in connection with a defect or noncompliance.

(e) The authority under 49 U.S.C. chapters 303, 321, 323, 325, and 329 (except section 32916(b)) to:

(1) Issue, amend, or revoke final rules and regulations; and

(2) Assess civil penalties and approve manufacturer fuel economy credit plans under chapter 329.

(f) The authority to carry out, in coordination with the Federal Motor Carrier Safety Administrator, the authority vested in the Secretary by 49 U.S.C. chapter 311 subchapter III, to promulgate safety standards for commercial motor vehicles and equipment subsequent to initial manufacture when the standards are based upon and similar to a Federal Motor Vehicle Safety Standard promulgated, either simultaneously or previously, under 49 U.S.C. chapter 301.
§ 501.8 Delegations.

(a) Deputy Administrator. The Deputy Administrator is delegated authority to act for the Administrator, except where specifically limited by law, order, regulation, or instructions of the Administrator. The Deputy Administrator is delegated authority to assist the Administrator in providing executive direction to all organizational elements of NHTSA.

(b) Executive Director. The Executive Director is delegated line authority for executive direction over the Associate Administrators, the Chief Financial Officer, and the Chief Information Officer.

(c) Director, Office of Civil Rights. The Director, Office of Civil Rights is delegated authority to:

(1) Serve as the Director of Equal Employment Opportunity.

(2) Serve as the compliance coordinator for:

(i) Title VI of the Civil Rights Act of 1964 (42 U.S.C. 2000d et seq.), as amended, and related regulations;

(ii) Section 504 of the Rehabilitation Act of 1973;

(iii) The Americans with Disabilities Act (ADA); and

(iv) Other nondiscrimination statutes, regulations, Executive Orders, and policies.

(3) Investigate complaints of civil rights discrimination, conduct compliance reviews, and provide technical assistance to recipients of NHTSA financial assistance and stakeholders.

(4) Review and evaluate the civil rights programs of State Department of Motor Vehicles and Highway Safety Offices to ensure that recipients of NHTSA financial assistance meet applicable Federal civil rights requirements.

(d) Chief Counsel. The Chief Counsel is delegated authority to:

(1) Exercise the powers and perform the duties of the Administrator with respect to:

(i) Issuing odometer regulations authorized under 49 U.S.C. chapter 327.

(ii) Providing technical assistance and granting extensions of time to the states under 49 U.S.C. 32705.

(iii) Granting or denying petitions for approval of alternate motor vehicle mileage disclosure requirements under 49 U.S.C. 32705.

(2) Establish the legal sufficiency of all investigations and enforcement actions conducted under the authority of 49 U.S.C. chapters 301, 303, 321, 323, 325, 327, 329 and 331; to make an initial penalty demand based on a violation of any of these chapters; and to compromise:

(i) Any civil penalty imposed under 49 U.S.C. 30165 in an amount of $1,000,000 or less.

(ii) Any civil penalty or monetary settlement other than those imposed under 49 U.S.C. 30165 in an amount of $100,000 or less.

(3) Exercise the powers of the Administrator under 49 U.S.C. 30166(c), (g), (h), (i), and (k).

(4) Issue subpoenas, after notice to the Administrator, for the attendance of witnesses and production of documents pursuant to 49 U.S.C. chapters 301, 321, 323, 325, 327, 329 and 331.

(5) Issue authoritative interpretations of the statutes administered by NHTSA and the regulations issued by the agency.

(6) Administer 5 U.S.C. 552 (FOIA) and 49 CFR part 7 (Public Availability of Information) in connection with the records of NHTSA.

(7) Administer the Privacy Act of 1974, 5 U.S.C. 552a, and 49 CFR part 10 (Maintenance of and Access to Records Pertaining to Individuals) in connection with the records of NHTSA.

(8) Carry out the functions and exercise the authority vested in the Secretary for 23 U.S.C. 313 (Buy America), with respect to matters within the primary responsibility of NHTSA.

(e) Associate Administrator for Administration. The Associate Administrator for Administration is delegated authority to administer and conduct NHTSA’s personnel management activities; conduct administrative and management services in support of NHTSA missions and programs; and administer an executive correspondence program.

(f) Associate Administrator for Communications and Consumer Information. The Associate Administrator for Communications and Consumer Information is
§ 501.8

49 CFR Ch. V (10–1–16 Edition)

deleagated authority to manage and co-
ordinate market research, planning co-
ordination, development, and pro-
motion of public education campaigns
for both paid media and unpaid public
services to support program efforts; de-
velop overall agency messaging and
communications strategies in support
of program initiatives; and develop
agency policies on messaging and com-
munications procedures and processes.

(g) Associate Administrator for Enforce-
ment. The Associate Administrator for
Enforcement is delegated authority to
administer the NHTSA enforcement
program for all laws, standards, and
regulations pertinent to vehicle safety,
fuel economy, theft prevention,
damageability, consumer information,
and odometers, authorized under 49
U.S.C. chapters 301, 323, 325, 327, 329,
and 331; conduct testing, inspection,
and investigation necessary for the
identification and correction of safety-
related defects in motor vehicles and
motor vehicle equipment and non-
compliances with Federal motor vehi-
cle safety standards; make initial deci-
sions concerning alleged safety-related
defects and noncompliances with Fed-
eral motor vehicle safety standards;
grant or deny a manufacturer’s peti-
tion for decision of inconsequential de-
fect or noncompliance and exemption
from the notification and remedy re-
quirements of 49 U.S.C. chapter 301 in
connection with a defect or noncompli-
ance; issue regulations relating to the
importation of motor vehicles under 49
U.S.C. 30141–30147; and grant and deny
petitions for import eligibility deter-
minations submitted to NHTSA by
motor vehicle manufacturers and reg-
istered importers under 49 U.S.C. 30141.

(h) Associate Administrator for National
Center for Statistics and Analysis. The
Associate Administrator for National
Center for Statistics and Analysis is
delegated authority to provide the
data, analysis, and evaluation and cre-
ate and maintain information systems
necessary to support the purposes of 49
U.S.C. chapters 301, 303, 323, 325, 327,
329, and 331, 23 U.S.C. chapter 4; any
uncodified provisions of law related to
such issues, and any cross-cutting safe-
ty initiatives; to develop, maintain,
and operate the National Driver Reg-
ister and a nationwide clearinghouse of
problem drivers; and to support State
integrated highway and traffic records
safety information systems.

(i) Associate Administrator for Regional
Operations and Program Delivery. The
Associate Administrator for Regional
Operations and Program Delivery is
delegated authority, except for author-
ity reserved to the Administrator, to
exercise the powers and perform the
duties of the Administrator with re-
spect to grants to States for highway
safety programs or other State pro-
grams under 23 U.S.C. chapter 4 (except
section 403) and uncodified provisions
of law, including approval and dis-
approval of State highway safety plans
and vouchers, in accordance with the
procedural requirements of the Admin-
istration. The Associate Administrator
for Regional Operations and Program
Delivery is also delegated authority
over programs with respect to the au-
thority vested by section 210(2) of the
Clean Air Act, as amended (42 U.S.C.
7544(2)); the authority vested by 49
U.S.C. 20134(a) with respect to laws ad-
ministered by NHTSA pertaining to
highway, traffic, and motor vehicle
safety, in coordination with the Asso-
ciate Administrator for Research and
Program Development; the authority
vested by 23 U.S.C. 153, 154, 158, 161, 163,
and 164, in coordination with the Fed-
eral Highway Administrator as appro-
priate; and the authority vested by 23
U.S.C. 404, in coordination with the As-
sociate Administrator for Communica-
tions and Consumer Information.

(j) Associate Administrator for Research
and Program Development. The Asso-
ciate Administrator for Research and
Program Development is delegated au-
thority to develop and conduct re-
search and development programs and
projects necessary to support the pur-
poses of 23 U.S.C. chapter 4, any un-
uncodified provisions of law related to
that chapter, and cross-cutting safety
initiatives; conduct research and devel-
opment activities described or specifi-
cally enumerated in 23 U.S.C. 403; carry
out the functions and exercise the au-
thority vested in the Secretary and Ad-
ministrator under section 10202 of the
Safe, Accountable, Flexible, Efficient
Transportation Equity Act: A Legacy
for Users, Public Law 109–59 (42 U.S.C.
300d–4), as amended by section 31108 of
the Moving Ahead for Progress in the 21st Century Act, Public Law 112–141, relating to emergency medical services, except for authority reserved to the Secretary under §1.21 or the Administrator under §501.7, and exercise the authority vested by 49 U.S.C. 20134(a) with respect to laws administered by NHTSA pertaining to highway, traffic, and motor vehicle safety, in coordination with the Associate Administrator for Regional Operations and Program Delivery.

(k) Associate Administrator for Rulemaking. The Associate Administrator for Rulemaking is delegated authority, except for authority reserved to the Administrator or delegated to the Chief Counsel, to exercise the powers and perform the duties of the Administrator with respect to the setting of motor vehicle safety and theft prevention standards, fuel economy standards, procedural regulations, the National Driver Register, and the development of consumer information and odometer regulations authorized under 49 U.S.C. chapters 301, 303, 321, 323, 325, 327, 329, and 331, and any uncodified provisions of law related to such issues. The Associate Administrator for rulemaking is also delegated authority to perform activities that support the development of these regulations and standards; extend comment periods (both self-initiated and in response to a petition or request for extension of time) for noncontroversial rulemakings; make technical amendments or corrections to a final rule; extend the effective date of a noncontroversial final rule; and develop and conduct the New Car Assessment Program.

(l) Associate Administrator for Vehicle Safety Research. The Associate Administrator for Vehicle Safety Research is delegated authority to develop and conduct research, development, test, and evaluation programs and projects necessary to support the purposes of 49 U.S.C. chapters 301, 323, 325, 327, 329, and 331, and any uncodified provisions of law related to such issues, and any cross-cutting safety initiatives.

(m) Chief Financial Officer. The Chief Financial Officer is delegated authority to direct the NHTSA planning and evaluation system in conjunction with Departmental requirements and planning goals; coordinate the development of the Administrator’s plans, budgets, and programs, and analyses of their expected impact; exercise procurement authority with respect to NHTSA requirements; administer NHTSA financial management programs, including systems of funds control and accounts of all financial transactions; and enter into inter- and intra-departmental reimbursable agreements other than with the head of another Department or agency, provided that this authority to enter into such agreements may be redelegated only to Office Directors and Contracting Officers.

PART 509—OMB CONTROL NUMBERS FOR INFORMATION COLLECTION REQUIREMENTS

§ 509.1 Purpose.

This part collects and displays the control numbers assigned to information collection requirements of NHTSA by the Office of Management and Budget (OMB). NHTSA intends that this part comply with the requirements of 44 U.S.C. 3507(f), which mandates that agencies display a current control number assigned by the Director of the OMB for each agency information collection requirement.

[48 FR 51310, Nov. 8, 1983]
§ 509.2 Display.

49 CFR part or section containing information collection requirement	OMB control No.
Part 512 | 2127-0025
Part 537 | 2127-0019
Part 538 | 2127-0554
Part 541 | 2127-0510
Part 542 | 2127-0539
Part 543 | 2127-0542
Part 544 | 2127-0547
Section 551.45 | 2127-0040
Part 552 and Part 527 | 2127-0046
Part 556 | 2127-0045
Part 557 | 2127-0039
Part 566 | 2127-0043
Consolidated owners’ manual requirements for vehicles and equipment (§§571.126, 571.205, 571.208, 571.210, and 575.105) | 2127-0541
Consolidated labeling requirements for tires and rims (parts 569 and 574, §§571.103, 571.110, 571.117, 571.119, and 571.120) | 2127-0503
Consolidated VIN and Theft Prevention Standard and Labeling Requirements (parts 541, 565, 567 and §§571.115) | 2127-0510
Consolidated lighting requirements (part 564 and §§571.108) | 2127-0563
Section 571.106 | 2127-0052
Section 571.116 | 2127-0521
Section 571.125 | 2127-0506
Section 571.205 | 2127-0038
Section 571.209 | 2127-0512
Section 571.213 | 2127-0511
Section 571.214 | 2127-0558
Section 571.217 | 2127-0505
Section 571.218 | 2127-0518
Part 573 | 2127-0004
Part 574 | 2127-0050
Part 575 excluding UTQGS | 2127-0049
Section 575.104 (UTQGS) | 2127-0519
Part 576 | 2127-0042
Part 580 | 2127-0047
Part 585 | 2127-0535
Parts 591 and 592 | 2127-0002

[57 FR 21215, May 19, 1992]

PART 510—INFORMATION GATHERING POWERS

Sec. 510.1 Scope and purpose.
510.2 Definitions.
510.3 Compulsory process, the service thereof, claims for confidential treatment, and terms of compliance.
510.4 Subpoenas, generally.
510.5 Information gathering hearings.
510.6 Administrative depositions.
510.7 General or special orders.
510.8 Written request for the production of documents and things.
510.9 Motions to modify, limit, or quash process.
510.10 Supplementary of responses to process.
510.11 Fees.
510.12 Remedies for failure to comply with compulsory process.

49 CFR Ch. V (10–1–16 Edition)

SOURCE: 45 FR 29042, May 1, 1980, unless otherwise noted.

§ 510.1 Scope and purpose.

§ 510.2 Definitions.

(a) NHTSA means the National Highway Traffic Safety Administration.
(b) Administrator means the Administrator of the National Highway Traffic Safety Administration.
(c) Chief Counsel means the Chief Counsel of the National Highway Traffic Safety Administration.
(d) Deputy Administrator means the Deputy Administrator of the National Highway Traffic Safety Administration.
(e) Person includes agents, officers, and employees of sole proprietorships, partnerships, corporations, and other entities.

(45 FR 29042, May 1, 1980; 45 FR 32001, May 15, 1980)

§ 510.3 Compulsory process, the service thereof, claims for confidential treatment, and terms of compliance.

(a) NHTSA may use any of the following means to conduct investigations, inspections, or inquiries to obtain information to carry out its functions under the National Traffic and Motor Vehicle Safety Act of 1966, as amended, 15 U.S.C. 1381 et seq., and the Motor Vehicle Information and Cost Savings Act, as amended, 15 U.S.C. 1901 et seq.:

(1) Subpoenas;
(2) Information gathering hearings;
(3) Administrative depositions;
(4) General or special orders; and
(5) Written requests for the production of documents and things.

(b) A person, sole proprietorship, partnership, corporation, or other entity served with compulsory process under this part shall be provided with the following information at the time of the service:

(1) The name of the person, sole proprietorship, partnership, corporation, or other entity to which the process is addressed;

(2) The statutory provision under which the compulsory process is issued;

(3) The date, time, and place of return;

(4) A brief statement of the subject matter of the investigation, inspection, or inquiry; and

(5) In the case of a subpoena duces tecum or a written request for the production of documents and things, a reasonably specific description of the documents or things to be produced.

(c) Service of the compulsory processes specified in paragraph (a) of this section is effected:

(1) By personal service upon the person, agent-in-charge, or agent designated to receive process under 15 U.S.C. 1399(e) of the sole proprietorship, partnership, corporation or other entity being investigated, inspected, or inquired of; or

(2) By mail (registered or certified) or delivery to the last known residence or business address of such person or agent.

(d) The date of service of any compulsory process specified in paragraph (a) of this section is the date on which the process is mailed by the agency, or delivered in person, as the case may be. Whenever a period is prescribed for compliance with compulsory process, and the process is served upon the party by mail, 3 days are added to the period.

(e)(1) Any person, sole proprietorship, partnership, corporation, or other entity submitting information or producing documents or things in response to any compulsory process issued under this part may request confidential treatment for all or part of that information or for those documents or things.

(ii) Requests for confidentiality shall be in writing, and addressed to the Chief Counsel.

(iii) A written request for confidentiality under paragraph (e) of this section shall specify the information, documents, or things which are to be kept confidential, specify the grounds upon which the claim is based, provide such information as may be necessary to permit the NHTSA to determine whether the claim is valid, and specify the period of time for which confidential treatment is requested.

(f) The Chief Counsel, or his or her delegate, is authorized to negotiate and approve the terms of satisfactory compliance with any compulsory process issued under this part.

§ 510.4 Subpoenas, generally.

NHTSA may issue to any person, sole proprietorship, partnership, corporation, or other entity a subpoena requiring the production of documents or things (subpoena duces tecum) and testimony of witnesses (subpoena ad testificandum), or both, relating to any matter under investigation or the subject of any inquiry. Subpoenas are issued by the Chief Counsel. When a person, sole proprietorship, partnership, corporation, or other entity is served with a subpoena ad testificandum under this part, the subpoena will describe with reasonable particularity the matters on which the testimony is required. In response to a subpoena ad testificandum, the sole proprietorship, partnership, corporation, or other entity so named shall designate one or more officers, directors, or managing agents, or other persons who consent to testify on its behalf, and set forth, for each person designated, the matters on which he or she will testify. The persons so designated shall testify as to matters
§ 510.5 Information gathering hearings.

(a) NHTSA may issue a subpoena to compel any person, sole proprietorship, partnership, corporation, or other entity to provide information at an information gathering hearing. The subpoenas are used for the purpose of obtaining testimony from a witness under oath and obtaining relevant documents and things. The Administrator, or a NHTSA employee designated by the Administrator, presides at the hearing. Information gathering hearings are open to the public unless the presiding officer rules otherwise, and the hearings are stenographically reported.

(b) In addition to the presiding officer, one or more other persons may comprise the panel. Each member of the panel may question any witness at the hearing. No person who is not a member of the panel may ask questions of a witness. However, any person may submit to the panel, in writing, proposed questions to be asked of a witness. A member of the panel may pose these questions to the witness if that member deems the questions useful and appropriate. Proposed questions may be submitted to the panel at any time before or during the course of the hearing.

(c) The stenographic record of each witness's testimony will be available to the public, unless the testimony was not given publicly and the witness requests confidential treatment for some or all of his or her testimony. When an oral request for confidential treatment is made during the course of a witness’s testimony, the presiding officer may order the hearing closed to the public at that point and continue the questioning of the witness, or may note the request for confidential treatment and direct the witness not to answer the question at that time, but require the witness to answer the question in writing within some specified period, or take such other action as the presiding officer deems appropriate. If a request for confidential treatment is made, the release of the record is governed by the applicable laws or regulations relating to the handling of allegedly confidential information. To the extent that some or all of a witness’s testimony is not publicly available, that witness may procure a copy of his or her testimony as recorded upon payment of lawfully prescribed costs.

(d)(1) Any person who is required by subpoena or designated by an entity that is required by subpoena to provide information at an information gathering hearing conducted under this section may be accompanied, represented, and advised by counsel. Any member of the bar of a Federal court or the courts of any State or Territory of the United States, the Commonwealth of Puerto Rico, or the District of Columbia, and any representative, official, or employee of the sole proprietorship, partnership, corporation or other entity under subpoena may act as counsel.

(2) A witness appearing in response to subpoena may confer in confidence with his or her counsel or representative concerning any questions asked of the witness. If such witness, counsel, or representative objects to a question, he or she shall state the objection and basis therefor on the record.

(e) The presiding officer at an information gathering hearing takes all necessary action to regulate the course of the hearing, to avoid delay, and to assure that reasonable standards of orderly and ethical conduct are maintained. In any case in which counsel for or a representative of a witness has refused to comply with the presiding officer’s directions, or to adhere to reasonable standards of orderly and ethical conduct in the course of a hearing, the presiding officer states on the record the reasons given, if any, for the refusal and, if the presiding officer is someone other than the Administrator, immediately reports the refusal to the Administrator. The Administrator thereupon takes such action as the circumstances warrant.

(f) Where appropriate, the procedures established in this subsection may be utilized in informal hearings conducted by NHTSA pursuant to its authority under sections 152 and 156 of the Safety Act (15 U.S.C. 1412, 1416) to receive data, views and arguments concerning alleged safety-related defects. The
rights accorded to witnesses in this subsection may also be accorded to witnesses who appear voluntarily at such hearings.

§ 510.6 Administrative depositions.

(a) NHTSA may issue a subpoena to compel any person, sole proprietorship, partnership, corporation, or other entity to provide information as a witness at an administrative deposition. These depositions are for the purpose of obtaining information from the witness under oath and receiving documents and things relevant to an agency investigation. These depositions shall be taken before an officer authorized to administer oaths by the laws of the United States or of the place where the deposition is taken. Unless otherwise ordered by the Administrator, administrative depositions are closed to the public.

(b) Any person who is required by subpoena or designated by an entity that is required by subpoena to produce documents or things or to give testimony as a witness at an administrative deposition conducted under this section may be accompanied, represented, and advised by counsel. Any member of the bar or a Federal court or the courts of any State or Territory of the United States, the Commonwealth of Puerto Rico, or the District of Columbia and any representative, official, or employee of the person, sole proprietorship, partnership, corporation, or other entity under subpoena may act as counsel.

(c) During an administrative deposition:

(1) The presiding officer before whom the deposition is to be taken puts the witness on oath and personally, or by someone acting under his or her direction and in his or her presence, records the testimony of the witness. The testimony is stenographically reported.

(2) After NHTSA has examined the witness at the deposition, that witness’ counsel or representative may examine the witness. NHTSA may then reexamine the witness and the witness’ counsel or representative may reexamine the witness and so forth, as appropriate.

(3) A witness appearing in response to a subpoena may confer in confidence with his or her counsel or representative concerning any questions asked of the witness. If such witness, counsel, or representative objects to a question, he or she shall state the objection and the basis therefor on the record.

(4) Objections to the qualifications of the officer taking the deposition, or to the manner of taking it, or to the evidence presented, and any other objection to the proceedings shall be noted by the officer on the record, and shall be treated as continuing. Evidence objected to shall be taken subject to the objections. Errors and irregularities occurring at a deposition in the manner of the taking of the deposition, in the form of questions or answers, or in the oath or affirmation, and errors of any kind which might be obviated, removed, or cured if promptly presented shall be deemed to be waived unless reasonable objection is made thereto at the taking of the deposition.

(5) If the witness refuses to answer any question or answers evasively, or if the witness or his or her counsel engages in conduct likely to delay or obstruct the administrative deposition, such refusal, evasive answer or conduct shall be a failure to comply with the subpoena issued to the witness.

(6) Upon completion of the examination of a witness, the witness may clarify on the record any of his or her answers.

(d) The transcript of the testimony of a witness who testified in response to a subpoena at an administrative deposition is submitted to the witness for signature, unless the witness waives the right to sign the transcript. If a witness desires to make any changes in the form or substance contained in the transcript, the witness shall submit, together with the transcript, a separate document setting forth the changes and stating the reasons for such changes. If the deposition is not signed by the witness within 30 days of its submission to the witness, or such other period as the NHTSA may designate, the officer before whom the deposition was taken or a NHTSA employee signs the transcript and states on the record the fact of the waiver of
§ 510.7 General or special orders.

The NHTSA may require by the issuance of general or special orders any person, sole proprietorship, partnership, corporation, or other entity to file with the NHTSA, in such form as NHTSA may prescribe, periodic or special reports or answers in writing to specific questions. The responses to general or special orders which are required to be answered under oath are issued by the Chief Counsel. Any general or special order issued under this section contains the information specified in § 510.3(b). Reports and answers filed in response to general or special orders must be made under oath, or otherwise, as NHTSA may prescribe.

§ 510.8 Written requests for the production of documents and things.

The NHTSA may, by the issuance of a written request for the production of documents and things, require any person, sole proprietorship, partnership, corporation, or other entity to produce documents or things. A written request for the production of documents and things may be issued alone, or as a part of a general or special order issued under § 510.7. Written requests for the production of documents and things issued under this section shall contain the information specified in § 510.3(b).

§ 510.9 Motions to modify, limit, or quash process.

(a)(1) Any person, sole proprietorship, partnership, corporation, or other entity served with a subpoena issued under § 510.4 may file with the Deputy Administrator a motion to modify, limit, or quash that subpoena. If there is no Deputy Administrator, or the Deputy Administrator is not available, such motions shall be filed with and decided
by the Associate Administrator for Administration. A motion to modify, limit, or quash must be filed not later than 15 days after the service of the process or five days before the return date specified in the process, whichever is earlier, except that, if the process is served within five days of its return date, such motion may be filed at any time before the return date. Any motion must set forth the grounds and theories of why and how the party believes the process should be modified, limited, or quashed and must contain all facts and arguments which support those grounds and theories.

(2) The Deputy Administrator may, upon receiving a motion filed pursuant to paragraph (a)(1) of this section:
(i) Deny the motion;
(ii) Modify the return date of the subpoena;
(iii) Modify, limit or quash the subpoena;
(iv) Condition granting the motion upon certain requirements; or
(v) Take any other action he or she believes to be appropriate in the circumstances.

(3) The Office of the Deputy Administrator serves the decision on the motion on the moving party or the counsel or representative of the moving party. This service may be made by personal service, by registered or certified mail, or by reading a copy of the decision to the moving party or the counsel or representative of the moving party.

(4) A denial of any motion properly filed under this section shall be in writing, and shall contain a brief statement of the facts involved and the conclusions drawn from those facts by the Deputy Administrator.

(b) The requirement to supplement information set forth in paragraph (a) of this section terminates when:
(1) The compulsory process stated that it was issued in connection with a contemplated rulemaking action, and a final rule is issued on that subject or a notice is issued announcing that the rulemaking action has been suspended or terminated.
(2) The compulsory process stated that it was issued in connection with an enforcement investigation, and the investigation is closed.
(3) The compulsory process does not state that it is issued in connection with a specific rulemaking action or enforcement investigation, and 18 months have passed since the date of the original response.
(c) This section in no way limits NHTSA’s authority to obtain supplemental information by specific demands through the means specified in §510.3.

§510.11 Fees.

Any person compelled to appear in person in response to a subpoena issued under this part at an information gathering hearing or an administrative deposition is paid the same attendance and mileage fees as are paid witnesses in the courts of the United States, in accordance with title 28, U.S.C., section 1821.
§ 510.12 Remedies for failure to comply with compulsory process.

Any failure to comply with compulsory process authorized by law and issued under this part is a violation of this part. In the event of such failure to comply, NHTSA may take appropriate action pursuant to the authority conferred by the National Traffic and Motor Vehicle Safety Act or the Motor Vehicle Information and Cost Savings Act, as appropriate, including institution of judicial proceedings to enforce the order and to collect civil penalties.

PART 511—ADJUDICATIVE PROCEDURES

Subpart A—Scope of Rules; Nature of Adjudicative Proceedings, Definitions

Sec.
511.1 Scope of the rules.
511.2 Nature of adjudicative proceedings.
511.3 Definitions.

Subpart B—Pleadings; Form; Execution; Service of Documents

511.11 Commencement of proceedings.
511.12 Answer.
511.13 Amendments and supplemental pleadings.
511.14 Form and filing of documents.
511.15 Time.
511.16 Service.
511.17 Public participation.
511.18 Joinder of proceedings.

Subpart C—Prehearing Procedures; Motions; Interlocutory Appeals; Summary Judgment; Settlement

511.21 Prehearing conferences.
511.22 Prehearing briefs.
511.23 Motions.
511.24 Interlocutory appeals.
511.25 Summary decision and order.
511.26 Settlement.

Subpart D—Discovery; Compulsory Process

511.31 General provisions governing discovery.
511.32 Written interrogatories to parties.
511.33 Production of documents and things.
511.34 Requests for admission.
511.35 Testimony upon oral examination.
511.36 Motions to compel discovery.
511.37 Sanctions for failure to comply with order.
511.38 Subpoenas.

49 CFR Ch. V (10–1–16 Edition)

511.39 Orders requiring witnesses to testify or provide other information and granting immunity.

Subpart E—Hearings

511.41 General rules.
511.42 Powers and duties of Presiding Officer.
511.43 Evidence.
511.44 Expert witnesses.
511.45 In camera materials.
511.46 Proposed findings, conclusions, and order.
511.47 Record.
511.48 Official docket.
511.49 Fees.

Subpart F—Decision

511.51 Initial decision.
511.52 Adoption of initial decision.
511.53 Appeal from initial decision.
511.54 Review of initial decision in absence of appeal.
511.55 Final decision on appeal or review.
511.56 Reconsideration.
511.57 Effective date of order.

Subpart G—Settlement Procedure in Cases of Violation of Average Fuel Economy Standards

511.61 Purpose.
511.62 Definitions.
511.63 Criteria for settlement.
511.64 Petitions for settlement; timing, contents.
511.65 Public comment.
511.66 Confidential business information.
511.67 Settlement order.

Subpart H—Appearances; Standards of Conduct

511.71 Who may make appearances.
511.72 Authority for representation.
511.73 Written appearances.
511.74 Attorneys.
511.75 Persons not attorneys.
511.76 Qualifications and standards of conduct.
511.77 Restrictions as to former members and employees.
511.78 Prohibited communications.

APPENDIX I TO PART 511—FINAL PREHEARING ORDER

SOURCE: 45 FR 81578, Dec. 11, 1980, unless otherwise noted.
§ 511.1 Scope of the rules.

This part establishes rules of practice and procedure for adjudicative proceedings conducted pursuant to section 508(a)(2) of the Motor Vehicle Information and Cost Savings Act (15 U.S.C. Pub. L. 94–163, 89 Stat. 911, section 2008(a)(2)), which are required by statute to be determined on the record after opportunity for a public hearing.

§ 511.2 Nature of adjudicative proceedings.

Adjudicative proceedings shall be conducted in accordance with title 5, U.S.C., sections 551 through 559 and this part. It is the policy of the agency that adjudicative proceedings shall be conducted expeditiously and with due regard to the rights and interests of all persons affected, and to the public interest. Therefore, the presiding officer and all parties shall make every effort at each stage of a proceeding to avoid unnecessary delay.

§ 511.3 Definitions.

(a) As used in this part:

(1) The term application means an ex parte request by a party for an order that may be granted or denied without opportunity for response by any other party.

(2) The term NHTSA means the National Highway Traffic Safety Administration.

(3) The term Administrator means the Administrator of the National Highway Traffic Safety Administration.

(4) The term Complaint Counsel means prosecuting counsel for the NHTSA.

(5) The term motion means a request by a party for a ruling or order that may be granted or denied only after opportunity for response by each affected party.

(6) The term party means the NHTSA, and any person named as a respondent in a proceeding governed by this part.

(7) The term person means any individual, partnership, corporation, association, public or private organization, or Federal, State or municipal governmental entity.

(8) The term petition means a written request, made by a person or a party and addressed to the Presiding Officer or the Administrator, that the addressee take some action.

(9) The term Presiding Officer means the person who conducts an adjudicative hearing under this part, who shall be an administrative law judge qualified under title 5, U.S.C., section 3105 and assigned by the Chief Administrative Law Judge, Office of Hearings, United States Department of Transportation.

(10) The term Respondent means any person against whom a complaint has been issued.

(11) The term Office of Hearings means the Office of Hearings, Department of Transportation.

(12) The term staff means the staff of the National Highway Traffic Safety Administration.

(13) The term Chief Administrative Law Judge means the Chief Administrative Law Judge of the Office of Hearings, Department of Transportation.

(14) The term Docket Section means the Docket Section, Office of the Secretary of Transportation.

§ 511.11 Commencement of proceedings.

(a) Notice of institution of an enforcement proceeding. An adjudicative proceeding under this part is commenced by the issuance of a complaint by the NHTSA.

(b) Form and content of complaint. The complaint shall be signed by the Complaint Counsel and shall contain the following:

(1) Recital of the legal authority for instituting the proceeding, with specific designation of the statutory provisions involved in each allegation.

(2) Identification of each respondent.

(3) A clear and concise statement of the charges, sufficient to inform each respondent with reasonable definiteness of the factual basis of the allegations of violation. A list and summary of documentary evidence supporting the charges shall be attached.
§ 511.12 Answer.

(a) Time for filing. A respondent shall have twenty (20) days after service of a complaint within which to file an answer.

(b) Content of answer. An answer shall conform to the following:

(1) Request for hearing. Respondent shall state whether it requests a full, adjudicatory hearing or whether it desires to proceed on the basis of written submissions. If a hearing is requested, respondent shall specify those issues on which a hearing is desired.

(2) Contested allegations. An answer in which the allegations of a complaint are contested shall contain:

(i) Specific admission or denial of each allegation in the complaint. If the respondent is without knowledge or information sufficient to form a belief as to the truth of an allegation, respondent shall so state. Such a statement shall have the effect of a denial. Denials shall fairly meet the substance of the allegations denied. Allegations not thus answered shall be deemed to have been admitted.

(ii) A concise statement of the factual and/or legal defenses to each allegation of the complaint.

(3) Admitted allegations. If the respondent admits or fails to deny any factual allegation, he or she shall be deemed to have waived a hearing as to such allegation.

(c) Default. Failure of the respondent to file an answer within the time provided (or within an extended time, if provided), shall be deemed to constitute a waiver of the right to appear and contest the allegations set forth in the complaint and to authorize the Presiding Officer to make such findings of fact as are reasonable under the circumstances.

§ 511.13 Amendments and supplemental pleadings.

Whenever determination of a controversy on the merits will be facilitated thereby, the Presiding Officer upon motion, may allow appropriate amendments and supplemental pleadings which do not unduly broaden the issues in the proceeding or cause undue delay.

§ 511.14 Form and filing of documents.

(a) Filing. Except as otherwise provided, all documents submitted to the Administrator or a Presiding Officer shall be filed with the Docket Section, Office of the Secretary, Department of Transportation, Room 4107, 400 Seventh Street, SW., Washington, DC 20590. Documents may be filed in person or by mail and shall be deemed filed on the day of filing or mailing.

(b) Caption. Every document shall contain a caption setting forth the name of the action in connection with which it is filed, the docket number, and the title of the document.

(c) Copies. An original and nine (9) copies of all documents shall be filed. Documents may be reproduced by printing or any other process, provided that all copies filed are clear and legible.

(d) Signature. (1) The original of each document filed shall be signed by a representative of record for the party; or in the case of parties not represented, by the party; or by a partner, officer, or regular employee of any corporation, partnership, or association, who files an appearance on behalf of the party.

(2) The act of signing a document constitutes a representation by the signer that the signer has read it; that
to the best of the signer's knowledge, information and belief, the statements made in it are true; and that it is not filed for purposes of delay.

§ 511.15 Time.

(a) Computation. In computing any period of time prescribed or allowed by the rules in this part, the day of the act, event, or default from which the designated period of time begins to run shall not be included. The last day of the period so computed shall be included, unless it is a Saturday, a Sunday, or a legal holiday, in which event the period runs until the end of the next day which is not a Saturday, a Sunday, or a legal holiday. When the period of time prescribed or allowed is less than 7 days, intermediate Saturdays, Sundays, and legal holidays shall be excluded in the computation. As used in this part, "legal holiday" includes New Year's Day, Washington's Birthday, Memorial Day, Independence Day, Labor Day, Columbus Day, Veteran's Day, Thanksgiving Day, Christmas Day, and any other day appointed as a holiday by the President or the Congress of the United States.

(b) Additional time after service by mail. Whenever a party is required or permitted to do an act within a prescribed period after service of a document and the document is served by mail, three (3) days shall be added to the prescribed period.

(c) Extensions. For good cause shown, the Presiding Officer may extend any time limit prescribed or allowed under this part or by order of the Administrator or the Presiding Officer, except those governing the filing of interlocutory appeals and appeals from Initial Decisions and those expressly requiring the Administrator's action. Except as otherwise provided by law, the Administrator, for good cause shown, may extend any time limit prescribed under this part, or by order of the Administrator or the Presiding Officer. A party or participant may petition the Presiding Officer or the Administrator, as appropriate, for an extension under this paragraph. Such a petition shall be filed prior to the occurrence of the time limit which is the subject of the petition.

§ 511.16 Service.

(a) Mandatory service. Every document filed with the Office of Hearings shall be served upon all parties and participants to a proceeding, i.e., Complaint Counsel, respondent(s), and participants, and upon the Presiding Officer.

(b) Service of complaint, ruling, order, decision, or subpoena. Service of a complaint, ruling, order, decision, or subpoena may be effected as follows:

(1) By registered or certified mail. A copy of the document shall be addressed to the person, partnership, corporation or unincorporated association to be served at his or its residence or principal office or place of business; registered or certified; and mailed; or

(2) By delivery to an individual. A copy of the document may be delivered to the person to be served; or to a member of the partnership to be served; or to the president, secretary, or other executive officer, or a director of the corporation or unincorporated association to be served; or to an agent authorized by appointment or by law to receive service; or

(3) By delivery to an address. A copy of the document may be left at the principal office or place of business of the person, partnership, corporation, unincorporated association, or authorized agent with an officer, a managing or general agent; or it may be left with a person of suitable age and discretion residing therein, at the residence of the person or of a member of the partnership or of an executive officer, director, or agent of the corporation or unincorporated association to be served.

(c) Service of documents with prescribed response periods. When service of a document starts the running of a prescribed period of time for the submission of a responsive document or the occurrence of an event, the document shall be served as provided in paragraph (b) of this section.

(d) Service of other documents. All documents other than those specified in paragraph (c) of this section may be served as provided in paragraph (b) of this section, or by ordinary first-class
mail, properly addressed, postage prepaid.

(e) **Service on a representative.** When a party has appeared by an attorney or other representative, service upon that attorney or other representative shall constitute service on the party.

(f) **Certificate of service.** The original of every document filed with the agency and required to be served upon all parties to a proceeding shall be accompanied by a certificate of service signed by the party making service, stating that such service has been made upon each party to the proceeding. Certificates of service may be in substantially the following form:

I hereby certify that I have this day served the foregoing document upon all parties of record in this proceeding by mailing, postage prepaid (or by delivering in person) a copy to each such party.

Dated at _______________ this ___ day of ______________, 19___

(Signature)

For

(g) **Date of service.** The date of service of a document shall be the date on which the document is deposited in the United States mail or is delivered in person.

§ 511.17 Public participation.

Participant Status. Any person interested in a proceeding commenced pursuant to §511.11 who desires to participate in the proceeding, shall file with the Docket Section a notice of intention to participate in the proceeding and shall serve a copy of such notice on each party to the proceeding. A notice of intention to participate shall be filed not later than the commencement of the hearing. Untimely filings will not be accepted absent a determination by the Presiding Officer that the person making the request has made a substantial showing of good cause for failure to file on time. Any person who files a notice to participate in the proceeding as a nonparty shall be known as a “participant” and shall have the rights specified in §511.41(d).

[53 FR 15783, May 3, 1988]

§ 511.18 Joinder of proceedings.

Two or more matters which have been scheduled for adjudicative proceedings, and which involve one or more common questions of law or fact, may be consolidated for the purpose of hearing, appeal or the Administrator’s review. A motion for consolidation for the purpose of hearing may be filed with the Presiding Officer by any party to such proceedings not later than thirty (30) days prior to the hearing. A motion for consolidation for the purpose of appeal may be filed by any party to such proceedings within 10 days after issuance of the Initial Decision. A motion to consolidate shall be served upon all parties to all proceedings whose joinder is contemplated. The proceedings may be consolidated where to do so would tend to avoid unnecessary costs or delay. Such consolidation may also be ordered upon the initiative of the Presiding Officer or the Administrator, as appropriate. The Presiding Officer may order separate hearings on any issue where to do so would promote economy or convenience or would avoid prejudice to a party.

Subpart C—Prehearing Procedures; Motions; Interlocutory Appeals; Summary Judgment; Settlement

§ 511.21 Prehearing conferences.

(a) **When held.** (1) A prehearing conference shall be held in person or by conference telephone call, except in unusual circumstances, approximately fifty (50) days after publication in the FEDERAL REGISTER of the complaint, upon ten (10) days notice to all parties and participants, to consider any or all the following:

(i) Motions for consolidation of proceedings;

(ii) Identification, simplification and clarification of the issues;

(iii) Necessity or desirability of amending the pleadings;

(iv) Stipulations and admissions of fact and of the content and authenticity of documents;

(v) Oppositions to notices of oral examination;

(vi) Motions for protective orders to limit or modify discovery;
§ 511.22 Prehearing briefs.

Not later ten (10) days prior to the hearing, the parties shall, except when ordered otherwise by the Presiding Officer in unusual circumstances, simultaneously serve and file prehearing briefs, which shall set forth (a) a statement of the facts expected to be proved, and of the anticipated order of proof; (b) a statement of the issues and the legal argument in support of the party’s contentions with respect to each issue; and (c) a table of authorities with a designation by asterisk of the principal authorities relied upon.

§ 511.23 Motions.

(a) Presentations and dispositions. During the time a proceeding is before a Presiding Officer, all motions, whether oral or written, except those filed under § 511.42(e), shall be addressed to the Presiding Officer, who shall rule upon them promptly after affording an opportunity for response.

(b) Written motions. All written motions shall state the particular order, ruling, or action desired and the grounds therefor. If a motion is supported by memoranda, affidavits or other documents, they shall be served and filed with the motion. All motions shall contain a proposed order setting forth the relief sought. All written motions shall be filed with the Executive Secretary and served on all parties, and all motions addressed to the Administrator shall be in writing.

(c) Responses. Within ten (10) days after service of any written motion or petition or within such longer or shorter time as may be designated by these Rules or by the Presiding Officer or the Administrator, the opposing party or parties shall file a written response to such motion. Where a motion would affect only a single party, or an identifiable group of parties, the Presiding Officer or Administrator may limit the response to the motion to the affected party or parties. Failure to respond to a written motion may, in the discretion of the Presiding Officer be deemed as consent to the granting of the relief sought in the motion. The moving party shall have no right to reply, except as permitted by the Presiding Officer or the Administrator.

(d) Rulings on motions for dismissal. When a motion to dismiss a complaint or motion for other relief is granted with the result that the proceeding before the Presiding Officer is terminated, the Presiding Officer shall issue an Initial Decision and Order thereon in accordance with the provisions of §511.51. If such a motion is granted as to all issues alleged in the complaint in regard to some, but not all, of the respondents, or is granted as to any part of the allegations in regard to any or all of the respondents, the Presiding Officer shall enter an order on the record and consider the remaining issues in the Initial Decision. The Presiding Officer may elect to defer ruling on a motion to dismiss until the close of the case.

§ 511.24 Interlocutory appeals.

(a) General. Rulings of the Presiding Officer may not be appealed to the Administrator prior to the Initial Decision, except as provided herein.

(b) Exceptions—(1) Interlocutory appeals to Administrator. The Administrator may, in his or her discretion, entertain interlocutory appeals where a ruling of the Presiding Officer:

(i) Requires the production or disclosure of records claimed to be confidential;

(ii) Requires the testimony of a supervisory official of the agency other than one especially cognizant of the facts of the matter in adjudication;

(iii) Excludes an attorney from participation in a proceeding pursuant to §511.42(b).

(2) Procedures for interlocutory appeals. Within ten (10) days of issuance of a ruling, any party may petition the Administrator to entertain an interlocutory appeal on a ruling in the categories enumerated above. The petition...
§ 511.25 Summary decision and order.

(a) Motion. Any party may move, with a supporting memorandum, for a Summary Decision and Order in its favor upon all or any of the issues in controversy. Complaint Counsel may so move at any time after thirty (30) days following issuance of a complaint, and any other party may so move at any time after issuance of a complaint. Any such motion by any party shall be filed at least twenty (20) days before the date fixed for the adjudicatory hearing.

(b) Response to motion. Any other party may, within ten (10) days after service of the motion, file a response thereto with a supporting memorandum.

(c) Grounds. A Summary Decision and Order shall be granted if the pleadings and any testimony upon oral examination, answers to interrogatories, admissions, and/or affidavits show that there is no genuine issue as to any material fact and that the moving party is entitled to a Summary Decision and Order as a matter of law.

(d) Legal effect. A Summary Decision and Order upon all the issues being adjudicated shall constitute the Initial Decision of the Presiding Officer, and may be appealed to the Administrator in accordance with § 511.53. A Summary Decision, interlocutory in character, may be rendered on fewer than all issues and may not be appealed prior to issuance of the Initial Decision, except in accordance with § 511.24.

(e) Case not fully adjudicated on motion. A Summary Decision and Order that does not dispose of the whole case shall include a statement of those material facts as to which there is no substantial controversy, and of those material facts that are actually and in good faith controverted. The Summary Order shall direct such further proceedings as are just.

§ 511.26 Settlement.

(a) Applicability. This section applies only to cases of alleged violations of section 507(3) of the Motor Vehicle Information and Cost Savings Act, Pub. L. 94–163, 89 Stat. 911 (15 U.S.C. section 2007(3)). Settlement in other cases may be made only in accordance with subpart G of this part.

(b) Availability. Any party shall have the opportunity to submit an offer of settlement to the Presiding Officer.

(c) Form. Offers of settlement shall be in the form of a consent agreement and order, shall be signed by the party submitting the offer or his representative, and may be signed by any other party.
Each offer of settlement shall be accompanied by a motion to transmit to the Administrator the proposed agreement and order, outlining the substantive provisions of the agreement, and the reasons why it should be accepted.

(d) Contents. The proposed consent agreement and order which constitute the offer of settlement shall contain the following:

(1) An admission of all jurisdictional facts;
(2) An express waiver of further procedural steps, and of all rights to seek judicial review or otherwise to contest the validity of the order;
(3) A description of the alleged non-compliance, or violation;
(4) Provisions to the effect that the allegations of the complaint are resolved by the proposed consent agreement and order;
(5) A listing of the acts or practices from which the respondent shall refrain;
(6) A detailed statement of the corrective action(s) which the respondent shall execute and the civil penalty, if any, that respondent shall pay.

(e) Transmittal. The Presiding Officer shall transmit to the Administrator for decision all offers of settlement and accompanying memoranda that meet the requirements enumerated in paragraph (d) of this section. The Presiding Officer may, but need not, recommend acceptance or rejection of such offers. Any party or participant may object to a proposed consent agreement by filing a motion and supporting memorandum with the Administrator.

(f) Stay of proceedings. When an offer of settlement has been agreed to by the parties and has been transmitted to the Administrator, the proceedings shall be stayed until the Administrator has ruled on the offer. When an offer of settlement has been made and transmitted to the Administrator but has not been agreed to by all parties, the proceedings shall not be stayed pending the Administrator’s decision on the offer.

(g) Administrator’s ruling. The Administrator will rule upon all transmitted offers of settlement. If the Administrator accepts the offer, the Administrator shall issue an appropriate order.

The order shall become effective upon issuance. In determining whether to accept an offer of settlement, the Administrator will consider the gravity of the alleged violation, and any good faith efforts by the respondent to comply with applicable requirements.

(h) Rejection. If the Administrator rejects an offer of settlement, the Administrator shall give written notice of that decision and the reasons therefor to the parties and the Presiding Officer. Promptly thereafter, the Presiding Officer shall issue an order notifying the parties of the resumption of the proceedings, including any modifications to the schedule resulting from the stay of the proceedings.

(i) Effect of rejected offer. Rejected offers of settlement shall not be admissible in evidence over the objection of any signatory, nor shall the fact of the proposal of the offer be admissible in evidence.

Subpart D—Discovery; Compulsory Process

§511.31 General provisions governing discovery.

(a) Applicability. The discovery rules established in this subpart are applicable to the discovery of information among the parties to a proceeding. Parties seeking information from persons not parties may do so by subpoena in accordance with §511.38.

(b) Discovery methods. Parties may obtain discovery by one or more of the following methods: (1) Written interrogatories; (2) requests for production of documents or things; (3) requests for admissions; or (4) testimony upon oral examination. Unless the Presiding Officer otherwise orders under paragraph (d) of this section, the frequency of use of these methods is not limited.

(c) Scope of discovery. The scope of discovery is as follows:

(1) In general. Parties may obtain discovery regarding any matter not privileged, which is relevant to the subject matter involved in the proceedings, whether it relates to the claim or defense of the party seeking discovery or to the claim or defense of any other party. It is not ground for objection...
that the information sought will be inadmissible at the hearing if the information sought appears reasonably calculated to lead to the discovery of admissible evidence.

(2) Exception. Parties may not obtain discovery of documents which accompanied the staff's recommendation as to whether a complaint should issue or of documents or portions thereof which would be exempt from discovery under Rule 26(b)(3) of the Federal Rules of Civil Procedure.

(3) Hearing preparation: Experts. A party may obtain discovery of facts known and opinions held by experts, regardless of whether they are acquired or developed in anticipation of or for litigation. Such discovery may be had by any of the methods provided in paragraph (b) of this section.

(d) Protective orders. Upon motion by a party or person and for good cause shown, the Presiding Officer may make any order which justice requires to protect such party or person from annoyance, embarrassment, competitive disadvantage, oppression or undue burden or expense, including one or more of the following: (1) That the discovery shall not be had; (2) that the discovery may be had only on specified terms and conditions, including a designation of the time and/or place; (3) that the discovery shall be had only by a method of discovery other than that selected by the party seeking discovery; (4) that certain matters shall not be inquired into, or that the scope of discovery shall be limited to certain matters; (5) that discovery shall be conducted with no one present except persons designated by the Presiding Officer; (6) that a trade secret or other confidential research, development, or commercial information shall not be disclosed or shall be disclosed only in a designated way or only to designated parties; and (7) that responses to discovery shall be placed in camera in accordance with §511.45.

If a motion for a protective order is denied in whole or in part, the Presiding Officer may, on such terms or conditions as are just, order that any party provide or permit discovery.

(e) Sequence and timing of discovery. Discovery may commence at any time after filing of the answer. Unless otherwise provided in these Rules or by order of the Presiding Officer, methods of discovery may be used in any sequence and the fact that a party is conducting discovery shall not operate to delay any other party's discovery.

(f) Supplementation of responses. A party who has responded to a request for discovery shall supplement the response with information thereafter acquired.

(g) Completion of discovery. All discovery shall be completed as soon as practical but in no case longer than one hundred fifty (150) days after issuance of a complaint unless otherwise ordered by the Presiding Officer in exceptional circumstances and for good cause shown. All discovery shall be served by a date which affords the party from whom discovery is sought the full response period provided by these Rules.

(h) Service and filing of discovery. All discovery requests and written responses, and all notices of the taking of testimony, shall be filed with the Docket Section and served on all parties and the Presiding Officer.

(i) Control of discovery. The use of these discovery procedures is subject to the control of the Presiding Officer, who may issue any just and appropriate order for the purpose of ensuring their timely completion.

are to be signed by a responsible representative of the respondent and the objections signed by the representative making them. The party upon whom the interrogatories have been served shall serve a copy of the answers, and objections if any, within 30 days after service of the interrogatories. The Presiding Officer may allow a shorter or longer time for response. The party submitting the interrogatories may move for an order under §511.36 with respect to any objection to or other failure to answer an interrogatory.

(c) Scope of interrogatories. Interrogatories may relate to any matters which can be inquired into under §511.31(c)(1), and the answers may be used to the extent permitted under this part. An interrogatory otherwise proper is not objectionable merely because an answer to the interrogatory would involve an opinion or contention that relates to fact or to the application of law to fact, but the Presiding Officer may order that such an interrogatory need not be answered until a later time.

(d) Option to produce business records. Where the answer to an interrogatory may be derived or ascertained from the business records of the party upon whom the interrogatory has been served, or from an examination, audit or inspection of such business records, or from a compilation, abstract or summary based thereon, and the burden of deriving the answer is substantially the same for the party serving the interrogatory as for the party served, it is a sufficient answer to the interrogatory to specify the records from which the answer may be derived or ascertained and to afford to the party serving the interrogatory reasonable opportunity to examine, audit or inspect such records and to make copies, compilations, abstracts, or summaries.

§511.33 Production of documents and things.

(a) Scope. Any party may serve upon any other party a request (1) to produce and permit the party making the request, or someone acting on behalf of that party, to inspect and copy any designated documents (including writings, drawings, graphs, charts, photogaphs, phono-records, and any other data-compilation from which information can be obtained, translated, if necessary, by the party in possession into reasonably usable form), or (2) to inspect and copy, test or sample tangible things which constitute or contain matters within the scope of §511.31(c)(1) and which are in the possession, custody or control of the party upon whom the request is served.

(b) Procedure for request. The request may be served at any time after the filing of the answer without leave of the Presiding Officer. The request shall set forth the items to be inspected either by individual item or by category, and shall describe each item or category with reasonable particularity. The request shall specify a reasonable time, place and manner for making the inspection and performing the related acts.

(c) Procedure for response. The party upon whom the request is served shall serve a written response within twenty (20) days after service of the request. The Presiding Officer may allow a shorter or longer time for response. The response shall state, with respect to each item or category requested, that inspection and related activities will be permitted as requested, unless the request is objected to, in which event the reasons for objection shall be stated. If objection is made to only part of an item or category, that part shall be so specified. The party submitting the request may move for an order under §511.36 with respect to any objection to or other failure to respond to the request or any part thereof, or to any failure to permit inspection as requested.

§511.34 Requests for admission.

(a) Procedure for request. A party may serve upon any other party a written request for the admission, for the purposes of the pending proceeding only, of the truth of any matters within the scope of §511.31(c)(1) set forth in the request that relate to statements or opinions of fact or of the application of law to fact, including the genuineness of documents described in the request. Copies of documents shall be served with the request unless they have been, or are otherwise furnished or made
available for inspection and copying. The request may, without leave of the Presiding Officer, be served upon any party after filing of the answer. Each matter as to which an admission is requested shall be separately set forth.

(b) Procedure for response. The matter as to which an admission is requested is deemed admitted unless within thirty (30) days after service of the request, or within such shorter or longer time as the Presiding Officer may allow, the party to whom the request is directed serves upon the party requesting the admission a written answer or objection addressed to the matter, signed by the party or the party’s representatives. If objection is made, the reasons therefore shall be stated.

The answer shall specifically admit or deny the matter or set forth in detail the reasons why the answering party cannot truthfully admit or deny the matter. A denial shall fairly meet the substance of the requested admission. When good faith requires that a party qualify an answer or deny only a part of the matter as to which an admission is requested, the party shall specify the portion that is true and qualify or deny the remainder. An answering party may not give lack of information or knowledge as a reason for failure to admit or deny, unless the party states that he or she has made reasonable inquiry and that the information known or readily available to him or her is insufficient to enable him or her to admit or deny. A party who considers that a matter as to which an admission has been requested presents a genuine issue for hearing may not, on that ground alone, object to the request but may deny the matter or set forth reasons why the party cannot admit or deny it. The party who has requested an admission may move to determine the sufficiency of the answer or objection thereto in accordance with §511.36.

If the Presiding Officer determines that an answer does not comply with the requirements of this section, he or she may order that the matter be deemed admitted or that an amended answer be served.

(c) Effect of admission. Any matter admitted under this section is conclusively established unless the Presiding Officer on motion permits withdrawal or amendment of such admission. The Presiding Officer may permit withdrawal or amendment when the presentation of the merits of the action will be served thereby and the party that obtained the admission fails to satisfy the Presiding Officer that withdrawal or amendment will prejudice that party in maintaining an action or defense on the merits.

§511.35 Testimony upon oral examination.

(a) When testimony may be taken. At any time after the answer is filed under §511.12, upon leave of the Presiding Officer and under such terms and conditions as the Presiding Officer may prescribe, any party may take the testimony of any other party, including the agents, employees, consultants or prospective witnesses of that party at a place convenient to the witness. The attendance of witnesses and the production of documents and things at the examination may be compelled by subpoena as provided in §511.38.

(b) Notice of oral examination—(1) Examination of a party. A party desiring to examine another party to the proceeding shall, after obtaining leave from the Presiding Officer, serve written notice of the examination on all other parties and the Presiding Officer at least ten (10) days before the date of the examination. The notice shall state (i) the time and place for making the examination; (ii) the name and address of each person to be examined, if known, or if the name is not known, a general description sufficient to identify him; and (iii) the subject matter of the expected testimony. If a subpoena duces tecum is to be served on the person to be examined, the designation of the materials to be produced, as set forth in the subpoena, shall be attached to or included in the notice of examination.

(2) Examination of a nonparty. A party desiring to examine a person who is not a party to the proceeding shall make application for a subpoena, in accordance with §511.38, to compel the attendance, testimony and/or production of documents by such person who is not a party. The party desiring such examination shall serve written notice of the examination on all other parties to
the proceeding, after issuance of the subpoena by the Presiding Officer or a designated alternate.

(3) **Opposition to notice.** A person served with a notice of examination may, within 3 days of the date of service, oppose, in writing, the examination. The Presiding Officer shall rule on the notice and any opposition and may order the taking of all noticed examinations, upon a showing of good cause therefor. The Presiding Officer may, for good cause shown, enlarge or shorten the time for the taking of an examination.

(c) **Persons before whom examinations may be taken.** Examinations may be taken before any person authorized to administer oaths by the laws of the United States or of the place where the examination is held. No examination shall be taken before a person who is a relative or employee or attorney or representative of any party, or who is a relative or employee of such attorney or representative, or who is financially interested in the action.

(d) **Procedure—(1) Examination.** Each witness shall be duly sworn, and all testimony shall be duly recorded. All parties or their representatives may be present and participate in the examination. Examination and cross-examination of witnesses may proceed as permitted at the hearing. Questions objected to shall be answered subject to the objections. Objections shall be in short form, and shall state the grounds relied upon. The questions propounded and the answers thereto, together with all objections made, shall be recorded by the official reporter before whom the examination is made. The original or a verified copy of all documents and things produced for inspection during the examination of the witness shall, upon a request of any party present, be marked for identification and annexed to the record of the examination.

(2) **Motion to terminate or limit examination.** At any time during the examination, upon motion of any party or of the witness, and upon showing that the examination is being conducted in bad faith or in such manner as unreasonably to annoy, embarrass or oppress the witness or party, the Presiding Officer may, upon motion, order the party conducting the examination to terminate the examination, or may limit the scope and manner of the examination as provided in §511.31(d).

(3) **Participation by parties not present.** In lieu of attending an examination, any party may serve written questions in a sealed envelope on the party conducting the examination. That party shall transmit the envelope to the official reporter, who shall unseal it and propound the questions contained therein to the witness.

(e) **Transcription and filing of testimony—(1) Transcription.** Upon request by any party, the testimony recorded at an examination shall be transcribed. When the testimony is fully transcribed, the transcript shall be submitted to the witness for examination and signing, and shall be read to or by the witness, unless such examination and signature are waived by the witness. Any change in form or substance which the witness desires to make shall be entered upon the transcript of the official reporter with a statement of the reasons given by the witness for making them. The transcript shall then be signed by the witness, unless the parties by stipulation waive the signing, or the witness is ill or cannot be found or refuses to sign. If the transcript is not signed by the witness within thirty (30) days of its submission to him, the official reporter shall sign it and state on the record the fact of the waiver of signature or of the illness or absence of the witness or the fact of the refusal to sign, together with a statement of the reasons therefor. The testimony may then be used as fully as though signed, in accordance with paragraph (1) of this section.

(2) **Certification and filing.** The official reporter shall certify on the transcript that the witness was duly sworn and that the transcript is a true record of the testimony given and corrections made by the witness. The official reporter shall then seal the transcript in an envelope endorsed with the title and docket number of the action and marked “Testimony of [name of witness]” and shall promptly file the transcript with the Docket Section. The Presiding Officer shall notify all parties of the filing of the transcript and the Docket Section shall furnish a copy of the transcript to any party or to the...
§ 511.36 Motions to compel discovery.

If a party fails to respond to discovery, in whole or in part, the party seeking discovery may move within twenty (20) days for an order compelling an answer, or compelling inspection or production of documents, or otherwise compelling discovery. For
purposes of this subsection, an evasive or incomplete response is to be treated as a failure to respond. If the motion is granted, the Presiding Officer shall issue an order compelling discovery. If the motion is denied in whole or in part, the Presiding Officer may make such protective order as he or she would have been empowered to make on a motion pursuant to §511.31(d). When making oral examinations, the discovering party shall continue the examination to the extent possible with respect to other areas of inquiry before moving to compel discovery.

§ 511.37 Sanctions for failure to comply with order.

If a party fails to obey an order to provide or permit discovery, the Presiding Officer may take such action as is just, including but not limited to the following:

(a) Infer that the admission, testimony, document or other evidence would have been adverse to the party;

(b) Order that for the purposes of the proceeding, the matters regarding which the order was made or any other designated facts shall be taken to be established in accordance with the claim of the party obtaining the order;

(c) Order that the party withholding discovery not introduce into evidence or otherwise rely, in support of any claim or defense, upon the documents or other evidence withheld;

(d) Order that the party withholding discovery not introduce into evidence or otherwise use at the hearing, information obtained in discovery;

(e) Order that the party withholding discovery not be heard to object to introduction and use of secondary evidence to show what the withheld admission, testimony, documents, or other evidence would have shown;

(f) Order that a pleading, or part of a pleading, or a motion or other submission by the party, concerning which the order was issued, be stricken, or that decision on the pleadings be rendered against the party, or both; and

(g) Exclude the party or representative from proceedings, in accordance with §511.42(b).

Any such action may be taken by order at any point in the proceedings.

§ 511.38 Subpoenas.

(a) Availability. A subpoena shall be addressed to any party or any person not a party for the purpose of compelling attendance, testimony and production of documents at a hearing or oral examination.

(b) Form. A subpoena shall identify the action with which it is connected; shall specify the person to whom it is addressed and the date, time and place for compliance with its provisions; and shall be issued by order of the Presiding Officer and signed by the Chief Counsel, or by the Presiding Officer. A subpoena duces tecum shall specify the books, papers, documents, or other materials or data-compilations to be produced.

(c) How obtained—(1) Content of application. An application for the issuance of a subpoena stating reasons shall be submitted in triplicate to the Presiding Officer.

(2) Procedure of application. The original and two copies of the subpoena, marked “original,” “duplicate” and “triplicate,” shall accompany the application. The Presiding Officer shall rule upon an application for a subpoena ex parte, by issuing the subpoena or by issuing an order denying the application.

(d) Issuance of a subpoena. The Presiding Officer shall issue a subpoena by signing and dating, or ordering the Chief Counsel to sign and date, each copy in the lower right-hand corner of the document. The “duplicate” and “triplicate” copies of the subpoena shall be transmitted to the applicant for service in accordance with these Rules; the “original” copy shall be retained by or forwarded to the Chief Counsel for retention in the docket of the proceeding.

(e) Service of a subpoena. A subpoena may be served in person or by certified mail, return receipt requested, as provided in §511.16(b). Service shall be made by delivery of the signed “duplicate” copy to the person named therein.

(f) Return of service. A person serving a subpoena shall promptly execute a return of service, stating the date, time, and manner of service. If service is effected by mail, the signed return receipt shall accompany the return of

Any such action may be taken by order at any point in the proceedings.
§ 511.39 Orders requiring witnesses to testify or provide other information and granting immunity.

(a) A party who desires the issuance of an order requiring a witness to testify or provide other information upon being granted immunity from prosecution under title 18, U.S.C., section 6002, may make a motion to that effect. The motion shall be made and ruled on in accordance with § 511.22, and shall include a showing:

(1) That the testimony or other information sought from a witness or prospective witness may be necessary to the public interest; and

(2) That such individual has refused or is likely to refuse to testify or provide such information on the basis of that individual’s privilege against self-incrimination.

(b) If the Presiding Officer determines that the witness’ testimony appears necessary and that the privilege against self-incrimination may be invoked, he or she may certify to the Administrator a request that he or she obtain the approval of the Attorney General of the United States for the issuance of an order granting immunity.

(c) Upon application to and approval of the Attorney General of the United States, and after the witness has invoked the privilege against self-incrimination, the Presiding Officer shall issue the order granting immunity unless he or she determines that the privilege was improperly invoked.

(d) Failure of a witness to testify after a grant of immunity or after a denial of the issuance of an order granting immunity shall result in the imposition of appropriate sanctions as provided in § 511.37.

Subpart E—Hearings

§ 511.41 General rules.

(a) Public hearings. All hearings pursuant to this part shall be public unless otherwise ordered by the Presiding Officer. Notice of the time and location of the hearing shall be served on each party and participant, and published in the Federal Register.

(b) Expedition. Hearings shall proceed with all reasonable speed, insofar as practicable and with due regard to the convenience of the parties and shall continue without suspension until concluded, except in unusual circumstances.

(c) Rights of parties. Every party shall have the right of timely notice and all other rights essential to a fair hearing, including, but not limited to, the rights to present evidence, to conduct such cross-examination as may be necessary in the judgment of the Presiding Officer for a full and complete disclosure of the facts, and to be heard by objection, motion, brief, and argument.

(d) Rights of participants. Every participant shall have the right to make a written or oral statement of position, file proposed findings of fact, conclusions of law and a posthearing brief, in accordance with § 511.17(b).
(e) Rights of witnesses. Any person compelled to testify in a proceeding in response to a subpoena may be accompanied, represented, and advised by counsel or other representative, and may obtain a transcript of his or her testimony at no cost.

§ 511.42 Powers and duties of Presiding Officer.

(a) General. A Presiding Officer shall have the duty to conduct full, fair, and impartial hearings, to take appropriate action to avoid unnecessary delay in the disposition of proceedings, and to maintain order. He or she shall have all powers necessary to that end, including the following powers:

1. To administer oaths and affirmations;
2. To compel discovery and to impose appropriate sanctions for failure to make discovery;
3. To issue subpoenas;
4. To rule upon offers of proof and receive relevant and probative evidence;
5. To regulate the course of the hearings and the conduct of the parties and their representatives therein;
6. To hold conferences for simplification of the issues, settlement of the proceedings, or any other proper purposes;
7. To consider and rule, orally or in writing, upon all procedural and other motions appropriate in an adjudicative proceeding;
8. To issue initial decisions, rulings, and orders, as appropriate;
9. To certify questions to the Administrator for determination; and
10. To take any action authorized in this part or in conformance with the provisions of title 5, U.S.C., sections 551 through 559.

(b) Exclusion of parties by Presiding Officer. A Presiding Officer shall have the authority, for good cause stated on the record, to exclude from participation in a proceeding any party, participant, and/or representative who shall violate requirements of §511.76. Any party, participant and/or representative so excluded may appeal to the Administrator in accordance with the provisions of §511.23. If the representative of a party or participant is excluded, the hearing shall be suspended for a reasonable time so that the party or participant may obtain another representative.

(c) Substitution of Presiding Officer. In the event of the substitution of a new Presiding Officer for the one originally designated, any motion predicated upon such substitution shall be made within five (5) days of the substitution.

(d) Interference. In the performance of adjudicative functions, a Presiding Officer shall not be responsible to or subject to the supervision or direction of the Administrator or of any officer, employee, or agent engaged in the performance of investigative or prosecuting functions for NHTSA. All directions by the Administrator to a Presiding Officer concerning any adjudicative proceeding shall appear on and be made a part of the record.

(e) Disqualification of Presiding Officer. (1) When a Presiding Officer deems himself or herself disqualified to preside in a particular proceeding, he or she shall withdraw by notice on the record and shall notify the Chief Administrative Law Judge of the withdrawal.

(2) Whenever, for any reason, any party shall deem the Presiding Officer to be disqualified to preside, or to continue to preside, in a particular proceeding, that party may file with the Chief Administrative Law Judge a motion to disqualify and remove, supported by affidavit(s) setting forth the alleged grounds for disqualification. A copy of the motion and supporting affidavit(s) shall be served by the Chief Administrative Law Judge on the Presiding Officer whose removal is sought. The Presiding Officer shall have ten (10) days from service to reply in writing. Such motion shall not stay the proceeding unless otherwise ordered by the Presiding Officer or the Administrator. If the Presiding Officer does not disqualify himself or herself, the Administrator will determine the validity of the grounds alleged, either directly or on the report of another Presiding Officer appointed to conduct a hearing for that purpose, and shall in the event of disqualification take appropriate action, by assigning another Presiding...
§ 511.43 Evidence.

(a) Applicability of Federal Rules of Evidence. The Federal Rules of Evidence shall apply to proceedings held under this part only as a general guide. The Presiding Officer may admit any relevant and probative evidence.

(b) Burden of proof. (1) Complaint counsel shall have the burden of sustaining the allegations of any complaint.

(2) Any party who is the proponent of a legal and/or factual proposition shall have the burden of sustaining the proposition.

(c) Presumptions. A presumption imposes on the party against whom it is directed the burden of going forward with evidence to rebut or meet the presumption, but does not shift to such party the burden of proof in the sense of the risk of nonpersuasion, which remains throughout the hearing upon the party on whom it was originally cast.

(d) Admissibility. All relevant and reliable evidence is admissible, but may be excluded if its probative value is substantially outweighed by unfair prejudice or by considerations of undue delay, waste of time, immateriality, or needless presentation of cumulative evidence.

(e) Official notice—(1) Definition. Official notice means use by the Presiding Officer of extra-record facts and legal conclusions drawn from those facts. An officially noticed fact or legal conclusion must be one not subject to reasonable dispute in that it is either (i) generally known within the jurisdiction of the Presiding Officer or (ii) known by the Presiding Officer in areas of his or her expertise; or (iii) capable of accurate and ready determination by resort to sources whose accuracy cannot reasonably be questioned.

(2) Method of taking official notice. The Presiding Officer may at any time take official notice upon motion of any party or upon its own initiative. The record shall reflect the facts and conclusions which have been officially noticed.

(3) Opportunity to challenge. Any party may upon application in writing rebut officially noticed facts and conclusions by supplementing the record. The Presiding Officer shall determine the permissible extent of this challenge; that is, whether to limit the party to presentation of written materials, whether to allow presentation of testimony, whether to allow cross-examination, or whether to allow oral argument. The Presiding Officer shall grant or deny the application on the record.

(f) Objections and exceptions. Objections to evidence shall be timely interposed, shall appear on the record, and shall contain the grounds upon which they are based. Rulings on all objections, and the bases therefore, shall appear on the record. Formal exception to an adverse ruling is not required to preserve the question for appeal.

(g) Offer of proof. When an objection to proffered testimony or documentary evidence is sustained, the sponsoring party may make a specific offer, either in writing or orally, of what the party expects to prove by the testimony or the document. When an offer of proof is made, any other party may make a specific offer, either in writing or orally, of what the party expects to present to rebut or contradict the offer of proof. Written offers of proof or of rebuttal, adequately marked for identification, shall accompany the record and be available for consideration by any reviewing authority.

§ 511.44 Expert witnesses.

(a) Definition. An expert witness is one who, by reason of education, training, experience, or profession, has peculiar knowledge concerning the matter of science or skill to which his or her testimony relates and from which he or she may draw inferences based upon hypothetically stated facts or from facts involving scientific or technical knowledge.

(b) Method of presenting testimony of expert witness. Except as may be otherwise ordered by the Presiding Officer, a detailed written statement of the elements of the direct testimony of an expert witness shall be filed on the record and exchanged between the parties no
later than 10 days preceding the commencement of the hearing. The statement must contain a full explanation of the methodology underlying any analysis, and a full disclosure of the basis of any opinion. The direct testimony of an expert witness shall not include points not contained in the written statement. A party may waive direct examination of an expert witness by indicating that the written statement be considered the testimony of the witness. In such a case, the written testimony shall be incorporated into the record and shall constitute the testimony of the witness.

(c) Cross-examination and redirect examination of expert witness. Cross-examination, redirect examination, and re-cross-examination of an expert witness will proceed in due course based upon the written testimony and any amplifying oral testimony.

(d) Failure to file and/or to exchange written statement. Failure to file and/or to exchange the written statement of an expert witness as provided in this section shall deprive the sponsoring party of the use of the expert witness and of the conclusions which that witness would have presented.

§ 511.45 In camera materials.

(a) Definition. In camera materials are documents, testimony, or other data which by order of the Presiding Officer or the Administrator, as appropriate under this part, are kept confidential and excluded from the public record. Only materials exempt under the Freedom of Information Act may be kept confidential and excluded from the public record. Pursuant to 49 CFR part 512, the Chief Counsel of the NHTSA is responsible for determining whether an alleged confidential business record is exempt from the Freedom of Information Act. The right of the Presiding Officer, the Administrator and reviewing courts to order disclosure of in camera materials is specifically reserved.

(b) In camera treatment of documents and testimony. The Presiding Officer or the Administrator, as appropriate under this part, shall have authority, when good cause is found on the record, to order documents or testimony offered in evidence, whether admitted or rejected, to be received and preserved in camera. The order shall specify the length of time for in camera treatment and shall include:

(1) A description of the documents and/or testimony;

(2) The reasons for granting in camera treatment for the specified length of time.

(c) Access and disclosure to parties. (1) The Administrator and Presiding Officer, and their immediate advisory staffs shall have complete access to all in camera materials. All other parties shall also have complete access to all in camera materials, except that these parties may seek access only in accordance with paragraph (c)(2) of this section when:

(i) The in camera materials consist of information obtained by the government from persons not parties to the proceeding; or

(ii) The in camera materials consist of information provided by one of the parties to the proceeding which is confidential as to the other parties to the proceeding.

(2) Any party desiring access to and/or disclosure of the in camera materials specified in paragraph (c)(1) (i) and (ii) of this section for the preparation and presentation of that party’s case shall make a motion which sets forth the justification therefor. The Presiding Officer or the Administrator, as appropriate under this part, may grant such motion on the record for substantial good cause shown and shall enter a protective order prohibiting unnecessary disclosure and requiring other necessary safeguards. The Presiding Officer or the Administrator, as appropriate, may examine the in camera materials and excise portions thereof before disclosing the materials to the moving party.

(d) Segregation of in camera materials. In camera materials shall be segregated from the public record and protected from public view.

(e) Public release of in camera materials. In camera materials shall be segregated from the public record and protected from public view.

(f) Reference to in camera materials. In the submission of proposed findings,
§ 511.46 Proposed findings, conclusions, and order.

Within a reasonable time after the closing of the record and receipt of the transcript, all parties and participants may, simultaneously, file post-hearing briefs, including proposed findings of fact, conclusions of law and a proposed order, together with reasons therefore. The Presiding Officer shall establish a date certain for the filing of the briefs, which shall not exceed 45 days after the close of the record except in unusual circumstances. The briefs shall be in writing, shall be served upon all parties, and shall contain adequate references to the record and authorities relied on. Replies shall be filed within fifteen (15) days of the date for the filing of briefs unless otherwise established by the Presiding Officer. The parties and participants may waive either or both submissions.

§ 511.47 Record.

(a) Reporting and transcription. Hearings shall be recorded and transcribed under the supervision of the Presiding Officer by a reporter appointed by the Administrator. The original transcript shall be a part of the record and the official transcript. Copies of transcripts are available from the reporter at a cost not to exceed the maximum rates fixed by contract between the NHTSA and the reporter.

(b) Corrections. Corrections of the official transcript may be made only when they involve errors affecting substance and then only in the manner herein provided. The Presiding Officer may order corrections, either on his or her own motion or on motion of any party. The Presiding Officer shall determine the corrections to be made and so order. Corrections shall be interlineated or otherwise inserted in the official transcript so as not to obliterate the original text.

§ 511.48 Official docket.

(a) The official docket in adjudicatory proceedings will be maintained in the Docket Section, Office of the Secretary, Room 4107, 400 Seventh Street SW., Washington, DC 20590, and will be available for inspection during normal working hours (9:00 a.m.–5:00 p.m.) Monday through Friday.

(b) Fees for production or disclosure of records contained in the official docket shall be levied as prescribed in the Department of Transportation’s regulations on Public Availability of Information (49 CFR part 7).

[53 FR 15783, May 3, 1988]

§ 511.49 Fees.

(a) Witnesses. Any person compelled to appear in person in response to a subpoena or notice of oral examination shall be paid at least the same attendance and mileage fees as are paid witnesses in the courts of the United States, in accordance with title 28, U.S.C., section 1821.

(b) Responsibility. The fees and mileage referred to in this section shall be paid by the party at whose instance witnesses appear.

Subpart F—Decision

§ 511.51 Initial decision.

(a) When filed. The Presiding Officer shall endeavor to file an Initial Decision with the Administrator within sixty (60) days of the close of the record, the filing of post-hearing briefs, or the filing of replies thereto, whichever is latest.

(b) Content. The Initial Decision shall be based upon a consideration of the entire record and it shall be supported by reliable, probative, and substantial evidence. It shall include:

(1) Findings and conclusions, as well as the reasons or bases therefor, upon
the material questions of fact, material issues of law, or discretion presented on the record, and should, where practicable, be accompanied by specific page citations to the record and to legal and other materials relied upon.

(2) An appropriate order.

(c) By whom made. The Initial Decision shall be made and filed by the Presiding Officer who presided over the hearing, unless otherwise ordered by the Administrator.

(d) Reopening of proceeding by presiding officer; termination of jurisdiction.

(1) At any time prior to or concomitant with the filing of the Initial Decision, the Presiding Officer may reopen the proceedings for the reception of further evidence.

(2) Except for the correction of clerical errors, the jurisdiction of the Presiding Officer is terminated upon the filing of the Initial Decision, unless and until the proceeding is remanded to the Presiding Officer by the Administrator.

§ 511.52 Adoption of initial decision.

The Initial Decision and Order shall become the Final Decision and Order of the Administrator forty (40) days after issuance unless an appeal is noted and perfected or unless review is ordered by the Administrator. Upon the expiration of the fortieth day, the Executive Secretary shall prepare, sign and enter an order adopting the Initial Decision and Order.

§ 511.53 Appeal from initial decision.

(a) Who may file notice of intention. Any party may appeal an Initial Decision to the Administrator provided that within ten (10) days after issuance of the Initial Decision such party files and serves a notice of intention to appeal.

(b) Appeal brief. The appeal shall be in the form of a brief, filed within forty (40) days after service of the Initial Decision, duly served upon all parties and participants. The appeal brief shall contain, in the order indicated, the following:

(1) A subject index of the matters in the brief, with page references, and a table of cases (alphabetically arranged), textbooks, statutes, and other material cited, with page references thereto;
(2) A concise statement of the case;
(3) A specification of the position urged;
(4) The argument, presenting clearly the points of fact and law relied upon in support of the position on each question, with specific page references to the record and the legal or other material relied upon; and
(5) A proposed form of order for the Administrator’s consideration in lieu of the order contained in the Initial Decision.

(c) Answering brief. Within thirty (30) days after service of the appeal brief upon all parties and participants, any party may file an answering brief which shall also contain a subject index, with page references, and a table of cases (alphabetically arranged), textbooks, statutes, and other material cited, with page references thereto.

(d) Participant’s brief. Within thirty (30) days after service of the appeal brief upon all parties and participants, any participant may file an appeal brief which should contain a subject index, with page references, and a table of authorities being relied upon. Such brief shall present clearly the position taken by the participant on each question raised by the appellant(s).

(e) Cross appeal. If a timely notice of appeal is filed by a party, any other party may file a notice of cross-appeal within ten (10) days of the date on which the first notice of appeal was filed. Cross-appeals shall be included in the answering brief and shall conform to the requirements for form, content and filing specified in paragraph (c) of this section. If an appeal is noticed but not perfected, no cross-appeal shall be permitted and the notice of cross-appeal shall be deemed void.

(f) Reply brief. A reply brief shall be limited to rebuttal of matters in answering briefs, including matters raised in cross-appeals. A reply brief shall be filed and within fourteen (14) days after service of an answering
§ 511.54 Review of initial decision in absence of appeal.

The Administrator may, by order, review a case not otherwise appealed by a party. Thereupon the parties shall and participants may file briefs in accordance with §511.53(b), (c), (d), (e), and (f) except that the Administrator may, in his or her discretion, establish a different briefing schedule in his or her order. Any such order shall issue within forty (40) days of issuance of the Initial Decision. The order shall set forth the issues which the Administrator will review.

§ 511.55 Final decision on appeal or review.

(a) Upon appeal from or review of an Initial Decision, the Administrator shall consider such parts of the record as are cited or as may be necessary to resolve the issues presented and, in addition, shall, to the extent necessary or desirable, exercise all the powers which he or she could have exercised if he or she had made the Initial Decision.

(b) In rendering his or her decision, the Administrator shall adopt, modify, or set aside the findings, conclusions, and order contained in the Initial Decision, and shall include in his or her Final Decision a statement of the reasons or bases for his or her action. The Administrator shall issue an order reflecting his or her Final Decision.

§ 511.56 Reconsideration.

Within twenty (20) days after issuance of a Final Decision and Order, any party may file with the Administrator a petition for reconsideration of such decision or order, setting forth the relief desired and the grounds in support thereof. Any party desiring to oppose such a petition shall file an answer thereto within ten (10) days after service of the petition. The filing of a petition for reconsideration shall not stay the effective date of the Decision and Order or toll the running of any statutory time period affecting the decision or order unless specifically so ordered by the Administrator.

§ 511.57 Effective date of order.

(a) Consent orders. An order which has been issued following acceptance of an offer of settlement in accordance with §511.26 becomes effective upon issuance.

(b) Litigated orders. All other orders become effective upon the expiration of the statutory period for court review specified in section 508(c)(1) of the Motor Vehicle Information and Cost Savings Act, title 15, U.S.C. section 2008(c)(1), Pub. L. 94–163, 89 Stat. 911, or, if a petition for review has been filed, upon court affirmance of the Administrator's order.

Subpart G—Settlement Procedure in Cases of Violation of Average Fuel Economy Standards

§ 511.61 Purpose.

This subpart establishes the procedures and requirements necessary to obtain a settlement of a case of violation of section 507 (1) or (2) of the Motor Vehicle Information and Cost Savings Act, as amended, Pub. L. 94–163, 89 Stat. 911 (15 U.S.C. section 2007(1)(2)). No settlement of such cases may be had except as in accordance with this subpart.

§ 511.62 Definitions.

Average fuel economy standard means an average fuel economy standard established by or pursuant to the Motor Vehicle Information and Cost Savings Act.

Insolvency means the inability to meet expenses when due.

Settlement means a compromise, modification, or remission of a civil penalty assessed under this part for a violation of an average fuel economy standard.

§ 511.63 Criteria for settlement.

Settlement of a case of violation of an average fuel economy standard is discretionary with the Administrator.
The Administrator will consider settlement only to the extent:

(a) Necessary to prevent the insolvency or bankruptcy of the person seeking settlement, or

(b) That the violation of the average fuel economy standard resulted, as shown by the person seeking settlement, from an act of God, a strike, or fire, or

(c) That modification of a civil penalty assessed under this part is necessary to prevent lessening of competition, as determined and as certified by the Federal Trade Commission under section 508(b)(4) of the Motor Vehicle Information and Cost Savings Act, Pub. L. 94–163, 89 Stat. 911 (15 U.S.C. section 2008(b)(4)).

§ 511.64 Petitions for settlement; timing, contents.

(a) A petition seeking settlement under this subpart must be filed within 30 days after the issuance of a final order assessing a civil penalty for a violation of an average fuel economy standard.

(b)(1) A petition for settlement should be sufficient to allow the Administrator to determine that at least one of the criteria set out in §511.63 is satisfied, and that the public interest would be served by settlement.

(2) A petition asserting that settlement is necessary to prevent bankruptcy or insolvency must include:

(i) Copies of all pertinent financial records, auditor's reports, and documents that show that the imposition of a civil penalty would cause insolvency, or would cause a company to do an act of bankruptcy, and

(ii) A payment schedule that would allow the petitioner to pay a civil penalty without resulting in insolvency or an act of bankruptcy.

(3) A petition asserting that the violation of the average fuel economy standard was caused by an act of God, fire, or strike must describe corrective and ameliorative steps taken to mitigate the effects of the act of God, fire, or strike.

(4) A petition based on a certification by the Federal Trade Commission that modification of the civil penalty assessed is necessary to prevent a substantial lessening of competition must include a certified copy of:

(ii) The administrative record of any Federal Trade Commission proceeding held in regard to the application, and

(iii) The certification by the Federal Trade Commission.

(c) It is the policy of the National Highway Traffic Safety Administration that unconditional settlements of violations of average fuel economy standards are not in the public interest, and absent special and extraordinary circumstances, will not be allowed. All petitions for settlement shall contain a section proposing conditions for settlement. Conditions for settlement can be specific acts designed to lead to the reduction of automotive fuel consumption, which the petitioner is not otherwise required to perform pursuant to any statute, regulation, or administrative or judicial order, such as sponsoring public education programs, advertising, accelerating commercial application of technology, accelerating technology development programs, or making public the results of privately performed studies, surveys, or research activities.

§ 511.65 Public comment.

Notice and opportunity for comment are provided to the public in regard to settlements under this part. Subject to §511.66, notice of receipt of a petition for settlement is published in the Federal Register, and a copy of such petitions and any supporting information is placed in a public docket. Any settlement agreed to by the Administrator shall be placed in the public docket for 30 days so that interested persons may comment thereon. No settlement is binding until the completion of that thirty day period.

§ 511.66 Confidential business information.

The Administrator shall have authority to segregate from the public docket...
§ 511.67 Settlement order.

If, in accordance with this subpart, the Administrator allows a settlement of a case of violation of an average fuel economy standard, an order of settlement shall be issued, setting out the terms of the settlement, and containing a brief discussion of the factors underlying the exercise of the Administrator’s discretion in allowing the settlement, including a discussion of comments received under § 511.65. If the Administrator rejects a petition for settlement, the Administrator shall give written notice of the rejection and the reasons for the rejection to the parties and the Presiding Officer.

53 FR 15783, May 3, 1988

Subpart H—Appearances; Standards of Conduct

§ 511.71 Who may make appearances.

A party or participant may appear in person, or by a duly authorized officer, partner, regular employee, or other agent of this party or participant, or by or with counsel or other duly qualified representative, in any proceeding under this part.

§ 511.72 Authority for representation.

Any individual acting in a representative capacity in any adjudicative proceeding may be required by the Presiding Officer or the Administrator to show his or her authority to act in such capacity. A regular employee of a party who appears on behalf of the party shall be required by the Presiding Officer or the Administrator to show his or her authority to so appear.

§ 511.73 Written appearances.

(a) Any person who appears in a proceeding shall file a written notice of appearance with the Executive Secretary or deliver a written notice of appearance to the reporter at the hearing, stating for whom the appearance is made and the name, address, and telephone number (including area code) of the person making the appearance and the date of the commencement of the appearance. The written appearance shall be made a part of the record.

(b) Any person who has previously appeared in a proceeding may withdraw his or her appearance by filing a written notice of withdrawal of appearance with the Docket Section. The notice of withdrawal shall state the name, address, and telephone number (including area code) of the person withdrawing the appearance, for whom the appearance was made, and the effective date of the withdrawal of the appearance, and such notice of withdrawal shall be filed within five (5) days of the effective date of the withdrawal of the appearance.

§ 511.74 Attorneys.

An attorney at law who is admitted to practice before the Federal courts or before the highest court of any State, the District of Columbia, or any territory or Commonwealth of the United States, may practice before the NHTSA. An attorney’s own representation that he or she is in good standing before any of such courts shall be sufficient proof thereof, unless otherwise ordered by the Presiding Officer or the Administrator.

§ 511.75 Persons not attorneys.

(a) Any person who is not an attorney at law may be admitted to appear in an adjudicative proceeding if that person files proof to the satisfaction of the Presiding Officer that he or she possesses the necessary legal, technical or other qualifications to render valuable service in the proceeding and is otherwise competent to advise and assist in the presentation of matters in the proceedings. An application by a person not an attorney at law to appear in a proceeding shall be submitted in writing to the Docket Section, not later than thirty (30) days prior to the hearing in the proceedings. The application shall set forth the applicant’s
§ 511.76 Qualifications and standards of conduct.

(a) The NHTSA expects all persons appearing in proceedings before it to act with integrity, with respect, and in an ethical manner. Business transacted before and with the NHTSA shall be in good faith.

(b) To maintain orderly proceedings, the Presiding Officer or the Administrator, as appropriate under this part, may exclude parties, participants, and their representatives for refusal to comply with directions, continued use of dilatory tactics, refusal to adhere to reasonable standards of orderly and ethical conduct, failure to act in good faith, or violation of the prohibition against certain ex parte communications. The Presiding Officer may, in addition to the above sanctions, deny access to additional in camera materials when a party or participant publicly releases such materials without authorization.

(c) An excluded party, participant, or representative thereof may petition the Administrator to entertain an interlocutory appeal in accordance with §311.24. If, after such appeal, the representative of a party or participant is excluded, the hearing shall, at the request of the party or participant, be suspended for a reasonable time so that the party or participant may obtain another representative.

§ 511.77 Restrictions as to former members and employees.

The postemployee restrictions applicable to former Administrators and NHTSA employees, as set forth in 18 U.S.C. 207, shall govern the activities of former Administrators and NHTSA employees in matters connected with their former duties and responsibilities.

§ 511.78 Prohibited communications.

(a) Applicability. This section is applicable during the period commencing with the date of issuance of a complaint and ending upon final NHTSA action in the matter.

(b) Definitions. (1) “Decision-maker” means those NHTSA personnel who render decisions in adjudicative proceedings under this part, or who advise officials who render such decisions, including:

(i) The Administrator,
(ii) The Administrative Law Judges;
(2) “Ex parte communication” means:

(i) Any written communication other than a request for a status report on the proceeding made to a decision-maker by any person other than a decisionmaker which is not served on all parties,
(ii) Any oral communication other than a request for a status report on the proceeding made to a decision-maker by any person other than a decisionmaker without advance notice to the parties to the proceeding and opportunity for them to be present.

(c) Prohibited ex parte communications. Any oral or written ex parte communication relative to the merits of a proceeding under this part is a prohibited ex parte communication, except as provided in paragraph (d) of this section.

(d) Permissible ex parte communications. The following communications shall not be prohibited under this section:

(1) Ex parte communications authorized by statute or by this part.
(2) Any staff communication concerning judicial review or judicial enforcement in any matter pending before or decided by the Administrator.
(e) Procedures for handling prohibited ex parte communication. To the extent possible, a prohibited written ex parte communication received by any NHTSA employee shall be forwarded to the Docket Section rather than to a decisionmaker. A prohibited written ex parte communication which reaches a
decisionmaker shall be forwarded by the decisionmaker to the Docket Section. If the circumstances in which a prohibited ex parte written communication was made are not apparent from the communication itself, a statement describing those circumstances shall be forwarded with the communication.

(2) Prohibited oral ex parte communication. (i) If a prohibited oral ex parte communication is made to a decisionmaker, he or she shall advise the person making the communication that the communication is prohibited and shall terminate the discussion.

(ii) In the event of a prohibited oral ex parte communication, the decisionmaker shall forward to the Docket Section a dated statement containing such of the following information as is known to him/her:

(A) The title and docket number of the proceeding;
(B) The name and address of the person making the communication and his/her relationship (if any) to the parties to the proceeding;
(C) The date and time of the communication, its duration, and the circumstances (telephone call, personal interview, etc.) under which it was made;
(D) A brief statement of the substance of the matters discussed;
(E) Whether the person making the communication persisted in doing so after being advised that the communication was prohibited.

(3) All communications and statements forwarded to the Docket Section under this section shall be placed in the public file which shall be associated with, but not made a part of, the record of the proceedings to which the communication or statement pertains.

(4) Service on parties. The Administrator shall serve a copy of each communication and statement forwarded under this section on all parties to the proceedings. However, if the parties are numerous, or if other circumstances satisfy the Administrator that service of the communication or statement would be unduly burdensome, he or she may, in lieu of service, notify all parties in writing that the communication or statement has been made and filed and that it is available for inspection and copying.

(5) Service on maker. The Administrator shall forward to the person who made the prohibited ex parte communication a copy of each communication or statement filed under this section.

(f) Effect of ex parte communications. No prohibited ex parte communication shall be considered as part of the record for decision unless introduced into evidence by a party to the proceedings.

(g) Sanctions. A party or participant who makes a prohibited ex parte communication, or who encourages or solicits another to make any such communication, may be subject to any appropriate sanction or sanctions, including, but not limited to, exclusion from the proceedings and adverse rulings on the issues which are the subject of the prohibited communication.

58 CFR Ch. V (10–1–16 Edition)

APPENDIX I TO PART 511—FINAL PREHEARING ORDER

Case Caption

Final Prehearing Order

A prehearing conference was held in this matter pursuant to Rule 21 of the Administration’s Rules of Practice for Adjudicative Proceedings, on the day of ___, 19__ at ___ o’clock M.

Counsel appeared as follows:
For the Administration staff:
For the Respondent(s):
Others:

1. NATURE OF ACTION AND JURISDICTION.

This is an action for __________

and the jurisdiction of the Administration is involved under Section ___ of Title ___ U.S.C. The jurisdiction of the Administration is (not) disputed. The questions of jurisdiction was decided as follows:

2. STIPULATIONS AND STATEMENTS.

The following stipulations and statements were submitted, attached to, and made a part of this order:
(a) A comprehensive written stipulation or statement of all uncontested facts;
(b) A concise summary of the ultimate facts as claimed by each party. (Complaint Counsel must set forth the claimed facts, specifically; for example, if violation is
claimed, Complaint Counsel must assert specifically the acts of violation complained of; each respondent must reply with equal clarity and detail.

(c) Written stipulations or statements setting forth the qualifications of the expert witnesses to be called by each party;

(d) A written list or lists of the witnesses whom each party will call, a written list or lists of the additional witnesses whom each party may call, and a statement of the subject on which each witness will testify;

(e) An agreed statement of the contested issues of fact and of law, and/or separate statements by each party or any contested issues of fact and law not agreed to;

(f) A list of all depositions to be read into evidence and statements of any objections thereto;

(g) A list and brief description of any charts, graphs, models, schematic diagrams, and similar objects that will be used in opening statements or closing arguments, but will not be offered in evidence. If any other such objects are to be used by any party, they will be submitted to opposing counsel at least three days prior to hearing. If there is then any objection to their use, the dispute will be submitted to the Presiding Officer at least one day prior to hearing;

(h) Written waivers of claims or defenses which have been abandoned by the parties.

The foregoing were modified at the pretrial conference as follows:

[To be completed at the conference itself. If none, recite “none”]

3. COMPLAINT COUNSEL’S EVIDENCE.

3.1 The following exhibits were offered by Complaint Counsel, received in evidence, and marked as follows:

[Identification number and brief description of each exhibit]

The authenticity of these exhibits has been stipulated.

4.2 The following exhibits were offered by the respondent(s) and marked for identification. There was reserved to Complaint Counsel and party intervenors, if any, the right to object to their receipt in evidence on the grounds stated:

[Identification number and brief description of each exhibit. State briefly ground of objection, e.g., competency, relevancy, materiality]

5. ADDITIONAL ACTIONS.

The following additional action was taken:

[Amendments to pleadings, agreements of the parties, disposition of motions, separation of issues of liability and remedy, etc., if necessary]

6. LIMITATIONS AND RESERVATIONS.

6.1 Each of the parties has the right to further supplement the list of witnesses not later than ten (10) days prior to trial by furnishing opposing counsel with the name and address of the witness and general subject matter of his or her testimony and filing a supplement to this pretrial order. Thereafter additional witnesses may be added only after application to the Presiding Officer, for good cause shown.

6.2 Rebuttal witnesses not listed in the exhibits to this order may be called only if the necessity of their testimony could not reasonably be foreseen ten (10) days prior to trial. If it appears to counsel at any time before trial that such rebuttal witnesses will be called, notice will immediately be given to opposing counsel and the Presiding Officer.

6.3 The probable length of hearing is days. The hearings will be commenced on the day of , 19 , at o’clock M. at (location).

6.4 Prehearing briefs will be filed not later than 5:00 p.m. on (Insert date not later than ten (10) days prior to hearing.) All anticipated legal questions, including those relating to the admissibility of evidence, must be covered by prehearing briefs. This prehearing order has been formulated after a conference at which counsel for the respective parties appeared. Reasonable opportunity has been afforded counsel for corrections or additions prior to signing. It will control the course of the hearing, and it may not be amended except by consent of the parties and the Presiding Officer, or by order of the Presiding Officer to prevent manifest injustice.

(Presiding Officer’s Name)
(Presiding Officer’s Title)
Pt. 512

49 CFR Ch. V (10–1–16 Edition)

APPROVED AS TO FORM AND SUBSTANCE

Date: ____________.

Complaint Counsel.

Attorney for Respondent(s).

NOTE: Where intervenors appear pursuant to §511.17 the prehearing order may be suitably modified; the initial page may be modified to reflect the intervention.

PART 512—CONFIDENTIAL BUSINESS INFORMATION

Subpart A—General Provisions

Sec.
512.1 Purpose and scope.
512.2 Applicability.
512.3 Definitions.

Subpart B—Submission Requirements

512.4 When requesting confidentiality, what should I submit?
512.5 How many copies should I submit?
512.6 How should I prepare documents when submitting a claim for confidentiality?
512.7 Where should I send the information for which I am requesting confidentiality?
512.8 What supporting information should I submit with my request?

Subpart C—Additional Requirements

512.9 What are the requirements if the information comes from a third party?
512.10 Duty to amend.
512.11 What if I need an extension of time?
512.12 What if I am submitting multiple items of information?
512.13 What are the consequences for non-compliance with this part?

Subpart D—Agency Determination

512.14 Who makes the confidentiality determination?
512.15 How will confidentiality determinations be made?
512.16 Class determinations.
512.17 How long should it take to determine whether information is entitled to confidential treatment?
512.18 How will I be notified of the confidentiality determination?
512.19 What can I do if I disagree with the determination?

512.20 How does the agency treat information submitted pursuant to this part before a confidentiality determination is made?
512.21 How is information submitted pursuant to this part treated once a confidentiality determination is made?
512.22 Under what circumstances may NHTSA modify a grant of confidentiality?
512.23 Under what circumstances may NHTSA publicly release confidential information?

APPENDIX A TO PART 512—CERTIFICATE IN SUPPORT OF REQUEST FOR CONFIDENTIALITY

APPENDIX B TO PART 512—GENERAL CLASS DETERMINATIONS

APPENDIX C TO PART 512—EARLY WARNING REPORTING CLASS DETERMINATIONS

APPENDIX D TO PART 512—VEHICLE IDENTIFICATION NUMBER INFORMATION

APPENDIX E TO PART 512—CONSUMER ASSISTANCE TO RECYCLE AND SAVE (CARS) CLASS DETERMINATIONS

APPENDIX F TO PART 512—OMB CLEARANCE

SOURCE: 68 FR 44228, July 28, 2003, unless otherwise noted.

Subpart A—General Provisions

§ 512.1 Purpose and scope.

The purpose of this part is to establish the procedures and standards by which NHTSA will consider claims that information submitted to the agency is entitled to confidential treatment under 5 U.S.C. 552(b), most often because it constitutes confidential business information as described in 5 U.S.C. 552(b)(4), and to address the treatment of information determined to be entitled to confidential treatment.

§ 512.2 Applicability.

(a) This part applies to all information submitted to NHTSA, except as provided in paragraph (b) of this section, for which a determination is sought that the material is entitled to confidential treatment under 5 U.S.C. 552(b)(4).
§ 512.5 Submission Requirements

§ 512.4 When requesting confidentiality, what should I submit?

Any person submitting information to NHTSA, other than information in a class identified in appendix C of this Part, and requesting that the information be withheld from public disclosure pursuant to 5 U.S.C. 552(b) shall submit the following:

(a) The materials for which confidentiality is being requested, in conformance with §§512.5, 512.6, and 512.7 of this part;

(b) The Certificate, in the form set out in appendix A to this part;

(c) Supporting information, in conformance with §512.8; and

(d) Any request for an extension of time, made in accordance with §512.11.

§ 512.5 How many copies should I submit?

(a) Except as provided for in subsection (c), a person must send the following in hard copy or electronic format to the Chief Counsel when making a claim for confidential treatment covering submitted material:

(1) A complete copy of the submission, and

(2) A copy of the submission containing only the portions for which no claim of confidential treatment is made and from which those portions for which confidential treatment is claimed has been redacted, and

(3) Either a second complete copy of the submission or, alternatively, those portions of the submission containing the material for which confidential treatment is claimed and any additional information the submitter deems important to the Chief Counsel’s consideration of the claim.

(4) If submitted in electronic format, a copy of any special software required to review materials for which confidential treatment is requested and user instructions must also be provided.

(b) A person filing comments to a rulemaking action must additionally submit to the rulemaking docket a copy of the submission containing only the portions for which no claim of confidential treatment is made and from
§ 512.6 How should I prepare documents when submitting a claim for confidentiality?

(a) Information claimed to be confidential must be clearly identified to enable the agency to distinguish between those portions of the submission claimed to constitute confidential business information and those portions for which no such claim is made.

(b) The word “CONFIDENTIAL” must appear on the top of each page containing information claimed to be confidential.

(1) If an entire page is claimed to be confidential, the submitter must indicate clearly that the entire page is claimed to be confidential.

(2) If the information for which confidentiality is being requested is contained within a page, the submitter shall enclose each item of information that is claimed to be confidential within brackets: “[]”.

(c) Submissions in electronic format—(1) Persons submitting information under this Part may submit the information in an electronic format. Except for early warning reporting data submitted to the agency under 49 CFR part 579, the information submitted in an electronic format shall be submitted in a physical medium such as a CD-ROM. The exterior of the medium (e.g., the disk itself) shall be permanently labeled with the submitter’s name, the subject of the information and the words “CONFIDENTIAL BUSINESS INFORMATION”.

(2) Confidential portions of electronic files submitted in other than their original format must be marked “Confidential Business Information” or “Entire Page Confidential Business Information” at the top of each page. If only a portion of a page is claimed to be confidential, that portion shall be designated by brackets. Files submitted in their original format that cannot be marked as described above must, to the extent practicable, identify confidential information by alternative markings using existing attributes within the file or means that are accessible through use of the file’s associated program. When alternative markings are used, such as font changes or symbols, the submitter must use one method consistently for electronic files of the same type within the same submission. The method used for such markings must be described in the request for confidentiality. Files and materials that cannot be marked internally, such as video clips or executable files or files provided in a format specifically requested by the agency, shall be renamed prior to submission so the words “Confidential Bus Info” appears in the file name or, if that is not practicable, the characters “Conf Bus Info” or “Conf” appear. In all cases, a submitter shall provide an electronic copy of its request for confidentiality treatment on any medium containing confidential information, except where impracticable.

(3) Confidential portions of electronic files submitted in other than their original format must be marked with consecutive page numbers or sequential identifiers so that any page can be identified and located using the file name and page number. Confidential portions of electronic files submitted in their original format must, if practicable, be marked with consecutive page numbers or sequential identifiers so that any page can be identified and located using the file name and page number. Confidential portions of electronic files submitted in their original format that cannot be marked as described above and do not contain existing indices or placeholders embedded within the file. If such indices or placeholders exist, the submitter’s request for confidential treatment shall clearly identify them and the means for locating them within the file. If files submitted in their original format cannot be marked with page or sequence number designations and do not contain existing indices or placeholders for locating confidential information, then the portions of the files that are claimed to be confidential shall be described by other means.
in the request for confidential treatment. In all cases, submitters shall provide an electronic copy of their request for confidential treatment on any media containing confidential data except where impracticable.

(4) Electronic media may be submitted only in commonly available and used formats.

§ 512.7 Where should I send the information for which I am requesting confidentiality?

A claim for confidential treatment must be submitted in accordance with the provisions of this regulation to the Chief Counsel of the National Highway Traffic Safety Administration, 1200 New Jersey Avenue, SE., West Building W41–227, Washington, DC 20590.

[72 FR 59470, Oct. 19, 2007]

§ 512.8 What supporting information should I submit with my request?

When requesting confidentiality, the submitter shall:

(a) Describe the information for which confidentiality is being requested;

(b) Identify the confidentiality standard(s) under which the confidentiality request should be evaluated, in accordance with § 512.15;

(c) Justify the basis for the claim of confidentiality under the confidentiality standard(s) identified pursuant to paragraph (b) of this section by describing:

(1) Why the information qualifies as a trade secret, if the basis for confidentiality is that the information is a trade secret;

(2) What the harmful effects of disclosure would be and why the effects should be viewed as substantial, if the claim for confidentiality is based upon substantial competitive harm;

(3) What significant NHTSA interests will be impaired by disclosure of the information and why disclosure is likely to impair such interests, if the claim for confidentiality is based upon impairment to government interests;

(4) What measures have been taken by the submitter to ensure that the information is not customarily disclosed or otherwise made available to the public, if the basis for confidentiality is that the information is voluntarily submitted; and

(5) The information is otherwise entitled to protection, pursuant to 5 U.S.C. 552(b).

(d) Indicate if any items of information fall within any of the class determinations included in appendix B to this Part;

(e) Indicate the time period during which confidential treatment is sought; and

(f) State the name, address, and telephone number of the person to whom NHTSA’s response and any inquiries should be directed.

Subpart C—Additional Requirements

§ 512.9 What are the requirements if the information comes from a third party?

Where confidentiality is claimed for information obtained by the submitter from a third party, such as a supplier, the submitter is responsible for obtaining from the third party the information that is necessary to comply with § 512.4 of this part, including a certificate in the form set out in appendix A to this Part.

§ 512.10 Duty to amend.

The submitter shall promptly amend any supporting information provided under § 512.4 if the submitter obtains information upon the basis of which the submitter knows that the supporting information was incorrect when provided, or that the supporting information, though correct when provided to the agency, is no longer correct and the circumstances are such that a failure to amend the supporting information is in substance a knowing concealment.

§ 512.11 What if I need an extension of time?

If a person is unable to submit the necessary information required under § 512.4 at the time the claimed confidential information is submitted to NHTSA, then that person may request an extension of time. Any request for an extension shall explain the reason
§ 512.12 What if I am submitting multiple items of information?

Any certificate provided under §512.4(b) of this part, and any supporting information provided under §512.4(c) of this part, may be used to support a claim for confidential treatment of more than one item of information. However, general or nonspecific assertions or analysis may be insufficient to form an adequate basis for the agency to find that the information is entitled to confidential treatment, and may result in the denial of the claim.

§ 512.13 What are the consequences for noncompliance with this part?

(a) If the submitter fails to comply with §512.4 of this part at the time the information is submitted to NHTSA or does not request an extension of time under §512.11, the claim for confidentiality may be waived, unless the agency is notified or otherwise becomes aware of the claim before the information is disclosed to the public. If the information is placed in a public docket or file, such placement is disclosure to the public within the meaning of this part and may preclude any claim for confidential treatment. The Chief Counsel may notify a submitter of information or, if applicable, a third party from whom the information was obtained, of inadequacies regarding a claim for confidential treatment and may allow the submitter or third party additional time to supplement the submission, but has no obligation to provide either notice or additional time.

(b) If the submitter does not provide the certificate required under §512.4(b) of this part or any supporting information required under §512.4(c) of this part, or if the information is insufficient to establish that the information should be afforded confidential treatment under the confidentiality standards set out in §512.15 of this part, a request that such information be treated confidentially may be denied. The Chief Counsel may notify a submitter of information of inadequacies in the supporting information and may allow the submitter additional time to supplement the showing, but has no obligation to provide either notice or additional time.

Subpart D—Agency Determination

§ 512.14 Who makes the confidentiality determination?

The Chief Counsel will determine whether an item of information will be afforded confidential treatment under this part.

§ 512.15 How will confidentiality determinations be made?

Information may be afforded confidential treatment if the Chief Counsel determines that:

(a) The information is a trade secret;

(b) Public disclosure of the information would be likely to cause substantial harm to the competitive position of the submitter;

(c) Public disclosure of the information would be likely to impair NHTSA’s ability to obtain necessary information in the future;

(d) The information was provided to NHTSA voluntarily and was not customarily released to the public by the person from whom it was obtained; or

(e) The information is otherwise entitled to protection, pursuant to 5 U.S.C. 552(b).

§ 512.16 Class determinations.

(a) The Chief Counsel may issue class determinations of categories of information to be entitled to confidential treatment if the Chief Counsel determines that one or more characteristics common to each item of information in that class, will, in most cases, result in identical treatment, and further that it is appropriate to treat all such items as a class for one or more purposes under this part. Once a class determination is made, the Chief Counsel will publish the new class determination in the FEDERAL REGISTER.

(b) The Chief Counsel may amend, modify, or terminate any class determination established under this section. These changes will be published in the FEDERAL REGISTER.

(c) Class determinations made by the Chief Counsel are listed in Appendices B and C to this Part.
(d) A class determination may state that all of the information in the class:
(1) Is or is not governed by a particular section of this part or by a particular set of substantive criteria of this part;
(2) Satisfies one or more of the applicable substantive criteria; or
(3) Satisfies one or more of the substantive criteria, but only for a certain period of time.

§ 512.17 How long should it take to determine whether information is entitled to confidential treatment?

(a) When information claimed to be confidential is requested under the Freedom of Information Act, the determination will be made within twenty (20) working days after NHTSA receives such a request or within thirty (30) working days in unusual circumstances as provided under 5 U.S.C. 552(a)(6)(A). However, these time periods may be extended by the Chief Counsel for good cause shown or on request from any person. An extension will be made in accordance with 5 U.S.C. 552(a)(6)(A), and will be accompanied by a written statement setting out the reasons for the extension.

(b) When information claimed to be confidential is not requested under the Freedom of Information Act, the determination of confidentiality will be made within a reasonable period of time, at the discretion of the Chief Counsel.

§ 512.18 How will I be notified of the confidentiality determination?

(a) If a request for confidential treatment is granted, the submitter of the information will be notified in writing of the determination and of any appropriate limitations.

(b) If a request for confidential treatment is denied in whole or in part, the submitter of the information will be notified in writing of the denial, and the reasons for the denial, by certified mail, return receipt requested. The information may be made available to the public twenty (20) working days after the submitter of the information has received notice of the denial, unless a request for reconsideration is filed. The information may be released publicly on an earlier date, if the Chief Counsel determines in writing that the public interest requires that the information be made available to the public on such date.

§ 512.19 What can I do if I disagree with the determination?

(a) A submitter of information whose request for confidential treatment is denied in whole or in part, may petition for reconsideration of that decision. Petitions for reconsideration shall be addressed to and received by the Chief Counsel prior to the date on which the information would otherwise be made available to the public. The determination by the Chief Counsel upon such petition for reconsideration shall be administratively final.

(b) If a person is unable to submit a petition for reconsideration within twenty (20) working days of receiving notice that a claim for confidential treatment was denied, that person may submit a request for an extension of time. The Chief Counsel must receive any request for an extension of time before the date on which the information would be made available to the public, and the request must be accompanied by an explanation describing the reason for the request and the length of time requested. The Chief Counsel will determine whether to grant or deny the extension and the length of the extension.

(c) If a petition for reconsideration is granted, the petitioner will be notified in writing of the determination and of any appropriate limitations.

(d) If a petition for reconsideration is denied in whole or in part, or if a request for an extension is denied, the petitioner will be notified in writing of the denial, and the reasons for the denial, and will be informed that the information will be made available to the public not less than twenty (20) working days after the petitioner has received notice of the denial. The information may be released publicly on an earlier date, if the Administrator determines in writing that the public interest requires that the information be made available to the public on such date.
Subpart E—Agency Treatment of Information Claimed To Be Confidential

§512.20 How does the agency treat information submitted pursuant to this part before a confidentiality determination is made?

(a) Information received by NHTSA, for which a properly filed confidentiality request is submitted, will be kept confidential until the Chief Counsel makes a determination regarding its confidentiality. Such information will not be disclosed publicly, except in accordance with this part.

(b) Redacted copies of documents submitted to NHTSA under this part will be disclosed to the public.

§512.21 How is information submitted pursuant to this part treated once a confidentiality determination is made?

(a) Once the Chief Counsel makes a determination regarding the confidentiality of the submitted information, all materials determined not to be entitled to confidential protection will be disclosed to the public in accordance with the determination, unless a timely petition for reconsideration is received by the agency.

(b) Upon receipt of a timely petition for reconsideration under §512.19 of this part, the submitted information will remain confidential, pending a determination regarding the petition.

(c) Should the Chief Counsel, after considering a petition for reconsideration, decide that information is not entitled to confidential treatment, the agency may make the information available after twenty (20) working days after the submitter has received notice of that decision from the Chief Counsel unless the agency receives direction from a court not to release the information.

§512.22 Under what circumstances may NHTSA modify a grant of confidentiality?

(a) The Chief Counsel may modify a grant of confidentiality based upon:

(1) Newly discovered or changed facts;

(2) A change in the applicable law;

(3) A change in class determination, pursuant to §512.16;

(4) The passage of time; or

(5) A finding that the prior determination is erroneous.

(b) If the Chief Counsel believes that an earlier determination of confidentiality should be modified based on one or more of the factors listed in paragraph (a) of this section, the submitter of the information will be notified in writing that the Chief Counsel has modified its earlier determination and of the reasons for the modification, and will be informed that the information will be made available to the public in not less than twenty (20) working days from the date of receipt of the notice of modification. The information may be released publicly on an earlier date, if the Administrator determines in writing that the public interest requires that the information be made available to the public on such date. The submitter may seek reconsideration of the modification, pursuant to §512.19.

§512.23 Under what circumstances may NHTSA publicly release confidential information?

(a) Information that has been claimed or determined to be confidential under this part may be disclosed to the public by the Administrator notwithstanding such claim or determination, if disclosure would be in the public interest as follows:

(1) Information obtained under chapter 325, 327, 329 or 331 of title 49 of the United States Code (formerly under the Motor Vehicle Information and Cost Savings Act) may be disclosed when that information is relevant to a proceeding under the chapter under which the information was obtained.

(2) Information obtained under chapter 301 of title 49 of the United States Code (49 U.S.C. §30101 et seq.), relating to the establishment, amendment, or modification of Federal motor vehicle safety standards, may be disclosed when relevant to a proceeding under the chapter.

(3) Except as specified in the next sentence, information obtained under Chapter 301 of title 49 of the United...
States Code (49 U.S.C. 30101 et seq.), related to a possible defect or noncompliance, shall be disclosed when the Administrator decides the information will assist in carrying out sections 30117(b) and 30118 through 30121 of title 49 or is required to be disclosed under 30118(a) of title 49, except as provided in paragraph (a)(4) of this section.

(4) No information will be disclosed under paragraph (a) of this section unless the submitter of the information is given written notice of the Administrator’s intention to disclose information under this section. Written notice will be given at least twenty (20) working days before the day of release, unless the Administrator finds that shorter notice is in the public interest. The notice under this paragraph will include a statement of the Administrator’s reasons for deciding to disclose the information, and will afford the submitter of the information an opportunity to comment on the contemplated release of the information. The Administrator may also give notice of the contemplated release of information to other persons and may allow these persons the opportunity to comment. In making the determination to release information pursuant to this section, the Administrator will consider ways to release the information that will cause the least possible adverse effects to the submitter.

(b) Notwithstanding any other provision of this part, information that has been determined or claimed to be confidential may be released:

(1) To a committee of Congress;

(2) Pursuant to an order of a court of competent jurisdiction;

(3) To the Office of the Secretary, U.S. Department of Transportation and other Executive branch offices or other Federal agencies in accordance with applicable laws;

(4) With the consent of the submitter of the information; and

(5) To contractors, if necessary for the performance of a contract with the agency or any Federal agency, with specific prohibitions on further release of the information.

APPENDIX A TO PART 512—CERTIFICATE IN SUPPORT OF REQUEST FOR CONFIDENTIALITY

Certificate in Support of Request for Confidentiality

I ______, pursuant to the provisions of 49 CFR part 512, state as follows:

(1) I am (official’s name, title) and I am authorized by (company) to execute this certificate on its behalf;

(2) I certify that the information contained in (pertinent document(s)) is confidential and proprietary data and is being submitted with the claim that it is entitled to confidential treatment under 5 U.S.C. 552(b)(4) (as incorporated by reference in and modified by the statute under which the information is being submitted);

(3) I hereby request that the information contained in (pertinent document(s)) be protected for (requested period of time);

(4) This certification is based on the information provided by the responsible (company) personnel who have authority in the normal course of business to release the information for which a claim of confidentiality has been made to ascertain whether such information has ever been released outside (company);

(5) Based upon that information, to the best of my knowledge, information and belief, the information for which (company) has claimed confidential treatment has never been released or become available outside (company); (except as hereinafter specified);

(6) I make no representations beyond those contained in this certificate and, in particular, I make no representations as to whether this information may become available outside (company) because of unauthorized or inadvertent disclosure (except as stated in paragraph 5); and

(7) I certify under penalty of perjury that the foregoing is true and correct. Executed on this the ______ day of ______, ______. (If executed outside of the United States of America: I certify under penalty of perjury under the laws of the United States of America that the foregoing is true and correct). (Signature of official)

APPENDIX B TO PART 512—GENERAL CLASS DETERMINATIONS

The Chief Counsel has determined that the following types of information would presumptively be likely to result in substantial competitive harm if disclosed to the public:

(1) Blueprints and engineering drawings containing process and production data where the subject could not be manufactured without the blueprints or engineering drawings except after significant reverse engineering;
Pt. 512, App. C

(2) Future specific model plans (to be protected only until the date on which the specific model to which the plan pertains is first offered for sale); and

(3) Future vehicle production or sales figures for specific models (to be protected only until the termination of the production period for the model year vehicle to which the information pertains).

APPENDIX C TO PART 512—EARLY WARNING REPORTING CLASS DETERMINATIONS

(a) The Chief Counsel has determined that the following information required to be submitted to the agency under 49 CFR 579, Subpart C, if released, is likely to cause substantial harm to the competitive position of the manufacturer submitting the information and is likely to impair the government’s ability to obtain necessary information in the future:

(1) Reports and data relating to warranty claim information and warranty adjustment information for manufacturers of tires;

(2) Reports and data relating to field reports, including dealer reports, product evaluation reports, and hard copies of field reports; and

(3) Reports and data relating to consumer complaints.

(b) The Chief Counsel has determined that the disclosure of the new vehicle owner’s name, home address, telephone number, state identification number and last six (6) characters, when disclosed along with the first eleven (11) characters, of the new vehicle identification numbers reported in transactions submitted to the agency under 49 CFR Part 599 will constitute a clearly unwarranted invasion of personal privacy within the meaning of 5 U.S.C. 552(b)(6).

[72 FR 59470, Oct. 19, 2007]

APPENDIX D TO PART 512—VEHICLE IDENTIFICATION NUMBER INFORMATION

The Chief Counsel has determined that the disclosure of the last six (6) characters, when disclosed along with the first eleven (11) characters, of vehicle identification numbers reported in information on incidents involving death or injury pursuant to the early warning information requirements of 49 CFR part 579 will constitute a clearly unwarranted invasion of personal privacy within the meaning of 5 U.S.C. 552(b)(6).

[72 FR 59470, Oct. 19, 2007]

APPENDIX E TO PART 512—CONSUMER ASSISTANCE TO RECYCLE AND SAVE (CARS) CLASS DETERMINATIONS

(a) The Chief Counsel has determined that the following information required to be submitted to the agency under 49 CFR part 599, if released, is likely to cause substantial harm to the competitive position of the entity submitting the information:

(1) Vehicle Manufacturer Issued Dealer Identification Code;

(2) Dealer Bank Name, ABA Routing Number and Bank Account Number; and

(3) CARS Dealer Code and Authorization Code.

(b) The Chief Counsel has determined that the disclosure of the new vehicle owner’s name, home address, telephone number, state identification number and last six (6) characters, when disclosed along with the first eleven (11) characters, of the new vehicle identification numbers reported in transactions submitted to the agency under 49 CFR Part 599 will constitute a clearly unwarranted invasion of personal privacy within the meaning of 5 U.S.C. 552(b)(6).

[74 FR 37897, July 29, 2009]

APPENDIX F TO PART 512—OMB CLEARANCE

The OMB clearance number for this part 512 is 2127–0025.

[74 FR 37897, July 29, 2009]

PART 520—PROCEDURES FOR CONSIDERING ENVIRONMENTAL IMPACTS

Subpart A—General

Sec. 520.1 Purpose and scope.

520.2 Policy.

520.3 Definitions.

520.4 Applicability.

520.5 Guidelines for identifying major actions significantly affecting the environment.

Subpart B—Procedures

520.21 Preparation of environmental reviews, negative declarations, and notices of intent.

520.22 Maintenance of a list of actions.

520.23 Preparation of draft environmental impact statements.

520.24 Internal processing of draft environmental impact statements.

520.25 External review of draft environmental impact statements.

520.26 Public hearings.

520.27 Legislative actions.
§ 520.28 Preparation of final environmental impact statements.
§ 520.29 Internal review of final environmental impact statements.
§ 520.30 Availability of final environmental impact statements.
§ 520.31 Amendments or supplements.
§ 520.32 Emergency action procedures.
§ 520.33 Timing of proposed NHTSA actions.
§ 520.34 Comments on environmental statements prepared by other agencies.

Attachment 1 to Part 520—Form and Content of Statement

Attachment 2 to Part 520—Areas of Environmental Impact and Federal Agencies and Federal-State Agencies With Jurisdiction by Law or Special Expertise To Comment Therupon [NOTE]

Attachment 3 to Part 520—Offices Within Federal Agencies and Federal-State Agencies for Information Regarding the Agencies’ Impact Statements for Which Comments Are Requested [NOTE]

Attachment 4 to Part 520—State and Local Agency Review of Impact Statements

Source: 40 FR 52396, Nov. 10, 1975, unless otherwise noted.

Subpart A—General

§ 520.1 Purpose and scope.

(a) Section 102(2)(C) of the National Environmental Policy Act of 1969 (83 Stat. 853; 42 U.S.C. 4332(2)(C)), as implemented by Executive Order 11514 (3 CFR, 1966–1970 Comp., p. 902) and the Council on Environmental Quality’s Guidelines of April 23, 1971 (36 FR 7724), requires that all agencies of the Federal Government prepare detailed environmental statements on proposals for legislation and other major Federal actions significantly affecting the quality of the human environment. The purpose of the Act is to build into the agency decision-making process careful consideration of all environmental aspects of proposed actions.

(b) This part specifies National Highway Traffic Safety Administration (NHTSA) procedures for conducting environmental assessments and reviews, and for the preparation of environmental impact statements on proposals for legislation and other major agency actions significantly affecting the quality of the human environment.

§ 520.2 Policy.

The agency will strive to carry out the full intent and purpose of the National Environmental Policy Act of 1969 and related orders and statutes, and take positive steps to avoid any action which could adversely affect the quality of the human environment.

§ 520.3 Definitions.

(a) Environmental assessment is a written analysis describing the environmental impact of a proposed or ongoing agency action, submitted to the agency either by its grantees or contractors, or by any person outside the agency as part of any program or project proposal within the scope of activities listed in §520.4(b).

(b) Environmental review is a formal evaluation undertaken by the agency, culminating in a brief document (the environmental review report), to determine whether a proposed or ongoing NHTSA action may have a significant impact on the environment. The review document will be included in the proposed or ongoing agency action, and either support a negative declaration or recommend the preparation of a draft environmental impact statement.

(c) Draft environmental impact statement (DEIS) means a preliminary statement on the environmental impact of a proposed or ongoing NHTSA action which is circulated for comment and review within and outside NHTSA.

(d) Final environmental impact statement (FEIS) means a detailed statement which, pursuant to section 102(2)(C) of the National Environmental Policy Act, identifies and analyses the anticipated environmental impact of a proposed or ongoing NHTSA action.

(e) Negative declaration means a statement prepared subsequent to an environmental review, which states that a proposed or ongoing NHTSA action will have no significant environmental impact and therefore does not require a draft or final environmental impact statement.
§ 520.4 Applicability.

(a) Scope. This part applies to all elements of NHTSA, including the Regional Offices.

(b) Actions covered. Except as provided in paragraph (e) of this section, this part applies to the following agency actions and such actions and proposals as may be sponsored jointly with another agency:

1. New and continuing programs and projects; budget proposals; legislative proposals by the agency; requests for appropriations; reports on legislation initiated elsewhere where the agency has primary responsibility for the subject matter involved; and any renewals or reapprovals of the foregoing;

2. Research, development, and demonstration projects; formal approvals of work plans; and associated contracts;

3. Rulemaking and regulatory actions, including Notices of Proposed Rulemaking (NPRM); requests for procurement (RFP); requests for grants (Annual Work Programs); and contracts;

4. All grants, loans or other financial assistance for use in State and Community projects;

5. Annual State Highway Safety Work Programs;

6. Construction; leases; purchases; operation of Federal facilities; and

7. Any other activity, project, or action likely to have a significant effect on the environment.

(c) Continuing actions. This part applies to any action enumerated in paragraph (b) of this section, even though such actions arise from a project or program initiated prior to enactment of the National Environmental Policy Act on January 1, 1970.

(d) Environmental assessments. Within the scope of activities listed in § 520.4(b), any person outside the agency submitting a program or project proposal may be requested to prepare an environmental assessment of such proposed action to be included in his submission to the agency.

(e) Exceptions. (1) Assistance in the form of general revenue sharing funds, distributed under the State and Local Fiscal Assistance Act of 1972, 31 U.S.C. 1221, with no control by the NHTSA over the subsequent use of such funds;

(2) Personnel actions;

(3) Administrative procurements (e.g., general supplies) and contracts for personal services;

(4) Legislative proposals originating in another agency and relating to matters not within NHTSA’s primary areas of responsibility;

(5) Project amendments (e.g., increases in costs) which have no environmental significance; and

(6) Minor agency actions that are determined by the official responsible for the actions to be of such limited scope that they clearly will not have a significant effect on the quality of the human environment.

(f) Consolidation of statements. Proposed actions (and alternatives there-to) having substantially similar environmental impacts may be covered by a single environmental review and environmental impact statement or negative declaration.

§ 520.5 Guidelines for identifying major actions significantly affecting the environment.

(a) General guidelines. The phrase, “major Federal actions significantly affecting the quality of the human environment,” as used in this part, shall be construed with a view to the overall, cumulative impact of the actions, other Federal projects or actions in the area, and any further contemplated or anticipated actions. Therefore, an environmental impact statement should be prepared in any of the following situations:

1. Proposed actions which are localized in their impact but which have a potential for significantly affecting the environment;

2. Any proposed action which is likely to be controversial on environmental grounds;

3. Any proposed action which has unclear but potentially significant environmental consequences.

(b) Specific guidelines. While a precise definition of environmental significance that is valid in all contexts is not possible, any of the following actions should ordinarily be considered as significantly affecting the quality of the human environment:
(1) Any matter falling under section 4(f) of the Department of Transportation Act (49 U.S.C. 1653(f)) and section 138 of Federal-aid highway legislation (23 U.S.C. 138), requiring the use of any publicly owned land from a park, recreation area, or wildlife and waterfowl refuge of national, State, or local significance as determined by the Federal, State, or local officials having jurisdiction thereof, or any land from an historic site of national, State, or local significance;

(2) Any matter falling under section 106 of the National Historic Preservation Act of 1966 (16 U.S.C. 470(f)), requiring consideration of the effect of the proposed action on any building included in the National Register of Historic Preservation and reasonable opportunity for the Advisory Council on Historic Preservation to comment on such action;

(3) Any action that is likely to affect the preservation and enhancement of sites of historical, architectural, or archaeological significance;

(4) Any action that is likely to be highly controversial regarding relocation housing;

(5) Any action that (i) divides or disrupts an established community, disrupts orderly, planned development, or is inconsistent with plans or goals that have been adopted by the community in which the project is located; or (ii) causes significantly increased congestion;

(6) Any action that (i) involves inconsistency with any Federal, State, or local law or administrative determination relating to the environment; (ii) has a significantly detrimental impact on air or water quality or on ambient noise levels for adjoining areas; (iii) involves a possibility of contamination of a public water supply system; or (iv) affects ground water, flooding, erosion, or sedimentation;

(7) Any action that may directly or indirectly result in a significant increase in noise levels, either within a motor vehicle's closed environment or upon nearby areas;

(8) Any action that may directly or indirectly result in a significant increase in the energy or fuel necessary to operate a motor vehicle, including but not limited to the following: (i) Actions which may directly or indirectly result in a significant increase in the weight of a motor vehicle; and (ii) actions which may directly or indirectly result in a significant adverse effect upon the aerodynamic drag of a motor vehicle;

(9) Any action that may directly or indirectly result in a significant increase in the amount of harmful emissions resulting from the operation of a motor vehicle;

(10) Any action that may directly or indirectly result in a significant increase in either the use of or the exposure to toxic or hazardous materials in the manufacture, operation, or disposal of motor vehicles or motor vehicle equipment;

(11) Any action that may directly or indirectly result in a significant increase in the problem of solid waste, as in the disposal of motor vehicles or motor vehicle equipment;

(12) Any action that may directly or indirectly result in a significant depletion of scarce natural resources associated with the manufacture or operation of motor vehicles or motor vehicle equipment; and

(13) Any other action that causes significant environment impact by directly or indirectly affecting human beings through adverse impacts on the environment.

(c) Research activities. (1) In accordance with DOT Order 5610.1B, the Assistant Secretary for Systems Development and Technology (TST) will prepare, with the concurrence of the NHTSA, proposed procedures for assessing the environmental consequences of research activities. Until final procedures are promulgated, the following factors are to be considered for periodic evaluation to determine when an environmental statement is required for such programs:

(i) The magnitude of Federal investment in the program;

(ii) The likelihood of widespread application of the technology;

(iii) The degree of environmental impact which would occur if the technology were widely applied; and

(iv) The extent to which continued investment in the new technology is likely to restrict future alternatives.
(2) The statement or environmental review culminating in a negative declaration must be written late enough in the development process to contain meaningful information, but early enough so that this information can practically serve as an input in the decision-making process. Where it is anticipated that an environmental impact statement may ultimately be required but its preparation is still premature, the office shall prepare a publicly available record briefly setting forth the reasons for its determination that a statement is not yet necessary. This record shall be updated at least quarterly, or as may be necessary when significant new information becomes available concerning the potential environmental impact of the program. In any case, a statement or environmental review culminating in a negative declaration must be prepared before research activities have reached a state of investment or commitment to implementation likely to determine subsequent development or restrict later alternatives. Statements on technology research and development programs shall include an analysis not only of alternative forms of the same technology that might reduce any adverse environmental impacts but also of alternative technologies that would serve the same function as the technology under consideration. Efforts shall be made to involve other Federal agencies and interested groups with relevant expertise in the preparation of such statements because the impacts and alternatives to be considered are likely to be less well defined than in other types of statements.

Subpart B—Procedures

§520.21 Preparation of environmental reviews, negative declarations, and notices of intent.

(a) General responsibilities—(1) Associate Administrators and Chief Counsel. Each Associate Administrator and the Chief Counsel is responsible for determining, in accordance with Subpart A, whether the projects and activities under his jurisdiction require an environmental review, and for preparing all such reviews, negative declarations, and notices of intent.

(2) Regional Administrators. Each Regional Administrator, in consultation with the Governor’s Representative, is responsible for determining, in accordance with Subpart A, whether proposed State activities in his Region, as stated in Annual Work Programs, require an environmental review, and for preparing all such reviews, negative declarations, and notices of intent.

(3) Associate Administrator for Planning and Evaluation. The Associate Administrator for Planning and Evaluation may request in accordance with the requirements of this order, that the appropriate Associate Administrator or Regional Administrator prepare an Environmental review or Environmental Impact Statement for any proposed or continuing NHTSA action, or comment on any environmental statement prepared by other agencies.

(b) Coordination. Coordination with appropriate local, State and Federal agencies should be accomplished during the early stages by the responsible official to assist in identifying areas of significance and concern. Existing procedures, including those established under the Office of Management and Budget (OMB) Revised Circular A–95, should be used to the greatest extent practicable to accomplish this early coordination.

(c) Applicants. (1) Each applicant for a grant, loan, or other financial assistance for use in State and community projects may be requested to submit, with the original application, an environmental assessment of the proposed project.

(2) Under OMB Revised Circular A–95, “Evaluation, Review, and Coordination of Federal Assistance Programs and Projects,” and DOT 4600.4B, “Evaluation, Review and Coordination of DOT Assistance Programs and Projects,” dated February 27, 1974, a grant applicant must notify the clearinghouse of its intention to apply for Federal program assistance. The notification must solicit comments on the project and its impacts from appropriate State and local agencies. Since it is the NHTSA’s policy to assure that (i) interested parties and Federal, State, and local agencies receive early notification of the decision to prepare an environmental assessment.
impact statement, and (ii) their comments on the environmental effects of the proposed Federal action are solicited at an early stage in the preparation of the draft impact statement, this early notification requirement may be met by a grant applicant by sending the notification to interested parties and agencies at the same time it is sent to the clearinghouse.

(d) Consultants. Consultants may prepare background or preliminary material and assist in preparing a draft or final environmental statement for which the NHTSA takes responsibility. Care should be exercised in selecting consultants, and in reviewing their work, to insure complete and objective consideration of all relevant project impacts and alternatives, particularly if the consultant may expect further contracts based on the outcome of the environmental decision.

(e) Environmental review report. The environmental review shall culminate in a brief written report of the same title, which shall be included in the proposed or ongoing agency action, and which:

(1) Describes the proposed or ongoing NHTSA action, the environment affected, and the anticipated benefits;

(2) Evaluates the potential environmental impact, including those adverse impacts which cannot be avoided, should the proposal be implemented or the action continued;

(3) Assesses the alternatives to the proposed or ongoing action and their potential environmental impact;

(4) Evaluates the cumulative and long-term environmental effects of the proposed or ongoing action;

(5) Describes the irreversible and irretrievable commitments of resources involved in the proposal’s implementation or the action’s continuance;

(6) Identifies any known or potential conflicts with State, regional, or local plans and programs;

(7) Weighs and analyzes the anticipated benefits against the environmental and other costs of the proposed or ongoing action in a manner which reflects similar comparisons of reasonably available alternatives; and

(8) Concludes with a negative declaration or recommends the preparation of a DEIS.

(f) Negative declarations. (1) If the responsible official judges that the environmental impact of a proposed or ongoing action under his jurisdiction will not significantly affect the quality of the human environment, the following declaration will be included in the environmental review report:

It is the judgment of this agency, based on available information, that no significant environmental impact will result from execution of this action.

(2) A DEIS may be changed to a negative declaration if the public review process indicates that the proposal or ongoing action will not have a significant effect upon the environment.

(3) An index of all negative declarations and a copy of each environmental review report shall be retained by the responsible official under whose jurisdiction it was prepared and shall be made available for public inspection upon request.

(g) Notice of intent to prepare a draft environmental impact statement. If the responsible official under whose jurisdiction an environmental review is prepared determines that the proposed or ongoing action could have a potentially significant effect on the quality of the environment, he shall: coordinate with the Associate Administrator for Planning and Evaluation and the Chief Counsel, transmit to appropriate Federal, State and local agencies and have published in the FEDERAL REGISTER a notice of intent to prepare an environmental statement as soon as is practicable after the determination to prepare such a statement.

§ 520.22 Maintenance of a list of actions.

(a) The Associate Administrator for Planning and Evaluation shall be responsible for the preparation and maintenance of a list of actions for which draft or final environmental impact statements have been or are to be prepared. This list shall be on file with the Associate Administrator for Planning and Evaluation and shall be available for public inspection in the Docket Section upon request. A copy of the initial list and its updatings at the end of each calendar quarter shall be transmitted by the Associate Administrator for Planning and Evaluation.
§ 520.23 Preparation of draft environmental impact statements.

(a) Planning stage. (1) When a DEIS is to be prepared, the responsible official shall promptly initiate its preparation and develop a schedule in consultation with the Associate Administrator for Planning and Evaluation, to assure completion prior to the first significant point of decision in the program or project development process.

(2) The environmental impacts of proposed activities should be initially assessed concurrently with the initial technical and economic studies.

(3) Section 102(2)(A) of NEPA requires each Federal agency to utilize a “systematic, interdisciplinary approach” to plans and programs affecting the environment. To assure that all environmental impacts are identified and assessed, all relevant disciplines should be represented. If the necessary disciplines are not represented on the staff of the applicant or NHTSA, it is appropriate to use professional services available in other Federal, State or local agencies, universities, or consulting firms. The use of the interdisciplinary approach should not be limited to the environmental statement. This approach should also be used in the early planning stages to help assure a systematic evaluation of reasonable alternative courses of action and their potential social, economic, and environmental consequences.

(b) Form and content requirements. Attachment 1 of this order prescribes the form and content requirements to be followed for each draft and final environmental impact statement. The DEIS must fulfill and satisfy, to the fullest extent possible at the time it is prepared, the requirements established for final statements.

(c) Lead agency. CEQ guidelines provide that when more than one Federal agency (1) directly sponsors an action, or is directly involved in an action through funding, licenses, or permits, or (2) is involved in a group of actions directly related to each other because of their functional interdependence and geographical proximity, consideration should be given to preparing one statement for all the Federal actions involved. Agencies in such cases should consider the designation of a single “lead agency” to assume supervisory responsibility for preparation of a joint statement. Where a lead agency prepares the statement, the other agencies involved should provide assistance with respect to their areas of jurisdiction and expertise. The statement should contain an evaluation of the full range of Federal actions involved, should reflect the views of all participating agencies, and should be prepared before major or irreversible actions have been taken by any of the participating agencies. Some relevant factors in determining an appropriate lead agency are: The time sequence in which the agencies become involved, the magnitude of their respective involvement, and their relative expertise with respect to the project’s environmental effects. Questions concerning “lead agency” decisions should be raised with CEQ through TES. For projects serving and primarily involving land owned by or
§ 520.24 Internal processing of draft environmental impact statements.

Before circulating a DEIS for external review, the official responsible for the DEIS shall receive the concurrence of the Associate Administrator for Planning and Evaluation and the Chief Counsel; and prepare a memorandum for approval by the Administrator which shall:

(a) Set forth the basis on which it was determined that a potentially significant environmental effect exists;
(b) Attach the DEIS;
(c) Identify the Federal, State, and local agencies and private sources from which comments on the DEIS are proposed to be solicited (see Attachment 2);
(d) Include a recommendation on whether a public hearing on the proposed action should be held.

§ 520.25 External review of draft environmental impact statements.

(a) Requirements. The official responsible for the DEIS shall:
(1) Transmit 5 copies of the DEIS to the CEQ and 2 copies to TES;
(2) Solicit comments from all Federal, State, and local agencies which have jurisdiction by law or special expertise with respect to the possible environmental impact involved, and from the public (see Attachment 2); and
(3) Inform the public and interested parties of the availability of the DEIS and provide copies as appropriate; and
(4) Allow a comment period of not less than 45 days from the Friday of the week following receipt of the draft impact statement by CEQ. Requests for extensions shall be granted whenever possible, and particularly when warranted by the magnitude and complexity of the statement or the extent of citizen interest.

(b) Procedures—(1) Federal and Federal-State agency review. (i) The DEIS shall be circulated for review to the Federal and Federal-State agencies with special expertise or jurisdiction by law with regard to the potential environmental impact involved. These agencies and their relevant areas of expertise are identified in Attachment 2.
(ii) For actions within the jurisdiction of the Environmental Protection Agency (air or water quality, solid wastes, pesticides, radiation standards, noise), the DEIS shall be sent to EPA.
(iii) For actions which would affect any property that is included in the National Register of Historic Preservation, the DEIS should be sent to the Advisory Council on Historic Preservation and the State Liaison Office for Historic Preservation.

(2) State and local review. Where a review of the proposed action by State and local agencies authorized to develop and enforce environmental standards is relevant, comments are to be solicited directly from such agencies with known responsibilities in environmental matters, and shall be obtained as follows:
(i) Where review of direct Federal development projects, and of projects assisted under programs listed in Attachment D to revised OMB Circular A-95 (as implemented by DOT 4600.4B “Evaluation, Review and Coordination of DOT Assistance Programs and Projects”, dated February 27, 1974), takes place prior to preparation of an environmental statement, comments of the reviewing agencies on the environmental effects of the proposed project are inputs to the environmental statement. These comments shall be attached to the draft statement when it is circulated for review and copies of the draft shall be sent to those who commented. A–05 clearinghouses or other agencies designated by the Governor may also secure comments on environmental statements. In all cases, copies of the draft environmental

Filed as part of the original document.
§ 520.26 Public hearings.

(a) A public hearing on a proposed or ongoing action covered by a DEIS shall be held upon the determination by the official responsible for such action, in consultation with the Associate Administrator for Planning and Evaluation, that a public hearing would be appropriate and in the public interest. In deciding whether a public hearing is appropriate, the responsible official should consider:

1. The magnitude of the proposal in terms of economic costs, the geographic area involved, and the uniqueness or size of the commitment of the resources involved;

2. The degree of interest in the proposal, as evidenced by requests from the public and from Federal, State, and local authorities that a hearing be held;

3. The likelihood that information will be presented at the hearing which will be of assistance to the agency in furnishing to public and private organizations and individuals with special expertise with respect to the potential environmental impact involved, and to those with an interest in the action who request an opportunity to comment. Copies to be made available to the public shall be provided without charge to the extent practicable, or at a fee which is not more than the actual cost of reproducing copies required to be sent to other Federal agencies, including the CEQ.

(iv) A copy of the DEIS should in all cases be sent to any applicant whose project is the subject of the statement.

(v) If a DEIS is changed to a negative declaration as a result of the public review process, all agencies and individuals that received copies and/or commented on the DEIS must be informed that a negative declaration was substituted for the DEIS and given a brief explanation of the reason for such substitution.

(c) Utilization of comments. Comments received on the draft statement, and inputs (in summary form, if appropriate) from the processes for citizen participation, shall accompany the environmental statement through the normal internal project or program review process.
fulfilling its responsibilities under the NEPA:

(4) The extent to which public involvement already has been achieved through other means, such as earlier public hearings, meetings with citizen representatives, and/or written comments on the proposed action; and

(5) The extent of potential environmental impact.

(b) If it is determined that a public hearing is to be held in accordance with paragraph (a) of this section, the official responsible for the action shall both announce the hearing through newspaper articles, direct notification to interested parties, and clearing-houses, and cause a notice to be issued in the Federal Register at least 30 days prior to the time of such hearing:

(1) Identifying the subject matter of the hearing;

(2) Announcing the date, time, and place of the hearing and the procedures to be followed; and

(3) Announcing the availability of the DEIS and any other information, as appropriate, for public inspection at one or more locations in the area affected by the action.

§ 520.28 Preparation of final environmental impact statements.

(a) If the action is to go forward and the DEIS has not been changed to a negative declaration, as soon as practicable after the expiration of the comment period and hearing process, if any, the official responsible for the action shall prepare a final environmental impact statement (FEIS), taking into account all comments received and issues raised during such period and process.

(b) The FEIS shall conform to the guidelines for form and content in Attachment 1.

(c) The FEIS shall then be submitted to the Chief Counsel by the official responsible for the action, for determination of legal sufficiency.

§ 520.29 Internal review of final environmental impact statements.

(a) Upon completion of the review for legal sufficiency of the FEIS, the Chief Counsel shall transmit 2 copies of the FEIS to TES for concurrence. Unless other notification is provided within 2 weeks after receipt in TES, the statement will be considered concurred in by TES.

(b) After concurrence by TES, the FEIS will be transmitted by the Chief Counsel to the Administrator for approval.

(c) If an action requires the personal approval of the Secretary or Deputy Secretary pursuant to a request by them or by TES, TGC, or the NHTSA office originating the action, the final environmental statement shall be accompanied by a brief cover memorandum requesting the Secretary’s or Deputy Secretary’s approval of the action.

(1) The memorandum shall have signature lines for the concurrence of the Assistant Secretary for Environment, Safety, and Consumer Affairs, the General Counsel, and the Deputy Secretary, and for the approval of the Secretary or Deputy Secretary.

(2) TES, in conjunction with the Executive Secretary, is responsible for informing the Assistant Secretary for Congressional and Intergovernmental
Affairs and the Office of Public Affairs of the Secretary’s decisions so that they, in coordination with the operating administrations or other Secretarial Offices involved, may take the appropriate actions.

§ 520.30 Availability of final environmental impact statements.

(a) Pending final approval and filing with CEQ, a proposed FEIS may be made available to the public and Federal, State, or local agencies if it carries a notation that it is not approved and filed.

(b) After approval by the Administrator, the Associate Administrator for Planning and Evaluation will send 5 copies of the FEIS (together with comments) to the CEQ; individual copies with comments attached to the EPA and all Federal, State, and local agencies and members of the public who submitted comments on the DEIS or requested copies of the FEIS. If the length of the statement or the number of comments make this distribution requirement highly impractical, TES should be consulted to consider an alternative arrangement.

(c) Copies of the FEIS will be made available in the NHTSA Docket Section, Room 5109, 400 Seventh Street SW., Washington, DC 20590, and, where appropriate, NHTSA Regional Offices, at the offices of any applicants or grantees, and at appropriate State, regional, and metropolitan clearinghouses and, where the impact is localized, public libraries.

(d) The official responsible for the action shall, upon request, make available copies of the FEIS and substantive comments received on the DEIS without charge to the extent practicable, or at a fee which is not more than the actual cost of reproducing copies.

[40 FR 52396, Nov. 10, 1975, as amended at 48 FR 44881, Sept. 27, 1983]

§ 520.31 Amendments or supplements.

A draft or final environmental impact statement may be amended or supplemented. Supplements or amendments should be considered when substantial changes are made in the proposed or ongoing action that will introduce a new or changed environmental effect of significance to the quality of the environment, or significant new information becomes available concerning its environmental aspects. In such cases, the supplement or amendment shall be processed in consultation with TES with respect to the need for, or desirability of, recirculating the statement for the appropriate period. TES concurrence must be secured before issuance.

§ 520.32 Emergency action procedures.

The CEQ Guidelines allow modification of requirements in case of a national emergency, a disaster or similar great urgency. The processing times may be reduced, or if the emergency situation warrants, preparation and processing of a DEIS, FEIS, or negative declaration may be abbreviated. Such procedural changes, however, should be requested only for those projects where the need for immediate action requires processing in other than the normal manner.

§ 520.33 Timing of proposed NHTSA actions.

To the maximum extent practicable, no administrative action (i.e., any proposed action to be taken by the agency other than agency proposals for legislation to Congress, budget proposals, or agency reports on legislation) subject to this part and covered by an environmental impact statement shall be taken sooner than 90 days after a DEIS has been circulated for comment, furnished to the CEQ, and made public. Neither shall such administrative action be taken sooner than 30 days after the FEIS (together with comments) has been filed with CEQ, and made available to commenting agencies and the public. If the FEIS is filed within 90 days after a DEIS has been circulated for comment, furnished to the CEQ and made public, the 30-day period and 90-day period may run concurrently to the extent that they overlap. The 90-
day time period is measured from the date of publication in the Federal Register of the list of weekly filings of environmental impact statements with the CEQ, but the 30-day period is computed from the date of receipt by the CEQ.

§ 520.34 Comments on environmental statements prepared by other agencies.

(a) All requests for NHTSA’s views on a DEIS or a proposed action undergoing environmental review by another agency will be transmitted to the Associate Administrator for Planning and Evaluation for action or referral to TES where appropriate. Offices within NHTSA may be requested by the Associate Administrator for Planning and Evaluation to supply any pertinent information and comments for a coordinated agency response.

(b) NHTSA’s comments and the comments of any offices responding to a request by the Associate Administrator for Planning and Evaluation should be organized in a manner consistent with the structure of an environmental review set out in §520.21(e). NHTSA programs that are environmentally related to the proposed action under review should be identified so interrelationships may receive due consideration.

(c) Copies of NHTSA’s comments on environmental statements prepared by other agencies shall be distributed as follows:

1. The original and 1 copy to the requesting agency;
2. 1 copy to TES–70; and
3. 5 copies to CEQ.

(d) Requests by the public for copies should be referred to the agency originating the statement.

ATTACHMENT 1 TO PART 520—FORM AND CONTENT OF STATEMENT

1. Form. a. Each statement will be headed as follows:

DEPARTMENT OF TRANSPORTATION NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION

b. The heading specified above shall be modified to indicate that the statement also covers sections 4(f) of the DOT Act or 106 of the National Historic Preservation Act, when appropriate.

c. Each statement will, as a minimum, contain sections corresponding to paragraph 3 herein, supplemented as necessary to cover other matters provided in this Attachment.

d. The format for the summary to accompany draft and final environmental statements is as follows:

SUMMARY

(1) Name of Action. (Check one) () Administrative Action. () Legislative Action.
(2) Brief description of action indicating what States (and counties) are particularly affected.
(3) Summary of environmental impact and adverse environmental effects.
(4) List alternatives considered.
(5) (a) (For draft statements) List all Federal, State, and local agencies from which comments have been requested.
(6) Dates the draft statement and the final statement (if issued) were made available to the Council on Environmental Quality and the public.

2. Guidance as to content of statement. The following paragraphs of this Attachment are intended to be considered, where relevant, as guidance regarding the content of environmental statements. This guidance is expected to be supplemented by research reports, guidance on methodology, and other material from the literature as may be pertinent to evaluation of relevant environmental factors.

3. General content. The following points are to be covered:

a. A description of the proposed Federal action (e.g., “The proposed Federal action is approval of a grant application to construct * * *”), a statement of its purpose, and a description of the environment affected, including information, summary technical data, and maps and diagrams where relevant, adequate to permit an assessment of potential environmental impact by commenting offices and the public.

(1) Highly technical and specialized analyses and data should generally be avoided in the body of the draft impact statement. Such materials should be appropriately summarized in the body of the environmental statement and attached as appendices or...

79
footnoted with adequate bibliographic references.

2 The statement should succinctly describe the environment of the area affected by the action, including other related Federal activities in the area, their interrelationships, and cumulative environmental impact. The amount of detail included in such descriptions should be commensurate with the extent and expected impact of the action, and with the amount of information required at the particular level of decision making (planning, feasibility, design, etc.). In order to insure accurate descriptions and environmental considerations, site visits should be made where appropriate.

3 The statement should identify, as appropriate, population and growth characteristics of the affected area and any population and growth assumptions used to justify the project or program or to determine secondary population and growth impacts resulting from the proposed action and its alternatives (see paragraph 3c(2)). In discussing these population aspects, the statement should give consideration to using the rates of growth in the region of the project contained in the projection compiled for the Water Resources Council by the Bureau of Economic Analysis of the Department of Commerce and the Economic Research Service of the Department of Agriculture (the OBERS projection).

4 The sources of data used to identify, quantify, or evaluate any or all environmental consequences must be expressly noted.

b. The relationship of the proposed action and how it may conform to or conflict with adopted or proposed land use plans, policies, controls, and goals and objectives as have been promulgated by affected communities. Where a conflict or inconsistency exists, the statement should describe the extent of reconciliation and the reasons for proceeding notwithstanding the absence of full reconciliation.

c. The probable impact of the proposed action on the environment. (1) This requires assessment of the positive and negative effects of the proposed action it affects both national and international human environment. The attention given to different environmental factors will vary according to the nature, scale, and location of proposed actions. Among factors to be considered should be the potential effect of the action on such aspects of the environment as those listed in Attachment 2, and in section 520.5(b), supra. Primary attention should be given in the statement to discussing those factors most evidently impacted by the proposed action.

(2) Secondary and other foreseeable effects, as well as primary consequences for the environment, should be included in the analyses. Secondary effects, such as the impact on fuel consumption, emissions, or noise levels of automobiles or in the use of toxic or scarce materials, may be more substantial than the primary effects of the original action.

d. Alternatives to the proposed action, including, where relevant, those not within the existing authority of the responsible preparing office. Section 102(2)(D) of NEPA requires the responsible agency to "study, develop, and describe appropriate alternatives to recommended courses of action in any proposal which involves unresolved conflicts concerning alternative uses of available resources." A rigorous exploration and an objective evaluation of the environmental impacts of all reasonable alternatives, particularly those that might enhance environmental quality or avoid some or all of the adverse environmental effects, are essential. Sufficient analysis of such alternatives and their environmental benefits, costs, and risks should accompany the proposed action through the review process in order not to foreclose prematurely options which might enhance environmental quality or have less detrimental effects. Examples of such alternatives include: The alternatives of not taking any action or of postponing action pending further study; alternatives requiring actions of a significantly different nature which would provide similar benefits with different environmental impacts, e.g., low capital intensive improvements, mass transit alternatives to highway construction; alternatives related to different locations or designs or details of the proposed action which would present different environmental impacts. In each case, the analysis should be sufficiently detailed to reveal comparative evaluation of the environmental benefits, costs, and risks of the proposed action and each reasonable alternative. Where an existing impact statement already contains such an analysis its treatment of alternatives may be incorporated, provided such treatment is current and relevant to the precise purpose of the proposed action.

e. Any probable adverse environmental effects which cannot be avoided such as water or air pollution, noise, undesirable land use patterns, or impacts on public parks and recreation areas, wildlife and waterfowl refuges, or on historic sites, damage to life systems, traffic congestion, threats to health, or other consequences adverse to the environmental goals set out in section 101(b) of NEPA. This should be a brief section summarizing in one place those effects discussed in paragraph 3c that are adverse and unavoidable under the proposed action. Included for purposes of contrast should be a clear statement of how all adverse effects will be mitigated. Where mitigating steps are included in the statement, the responsible official shall see that they are carried out.
f. The relationship between local short-term uses of man’s environment and the maintenance and enhancement of long-term productivity. This section should contain a brief discussion of the extent to which the proposed action involves tradeoffs between short-term environmental gains at the expense of long-term losses, or vice versa, and a discussion of the extent to which the proposed action forecloses future options.

g. Any irreversible and irretrievable commitments of resources that would be involved in the proposed action should it be implemented. This requires identification of unavoidable impacts and the extent to which the action irreversibly curtails the range of potential uses of the environment. “Resources” means not only the labor and materials devoted to an action but also the natural and cultural resources lost or destroyed.

h. An indication of what other interests and considerations of Federal policy are thought to offset the adverse environmental effects of the proposed action identified pursuant to subparagraphs (c) and (e) of this paragraph. The statement should also indicate the extent to which these stated countervailing benefits could be realized by following reasonable alternatives to the proposed action (as identified in subparagraph (d) of this paragraph) that would avoid some or all of the adverse environmental effects. In this connection if a cost-benefit analysis of the proposed action has been prepared, it, or a summary, should be attached to the environmental impact statement, and should clearly indicate the extent to which environmental costs have not been reflected in such analysis.

 1. A discussion of problems and objections raised by other Federal agencies, State and local entities, and citizens in the review process, and the disposition of the issues involved and the reasons therefor. (This section shall be added to the final environmental statement at the end of the review process.)

 (1) The draft and final statements should document issues raised through consultations with Federal, State, and local agencies with jurisdiction or special expertise and with citizens, of actions taken in response to comments, public hearings, and other citizens involvement proceedings.

 (2) Any unresolved environmental issues and efforts to resolve them, through further consultations or otherwise, should be identified in the final statement. For instance, where an agency comments that the statement has inadequate analysis or that the agency has reservations concerning the impacts, or believes that the impacts are too adverse for approval, either the issue should be resolved or the final statement should reflect efforts to resolve the issue and set forth any action that will result.

(3) The statement should reflect that every effort was made to discover and discuss all major points of view on the environmental effects of the proposed action and alternatives in the draft statement. However, where opposing professional views and responsible opinion have been overlooked in the draft statement and are raised through the commenting process, the environmental effects of the action should be reviewed in light of those views. A meaningful reference should be made in the final statement to the existence of any responsible opposing view not adequately discussed in the draft statement indicating responses to the issues raised.

(4) All substantive comments received on the draft (or summaries of responses from the public which have been exceptionally voluminous) should be attached to the final statement, whether or not each such comment is thought to merit individual discussion in the text of the statement.

j. Draft statement should indicate at appropriate points in the text any underlying studies, reports, and other information obtained and considered in preparing the statement, including any cost-benefit analyses prepared. In the case of documents not likely to be easily accessible (such as internal studies or reports), the statement should indicate how such information may be obtained. If such information is attached to the statement, care should be taken to insure that the statement remains an essentially self-contained instrument, capable of being understood by the reader without the need for undue cross reference.

4. Publicly owned parklands, recreational areas, wildlife and waterfowl refuges and historic sites. The following points are to be covered:

a. Description of “any publicly owned land from a public park, recreational area or wildlife and waterfowl refuge” or “any land from an historic site” affected or taken by the project. This includes its size, available activities, use, patronage, unique or irreplaceable qualities, relationship to other similarly used lands in the vicinity of the project, maps, plans, slides, photographs, and drawings showing a sufficient scale and detail the project. This also includes its impact on park, recreation, wildlife, or historic areas, and changes in vehicular or pedestrian access.

b. Statement of the “national, State or local significance” of the entire park, recreational area, refuge, or historic site “as determined by the Federal, State or local officials having jurisdiction thereof.”

 (1) In the absence of such a statement lands will be presumed to be significant. Any statement of “insignificance” by the official having jurisdiction is subject to review by the Department as to whether such statement is capricious.
(2) Where Federal lands are administered for multiple uses, the Federal official having jurisdiction over the lands shall determine whether the subject lands are in fact being used for park, recreation, wildlife, waterfowl, or historic purposes.

c. Similar data, as appropriate, for alternative designs and locations, including detailed cost estimates (including showing percentage differences in total project costs) and technical feasibility, and appropriate analysis of the alternatives, including any unique problems present and evidence that the cost or community disruptions resulting from alternative routes reach extraordinary magnitudes. This portion of the statement should demonstrate compliance with the Supreme Court’s statement in the Overton Park case, as follows:

(1) Measures to minimize harm may include replacement of land and facilities, providing land or facilities, provision for functional replacement of the facility (see 49 CFR 25.267).

(2) Design measures to minimize harm; e.g., tunneling, cut and cover, cut and fill, treatment of embankments, planting, screening, maintenance of pedestrian or bicycle paths and noise mitigation measures all reflecting utilization of appropriate interdisciplinary design personnel.

e. Evidence of concurrence or description of efforts to obtain concurrence of Federal, State or local officials having jurisdiction over the section 4(f) property regarding the action proposed and the measures planned to minimize harm.

f. If Federally-owned properties are involved in highway projects, the final statement shall include the action taken or an indication of the expected action after filing a map of the proposed use of the land or other appropriate documentation with the Secretary of the Department supervising the land (23 U.S.C. 317).

g. If land acquired with Federal grant money (Department of Housing and Urban Development open space or Bureau of Outdoor Recreation land and water conservation funds) is involved, the final statement shall include appropriate communications with the grantor agency.

h. TGC will determine application of section 4(f) to public interests in lands, such as easements, reversions, etc.

i. A specific finding by the Administrator that there is no feasible and prudent alternative and that the proposal includes all possible planning to minimize harm to the “4(f) area” involved.

5. Properties and sites of historic and cultural significance. The statement should document actions taken to preserve and enhance districts, sites, buildings, structures, and objects of historical, architectural, archeological, or cultural significance affected by the action.

a. Draft environmental statements should include identification, through consulting the National Register and applying the National Register Criteria (36 CFR part 800), of properties that are included in or eligible for inclusion in the National Register of Historic Places that may be affected by the project. The National Register is published in its entirety each February in the FEDERAL REGISTER. Monthly additions and listings of eligible properties are published in the FEDERAL REGISTER the first Tuesday of each month. The Secretary of the Interior will advise, upon request, whether properties are eligible for the National Register.

b. If application of the Advisory Council on Historic Preservation’s (ACHP) Criteria of Adverse Effect (36 CFR part 800) indicates that the project will have an effect upon a property included in or eligible for inclusion in the National Register of Historic Places, the draft environmental statement should document the effect. Evaluation of the effect should be made in consultation with the State Historic Preservation Officer (SHPO) and in accordance with the ACHP’s criteria of Adverse Effect (36 CFR part 800).

c. Determinations of no adverse effect should be documented in the draft statement with evidence of the application of the ACHP’s Criteria of Adverse Effect, the views of the appropriate State Historic Preservation Officer, and submission of the determination to the ACHP for review.

d. If the project will have an adverse effect upon a property included in or eligible for inclusion in the National Register of Historic Places, the final environmental statement should include either an executed Memorandum of Agreement or comments from the Council after consideration of the project at a meeting of the ACHP and an account of actions to be taken in response to the comments of the ACHP. Procedures for obtaining a Memorandum of Agreement and the comments of the Council are found in 36 CFR part 800.
e. To determine whether the project will have an effect on properties of State or local historical, architectural, archaeological, or cultural significance not included in or eligible for inclusion in the National Register, the responsible official should consult with the State Historic Preservation Officer, with the local official having jurisdiction of the property, and with such other historic, architectural, and cultural property as the State Historic Preservation Officer, with the local official having jurisdiction thereof, may recommend. Use of land from historic properties of Federal, State and local significance as determined by the official having jurisdiction thereof involves section 4(f) of the DOT Act and documentation should include information necessary to consider a 4(f) determination (see paragraph 4).

6. Impacts of the proposed action on the human environment involving community disruption and relocation. a. The statement should include a description of probable impact sufficient to enable an understanding of the extent of the environmental and social impact of the project alternatives and to consider whether relocation problems can be properly handled. This would include the following information obtainable by visual inspection of the proposed affected area and from secondary sources and community sources when available:

(1) An estimate of the households to be displaced including the family characteristics (e.g., minorities, and income levels, tenure, the elderly, large families).

(2) Impact on the human environment of an action which divides or disrupts an established community, including where pertinent, the effect of displacement on types of families and individuals affected, effect of streets cut off, separation of residences from community facilities, separation of residential areas.

(3) Impact on the neighborhood and housing to which relocation is likely to take place (e.g., lack of sufficient housing for large families, doubleings up).

(4) An estimate of the businesses to be displaced, and the general effect of business dislocation on the economy of the community.

(5) A discussion of relocation housing in the area and the ability to provide adequate relocation housing for the types of families to be displaced. If the resources are insufficient to meet the estimated displacement needs, a description of the actions proposed to remedy this situation including, if necessary, use of housing of last resort.

(6) Results of consultation with local officials and community groups regarding the impacts to the community affected. Relocation agencies and staff and other social agencies can help to describe probable social impacts of this proposed action.

(7) Where necessary, special relocation advisory services to be provided the elderly, handicapped and illiterate regarding interpretations of benefits, assistance in selecting replacement housing and consultation with respect to acquiring, leasing, and occupying replacement housing.

b. This data should provide the preliminary basis for assurance of the availability of relocation housing as required by DOT 5620.1, Replacement Housing Policy, dated June 24, 1970, and 49 CFR 25.53.

7. Considerations relating to pedestrians and bicyclists. Where appropriate, the statement should discuss impacts on and consideration to be given in the development of the project to pedestrian and bicycle access, movement and safety within the affected area, particularly in medium and high density commercial and residential areas.

8. Other social impacts. The general social groups specially benefitted or harmed by the proposed action should be identified in the statement including the following:

a. Particular effects of a proposal on the elderly, handicapped, non-drivers, transit dependent, or minorities should be described to the extent reasonably predictable.

b. How the proposal will facilitate or inhibit their access to jobs, educational facilities, religious institutions, health and welfare services, recreational facilities, social and cultural facilities, pedestrian movement facilities, and public transit services.

9. Standards as to noise, air, and water pollution. The statement shall reflect sufficient analysis of the effects of the proposed action on attainment and maintenance of any environmental standards established by law or administrative determination (e.g., noise, ambient air quality, water quality) including the following documentation:

a. With respect to water quality, there should be consultation with the agency responsible for the State water pollution control program as to conformity with standards and regulations regarding storm sewer discharge sedimentation control, and other non-point source discharges.

b. The comments or determinations of the offices charged with administration of the State’s implementation plan for air quality as to the consistency of the project with State plans for the implementation of ambient air quality standards.

c. Conformity to adopted noise standards, compatible, if appropriate, with different land uses.

10. Energy supply and natural resources development. Where applicable, the statement should reflect consideration of whether the project or program will have any effect on either the production or consumption of energy and other natural resources, and discuss such effects if they are significant.

11. Flood hazard evaluation. When an alternative under consideration encroaches on a flood plain, the statement should include evidence that studies have been made and evidence of consultations with agencies with...
expertise have been carried out. Necessary measures to handle flood hazard problems should be described. In compliance with Executive Order 11296, and Flood Hazard Guidelines for Federal Executive Agencies, promulgated by the Water Resources Council, or how such requirements can be met during project development.

12. Considerations relating to wetlands or coastal zones. Where wetlands or coastal zones are involved, the statement should include:
 a. Information on location, types, and extent of wetlands areas which might be affected by the proposed action.
 b. An assessment of the impacts resulting from both construction and operation of the project on the wetlands and associated wildlife, and measures to minimize adverse impacts.
 c. A statement by the local representative of the Department of the Interior, and any other responsible officials with special expertise, setting forth his views on the impacts of the project on the wetlands, the worth of the particular wetlands areas involved to the community and to the Nation, and recommendations as to whether the proposed action should proceed, and, if applicable, along what alternative route.
 d. Where applicable, a discussion of how the proposed project relates to the State coastal zone management program for the particular State in which the project is to take place.

13. Construction impacts. In general, adverse impacts during construction will be of less importance than long-term impacts of a proposal. Nonetheless, statements should appropriately address such matters as the following identifying any special problem areas:
 a. Noise impacts from construction and any specifications setting maximum noise levels.
 b. Disposal of spoil and effect on borrow areas and disposal sites (include specifications where special problems are involved).
 c. Measures to minimize effects on traffic and pedestrians.

14. Land use and urban growth. The statement should include, to the extent relevant and predictable:
 a. The effect of the project on land use, development patterns, and urban growth.
 b. Where significant land use and development impacts are anticipated, identify public facilities needed to serve the new development, and any problems or issues which would arise in connection with these facilities, and the comments of agencies that would provide these facilities.

ATTACHMENT 2 TO PART 520—AREAS OF ENVIRONMENTAL IMPACT AND FEDERAL AGENCIES WITH JURISDICTION BY LAW OR SPECIAL EXPERTISE TO COMMENT THEREON

EDITORIAL NOTE: Filed as part of the original document. For text see 39 FR 32546, Sept. 30, 1975.

ATTACHMENT 3 TO PART 520—OFFICES WITHIN FEDERAL AGENCIES AND FEDERAL-STATE AGENCIES FOR INFORMATION REGARDING THE AGENCIES’ IMPACT STATEMENTS FOR WHICH COMMENTS ARE REQUESTED

EDITORIAL NOTE: Filed as part of the original document. For text see 39 FR 35248, Sept. 30, 1975.

ATTACHMENT 4 TO PART 520—STATE AND LOCAL AGENCY REVIEW OF IMPACT STATEMENTS

1. OMB Revised Circular No. A–95 through its system of clearinghouses provides a means for securing the views of State and local environmental agencies, which can assist in the preparation of impact statements. Under A–95, review of the proposed project in the case of federally assisted projects (Part I of A–95) generally takes place prior to the preparation of the impact statement. Therefore, comments on the environmental effects of the proposed project that are secured during this stage of the A–95 process represent inputs to the environmental impact statement.

2. In the case of direct Federal development (Part II of A–95), Federal agencies are required to consult with clearinghouses at the earliest practicable time in the planning of the project or activity. Where such consultation occurs prior to completion of the draft impact statement, comments relating to the environmental effects of the proposed action would also represent inputs to the environmental impact statement.

3. In either case, whatever comments are made on environmental effects of proposed Federal or federally assisted projects by clearinghouses, or by State and local environmental agencies through clearinghouses, in the course of the A–95 review should be attached to the draft impact statement when it is circulated for review. Copies of the statement should be sent to the agencies making such comments. Whether those agencies then elect to comment again on the basis of the draft impact statement is a matter to be left to the discretion of the commenting agency depending on its resources, the significance of the project and the extent
to which its earlier comments were considered in preparing the draft statement.

4. The clearinghouses may also be used, by mutual agreement, for reviewing the draft environmental impact statement. However, the Federal agency may wish to deal directly with appropriate State or local agencies in the review of impact statements because the clearinghouses may be unwilling or unable to handle this phase of the process. In some cases, the Governor may have designated a specific agency, other than the clearinghouse, for securing reviews of impact statements. In any case, the clearinghouses should be sent copies of the impact statement.

5. To aid clearinghouses in coordinating State and local comments, draft statements should include copies of State and local agency comments made earlier under the A–95 process and should indicate on the summary sheet those other agencies from which comments have been requested, as specified in Attachment 1.

PART 523—VEHICLE CLASSIFICATION

§ 523.1 Scope.

This part establishes categories of vehicles that are subject to title V of the Motor Vehicle Information and Cost Savings Act, 15 U.S.C. 2001 et seq.

§ 523.2 Definitions.

Approach angle means the smallest angle, in a plane side view of an automobile, formed by the level surface on which the automobile is standing and a line tangent to the front tire static loaded radius arc and touching the underside of the automobile forward of the front tire.

Axle clearance means the vertical distance from the level surface on which an automobile is standing to the lowest point on the axle differential of the automobile.

Base tire (for passenger automobiles, light trucks, and medium duty passenger vehicles) means the tire size specified as standard equipment by the manufacturer on each unique combination of a vehicle’s footprint and model type. Standard equipment is defined in 40 CFR 86.1803–01.

Basic vehicle frontal area is used as defined in 40 CFR 86.1803.

Breakover angle means the supplement of the largest angle, in a plane side view of an automobile, that can be formed by two lines tangent to the front and rear static loaded radii arcs and intersecting at a point on the underside of the automobile.

Cab-complete vehicle means a vehicle that is first sold as an incomplete vehicle that substantially includes the vehicle cab section as defined in 40 CFR 1037.801. For example, vehicles known commercially as chassis-cabs, cab-chassis, box-deletes, bed-deletes, and cut-away vans are considered cab-complete vehicles. A cab includes a steering column and a passenger compartment. Note that a vehicle lacking some components of the cab is a cab-complete vehicle if it substantially includes the cab.

Cargo-carrying volume means the luggage capacity or cargo volume index, as appropriate, and as those terms are defined in 40 CFR 600.315–08, in the case of automobiles to which either of these terms apply. With respect to automobiles to which neither of these terms apply, “cargo-carrying volume” means the total volume in cubic feet, rounded to the nearest 0.1 cubic feet, of either an automobile’s enclosed non-seating space that is intended primarily for carrying cargo and is not accessible from the passenger compartment, or the space intended primarily for carrying cargo bounded in the front by a vertical plane that is perpendicular to the longitudinal centerline of the automobile and passes through the rearmost point on the rearmost seat and elsewhere by the automobile’s interior surfaces.

Class 2b vehicles are vehicles with a gross vehicle weight rating (GVWR) ranging from 8,501 to 10,000 pounds (lbs).
§523.2

Class 3 through Class 8 vehicles are vehicles with a GVWR of 10,001 lbs or more, as defined in 49 CFR 555.15.

Commercial medium- and heavy-duty on-highway vehicle means an on-highway vehicle with a GVWR of 10,000 lbs or more, as defined in 49 U.S.C. 32901(a)(7).

Complete vehicle means a vehicle, other than in §523.7, that requires no further manufacturing operations to perform its intended function and is a functioning vehicle that has the primary load carrying device or container (or equivalent equipment) attached or that is designed to pull a trailer. Examples of equivalent equipment would include fifth wheel trailer hitches, firefighting equipment, and utility booms.

Curb weight is defined the same as vehicle curb weight in 40 CFR 86.1803-01.

Departure angle means the smallest angle, in a plane side view of an automobile, formed by the level surface on which the automobile is standing and a line tangent to the rear tire static loaded radius arc and touching the underside of the automobile rearward of the rear tire.

Final stage manufacturer has the meaning given in 49 CFR 567.3.

Footprint is defined as the product of track width (measured in inches, calculated as the average of front and rear track widths, and rounded to the nearest tenth of an inch) times wheelbase (measured in inches and rounded to the nearest tenth of an inch), divided by 144 and then rounded to the nearest tenth of a square foot. For purposes of this definition, “track width” is the lateral distance between the centerlines of the base tires at ground, including the camber angle. For purposes of this definition, “wheelbase” is the longitudinal distance between front and rear wheel centerlines.

Full-size pickup truck has the meaning given in 40 CFR 86.1803-01.

Gross combination weight rating (GCWR) means the value specified by the manufacturer as the maximum allowable loaded weight of a combination vehicle (e.g., tractor plus trailer).

Gross vehicle weight rating (GVWR) means the value specified by the manufacturer as the maximum design loaded weight of a single vehicle (e.g., vocational vehicle).

Heavy-duty engine means any engine used for (or which the engine manufacturer could reasonably expect to be used for) motive power in a heavy-duty vehicle. For purposes of this definition in this part, the term “engine” includes internal combustion engines and other devices that convert chemical fuel into motive power. For example, a fuel cell and motor used in a heavy-duty vehicle is a heavy-duty engine.

Heavy-duty off-road vehicle means a heavy-duty vocational vehicle or vocational tractor that is intended for off-road use meeting either of the following criteria:

(1) Vehicles with tires installed having a maximum speed rating at or below 55 mph.

(2) Vehicles primarily designed to perform work off-road (such as in oil fields, forests, or construction sites), and meeting at least one of the criteria of paragraph (2)(i) of this definition and at least one of the criteria of paragraph (2)(ii) of this definition.

(i) Vehicles must have affixed components designed to work in an off-road environment (for example, hazardous material equipment or drilling equipment) or be designed to operate at low speeds making them unsuitable for normal highway operation.

(ii) Vehicles must:

(A) Have an axle that has a gross axle weight rating (GAWR), as defined in 49 CFR §571.3, of 29,000 pounds or more;

(B) Have a speed attainable in 2 miles of not more than 33 mph; or

(C) Have a speed attainable in 2 miles of not more than 45 mph, an unloaded vehicle weight that is not less than 95 percent of its GVWR, and no capacity to carry occupants other than the driver and operating crew.

Heavy-duty vehicle means a vehicle as defined in §523.6.

Incomplete vehicle means a vehicle, other than in §523.7, which does not have the primary load carrying device or container attached when it is first sold as a vehicle or any vehicle that does not meet the definition of a complete vehicle. This may include vehicles sold to secondary vehicle manufacturers. Incomplete vehicles include cab-complete vehicles.
Innovative technology means technology certified as such under 40 CFR 1037.610.

Light truck means a non-passenger automobile as defined in §523.5.

Medium duty passenger vehicle means a vehicle which would satisfy the criteria in §523.5 (relating to light trucks) but for its gross vehicle weight rating or its curb weight, which is rated at more than 8,500 lbs GVWR or has a vehicle curb weight of more than 6,000 lbs or has a basic vehicle frontal area in excess of 45 square feet, and which is designed primarily to transport passengers, but does not include a vehicle that:

(1) Is an “incomplete vehicle” as defined in this subpart; or

(2) Has a seating capacity of more than 12 persons; or

(3) Is designed for more than 9 persons in seating rearward of the driver’s seat; or

(4) Is equipped with an open cargo area (for example, a pick-up truck box or bed) of 72.0 inches in interior length or more. A covered box not readily accessible from the passenger compartment will be considered an open cargo area for purposes of this definition.

Mild hybrid vehicle has the meaning given in in 40 CFR 86.1803–01.

Motor home has the meaning given in 49 CFR 571.3.

Motor vehicle has the meaning given in 40 CFR 85.1703.

Passenger-carrying volume means the sum of the front seat volume and, if any, rear seat volume, as defined in 40 CFR 600.315–08, in the case of automobiles to which that term applies. With respect to automobiles to which that term does not apply, “passenger-carrying volume” means the sum in cubic feet, rounded to the nearest 0.1 cubic feet, of the volume of a vehicle’s front seat and seats to the rear of the front seat, as applicable, calculated as follows with the head room, shoulder room, and leg room dimensions determined in accordance with the procedures outlined in Society of Automotive Engineers Recommended Practice J1100a, Motor Vehicle Dimensions (Report of Human Factors Engineering Committee, Society of Automotive Engineers, approved September 1973 and last revised September 1975).

(1) For front seat volume, divide 1,728 into the product of the following SAE dimensions, measured in inches to the nearest 0.1 inches, and round the quotient to the nearest 0.001 cubic feet.

(i) H61–Effective head room—front.

(ii) W3–Shoulder room—front.

(iii) L34–Maximum effective leg room—accelerator.

(2) For the volume of seats to the rear of the front seat, divide 1,728 into the product of the following SAE dimensions, measured in inches to the nearest 0.1 inches, and rounded the quotient to the nearest 0.001 cubic feet.

(i) H63–Effective head room—second.

(ii) W4–Shoulder room—second.

(iii) L51–Minimum effective leg room—second.

Pickup truck means a non-passenger automobile which has a passenger compartment and an open cargo area (bed). Recreational vehicle or RV means a motor vehicle equipped with living space and amenities found in a motor home.

Running clearance means the distance from the surface on which an automobile is standing to the lowest point on the automobile, excluding unsprung weight.

Static loaded radius arc means a portion of a circle whose center is the center of a standard tire-rim combination of an automobile and whose radius is the distance from that center to the level surface on which the automobile is standing, measured with the automobile at curb weight, the wheel parallel to the vehicle’s longitudinal centerline, and the tire inflated to the manufacturer’s recommended pressure.

Strong hybrid vehicle has the meaning given in 40 CFR 86.1803–01.

Temporary living quarters means a space in the interior of an automobile in which people may temporarily live and which includes sleeping surfaces, such as beds, and household conveniences, such as a sink, stove, refrigerator, or toilet.

Van means a vehicle with a body that fully encloses the driver and a cargo carrying or work performing compartment. The distance from the leading edge of the windshield to the foremost body section of vans is typically shorter than that of pickup trucks and sport utility vehicles.
§ 523.3 Vocational tractor means a tractor that is classified as a vocational vehicle according to 49 CFR 1037.630.

Vocational vehicle means a vehicle that is equipped for a particular industry, trade or occupation such as construction, heavy hauling, mining, logging, oil fields, refuse and includes vehicles such as school buses, motorcoaches and RVs.

Work truck means a vehicle that is rated at more than 8,500 pounds and less than or equal to 10,000 pounds gross vehicle weight, and is not a medium-duty passenger vehicle as defined in 49 CFR 86.1803 effective as of December 20, 2007.

§ 523.3 Automobile.

(a) An automobile is any 4-wheeled vehicle that is propelled by fuel, or by alternative fuel, manufactured primarily for use on public streets, roads, and highways and rated at less than 10,000 pounds gross vehicle weight, except:

(1) A vehicle operated only on a rail line;

(2) A vehicle manufactured in different stages by 2 or more manufacturers, if no intermediate or final-stage manufacturer of that vehicle manufactures more than 10,000 multi-stage vehicles per year; or

(3) A work truck.

(b) The following vehicles rated at more than 6,000 pounds and less than 10,000 pounds gross vehicle weight are determined to be automobiles:

(1) Vehicles which would satisfy the criteria in § 523.4 (relating to passenger automobiles) but for their gross vehicle weight rating.

(2) Vehicles which would satisfy the criteria in § 523.5 (relating to light trucks) but for their gross vehicle weight rating, and which

(i) Have a basic vehicle frontal area of 45 square feet or less,

(ii) Have a curb weight of 6,000 pounds or less,

(iii) Have a gross vehicle weight rating of 8,500 pounds or less, and

(iv) Are manufactured during the 1980 model year or thereafter.

(3) Vehicles that are defined as medium duty passenger vehicles, and which are manufactured during the 2011 model year or thereafter.

§ 523.4 Passenger automobile.

A passenger automobile is any automobile (other than an automobile capable of off-highway operation) manufactured primarily for use in the transportation of not more than 10 individuals.

[42 FR 38362, July 28, 1977]

§ 523.5 Non-passenger automobile.

A non-passenger automobile means an automobile that is not a passenger automobile or a work truck and includes vehicles described in paragraphs (a) and (b) of this section:

(a) An automobile designed to perform at least one of the following functions:

(1) Transport more than 10 persons;

(2) Provide temporary living quarters;

(3) Transport property on an open bed;

(4) Provide, as sold to the first retail purchaser, greater cargo-carrying than passenger-carrying volume, such as in a cargo van; if a vehicle is sold with a second-row seat, its cargo-carrying volume is determined with that seat installed, regardless of whether the manufacturer has described that seat as optional; or

(5) Permit expanded use of the automobile for cargo-carrying purposes or other nonpassenger-carrying purposes through:

(i) For non-passenger automobiles manufactured prior to model year 2012, the removal of seats by means installed for that purpose by the automobile’s manufacturer or with simple tools, such as screwdrivers and wrenches, so as to create a flat, floor level, surface extending from the forwardmost point
§ 523.8 Heavy-duty vocational vehicle.

(a) A heavy-duty vocational vehicle is any commercial medium- and heavy-duty on highway vehicle or a work truck, as defined in 49 U.S.C. 32201(a)(7) and (19). For the purpose of this part, heavy-duty vocational vehicles are divided into three regulatory categories as follows:

(1) Heavy-duty pickup trucks and vans;

(2) Heavy-duty vocational vehicles; and

(3) Truck tractors with a GVWR above 26,000 pounds.

(b) The heavy-duty vehicle classification does not include:

(1) Vehicles defined as medium duty passenger vehicles.

(2) Vehicles excluded from the definition of “heavy-duty vehicle” because of vehicle weight or weight rating (such as light duty vehicles as defined in §523.5).

(3) Vehicles excluded from the definition of motor vehicle in 40 CFR 85.1703.

[76 FR 57491, Sept. 15, 2011]
§ 523.9 Truck tractors.

Truck tractors for the purpose of this part are considered as any truck tractor as defined in 49 CFR part 571 having a GVWR above 26,000 pounds.

[76 FR 57492, Sept. 15, 2011]

PART 525—EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS

Sec.
525.1 Scope.
525.2 Purpose.
525.3 Applicability.
525.4 Definitions.
525.5 Limitation on eligibility.
525.6 Requirements for petition.
525.7 Basis for petition.
525.8 Processing of petitions.
525.9 Duration of exemption.
525.10 Renewal of exemption.
525.11 Termination of exemption; amendment of alternative average fuel economy standard.
525.12 Public inspection of information.

SOURCE: 42 FR 38376, July 28, 1977, unless otherwise noted.

§ 525.1 Scope.

This part establishes procedures under section 502(c) of the Motor Vehicle Information and Cost Savings Act, as amended (15 U.S.C. 2002) for the submission and disposition of petitions filed by low volume manufacturers of passenger automobiles to exempt them from the average fuel economy standards for passenger automobiles and to establish alternative average fuel economy standards for those manufacturers.

§ 525.2 Purpose.

The purpose of this part is to provide content and format requirements for low volume manufacturers of passenger automobiles which desire to petition the Administrator for exemption from applicable average fuel economy standards and for establishment of appropriate alternative average fuel economy standards and to give interested persons an opportunity to present data, views and arguments on those petitions.

§ 525.3 Applicability.

This part applies to passenger automobile manufacturers.

§ 525.4 Definitions.

(a) Statutory terms. (1) The terms fuel, manufacture, manufacturer, and model year, are used as defined in section 501 of the Act.
(2) The terms average fuel economy, fuel economy, and model type are used as defined in 40 CFR 600.002-77.
(3) The term automobile means a vehicle determined by the Administrator under 49 CFR part 523 to be an automobile.
(4) The term passenger automobile means an automobile determined by the Administrator under 49 CFR part 523 to be a passenger automobile.
(5) The term customs territory of the United States is used as defined in 19 U.S.C. 1202.
(b) Other terms. (1) The term base level and vehicle configuration are used as defined in 40 CFR 600.002-77.
(2) The term vehicle curb weight is used as defined in 40 CFR 85.002.
(3) The term interior volume index is used as defined in 40 CFR 600.315-77.
(4) The term frontal area is used as defined in 40 CFR 86.129-79.
(5) The term basic engine is used as defined in 40 CFR 600.002-77(a)(21).
(6) The term designated seating position is defined in 49 CFR 571.3.
(7) As used in this part, unless otherwise required by the context:
Act means the Motor Vehicle Information and Cost Savings Act (Pub. L. 92-513), as amended by the Energy Policy and Conservation Act (Pub. L. 94-163);
Administrator means the Administrator of the National Highway Traffic Safety Administration;
Affected model year means a model year for which an exemption and alternative average fuel economy standard are requested under this part;
Production mix means the number of passenger automobiles, and their percentage of the petitioner’s annual total production of passenger automobiles, in each vehicle configuration which a petitioner plans to manufacture in a model year; and
Total drive ratio means the ratio of an automobile’s engine rotational speed
(in revolutions per minute) to the automobile's forward speed (in miles per hour).

[42 FR 38376, July 28, 1977, as amended at 44 FR 55579, Sept. 27, 1979]

§ 525.5 Limitation on eligibility.

Any manufacturer that manufactures (whether or not in the customs territory of the United States) 10,000 or more passenger automobiles in the second model year preceding an affected model year or in the affected model year is ineligible for an exemption for that affected model year.

§ 525.6 Requirements for petition.

Each petition filed under this part must—
(a) Identify the model year or years for which exemption is requested;
(b) Be submitted not later than 24 months before the beginning of the affected model year, unless good cause for later submission is shown;
(c) Be submitted in three copies to: Administrator, National Highway Traffic Safety Administration, Washington, DC 20590;
(d) Be written in the English language;
(e) State the full name, address, and title of the official responsible for preparing the petition, and the name and address of the manufacturer;
(f) Set forth in full data, views and arguments of the petitioner supporting the exemption and alternative average fuel economy standard requested by the petitioner, including the information and data specified by §525.7 and the calculations and analyses used to develop that information and data. No documents may be incorporated by reference in a petition unless the documents are submitted with the petition;
(g) Specify and segregate any part of the information and data submitted under this part that the petitioner wishes to have withheld from public disclosure in accordance with part 512 of this chapter.

§ 525.7 Basis for petition.

(a) The petitioner shall include the information specified in paragraphs (b) through (h) in its petition.
(b) Whether the petitioner controls, is controlled by, or is under common control with another manufacturer of passenger automobiles, and if so, the nature of that control relationship, and the total number of passenger automobiles manufactured by such other manufacturer or manufacturers.
(c) The total number of passenger automobiles manufactured or likely to be manufactured (whether or not in the customs territory of the United States) by the petitioner in the second model year immediately preceding each affected model year.
(d) For each affected model year, the petitioner’s projections of the most fuel efficient production mix of vehicle configurations and base levels of its passenger automobiles which the petitioner could sell in that model year, and a discussion demonstrating that these projections are reasonable. The discussion shall include information showing that the projections are consistent with—
(1) The petitioner’s annual total production and production mix of passenger automobiles manufactured or likely to be manufactured in each of the four model years immediately preceding that affected model year;
(2) Its passenger automobile production capacity for that affected model year;
(3) Its efforts to comply with that average fuel economy standard; and
(4) Anticipated consumer demand in the United States for passenger automobiles during that affected model year.
(e) For each affected model year, a description of the following features of each vehicle configuration of the petitioner’s passenger automobiles to be
manufactured in that affected model year;

(1) Maximum overall body width, overall length, and overall height, determined in accordance with Motor Vehicle Dimensions SAE J1100a (report of Human Engineering Committee, approved September 1973, as revised September 1975);

(2) Vehicle curb weight;

(3) Number of designated seating positions and interior volume index;

(4) Basic engine, displacement, and SAE rated net power, kilowatts;

(5) Fuel metering system, including the number of carburetor barrels, if applicable;

(6) Drive train configuration and total drive ratio;

(7) Emission control system;

(8) Dynamometer road load setting, determined in accordance with 40 CFR part 86, and the method used to determine that setting, including information indicating whether the road load setting was adjusted to account for the presence of air conditioning and whether the setting was based on the use of radial ply tires;

(9) Use of synthetic lubricants, low viscosity lubricants, or lubricants with additives that affect friction characteristics in the crankcase, differential, and transmission of the vehicles tested under the requirements of 40 CFR parts 86 and 600. With respect to automobiles which will use these lubricants, indicate which one will be used and explain why that type was chosen. With respect to automobiles which will not use these lubricants, explain the reasons for not so doing.

(f) For each affected model year, a fuel economy value for each vehicle configuration specified in 40 CFR 600.506(a)(2), base level, and model type of the petitioner’s passenger automobiles to be manufactured in that affected model year calculated in accordance with 40 CFR 600.510(e) and based upon the fuel economy values provided under paragraph (f) of this section and upon the petitioner’s production mix projected under paragraph (d) of this section for the affected model year.

(h) Information demonstrating that the average fuel economy figure provided for each affected model year under paragraph (g) of this section is the maximum feasible average fuel economy achievable by the petitioner for that model year, including—

(1) For each affected model year and each of the two model years immediately following the first affected model year, a description of the technological means selected by the petitioner for improving the average fuel economy of its automobiles to be manufactured in that model year.

(2) A chronological description of the petitioner’s past and planned efforts to implement the means described under paragraph (h)(1) of this section.

(3) A description of the effect of other Federal motor vehicle standards on the fuel economy of the petitioner’s automobiles.

(4) For each affected model year, a discussion of the alternative and additional means considered but not selected by the petitioner that would have enabled its passenger automobiles to achieve a higher average fuel economy than is achievable with the means described under paragraph (h)(1) of this section. This discussion must include an explanation of the reasons the petitioner had for rejecting these additional and alternative means.

(5) In the case of a petitioner which plans to increase the average fuel economy of its passenger automobiles to be manufactured in either of the two model years immediately following the first affected model year, an explanation of the petitioner’s reasons for not making those increases in that affected model year.
§ 525.8 Processing of petitions.

(a) If a petition is found not to contain the information required by this part, the petition is informed about the areas of insufficiency and advised that the petition will not receive further consideration until the required information is submitted.

(b) The Administrator may request the petitioner to provide information in addition to that required by this part.

(c) The Administrator publishes a proposed decision in the Federal Register. The proposed decision indicates the proposed grant of the petition and establishment of an alternative average fuel economy standard, or the proposed denial of the petition, specifies the reasons for the proposal and invites written public comment on the proposal.

(d) Any interested person may, upon written request to the Administrator not later than 15 days after the publication of a notice under paragraph (c) of this section, meet informally with an appropriate official of the National Highway Traffic Safety Administration to discuss the petition or notice.

(e) After the conclusion of the period for public comment on the proposal, the Administrator publishes a final decision in the Federal Register. The final decision is based on the petition, written public comments, and other available information. The final decision sets forth the grant of the exemption and establishes an alternative average fuel economy standard or the denial of the petition, and the reasons for the decision.

§ 525.9 Duration of exemption.

An exemption may be granted under this part for not more than three model years.

§ 525.10 Renewal of exemption.

A manufacturer exempted under this part may request renewal of its exemption by submitting a petition meeting the requirements of §§ 525.6 and 525.7.

§ 525.11 Termination of exemption; amendment of alternative average fuel economy standard.

(a) Any exemption granted under this part for an affected model year does not apply to a manufacturer that is ineligible under § 525.5 for an exemption in that model year.

(b) The administrator may initiate rulemaking either on his own motion or on petition by an interested person to terminate an exemption granted under this part or to amend an alternative average fuel economy standard established under this part.

(c) Any interested persons may petition the Administrator to terminate an exemption granted under this part or to amend an alternative average fuel economy standard established under this part.

§ 525.12 Public inspection of information.

(a) Except as provided in paragraph (b), any person may inspect available information relevant to a petition under this part, including the petition and any supporting data, memoranda of informal meetings with the petitioner or any other interested persons, and the notices regarding the petition, in the Docket Section of the National Highway Traffic Safety Administration. Any person may obtain copies of the information available for inspection under this paragraph in accordance with part 7 of the regulations of the Office of the Secretary of Transportation (49 CFR part 7).

(b) Except for the release of confidential information authorized by section 505 of the Act and part 512 of this chapter, information made available for public inspection does not include information for which confidentiality is requested under § 525.6(g) and is granted in accordance with part 512 and sections 502 and 505 of the Act and section 552(b) of title 5 of the U.S.C.

[46 FR 2063, Jan. 8, 1981]
PART 526—PETITIONS AND PLANS FOR RELIEF UNDER THE AUTO-
MOBILE FUEL EFFICIENCY ACT OF 1980

Sec. 526.1 General provisions.
526.2 U.S. production by foreign manufacturer.
526.3 Transfer of vehicle from non-domestic to domestic fleet.
526.4 [Reserved]
526.5 Earning offsetting monetary credits in future model years.

SOURCE: 47 FR 7248, Feb. 18, 1982, unless otherwise noted.

§ 526.1 General provisions.

(b) Address. Each petition and plan submitted under the applicable provisions of sections 502 and 503 of the Motor Vehicle Information and Cost Savings Act must be addressed to the Administrator, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington DC 20590.

(c) Authority and scope of relief. Each petition or plan must specify the specific provision of the Motor Vehicle Information and Cost Savings Act under which relief is being sought. The petition or plan must also specify the model years for which relief is being sought.

§ 526.2 U.S. production by foreign manufacturer.

Each petition filed under section 503(b)(3) of the Motor Vehicle Information and Cost Savings Act must contain the following information:

(a) For each model type (as defined by the Environmental Protection Agency in 40 CFR part 600) planned by the petitioner to be sold in the United States (regardless of place of manufacture), and for each model year beginning with the year before the first one for which relief is sought by the petition through the last year covered by the petition, the following information based on the petitioner’s current product plan and the assumption that the petition will be granted:

1. A description of the model type, including car line designation, engine displacement and type, transmission type, and average fuel economy;
2. U.S. sales projected for the model type;
3. The average percentage of the cost to the manufacturer of the model type which is attributable to value added in the United States or Canada, determined in accordance with 40 CFR 600.511–80, and the total manufacturing cost per vehicle; and
4. In the case of model types not offered for sale in the United States before the first year for which relief is sought in the petition or other model types for which expansions in production capacity are planned during the years covered by the petition, information (including any marketing surveys) indicating from where the additional sales will be captured. If sales are projected to be captured from U.S. manufacturers, the petition must provide an estimate of the employment impact on those manufacturers of the lost sales and the gain in employment for the petitioner and its U.S. suppliers.

(b) The total number of persons employed in the United States by the petitioner, excluding non-motor vehicle industry related employees, for each model year covered by the petition and for the model year immediately prior to those years.

(c) A description of how the petitioner’s responses to paragraphs (a) and (b) of this section would differ if the petition were denied.

§ 526.3 Transfer of vehicle from non-domestic to domestic fleet.

Each plan submitted under section 503(b)(4) of the Motor Vehicle Information and Cost Savings Act must contain the following information:

(a) For each model year for which relief is sought in the plan and for each model type of automobile sought to be
§ 529.3 Earning offsetting monetary credits in future model years.

Each plan submitted under section 502(1) of the Motor Vehicle Information and Cost Savings Act must contain the following information:

(a) Projected average fuel economy and production levels for the class of automobiles which may fail to comply with a fuel economy standard and for any other classes of automobiles from which credits may be transferred, for the current model year and for each model year thereafter ending with the last year covered by the plan.

(b) A list and full description of each planned product action (e.g., new model, mix change) which will affect the average fuel economy of the class of automobiles subject to the credit earning plan, for each model year beginning with the current model year and ending with the last year covered by the credit earning plan.

(c) The portion of the petitioners fleet affected by each product action (e.g., all K-cars with 6-cylinder engines) and the number of affected vehicles.

(d) The fuel economy effect of each product action specified under paragraph (b) of this section per affected vehicle.

PART 529—MANUFACTURERS OF MULTISTAGE AUTOMOBILES

Sec.
529.1 Scope and purpose.
529.2 Applicability.
529.3 Definitions.
529.4 Requirements for incomplete automobile manufacturers.
529.5 Requirements for intermediate manufacturers.
529.6 Requirements for final-stage manufacturers.

SOURCE: 42 FR 36372, July 28, 1977, unless otherwise noted.

§ 529.1 Scope and purpose.

This part determines, in cases where more than one person is the manufacturer of an automobile, which person is to be treated as the manufacturer for purposes of compliance with Title V of the Motor Vehicle Information and Cost Savings Act, as amended (15 U.S.C. 2001 et seq.) and rules issued thereunder.

§ 529.2 Applicability.

This part applies to incomplete automobile manufacturers, intermediate manufacturers, and final-stage manufacturers of automobiles that are manufactured in two or more stages.

§ 529.3 Definitions.

(a) Statutory terms. (1) The term automobile is used as defined in section 501 of the Act and in accordance with the determinations in 49 CFR part 523.

(2) The terms manufacturer, manufacturer, and fuel economy are used as defined in section 501 of the Act.

(b) Other terms. (1) Act means the Motor Vehicle Information and Cost
(2) Complete automobile means an automobile that requires no further manufacturing operations to perform its intended function, other than the addition of readily attachable components, such as mirrors or tire and rim assemblies, or minor finishing operations such as painting.

(3) Curb weight is defined the same as vehicle curb weight in 40 CFR part 86.

(4) Final-stage manufacturer means a person who performs such manufacturing operations on an incomplete automobile that it becomes a completed automobile.

(5) Frontal area is used as defined in 40 CFR 86.079–2.

(6) Incomplete automobile means an assemblage consisting, as a minimum, of frame and chassis structure, power train, steering system, suspension system, and braking system to the extent that those systems are to be part of the completed automobile, that requires further manufacturing operations, other than the addition of readily attachable components, such as mirrors or tire and rim assemblies, or minor finishing operations such as painting, to become a completed automobile.

(7) Incomplete automobile manufacturer means a person who manufactures an incomplete automobile by assembling components none of which, taken separately, constitute a complete automobile.

(8) Intermediate manufacturer means a person, other than the incomplete automobile manufacturer or the final-stage manufacturer, who performs manufacturing operations on an incomplete automobile.

§ 529.4 Requirements for incomplete automobile manufacturers.

(a) Except as provided in paragraph (c) of this section, §§ 529.5 and 529.6, each incomplete automobile manufacturer is considered, with respect to multistage automobiles incorporating its incomplete automobiles, the manufacturer of the multistage automobiles for purposes of the requirements of Title V and rules issued thereunder.

(b) Each incomplete automobile manufacturer shall furnish with each of its incomplete automobiles, when it is delivered to the subsequent manufacturer, (1) a document that contains the following information—

(1) Name and mailing address of the incomplete automobile manufacturer.

(2) Month and year during which the incomplete automobile manufacturer performed its last manufacturing operation on the incomplete automobile.

(iii) Identification of the incomplete automobile or group of incomplete automobiles to which the document applies. The identification may be by serial number or otherwise, but it must be sufficient to enable a subsequent manufacturer to ascertain positively that the document applies to a particular incomplete automobile even if the document is not attached to that automobile.

(iv) Fuel economy values determined by the incomplete automobile manufacturer for the automobile in accordance with 40 CFR part 600 and a statement that a fuel economy label containing those values has been prepared in accordance with Environmental Protection Agency regulation by the manufacturer identified in the document.

(v) Maximum curb weight that may not be exceeded by a subsequent manufacturer without invalidating the fuel economy values determined by the incomplete automobile manufacturer.

(vi) Maximum frontal area that may not be exceeded by a subsequent manufacturer without invalidating the fuel economy values determined by the incomplete automobile manufacturer.

(vii) Whether the fuel economy values have been computed with the road load horsepower set to take into account the presence of air conditioning.

(2) A fuel economy label conforming with 40 CFR part 600.

(c)(1) The incomplete automobile manufacturer shall either attach the document specified in paragraph (b)(1) of this section to the incomplete automobile in such a manner that it will not be inadvertently detached or send that document directly to the subsequent manufacturer to which that automobile is delivered.

(2)(i) If the incomplete automobile manufacturer places the portion of the
§ 529.5 Requirements for intermediate manufacturers.

(a) Except as provided in paragraph (d) of this section and in §529.6, each intermediate manufacturer whose manufacturing operations on an incomplete automobile cause it to exceed the maximum curb weight or maximum frontal area set forth in the document furnished it by the incomplete automobile manufacturer under §529.4(c)(1) or by a previous intermediate manufacturer under paragraph (b) of this section, as appropriate, is considered the manufacturer of the multistage automobile manufactured from that automobile for the purpose of the requirements of Title V and rules issued thereunder, other than that in part 537, Fuel Economy Reports.

(b) Each intermediate manufacturer of an incomplete automobile shall furnish, in the manner specified in §529.4(c) to the subsequent manufacturer of that automobile the document required by §529.4(b) regarding that automobile. If any of the changes in the automobile made by the intermediate manufacturer affect the validity of the fuel economy values or other statements in the document or any addendum attached to the document by a previous manufacturer of the automobile, the intermediate manufacturer shall furnish an addendum to the document that contains its name and mailing address and an indication of all changes that should be made in the document to reflect changes that it made in the automobile.

(c) Each intermediate manufacturer that is required by paragraph (b) of this section to furnish an addendum to a document required by §529.4(b) shall, within 10 days after completing its manufacturing operations, send a copy of the document and addendum to the Administrator of the Environmental Protection Agency and to the manufacturer previously considered under this part to be the manufacturer of the automobile.

(d) (1) If the intermediate manufacturer’s manufacturing operations on an incomplete automobile cause it to exceed the maximum curb weight or maximum frontal area set forth in the document furnished it by the incomplete automobile manufacturer under §529.4(c)(1) or a previous intermediate manufacturer under paragraph (b) of this section, as appropriate, that manufacturer shall prepare a new fuel economy label for that automobile in accordance with 40 CFR part 600.

(2) If neither the intermediate manufacturer of an incomplete automobile nor any previous manufacturer of that automobile has placed the portion of the body including the windshield and front seat side windows on that automobile, the intermediate manufacturer shall send the fuel economy label furnished it by the incomplete automobile manufacturer under §529.4(c)(2)(i) or a previous intermediate manufacturer under paragraph (d)(2) of this section or prepared by it under paragraph (d)(1) of this section, as appropriate, directly to the subsequent manufacturer to which that automobile is delivered.

(3) If the intermediate manufacturer places the portion of the body including the windshield and front seat side windows on the incomplete automobile, that manufacturer shall attach the fuel economy label furnished it under §529.4(c)(1) or paragraph (d)(2) of this section or the fuel economy label prepared by it under paragraph (d)(1) of this section, as appropriate, to that
§ 529.6 Requirements for final-stage manufacturers.

(a) Except as provided in paragraph (c) of this section, each final-stage manufacturer whose manufacturing operations on an incomplete automobile cause the completed automobile to exceed the maximum curb weight or maximum frontal area set forth in the document specified in §529.4(b) and furnished by the incomplete automobile manufacturer under §529.4(c)(1) or by the last intermediate manufacturer under §529.5(b), as appropriate, is considered the manufacturer of the completed automobile for the purpose of the requirements of Title V and rules issued thereunder, other than those in part 537, Fuel Economy Reports.

(b) Each final-stage manufacturer that becomes the manufacturer of a multistage automobile under paragraph (a) of this section shall, within 10 days after completing its manufacturing operations on that automobile, send written notification of its exceeding the curb weight or frontal area maximum to the Administrator of the Environmental Protection Agency and to the manufacturer previously considered under this part to be the manufacturer of the automobile.

(c)(1) If the final-stage manufacturer becomes the manufacturer of a multistage automobile under paragraph (a)(1) of this section, that manufacturer shall prepare a new fuel economy label for that automobile in accordance with 40 CFR part 600.

(2) If the final-stage manufacturer places the portion of the body including the windshield and front seat side windows on the incomplete automobile, that manufacturer shall attach the fuel economy label furnished by the incomplete automobile manufacturer under §529.4(c)(2) or by the last intermediate manufacturer under §529.5(d)(2) or the fuel economy label prepared by the final-stage manufacturer under paragraph (c)(1) of this section, as appropriate, to that automobile in accordance with 40 CFR part 600.

(3) The final-stage manufacturer shall attach to the completed automobile in accordance with 40 CFR part 600 a fuel economy label identical to the label that is required under this part to have been prepared by the manufacturer considered under this part to be the manufacturer of that automobile if:

(i) The portion of the body including the windshield and front seat side windows was added to the completed automobile by a previous manufacturer;

(ii) The final-stage manufacturer’s manufacturing operations do not cause that automobile to exceed either of the maxima specified in paragraph (c)(1) of this section; and

(iii) That fuel economy label is not on that automobile when received by that manufacturer or is removed from that automobile while it is in the possession of that manufacturer.

§ 529.6 Requirements for final-stage manufacturers.

(a) Except as provided in paragraph (c) of this section, each final-stage manufacturer whose manufacturing operations on an incomplete automobile cause the completed automobile to exceed the maximum curb weight or maximum frontal area set forth in the document specified in §529.4(b) and furnished by the incomplete automobile manufacturer under §529.4(c)(1) or by the last intermediate manufacturer under §529.5(b), as appropriate, is considered the manufacturer of the completed automobile for the purpose of the requirements of Title V and rules issued thereunder, other than those in part 537, Fuel Economy Reports.
PART 531—PASSenger AutoMOBILE AVERAGE Fuel Economy STANDARDS

§ 531.5 Fuel economy standards.

(a) Except as provided in paragraph (f) of this section, each manufacturer of passenger automobiles shall comply with the fleet average fuel economy standards in Table I, expressed in miles per gallon, in the model year specified as applicable:

(b) Other terms. As used in this part, unless otherwise required by the context—

§ 531.6 Measurement and calculation procedures.

APPENDIX A TO PART 531—EXAMPLE OF CALCULATING COMPLIANCE UNDER § 531.5(c)

SOURCE: 42 FR 33552, June 30, 1977, unless otherwise noted.

§ 531.1 Scope.

This part establishes average fuel economy standards pursuant to section 502 (a) and (c) of the Motor Vehicle Information and Cost Savings Act, as amended, for passenger automobiles.

[43 FR 28204, June 29, 1978]
(b) For model year 2011, a manufacturer's passenger automobile fleet shall comply with the fleet average fuel economy level calculated for that model year according to Figure 1 and the appropriate values in Table II.

<table>
<thead>
<tr>
<th>Model year</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>18.0</td>
</tr>
<tr>
<td>1979</td>
<td>19.0</td>
</tr>
<tr>
<td>1980</td>
<td>20.0</td>
</tr>
<tr>
<td>1981</td>
<td>22.0</td>
</tr>
<tr>
<td>1982</td>
<td>24.0</td>
</tr>
<tr>
<td>1983</td>
<td>26.0</td>
</tr>
<tr>
<td>1984</td>
<td>27.0</td>
</tr>
<tr>
<td>1985</td>
<td>27.5</td>
</tr>
<tr>
<td>1986</td>
<td>26.0</td>
</tr>
<tr>
<td>1987</td>
<td>26.0</td>
</tr>
<tr>
<td>1988</td>
<td>26.0</td>
</tr>
<tr>
<td>1989</td>
<td>26.5</td>
</tr>
<tr>
<td>1990-2010</td>
<td>27.5</td>
</tr>
</tbody>
</table>
Figure 1:

\[
\text{Required_Fuel_Economy_Level} = \frac{N}{\sum N_i T_i}
\]

Where:
- \(N\) is the total number (sum) of passenger automobiles produced by a manufacturer;
- \(N_i\) is the number (sum) of the \(i\)th passenger automobile model produced by the manufacturer; and
- \(T_i\) is the fuel economy target of the \(i\)th model passenger automobile, which is determined according to the following formula, rounded to the nearest hundredth:

\[
T_i = \frac{1}{a + \left(\frac{1}{b} - \frac{1}{a}\right) \frac{e^{(x-c)d}}{1 + e^{(x-c)d}}}
\]

Where:
- \(a\), \(b\), \(c\), and \(d\) are defined in Table II;
- \(e = 2.718\); and
- \(x = \) footprint (in square feet, rounded to the nearest tenth) of the vehicle model.

Table II—Parameters for the Passenger Automobile Fuel Economy Targets

<table>
<thead>
<tr>
<th>Model year</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) (mpg)</td>
</tr>
<tr>
<td>2011</td>
<td>31.20</td>
</tr>
</tbody>
</table>

(c) For model years 2012–2025, a manufacturer’s passenger automobile fleet shall comply with the fleet average fuel economy level calculated for that model year according to Figure 2 and the appropriate values in Table III.

Figure 2:

\[
\text{CAFE}_{\text{required}} = \frac{\sum_{i} \text{PRODUCTION}_i}{\sum_{i} \frac{\text{PRODUCTION}_i}{\text{TARGET}_i}}
\]
Where:

\(CAFE_{\text{required}} \) is the fleet average fuel economy standard for a given fleet (domestic passenger automobiles or import passenger automobiles);

Subscript \(i \) is a designation of multiple groups of automobiles, where each group’s designation, i.e., \(i = 1, 2, 3, \ldots \), represents automobiles that share a unique model type and footprint within the applicable fleet, either domestic passenger automobiles or import passenger automobiles;

\(\text{Production}_i \) is the number of passenger automobiles produced for sale in the United States within each \(i \)th designation, i.e., which share the same model type and footprint;

\(\text{TARGET}_i \) is the fuel economy target in miles per gallon (mpg) applicable to the footprint of passenger automobiles within each \(i \)th designation, i.e., which share the same model type and footprint, calculated according to Figure 3 and rounded to the nearest hundredth of a mpg, i.e., \(35.455 = 35.46 \) mpg, and the summations in the numerator and denominator are both performed over all models in the fleet in question.

\[
\text{TARGET} = \frac{1}{\min \left(\max \left(c \times \text{FOOTPRINT} + d, \frac{1}{a} \right), \frac{1}{b} \right)}
\]

Where:

\(\text{TARGET} \) is the fuel economy target (in mpg) applicable to vehicles of a given footprint (FOOTPRINT, in square feet);

\(\text{MIN} \) and \(\text{MAX} \) functions take the minimum and maximum, respectively, of the included values.

Parameters \(a, b, c, \) and \(d \) are defined in Table III; and

Table III—Parameters for the Passenger Automobile Fuel Economy Targets, MYs 2012–2025

<table>
<thead>
<tr>
<th>Model year</th>
<th>Parameters</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a (mpg)</td>
<td>b (mpg)</td>
</tr>
<tr>
<td>2012</td>
<td>35.95</td>
<td>27.95</td>
</tr>
<tr>
<td>2013</td>
<td>36.10</td>
<td>28.46</td>
</tr>
<tr>
<td>2014</td>
<td>37.75</td>
<td>29.03</td>
</tr>
<tr>
<td>2015</td>
<td>39.24</td>
<td>29.56</td>
</tr>
<tr>
<td>2016</td>
<td>41.09</td>
<td>30.96</td>
</tr>
<tr>
<td>2017</td>
<td>43.61</td>
<td>32.65</td>
</tr>
<tr>
<td>2018</td>
<td>46.21</td>
<td>33.84</td>
</tr>
<tr>
<td>2019</td>
<td>48.87</td>
<td>35.07</td>
</tr>
<tr>
<td>2020</td>
<td>51.74</td>
<td>36.84</td>
</tr>
<tr>
<td>2021</td>
<td>53.21</td>
<td>38.02</td>
</tr>
<tr>
<td>2022</td>
<td>55.21</td>
<td>39.79</td>
</tr>
<tr>
<td>2023</td>
<td>57.57</td>
<td>41.64</td>
</tr>
<tr>
<td>2024</td>
<td>58.32</td>
<td>43.58</td>
</tr>
<tr>
<td>2025</td>
<td>61.07</td>
<td>45.61</td>
</tr>
</tbody>
</table>
(d) In addition to the requirements of paragraphs (b) and (c) of this section, each manufacturer shall also meet the minimum fleet standard for domestically manufactured passenger automobiles expressed in Table IV:

TABLE IV—MINIMUM FUEL ECONOMY STANDARDS FOR DOMESTICALLY MANUFACTURED PASSENGER AUTOMOBILES, MYS 2011–2021

<table>
<thead>
<tr>
<th>Model year</th>
<th>Minimum standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>27.8</td>
</tr>
<tr>
<td>2012</td>
<td>30.7</td>
</tr>
<tr>
<td>2013</td>
<td>31.4</td>
</tr>
<tr>
<td>2014</td>
<td>32.1</td>
</tr>
<tr>
<td>2015</td>
<td>33.3</td>
</tr>
<tr>
<td>2016</td>
<td>34.7</td>
</tr>
<tr>
<td>2017</td>
<td>36.7</td>
</tr>
<tr>
<td>2018</td>
<td>38.0</td>
</tr>
<tr>
<td>2019</td>
<td>39.4</td>
</tr>
<tr>
<td>2020</td>
<td>40.9</td>
</tr>
<tr>
<td>2021</td>
<td>42.7</td>
</tr>
<tr>
<td>2022</td>
<td>44.7</td>
</tr>
<tr>
<td>2023</td>
<td>46.8</td>
</tr>
<tr>
<td>2024</td>
<td>49.0</td>
</tr>
<tr>
<td>2025</td>
<td>51.3</td>
</tr>
</tbody>
</table>

(e) For model years 2022–2025, each manufacturer shall comply with the standards set forth in paragraphs (c) and (d) in this section, if NHTSA determines in a rulemaking, initiated after January 1, 2017, and conducted in accordance with 49 U.S.C. 32902, that the standards in paragraphs (c) and (d) are the maximum feasible standards for model years 2022–2025. If, for any of those model years, NHTSA determines that the maximum feasible standard for passenger cars and the corresponding minimum standard for domestically manufactured passenger cars should be set at a different level, manufacturers shall comply with those different standards in lieu of the standards set forth for those model years in paragraphs (c) and (d), and NHTSA will revise this section to reflect the different standards.

(f) The following manufacturers shall comply with the standards indicated below for the specified model years:

(1) Avanti Motor Corporation.

AVERAGE FUEL ECONOMY STANDARD

<table>
<thead>
<tr>
<th>Model year</th>
<th>Miles per gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>16.1</td>
</tr>
<tr>
<td>1979</td>
<td>14.5</td>
</tr>
<tr>
<td>1980</td>
<td>15.8</td>
</tr>
<tr>
<td>1981</td>
<td>18.2</td>
</tr>
</tbody>
</table>

(2) Rolls-Royce Motors, Inc.

AVERAGE FUEL ECONOMY STANDARD—Continued

<table>
<thead>
<tr>
<th>Model year</th>
<th>Miles per gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>10.7</td>
</tr>
<tr>
<td>1979</td>
<td>10.8</td>
</tr>
<tr>
<td>1980</td>
<td>11.1</td>
</tr>
<tr>
<td>1981</td>
<td>10.7</td>
</tr>
<tr>
<td>1982</td>
<td>10.6</td>
</tr>
<tr>
<td>1983</td>
<td>9.9</td>
</tr>
<tr>
<td>1984</td>
<td>10.0</td>
</tr>
<tr>
<td>1985</td>
<td>10.0</td>
</tr>
<tr>
<td>1986</td>
<td>11.0</td>
</tr>
<tr>
<td>1987</td>
<td>11.2</td>
</tr>
<tr>
<td>1988</td>
<td>11.2</td>
</tr>
<tr>
<td>1989</td>
<td>11.7</td>
</tr>
<tr>
<td>1990</td>
<td>12.7</td>
</tr>
<tr>
<td>1991</td>
<td>12.7</td>
</tr>
<tr>
<td>1992</td>
<td>13.8</td>
</tr>
<tr>
<td>1993</td>
<td>13.8</td>
</tr>
<tr>
<td>1994</td>
<td>13.8</td>
</tr>
<tr>
<td>1995</td>
<td>14.6</td>
</tr>
<tr>
<td>1996</td>
<td>14.6</td>
</tr>
<tr>
<td>1997</td>
<td>15.1</td>
</tr>
<tr>
<td>1998</td>
<td>16.3</td>
</tr>
<tr>
<td>1999</td>
<td>16.3</td>
</tr>
</tbody>
</table>

(3) Checker Motors Corporation.

AVERAGE FUEL ECONOMY STANDARD

<table>
<thead>
<tr>
<th>Model year</th>
<th>Miles per gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>17.6</td>
</tr>
<tr>
<td>1979</td>
<td>16.5</td>
</tr>
<tr>
<td>1980</td>
<td>18.5</td>
</tr>
<tr>
<td>1981</td>
<td>18.3</td>
</tr>
<tr>
<td>1982</td>
<td>18.4</td>
</tr>
</tbody>
</table>

(4) Aston Martin Lagonda, Inc.

AVERAGE FUEL ECONOMY STANDARD

<table>
<thead>
<tr>
<th>Model year</th>
<th>Miles per gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>11.5</td>
</tr>
<tr>
<td>1980</td>
<td>12.1</td>
</tr>
<tr>
<td>1981</td>
<td>12.2</td>
</tr>
<tr>
<td>1982</td>
<td>12.2</td>
</tr>
<tr>
<td>1983</td>
<td>11.3</td>
</tr>
<tr>
<td>1984</td>
<td>11.3</td>
</tr>
<tr>
<td>1985</td>
<td>11.4</td>
</tr>
</tbody>
</table>

(5) Excalibur Automobile Corporation.
§531.6

AVERAGE FUEL ECONOMY STANDARD

<table>
<thead>
<tr>
<th>Model year</th>
<th>Miles per gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>11.5</td>
</tr>
<tr>
<td>1979</td>
<td>11.5</td>
</tr>
<tr>
<td>1980</td>
<td>16.2</td>
</tr>
<tr>
<td>1981</td>
<td>17.9</td>
</tr>
<tr>
<td>1982</td>
<td>17.9</td>
</tr>
<tr>
<td>1983</td>
<td>16.6</td>
</tr>
<tr>
<td>1984</td>
<td>16.6</td>
</tr>
<tr>
<td>1985</td>
<td>16.6</td>
</tr>
</tbody>
</table>

(6) Lotus Cars Ltd.

<table>
<thead>
<tr>
<th>Model year</th>
<th>Average fuel economy standard (miles per gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>24.2</td>
</tr>
<tr>
<td>1995</td>
<td>23.3</td>
</tr>
</tbody>
</table>

(7) Officine Alfieri Maserati, S.p.A.

<table>
<thead>
<tr>
<th>Model year</th>
<th>Miles per gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>12.5</td>
</tr>
<tr>
<td>1979</td>
<td>12.5</td>
</tr>
<tr>
<td>1980</td>
<td>9.5</td>
</tr>
<tr>
<td>1984</td>
<td>17.9</td>
</tr>
<tr>
<td>1985</td>
<td>16.8</td>
</tr>
</tbody>
</table>

(8) Lamborghini of North America.

<table>
<thead>
<tr>
<th>Model year</th>
<th>Average fuel economy standard (miles per gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>13.7</td>
</tr>
<tr>
<td>1984</td>
<td>13.7</td>
</tr>
</tbody>
</table>

(9) LondonCoach Co., Inc.

<table>
<thead>
<tr>
<th>Model year</th>
<th>Miles per gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>21.0</td>
</tr>
<tr>
<td>1987</td>
<td>21.0</td>
</tr>
<tr>
<td>1988</td>
<td>21.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model year</th>
<th>Average fuel economy standard (miles per gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>12.8</td>
</tr>
<tr>
<td>1996</td>
<td>12.6</td>
</tr>
<tr>
<td>1997</td>
<td>12.5</td>
</tr>
</tbody>
</table>

(11) Dutcher Motors, Inc.

<table>
<thead>
<tr>
<th>Model year</th>
<th>Average fuel economy standard (miles per gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>17.0</td>
</tr>
<tr>
<td>1997</td>
<td>17.0</td>
</tr>
<tr>
<td>1998</td>
<td>17.0</td>
</tr>
</tbody>
</table>

(12) MedNet, Inc.

<table>
<thead>
<tr>
<th>Model year</th>
<th>Average fuel economy standard (miles per gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>17.0</td>
</tr>
<tr>
<td>1997</td>
<td>17.0</td>
</tr>
<tr>
<td>1998</td>
<td>17.0</td>
</tr>
</tbody>
</table>

(13) Vector Aeromotive Corporation.

<table>
<thead>
<tr>
<th>Model year</th>
<th>Average fuel economy standard (miles per gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>12.1</td>
</tr>
</tbody>
</table>

(14) Qvale Automotive Group Srl.

<table>
<thead>
<tr>
<th>Model year</th>
<th>Average fuel economy standard (miles per gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>22.0</td>
</tr>
<tr>
<td>2001</td>
<td>22.0</td>
</tr>
</tbody>
</table>

(15) Spyker Automobielen B.V.

<table>
<thead>
<tr>
<th>Model year</th>
<th>Average fuel economy standard (miles per gallon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>18.9</td>
</tr>
<tr>
<td>2007</td>
<td>18.9</td>
</tr>
</tbody>
</table>

[43 FR 28204, June 29, 1978]

EDITORIAL NOTE: For Federal Register citations affecting §531.5, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.

§531.6 Measurement and calculation procedures.

(a) The fleet average fuel economy performance of all passenger automobiles that are manufactured by a manufacturer in a model year shall be determined in accordance with procedures established by the Administrator.
of the Environmental Protection Agency under 49 U.S.C. 32904 and set forth in 40 CFR part 600. For model years 2017 to 2025, a manufacturer is eligible to increase the fuel economy performance of passenger cars in accordance with procedures established by EPA set forth in 40 CFR part 600, including any adjustments to fuel economy EPA allows, such as for fuel consumption improvements related to air conditioning efficiency and off-cycle technologies.

(b) The eligibility of a manufacturer to increase its fuel economy performance through use of an off-cycle technology requires an application request made to EPA in accordance with 40 CFR Part 86.1869–12 and an approval granted by EPA made in consultation with NHTSA. In order to expedite NHTSA’s consultation with EPA, a manufacturer’s application as part of the off-cycle credit approval process under 40 CFR 86.1869–12(b) or 40 CFR 86.1869–12(c) shall also be submitted to NHTSA at the same time if the manufacturer is seeking off-cycle fuel economy improvement values under the CAFE program for those technologies.

For off-cycle technologies which are covered under 40 CFR 86.1869–12(b) or 40 CFR 86.1869–12(c), NHTSA will consult with EPA regarding NHTSA’s evaluation of the specific off-cycle technology to ensure its impact on fuel economy and the suitability of using the off-cycle technology to adjust the fuel economy performance. NHTSA will provide its views on the suitability of the technology for that purpose to EPA. NHTSA’s evaluation and review will consider:

(1) Whether the technology has a direct impact upon improving fuel economy performance;

(2) Whether the technology is related to crash-avoidance technologies, safety critical systems or systems affecting safety-critical functions, or technologies designed for the purpose of reducing the frequency of vehicle crashes;

(3) Information from any assessments conducted by EPA related to the application, the technology and/or related technologies; and

(4) Any other relevant factors.

[77 FR 63191, Oct. 15, 2012]

APPENDIX TO PART 531—EXAMPLE OF CALCULATING COMPLIANCE UNDER §531.5(c)

Assume a hypothetical manufacturer (Manufacturer X) produces a fleet of domestic passenger automobiles in MY 2012 as follows:

APPENDIX TABLE I

<table>
<thead>
<tr>
<th>Group</th>
<th>Carline name</th>
<th>Basic engine (L)</th>
<th>Transmission class</th>
<th>Description</th>
<th>Actual measured fuel economy (mpg)</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC A FWD</td>
<td>1.8</td>
<td>A5</td>
<td>2-door sedan</td>
<td>34.0</td>
<td>1,500</td>
</tr>
<tr>
<td>2</td>
<td>PC A FWD</td>
<td>1.8</td>
<td>M6</td>
<td>2-door sedan</td>
<td>34.6</td>
<td>2,000</td>
</tr>
<tr>
<td>3</td>
<td>PC A FWD</td>
<td>2.5</td>
<td>A6</td>
<td>4-door wagon</td>
<td>33.8</td>
<td>2,000</td>
</tr>
<tr>
<td>4</td>
<td>PC A AWD</td>
<td>1.8</td>
<td>A6</td>
<td>4-door wagon</td>
<td>34.4</td>
<td>1,000</td>
</tr>
<tr>
<td>5</td>
<td>PC A AWD</td>
<td>2.5</td>
<td>M6</td>
<td>2-door hatchback</td>
<td>32.9</td>
<td>3,000</td>
</tr>
<tr>
<td>6</td>
<td>PC B RWD</td>
<td>2.5</td>
<td>A6</td>
<td>4-door wagon</td>
<td>32.2</td>
<td>8,000</td>
</tr>
<tr>
<td>7</td>
<td>PC B RWD</td>
<td>2.5</td>
<td>A7</td>
<td>4-door sedan</td>
<td>33.1</td>
<td>2,000</td>
</tr>
<tr>
<td>8</td>
<td>PC C AWD</td>
<td>2.2</td>
<td>A7</td>
<td>4-door sedan</td>
<td>30.6</td>
<td>5,000</td>
</tr>
<tr>
<td>9</td>
<td>PC C FWD</td>
<td>3.2</td>
<td>M6</td>
<td>2-door coupe</td>
<td>28.5</td>
<td>1,000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>275.50</td>
<td></td>
</tr>
</tbody>
</table>

Note to Appendix Table I: Manufacturer X’s required fleet average fuel economy standard level would first be calculated by determining the fuel economy targets applicable to each unique model type and footprint combination for model type groups 1–9 as illustrated in Appendix Table II.
APPENDIX TABLE II

<table>
<thead>
<tr>
<th>Model type</th>
<th>Description</th>
<th>Wheelbase (inches)</th>
<th>Track width (inches)</th>
<th>Footprint (ft²)</th>
<th>Volume</th>
<th>Fuel economy target standard (mpg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC A FWD</td>
<td>2-door sedan</td>
<td>205/75R14</td>
<td>99.8</td>
<td>61.2</td>
<td>42.4</td>
</tr>
<tr>
<td>2</td>
<td>PC A FWD</td>
<td>2-door sedan</td>
<td>215/70R15</td>
<td>99.8</td>
<td>60.9</td>
<td>42.2</td>
</tr>
<tr>
<td>3</td>
<td>PC A FWD</td>
<td>4-door wagon</td>
<td>215/70R15</td>
<td>100.0</td>
<td>60.9</td>
<td>42.3</td>
</tr>
<tr>
<td>4</td>
<td>PC A AWD</td>
<td>4-door wagon</td>
<td>235/60R15</td>
<td>100.0</td>
<td>61.2</td>
<td>42.5</td>
</tr>
<tr>
<td>5</td>
<td>PC A AWD</td>
<td>2-door hatchback</td>
<td>225/65R16</td>
<td>99.6</td>
<td>59.5</td>
<td>41.2</td>
</tr>
<tr>
<td>6</td>
<td>PC B RWD</td>
<td>4-door wagon</td>
<td>265/55R18</td>
<td>109.2</td>
<td>66.8</td>
<td>50.7</td>
</tr>
<tr>
<td>7</td>
<td>PC B RWD</td>
<td>4-door sedan</td>
<td>235/65R17</td>
<td>109.2</td>
<td>67.8</td>
<td>51.4</td>
</tr>
<tr>
<td>8</td>
<td>PC C AWD</td>
<td>4-door sedan</td>
<td>265/55R18</td>
<td>111.3</td>
<td>67.8</td>
<td>52.4</td>
</tr>
<tr>
<td>9</td>
<td>PC C FWD</td>
<td>2-door coupe</td>
<td>225/65R16</td>
<td>111.3</td>
<td>67.2</td>
<td>51.9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note to Appendix Table II: With the appropriate fuel economy targets determined for each unique model type and footprint combination, Manufacturer X’s required fleet average fuel economy standard would be calculated as illustrated in Appendix Figure 1.
Appendix Figure 1—Calculation of Manufacturer X’s fleet average fuel economy standard using Table II:

\[
\text{Fleet average fuel economy standard} = \frac{\sum (\text{Group}_i \text{ Production} \cdot \text{Group}_i \text{ Target Standard})}{\sum (\text{Group}_i \text{ Production})}
\]

\[
= \frac{1500 + 2000 + 2000 + 1000 + 3000 + 8000 + 1000 + 3000 + 8000}{35.01 + 35.14 + 35.08 + 35.95 + 35.81 + 30.33 + 29.99 + 29.52 + 29.79}
\]

\[
= 31.6 \text{ mpg}
\]

Appendix Figure 2—Calculation of Manufacturer X’s actual fleet average fuel economy performance level using Table I:

\[
\text{Fleet average fuel economy performance} = \frac{\sum (\text{Group}_i \text{ Production} \cdot \text{Group}_i \text{ Performance})}{\sum (\text{Group}_i \text{ Production})}
\]

\[
= \frac{1500 + 2000 + 2000 + 1000 + 3000 + 8000 + 1000 + 3000 + 8000}{34.0 + 35.1 + 33.8 + 34.4 + 35.2 + 33.3 + 33.3 + 33.1 + 33.1 + 33.2 + 33.6 + 27.5}
\]

\[
= 32.0 \text{ mpg}
\]

Note to Appendix Figure 2: Since the actual fleet average fuel economy performance of Manufacturer X’s fleet is 32.0 mpg, as compared to its required fleet fuel economy standard of 31.6 mpg, Manufacturer X complied with the CAFE standard for MY 2012 as set forth in §531.5(c).

[77 FR 63191, Oct. 15, 2012]

PART 533—LIGHT TRUCK FUEL ECONOMY STANDARDS

Sec.
533.1 Scope.
533.2 Purpose.
533.3 Applicability.
533.4 Definitions.
533.5 Requirements.
533.6 Measurement and calculation procedures.
APPENDIX TO PART 533—EXAMPLE OF CALCULATING COMPLIANCE UNDER §533.5(c)

§ 533.1 Scope.

This part establishes average fuel economy standards pursuant to section 502(b) of the Motor Vehicle Information and Cost Savings Act, as amended, for light trucks.

§ 533.2 Purpose.

The purpose of this part is to increase the fuel economy of light trucks by establishing minimum levels of average fuel economy for those vehicles.

§ 533.3 Applicability.

This part applies to manufacturers of light trucks.

§ 533.4 Definitions.

(a) Statutory terms. (1) The terms average fuel economy, average fuel economy standard, fuel economy, import, manufacturer, and model year are used as defined in section 501 of the Act.

(2) The term automobile is used as defined in section 501 of the Act and in accordance with the determinations in part 523 of this chapter.

(3) The term domestically manufactured is used as defined in section 503(b)(2)(E) of the Act.

(b) Other terms. As used in this part, unless otherwise required by the context—

(2) Light truck is used in accordance with the determinations in part 523 of this chapter.

Captive import means with respect to a light truck, one which is not domestically manufactured but which is imported in the 1980 model year or there-af-ter by a manufacturer whose principal place of business is in the United States.

4-wheel drive, general utility vehicle means a 4-wheel drive, general purpose automobile capable of off-highway operation that has a wheelbase of not more than 280 centimeters, and that has a body shape similar to 1977 Jeep CJ–5 or CJ–7, or the 1977 Toyota Land Cruiser.

Basic engine means a unique combi-nation of manufacturer, engine displacement, number of cylinders, fuel system (as distinguished by number of carba-retor barrels or use of fuel injection), and catalyst usage.

Limited product line light truck means a light truck manufactured by a manufacturer whose light truck fleet is powered exclusively by basic engines which are not also used in passenger automo-biles.

§ 533.5 Requirements.

(a) Each manufacturer of light trucks shall comply with the following fleet average fuel economy standards, expressed in miles per gallon, in the model year specified as applicable:

<table>
<thead>
<tr>
<th>Model year</th>
<th>2-wheel drive light trucks Captive imports Other</th>
<th>4-wheel drive light trucks Captive imports Other</th>
<th>Limited product line light trucks Captive imports Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>17.2</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>16.0</td>
<td>16.0</td>
<td>14.0</td>
</tr>
<tr>
<td>1981</td>
<td>16.7</td>
<td>16.7</td>
<td>15.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model year</th>
<th>Combined standard Captive imports Others</th>
<th>2-wheel drive light trucks Captive imports Others</th>
<th>4-wheel drive light trucks Captive imports Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>17.5</td>
<td>17.5</td>
<td>18.0</td>
</tr>
<tr>
<td>1983</td>
<td>19.0</td>
<td>19.0</td>
<td>19.5</td>
</tr>
<tr>
<td>1984</td>
<td>20.0</td>
<td>20.0</td>
<td>20.3</td>
</tr>
<tr>
<td>1985</td>
<td>19.5</td>
<td>19.5</td>
<td>19.7</td>
</tr>
<tr>
<td>1986</td>
<td>20.0</td>
<td>20.0</td>
<td>20.5</td>
</tr>
<tr>
<td>1987</td>
<td>20.5</td>
<td>20.5</td>
<td>21.0</td>
</tr>
<tr>
<td>1988</td>
<td>20.5</td>
<td>20.5</td>
<td>21.0</td>
</tr>
<tr>
<td>1989</td>
<td>20.5</td>
<td>20.5</td>
<td>21.5</td>
</tr>
<tr>
<td>1990</td>
<td>20.0</td>
<td>20.0</td>
<td>20.5</td>
</tr>
<tr>
<td>1991</td>
<td>20.2</td>
<td>20.2</td>
<td>20.7</td>
</tr>
</tbody>
</table>

\[Required\text{_}Fuel\text{_}Economy\text{_}Level = \frac{N}{\sum N_i \cdot T_i} \]

Where:

\(N \) is the total number (sum) of light trucks produced by a manufacturer,
\(N_i \) is the number (sum) of the \(i \)th light truck model type produced by a manufacturer; and

\(T_i \) is the fuel economy target of the \(i \)th light truck model type, which is determined according to the following formula, rounded to the nearest hundredth:

\[T_i = \frac{1}{\frac{1}{a} + \frac{1}{b} + \frac{1}{d} + \phi(x-c)d} \]

Where:

\(\phi = 2.718 \); and
\(x \) = footprint (in square feet, rounded to the nearest tenth) of the model type.

\[TABLE\text{_}V\text{_}PARAMETERS\text{_}FOR\text{_}THE\text{_}LIGHT\text{_}TRUCK\text{_}FUEL\text{_}ECONOMY\text{_}TARGETS\text{_}FOR\text{_}MYS\text{_}2008\text{_}2011 \]

<table>
<thead>
<tr>
<th>Model year</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) (mpg)</td>
</tr>
<tr>
<td>2008</td>
<td>28.56</td>
</tr>
<tr>
<td>2009</td>
<td>30.07</td>
</tr>
<tr>
<td>2010</td>
<td>29.96</td>
</tr>
<tr>
<td>2011</td>
<td>27.10</td>
</tr>
</tbody>
</table>
§ 533.5

Where:

\(\text{CAFE}_{\text{required}} \) is the fleet average fuel economy standard for a given light truck fleet;

Subscript \(i \) is a designation of multiple groups of light trucks, where each group's designation, \(i.e., i = 1, 2, 3, \text{etc.} \), represents light trucks that share a unique model type and footprint within the applicable fleet.

\(\text{Production}_i \) is the number of light trucks produced for sale in the United States within each \(i \) designation, \(i.e., \text{which share the same model type and footprint}; \)

\(\text{TARGET}_i \) is the fuel economy target in miles per gallon (mpg) applicable to the footprint of light trucks within each \(i \)th designation, \(i.e., \text{which share the same model type and footprint, calculated according to either Figure 3 or Figure 4, as appropriate, and rounded to the nearest hundredth of a mpg, i.e., 35.455 = 35.46 mpg, and the summations in the numerator and denominator are both performed over all models in the fleet in question.} \)

Figure 3:

\[
\text{TARGET} = \frac{1}{\text{MIN} \left[\text{MAX} \left(\frac{1}{a} \right), \frac{1}{b} \right]}
\]

Where:

\(\text{TARGET} \) is the fuel economy target (in mpg) applicable to vehicles of a given footprint (FOOTPRINT, in square feet);

Parameters \(a, b, c, \text{and } d \) are defined in Table VI; and

The \(\text{MIN} \) and \(\text{MAX} \) functions take the minimum and maximum, respectively, of the included values.

\textbf{TABLE VI—PARAMETERS FOR THE LIGHT TRUCK FUEL ECONOMY TARGETS FOR MYS 2012–2016}

<table>
<thead>
<tr>
<th>Model year</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) (mpg)</td>
</tr>
<tr>
<td>2012</td>
<td>29.82</td>
</tr>
<tr>
<td>2013</td>
<td>30.67</td>
</tr>
<tr>
<td>2014</td>
<td>31.38</td>
</tr>
<tr>
<td>2015</td>
<td>32.72</td>
</tr>
<tr>
<td>2016</td>
<td>34.42</td>
</tr>
</tbody>
</table>

Figure 4:

\[
\text{TARGET} = \text{MAX} \left(\frac{1}{\text{MIN} \left[\text{MAX} \left(\frac{1}{a} \right), \frac{1}{b} \right] \times \text{FOOTPRINT, in square feet}} \right)
\]

Where:

\(\text{TARGET} \) is the fuel economy target (in mpg) applicable to vehicles of a given footprint (FOOTPRINT, in square feet);

Parameters \(a, b, c, d, e, f, g, \text{and } h \) are defined in Table VII; and

The \(\text{MIN} \) and \(\text{MAX} \) functions take the minimum and maximum, respectively, of the included values.

\textbf{TABLE VII—PARAMETERS FOR THE LIGHT TRUCK FUEL ECONOMY TARGETS FOR MYS 2017–2025}

<table>
<thead>
<tr>
<th>Model year</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) (mpg)</td>
</tr>
<tr>
<td>2017</td>
<td>36.26</td>
</tr>
<tr>
<td>2018</td>
<td>37.36</td>
</tr>
<tr>
<td>2019</td>
<td>38.16</td>
</tr>
<tr>
<td>2020</td>
<td>39.11</td>
</tr>
</tbody>
</table>
TABLE VII–PARAMETERS FOR THE LIGHT TRUCK FUEL ECONOMY TARGETS FOR MYs 2017–2025—Continued

<table>
<thead>
<tr>
<th>Model year</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a (mpg)</td>
</tr>
<tr>
<td>2021</td>
<td>41.80</td>
</tr>
<tr>
<td>2022</td>
<td>43.79</td>
</tr>
<tr>
<td>2023</td>
<td>45.89</td>
</tr>
<tr>
<td>2024</td>
<td>48.09</td>
</tr>
<tr>
<td>2025</td>
<td>50.39</td>
</tr>
</tbody>
</table>

(b)(1) For model year 1979, each manufacturer may:
(i) Combine its 2- and 4-wheel drive light trucks and comply with the average fuel economy standard in paragraph (a) of this section for 2-wheel drive light trucks; or
(ii) Comply separately with the two standards specified in paragraph (a) of this section.
(2) For model year 1979, the standard specified in paragraph (a) of this section for 4-wheel drive light trucks applies only to 4-wheel drive general utility vehicles. All other 4-wheel drive light trucks in that model year shall be included in the 2-wheel drive category for compliance purposes.
(c) For model years 1980 and 1981, manufacturers of limited product line light trucks may:
(1) Comply with the separate standard for limited product line light trucks, or
(2) Comply with the other standards specified in § 533.5(a), as applicable.
(d) For model years 1982–91, each manufacturer may:
(1) Combine its 2- and 4-wheel drive light trucks (segregating captive import and other light trucks) and comply with the combined average fuel economy standard specified in paragraph (a) of this section; or
(2) Comply separately with the 2-wheel drive standards and the 4-wheel drive standards (segregating captive import and other light trucks) specified in paragraph (a) of this section.
(e) For model year 1992, each manufacturer shall comply with the average fuel economy standard specified in paragraph (a) of this section (segregating captive import and other light trucks).
(f) For each model year 1996 and thereafter, each manufacturer shall combine its captive imports with its other light trucks and comply with the fleet average fuel economy standard in paragraph (a) of this section.
(g) For model years 1996 and thereafter, each manufacturer shall combine its captive imports with its other light trucks and comply with the fleet average fuel economy standard in paragraph (a) of this section.
(h) For model year 2011, a manufacturer’s light truck fleet shall comply with the fleet average fuel economy standard calculated for that model year according to Figure 1 and the appropriate values in Table V.
(i) For model years 2012–2016, a manufacturer’s light truck fleet shall comply with the fleet average fuel economy standard calculated for that model year according to Figures 2 and 3 and the appropriate values in Table VI.
(j) For model years 2017–2025, a manufacturer’s light truck fleet shall comply with the fleet average fuel economy standard calculated for that model year according to Figures 2 and 4 and the appropriate values in Table VII.
(k) For model years 2022–2025, each manufacturer shall comply with the standards set forth in paragraph (j) in this section, if NHTSA determines in a rulemaking, initiated after January 1, 2017, and conducted in accordance with 49 U.S.C. 32902, that the standards in paragraph (j) are the maximum feasible standards for model years 2022–2025. If, for any of those model years, NHTSA determines that the maximum feasible standard for light trucks should be set at a different level, manufacturers shall comply with those different
§ 533.6 Measurement and calculation procedures.

(a) Any reference to a class of light trucks manufactured by a manufacturer shall be deemed—

(1) To include all light trucks in that class manufactured by persons who control, are controlled by, or are under common control with, such manufacturer; and

(2) To exclude all light trucks in that class manufactured (within the meaning of paragraph (a)(1) of this section) during a model year by such manufacturer which are exported prior to the expiration of 30 days following the end of such model year.

(b) The fleet average fuel economy performance of all vehicles subject to Part 533 that are manufactured by a manufacturer in a model year shall be determined in accordance with procedures established by the Administrator of the Environmental Protection Agency under 49 U.S.C. 32904 and set forth in 40 CFR part 600. For model years 2017 to 2025, a manufacturer is eligible to increase the fuel economy performance of light trucks in accordance with procedures established by EPA set forth in 40 CFR part 600, including any adjustments to fuel economy EPA allows, such as for fuel consumption improvements related to air conditioning efficiency, off-cycle technologies, and hybridization and other performance-based technologies for full-size pickup trucks.

(c) The eligibility of a manufacturer to increase its fuel economy performance through use of an off-cycle technology requires an application request made to EPA in accordance with 49 CFR Part 86.1869-12 and an approval granted by EPA made in consultation with NHTSA. In order to expedite NHTSA’s consultation with EPA, a manufacturer’s application as part of the off-cycle credit approval process under 49 CFR 86.1869-12(b) or 40 CFR 86.1869-12(c) shall also be submitted to NHTSA at the same time if the manufacturer is seeking off-cycle fuel economy improvement values under the CAFE program for those technologies. For off-cycle technologies which are covered under 40 CFR 86.1869-12(b) or 40 CFR 86.1869-12(c), NHTSA will consult with EPA regarding NHTSA’s evaluation of the specific off-cycle technology to ensure its impact on fuel economy and the suitability of using the off-cycle technology to adjust the fuel economy performance. NHTSA will provide its views on the suitability of the technology for that purpose to EPA. NHTSA’s evaluation and review will consider:

(1) Whether the technology has a direct impact upon improving fuel economy performance;

(2) Whether the technology is related to crash-avoidance technologies, safety critical systems or systems affecting safety-critical functions, or technologies designed for the purpose of reducing the frequency of vehicle crashes;

(3) Information from any assessments conducted by EPA related to the application, the technology and/or related technologies; and

(4) Any other relevant factors.

APPENDIX TO PART 533—EXAMPLE OF CALCULATING COMPLIANCE UNDER §533.5(i)

Assume a hypothetical manufacturer (Manufacturer X) produces a fleet of light trucks in MY 2012 as follows:
APPENDIX TABLE I

<table>
<thead>
<tr>
<th>Group</th>
<th>Carline name</th>
<th>Basic engine (L)</th>
<th>Description</th>
<th>Actual measured fuel economy (mpg)</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pickup A 2WD</td>
<td>4</td>
<td>A5 Reg cab, MB</td>
<td>27.1</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>Pickup B 2WD</td>
<td>4</td>
<td>A5 Reg cab, MB</td>
<td>27.6</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>Pickup C 2WD</td>
<td>4.5</td>
<td>A5 Reg cab, LB</td>
<td>23.9</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>Pickup C 2WD</td>
<td>4</td>
<td>M5 Ext cab, MB</td>
<td>23.7</td>
<td>400</td>
</tr>
<tr>
<td>5</td>
<td>Pickup C 2WD</td>
<td>4.5</td>
<td>A5 Crew cab, SB</td>
<td>23.6</td>
<td>400</td>
</tr>
<tr>
<td>6</td>
<td>Pickup D 2WD</td>
<td>4.5</td>
<td>A6 Ext cab, MB</td>
<td>22.7</td>
<td>500</td>
</tr>
<tr>
<td>7</td>
<td>Pickup E 2WD</td>
<td>5</td>
<td>A6 Ext cab, MB</td>
<td>22.5</td>
<td>500</td>
</tr>
<tr>
<td>8</td>
<td>Pickup E 2WD</td>
<td>5</td>
<td>A6 Ext cab, MB</td>
<td>22.5</td>
<td>500</td>
</tr>
<tr>
<td>9</td>
<td>Pickup F 2WD</td>
<td>4.5</td>
<td>A5 Reg cab, LB</td>
<td>22.5</td>
<td>1,600</td>
</tr>
<tr>
<td>10</td>
<td>Pickup F 2WD</td>
<td>4.5</td>
<td>A5 Ext cab, MB</td>
<td>22.3</td>
<td>800</td>
</tr>
<tr>
<td>11</td>
<td>Pickup F 2WD</td>
<td>4.5</td>
<td>A5 Crew cab, SB</td>
<td>22.2</td>
<td>800</td>
</tr>
</tbody>
</table>

Total ... 6,700.

Note to Appendix Table I: Manufacturer X’s required fleet average fuel economy standard level would first be calculated by determining the fuel economy targets applicable to each unique model type and footprint combination for model type groups 1–11 as illustrated in Appendix Table II.

Manufacturer X calculates a fuel economy target standard for each unique model type and footprint combination.

APPENDIX TABLE II

<table>
<thead>
<tr>
<th>Group</th>
<th>Carline name</th>
<th>Basic engine (L)</th>
<th>Description</th>
<th>Wheelbase (inches)</th>
<th>Track width F&R average (inches)</th>
<th>Footprint (ft²)</th>
<th>Volume</th>
<th>Fuel economy target standard (mpg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pickup A</td>
<td>4</td>
<td>A5 Reg cab, MB</td>
<td>235/75R15</td>
<td>100.0</td>
<td>68.8</td>
<td>47.8</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>Pickup B</td>
<td>4</td>
<td>M5 Reg cab, MB</td>
<td>235/75R15</td>
<td>100.0</td>
<td>68.2</td>
<td>47.4</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>Pickup C</td>
<td>4.5</td>
<td>A5 Reg cab, LB</td>
<td>255/70R17</td>
<td>125.0</td>
<td>59.7</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>Pickup C</td>
<td>4</td>
<td>M5 Ext cab, MB</td>
<td>255/70R17</td>
<td>125.0</td>
<td>59.7</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>5</td>
<td>Pickup C</td>
<td>4.5</td>
<td>A5 Crew cab, SB</td>
<td>275/70R17</td>
<td>150.0</td>
<td>71.9</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>6</td>
<td>Pickup D</td>
<td>4.5</td>
<td>A6 Crew cab, SB</td>
<td>255/70R17</td>
<td>125.0</td>
<td>59.7</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>7</td>
<td>Pickup E</td>
<td>5</td>
<td>A6 Ext cab, MB</td>
<td>255/70R17</td>
<td>125.0</td>
<td>59.7</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>8</td>
<td>Pickup E</td>
<td>5</td>
<td>A6 Crew cab, MB</td>
<td>285/70R17</td>
<td>125.0</td>
<td>60.1</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>9</td>
<td>Pickup F</td>
<td>4.5</td>
<td>A5 Reg cab, LB</td>
<td>255/70R17</td>
<td>125.0</td>
<td>59.8</td>
<td>1,600</td>
<td>1,600</td>
</tr>
<tr>
<td>10</td>
<td>Pickup F</td>
<td>4.5</td>
<td>A5 Ext cab, MB</td>
<td>275/70R17</td>
<td>150.0</td>
<td>71.9</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>11</td>
<td>Pickup F</td>
<td>4.5</td>
<td>A5 Crew cab, SB</td>
<td>285/70R17</td>
<td>150.0</td>
<td>72.1</td>
<td>800</td>
<td>800</td>
</tr>
</tbody>
</table>

Total ... 6,700.

Note to Appendix Table II: With the appropriate fuel economy targets determined for each unique model type and footprint combination, Manufacturer X’s required fleet average fuel economy standard would be calculated as illustrated in Appendix Figure 1:

APPENDIX FIGURE 1—CALCULATION OF MANUFACTURER X’S FLEET AVERAGE FUEL ECONOMY STANDARD USING TABLE II

Fleet average fuel economy standard=
APPENDIX FIGURE 2—CALCULATION OF MANUFACTURER X’S ACTUAL FLEET AVERAGE FUEL ECONOMY PERFORMANCE LEVEL USING TABLE I

Fleet average fuel economy performance =

\[
\frac{(\text{Manufacturer’s Light Truck Production for Applicable Model Year})}{\sum_i \left(\frac{\text{Group}_i \text{ Production}}{\text{Group}_i \text{ Performance}} \right)} = \frac{(6,700)}{23.7 \text{ mpg}}
\]

\[
= \frac{(27.80 + 27.44 + 25.79 + 23.79 + 22.37 + 23.79 + 23.79 + 23.68 + 23.76 + 22.27 + 22.27)}{(1500 + 2000 + 2000 + 1600 + 800 + 800 + 800 + 2000 + 5000 + 800 + 6000)}
\]

\[
= 23.3 \text{ mpg}
\]

NOTE TO APPENDIX FIGURE 2: Since the actual fleet average fuel economy performance of Manufacturer X’s fleet is 23.3 mpg, as compared to its required fleet fuel economy standard of 23.7 mpg, Manufacturer X did not comply with the CAFE standard for MY 2012 as set forth in §533.5(i).

[77 FR 63196, Oct. 15, 2012]

PART 534—RIGHTS AND RESPONSIBILITIES OF MANUFACTURERS IN THE CONTEXT OF CHANGES IN CORPORATE RELATIONSHIPS

Sec. 534.1 Scope.
534.2 Applicability.
534.3 Definitions.
534.4 Successors and predecessors.

[76 FR 57492, Sept. 15, 2011]
§ 534.2 Applicability.
This part applies to manufacturers of passenger automobiles, light trucks, heavy-duty vehicles and the engines manufactured for use in heavy-duty vehicles as defined in 49 CFR part 523.

[76 FR 57492, Sept. 15, 2011]

§ 534.3 Definitions.
(a) Statutory definitions and terms. All terms used in 49 U.S.C. Chapter 329 are used according to their statutory meaning.
(b) As used in this part—
“Control relationship” means the relationship that exists between manufacturers that control, are controlled by, or are under common control with, one or more other manufacturers.
“Predecessor” means a manufacturer whose rights have been vested in and whose burdens have been assumed by another manufacturer.
“Successor” means a manufacturer that has become vested with the rights and assumed the burdens of another manufacturer.

§ 534.4 Successors and predecessors.
For purposes of the fuel economy and fuel consumption programs, “manufacturers” includes “predecessors” and “successors” to the extent specified in this section.
(a) Successors are responsible for any civil penalties that arise out of fuel economy and fuel consumption shortfalls incurred and not satisfied by predecessors.
(b) If one manufacturer has become the successor of another manufacturer during a model year, all of the vehicles or engines produced by those manufacturers during the model year are treated as though they were manufactured by the same manufacturer. A manufacturer is considered to have become the successor of another manufacturer during a model year if it is the successor on September 30 of the corresponding calendar year and was not the successor for the preceding model year.

(c)(1) For passenger automobiles and light trucks, fuel economy credits earned by a successor before or during model year 2007 may be used to offset a predecessor’s shortfall, subject to the availability of credits and the general three-year restriction on carrying credits forward and the general three-year restriction on carrying credits backward. Fuel economy credits earned by a predecessor after model year 2007 may be used by a successor, subject to the availability of credits and the general five-year restriction on carrying credits forward and the general three-year restriction on carrying credits backward.

(2) For heavy-duty vehicles and heavy-duty vehicle engines, available fuel consumption credits earned by a predecessor after model year 2015, and in model years 2013, 2014 and 2015 if a manufacturer voluntarily complies in those model years, may be used by a successor, subject to the availability of credits and the general five-year restriction on carrying credits forward and the general three-year restriction on carrying credits backward.

(d)(1) For passenger automobiles and light trucks, fuel economy credits earned by a successor before or during model year 2007 may be used to offset a predecessor’s shortfall, subject to the availability of credits and the general three-year restriction on carrying credits forward and the general three-year restriction on carrying credits backward. Credits earned by a successor after model year 2007 may be used to offset a predecessor’s shortfall, subject to the availability of credits and the general five-year restriction on carrying credits forward and the general three-year restriction on carrying credits backward.

(2) For heavy-duty vehicles and heavy-duty vehicle engines, available credits earned by a successor after model year 2015, and in model years 2013, 2014 and 2015, if a manufacturer voluntarily complies in those model years, may be used by a predecessor subject to the availability of credits and the general five-year restriction on carrying credits forward and the general three-year restriction on carrying credits backward.

[76 FR 57492, Sept. 15, 2011]

§ 534.5 Manufacturers within control relationships.
(a) If a civil penalty arises out of a fuel economy or fuel consumption
shortfall incurred by a group of manufacturers within a control relationship, each manufacturer within that group is jointly and severally liable for the civil penalty.

(b) A manufacturer is considered to be within a control relationship for an entire model year if and only if it is within that relationship on September 30 of the calendar year in which the model year ends.

(c)(1) For passenger automobiles and light trucks, fuel economy credits of a manufacturer within a control relationship may be used by the group of manufacturers within the control relationship to offset shortfalls, subject to the agreement of the other manufacturers, the availability of the credits, and the general three year restriction on carrying credits forward or backward prior to or during model year 2007, or the general five year restriction on carrying credits forward and the general three year restriction on carrying credits backward after model year 2007.

(2) For heavy-duty vehicles and heavy-duty vehicle engines, credits of a manufacturer within a control relationship may be used by the group of manufacturers within the control relationship to offset shortfalls, subject to the agreement of the other manufacturers, the availability of the credits, the general 5-year restriction on carrying credits forward, and the general three year restriction on offsetting past credit shortfalls as specified in the requirements of 49 CFR 535.7.

(e) Agreements among manufacturers in a control relationship related to the allocation of credits or liabilities addressed by this section shall be filed with the agency within 60 days of the end of each model year in the same form as specified in section 534.6. The manufacturers may seek confidential treatment for information provided in the certified report in accordance with 49 CFR part 512.

§ 534.6 Reporting corporate transactions.

Manufacturers who have entered into written contracts transferring rights and responsibilities such that a different manufacturer owns the controlling stock or exerts control over the design, production or sale of automobiles or heavy-duty vehicles to which Corporate Average Fuel Economy or Fuel Consumption standards apply shall report the contract to the agency as follows:

(a) The manufacturers must file a certified report with the agency affirmatively stating that the contract transfers rights and responsibilities between them such that one manufacturer has assumed a controlling stock ownership or control over the design, production or sale of vehicles. The report must also specify the first full model year to which the transaction will apply.

(b) Each report shall—

(1) Identify each manufacturer;
(2) State the full name, title, and address of the official responsible for preparing the report;
(3) Identify the production year being reported on;
(4) Be written in the English language; and
(5) Be submitted to: Administrator, National Highway Traffic Safety Administration, 1200 New Jersey Avenue, SE., Washington, DC 20590.

(c) The manufacturers may seek confidential treatment for information provided in the certified report in accordance with 49 CFR part 512.

§534.7 Situations not directly addressed by this part.

To the extent that this part does not directly address an issue concerning the rights and responsibilities of manufacturers in the context of a change in corporate relationships, the agency will make determinations based on interpretation of the statute and the principles reflected in the part.

PART 535—MEDIUM- AND HEAVY-DUTY VEHICLE FUEL EFFICIENCY PROGRAM

Sec. 535.1 Scope.
535.2 Purpose.
535.3 Applicability.
535.4 Definitions.
535.5 Standards.
535.6 Measurement and calculation procedures.
535.7 Averaging, banking, and trading (ABT) program.
535.8 Reporting requirements.
535.9 Enforcement approach.

AUTHORITY: 49 U.S.C 32901, delegation of authority at 49 CFR 1.95.

SOURCE: 76 FR 57493, Sept. 15, 2011, unless otherwise noted.

§535.1 Scope.

This part establishes fuel consumption standards pursuant to 49 U.S.C. 32902(k) for work trucks and commercial medium-duty and heavy-duty on-highway vehicles (hereafter referenced as heavy-duty vehicles) and engines manufactured for sale in the United States and establishes a credit program manufacturers may use to comply with standards and requirements for manufacturers to provide reports to the National Highway Traffic Safety Administration regarding their efforts to reduce the fuel consumption of these vehicles.

§535.2 Purpose.

The purpose of this part is to reduce the fuel consumption of new heavy-duty vehicles by establishing maximum levels for fuel consumption standards while providing a flexible credit program to assist manufacturers in complying with standards.

§535.3 Applicability.

(a) This part applies to complete vehicle and chassis manufacturers of all new heavy-duty vehicles, as defined in 49 CFR part 523, and to the manufacturers of all heavy-duty engines manufactured for use in the applicable vehicles for each given model year.

(b) Complete vehicle manufacturers, for the purpose of this part, include primary and secondary stage manufacturers meeting the criteria in 40 CFR 1037.620 that produce heavy-duty pickup trucks and vans or truck tractors as complete vehicles and that hold the EPA certificate of conformity.

(c) Chassis manufacturers, for the purpose of this part, include primary and secondary stage manufacturers meeting the criteria in 40 CFR 1037.620 that produce incomplete vehicles constructed for use as heavy-duty pickup trucks or vans or heavy-duty vocational vehicles and that hold the EPA certificate of conformity. Some vocational vehicle manufacturers are both chassis and complete vehicle manufacturers. These manufacturers will be regulated as chassis manufacturers under this program.

(d) Engine manufacturer, for the purpose of this part, means a manufacturer that manufactures engines for heavy-duty vehicles and holds the EPA certificate of conformity.

(e) The heavy-duty vehicles, chassis and engines excluded from the requirements of this part include:

(1) Recreational vehicles, including motor homes.

(2) Vehicles and engines exempted by EPA in accordance with 49 CFR parts 1036 and 1037.
§ 535.4 Definitions.

The terms manufacture and manufacturer are used as defined in section 501 of the Act and the terms commercial medium-duty and heavy-duty on-highway vehicle, fuel and work truck are used as defined in 49 U.S.C. 52901.

A to B testing means testing performed in pairs to allow comparison of vehicle A to vehicle B.

Administrator means the Administrator of the National Highway Traffic Safety Administration (NHTSA) or the Administrator’s delegate.

Advanced technology means vehicle technology certified under 40 CFR 1036.615 and 1037.615.

Averaging set means, a set of engines or vehicles in which fuel consumption credits may be exchanged. Credits generated by one engine or vehicle family may only be used by other respective engine or vehicle families in the same averaging set. Note that an averaging set may comprise more than one regulatory subcategory. The averaging sets for this HD program are defined as follows:

1. Heavy-duty pickup trucks and vans.
2. Vocational light-heavy vehicles at or below 19,500 pounds GVWR.
3. Vocational and tractor medium-heavy vehicles above 19,500 pounds GVWR but at or below 33,000 pounds GVWR.
4. Vocational and tractor heavy-heavy vehicles above 33,000 pounds GVWR.
5. Compression-ignition light-heavy-duty engines for Class 2b to 5 vehicles with a GVWR above 8,500 pounds but at or below 19,500 pounds.
6. Compression-ignition medium heavy-duty engines for Class 6 and 7 vehicles with a GVWR above 19,500 but at or below 33,000 pounds.
7. Compression-ignition heavy heavy-duty engines for Class 8 vehicles with a GVWR above 33,000 pounds.
8. Spark-ignition engines in Class 2b to 8 vehicles with a GVWR above 8,500 pounds.

Base tire for heavy-duty vehicles means the tire specified as standard equipment by a manufacturer on each subconfiguration of a model type.

Cab-complete vehicle has the meaning given in 49 CFR part 523.

Carryover means relating to certification based on emission data generated from an earlier model year.

Certificate holder means the manufacturer who holds the certificate of conformity for the vehicle or engine and that assigns the model year based on the date when its manufacturing operations are completed relative to its annual model year period.

Certificate of Conformity means an approval document granted by the EPA to a manufacturer that submits an application for a vehicle or engine emissions family in 40 CFR 1036.205 and 1037.205. A certificate of conformity is valid from the indicated effective date until December 31 of the model year for which it is issued. The certificate must be renewed annually for any vehicle a manufacturer continues to produce.

Certification means process of obtaining a certificate of conformity for a vehicle family that complies with the
emission standards and requirements in this part.

Certified emission level means the highest deteriorated emission level in an engine family for a given pollutant from the applicable transient and/or steady-state testing rounded to the same number of decimal places as the applicable standard. Note that you may have two certified emission levels for CO₂ if you certify a family for both vocational and tractor use.

Chassis-cab means the incomplete part of a vehicle that includes a frame, a completed occupant compartment and that requires only the addition of cargo-carrying, work-performing, or load-bearing components to perform its intended functions.

Chief Counsel means the NHTSA Chief Counsel, or his or her designee.

Complete sister vehicle is a complete vehicle of the same configuration as a cab-complete vehicle.

Complete vehicle has the meaning given in 49 CFR part 523.

Compression-ignition means relating to a type of reciprocating, internal-combustion engine, such as a diesel engine, that is not a spark-ignition engine.

Configuration means a subclassification within a test group which is based on engine code, transmission type and gear ratios, final drive ratio and other parameters which EPA designates. Transmission type means the basic type of the transmission (e.g. automatic, manual, automated manual, semi-automatic, or continuously variable) and does not include the drive system of the vehicle (e.g. front-wheel drive, rear-wheel drive, and four-wheel drive). Engine code means the combination of both “engine code” and “basic engine” as defined in the provisions of 40 CFR 600.002.

Credit holder (or holder) means a legal person that has credits, either because they are the manufacturer who earned the credits by exceeding the applicable fuel consumption standard and are the certificate holder, or because they are a designated recipient who has received credits from another holder. Credit holders need not be manufacturers but credit holders that are not manufacturers may only purchase and hold credits for the purpose of retiring them as specified in 40 CFR 1036.701(h) and 1037.701(e).

Credits (or fuel consumption credits) in this part means an earned allowance recognizing the fuel consumption of a particular manufacturer’s vehicles or engines within a particular averaging set exceeds (credit surplus or positive credits) or falls below (credit shortfall, deficit or negative credits) that manufacturer’s fuel consumption standard(s) for the regulatory subcategory(s) that make-up the averaging set for a given model year, or purchased allowance. The value of an earned credit is calculated according to §535.7.

Curb weight has the meaning given in 40 CFR 86.1803.

Date of manufacture means the date on which the certifying vehicle manufacturer completes its manufacturing operations, except as follows:

(1) Where the certificate holder is an engine manufacturer that does not manufacture the chassis, the date of manufacture of the vehicle is based on the date assembly of the vehicle is completed.

(2) EPA and NHTSA may approve an alternate date of manufacture based on the date on which the certifying (or primary) vehicle manufacturer completes assembly at the place of main assembly, consistent with the provisions of 40 CFR 1037.601 and 49 CFR 567.4.

Day cab means a type of truck tractor cab that is not a “sleeper cab”, as defined in this section.

Dedicated vehicle has the same meaning as dedicated automobile as defined in 49 U.S.C. 32901(a)(8). A dedicated automobile means an automobile that operates only on alternative fuels like E85 or natural gas, etc.

Dual fueled (multi-fuel or flexible-fuel vehicle) has the same meaning as dual fueled automobile as defined in 49 U.S.C. 32901(a)(9). For example, a vehicle that operates on gasoline and E85 or a plug-in hybrid electric vehicle is considered a dual fueled vehicle.

Electric vehicle means a vehicle that does not include an engine, and is powered solely by an external source of electricity and/or solar power. Note that this does not include electric hybrid or fuel-cell vehicles that use a chemical fuel such as gasoline, diesel.
§ 535.4 Fuel efficiency means the amount of work performed for each gallon of fuel consumed.

Good engineering judgment has the meaning given in 40 CFR 1068.30. See 40 CFR 1068.5 for the administrative process used to evaluate good engineering judgment.

Gross combination weight rating (GCWR) has the meaning given in 49 CFR part 523.

Gross vehicle weight rating (GVWR) has the meaning given in 49 CFR part 523.

Hybrid engine or hybrid powertrain means an engine or powertrain that includes energy storage features other than a conventional battery system or conventional flywheel. Supplemental electrical batteries and hydraulic accumulators are examples of hybrid energy storage systems. Note that certain provisions in this part treat hybrid engines and powertrains intended for vehicles that include regenerative braking different than those intended for vehicles that do not include regenerative braking.

Hybrid vehicle means a vehicle that includes energy storage features (other than a conventional battery system or conventional flywheel) in addition to an internal combustion engine or other engine using consumable chemical fuel. Supplemental electrical batteries and hydraulic accumulators are examples of hybrid energy storage systems. Note that certain provisions in this part treat hybrid vehicles that include regenerative braking different than those that do not include regenerative braking.

Incomplete vehicle has the meaning given in 49 CFR part 523. For the purpose of this regulation, a manufacturer may request EPA and NHTSA to allow the certification of a vehicle as an incomplete vehicle if it manufactures the engine and sells the unassembled chassis components, provided it does not produce and sell the body components necessary to complete the vehicle.

Innovative technology means technology certified under 40 CFR 1037.610.

Liquefied petroleum gas (LPG) has the meaning given in 49 CFR 1036.801.
Low rolling resistance tire means a tire on a vocational vehicle with a tire rolling resistance level (TRRL) of 7.7 kg/metric ton or lower, a steer tire on a tractor with a TRRL of 7.7 kg/metric ton or lower, or a drive tire on a tractor with a TRRL of 8.1 kg/metric ton or lower.

Model type has the meaning given in 40 CFR 600.002.

Model year as it applies to engines means the manufacturer’s annual new model production period, except as restricted under this definition. It must include January 1 of the calendar year for which the model year is named, may not begin before January 2 of the previous calendar year, and it must end by December 31 of the named calendar year. Manufacturers may not adjust model years to circumvent or delay compliance with standards.

Model year as it applies to vehicles means the manufacturer’s annual new model production period, except as restricted under this definition and 40 CFR part 85, subpart X. It must include January 1 of the calendar year for which the model year is named, may not begin before January 2 of the previous calendar year, and it must end by December 31 of the named calendar year.

(1) The manufacturer who holds the certificate of conformity for the vehicle must assign the model year based on the date when its manufacturing operations are completed relative to its annual model year period.

(2) Unless a vehicle is being shipped to a secondary manufacturer that will hold the certificate of conformity, the model year must be assigned prior to introduction of the vehicle into U.S. commerce. The certifying manufacturer must redesignate the model year if it does not complete its manufacturing operations within the originally identified model year. A vehicle introduced into U.S. commerce without a model year is deemed to have a model year equal to the calendar year of its introduction into U.S. commerce unless the certifying manufacturer assigns a later date.

Natural gas has the meaning given in 40 CFR 1036.801. Vehicles that use a pilot-ignited natural gas engine (which uses a small diesel fuel ignition system), are still considered natural gas vehicles.

NHTSA Enforcement means the NHTSA Associate Administrator for Enforcement, or his or her designee.

Party means the person alleged to have committed a violation of § 535.9, and includes manufacturers of vehicles and manufacturers of engines.

Payload means in this part the resultant of subtracting the curb weight from the gross vehicle weight rating.

Petroleum has the meaning given in 40 CFR 1036.801.

Pickup truck has the meaning given in 49 CFR part 523.

Plug-in hybrid electric vehicle (PHEV) means a hybrid electric vehicle that has the capability to charge the battery or batteries used for vehicle propulsion from an off-vehicle electric source, such that the off-vehicle source cannot be connected to the vehicle while the vehicle is in motion.

Power take-off (PTO) means a secondary engine shaft or other system on a vehicle that provides substantial auxiliary power for purposes unrelated to vehicle propulsion or normal vehicle accessories such as air conditioning, power steering, and basic electrical accessories. A typical PTO uses a secondary shaft on the engine to transmit power to a hydraulic pump that powers auxiliary equipment such as a boom on a bucket truck.

Primary intended service class has the meaning for engines as specified in 40 CFR 1036.140.

Rechargeable Energy Storage System (RESS) means the component(s) of a hybrid engine or vehicle that store recovered energy for later use, such as the battery system in a electric hybrid vehicle.

Regulatory category means each of the three types of heavy-duty vehicles defined in 49 CFR 523.6 and the heavy-duty engines used in these heavy-duty vehicles.

Regulatory subcategory means the subgroups in each regulatory category to which fuel consumption requirements apply, and are defined as follows:

(1) Heavy-duty pick-up trucks and vans.

(2) Vocational light-heavy vehicles at or below 19,500 pounds GVWR.
§ 535.4

(3) Vocational medium-heavy vehicles above 19,500 pounds GVWR but at or below 33,000 pounds GVWR.

(4) Vocational heavy-heavy vehicles above 33,000 pounds GVWR.

(5) Low roof day cab tractors with a GVWR above 26,000 pounds but at or below 33,000 pounds.

(6) Mid roof day cab tractors with a GVWR above 26,000 pounds but at or below 33,000 pounds.

(7) High roof day cab tractors with a GVWR above 26,000 pounds but at or below 33,000 pounds.

(8) Low roof day cab tractors above 33,000 pounds GVWR.

(9) Mid roof day cab tractors above 33,000 pounds GVWR.

(10) High roof day cab tractors above 33,000 pounds GVWR.

(11) Low roof sleeper cab tractors above 33,000 pounds GVWR.

(12) Mid roof sleeper cab tractors above 33,000 pounds GVWR.

(13) High roof sleeper cab tractors above 33,000 pounds GVWR.

(14) Compression-ignition light heavy-duty engines in Class 2b to 5 vehicles with a GVWR above 8,500 pounds but at or below 19,500 pounds.

(15) Compression-ignition medium heavy-duty engines in Class 6 and 7 vocational vehicles with a GVWR above 19,500 but at or below 33,000 pounds.

(16) Compression-ignition heavy heavy-duty engines in Class 8 vocational vehicles with a GVWR above 33,000 pounds.

(17) Compression-ignition medium heavy-duty engines in Class 7 tractors with a GVWR above 26,000 pounds but at or below 33,000 pounds.

(18) Compression-ignition heavy heavy-duty engines in Class 8 tractors with a GVWR above 33,000 pounds.

(19) Spark-ignition engines in Class 2b to 6 vehicles with a GVWR above 8,500 pounds.

Roof height means the maximum height of a vehicle (rounded to the nearest inch), excluding narrow accessories such as exhaust pipes and antennas, but including any wide accessories such as roof fairings. Measure roof height of the vehicle configured to have its maximum height that will occur during actual use, with properly inflated tires and no driver, passengers, or cargo onboard. Determine the base roof height on fully inflated tires having a static loaded radius equal to the arithmetic mean of the largest and smallest static loaded radius of tires a manufacturer offers or a standard tire EPA approves. If a vehicle is equipped with an adjustable roof fairing, measure the roof height with the fairing in its lowest setting. Once the maximum height is determined, roof heights are divided into the following categories:

(1) Low roof means a vehicle with a roof height of 120 inches or less.

(2) Mid roof means a vehicle with a roof height between 121 and 147 inches.

(3) High roof means a vehicle with a roof height of 148 inches or more.

Service class group means a group of engine and vehicle averaging sets defined as follows:

(1) Spark-ignition engines, light heavy-duty compression-ignition engines, light heavy-duty vocational vehicles and heavy-duty pickup trucks and vans.

(2) Medium heavy-duty compression-ignition engines and medium heavy-duty vocational vehicles and tractors.

(3) Heavy heavy-duty compression-ignition engines and heavy heavy-duty vocational vehicles and tractors.

Sleeper cab means a type of truck cab that has a compartment behind the driver’s seat intended to be used by the driver for sleeping. This includes both cabs accessible from the driver’s compartment and those accessible from outside the vehicle.

Spark-ignition engines means relating to a gasoline-fueled engine or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark-ignition engines usually use a throttle to regulate intake air flow to control power during normal operation.

Subconfiguration means a unique combination within a vehicle configuration of equivalent test weight, road-load horsepower, and any other operational characteristics or parameters that EPA determines may significantly affect CO₂ emissions within a vehicle configuration. Note that for vehicles subject to heavy-duty pickup truck and van standards, equivalent test weight...
§ 535.5 Standards.

(a) Heavy-duty pickup trucks and vans. Each manufacturer of a fleet of heavy-duty pickup trucks and vans shall comply with the fuel consumption standards in this paragraph (a) expressed in gallons per 100 miles. If the manufacturer’s fleet includes conventional vehicles (gasoline, diesel and alternative fueled vehicles) and advanced technology vehicles (hybrids with regenerative braking, vehicles equipped with Rankine-cycle engines, electric and fuel cell vehicles), it should divide its fleet into two separate fleets each with its own separate fleet average fuel consumption standard which a manufacturer must comply with the requirements of this paragraph (a).

(1) Mandatory standards. For model years 2016 and later, each manufacturer must comply with the fleet average standard derived from the unique subconfiguration target standards (or groups of subconfigurations approved by EPA in accordance with 40 CFR 1037.104) of the model types that make up the manufacturer’s fleet in a given model year. Each subconfiguration has
§ 535.5

a unique attribute-based target standard, defined by each group of vehicles having the same payload, towing capacity and whether the vehicles are equipped with a 2-wheel or 4-wheel drive configuration.

(2) Subconfiguration target standards.

(i) Two alternatives exist for determining the subconfiguration target standards for model years 2016 and later. For each alternative, separate standards exist for compression-ignition and spark-ignition vehicles:

(A) The first alternative allows manufacturers to determine a fixed fuel consumption standard that is constant over the model years; and

(B) The second alternative allows manufacturers to determine standards that are phased-in gradually each year.

(ii) Calculate the subconfiguration target standards as specified in this paragraph (a)(2)(ii), using the appropriate coefficients from Table 1 choosing between the alternatives in paragraphs (a)(2)(i)(A) and (B) of this section. For electric or fuel cell heavy-duty vehicles, use compression-ignition vehicle coefficients ‘’c’’ and ‘’d’’ and for hybrid (including plug-in hybrid), dedicated and dual-fueled vehicles, use coefficients ‘’c’’ and ‘’d’’ appropriate for the engine type used. Round each standard to the nearest 0.01 gallons per 100 miles and specify all weights in pounds rounded to the nearest pound.

Subconfiguration Target Standard (gallons per 100 miles) = \[c \times (WF)\] + d

Where:

WF = Work Factor = \[0.75 \times \text{Payload Capacity} + \text{Xwd}\] + \[0.25 \times \text{Towing Capacity}\] where Xwd = 4wd Adjustment = 500 lbs if the vehicle group is equipped with 4wd and all-wheel drive, otherwise equals 0 lbs for 2wd.

Fleet Average Standard = \[\frac{\sum[\text{Subconfiguration Target Standard}, \times \text{Volume}]}{\sum[\text{Volume}]}\]

Where:

Subconfiguration Target Standard, = fuel consumption standard for each group of vehicles with same payload, towing capacity and drive configuration (gallons per 100 miles).

Fuel Economy Standards for Conventional and Alternative Fuel Heavy-Duty Vehicles

49 CFR Ch. V (10–1–16 Edition)

PAYLOAD CAPACITY = GVWR (lbs) – Curb Weight (lbs) (for each vehicle group)

TOWING CAPACITY = GCWR (lbs) – GVWR (lbs) (for each vehicle group)

TABLE 1—EQUATION COEFFICIENTS FOR SUBCONFIGURATION TARGET STANDARDS

<table>
<thead>
<tr>
<th>Model year</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016–2018</td>
<td>0.000432</td>
<td>3.33</td>
</tr>
<tr>
<td>2019 and later</td>
<td>0.000409</td>
<td>3.14</td>
</tr>
<tr>
<td>2016–2018</td>
<td>0.000513</td>
<td>3.96</td>
</tr>
<tr>
<td>2019 and later</td>
<td>0.000495</td>
<td>3.81</td>
</tr>
</tbody>
</table>

(3) Fleet average fuel consumption standard. (i) Calculate each manufacturer’s fleet average fuel consumption standard for conventional and advanced technology fleets separately based on the subconfiguration target standards specified in paragraph (a)(2) of this section, weighted to production volumes and averaged using the following equation combining all the applicable vehicles in a manufacturer’s U.S. directed fleet (compression-ignition, spark-ignition and advanced technology vehicles) for a given model year, rounded to the nearest 0.01 gallons per 100 miles:
Volume, = production volume of each unique subconfiguration of a model type based upon payload, towing capacity and drive configuration.

(A) A manufacturer may group together subconfigurations that have the same test weight (ETW), GVWR, and GCWR. Calculate work factor and target value assuming a curb weight equal to two times ETW minus GVWR.

(B) A manufacturer may group together other subconfigurations if it uses the lowest target value calculated for any of the subconfigurations.

(C) The fleet average shall also be derived in accordance with 40 CFR 86.1865 and 40 CFR 1037.104(d).

(ii) A manufacturer complies with the requirements of this part if it provides reports, as specified in §535.8, by the required deadlines and meets one of the following conditions:

(A) The manufacturer’s fleet average performance, as determined in §535.6, is less than the fleet average standard; or

(B) The manufacturer uses one or more of the credit flexibilities provided under NHTSA’s Averaging, Banking and Trading Program, as specified in §535.7, to comply with standards.

(iii) Manufacturers must select an alternative for subconfiguration target standards at the same time they submit the model year 2016 Pre-Model year Report, specified in §535.8. Once selected, the decision cannot be reversed and the manufacturer must continue to comply with the same alternative for subsequent model years.

(iv) A manufacturer failing to comply with the provisions specified in paragraph (a)(3)(ii) of this section is liable to pay civil penalties in accordance with §535.9.

(4) Voluntary standards. (i) Manufacturers may choose voluntarily to comply early with fuel consumption standards at the same time it submits a Pre-Model Report, prior to the compliance model year beginning as specified in §533.8; and, once selected, the decision cannot be reversed and the manufacturer must continue to comply for each subsequent model year for all the vehicles and engines it manufactures in each regulatory category for a given model year.

(ii) A manufacturer must declare its intent to voluntarily comply with fuel consumption standards at the same time it submits a Pre-Model Report, prior to the compliance model year beginning as specified in §533.8; and, once selected, the decision cannot be reversed and the manufacturer must continue to comply for each subsequent model year for all the vehicles and engines it manufactures in each regulatory category for a given model year.

(iii) Calculate separate subconfiguration target standards for compression-ignition and spark-ignition vehicles for model years 2013 through 2015 using the equation in paragraph (a)(2)(ii) of this section, substituting the appropriate values for the coefficients in Table 2 of this section as appropriate.

TABLE 2—VOLUNTARY COMPLIANCE EQUATION COEFFICIENTS FOR VEHICLE FUEL CONSUMPTION STANDARDS

<table>
<thead>
<tr>
<th>Model Year</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013 and 14</td>
<td>0.000470</td>
<td>3.61</td>
</tr>
<tr>
<td>2015</td>
<td>0.000466</td>
<td>3.60</td>
</tr>
</tbody>
</table>

Spark-ignition Vehicle Coefficients for Voluntary Compliance in Model Years 2013 through 2015

<table>
<thead>
<tr>
<th>Model Year</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013 and 14</td>
<td>0.000542</td>
<td>4.17</td>
</tr>
<tr>
<td>2015</td>
<td>0.000539</td>
<td>4.15</td>
</tr>
</tbody>
</table>

(iv) Calculate the fleet average fuel consumption standards for model years 2013 through 2015 using the equation in paragraph (a)(3) of this section.

(v) For model year 2013, a manufacturer can choose to comply with the standards in paragraph (a) of this section and generate early credits under §533.7(b) by using the entire U.S.-directed production volume of vehicles other than electric vehicles as specified in 40 CFR 1037.150. The model year 2014 standards in paragraph (a) of this section apply for vehicles complying in model year 2013. If some test groups are certified by EPA after the start of the model year, the manufacturer may only generate credits under §535.7(b) for the production that occurs after all test groups are certified in accordance with 40 CFR 1037.150 (a)(2).
§ 535.5

49 CFR Ch. V (10–1–16 Edition)

(vi) For model year 2014, a manufacturer producing model year 2014 vehicles before January 1, 2014, may optionally elect to comply with these standards for a partial model year that begins on January 1, 2014, and ends on the day the manufacturer’s model year would normally end if it meets the provisions in 40 CFR 1037.150(g).

(5) Exclusion of vehicles not certified as complete vehicles. The vehicle standards §535.5(a) do not apply for vehicles that are chassis-certified with respect to EPA’s criteria pollutant test procedure in 40 CFR part 86, subpart S. Any chassis-certified vehicles must comply with the vehicle standards and requirements of §535.5(b) and the engine standards of §535.5(d) for engines used in these vehicles. A vehicle manufacturer choosing to comply with this paragraph and that is not the engine manufacturer is required to notify the engine manufacturers that their engines are subject to §535.5(d) and that it intends to use their engines in excluded vehicles.

(6) Optional certification under this section. Manufacturers may certify any complete or cab-complete Class 2b through 5 vehicles weighing at or below 19,500 pounds GVWR and any incomplete vehicles approved by EPA for inclusion under this paragraph to the same testing and standard that applies to a comparable complete sister vehicles as determined in accordance in 40 CFR 1037.150(l). Calculate the target standard value under paragraph (a)(2) of this section based on the same work factor value that applies for the complete sister vehicle.

(7) Loose engines. This paragraph applies for spark-ignition engines identical to engines used in vehicles certified to the standards of this section §535.5(a), where manufacturers sell such engines as loose engines or installed in incomplete vehicles that are not cab-complete vehicles in accordance with 40 CFR 1037.150(m). A manufacturer’s engines are deemed to have fuel consumption target values and test results based upon the complete vehicle in the applicable test group with the highest equivalent test weight in accordance with 40 CFR 1037.150(m). The fuel consumption subconfiguration standard for a loose engines equals the test group result of the complete vehicle as specified in 40 CFR 1037.150(m)(6) multiplied by 1.10 and rounded to the nearest 0.01 gallon per 100 miles. The U.S.-directed production volume of engines manufactured for sale as loose engines or installed in incomplete heavy-duty vehicles that are not cab-complete vehicles in any given model year may not exceed ten percent of the total U.S.-directed production volume of engines of that design that the manufacturer produces for heavy-duty applications for that model year, including engines the manufacturer produces for complete vehicles, cab-complete vehicles, and other incomplete vehicles. The total number of engines a manufacturer may certify under this paragraph (a)(7), of all engine designs, may not exceed 15,000 in any model year as specified in 40 CFR 1037.150(m). Engines produced in excess of the number cannot be certified to the standard in this paragraph (a)(7).

(b) Heavy-duty vocational vehicles. Each chassis manufacturer of heavy-duty vocational vehicles shall comply with the fuel consumption standards in this paragraph (b) expressed in gallons per 1,000 ton-miles. Manufacturers of engines used in heavy-duty vocational vehicles shall comply with the standards in paragraph (d) of this section.

(1) Mandatory standards. For model years 2016 and later, each chassis manufacturer of heavy-duty vocational vehicles must comply with the fuel consumption standards in paragraph (b)(3) of this section.

(i) The heavy-duty vocational vehicle chassis category is subdivided by GVWR into three regulatory subcategories as defined in §535.4, each with its own assigned standard.

(ii) For purposes of certifying vehicles to fuel consumption standards, manufacturers must divide their product lines into vehicle families that have similar emissions and fuel consumption features, as specified by EPA in 40 CFR part 1037, subpart C, and these families will be subject to the applicable standards. Each vehicle family is limited to a single model year.

(iii) A manufacturer complies with the requirements of this part, if it provides information as specified in §535.8, by the required deadlines and meets one of the following conditions:
(A) The manufacturer’s fuel consumption performance for each vehicle family, as determined in §535.6, is lower than the applicable standard; or

(B) The manufacturer uses one or more of the credit flexibilities provided under NHTSA’s Averaging, Banking and Trading Program, specified in §535.7, to comply with standards.

(iv) A manufacturer failing to comply with the provisions specified in paragraph (b)(1)(iii) of this section is liable to pay civil penalties in accordance with §535.9.

(2) Voluntary compliance. (i) For model years 2013 through 2015, a manufacturer may choose voluntarily to comply early with the fuel consumption standards provided in paragraph (b)(3) of this section. For example, a manufacturer may choose to comply early in order to begin accumulating credits through over-compliance with the applicable standards. A manufacturer choosing early compliance must comply with all the vehicles and engines it manufacturers in each regulatory category for a given model year except as provided in paragraphs (b)(2)(iii) through (iv) of this section.

(ii) A manufacturer must declare its intent to voluntarily comply with fuel consumption standards and identify its plans to comply before it submits its first application for a certificate of conformity for the respective model year as specified in §535.8; and, once selected, the decision cannot be reversed and the manufacturer must continue to comply for each subsequent model year for all the vehicles and engines it manufacturers in each regulatory category for a given model year.

(iii) For model year 2013, a manufacturer can choose to comply with the standards in this paragraph (b) and generate early credits under §535.7(c) by using the entire U.S.-directed production volume within any of its regulatory subcategories of vehicles other than electric vehicles as specified in 40 CFR 1037.150. The model year 2014 standards in this paragraph (b) apply for vehicles complying in model year 2013. If some vehicle families within a regulatory subcategory are certified by EPA after the start of the model year, manufacturers may generate credits under §535.7(c) only for production that occurs after all families are certified in accordance with 40 CFR 1037.150(a)(1).

(iv) For model year 2014, a manufacturer producing model year 2014 vehicles before January 1, 2014, may optionally elect to comply with these standards for a partial model year that begins on January 1, 2014, and ends on the day the manufacturer’s model year would normally end if it meets the provisions in 40 CFR 1037.150(g).

(3) Regulatory subcategory standards. The fuel consumption standards for heavy-duty vocational vehicles are given in the following table:

<table>
<thead>
<tr>
<th>Regulatory subcategories</th>
<th>Light Heavy vehicles Class 2b–5</th>
<th>Medium heavy vehicles Class 6—7</th>
<th>Heavy heavy vehicles Class 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Consumption Standard</td>
<td>36.7</td>
<td>22.1</td>
<td>21.8</td>
</tr>
<tr>
<td>Effective for Model Years 2017 and later</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Consumption Standard</td>
<td>38.1</td>
<td>23.0</td>
<td>22.2</td>
</tr>
<tr>
<td>Effective for Model Years 2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Consumption Standard</td>
<td>38.1</td>
<td>23.0</td>
<td>22.2</td>
</tr>
<tr>
<td>Effective for Model Years 2013 to 2015</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4) Certifying across service classes. A manufacturer may optionally certify a vocational vehicle to the standards and useful life applicable to a higher vehicle service class (or regulatory subcategory changes such as complying with the heavy heavy-duty standard instead of medium heavy-duty standard), provided the manufacturer does not generate credits with the vehicle. If a manufacturer includes smaller vehicles in a credit-generating subfamily (with
§ 535.5

49 CFR Ch. V (10–1–16 Edition)

an FEL below the standard), exclude their production volume from the credit calculation.

(5) Off-road operation. Heavy-duty vocational vehicles including vocational tractors meeting the off-road criteria in 49 CFR 523.2 are exempted from the requirements in this paragraph (b), but the engines in these vehicles must meet the requirements of paragraph (d) of this section.

(c) Truck tractors. Each manufacturer of truck tractors, except vocational tractors, with a GVWR above 26,000 pounds shall comply with the fuel consumption standards in this paragraph (c) expressed in gallons per 1,000 ton-miles.

(1) Mandatory standards. For model years 2016 and later, each manufacturer of truck tractors must comply with the fuel consumption standards in paragraph (c)(3) of this section.

(i) The truck tractor category is subdivided by roof height and cab design into nine regulatory subcategories as shown in Table 4 of this section, each with its own assigned standard.

(ii) For purposes of certifying vehicles to fuel consumption standards, manufacturers must divide their product lines into vehicles families that have similar emissions and fuel consumption features, as specified by EPA in 40 CFR part 1037, subpart C, and these families will be subject to the applicable standards. Each vehicle family is limited to a single model year.

(iii) Standards for truck tractor engines are given in paragraph (d) of this section.

(iv) A manufacturer complies with the requirements of this part, if at the end of the model year, it provides reports, as specified in §535.6, by the required deadlines and meets one of the following conditions:

A. The manufacturer’s fuel consumption performance for each vehicle family, as determined in §535.6, is lower than the applicable standard; or

B. The manufacturer uses one or more of the credit flexibilities provided under NHTSA’s Averaging, Banking and Trading Program, specified in §535.7, to comply with standards.

(v) A manufacturer failing to comply with the provisions specified in paragraph (c)(1)(iv) of this section is liable to pay civil penalties in accordance with §535.9.

(2) Voluntary compliance. (i) For model years 2013 through 2015, a manufacturer may choose voluntarily to comply early with the fuel consumption standards provided in paragraph (c)(3) of this section. For example, a manufacturer may choose to comply early in order to begin accumulating credits through over-compliance with the applicable standards. A manufacturer choosing early compliance must comply with all the vehicles and engines it manufacturers in each regulatory category for a given model year except as provided in paragraphs (c)(2)(iii) through (iv) of this section.

(ii) A manufacturer must declare its intent to voluntarily comply with fuel consumption standards and identify its plans to comply before it submits its first application for a certificate of conformity for the respective model year as specified in §535.8; and, once selected, the decision cannot be reversed and the manufacturer must continue to comply for each subsequent model year for all the vehicles and engines it manufacturers in each regulatory category for a given model year.

(iii) For model year 2013, a manufacturer can choose to comply with the standards in this paragraph (c) and generate early credits under §535.7(c) by using the entire U.S.-directed production volume within any of its regulatory subcategories of vehicles other than electric vehicles as specified in 40 CFR 1037.150. The model year 2014 standards in this paragraph (c) apply for vehicles complying in model year 2013. If some vehicle families within a regulatory subcategory are certified by EPA after the start of the model year, manufacturers may generate credits under §535.7(c) only for production that occurs after all families are certified in accordance with 40 CFR 1037.150(a)(1).

(iv) For model year 2014, a manufacturer producing model year 2014 vehicles before January 1, 2014, may optionally elect to comply with these standards for a partial model year that begins on January 1, 2014, and ends on the day the manufacturer’s model year would normally end if it meets the provisions in 40 CFR 1037.150(g).
(3) Regulatory subcategory standards. The fuel consumption standards for truck tractors, except for vocational tractors, are given in the following table:

<table>
<thead>
<tr>
<th>Regulatory subcategories</th>
<th>Day cab</th>
<th>Sleeper cab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 7</td>
<td>Class 8</td>
</tr>
<tr>
<td>Fuel Consumption Mandatory Standards (gallons per 1,000 ton-miles) Effective for Model Years 2017 and later</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Roof</td>
<td>10.2</td>
<td>7.8</td>
</tr>
<tr>
<td>Mid Roof</td>
<td>11.3</td>
<td>8.4</td>
</tr>
<tr>
<td>High Roof</td>
<td>11.8</td>
<td>8.7</td>
</tr>
<tr>
<td>Effective for Model Years 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Roof</td>
<td>10.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Mid Roof</td>
<td>11.7</td>
<td>8.7</td>
</tr>
<tr>
<td>High Roof</td>
<td>12.2</td>
<td>9.0</td>
</tr>
<tr>
<td>Fuel Consumption Voluntary Standards (gallons per 1,000 ton-miles) Effective for Model Years 2013 to 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Roof</td>
<td>10.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Mid Roof</td>
<td>11.7</td>
<td>8.7</td>
</tr>
<tr>
<td>High Roof</td>
<td>12.2</td>
<td>9.0</td>
</tr>
</tbody>
</table>

(4) Certifying across service classes. A manufacturer may optionally certify a tractor to the standards and useful life applicable to a higher vehicle service class (or regulatory subcategory changes such as complying with the Class 8 day-cab tractor standard instead of Class 7 day-cab tractor), provided the manufacturer does not generate credits with the vehicle. If a manufacturer includes smaller vehicles in a credit-generating subfamily (with an FEL below the standard), exclude their production volume from the credit calculation.

(5) Vocational tractors. Tractors meeting the definition of vocational tractors in 49 CFR 523.2 for purposes of certifying vehicles to fuel consumption standards, are divided into families of vehicles as specified in 40 CFR 1037.230(a)(1) and must comply with standards for heavy-duty vocational vehicles and engines of the same weight class specified in paragraphs (b) and (d) of this section. Class 7 and Class 8 tractors certified or exempted as vocational tractors are limited in production to no more than 21,000 vehicles in any three consecutive model years. If a manufacturer is determined as not applying this allowance in good faith by the EPA in its applications for certification in accordance with 40 CFR 1037.205 and 1037.630, a manufacturer must comply with the tractor fuel consumption standards in paragraph (c)(3) of this section. Vocational tractors generating credits can trade and transfer credits in the same averaging sets as tractors and vocational vehicles in the same weight class.

(d) Heavy-duty engines. Each manufacturer of heavy-duty engines shall comply with the fuel consumption standards in this paragraph (d) expressed in gallons per 100 brake-horsepower-hours. Each engine must be certified to the primary intended service class that it is designed for in accordance with 40 CFR 1036.108;

(1) Mandatory standards. Each manufacturer must comply with the fuel consumption standard in paragraph (d)(3) of this section for model years 2017 and later compression-ignition engines and for model years 2016 and later spark-ignition engines.

(i) The heavy-duty engine regulatory category is divided into six regulatory subcategories, five compression-ignition subcategories and one spark-ignition subcategory, as shown in Table 5 of this section.

(ii) Separate standards exist for engines manufactured for use in heavy-duty vocational vehicles and in truck tractors.

(iii) For purposes of certifying engines to fuel consumption standards,
manufacturers must divide their product lines into engine families that have similar fuel consumption features, as specified by EPA in 40 CFR part 1036, subpart C, and these families will be subject to the same standards. Each engine family is limited to a single model year.

(iv) A manufacturer complies with the requirements of this part, if at the end of the model year, it provides reports, as specified in § 535.8, by the required deadlines and meets one of the following conditions:

(A) The manufacturer’s fuel consumption performance of each engine family as determined in § 535.6 is less than the applicable standard; or

(B) The manufacturer uses one or more of the flexibilities provided under NHTSA’s Averaging, Banking and Trading Program, specified in § 535.7, to comply with standards.

(v) A manufacturer failing to comply with the provisions specified in paragraph (d)(1)(iv) of this section is liable to pay civil penalties in accordance with § 535.9.

(2) Voluntary compliance. (i) For model years 2013 through 2016 for compression-ignition engines, and for model year 2015 for spark-ignition engines, a manufacturer may choose voluntarily to comply with the fuel consumption standards provided in paragraph (d)(3) through (5) of this section. For example, a manufacturer may choose to comply early in order to begin accumulating credits through over-compliance with the applicable standards. A manufacturer choosing early compliance must comply with all the vehicles and engines it manufacturers in each regulatory category for a given model year except in model year 2013 the manufacturer may comply with individual engine families as specified in 40 CFR 1036.150(a)(2).

(ii) A manufacturer must declare its intent to voluntarily comply with fuel consumption standards and identify its plans to comply before it submits its first application for a certificate of conformity for the respective model year as specified in § 535.8; and, once selected, the decision cannot be reversed and the manufacturer must continue to comply for each subsequent model year for all the vehicles and engines it manufacturers in each regulatory category for a given model year.

(3) Regulatory subcategory standards. The fuel consumption standards for heavy-duty engines are given in the following:

<table>
<thead>
<tr>
<th>Regulatory Subcategory</th>
<th>Light Heavy-Duty Compression-Ignition Engine</th>
<th>Medium Heavy-Duty Compression-Ignition Engine</th>
<th>Heavy Heavy-Duty Compression-Ignition Engine</th>
<th>Spark-Ignition Engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck Application</td>
<td>Vocational</td>
<td>Vocational</td>
<td>Tractor</td>
<td>Tractor</td>
</tr>
<tr>
<td>Effective Model Years.</td>
<td>2017 and later</td>
<td>2016 and later</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>Fuel Consumption Standard</td>
<td>5.66</td>
<td>5.66</td>
<td>4.78</td>
<td>5.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuel Consumption Standards for Voluntary Compliance (gallons per 100 bhp-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory Subcategory</td>
</tr>
<tr>
<td>Truck Application</td>
</tr>
<tr>
<td>Effective Model Years.</td>
</tr>
</tbody>
</table>
TABLE 5—PRIMARY HEAVY-DUTY ENGINE STANDARDS—Continued

| Voluntary Fuel Consumption Standard | 5.89 | 5.89 | 4.93 | 5.57 | 4.67 | 7.06 |

(4) Alternate subcategory standards. The alternative fuel consumption standards for heavy-duty compression-ignition engines are as follows:

(i) Manufacturers entering the voluntary program in model years 2014 through 2016 may choose to certify compression-ignition engine families unable to meet standards provided in paragraph (d)(3) of this section to the alternative fuel consumption standards of this paragraph (d)(4).

(ii) Manufacturers may not certify engines to these alternate standards if they are part of an averaging set in which they carry a balance of banked credits. For purposes of this section, manufacturers are deemed to carry credits in an averaging set if they carry credits from advance technology that are allowed to be used in that averaging set in accordance with §535.7(d)(12).

(iii) The emission standards of this section are determined as specified in EPA 40 CFR 1036.620(a) through (c) and should be converted to equivalent fuel consumption values.

(5) Alternate Phase-In Standards. Manufacturers have the option to comply with EPA emissions standards for compression-ignition engines using an alternative phase-in schedule that correlates with the EPA OBD standards. If a manufacturer chooses to use the alternative phase-in schedule for meeting EPA standards and optionally chooses to comply early with the NHTSA fuel consumption program, it must use the same phase-in schedule beginning in model year 2013 for fuel consumption standards and must remain in the program for each model year thereafter. The fuel consumption standard for each model year of the alternative phase-in schedule is provided in Table 6 of this section. Note that engines certified to these standards are not eligible for early credits under §535.7.

TABLE 6—ALTERNATIVE PHASE-IN COMPRESSION IGNITION ENGINE STANDARDS

<table>
<thead>
<tr>
<th>Tractors</th>
<th>LHD Engines</th>
<th>MHD Engines</th>
<th>HHD Engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Years 2013-2015</td>
<td>NA</td>
<td>5.03 gals/100 hp-hr</td>
<td>4.76 gals/100 hp-hr</td>
</tr>
<tr>
<td>Model Years 2016 and later</td>
<td>NA</td>
<td>4.78 gals/100 hp-hr</td>
<td>4.52 gals/100 hp-hr</td>
</tr>
<tr>
<td>Vocational</td>
<td>LHD Engines</td>
<td>MHD Engines</td>
<td>HHD Engines</td>
</tr>
<tr>
<td>Model Years 2013-2015</td>
<td>6.67 gals/100 hp-hr</td>
<td>6.67 gals/100 hp-hr</td>
<td>5.45 gals/100 hp-hr</td>
</tr>
<tr>
<td>Model Years 2016 and later</td>
<td>5.66 gals/100 hp-hr</td>
<td>5.66 gals/100 hp-hr</td>
<td>5.45 gals/100 hp-hr</td>
</tr>
</tbody>
</table>

Note: These alternate standards for 2016 and later are the same as the otherwise applicable standards for 2017 and later.

[76 FR 57493, Sept. 15, 2011, as amended at 78 FR 49966, Aug. 16, 2013]

§ 535.6 Measurement and calculation procedures.

(a) Heavy-duty pickup trucks and vans. This section describes the testing a manufacturer must perform for each model year and the method for determining the fleet fuel consumption performance to show compliance with the fleet average fuel consumption standard for heavy-duty pickup trucks and vans in §535.5(a).

(1) For each model year, the heavy-duty pickup trucks and vans selected by a manufacturer to comply with fuel consumption standards in §535.5(a) must be used to determine the manufacturer’s fleet average fuel consumption performance. If the manufacturer’s fleet includes conventional and advanced technology heavy-duty pickup trucks and vans, the fleet should be sub-divided into two separate vehicle fleets, with all of the conventional vehicles in one fleet and all of the advanced technology vehicles in the other fleet.
(2) Vehicles in each fleet should be divided into test groups or subconfigurations according to EPA in 40 CFR part 86, subpart S, and 40 CFR 1037.104.

(3) Test and measure the CO\textsubscript{2} emissions test results for the selected vehicles and determine the CO\textsubscript{2} emissions test group result, in grams per mile in accordance with 40 CFR part 86, subpart S.

(i) Perform exhaust testing on vehicles fueled by conventional and alternative fuels, including dedicated and dual fueled (multi-fueled and flexible fueled) vehicles and measure the CO\textsubscript{2} emissions test result.

(ii) Adjust the CO\textsubscript{2} emissions test result of dual fueled vehicles using a weighted average of your emission results as specified in 40 CFR 600.510-12(k) for light-duty trucks.

(iii) All electric vehicles are deemed to have zero emissions of CO\textsubscript{2}, CH\textsubscript{4}, and N\textsubscript{2}O. No emission testing is required for such electric vehicles. Assign the fuel consumption test group result to a value of zero gallons per 100 miles in paragraph (a)(4) of this section.

(iv) Test cab-complete and incomplete vehicles using the applicable complete sister vehicles as determined in 40 CFR 1037.104(g).

(v) Test loose engines using applicable complete vehicles as determined in 40 CFR 1037.104(h).

(vi) Manufacturers can choose to analytically derive CO\textsubscript{2} emission rates (ADCs) for test groups or subconfigurations. Calculate the ADCs for test groups or subconfigurations in accordance with 40 CFR 1037.104(g).

(4) Calculate equivalent fuel consumption test group results, in gallons per 100 miles, from CO\textsubscript{2} emissions test group results, in grams per miles, and round to the nearest 0.01 gallon per 100 miles.

(i) Calculate the equivalent fuel consumption test group results as follows for compression-ignition vehicles and alternative fuel compression-ignition vehicles.

\[\text{Fuel Consumption Test Group Result (gallons per 100 mile)} = \left(\frac{\text{CO}_2 \text{ emissions test group result (grams per mile)}}{10,180 \text{ grams per gallon of diesel fuel}} \right) \times (10^2) \]

(ii) Calculate the equivalent fuel consumption test group results as follows for spark-ignition vehicles and alternative fuel spark-ignition vehicles.

\[\text{Fuel Consumption Test Group Result (gallons per 100 mile)} = \left(\frac{\text{CO}_2 \text{ emissions test group result (grams per mile)}}{8,887 \text{ grams per gallon of gasoline fuel}} \right) \times (10^2) \]

(5) Calculate the fleet average fuel consumption result, in gallons per 100 miles, from the equivalent fuel consumption test group results and round the fuel consumption result to the nearest 0.01 gallon per 100 miles. Calculate the fleet average fuel consumption result using the following equation.

\[\text{Fleet Average Fuel Consumption} = \frac{ \sum \left[\text{Fuel Consumption Test Group Result}_i \times \text{Volume}_i \right] }{ \sum \text{Volume}_i } \]

Where:

- Fuel Consumption Test Group Result\(_i\) = fuel consumption performance for each test group as defined in 49 CFR 523.4.
- Volume\(_i\) = production volume of each test group.

(6) Compare the fleet average fuel consumption standard to the fleet average fuel consumption performance. The fleet average fuel consumption performance must be less than or equal to the fleet fuel consumption standard to comply with standards in §535.5(a).

(a) Heavy-duty vocational vehicles and tractors. This section describes the testing a manufacturer must perform and the method for determining fuel consumption performance to show compliance with the fuel consumption standards for vocational vehicles and tractors in §535.5(b) and (c).

(1) Select vehicles and vehicle family configurations to test as specified in 40 CFR 1037.230 for vehicles that make up each of the manufacturer’s regulatory subcategories of vocational vehicles and tractors.

(2) Determine the CO\textsubscript{2} emissions and fuel consumption results for all vehicle chassis (conventional, alternative...
fueled and advanced technology vehicles) using the Greenhouse Emissions Model (GEM) in accordance with 40 CFR part 1037, subpart F. Vocational vehicles and tractor chassis are modeled using the following inputs in the GEM model. All seven of the following inputs apply for sleeper cab tractors, while some do not apply for vocational vehicles and other tractor regulatory subcategories:

(i) Identification of vehicles using regulatory subcategories (such as "Class 8 Combination—Sleeper Cab—High Roof").

(ii) Coefficient of aerodynamic drag in accordance with 40 CFR 1037.520 and 1037.521. Do not use for vocational vehicles.

(iii) Steer tire rolling resistance for low rolling resistance tires in accordance with 40 CFR 1037.520 and 1037.650.

(iv) Drive tire rolling resistance for low rolling resistance tires in accordance with 40 CFR 1037.520 and 1037.650.

(v) Vehicle speed limit as governed by vehicles speed limiters in accordance with 40 CFR 1037.520 and 1037.640. Do not use for vocational vehicles.

(vi) Vehicle weight reduction as provided in accordance with 40 CFR 1037.520. Do not use for vocational vehicles.

(vii) Extended idle reduction credit using automatic engine shutdown systems in accordance with 40 CFR 1037.520 and 1037.660. Do not use for vehicles other than Class 8 sleeper cabs.

(3) From the GEM results, select the CO₂ family emissions level (FEL) and equivalent fuel consumption values for vocational vehicle and tractor families in each regulatory subcategories for each model year. Equivalent fuel consumption FELs are derived in GEM from the CO₂ FEL value rounded to the nearest whole number and are expressed to the nearest 0.1 gallons per 1000 ton-mile. For families containing multiple subfamilies, identify the FELs for each subfamily.

(4) Paragraphs (b)(1) through (3) of this section address vocational vehicle and tractor chassis testing only. Engine performance and the advanced technologies equipment on vocational vehicles and tractors are tested separately as follows:

(i) Vocational vehicle and tractor engine test results for conventional and alternative fueled vehicles are determined in accordance with §535.6(c).

(ii) Improvements for advanced technologies are determined as follows:

(A) Test hybrid vehicles with power take-off in accordance with 40 CFR 1037.525 and vehicles with post-transmission hybrid systems in accordance with 40 CFR 1037.550.

(B) All electric vehicles are deemed to have zero CO₂ emissions and fuel consumption. No emission testing is required for such electric vehicles. Assign the vehicle family with a fuel consumption FEL result to a value of zero gallons per 1000-ton miles in paragraph (3) of this section.

(c) Heavy-duty engines. This section describes the testing a manufacturer must perform and the method for determining fuel consumption performance to show compliance with the fuel consumption standards for engines in §535.5(d). Each engine must be tested to the primary intended service class that it is designed for in accordance with 40 CFR 1036.108

(1) Select emission-data engines and engine family configurations to test as specified in 40 CFR part 86 and part 1036, subpart C for engines installed in vehicles that make up each of the manufacturer’s regulatory subcategory.

(2) Test the CO₂ emissions for each emissions-data engine subject to the standards in §535.5(d) using the procedures and equipment specified in 40 CFR part 1036, subpart F. Measure the CO₂ emissions in grams per bhp-hr as specified in 40 CFR part 86, subpart N, and part 1036, subpart C.

(i) Perform exhaust testing on each fuel type for conventional, dedicated, dual fuel (multi-fuel, and flexible fuel) vehicles and measure the CO₂ emissions level.

(ii) Adjust the CO₂ emissions result of dual fueled vehicles using a weighted average of the demonstrated emission results as specified in 40 CFR 1036.225. If EPA disapproves a manufacturer’s dual fuel vehicle demonstrated use submission, NHTSA will require the manufacturer to only use the test results with 100 percent conventional fuel to determine the fuel consumption of the engine.
§ 535.7

(iii) All electric vehicles are deemed to have zero emissions of CO₂ and zero fuel consumption. No emission or fuel consumption testing is required for such electric vehicles.

(3) Determine the CO₂ emissions for the family certification level (FCL) from the emissions test results in paragraph (c)(2) of this section for engine families within the heavy-duty engine regulatory subcategories for each model year.

(i) If a manufacturer certifies an engine family for use both as a vocational engine and as a tractor engine, the manufacturer must split the family into two separate subfamilies in accordance with 40 CFR 1036.230. The manufacturer may assign the numbers and configurations of engines within the respective subfamilies at any time prior to the submission of the end-of-year report required by 40 CFR 1036.230. The manufacturer may assign the numbers and configurations of engines within the respective subfamilies at any time prior to the submission of the end-of-year report required by 40 CFR 1036.230. The manufacturer must track into which type of vehicle each engine is installed, although EPA may allow the manufacturer to use statistical methods to determine this for a fraction of its engines.

(ii) The following engines are excluded from the engine families used to determine FCL values and the benefit for these engines is determined as an advanced technology credits under the ABT provisions provided in §535.7(e):

(A) Engines certified as hybrid engines or power packs.

(B) Engines certified as hybrid engines designed with PTO capability and that are sold with the engine coupled to a transmission.

(C) Engines with Rankine cycle waste heat recovery.

(4) Calculate equivalent fuel consumption values for emissions FCLs and the CO₂ levels for certified engines, in gallons per 100 bhp-hr and round each fuel consumption value to the nearest 0.01 gallon per 100 bhp-hr.

(i) Calculate equivalent fuel consumption FCL values for compression-ignition engines and alternative fuel compression-ignition engines. CO₂ FCL value (grams per bhp-hr)/8,887 grams per gallon of gasoline fuel) × (10²) = Fuel consumption FCL value (gallons per 100 bhp-hr).

(ii) Calculate equivalent fuel consumption FCL values for spark-ignition engines and alternative fuel spark-ignition engines. CO₂ FCL value (grams per bhp-hr)/10,180 grams per gallon of diesel fuel) × (10²) = Fuel consumption FCL value (gallons per 100 bhp-hr).

(iii) Manufacturers may carryover fuel consumption data from a previous model year if allowed to carry over emissions data for EPA in accordance with 40 CFR 1036.235.

(iv) If a manufacturer uses an alternate test procedure under 40 CFR 1065.10 and subsequently the data is rejected by the EPA, NHTSA will also reject the data.

§ 535.7 Averaging, banking, and trading (ABT) program.

(a) Fuel consumption credits (FCC). At the end of each model year, primary and secondary manufacturers as specified in §535.3 may earn credits for heavy-duty vehicles and engines exceeding the fuel consumption standards in §535.5 or by using one or more of the flexibilities in this paragraph (a) to gain credits. Manufacturers may average, bank, and trade fuel consumption credits for purposes of complying with fuel consumption standards. The following criteria and restrictions apply to averaging, banking and trading FCC.

(1) Averaging. Averaging is the exchange of FCC among a manufacturer’s engines or vehicle families or test groups within an averaging set. With the exception of FCC earned for advance technologies as further clarified below, a manufacturer may average FCC only within the same averaging set. The principle averaging sets are defined in §535.4.

(2) Banking. Banking is the retention of surplus FCC by the manufacturer generating the credits for use in future model years for averaging or trading. Banked FCC retain the designation from the averaging set and model year in which they were generated and expire after five model years.

(3) Trading. Trading is a transaction that moves FCC between manufacturers for averaging, banking, or further trading transactions. Traded FCC, other than advanced technology credits, may be used by a manufacturer
only within the averaging set in which they were generated. Entities other than manufacturers may only obtain traded FCC for the purpose of retiring them.

(b) ABT provisions for heavy-duty pickup trucks and vans. (1) This regulatory category consists of one regulatory subcategory, heavy-duty pickup trucks and vans. This one regulatory subcategory makes up one averaging set.

(2) Manufacturers that manufacture vehicles within this regulatory subcategory shall calculate credits at the end of each model year based upon the final average fleet fuel consumption standard and final average fleet fuel consumption performance value within this one regulatory subcategory as identified in paragraph (b)(8) of this section. If the manufacturer’s fleet includes conventional vehicles (gasoline, diesel and alternative fuel) and advanced technology vehicles (hybrids with regenerative braking, vehicles equipped with Rankine-cycle engines, electric and fuel cell vehicles) it should be divided into two separate fleets each with its own final average fleet fuel consumption standard and final average fleet fuel consumption performance value within this one regulatory subcategory. Credits shall be calculated for each of the two fleets.

(3) Fuel consumption levels below the standard create a “credit surplus,” while fuel consumption levels above the standard create a “credit shortfall.”

(4) Surplus credits, other than advanced technology credits, generated and calculated within this averaging set may only be used to offset a credit shortfall in this same averaging set.

(5) Advanced technology credits can be used to offset a credit shortfall in this same averaging set or other averaging sets. However, a manufacturer must first apply advanced technology credits to any deficits in the same averaging set before applying them to other averaging sets.

(6) Surplus credits, other than advanced technology credits, may be traded among credit holders but must stay within the same averaging set. Advanced technology credits can be traded across averaging sets.

(7) Surplus credits, if not used to offset a credit shortfall may be banked by the manufacturer for use in future model years, or traded, given the restriction that the credits have an expiration date of five model years after the year in which the credits are earned. For example, credits earned in model year 2014 may be utilized through model year 2019.

(8) Credit shortfalls must be offset by an available credit surplus within three model years after the shortfall was incurred. If the shortfall cannot be offset, the manufacturer is liable for civil penalties as discussed in §535.9.

(9) Calculate the value of credits generated in a model year for this regulatory subcategory or averaging set using the following equation:

\[
\text{Total MY Fleet FCC (gallons)} = (\text{Std} - \text{Act}) \times (\text{Volume}) \times (\text{UL}) \times (10^{-2})
\]

Where:

- \(\text{Std}\) = Fleet average fuel consumption standard (gal/100 mile).
- \(\text{Act}\) = Fleet average actual fuel consumption value (gal/100 mile).
- \(\text{Volume}\) = the total U.S.-directed production of vehicles in the regulatory subcategory.
- \(\text{UL}\) = the useful life for the regulatory subcategory (120,000 miles).

(10) If a manufacturer generates credits from its fleet of advanced technology vehicles in accordance with 535.7(e)(1) a multiplier of 1.5 can be used. Advanced technology credits can be used in other averaging sets different from the one they are generated within with the following restrictions.

(i) The maximum amount of credits a manufacturer may bring into the service class group that contains the heavy-duty pickup and van averaging set is 5.89 Mgallons (for advanced technology credits based upon compression ignition engines) or 6.76 Mgallons (for advanced technology credits based upon spark-ignition engines) per model year as specified in 40 CFR 1037.104.

(ii) The limit specified in paragraph (b)(10)(i) of this section does not limit the amount of advanced technology credits that can be used across averaging sets within the same service class group.

(11) If a manufacturer chooses to generate \(\text{CO}_2\) emission credits under EPA provisions of 40 CFR 1037.150(a), it may also voluntarily generate early credits under the NHTSA fuel consumption.

program. Fuel consumption credits may be generated for vehicles certified in model year 2013 to the model year 2014 standards in §535.5(a). To do so a manufacturer must certify its entire U.S. directed production volume of vehicles in its fleet. The same production volume restrictions specified in 49 CFR 1037.150(a)(2) relating to when test groups are certified apply to the NHTSA early credit provisions. Credits are calculated as specified in paragraph (b)(9) of this section relative to the fleet standard that would apply for model year 2014 using the model year 2013 production volumes. Surplus credits generated under this paragraph are available credits for banking or trading. Credit deficits for an averaging set prior to model year 2014 do not carry over to model year 2014. These credits may be used to show compliance with the standards of this part for 2014 and later model years. Once a manufacturer opts into the NHTSA program they must stay in the program for all of the optional model years and remain standardized with the same implementation approach being followed to meet the EPA CO\textsubscript{2} emission program.

(c) ABT provisions for vocational vehicles and tractors. (1) The two regulatory categories for vocational vehicles and tractors consist of 12 regulatory subcategory as follows:

(i) Vocational vehicles with a GVWR up to and including 19,500 pounds (Light Heavy-Duty (LHD));

(ii) Vocational vehicles with a GVWR above 19,500 pounds and no greater than 33,000 pounds (Medium Heavy-Duty (MHD));

(iii) Vocational vehicles with a GVWR over 33,000 pounds (Heavy Heavy-Duty (HHD));

(iv) Low roof day cab tractors with a GVWR above 26,000 pounds and no greater than 33,000 pounds;

(v) Mid roof day cab tractors with a GVWR above 26,000 pounds and no greater than 33,000 pounds;

(vi) High roof day cab tractors with a GVWR above 26,000 pounds and no greater than 33,000 pounds;

(vii) Low roof day cab tractors with a GVWR above 33,000 pounds;

(viii) Mid roof day cab tractors with a GVWR above 33,000 pounds;

(ix) High roof day cab tractors with a GVWR above 33,000 pounds;

(x) Low roof sleeper cab tractors with a GVWR above 33,000 pounds;

(xi) Mid roof sleeper cab tractors with a GVWR above 33,000 pounds;

(xii) High roof sleeper cab tractors with a GVWR above 33,000 pounds.

(2) The 12 regulatory subcategories consist of three averaging sets as follows:

(i) Vocational light-heavy vehicles at or below 19,500 pounds GVWR.

(ii) Vocational and tractor medium-heavy vehicles above 19,500 pounds GVWR but at or below 33,000 pounds GVWR.

(iii) Vocational and tractor heavy-heavy vehicles above 33,000 pounds GVWR.

(3) Manufacturers that manufacture vehicles within either of these two vehicle categories, in one or more of the regulatory subcategories, shall calculate a total credit balance within each applicable averaging set at the end of each model year based upon final production volumes and the sum of the credit balances derived for each of the vehicle family groups within each averaging set.

(4) Each designated vehicle family group has a “family emissions limit” (FEL) which is compared to the associated regulatory subcategory standard. A FEL that falls below the regulatory subcategory standard creates “positive credits,” while fuel consumption level of a family group above the standard creates a “credit shortfall.”

(5) Manufacturers shall sum all shortfalls and surplus credits for each vehicle family within each applicable averaging set to obtain the total credit balance for the model year before rounding. The sum of fuel consumption credits must be rounded to the nearest gallon.

(6) Surplus credits, other than advanced technology credits, generated and calculated within this averaging set may only be used to offset a credit shortfall in this same averaging set. Advanced technology credits can be used to offset a credit shortfall in this same averaging set or other averaging sets. However, a manufacturer must first apply advanced technology credits to any deficits in the same
averaging set before applying them to other averaging sets.

(8) Surplus credits, other than advanced technology credits, may be traded among credit holders but must stay within the same averaging set. Advanced technology credits can be traded across averaging sets.

(9) Surplus credits, if not used to offset a credit shortfall may be banked by the manufacturer for use in future model years, or traded, given the restriction that the credits have an expiration date of five model years after the year in which the credits are earned. For example, credits earned in model year 2014 may be utilized through model year 2019.

(10) Credit shortfalls must be offset by an available credit surplus within three model years after the shortfall was incurred. If the shortfall cannot be offset, the manufacturer is liable for civil penalties as discussed in § 535.9.

(12) If a manufacturer chooses to generate CO₂ emission credits under EPA provisions of 40 CFR 1037.150(a), it may also voluntarily generate early credits under the NHTSA fuel consumption program as follows:

(i) Fuel consumption credits may be generated for vehicles certified in model year 2013 to the model year 2014 standards in § 535.5(b) and (c). To do so a manufacturer must certify its entire U.S. directed production volume of vehicles. The same production volume restrictions specified in 40 CFR 1037.150(a)(1) relating to when test groups are certified apply to the NHTSA early credit provisions. Credits are calculated as specified in paragraph (c)(11) of this section relative to the standards that would apply for model year 2014. Surplus credits generated under this paragraph (c)(12) may be increased by a factor of 1.5 for determining total available credits for banking or trading. For example, if you have 10 gallons of surplus credits for model year 2013, you may bank 15 gallons of credits. Credit deficits for an averaging set prior to model year 2014 do not carry over to model year 2014. These credits may be used to show compliance with the standards of this part for 2014 and later model years. Once a manufacturer opts into the NHTSA program they must stay in the program for all of the optional model years and remain standardized with the same implementation approach being followed to meet the EPA CO₂ emission program.
(ii) A tractor manufacturer may generate fuel consumption credits for the number of additional SmartWay designated tractors (relative to its MY 2012 production), provided that credits are not generated for those vehicles under paragraph (c)(12)(i) of this section. Calculate credits for each regulatory sub-category relative to the standard that would apply in model year 2014 using the equations in paragraph (c)(11) of this section. Use a production volume equal to the number of verified model year 2013 SmartWay tractors minus the number of verified model year 2012 SmartWay tractors. A manufacturer may bank credits equal to the surplus credits generated under this paragraph multiplied by 1.50. A manufacturer’s 2012 and 2013 model years must be equivalent in length. Once a manufacturer opts into the NHTSA program they must stay in the program for all of the optional model years and remain standardized with the same implementation approach being followed to meet the EPA CO₂ emission program.

(13) If a manufacturer generates credits from vehicles certified for advanced technology in accordance with §535.7(e)(1), a multiplier of 1.5 can be used, but this multiplier cannot be used on the same credits for which the early credit multiplier is used. Advanced technology credits can be used in other averaging sets different from the one they are generated, but the maximum amount of credits a manufacturer may bring into a service class group that contains the vocational vehicle and tractor averaging sets is 3.89 Mgallons (for advanced technology credits based upon compression ignition engines) or 6.76 Mgallons (for advanced technology credits based upon spark-ignition engines) per model year as specified in 49 CFR 1037.740. However, this does not limit the amount of advanced technology credits that can be used across averaging sets within the same service class group.

(d) **ABT provisions for heavy-duty engines.** (1) Heavy-duty engines consist of six regulatory subcategories as follows:

(i) Spark-ignition engines.

(ii) Light heavy-duty compression-ignition engines.

(iii) Medium heavy-duty vocational compression-ignition engines.

(iv) Medium heavy-duty tractor compression-ignition engines.

(v) Heavy heavy-duty vocational compression-ignition engines.

(vi) Heavy heavy-duty tractor compression-ignition engines.

(2) The six regulatory subcategories consist of four averaging sets as follows:

(i) Compression-ignition light heavy-duty engines.

(ii) Compression-ignition medium heavy-duty engines.

(iii) Compression-ignition heavy heavy-duty engines.

(iv) Spark-ignition engines.

(3) Manufacturers that manufacture engines within one or more of the regulatory subcategories, shall calculate a total credit balance within each applicable averaging set at the end of each model year based upon final production volumes and the sum of the credit balances derived for each of the engine families within each averaging set.

(4) Each designated engine family has a “family certification level” (FCL) which is compared to the associated regulatory subcategory standard. A FCL that falls below the regulatory subcategory standard creates “positive credits,” while fuel consumption level of a family group above the standard creates a “credit shortfall.”

(5) Manufacturers shall sum all surplus and shortfall credits for each engine family within the applicable averaging set to obtain the total credit balance for the model year before rounding. Round the sum of fuel consumption credits to the nearest gallon.

(6) Surplus credits, other than advanced technology credits, generated and calculated within this averaging set may only be used to offset a credit shortfall in this same averaging set.

(7) Advanced technology credits can be used to offset a credit shortfall in this same averaging set or other averaging sets. However, a manufacturer must first apply advanced technology credits to any deficits in the same averaging set before applying them to other averaging sets.

(8) Surplus credits, other than advanced technology credits, may be traded among credit-holders but must
stay within the same averaging set. Advanced technology credits can be traded across averaging sets.

(9) Surplus credits, if not used to offset a credit shortfall may be banked by the manufacturer for use in future model years, or traded, given the restriction that the credits have an expiration date of five model years after the year in which the credits are earned. For example, credits earned in model year 2014 may be utilized through model year 2019.

(10) Credit shortfalls must be offset by available surplus credits within three model years after shortfall was incurred. If the shortfall cannot be offset, the manufacturer is liable for civil penalties as discussed in §535.9.

(11) The value of credits generated in a model year is calculated as follows:

(i) The value of credits generated in a model year for each engine family within a regulatory subcategory equals:

\[\text{Engine Family FCC (gallons)} = (\text{Std} - \text{FCL}) \times (\text{CF}) \times (\text{Volume}) \times (\text{UL}) \times (10^{-2}) \]

Where:

- Std = the standard for the respective engine regulatory subcategory (gal/100 bhp-hr).
- FCL = family certification level for the engine family (gal/100 bhp-hr).
- CF = a transient cycle conversion factor in bhp-hr/mile which is the integrated total cycle brake horsepower-hour divided by the equivalent mileage of the applicable test cycle. For spark-ignition heavy-duty engines, the equivalent mileage is 6.3 miles. For compression-ignition heavy-duty engines, the equivalent mileage is 6.5 miles.
- Volume = the number of engines in the corresponding engine family.
- UL = the useful life of the given engine family (miles) as shown in the following table:

<table>
<thead>
<tr>
<th>Regulatory subcategory</th>
<th>UL (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 6–7 Vocational Vehicles and Medium Heavy-Duty Diesel Engines</td>
<td>185,000</td>
</tr>
<tr>
<td>Class 8 Vocational Vehicles and Heavy Heavy-Duty Diesel Engines</td>
<td>435,000</td>
</tr>
<tr>
<td>Class 7 Tractors and Medium Heavy-Duty Diesel Engines</td>
<td>185,000</td>
</tr>
<tr>
<td>Class 8 Tractors and Heavy Heavy-Duty Diesel Engines</td>
<td>435,000</td>
</tr>
</tbody>
</table>

(ii) Calculate the total credits generated in a model year for each averaging set using the following equation:

\[\text{Total averaging set MY credits} = \sum \text{Engine family credits within each averaging set} \]

(12) The provisions of this section apply to manufacturers utilizing the compression-ignition engine voluntary alternate standard provisions specified in §535.5(d)(4) as follows.

(i) Manufacturers may not certify engines to the alternate standards if they are part of an averaging set in which they carry a balance of banked credits. For purposes of this section, manufacturers are deemed to carry credits in an averaging set if they carry credits from advance technology that are allowed to be used in that averaging set.

(ii) Manufacturers may not bank fuel consumption credits for any engine family in the same averaging set and model year in which it certifies engines to the alternate standards. This means a manufacturer may not bank advanced technology credits in a model year it certifies any engines to the alternate standards.

(iii) Note that the provisions of paragraph (d)(10) of this section apply with respect to credit deficits generated while utilizing alternate standards.

(13) Where a manufacturer has chosen to comply with the EPA alternative compression ignition engine phase-in standard provisions, in 40 CFR 1036.150(e), and has optionally decided to follow the same path under the NHTSA fuel consumption program, it must certify all of its model year 2013 compression-ignition engines within a given averaging set to the applicable alternative standards in §535.5(d)(5). Engines certified to these standards are not eligible for early credits under
paragraph (d)(14) of this section. Credits are calculated using the same equation provided in paragraph (d)(11) of this section.

(14) If a manufacturer chooses to generate early CO\textsubscript{2} emission credits under EPA provisions of 40 CFR 1036.150, it may also voluntarily generate early credits under the NHTSA fuel consumption program. Fuel consumption credits may be generated for engines certified in model year 2013 (2015 for spark-ignition engines) to the standards in §535.5(d). To do so a manufacturer must certify its entire U. S.-directed production volume of engines except as specified in 40 CFR 1036.150(a)(2). Credits are calculated as specified in paragraph (d)(11) of this section relative to the standards that would apply for model year 2014 (2016 for spark-ignition engines). Surplus credits generated under this paragraph may be increased by a factor of 1.5 for determining total available credits for banking or trading. For example, if you have 10 gallons of surplus credits for model year 2013, you may bank 15 gallons of credits. Credit deficits for an averaging set prior to model year 2014 (2016 for spark-ignition engines) do not carry over to model year 2014 (2016 for spark-ignition engines). These credits may be used to show compliance with the standards of this part for 2014 and later model years. Once a manufacturer opts into the NHTSA program they must stay in the program for all of the optional model years and remain standardized with the same implementation approach being followed to meet the EPA CO\textsubscript{2} emission program.

(15) If a manufacturer generates credits from engines certified for advanced technology in accordance with §535.7(e)(1), a multiplier of 1.5 can be used, but this multiplier cannot be used on the same credits for which the early credit multiplier is used. Advanced technology credits can be used in other averaging sets different from the one they are generated, but the maximum amount of credits a manufacturer may bring into a service class group that contains the heavy-duty engine averaging sets is 5.89 Mgallons (for advanced technology credits based upon spark-ignition engines) or 6.76 Mgallons (for advanced technology credits based upon compression ignition engines) per model year as specified in 40 CFR 1036.740. However, this does not limit the amount of advanced technology credits that can be used across averaging sets within the same service class group.

(e) Additional credit provisions.

(1) Advanced technology credits. Manufacturers of heavy-duty pickup trucks and vans, vocational vehicles, tractors and associated engines showing improvements in CO\textsubscript{2} emissions and fuel consumption using hybrid vehicles with regenerative braking, vehicles equipped with Rankine-cycle engines, electric vehicles and fuel cell vehicles are eligible for advanced technology credits. Advanced technology credits may be increased by a 1.5 multiplier and applied to any heavy-duty vehicle or engine subcategory consistent with sound engineering judgment.

(i) Heavy-duty vehicles. (A) This paragraph (e)(1)(i) specifies how to generate advanced technology-specific fuel consumption credits for hybrid vehicles, vehicles equipped with Rankine-cycle engines and fuel cell vehicles (or other vehicle specific advanced technologies) for which the manufacturer is requesting a vehicle certificate from EPA. Calculate the advanced technology credits as follows:

(I) Determine the equivalent fuel consumption for hybrid systems with power take-off devices either from chassis or powertrain testing emissions rates derived in accordance with 40 CFR 1037.525. Determine the equivalent fuel consumption for hybrid systems with pre- or post-transmissions and for vehicles with other non-hybrid advanced technology systems from chassis testing emissions rates derived in accordance with 40 CFR 1037.550. Determine the equivalent fuel consumption in accordance with this paragraph unless EPA approves an alternative test procedure for the manufacturer. Measure the effectiveness of the advanced system by chassis testing a vehicle equipped with the advanced system and an equivalent conventional system in accordance with 40 CFR 1037.525, 1037.550 and 1037.615.

(2) For purposes of this paragraph (e)(1)(i) a conventional vehicle is considered to be equivalent if it has the
same footprint, intended vehicle service class, aerodynamic drag, and other relevant factors not directly related to the advanced system powertrain. If there is no equivalent vehicle, the manufacturer may create and test a prototype equivalent vehicle. The conventional vehicle is considered Vehicle A, and the advanced technology vehicle is considered Vehicle B.

(3) The benefit associated with the advanced system for fuel consumption is determined from the weighted fuel consumption results from the chassis tests of each vehicle using the following equation:

\[
\text{Benefit (gallon/1000 ton mile)} = \text{Improvement Factor} \times \text{GEM Fuel Consumption Result}_B
\]

Where:

\[
\text{Improvement Factor} = \left(\frac{\text{Fuel Consumption}_A - \text{Fuel Consumption}_B}{\text{Fuel Consumption}_A}\right)
\]

Fuel Consumption Rates A and B are the gallons per 1000 ton-mile of the conventional and advanced vehicles, respectively as measured under the test procedures specified by EPA.

GEM Fuel Consumption Result B is the estimated gallons per 1000 ton-mile rate resulting from emission modeling of the advanced vehicle as specified in 40 CFR 1037.520 and § 535.6(b).

(4) The manufacturer may apply the improvement factor to multiple vehicle configurations, if it uses the vehicle configuration with the smallest potential reduction in fuel consumption performance as a result of the hybrid capability.

(5) Calculate the benefit in credits using the equation in paragraph (c)(11) of this section and replacing the term (Std-FEL) with the benefit.

(B) For electric vehicles calculate the fuel consumption credits using an FEL of 0 g/1000 ton-mile.

(ii) Heavy-duty engines. (A) This paragraph (c)(1)(ii) specifies how to generate advanced technology-specific fuel consumption credits for hybrid engines and for engines that include Rankine-cycle (or other bottoming cycle) exhaust energy recovery systems for which the manufacturer is requesting an engine certificate from EPA. Calculate the advanced technology credits as follows:

(1) Determine the equivalent fuel consumption for hybrid engine systems with features that recover and store energy during engine motoring operation from the emissions rates derived in accordance with 40 CFR 1036.525.

(2) Determine the equivalent fuel consumption for hybrid pre-transmission powertrains that include energy storage systems and regenerative braking (including regenerative engine braking) and for engines that include Rankine-cycle exhaust energy recovery systems from the emissions rates derived in accordance with 40 CFR 1036.615. Hybrid pre-transmission powertrains are engine systems that include features that recover and store energy during engine motoring operation but not from the vehicle wheels. Determine the equivalent fuel consumption of hybrid engines in accordance with this paragraph unless EPA approves an alternative test procedure for the manufacturer.

(3) Test engines that include Rankine-cycle exhaust energy recovery systems according to the test procedures specified in 40 CFR part 1036, subpart F, unless EPA approves the manufacturer’s alternate procedures.

(B) Calculate credits as specified in paragraph (c) of this section. Credits generated from engines and powertrains certified under this section may be used in other averaging sets as described in 40 CFR 1036.740(d).

(ii) Innovative technology credits. This provision allows engine and vehicle manufacturers to generate CO₂ emission credits consistent with the provisions of 40 CFR 1036.610 (for engines), 40 CFR 1037.104(d)(13) (for heavy-duty pickup trucks and vans) and 40 CFR 1037.610 (for vocational vehicles and tractors) for introducing innovative technology in heavy-duty engines and vehicles for reducing greenhouse gas emissions and fuel consumption. Upon identification and approval from EPA of a manufacturer seeking to obtain innovative technology credits in a given model year, NHTSA may adopt an equivalent amount of fuel consumption credits into its program. Such credits must remain within the same regulatory subcategory in which the credits were generated. NHTSA will adopt
§ 535.8 Reporting requirements.

(a) General requirements. Manufacturers producing heavy-duty vehicles and engines applicable to fuel consumption standards in § 535.5, for each given model year, must submit the required information as specified in paragraphs (b) through (h) of this section.

(i) The technology has a direct impact upon reducing fuel consumption performance;

(ii) The manufacturer has provided sufficient information to make sound engineering judgments on the impact of the technology in reducing fuel consumption performance; and

(iii) Credits will be accepted on a one-for-one basis expressed in terms of gallons.

[76 FR 57493, Sept. 15, 2011, as amended at 78 FR 36403, June 17, 2013]

§ 535.8 Reporting requirements.

(a) General requirements. Manufacturers producing heavy-duty vehicles and engines applicable to fuel consumption standards in § 535.5, for each given model year, must submit the required information as specified in paragraphs (b) through (h) of this section.

(i) The technology has a direct impact upon reducing fuel consumption performance;

(ii) The manufacturer has provided sufficient information to make sound engineering judgments on the impact of the technology in reducing fuel consumption performance; and

(iii) Credits will be accepted on a one-for-one basis expressed in terms of gallons.

(b) Pre-model year reports. Manufacturers producing heavy-duty pickup trucks and vans must submit reports in advance of the model year providing early estimates demonstrating how their fleet(s) would comply with GHG emissions and fuel consumption standards. Note, the agencies understand that early model year reports contain estimates that may change over the course of a model year and that compliance information manufacturers submit prior to the beginning of a new model year may not represent the final compliance outcome. The agencies view the necessity for requiring early model reports as a manufacturer's good faith projection for demonstrating compliance with emission and fuel consumption standards.

(1) Report deadlines. For model years 2013 and later, manufacturers of heavy-duty pickup trucks and vans complying with voluntary and mandatory standards must submit a pre-model year report for the given model year as early as the date of the manufacturer's annual certification preview meeting with EPA and NHTSA, or prior to submitting its first application for a certificate of conformity to EPA in accordance with 40 CFR 1037.104(d). For example, a manufacturer choosing to comply in model year 2014 could submit its pre-model year report during its precertification meeting which could occur before January 2, 2013, or could provide its pre-model year report any time prior to submitting its first application for certification for the given model year.

(2) Contents. Each pre-model year report must be submitted including the following information for each model year.

(i) A list of each unique subconfiguration in the manufacturer's fleet describing the make and model designations, attribute based-values (i.e., GVWR, GCWR, Curb Weight and drive configurations) and standards;

(ii) The emission and fuel consumption fleet average standard derived from the unique vehicle configurations;

(iii) The estimated vehicle configuration, test group and fleet production volumes;
(iv) The expected emissions and fuel consumption test group results and fleet average performance;

(v) If complying with MY 2013 fuel consumption standards, a statement must be provided declaring that the manufacturer is voluntarily choosing to comply early with the EPA and NHTSA programs. The manufacturers must also acknowledge that once selected, the decision cannot be reversed and the manufacturer will continue to comply with the fuel consumption standards for subsequent model years for all the vehicles it manufactures in each regulatory category for a given model year;

(vi) If complying with MYs 2014, 2015 or 2016 fuel consumption standards, a statement must be provided declaring whether the manufacturer will use fixed or increasing standards in accordance with §535.5(a). The manufacturer must also acknowledge that once selected, the decision cannot be reversed and the manufacturer must continue to comply with the same alternative for subsequent model years for all the vehicles it manufactures in each regulatory category for a given model year;

(vii) If complying with MYs 2014 or 2015 fuel consumption standards, a statement must be provided declaring that the manufacturer is voluntarily choosing to comply with NHTSA’s voluntary fuel consumption standards in accordance with §535.5(a)(4). The manufacturers must also acknowledge that once selected, the decision cannot be reversed and the manufacturer will continue to comply with the fuel consumption standards for subsequent model years for all the vehicles it manufacturers in each regulatory category for a given model year;

(viii) The list of Class 2b and 3 incomplete vehicles (cab-complete or chassis complete vehicles) and the method used to certify these vehicles as complete pickups and vans identifying the most similar complete sister or other complete vehicles used to derive the target standards and performance test results;

(ix) The list of Class 4 and 5 incomplete and complete vehicles and the method used to certify these vehicles as complete pickups and vans identifying the most similar complete or sister vehicles used to derive the target standards and performance test results;

(x) List of loose engines included in the heavy-duty pickup and van category and the list of vehicles used to derive target standards and performance test results;

(xi) Copy of any notices a vehicle manufacturer sends to the engine manufacturer to notify the engine manufacturers that their engines are subject to emissions and fuel consumption standards and that it intends to use their engines in excluded vehicles;

(xii) A credit plan identifying the manufacturers estimated credit balances, planned credit flexibilities (i.e., credit balances, planned credit trading, innovative, advanced and early credits and etc.) and if needed a credit deficit plan demonstrating how it plans to resolve any credit deficits that might occur for a model year within a period of up to three model years after that deficit has occurred; and

(xiii) The supplemental information specified in paragraph (h) of this section. [Note: NHTSA may also ask a manufacturer to provide additional information if necessary to verify compliance with the fuel consumption requirements of this regulation.]

(c) Applications for certificate of conformity. Manufacturers producing vocational vehicles, tractors and heavy-duty engines are required to submit applications for certificates of conformity to EPA in accordance with 40 CFR 1036.205 and 1037.205 in advance of introducing vehicles for commercial sale. Applications contain early model year information demonstrating how manufacturers plan to comply with GHG emissions. For model years 2013 and later, manufacturers of vocational vehicles, tractors and engine complying with NHTSA’s voluntary and mandatory standards must submit applications for certificates of conformity in accordance through the EPA database including both GHG emissions and fuel consumption information for each given model year.

(1) Submission deadlines. Applications are primarily submitted in advance of the given model year to EPA but cannot be submitted any later than December 31 of the given model year.
§ 535.8

(2) Contents. Each application for certificates of conformity submitted to EPA must include the following equivalent fuel consumption.

(i) Equivalent fuel consumption values for emissions CO$_2$ FCLs values used to certify each engine family in accordance with 40 CFR 1036.205(e). This provision applies only to manufacturers producing heavy-duty engines.

(ii) Equivalent fuel consumption values for emission CO$_2$ data engines used to comply with emission standards in 40 CFR 1036.108. This provision applies only to manufacturers producing heavy-duty engines.

(iii) Equivalent fuel consumption values for emissions CO$_2$ FELs values used to certify each vehicle families or subfamilies in accordance with 40 CFR 1037.205(k). This provision applies only to manufacturers producing vocational vehicles and tractors.

(iv) Report modeling results for ten configurations in terms of CO$_2$ emissions and equivalent fuel consumption results in accordance with 40 CFR 1037.205(o). Include modeling inputs and detailed descriptions of how they were derived. This provision applies only to manufacturers producing vocational vehicles and tractors.

(d) End-of-the-year-report. Heavy-duty vehicle and engine manufacturers participating and not-participating in the ABT program are required to submit an end-of-the-year (EOY) report containing information for NHTSA as specified in paragraph (d)(2) of this section and in accordance with 40 CFR 1036.250, 1036.730, 1037.104, 1037.250 and 1037.730. The EOY reports are used to review a manufacturer’s preliminary or final compliance information and to identify manufacturers that might have a credit deficit for the given model year. For model years 2013 and later, heavy-duty vehicle and engine manufacturers complying with NHTSA’s voluntary and mandatory standards must submit EOY reports through the EPA database including both GHG emissions and fuel consumption information for each given model year.

(1) Report deadlines. For model year 2013 and later, heavy-duty vehicle and engine manufacturers complying with NHTSA voluntary and mandatory standards must submit EOY reports through the EPA database including both GHG emissions and fuel consumption information within 90 days after the end of the given model year and no later than April 1 of the next calendar year. For example, the EOY report for model year 2014 must be submitted no later than April 1, 2015.

(i) If a manufacturer expects differences in the information reported between the EOY and the final year report specified in 40 CFR 1036.730 and 1037.730, it must provide the most up-to-date fuel consumption projections in its EOY report and identify the information as preliminary.

(ii) If the manufacturer cannot provide any of the required fuel consumption information, it must state the specific reason for the insufficiency and identify the additional testing needed or explain what analytical methods are believed by the manufacturer will be necessary to eliminate the insufficiency and certify that the results will be available for the final report.

(2) Contents. Each EOY report must be submitted including the following fuel consumption information for each model year. EOY reports for manufacturers participating in the ABT program must include preliminary final estimates. EOY reports for manufacturers not participating in the ABT program and for heavy-duty pickup truck and van manufacturers must include finalized data.

(i) Engine and vehicle family designations and averaging sets.

(ii) Engine and vehicle regulatory subcategory and fuel consumption standards including any alternative standards used.
(iii) Engine and vehicle family FCLs and FELs in terms of fuel consumption.
(iv) Production volumes for engines and vehicles.
(v) A credit plan (for manufacturers participating in the ABT program) identifying the manufacturers actual fuel consumption credit balances, credit flexibilities, credit trades and a credit deficit plan if needed demonstrating how it plans to resolve any credit deficits that might occur for a model year within a period of up to three model years after that deficit has occurred.
(vi) A final summary as specified in paragraph (h)(6) of this section describing the vocational vehicles and vocational tractors that were exempted as heavy-duty off-road vehicles. This applies to manufacturers participating and not participating in the ABT program.
(vii) A summary describing any advanced or innovative technology engines or vehicles including alternative fueled vehicles that were produced for the model year identifying the approaches used to determine compliance and the production volumes.
(viii) A list of each unique subconfiguration included in a manufacturer's fleet of heavy-duty pickup trucks and vans identifying the attribute based-values (GVWR, GCWR, Curb Weight and drive configurations) and standards. This provision applies only to manufacturers producing heavy-duty pickup trucks and vans.
(ix) The fuel consumption fleet average standard derived from the unique vehicle configurations. This provision applies only to manufacturers producing heavy-duty pickup trucks and vans.
(x) The subconfiguration and test group production volumes. This provision applies only to manufacturers producing heavy-duty pickup trucks and vans.
(xi) The fuel consumption test group results and fleet average performance. This provision applies only to manufacturers producing heavy-duty pickup trucks and vans.
(xii) Under limited conditions, NHTSA may also ask a manufacturer to provide additional information directly to the Administrator if necessary to verify the fuel consumption requirements of this regulation.
(e) Final reports. Manufacturers participating in the ABT program are required to submit year end final reports in accordance with 40 CFR 1036.730 and 1037.730 to NHTSA and EPA. Manufacturers of heavy-duty pickup trucks and vans are excluded from this requirement and are required to submit only one EOY report as specified in paragraph (d) of this section. The final reports are used to review a manufacturer's final data and to identify manufacturers that might have a credit deficit for the given model year. For model years 2013 and later, heavy-duty vehicle and engine manufacturers complying with NHTSA's voluntary and mandatory standards must submit final reports through the EPA database including both GHG emissions and fuel consumption information for each given model year.
(1) Report deadlines. For model year 2013 and later, heavy-duty vehicle and engine manufacturers complying with NHTSA voluntary and mandatory standards must submit final reports through the EPA database including both GHG emissions and fuel consumption information within 270 days after the end of the given model year and no later than October 1 of the next calendar year. For example, the final reports for model year 2014 must be submitted no later than October 1, 2015.
(2) Contents. Each final report must be submitted including the following fuel consumption information for each model year.
(i) Final engine and vehicle family designations and averaging sets.
(ii) Final engine and vehicle fuel consumption standards including any alternative standards used.
(iii) Final engine and vehicle family FCLs and FELs in terms of fuel consumption.
(iv) Final production volumes for engines and vehicles.
(v) A final credit plan identifying the manufacturers actual fuel consumption credit demonstrating how it plans to resolve any credit deficits that might occur for a model year within a period of up to three model years after that deficit has occurred.
§535.8

(vi) A final plan describing any advanced or innovative technology engines or vehicles including alternative fueled vehicles that were produced for the model year identifying the approaches used to determine compliance and the production volumes.

(vii) Under limited conditions, NHTSA may also ask a manufacturer to provide additional information directly to the Administrator if necessary to verify the fuel consumption requirements of this part.

(f) Amendments to applications for certification. At any time, a manufacturer modifies an application for certification in accordance with 49 CFR 1036.225 and 1037.225, it must submit GHG emissions changes with equivalent fuel consumption values for the information required in paragraphs (b) through (e) and (h) of this section.

(g) Confidential information. Manufacturers must submit a request for confidentiality with each electronic submission specifying any part of the information or data in a report that it believes should be withheld from public disclosure as trade secret or other confidential business information. Information submitted to EPA should follow EPA guidelines for treatment of confidentiality. Confidential information submitted to NHTSA shall be treated according to paragraph (g)(1) of this section. For any information or data requested by the manufacturer to be withheld under 5 U.S.C. 552(b)(4) and 15 U.S.C. 2005(d)(1), the manufacturer shall provide evidence in its request for confidentiality to justify that:

1. The item is within the scope of 5 U.S.C. 552(b)(4) and 15 U.S.C. 2005(d)(1);

2. The disclosure of such an item would result in significant competitive damage;

3. The period during which the item must be withheld to avoid that damage; and

4. How earlier disclosure would result in that damage.

(b) Additional required information. The following additional information is required to be submitted through the EPA database. NHTSA reserves the right to ask a manufacturer to provide additional information if necessary to verify the fuel consumption requirements of this regulation.

1. Small business exemptions. Vehicles and engines produced by small business manufacturers meeting the criteria in 13 CFR 121.201 are exempted from the requirements of this part. Qualifying small business manufacturers must notify the EPA and NHTSA Administrators before importing or introducing into U.S. commerce exempted vehicles or engines. This notification must include a description of the manufacturer’s qualification as a small business under 13 CFR 121.201 and must be submitted to EPA. The agencies may review a manufacturer’s qualification as a small business manufacturer under 13 CFR 121.201.

2. Early introduction. The provision applies to manufacturers seeking to comply early with the NHTSA’s fuel consumption program prior to model year 2014. The manufacturer must send the request to EPA before submitting its first application for a certificate of conformity.

3. NHTSA voluntary compliance model years. Manufacturers must submit a statement declaring whether the manufacturer chooses to comply voluntarily with NHTSA’s fuel consumption standards for model years 2014 through 2015. The manufacturer must send the statement to EPA before submitting its first application for a certificate of conformity.

4. Alternative engine standards. Manufacturers choosing to comply with the alternative engine standards must notify EPA and NHTSA of their choice and include in that notification a demonstration that it has exhausted all available credits and credit opportunities. The manufacturer must send the statement to EPA before submitting its EOY report.

5. Alternate phase-in. Manufacturers choosing to comply with the alternative engine phase-in must notify EPA and NHTSA of their choice. The manufacturer must send the statement to EPA before submitting its first application for a certificate of conformity.
(6) Off-road exclusion (tractors and vocational vehicles only). (i) Vehicles intended to be used extensively in off-road environments such as forests, oil fields, and construction sites may be exempted without request from the requirements of this regulation as specified in 49 CFR 523.2 and §535.5(b). Within 90 days after the end of each model year, manufacturers must send EPA and NHTSA through the EPA database a report with the following information:

(A) A description of each excluded vehicle configuration, including an explanation of why it qualifies for this exclusion.

(B) The number of vehicles excluded for each vehicle configuration.

(ii) A manufacturer having an off-road vehicle failing to meet the criteria under the agencies’ off-road exclusions will be allowed to submit a petition describing how and why their vehicles should qualify for exclusion. The process of petitioning for an exclusion is explained below. For each request, the manufacturer will be required to describe why it believes an exclusion is warranted and address the following factors which the agencies will consider in granting its petition:

(A) The agencies will provide an exclusion based on off-road capability of the vehicle or if the vehicle is fitted with speed restricted tires. A manufacturer should explain which exclusion does its vehicle qualify under; and

(B) A manufacturer should verify if there are any comparable tires that exist in the market to carry out the desired application both on and off road for the subject vehicle(s) of the petition which have LLR values that would enable compliance with the standard.

(7) Vocational tractor. Tractors intended to be used as vocational tractors may comply with vocational vehicle standards in §535.5(b) of this regulation. Manufacturers classifying tractor as vocational tractors must provide a description of how they meet the qualifications in their applications for certificates of conformity as specified in 40 CFR 1037.205.

(8) Approval of alternate methods to determine drag coefficients (tractors only). Manufacturers seeking to use alternative methods to determine aero-

dynamic drag coefficients must provide a request and gain approval by EPA. The manufacturer must send the request to EPA before submitting its first application for a certificate of conformity.

(9) Innovative technology credits. Manufacturers pursuing innovative technology credits must submit information to the agencies and may be subject to a public evaluation process in which the public would have opportunity for comment if not using a test procedure in accordance with 40 CFR 1037.610(c). Whether the approach involves on-road testing, modeling, or some other analytical approach, the manufacturer would be required to present a final methodology to EPA and NHTSA. EPA and NHTSA would approve the methodology and credits only if certain criteria were met. Baseline emissions and fuel consumption and control emissions and fuel consumption would need to be clearly demonstrated over a wide range of real world driving conditions and over a sufficient number of vehicles to address issues of uncertainty with the data. Data would need to be on a vehicle model-specific basis unless a manufacturer demonstrated model-specific data was not necessary. The agencies may publish a notice of availability in the Federal Register notifying the public of a manufacturer’s proposed alternative off-cycle credit calculation methodology and provide opportunity for comment. Any notice will include details regarding the methodology, but not include any Confidential Business Information.

(10) Credit trades. If a manufacturer trades fuel consumption credits, it must send EPA a report within 90 days after the transaction, as follows:

(i) As the seller, the manufacturer must include the following information in its report:

(A) The corporate names of the buyer and any brokers.

(B) A copy of any contracts related to the trade.

(C) The fleet, vehicle or engine families that generated fuel consumption credits for the trade, including the number of fuel consumption credits from each family.
§ 535.9 Enforcement approach.

(a) Compliance. (1) NHTSA will assess compliance with fuel consumption standards each year, based upon EPA final verified data submitted to NHTSA for its heavy-duty vehicle fuel efficiency program established pursuant to 49 U.S.C. 32902(k). NHTSA may conduct verification testing throughout a given model year in order to validate data received from manufacturers and will discuss any potential issues with EPA and the manufacturer.

(2) Credit values in gallons are calculated based on the final CO₂ emissions and fuel consumption data submitted by manufacturers and verified/validated by EPA.

(3) NHTSA will verify a manufacturer's credit balance in each averaging set for each given model year. The average set balance is based upon the engines or vehicles performance above or below the applicable regulatory subcategory standards in each respective averaging set and any credits that are traded into or out of an averaging set during the model year.

(i) If the balance is positive, the manufacturer is designated as having a credit surplus.

(ii) If the balance is negative, the manufacturer is designated as having a credit deficit.

(4) NHTSA will provide written notification to the manufacturer that has a negative balance for any averaging set for each model year. The manufacturer will be required to confirm the negative balance and submit a plan indicating how it will allocate existing credits or earn, and/or acquire by trade credits, or else be liable for a civil penalty as determined in paragraph (b) of this section. The manufacturer must submit a plan within 60 days of receiving agency notification.

(5) Credit shortfall within an averaging set may be carried forward only three years, and if not offset by earned or traded credits, the manufacturer may be liable for a civil penalty as described in paragraph (b) of this section.

(6) Credit allocation plans received from a manufacturer will be reviewed and approved by NHTSA. NHTSA will approve a credit allocation plan unless it determines that the proposed credits are unavailable or that it is unlikely that the plan will result in the manufacturer earning sufficient credits to offset the subject credit shortfall. If a plan is approved, NHTSA will revise the respective manufacturer’s credit account accordingly by identifying which existing or traded credits are being used to address the credit shortfall, or by identifying the manufacturer’s plan to earn future credits for addressing the respective credit shortfall. If a plan is rejected, NHTSA will notify the respective manufacturer and request a revised plan. The manufacturer must submit a revised plan within 14 days of receiving agency notification. The agency will provide a manufacturer one opportunity to submit a revised credit allocation plan before it initiates civil penalty proceedings.

(7) For purposes of this regulation, NHTSA will treat the use of future credits for compliance, as through a credit allocation plan, as a deferral of civil penalties for non-compliance with an applicable fuel consumption standard.

(8) If NHTSA receives and approves a manufacturer’s credit allocation plan to earn future credits within the following three model years in order to comply with regulatory obligations, NHTSA will defer levying civil penalties for non-compliance until the
date(s) when the manufacturer’s approved plan indicates that credits will be earned or acquired to achieve compliance, and upon receiving confirmed CO\textsubscript{2} emissions and fuel consumption data from EPA. If the manufacturer fails to acquire or earn sufficient credits by the plan dates, NHTSA will initiate civil penalty proceedings.

(9) In the event that NHTSA fails to receive or is unable to approve a plan for a non-compliant manufacturer due to insufficiency or untimeliness, NHTSA may initiate civil penalty proceedings.

(10) In the event that a manufacturer fails to report accurate fuel consumption data for vehicles or engines covered under this rule, noncompliance will be assumed until corrected by submission of the required data, and NHTSA may initiate civil penalty proceedings.

(b) Civil penalties. (1) Generally. NHTSA may assess a civil penalty for any violation of this part under 49 U.S.C. 32902(k). This section states the procedures for assessing civil penalties for violations of §535.5. The provisions of 5 U.S.C. 554, 556, and 557 do not apply to any proceedings conducted pursuant to this section.

(2) Initial determination of noncompliance. An action for civil penalties is commenced by the execution of a Notice of Violation. A determination by NHTSA’s Office of Enforcement of noncompliance with applicable fuel consumption standards utilizing the certified and reported CO\textsubscript{2} emissions and fuel consumption data provided by the Environmental Protection Agency as described in this part, and after considering all the flexibilities available under §535.7, underlies a Notice of Violation. If NHTSA Enforcement determines that a manufacturer’s averaging set of vehicles or engines fails to comply with the applicable fuel consumption standard(s) by generating a credit shortfall, the chassis, vehicle or engine manufacturer, as relevant, shall be subject to a civil penalty.

(3) Numbers of violations and maximum civil penalties. Any violation shall constitute a separate violation with respect to each vehicle or engine within the applicable regulatory averaging set. The maximum civil penalty is not more than $37,500.00 per vehicle or engine. The maximum civil penalty under this section for a related series of violations shall be determined by multiplying $37,500.00 times the vehicle or engine production volume for the model year in question within the regulatory averaging set. NHTSA may adjust this civil penalty amount to account for inflation.

(4) Factors for determining penalty amount. In determining the amount of any civil penalty proposed to be assessed or assessed under this section, NHTSA shall take into account the gravity of the violation, the size of the violator’s business, the violator’s history of compliance with applicable fuel consumption standards, the actual fuel consumption performance related to the applicable standards, the estimated cost to comply with the regulation and applicable standards, the quantity of vehicles or engines not complying, and the effect of the penalty on the violator’s ability to continue in business. The “estimated cost to comply with the regulation and applicable standards,” will be used to ensure that penalties for non-compliance will not be less than the cost of compliance.

(5) NHTSA enforcement report of determination of non-compliance. (i) If NHTSA Enforcement determines that a violation has occurred, NHTSA Enforcement may prepare a report and send the report to the NHTSA Chief Counsel.

(ii) The NHTSA Chief Counsel will review the report prepared by NHTSA Enforcement to determine if there is sufficient information to establish a likely violation.

(iii) If the Chief Counsel determines that a violation has likely occurred, the Chief Counsel may issue a Notice of Violation to the party.

(iv) If the Chief Counsel issues a Notice of Violation, he or she will prepare a case file with recommended actions. A record of any prior violations by the same party shall be forwarded with the case file.

(6) Notice of violation. (i) The Notice of Violation will contain the following information:

(A) The name and address of the party:
§ 535.9 49 CFR Ch. V (10–1–16 Edition)

(B) The alleged violation(s) and the applicable fuel consumption standard(s) violated;

(C) The amount of the proposed penalty and basis for that amount;

(D) The place to which, and the manner in which, payment is to be made;

(E) A statement that the party may decline the Notice of Violation and that if the Notice of Violation is declined within 30 days of the date shown on the Notice of Violation, the party has the right to a hearing, if requested within 30 days of the date shown on the Notice of Violation, prior to a final assessment of a penalty by a Hearing Officer; and

(F) A statement that failure to either pay the proposed penalty or to decline the Notice of Violation and request a hearing within 30 days of the date shown on the Notice of Violation will result in a finding of violation by default and that NHTSA will proceed with the civil penalty in the amount proposed on the Notice of Violation without processing the violation under the hearing procedures set forth in this subpart.

(ii) The Notice of Violation may be delivered to the party by:

(A) Mailing to the party (certified mail is not required);

(B) Use of an overnight or express courier service; or

(C) Facsimile transmission or electronic mail (with or without attachments) to the party or an employee of the party.

(iii) At any time after the Notice of Violation is issued, NHTSA and the party may agree to reach a compromise on the payment amount.

(iv) Once a penalty amount is paid in full, a finding of “resolved with payment” will be entered into the case file.

(v) If the party agrees to pay the proposed penalty, but has not made payment within 30 days of the date shown on the Notice of Violation, NHTSA will enter a finding of violation by default in the matter and NHTSA will proceed with the civil penalty in the amount proposed on the Notice of Violation without processing the violation under the hearing procedures set forth in this subpart.

(vi) If within 30 days of the date shown on the Notice of Violation a party fails to pay the proposed penalty on the Notice of Violation, and fails to request a hearing, then NHTSA will enter a finding of violation by default in the case file, and will assess the civil penalty in the amount set forth on the Notice of Violation without processing the violation under the hearing procedures set forth in this subpart.

(vii) NHTSA’s order assessing the civil penalty following a party’s default is a final agency action.

(7) Hearing Officer. (i) If a party timely requests a hearing after receiving a Notice of Violation, a Hearing Officer shall hear the case.

(ii) The Hearing Officer will be appointed by the NHTSA Administrator, and is solely responsible for the case referred to him or her. The Hearing Officer shall have no other responsibility, direct or supervisory, for the investigation of cases referred for the assessment of civil penalties. The Hearing Officer shall have no duties related to the light-duty fuel economy or medium- and heavy-duty fuel efficiency programs.

(iii) The Hearing Officer decides each case on the basis of the information before him or her.

(8) Initiation of action before the Hearing Officer. (i) After the Hearing Officer receives the case file from the Chief Counsel, the Hearing Officer notifies the party in writing of:

(A) The date, time, and location of the hearing and whether the hearing will be conducted telephonically or at the DOT Headquarters building in Washington, DC;

(B) The right to be represented at all stages of the proceeding by counsel set forth in paragraph (b)(9) of this section;

(C) The right to a free copy of all written evidence in the case file.

(ii) On the request of a party, or at the Hearing Officer’s direction, multiple proceedings may be consolidated if at any time it appears that such consolidation is necessary or desirable.

(9) Counsel. A party has the right to be represented at all stages of the proceeding by counsel. A party electing to be represented by counsel must notify the Hearing Officer of this election in
writing, after which point the Hearing Officer will direct all further communications to that counsel. A party represented by counsel bears all of its own attorneys’ fees and costs.

(10) Hearing location and costs. (i) Unless the party requests a hearing at which the party appears before the Hearing Officer in Washington, DC, the hearing may be held telephonically. In Washington, DC, the hearing is held at the headquarters of the U.S. Department of Transportation. (ii) The Hearing Officer may transfer a case to another Hearing Officer at a party’s request or at the Hearing Officer’s direction. (iii) A party is responsible for all fees and costs (including attorneys’ fees and costs, and costs that may be associated with travel or accommodations) associated with attending a hearing.

(11) Hearing procedures. (i) There is no right to discovery in any proceedings conducted pursuant to this subpart. (ii) The material in the case file pertinent to the issues to be determined by the Hearing Officer is presented by the Chief Counsel or his or her designee. (iii) The Chief Counsel may supplement the case file with information prior to the hearing. A copy of such information will be provided to the party no later than 3 business days before the hearing. (iv) At the close of the Chief Counsel’s presentation of evidence, the party has the right to examine respond to and rebut material in the case file and other information presented by the Chief Counsel. In the case of witness testimony, both parties have the right of cross-examination. (v) In receiving evidence, the Hearing Officer is not bound by strict rules of evidence. In evaluating the evidence presented, the Hearing Officer must give due consideration to the reliability and relevance of each item of evidence. (vi) At the close of the party’s presentation of evidence, the Hearing Officer may allow the introduction of rebuttal evidence that may be presented by the Chief Counsel. (vii) The Hearing Officer may allow the party to respond to any rebuttal evidence submitted. (viii) After the evidence in the case has been presented, the Chief Counsel and the party may present arguments on the issues in the case. The party may also request an opportunity to submit a written statement for consideration by the Hearing Officer and for further review. If granted, the Hearing Officer shall allow a reasonable time for submission of the statement and shall specify the date by which it must be received. If the statement is not received within the time prescribed, or within the limits of any extension of time granted by the Hearing Officer, it need not be considered by the Hearing Officer. (ix) A verbatim transcript of the hearing will not normally be prepared. A party may, solely at its own expense, cause a verbatim transcript to be made. If a verbatim transcript is made, the party shall submit two copies to the Hearing Officer not later than 15 days after the hearing. The Hearing Officer shall include such transcript in the record.

(12) Determination of violations and assessment of civil penalties. (i) Not later than 30 days following the close of the hearing, the Hearing Officer shall issue a written decision on the Notice of Violation, based on the hearing record. This may be extended by the Hearing officer if the submissions by the Chief Counsel or the party are voluminous. The decision shall address each alleged violation, and may do so collectively. For each alleged violation, the decision shall find a violation or no violation and provide a basis for the finding. The decision shall set forth the basis for the Hearing Officer’s assessment of a civil penalty, or decision not to assess a civil penalty. In determining the amount of the civil penalty, the gravity of the violation, the size of the violator’s business, the violator’s history of compliance with applicable fuel consumption standards, the actual fuel consumption performance related to the applicable standard, the estimated cost to comply with the regulation and applicable standard, the quantity of vehicles or engines not complying, and the effect of the penalty on the violator’s ability to continue in business. The assessment of a civil penalty by the Hearing Officer shall be set forth in
an accompanying final order. The Hearing Officer’s written final order is a final agency action.

(ii) If the Hearing Officer assesses civil penalties in excess of $1,000,000, the Hearing Officer’s decision shall contain a statement advising the party of the right to an administrative appeal to the Administrator within a specified period of time. The party is advised that failure to submit an appeal within the prescribed time will bar its consideration and that failure to appeal on the basis of a particular issue will constitute a waiver of that issue in its appeal before the Administrator.

(iii) The filing of a timely and complete appeal to the Administrator of a Hearing Officer’s order assessing a civil penalty shall suspend the operation of the Hearing Officer’s penalty, which shall no longer be a final agency action.

(iv) There shall be no administrative appeals of civil penalties assessed by a Hearing Officer of less than $1,000,000.

(13) Appeals of civil penalties in excess of $1,000,000. (i) A party may appeal the Hearing Officer’s order assessing civil penalties over $1,000,000 to the Administrator within 21 days of the date of the issuance of the Hearing Officer’s order.

(ii) The Administrator will review the decision of the Hearing Officer de novo, and may affirm the decision of the hearing officer and assess a civil penalty, or

(iii) The Administrator may:
(A) Modify a civil penalty;
(B) Rescind the Notice of Violation; or
(C) Remand the case back to the Hearing Officer for new or additional proceedings.

(iv) In the absence of a remand, the decision of the Administrator in an appeal is a final agency action.

(14) Collection of assessed or compromised civil penalties. (i) Payment of a civil penalty, whether assessed or compromised, shall be made by check, postal money order, or electronic transfer of funds, as provided in instructions by the agency. A payment of civil penalties shall not be considered a request for a hearing.

(ii) The party must remit payment of any assessed civil penalty to NHTSA within 30 days after receipt of the Hearing Officer’s order assessing civil penalties, or, in the case of an appeal to the Administrator, within 30 days after receipt of the Administrator’s decision on the appeal.

(iii) The party must remit payment of any compromised civil penalty to NHTSA on the date and under such terms and conditions as agreed to by the party and NHTSA. Failure to pay may result in NHTSA entering a finding of violation by default and assessing a civil penalty in the amount proposed in the Notice of Violation without processing the violation under the hearing procedures set forth in this part.

(c) Changes in corporate ownership and control. Manufacturers must inform NHTSA of corporate relationship changes to ensure that credit accounts are identified correctly and credits are assigned and allocated properly.

(1) In general, if two manufacturers merge in any way, they must inform NHTSA how they plan to merge their credit accounts. NHTSA will subsequently assess corporate fuel consumption and compliance status of the merged fleet instead of the original separate fleets.

(2) If a manufacturer divides or divests itself of a portion of its automobile manufacturing business, it must inform NHTSA how it plans to divide the manufacturer’s credit holdings into two or more accounts. NHTSA will subsequently distribute holdings as directed by the manufacturer, subject to provision for reasonably anticipated compliance obligations.

(3) If a manufacturer is a successor to another manufacturer’s business, it must inform NHTSA how it plans to allocate credits and resolve liabilities per 49 CFR part 534.
§ 536.3 Definitions.

(a) Statutory terms. All terms defined in 49 U.S.C. § 32901(a) are used pursuant to their statutory meaning.

(b) Other terms.

Above standard fuel economy means, with respect to a compliance category, that the automobiles manufactured by a manufacturer in that compliance category in a particular model year have greater average fuel economy (calculated in a manner that reflects the incentives for alternative fuel automobiles per 49 U.S.C. 32905) than that manufacturer’s fuel economy standard for that compliance category and model year.

Adjustment factor means a factor used to adjust the value of a traded or transferred credit for compliance purposes to ensure that the compliance value of the credit when used reflects the total volume of oil saved when the credit was earned.

Below standard fuel economy means, with respect to a compliance category, that the automobiles manufactured by a manufacturer in that compliance category in a particular model year have lower average fuel economy (calculated in a manner that reflects the incentives for alternative fuel automobiles per 49 U.S.C. 32905) than that manufacturer’s fuel economy standard for that compliance category and model year.

Compliance means a manufacturer achieves compliance in a particular compliance category when

(1) The average fuel economy of the vehicles in that category exceed or meet the fuel economy standard for that category, or

(2) The average fuel economy of the vehicles in that category do not meet the fuel economy standard for that category, but the manufacturer proffers a sufficient number of valid credits, adjusted for total oil savings, to cover the gap between the average fuel economy of the vehicles in that category and the required average fuel economy. A manufacturer achieves compliance for its fleet if the above conditions (1) or (2) are simultaneously met for all compliance categories.

Compliance category means any of three categories of automobiles subject to Federal fuel economy regulations. The three compliance categories recognized by 49 U.S.C. 32903(g)(6) are domestically manufactured passenger automobiles, imported passenger automobiles, and non-passenger automobiles (“light trucks”).

Credit holder (or holder) means a legal person that has valid possession of credits, either because they are a manufacturer who has earned credits by exceeding an applicable fuel economy standard, or because they are a designated recipient who has received credits from another holder. Credit holders need not be manufacturers, although all manufacturers may be credit holders.

Credits (or fuel economy credits) means an earned or purchased allowance recognizing that the average fuel economy of a particular manufacturer’s vehicles
within a particular compliance category and model year exceeds that manufacturer's fuel economy standard for that compliance category and model year. One credit is equal to \(\frac{1}{10} \) of a mile per gallon above the fuel economy standard per one vehicle within a compliance category. Credits are denominated according to model year in which they are earned (vintage), originating manufacturer, and compliance category.

Expiry date means the model year after which fuel economy credits may no longer be used to achieve compliance with fuel economy regulations. Expiry Dates are calculated in terms of model years: for example, if a manufacturer earns credits for model year 2011, these credits may be used for compliance in model years 2008–2016.

Fleet means all automobiles that are manufactured by a manufacturer in a particular model year and are subject to fuel economy standards under 49 CFR parts 531 and 533. For the purposes of this regulation, a manufacturer's fleet means all domestically manufactured and imported passenger automobiles and non-passenger automobiles ("light trucks"). "Work trucks" and medium and heavy trucks are not included in this definition for purposes of this regulation.

Light truck means the same as "non-passenger automobile," as that term is defined in 49 U.S.C. 32901(a)(17), and as "light truck," as that term is defined at 49 CFR 523.5.

Originating manufacturer means the manufacturer that originally earned a particular credit. Each credit earned will be identified with the name of the originating manufacturer.

Trade means the receipt by NHTSA of an instruction from a credit holder to place one of its credits in the account of another credit holder. A credit that has been traded can be identified because the originating manufacturer will be a different party than the current credit holder. Traded credits are moved from one credit holder to the recipient credit holder within the same compliance category for which the credits were originally earned. If a credit has been traded to another credit holder and is subsequently traded back to the originating manufacturer, it will be deemed not to have been traded for compliance purposes.

Transfer means the application by a manufacturer of credits earned by that manufacturer in one compliance category or credits acquired by trade (and originally earned by another manufacturer in that category) to achieve compliance with fuel economy standards with respect to a different compliance category. For example, a manufacturer may purchase light truck credits from another manufacturer, and transfer them to achieve compliance in the manufacturer's domestically manufactured passenger car fleet. Subject to the credit transfer limitations of 49 U.S.C. 32903(g)(3), credits can also be transferred across compliance categories and banked or saved in that category to be carried forward or backwards later to address a credit shortfall.

Vintage means, with respect to a credit, the model year in which the credit was earned.

(74 FR 14452, Mar. 30, 2009, as amended at 75 FR 25727, May 7, 2010)

§ 536.4 Credits.

(a) Type and vintage. All credits are identified and distinguished in the accounts by originating manufacturer, compliance category, and model year of origin (vintage).

(b) Application of credits. All credits earned and applied are calculated, per 49 U.S.C. 32903(c), in tenths of a mile per gallon by which the average fuel economy of vehicles in a particular compliance category manufactured by a manufacturer in the model year in which the credits are earned exceeds the applicable average fuel economy standard, multiplied by the number of vehicles sold in that compliance category. However, credits that have been traded between credit holders or transferred between compliance categories are valued for compliance purposes using the adjustment factor specified in paragraph (c) of this section, pursuant to the "total oil savings" requirement of 49 U.S.C. 32903(f)(1).

(c) Adjustment factor. When traded or transferred and used, fuel economy credits are adjusted to ensure fuel oil savings is preserved. For traded credits, the user (or buyer) must multiply...
§ 536.5 Trading infrastructure.

(a) Accounts. NHTSA maintains “accounts” for each credit holder. The account consists of a balance of credits in each compliance category and vintage held by the holder.

(b) Who may hold credits. Every manufacturer subject to fuel economy standards under 49 CFR parts 531 or 533 is automatically an account holder. If the manufacturer earns credits pursuant to this regulation, or receives credits from another party, so that the manufacturer’s account has a non-zero balance, then the manufacturer is also a credit holder. Any party designated as a recipient of credits by a credit holder will receive an account from NHTSA and become a credit holder, subject to the following conditions:

(1) A designated recipient must provide name, address, contacting information, and a valid taxpayer identification number or social security number;

(2) NHTSA does not grant a request to open a new account by any party other than a party designated as a recipient of credits by a credit holder;

(3) NHTSA maintains accounts with zero balances for a period of time, but reserves the right to close accounts that have had zero balances for more than one year.

(c) Automatic debits and credits of accounts. (1) Upon receipt of a verified instruction to trade credits from an existing credit holder, NHTSA verifies the presence of sufficient credits in the model year and compliance category in which the credit was earned; VMT_e = Lifetime vehicle miles traveled as provided in the following table for the model year and compliance category in which the credit is used for compliance;

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Cars</td>
<td>150,922</td>
<td>177,238</td>
<td>177,366</td>
<td>178,652</td>
<td>180,497</td>
<td>182,134</td>
<td>195,264</td>
</tr>
<tr>
<td>Light Trucks</td>
<td>172,552</td>
<td>208,471</td>
<td>208,537</td>
<td>209,974</td>
<td>212,040</td>
<td>213,954</td>
<td>225,865</td>
</tr>
</tbody>
</table>

MPG_se = Required fuel economy standard for the originating (earning) manufacturer, compliance category, and model year in which the credit was earned;

MPG_ac = Actual fuel economy for the originating manufacturer, compliance category, and model year in which the credit was earned;

MPG_us = Required fuel economy standard for the user (buying) manufacturer, compliance category, and model year in which the credit is used for compliance;

MPG_au = Actual fuel economy for the user manufacturer, compliance category, and model year in which the credit is used for compliance.

account of the trader, then debits the account of the trader and credits the account of the recipient with credits of the vintage, origin, and compliance category designated. Traded credits identified by a specific compliance category are deposited into the recipient’s account in that same compliance category. If the recipient is not a current account holder, NHTSA establishes the account subject to the conditions described in §536.5(b), and adds the credits to the newly-opened account.

(2) NHTSA automatically deletes unused credits from holders’ accounts as they reach their expiry date.

(d) Compliance. (1) NHTSA assesses compliance with fuel economy standards each year, utilizing the certified and reported CAFE data provided by the Environmental Protection Agency for enforcement of the CAFE program pursuant to 49 U.S.C. 32904(e). Credit values are calculated based on the CAFE data from the EPA. If a particular compliance category within a manufacturer’s fleet has above standard fuel economy, NHTSA adds credits to the manufacturer’s account for that compliance category and vintage in the appropriate amount by which the manufacturer has exceeded the applicable standard.

(2) If a manufacturer’s vehicles in a particular compliance category have below standard fuel economy, NHTSA will provide written notification to the manufacturer that it has failed to meet a particular fleet target standard. The manufacturer will be required to confirm the shortfall and must either: submit a plan indicating how it will allocate existing credits or earn, transfer and/or acquire credits; or pay the appropriate civil penalty. The manufacturer must submit a plan or payment within 60 days of receiving agency notification.

(3) Credits used to offset shortfalls are subject to the three and five year limitations as described in §536.6.

(4) Transferred credits are subject to the limitations specified by 49 U.S.C. 32903(g)(3) and this regulation.

(5) The value, when used for compliance, of any credits received via trade or transfer is adjusted, using the adjustment factor described in §536.4(c), pursuant to 49 U.S.C. 32903(f)(1).

(6) Credit allocation plans received from a manufacturer will be reviewed and approved by NHTSA. NHTSA will approve a credit allocation plan unless it finds that the proposed credits are unavailable or that it is unlikely that the plan will result in the manufacturer earning sufficient credits to offset the subject credit shortfall. If a plan is approved, NHTSA will revise the respective manufacturer’s credit account accordingly. If a plan is rejected, NHTSA will notify the respective manufacturer and request a revised plan or payment of the appropriate fine.

(e) Reporting. (1) NHTSA periodically publishes the names and credit holdings of all credit holders. NHTSA does not publish individual transactions, nor respond to individual requests for updated balances from any party other than the account holder.

(2) NHTSA issues an annual credit status letter to each party that is a credit holder at that time. The letter to a credit holder includes a credit accounting record that identifies the credit status of the credit holder including any activity (earned, expired, transferred, traded, carry-forward and carry-back credit transactions/allocations) that took place during the identified activity period.

§536.6 Treatment of credits earned prior to model year 2011.

(a) Credits earned in a compliance category before model year 2008 may be applied by the manufacturer that earned them to carryback plans for that compliance category approved up to three model years prior to the year in which the credits were earned, or may be applied to compliance in that compliance category for up to three model years after the year in which the credits were earned.

(b) Credits earned in a compliance category during and after model year 2008 may be applied by the manufacturer that earned them to carryback plans for that compliance category approved up to three years prior to the year in which the credits were earned, or may be held or applied for up to five model years after the year in which the credits were earned.
(c) Credits earned in a compliance category prior to model year 2011 may not be transferred or traded.

§ 536.7 Treatment of carryback credits.
(a) Carryback credits earned in a compliance category in any model year may be used in carryback plans approved by NHTSA, pursuant to 49 U.S.C. 32903(b), for up to three model years prior to the year in which the credit was earned.
(b) For purposes of this regulation, NHTSA will treat the use of future credits for compliance, as through a carryback plan, as a deferral of penalties for non-compliance with an applicable fuel economy standard.
(c) If NHTSA receives and approves a manufacturer’s carryback plan to earn future credits within the following three model years in order to comply with current regulatory obligations, NHTSA will defer levying fines for non-compliance until the date(s) when the manufacturer’s approved plan indicates that credits will be earned or acquired to achieve compliance, and upon receiving confirmed CAFE data from EPA. If the manufacturer fails to acquire or earn sufficient credits by the plan dates, NHTSA will initiate compliance proceedings.
(d) In the event that NHTSA fails to receive or approve a plan for a non-compliant manufacturer, NHTSA will levy fines pursuant to statute. If within three years, the non-compliant manufacturer earns or acquires additional credits to reduce or eliminate the non-compliance, NHTSA will reduce any fines owed, or repay fines to the extent that credits received reduce the non-compliance.
(e) No credits from any source (earned, transferred and/or traded) will be accepted in lieu of compliance if those credits are not identified as originating within one of the three model years after the model year of the confirmed shortfall.

§ 536.8 Conditions for trading of credits.
(a) Trading of credits. If a credit holder wishes to trade credits to another party, the current credit holder and the receiving party must jointly issue an instruction to NHTSA, identifying the quantity, vintage, compliance category, and originator of the credits to be traded. If the recipient is not a current account holder, the recipient must provide sufficient information for NHTSA to establish an account for the recipient. Once an account has been established or identified for the recipient, NHTSA completes the trade by debiting the transferor’s account and crediting the recipient’s account. NHTSA will track the quantity, vintage, compliance category, and originator of all credits held or traded by all account-holders.
(b) Trading between and within compliance categories. For credits earned in model year 2011 or thereafter, and used to satisfy compliance obligations for model year 2011 or thereafter:
(1) Manufacturers may use credits originally earned by another manufacturer in a particular compliance category to satisfy compliance obligations within the same compliance category.
(2) Once a manufacturer acquires by trade credits originally earned by another manufacturer in a particular compliance category, the manufacturer may transfer the credits to satisfy its compliance obligations in a different compliance category, but only to the extent that the CAFE increase attributable to the transferred credits does not exceed the limits in 49 U.S.C. 32903(g)(3). For any compliance category, the sum of a manufacturer’s transferred credits earned by that manufacturer and transferred credits obtained by that manufacturer through trade must not exceed that limit.
(c) Changes in corporate ownership and control. Manufacturers must inform NHTSA of corporate relationship changes to ensure that credit accounts are identified correctly and credits are assigned and allocated properly.
(1) In general, if two manufacturers merge in any way, they must inform NHTSA how they plan to merge their credit accounts. NHTSA will subsequently assess corporate fuel economy and compliance status of the merged fleet instead of the original separate fleets.
(2) If a manufacturer divests itself of a portion of its automobile manufacturing business, it
§ 536.9 Use of credits with regard to the domestically manufactured passenger automobile minimum standard.

(a) Each manufacturer is responsible for compliance with both the minimum standard and the attribute-based standard.

(b) In any particular model year, the domestically manufactured passenger automobile compliance category credit excess or shortfall is determined by comparing the actual CAFE value against either the required standard value or the minimum standard value, whichever is larger.

(c) Transferred or traded credits may not be used, pursuant to 49 U.S.C. 32903(g)(4) and (f)(2), to meet the domestically manufactured passenger automobile minimum standard specified in 49 U.S.C. 32902(b)(4) and in 49 CFR 531.5(d).

(d) If a manufacturer’s average fuel economy level for domestically manufactured passenger automobiles is lower than the attribute-based standard, but higher than the minimum standard, then the manufacturer may achieve compliance with the attribute-based standard by applying credits.

(e) If a manufacturer’s average fuel economy level for domestically manufactured passenger automobiles is lower than the minimum standard, then the difference between the minimum standard and the manufacturer’s actual fuel economy level may only be relieved by the use of credits earned by that manufacturer within the domestic passenger car compliance category which have not been transferred or traded. If the manufacturer does not have available earned credits to offset a credit shortage below the minimum standard then the manufacturer can submit a carry-back plan that indicates sufficient future credits will be earned in its domestic passenger car compliance category or will be subject to penalties.

§ 536.10 Treatment of dual-fuel and alternative fuel vehicles—consistency with 49 CFR part 538.

(a) Statutory alternative fuel and dual-fuel vehicle fuel economy calculations are treated as a change in the underlying fuel economy of the vehicle for purposes of this regulation, not as a credit that may be transferred or traded. Improvements in alternative fuel or dual fuel vehicle fuel economy as calculated pursuant to 49 U.S.C. 32905 and limited by 49 U.S.C. 32906 are therefore attributable only to the particular compliance category and model year to which the alternative or dual-fuel vehicle belongs.

(b) If a manufacturer’s calculated fuel economy for a particular compliance category, including any statutorily-required calculations for alternative fuel and dual fuel vehicles, is higher or lower than the applicable fuel economy standard, manufacturers will earn credits or must apply credits or pay civil penalties equal to the difference between the calculated fuel economy level in that compliance category and the applicable standard. Credits earned are the same as any other credits, and may be held, transferred, or traded by the manufacturer subject to the limitations of the statute and this regulation.

(c) For model years up to and including MY 2019, if a manufacturer builds enough dual fuel vehicles (except plug-in hybrid electric vehicles) to improve the calculated fuel economy in a particular compliance category by more than the limits set forth in 49 U.S.C. 32906(a), the improvement in fuel economy for compliance purposes is restricted to the statutory limit. Manufacturers may not earn credits nor reduce the application of credits or fines for calculated improvements in fuel economy based on dual fuel vehicles beyond the statutory limit.

(d) For model years 2020 and beyond, a manufacturer must calculate the fuel economy of dual fueled vehicles in accordance with 40 CFR 600.510-12(c).

§ 537.1 Scope.

This part establishes requirements for automobile manufacturers to submit reports to the National Highway Traffic Safety Administration regarding their efforts to improve automotive fuel economy.

§ 537.2 Purpose.

The purpose of this part is to obtain information to aid the National Highway Traffic Safety Administration in valuating automobile manufacturers’ plans for complying with average fuel economy standards and in preparing an annual review of the average fuel economy standards.

§ 537.3 Applicability.

This part applies to automobile manufacturers, except for manufacturers subject to an alternate fuel economy standard under section 502(c) of the Act.

§ 537.4 Definitions.

(a) Statutory terms. (1) The terms average fuel economy standard, fuel, manufacturer, and model year are used as defined in section 501 of the Act.

(2) The term manufacturer is used as defined in section 501 of the Act and in accordance with part 529 of this chapter.

(3) The terms average fuel economy, fuel economy, and model type are used as defined in subpart A of 40 CFR part 600.
§ 537.5 General requirements for reports.

(a) For each current model year, each manufacturer shall submit a pre-model year report, a mid-model year report, and, as required by § 537.8, supplementary reports.

(b)(1) The pre-model year report required by this part for each current model year must be submitted during the month of December (e.g., the pre-model year report for the 1983 model year must be submitted during December, 1982).

(b)(2) The mid-model year report required by this part for each current model year must be submitted during the month of July (e.g., the mid-model year report for the 1983 model year must be submitted during July 1983).

(c) Each supplementary report must be submitted in accordance with § 537.8(c).

(c) Each report required by this part must:

(1) Identify the report as a pre-model year report, mid-model year report, or supplementary report as appropriate;

(2) Identify the manufacturer submitting the report;

(3) State the full name, title, and address of the official responsible for preparing the report;

(4) Be submitted on CD–ROM for confidential reports provided in accordance with Part 537.12 and by email for non-confidential (i.e., redacted) versions of reports. The content of reports must be provided in a pdf or MS Word format except for the information required in 537.7 which must be provided in a MS Excel format. Submit 2 copies of the CD–ROM to: Administrator, National Highway Traffic Safety Administration or the Administrator’s delegate.

(7)(i) Specify any part of the information or data in the report that the manufacturer believes should be withheld from public disclosure as trade secret or other confidential business information.

(ii) With respect to each item of information or data requested by the
manufacturer to be withheld under 5 U.S.C. 552(b)(4) and 15 U.S.C. 2005(d)(1), the manufacturer shall:

(A) Show that the item is within the scope of sections 552(b)(4) and 2005(d)(1);

(B) Show that disclosure of the item would result in significant competitive damage;

(C) Specify the period during which the item must be withheld to avoid that damage; and

(D) Show that earlier disclosure would result in that damage.

(d) Each report required by this part must be based upon all information and data available to the manufacturer 30 days before the report is submitted to the Administrator.

§ 537.6 General content of reports.

(a) Pre-model year and mid-model year reports. Except as provided in paragraph (c) of this section, each pre-model year report and the mid-model year report for each model year must contain the information required by §537.7(a).

(b) Supplementary report. Each supplementary report must contain the information required by §537.8(b), (2), or (3), as appropriate.

(c) Exceptions. The pre-model year report and the mid-model year report submitted by an incomplete automobile manufacturer for any model year are not required to contain the information specified in §537.7(c)(4)(xv) through (xviii) and (c)(5). The information provided by the incomplete automobile manufacturer under §537.7(c) shall be according to base level instead of model type or carline.

[47 FR 34986, Aug. 12, 1982, as amended at 75 FR 25728, May 7, 2010]

§ 537.7 Pre-model year and mid-model year reports.

(a)(1) Provide the information required by paragraphs (b) and (c) of this section for the manufacturer's passenger automobiles for the current model year.

(2) After providing the information required by paragraph (a)(1) of this section provide the information required by paragraphs (b) and (c) for this section of each class, as specified in part 533 of this chapter, of the manufacturer's light trucks for the current model year.

(b) Projected average and required fuel economy. (1) State the projected average fuel economy for the manufacturer’s automobiles determined in accordance with §537.9 and based upon the fuel economy values and projected sales figures provided under paragraph (c)(2) of this section.

(2) State the projected final average fuel economy that the manufacturer anticipates having if changes implemented during the model year will cause that average to be different from the average fuel economy projected under paragraph (b)(1) of this section.

(3) State the projected required fuel economy for the manufacturer's passenger automobiles and light trucks determined in accordance with 49 CFR 531.5(c) and 49 CFR 533.5 and based upon the projected sales figures provided under paragraph (c)(2) of this section.

For each unique model type and footprint combination of the manufacturer’s automobiles, provide the information specified in paragraph (b)(3)(i) and (ii) of this section in tabular form. List the model types in order of increasing average inertia weight from top to bottom down the left side of the table and list the information categories in the order specified in paragraphs (b)(3)(i) and (ii) of this section from left to right across the top of the table. Other formats, such as those accepted by EPA, which contain all of the information in a readily identifiable format are also acceptable.

(i) In the case of passenger automobiles:

(A) Beginning model year 2013, base tire as defined in 49 CFR 523.2.

(B) Beginning model year 2013, front axle, rear axle and average track width as defined in 49 CFR 523.2.

(C) Beginning model year 2013, wheelbase as defined in 49 CFR 523.2.

(D) Beginning model year 2013, footprint as defined in 49 CFR 532.2.

(E) Optionally, beginning model year 2013, the target standard for each unique model type and footprint entry listed in accordance with the equation provided in 49 CFR 331 Figure 3.

(ii) In the case of light trucks:
§ 537.7 49 CFR Ch. V (10–1–16 Edition)

(A) Beginning model year 2013, base tire as defined in 49 CFR 523.2.
(B) Beginning model year 2013, front axle, rear axle and average track width as defined in 49 CFR 523.2.
(C) Beginning model year 2013, wheelbase as defined in 49 CFR 523.2, and
(D) Beginning model year 2013, footprint as defined in 49 CFR 523.2.
(E) Optionally, beginning model year 2013, the target standard for each unique model type and footprint entry listed in accordance with the equation provided in 49 CFR 533 Figure 4.

(4) State the projected final required fuel economy that the manufacturer anticipates having if changes implemented during the model year will cause the targets to be different from the target fuel economy projected under paragraph (b)(3) of this section.

(5) State whether the manufacturer believes that the projections it provides under paragraphs (b)(2) and (b)(4) of this section, or if it does not provide an average or target under those paragraphs, the projections it provides under paragraphs (b)(1) and (b)(3) of this section, sufficiently represent the manufacturer’s average and target fuel economy for the current model year for purposes of the Act. In the case of a manufacturer that believes that the projections are not sufficiently representative for those purposes, state the specific nature of any reason for the insufficiency and the specific additional testing or derivation of fuel economy values by analytical methods believed by the manufacturer necessary to eliminate the insufficiency and any plans of the manufacturer to undertake that testing or derivation voluntarily and submit the resulting data to the Environmental Protection Agency under 40 CFR 600.509.

(c) Model type and configuration fuel economy and technical information.

(1) For each model type of the manufacturer’s automobiles, provide the information specified in paragraph (c)(2) of this section in tabular form. List the model types in order of increasing average inertia weight from top to bottom down the left side of the table and list the information categories across the top of the table from left to right in the order specified in paragraph (c)(4) of this section.

(2)(i) Combined fuel economy; and
(ii) Projected sales for the current model year and total sales of all model types.

(3) (Pre-model year report only.) For each vehicle configuration whose fuel economy was used to calculate the fuel economy values for a model type under paragraph (c)(2) of this section, provide the information specified in paragraph (c)(4) of this section either in tabular form or as a fixed format computer tape. If a tabular form is used then list the vehicle configurations, by model type in the order listed under paragraph (c)(2) of this section, from top to bottom down the left side of the table and list the information categories across the top of the table from left to right in the order specified in paragraph (c)(4) of this section. Other formats (such as copies of EPA reports) which contain all the required information in a readily identifiable form are also acceptable. If a computer tape is used, any NHTSA approved fixed format structure may be used, but each vehicle configuration record should identify the manufacturer, model type, and for light trucks the drive wheel code, e.g., 2 or 4 wheel drive. At least the information categories specified here and in paragraph (c)(4) of this section must be provided, but if preferred the tape may contain any additional categories. Each computer tape record must contain all the required categories of information to enable direct reading and interpretation in the fixed format that was approved. There should be no titles, column headings, page numbers, or attachment numbers on the tape. It must be possible to directly calculate and produce the tables specified in paragraph (c)(1) of this section from the records on this tape.

(4)(i) Loaded vehicle weight;
(ii) Equivalent test weight;
(iii) Engine displacement, liters;
(iv) SAE net rated power, kilowatts;
(v) SAE net horsepower;
(vi) Engine code;
(vii) Fuel system (number of carburetor barrels or, if fuel injection is used, so indicate);
(viii) Emission control system;
(ix) Transmission class;
(x) Number of forward speeds;
(xi) Existence of overdrive (indicate yes or no);
(xii) Total drive ratio (N/V);
(xiii) Axle ratio;
(xiv) Combined fuel economy;
(xv) Projected sales for the current model year;
(xvi) (A) In the case of passenger automobiles:
(1) Interior volume index, determined in accordance with subpart D of 40 CFR part 600;
(2) Body style;
(B) In the case of light trucks:
(1) Passenger-carrying volume;
(2) Cargo-carrying volume;
(xvii) Frontal area;
(xviii) Road load power at 50 miles per hour, if determined by the manufacturer for purposes other than compliance with this part to differ from the road load setting prescribed in 40 CFR 86.177–11(d);
(xix) Optional equipment that the manufacturer is required under 40 CFR parts 86 and 600 to have actually installed on the vehicle configuration, or the weight of which must be included in the curb weight computation for the vehicle configuration, for fuel economy testing purposes.
(5) For each model type of automobile which is classified as a non-passenger vehicle (light truck) under part 523 of this chapter, provide the following data:
(i) For an automobile designed to perform at least one of the following functions in accordance with 523.5 (a) indicate (by “yes” or “no” for each function) whether the vehicle can:
(A) Transport more than 10 persons (if yes, provide actual designated seating positions);
(B) Provide temporary living quarters (if yes, provide applicable conveniences as defined in 523.2);
(C) Transport property on an open bed (if yes, provide bed size width and length);
(D) Provide, as sold to the first retail purchaser, greater cargo-carrying than passenger-carrying volume, such as in a cargo van and quantify the value which should be the difference between the values provided in (4)(xvi)(B)(1) and (2) above; if a vehicle is sold with a second-row seat, its cargo-carrying volume is determined with that seat installed, regardless of whether the manufacturer has described that seat as optional; or
(E) Permit expanded use of the automobile for cargo-carrying purposes or other non-passenger-carrying purposes through:
(1) For non-passenger automobiles manufactured prior to model year 2012, the removal of seats by means installed for that purpose by the automobile’s manufacturer or with simple tools, such as screwdrivers and wrenches, so as to create a flat, floor level, surface extending from the forward-most point of installation of those seats to the rear of the automobile’s interior; or
(2) For non-passenger automobiles manufactured in model year 2008 and beyond, for vehicles equipped with at least 3 rows of designated seating positions as standard equipment, permit expanded use of the automobile for cargo-carrying purposes or other non-passenger-carrying purposes through the removal or stowing of foldable or pivoting seats so as to create a flat, leveled cargo surface extending from the forward-most point of installation of those seats to the rear of the automobile’s interior.
(ii) For an automobile capable of off-highway operation, identify which of the features below qualify the vehicle as off-road in accordance with 523.5 (b) and quantify the values of each feature:
(A) 4-wheel drive; or
(B) A rating of more than 6,000 pounds gross vehicle weight; and
(C) Has at least four of the following characteristics calculated when the automobile is at curb weight, on a level surface, with the front wheels parallel to the automobile’s longitudinal centerline, and the tires inflated to the manufacturer’s recommended pressure.

The exact value of each feature should be quantified:
(1) Approach angle of not less than 28 degrees.
(2) Breakover angle of not less than 14 degrees.
(3) Departure angle of not less than 20 degrees.
(4) Running clearance of not less than 20 centimeters.
(5) Front and rear axle clearances of not less than 18 centimeters each.
§ 537.8 Supplementary reports.

(a)(1) Except as provided in paragraph (d) of this section, each manufacturer whose most recently submitted semiannual report contained an average fuel economy projection under § 537.7(b)(2) or, if no average fuel economy was projected under that section, under § 537.7(b)(1), that was not less than the applicable average fuel economy standard and who now projects an average fuel economy which is less than the applicable standard shall file a supplementary report containing the information specified in paragraph (b)(1) of this section.

(2) Except as provided in paragraph (d) of this section, each manufacturer that determines that its average fuel economy for the current model year as projected under § 537.7(b)(2) or, if no average fuel economy was projected under that section, under § 537.7(b)(1), that was not less than the applicable average fuel economy standard and who now projects an average fuel economy which is less than the applicable standard shall file a supplementary report containing the information specified in paragraph (b)(2) of this section.

(3) Each manufacturer whose pre-model year report omits any of the information specified in § 537.7(b), (c)(1) and (2), or (c)(4) shall file a supplementary report containing the information specified in paragraph (b)(3) of this section.

(b)(1) The supplementary report required by paragraph (a)(1) of this section must contain:

(6) The fuel economy values provided under paragraphs (c) (2) and (4) of this section shall be determined in accordance with § 537.9.

(7) Identify any air-conditioning (AC), off-cycle and full-size pick-up truck technologies used each model year to calculate the average fuel economy specified in 40 CFR 600.510–12.

(i) Provide a list of each air conditioning efficiency improvement technology utilized in your fleet(s) of vehicles for each model year. For each technology identify vehicles by make and model types that have the technology, which compliance category those vehicles belong to and the number of vehicles for each model equipped with the technology. For each compliance category (domestic passenger car, import passenger car and light truck) report the “Air conditioning fuel consumption improvements” value in gallons/mile in accordance with the equation specified in 40 CFR 600.510–12(c)(3)(i).

(ii) Provide a list of off-cycle efficiency improvement technologies utilized in your fleet(s) of vehicles for each model year that is pending or approved by EPA. For each technology identify vehicles by make and model that have the technology, which compliance category those vehicles belong to, the number of vehicles for each model equipped with the technology, and the associated fuel efficiency credits (grams/mile) available for each technology. For the light truck compliance category calculate the fleet “Pick-up Truck Credit” value in gallons/mile in accordance with the equation specified in 40 CFR 600.510–12(c)(3)(iii).

(iv) For each model year and compliance category, provide the “MPG” and “Average MPG” which are the fleet CAPE value before and the revised fleet CAPE value after taking into consideration adjustments for AC, Off-Cycle and full-size pick-up truck technologies calculated in accordance with 40 CFR 600.510–12 (c)(1)(ii).

(i) Such revisions of and additions to the information previously submitted by the manufacturer under this part regarding the automobiles whose projected average fuel economy has decreased as specified in paragraph (a)(1) of this section as are necessary—
(A) To reflect the decrease and its cause;
(B) To indicate a new projected average fuel economy based upon these additional measures.
(ii) An explanation of the cause of the decrease in average fuel economy that led to the manufacturer’s having to submit the supplementary report required by paragraph (a)(1) of this section.
(2) The supplementary report required by paragraph (a)(2) of this section must contain:
(i) A statement of the specific nature and reason for the insufficiency in the representativeness of the projected average fuel economy;
(ii) A statement of specific additional testing or derivation of fuel economy values by analytical methods believed by the manufacturer necessary to eliminate the insufficiency; and
(iii) A description of any plans of the manufacturer to undertake that testing or derivation voluntarily and submit the resulting data to the Environmental Protection Agency under 40 CFR 600.509.
(3) The supplementary report required by paragraph (a)(3) of this section must contain:
(i) All of the information omitted from the pre-model year report under §537.6(c)(2); and
(ii) Such revisions of and additions to the information submitted by the manufacturer in its pre-model year report regarding the automobiles produced during the current model year as are necessary to reflect the information provided under paragraph (b)(3)(i) of this section.
(c)(1) Each report required by paragraph (a)(1), (2), or (3) of this section must be submitted in accordance with §537.5(c) not more than 45 days after the date on which the manufacturer determined, or could have determined with reasonable diligence, that a report is required under paragraph (a)(1), (2), or (3) of this section.
(d) A supplementary report is not required to be submitted by the manufacturer under paragraph (a)(1) or (2) of this section:
(1) With respect to information submitted under this part before the most recent semiannual report submitted by the manufacturer under this part, or
(2) When the date specified in paragraph (c) of this section occurs:
(i) During the 60-day period immediately preceding the day by which the mid-model year report for the current model year must be submitted by the manufacturer under this part, or
(ii) After the day by which the pre-model year report for the model year immediately following the current model year must be submitted by the manufacturer under this part.
(e) Reporting compliance option in model years 2008–2010. For model years 2008, 2009, and 2010, each manufacturer of light trucks, as that term is defined in 49 CFR 523.5, shall submit a report, not later than 45 days following the end of the model year, indicating whether the manufacturer is opting to comply with 49 CFR 533.5(f) or 49 CFR 533.5(g).
§537.9 Determination of fuel economy values and average fuel economy.
(a) Vehicle configuration fuel economy values. (1) For each vehicle configuration for which a fuel economy value is required under paragraph (c) of this section and has been determined and approved under 40 CFR part 600, the manufacturer shall submit that fuel economy value.
(2) For each vehicle configuration specified in paragraph (a)(1) of this section for which a fuel economy value approved under 40 CFR part 600, does not exist, but for which a fuel economy value determined under that part exists, the manufacturer shall submit that fuel economy value.
(3) For each vehicle configuration specified in paragraph (a)(1) of this section for which a fuel economy value has been neither determined nor approved under 40 CFR part 600, the manufacturer shall submit a fuel economy...
§ 537.10 Incorporation by reference.

(a) A manufacturer may incorporate by reference in a report required by this part any document other than a report, petition, or application, or portion thereof submitted to any Federal department or agency more than two model years before the current model year.

(b) A manufacturer that incorporates by reference a document not previously submitted to the National Highway Traffic Safety Administration shall append that document to the report.

(c) A manufacturer that incorporates by reference a document shall clearly identify the document and, in the case of a document previously submitted to the National Highway Traffic Safety Administration, indicate the date on which and the person by whom the document was submitted to this agency.

§ 537.11 Public inspection of information.

Except as provided in §537.12, any person may inspect the information and data submitted by a manufacturer under this part in the docket section of the National Highway Traffic Safety Administration. Any person may obtain copies of the information available for inspection under this section in accordance with the regulations of the Secretary of Transportation in part 7 of this title.

§ 537.12 Confidential information.

(a) Information made available under §537.11 for public inspection does not include information for which confidentiality is requested under §537.5(c)(7), is granted in accordance with section 505 of the Act and section 552(b) of Title 5 of the United States Code and is not subsequently released under paragraph (c) of this section in accordance with section 505 of the Act.

(b) Denial of confidential treatment. When the Administrator denies a manufacturer’s request under §537.5(c)(7) for confidential treatment of information, the Administrator gives the manufacturer written notice of the denial and reasons for it. Public disclosure of the information is not made until after the ten-day period immediately following the giving of the notice.

(c) Release of confidential information. After giving written notice to a manufacturer and allowing ten days, when feasible, for the manufacturer to respond, the Administrator may make available for public inspection any information submitted under this part that is relevant to a proceeding under the Act, including information that was granted confidential treatment by the Administrator pursuant to a request by the manufacturer under §537.5(c)(7).

PART 538—MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES

Sec.
538.1 Scope.
538.2 Purpose.
538.3 Applicability.
538.4 Definitions.
538.5 Minimum driving range.
538.6 Measurement of driving range.
538.7 Petitions for reduction of minimum driving range.
538.8 Gallon Equivalents for Gaseous Fuels.
538.9 Dual fuel vehicle incentive.
§ 538.1 Scope.

This part establishes minimum driving range criteria to aid in identifying passenger automobiles that are dual-fueled automobiles. It also establishes gallon equivalent measurements for gaseous fuels other than natural gas.

[75 FR 25728, May 7, 2010]

§ 538.2 Purpose.

The purpose of this part is to specify one of the criteria in 49 U.S.C. chapter 329 “Automobile Fuel Economy” for identifying dual-fueled passenger automobiles that are manufactured in model years 1993 through 2019. The fuel economy of a qualifying vehicle is calculated in a special manner so as to encourage its production as a way of facilitating a manufacturer’s compliance with the Corporate Average Fuel Economy standards set forth in part 531 of this chapter. The purpose is also to establish gallon equivalent measurements for gaseous fuels other than natural gas.

[75 FR 25728, May 7, 2010]

§ 538.3 Applicability.

This part applies to manufacturers of automobiles.

§ 538.4 Definitions.

(a) Statutory terms. (1) The terms alternative fuel, alternative fueled automobile, and dual fueled automobile, are used as defined in 49 U.S.C. 32901(a).

(2) The terms automobile and passenger automobile, are used as defined in 49 U.S.C. 32901(a), and in accordance with the determinations in part 531 of this chapter.

(3) The term manufacturer is used as defined in 49 U.S.C. 32901(a)(13), and in accordance with part 529 of this chapter.

(4) The term model year is used as defined in 49 U.S.C. 32901(a)(15).

(b) Other terms. The terms average fuel economy, fuel economy, and model type are used as defined in subpart A of 40 CFR part 600.

(2) The term EPA means the U.S. Environmental Protection Agency.

§ 538.5 Minimum driving range.

(a) The minimum driving range that a passenger automobile must have in order to be treated as a dual fueled automobile pursuant to 49 U.S.C. 32901(c) is 200 miles when operating on its nominal usable fuel tank capacity of the alternative fuel, except when the alternative fuel is electricity.

(b) The minimum driving range that a passenger automobile using electricity as an alternative fuel must have in order to be treated as a dual fueled automobile pursuant to 49 U.S.C. 32901(c) is 7.5 miles on its nominal storage capacity of electricity when operated on the EPA urban test cycle and 10.2 miles on its nominal storage capacity of electricity when operated on the EPA highway test cycle.

§ 538.6 Measurement of driving range.

The driving range of a passenger automobile model type not using electricity as an alternative fuel is determined by multiplying the combined EPA urban/highway fuel economy rating when operating on the alternative fuel, by the nominal usable fuel tank capacity (in gallons), of the fuel tank containing the alternative fuel. The combined EPA urban/highway fuel economy rating is the value determined by the procedures established by the Administrator of the EPA under 49 U.S.C. 32904 and set forth in 40 CFR part 600. The driving range of a passenger automobile model type using electricity as an alternative fuel is determined by operating the vehicle in the electric-only mode of operation through the EPA urban cycle on its nominal storage capacity of electricity and the EPA highway cycle on its nominal storage capacity of electricity. Passenger automobile types using electricity as an alternative fuel that have completed the EPA urban cycle after recharging shall be deemed to have met the minimum range requirement.

[63 FR 66069, Dec. 1, 1998]
§ 538.7 Petitions for reduction of minimum driving range.

(a) A manufacturer of a model type of passenger automobile capable of operating on both electricity and either gasoline or diesel fuel may petition for a reduced minimum driving range for that model type in accordance with paragraphs (b) and (c) of this section.

(b) Each petition shall:

(1) Be addressed to: Administrator, National Highway Traffic Safety Administration, 1200 New Jersey Avenue, SE., Washington, DC 20590.

(2) Be submitted not later than the beginning of the first model year in which the petitioner seeks to have the model type treated as an electric dual fueled automobile.

(3) Be written in the English language.

(4) State the full name, address, and title of the official responsible for preparing the petition, and the name and address of the petitioner.

(5) Set forth in full data, views, and arguments of the petitioner, including the information and data specified in paragraph (c) of this section, and the calculations and analyses used to develop that information and data. No documents may be incorporated by reference in a petition unless the documents are submitted with the petition.

(6) Specify and segregate any part of the information and data submitted under this section that the petitioner wishes to have withheld from public disclosure in accordance with part 512 of this chapter.

(c) Each petitioner shall include the following information in its petition:

(1) Identification of the model type or types for which a lower driving range is sought under this section.

(2) For each model type identified in accordance with paragraph (c)(1) of this section:

(i) The driving range sought for that model type.

(ii) The number of years for which that driving range is sought.

(iii) A description of the model type, including car line designation, engine displacement and type, electric storage capacity, transmission type, and average fuel economy when operating on:

(A) Electricity; and

(B) Gasoline or diesel fuel.

(iv) An explanation of why the petitioner cannot modify the model type so as to meet the generally applicable minimum range, including the steps taken by the petitioner to improve the minimum range of the vehicle, as well as additional steps that are technologically feasible, but have not been taken. The costs to the petitioner of taking these additional steps shall be included.

(3) A discussion of why granting the petition would be consistent with the following factors:

(i) The purposes of 49 U.S.C. chapter 329, including encouraging the development and widespread use of electricity as a transportation fuel by consumers, and the production of passenger automobiles capable of being operated on both electricity and gasoline/diesel fuel;

(ii) Consumer acceptability;

(iii) Economic practicability;

(iv) Technology;

(v) Environmental impact;

(vi) Safety;

(vii) Driveability; and

(viii) Performance.

(d) If a petition is found not to contain the information required by this section, the petitioner is informed about the areas of insufficiency and advised that the petition will not receive further consideration until the required information is received.

(e) The Administrator may request the petitioner to provide information in addition to that required by this section.

(f) The Administrator publishes in the Federal Register a notice of receipt for each petition containing the information required by this section. Any interested person may submit written comments regarding the petition.

(g) In reaching a determination on a petition submitted under this section, the Administrator takes into account:

(1) The purposes of 49 U.S.C. chapter 329, including encouraging the development and widespread use of alternative fuels as transportation fuels by consumers, and the production of alternative fuel powered motor vehicles;

(2) Consumer acceptability;

(3) Economic practicability;

(4) Technology;
§ 541.3

(5) Environmental impact;
(6) Safety;
(7) Driveability; and
(8) Performance.

(h) If the Administrator grants the petition, the petitioner is notified in writing, specifying the reduced minimum driving range, and specifying the model years for which the reduced driving range applies. The Administrator also publishes a notice of the grant of the petition in the FEDERAL REGISTER and the reasons for the grant.

(i) If the Administrator denies the petition, the petitioner is notified in writing. The Administrator also publishes a notice of the denial of the petition in the FEDERAL REGISTER and the reasons for the denial.

§ 538.8 Gallon Equivalents for Gaseous Fuels.

The gallon equivalent of gaseous fuels, for purposes of calculations made under 49 U.S.C. 32905, are listed in Table I:

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Gallon equivalent measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed Natural Gas</td>
<td>0.823</td>
</tr>
<tr>
<td>Liquefied Natural Gas</td>
<td>0.823</td>
</tr>
<tr>
<td>Liquefied Petroleum Gas (Grade HD–5)*</td>
<td>0.726</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0.259</td>
</tr>
<tr>
<td>Hythane (Hy5)</td>
<td>0.741</td>
</tr>
</tbody>
</table>

*Per gallon unit of measure.

§ 538.9 Dual fuel vehicle incentive.

The application of 49 U.S.C. 32905(b) and (d) to qualifying dual fuel vehicles is extended to the 2005, 2006, 2007, and 2008 model years.

§ 541.3 Application.

(a) Except as provided in paragraph (b) and (c) of this section, this standard applies to the following:

(1) Passenger motor vehicle parts identified in §541.5(a) that are present in:

(i) Passenger cars; and

(ii) Multipurpose passenger vehicles with a gross vehicle weight rating of 6,000 pounds or less; and

(iii) Light-duty trucks with a gross vehicle weight rating of 6,000 pounds or less, that NHTSA has determined to be high theft in accordance with 49 CFR 542.1; and

(iv) Light duty trucks with a gross vehicle weight rating of 6,000 pounds or less, that NHTSA has determined to be subject to the requirements of this section in accordance with 49 CFR 542.2.

§ 541.5 Requirements for passenger motor vehicles.
§ 541.4 Definitions.

(a) Statutory terms. All terms defined in 49 U.S.C. chapter 331 are used in accordance with their statutory meanings unless otherwise defined in paragraph (b) of this section.

(b) Other definitions. (1) Interior surface means, with respect to a vehicle part, a surface that is not directly exposed to sun and precipitation.

(2) Light-duty truck (LDT) means a motor vehicle, with motive power, except a trailer, designed primarily for the transportation of property or special purpose equipment, that is rated at 6,000 pounds gross vehicle weight or less.

(3) Line means a name which a manufacturer applies to a group of motor vehicles of the same make which have the same body or chassis, or otherwise are similar in construction or design. A “line” may, for example, include 2-door, 4-door, station wagon, and hatchback vehicles of the same make.

(4) 1990/91 median theft rate means 3.5826 thefts per thousand vehicles produced.

(5) Multipurpose passenger vehicle (MPV) means a passenger motor vehicle which is constructed either on a truck chassis or with special features for occasional off-road operation and which is rated at 6,000 pounds gross vehicle weight or less.

(6) Passenger car is used as defined in §571.3 of this chapter.

(7) VIN means the vehicle identification number required by part 565 of this chapter.

§ 541.5

(13) Right rear quarter panel (passenger cars).
(14) Left rear quarter panel (passenger cars).
(15) Right-side assembly (MPVs).
(16) Left-side assembly (MPVs).
(17) Pickup box, and/or cargo box (LDTs).
(18) Rear door(s) (both doors in case of double doors), decklid, tailgate, or hatchback (whichever is present).

(b)(1) Except as provided in paragraphs (b)(2) and (b)(3) of this section, the number required to be inscribed or affixed by paragraph (a) shall be the VIN of the passenger motor vehicle.

(2) In place of the VIN, manufacturers who were marking engines and/or transmissions with a VIN derivative consisting of at least the last eight characters of the VIN on October 24, 1984, may continue to mark engines and/or transmissions with such VIN derivative.

(3) In the case of passenger motor vehicles not originally manufactured to comply with U.S. vehicle safety and bumper standards, the number required to be inscribed or affixed by paragraph (a) of this section shall be the original vehicle identification number assigned to the motor vehicle by its original manufacturer in the country where the motor vehicle was originally produced or assembled.

(c) The characteristics of the number required to be affixed or inscribed by paragraph (a) of this section shall satisfy the size and style requirements set forth for vehicle certification labels in §567.4(g) of this chapter.

(d) The number required by paragraph (a) of this section must be affixed by means that comply with paragraph (d)(1) of this section or inscribed by means that comply with paragraph (d)(2) of this section.

(1) Labels. (i) The number must be printed indelibly on a label, and the label must be permanently affixed to the passenger motor vehicle’s part.

(ii) The number must be placed on each part specified in paragraph (a) of this section in a location such that the number is, if practicable, on an interior surface of the part as installed on the vehicle and in a location where it:

(A) Will not be damaged by the use of any tools necessary to install, adjust, or remove the part and any adjoining parts, or any portions thereof;

(B) Is on a portion of the part not likely to be damaged in a collision; and

(C) Will not be damaged or obscured during normal dealer preparation operations (including rustproofing and undercoating).

(iii) The number must be placed on each part specified in paragraph (a) of this section in a location that is visible without further disassembly once the part has been removed from the vehicle.

(iv) The number must be placed entirely within the target area specified by the original manufacturer for that part, pursuant to paragraph (e) of this section, on each part specified in paragraph (a) of this section.

(v) Removal of the label must—

(A) Cause the label to self-destruct by tearing or rendering the number on the label illegible, and

(B) Discernibly alter the appearance of that area of the part where the label was affixed by leaving residual parts of the label or adhesive in that area, so that investigators will have evidence that a label was originally present.

(vi) Alteration of the number on the label must leave traces of the original number or otherwise visibly alter the appearance of the label material.

(vii) The label and the number shall be resistant to counterfeiting.

(viii) The logo or some other unique identifier of the vehicle manufacturer must be placed in the material of the label in a manner such that alteration or removal of the logo visibly alters the appearance of the label.

(2) Other means of identification. (i) Removal or alteration of any portion of the number must visibly alter the appearance of the section of the vehicle part on which the identification is marked.

(ii) The number must be placed on each part specified in paragraph (a) of this section in a location that is visible without further disassembly once the part has been removed from the vehicle.

(iii) The number must be placed entirely within the target area specified by the original manufacturer for that part, pursuant to paragraph (e) of this.
section, on each part specified in paragraph (a) of this section.

(e) Target areas. (1) Each manufacturer that is the original producer or assembles the covered major parts on a line shall designate a target area for the identifying numbers to be marked on each part specified in paragraph (a) of this section for each of its lines subject to this standard. The target area shall not exceed 50 percent of the surface area on the surface of the part on which the target area is located.

(2) Each manufacturer subject to paragraph (e)(1) of this section shall, not later than 30 days before the line is introduced into commerce, inform NHTSA in writing of the target areas designated for each line subject to this standard. In those instances where a manufacturer has submitted this target area information to NHTSA with a request for confidential treatment pursuant to 49 CFR part 512, the manufacturer must also submit a complete copy of the target area information within seven (7) days after the information becomes public, or the new line is released for sale to the public, whichever comes first. The information must be submitted to: Docket Management, Room W12–140, West Building, Ground Floor, 1200 New Jersey Avenue, SE., Washington, DC 20590 by any of the following methods. In all cases, the docket number for the submission, (Docket No. NHTSA–2009–0069) must be cited.

(ii) By U.S. Mail: Docket Management Facility, U.S. Department of Transportation, 1200 New Jersey Avenue, SE., West Building, Ground Floor, Room W12–140, Washington, D.C. 20590.

(iii) Hand delivery or by courier: 1200 New Jersey Avenue, SE., West Building, Ground Floor, Room W12–140, Washington, DC 20590, between 9 a.m. and 5 p.m. Monday through Friday, except Federal holidays. Telephone: 1–800–647–5527.

(iv) By Fax transmission: (202) 493–2251.

(3) The target areas designated by the original vehicle manufacturer for a part on a line shall be maintained for the duration of the production of such line, unless a restyling of the part makes it no longer practicable to mark the part within the original target area. If there is such a restyling, the original vehicle manufacturer shall inform NHTSA of that fact and the new target area, in accordance with the requirements of paragraph (e)(2) of this section.

§541.6 Requirements for replacement parts.

(a) Each replacement part for a part specified in §541.5(a) must have the registered trademark of the manufacturer of the replacement part, or some other unique identifier if the manufacturer does not have a registered trademark, and the letter “R” affixed or inscribed on such replacement part by means that comply with §541.5(d), except as provided in paragraph (d) of this section. In the case of replacement parts subject to the marking requirements of this section, which were not originally manufactured for sale in the United States, the importer of the part shall inscribe its registered trademark, or some other unique identifier if the importer does not have a registered trademark, and the letter “R” on the part by means that comply with §541.5(d)(2), except as provided in paragraph (d) of this section.

(b) A replacement part subject to paragraph (a) of this section shall not be marked pursuant to §541.5.

(c) The trademark and the letter “R” required by paragraph (a) of this section must be at least one centimeter high.

(d) The trademark and the letter “R” required by paragraph (a) of this section must be placed entirely within the target area specified by the vehicle manufacturer, pursuant to paragraph (e) of this section.

(e) Target areas. (1) Each manufacturer that is the original producer or assembler of the vehicle for which the replacement part is designed shall designate a target area for the identifying symbols to be marked on each replacement part subject to the requirements of paragraph (a) of this section. Such target areas shall not exceed 25 percent
(2) The boundaries of the target area designated under paragraph (e)(1) of this section shall be at least 10 centimeters at all points from the nearest boundaries of the target area designated for that part under §541.5(e) of this part.

(3) Each manufacturer subject to paragraph (e)(1) of this section shall inform NHTSA in writing of the target areas designated for each replacement part subject to paragraph (a) of this section, at the same time as it informs the agency of the target area designated for the original equipment parts of the line, pursuant to §541.5(e)(2) of this part. In those instances where a manufacturer has submitted this target area information to NHTSA with a request for confidential treatment under 49 CFR part 512, the manufacturer shall also submit a complete copy of the target area information within seven (7) days after the information has become public or the new line has been released for sale to the public, whichever comes first. The information should be submitted to: Docket Management, Room W12–140, Ground Floor, 1200 New Jersey Avenue, SE., Washington, DC 20590 by any of the following methods. In all cases, the docket number for the submission, (Docket No. NHTSA–2009–0069) must be cited.

(ii) By U.S. Mail: Docket Management Facility: U.S. Department of Transportation, 1200 New Jersey Avenue, SE., West Building, Ground Floor, Room W12–140, Washington, DC 20590.

(iii) Hand delivery or by courier: 1200 New Jersey Avenue, S.E., West Building, Ground Floor, Room W12–140, Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. Telephone: 1–800–647–5527.

(iv) By Fax transmission: (202) 493–2251.

(4) The target area designated by the original vehicle manufacturer for the parts subject to the requirements of paragraph (a) of this section shall be maintained for the duration of the production of such replacement part, unless a restyling of the part makes it no longer practicable to mark the part within the original target area. If there is such a restyling, the original vehicle manufacturer shall inform NHTSA of that fact and the new target area, in accordance with the requirements of paragraph (e)(3) of this section.

(f) Each replacement part must bear the symbol “DOT” in letters at least one centimeter high within 5 centimeters of the trademark and of the letter “R”, and entirely within the target area specified under paragraph (d) of this section. The symbol “DOT” constitutes the manufacturer’s certification that the replacement part conforms to the applicable theft prevention standard, and shall be inscribed or affixed by means that comply with paragraph (a) of this section. In the case of replacement parts subject to the requirements of paragraph (a) of this section, which were not originally manufactured for sale in the United States, the importer shall inscribe the “DOT” symbol before the part is imported into the United States.

APPENDIX A TO PART 541—LIGHT DUTY TRUCK LINES SUBJECT TO THE REQUIREMENTS OF THIS STANDARD

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Subject lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Motors</td>
<td>Chevrolet S–10 Pickup.</td>
</tr>
<tr>
<td></td>
<td>GMC Sonoma Pickup.</td>
</tr>
</tbody>
</table>

[69 FR 17967, Apr. 6, 2004]

APPENDIX A–I TO PART 541—LINES WITH ANTITHEFT DEVICES WHICH ARE EXEMPTED FROM THE PARTS-MARKING REQUIREMENTS OF THIS STANDARD PURSUANT TO 49 CFR PART 543

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Subject lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMW</td>
<td>MINI</td>
</tr>
</tbody>
</table>

VerDate Sep<11>2014 11:07 Jan 24, 2017 Jkt 238230 PO 00000 Frm 00183 Fmt 8010 Sfmt 8026 Q:\49\49V6.TXT 31lpowell on DSK54DXVN1OFR with $$_JOB
<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Subject lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORD MOTOR CO</td>
<td>C-Maxx, Edge, Escape, Explorer, Fiesta, Focus, Fusion, Lincoln MKX, Lincoln Town Car, Mustang, Mercury Mariner, Mercury Grand Marquis, Taurus.</td>
</tr>
<tr>
<td>GENERAL MOTORS</td>
<td>Buick Lucerne, Buick LaCrosse, Buick LaCrosse/Regal, Buick Verano, Cadillac ATS, Cadillac CTS, Cadillac DTS/Deville, Cadillac SRX, Cadillac XTS/Deville, Chevrolet Camaro, Chevrolet Corvette, Chevrolet Cruze, Chevrolet Equinox, Chevrolet Impala/Monte Carlo, Chevrolet Malibu, Chevrolet Sonic, Chevrolet Spark, GMC Terrain, Pontiac G6, Saturn Aura.</td>
</tr>
<tr>
<td>HONDA</td>
<td>Accord, Acura TL, Civic, CRV, Acura, Acura, Genesis, Equus, F-Type, XF, XJ, XK, Land Rover Discovery Sport, Land Rover LR2, Land Rover Range Rover Evoque.</td>
</tr>
<tr>
<td>HYUNDAI</td>
<td>Acura, Acura, Genesis, Equus.</td>
</tr>
<tr>
<td>JAGUAR</td>
<td>F-Type, XF, XJ, XK.</td>
</tr>
<tr>
<td>MASERATI</td>
<td>Ghibli, Quattroporte.</td>
</tr>
<tr>
<td>MAZDA</td>
<td>2.</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Subject lines</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>MERCEDES-BENZ</td>
<td>CX–3.1, CX–5, CX–7, CX–9, MX–5 Miata, Tribute, smart USA fortwo, SL-Line Chassis (SL-Class) (the models within this line are): SL400, SL550, SL 63/AMG, SL 65/AMG, SLK-Line Chassis (SLK-Class) (the models within this line are): SLK 250, SLK 300, SLK 350, SLK 55 AMG, S-Line Chassis (S/CL/S-Coupe Class) (the models within this line are): S450, S500, S550, S600, S55, S63 AMG, S65 AMG, CLS55, CL65, CL500, CL550, CL600, NGCC Chassis Line (CLA/GLA-Class) (the models within this line are): CLA250, CLA250 4MATIC, CLA45 4MATIC AMG, GLA250, GLA45 AMG, C-Line Chassis (C-Class/CLK/GLK-Class) (the models within this line are): C63 AMG, C240, C250, C300, C350, CLK 350, CLK 550, CLK 63/AMG, GLK250, GLK350, E-Line Chassis (E-Class/CLS Class) (the models within this line are): E55, E63 AMG, E320 BLUETEC, E350 BLUETEC, E320/E320DT CDi, E350/E350/E550, E400 HYBRID, CLS400, CLS550, CLS55 AMG, CLS63 AMG, Mitsubishi</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Subject Lines</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>NISSAN</td>
<td>Altima.</td>
</tr>
<tr>
<td></td>
<td>Cube.</td>
</tr>
<tr>
<td></td>
<td>Juke.</td>
</tr>
<tr>
<td></td>
<td>Leaf.</td>
</tr>
<tr>
<td></td>
<td>Maxima.</td>
</tr>
<tr>
<td></td>
<td>Murano.</td>
</tr>
<tr>
<td></td>
<td>NV200 Taxi.</td>
</tr>
<tr>
<td></td>
<td>Pathfinder.</td>
</tr>
<tr>
<td></td>
<td>Quest.</td>
</tr>
<tr>
<td></td>
<td>Rogue.</td>
</tr>
<tr>
<td></td>
<td>Sentra.</td>
</tr>
<tr>
<td></td>
<td>Versa Hatchback.</td>
</tr>
<tr>
<td></td>
<td>Versa Note.</td>
</tr>
<tr>
<td></td>
<td>Infiniti QX70.</td>
</tr>
<tr>
<td></td>
<td>Infiniti Q50/60.</td>
</tr>
<tr>
<td></td>
<td>Infiniti QX60.</td>
</tr>
<tr>
<td></td>
<td>911.</td>
</tr>
<tr>
<td></td>
<td>Boxster/Cayman.</td>
</tr>
<tr>
<td></td>
<td>Macan.</td>
</tr>
<tr>
<td></td>
<td>Panamera.</td>
</tr>
<tr>
<td></td>
<td>9–3.</td>
</tr>
<tr>
<td></td>
<td>9–5.</td>
</tr>
<tr>
<td>SAAB</td>
<td>Forester.</td>
</tr>
<tr>
<td></td>
<td>Impreza.</td>
</tr>
<tr>
<td></td>
<td>Legacy.</td>
</tr>
<tr>
<td></td>
<td>B9 Tribeca.</td>
</tr>
<tr>
<td></td>
<td>Outback.</td>
</tr>
<tr>
<td></td>
<td>WRX.</td>
</tr>
<tr>
<td></td>
<td>XV Crosstrek.</td>
</tr>
<tr>
<td>SUZUKI</td>
<td>Kizashi.</td>
</tr>
<tr>
<td>TESLA</td>
<td>Model S.</td>
</tr>
<tr>
<td></td>
<td>Model X.</td>
</tr>
<tr>
<td>TOYOTA</td>
<td>Camry.</td>
</tr>
<tr>
<td></td>
<td>Corolla.</td>
</tr>
<tr>
<td></td>
<td>Highlander.</td>
</tr>
<tr>
<td></td>
<td>Lexus ES.</td>
</tr>
<tr>
<td></td>
<td>Lexus GS.</td>
</tr>
<tr>
<td></td>
<td>Lexus LS.</td>
</tr>
<tr>
<td></td>
<td>Prius.</td>
</tr>
<tr>
<td></td>
<td>RAV4.</td>
</tr>
<tr>
<td></td>
<td>Sienna.(^1)</td>
</tr>
<tr>
<td></td>
<td>Audi A3.</td>
</tr>
<tr>
<td></td>
<td>Audi A4.</td>
</tr>
<tr>
<td></td>
<td>Audi A6.</td>
</tr>
<tr>
<td></td>
<td>Audi A8.</td>
</tr>
<tr>
<td></td>
<td>Audi Q3.</td>
</tr>
<tr>
<td></td>
<td>Audi Q5.</td>
</tr>
<tr>
<td></td>
<td>Audi TT.(^1)</td>
</tr>
<tr>
<td></td>
<td>Beetle.</td>
</tr>
<tr>
<td></td>
<td>Eos.</td>
</tr>
<tr>
<td></td>
<td>Golf/Rabbit/GTI/R32.</td>
</tr>
<tr>
<td></td>
<td>Jetta.</td>
</tr>
<tr>
<td></td>
<td>Passat.</td>
</tr>
<tr>
<td></td>
<td>Tiguan.</td>
</tr>
<tr>
<td></td>
<td>S60.</td>
</tr>
</tbody>
</table>

\(^1\)Granted an exemption from the parts marking requirements beginning with MY 2016.

\(^2\)The X1 carline was replaced by the X1 MPV line beginning in MY 2016. According to BMW, production of its X1 carline ceased in MY 2015.

\(^3\)Granted an exemption from the parts marking requirements beginning with MY 2015.

\(^4\)According to Mercedes-Benz, the CL-Class was renamed the S-Coupe Class beginning with MY 2015.

[80 FR 60657, Oct. 7, 2015]
§ 542.1 Procedures for selecting new light duty truck lines that are likely to have high or low theft rates.

(a) Scope. This section sets forth the procedures for motor vehicle manufacturers and NHTSA to follow in the determination of whether any new light duty truck line is likely to have a theft rate above or below the 1990/91 median theft rate.
(b) Application. These procedures apply to each manufacturer that plans to introduce a new light duty truck line into commerce in the United States on or after September 1, 2006, and to each of those new lines.

(c) Procedures. (1) Each manufacturer shall use the criteria in appendix C of this chapter to evaluate each new light duty truck line and to conclude whether the new line is likely to have a theft rate above or below the 1990/91 median theft rate.

(2) For each new light duty truck line, the manufacturer shall submit its evaluations and conclusions made under paragraph (c) of this section, together with the underlying factual information, to NHTSA not less than 15 months before the date of introduction. The manufacturer may request a meeting with the agency during this period to further explain the bases for its evaluations and conclusions.

(3) Within 90 days after its receipt of the manufacturer's submission under paragraph (c)(2) of this section, the agency independently evaluates the new light duty truck line using the criteria in appendix C of this chapter and, on a preliminary basis, determines whether the new line should or should not be subject to § 541.2 of this chapter. NHTSA informs the manufacturer by letter of the agency's evaluations and determinations, together with the factual information considered by the agency in making them.

(4) The manufacturer may request the agency to reconsider any of its preliminary determinations made under paragraph (c)(3) of this section. The manufacturer shall submit its request to the agency within 30 days of its receipt of the letter under paragraph (c)(3) of this section. The request shall include the facts and arguments underlying the manufacturer's objections to the agency's preliminary determinations. During this 30-day period, the manufacturer may also request a meeting with the agency to discuss those objections.

(5) Each of the agency's preliminary determinations under paragraph (c)(3) of this section shall become final 45 days after the agency sends the letter specified in paragraph (c)(3) of this section unless a request for reconsideration has been received in accordance with paragraph (c)(4) of this section. If such a request has been received, the agency makes its final determinations within 60 days of its receipt of the request. NHTSA informs the manufacturer by letter of those determinations and its response to the request for reconsideration.

[69 FR 17967, Apr. 6, 2004; 69 FR 34613, June 22, 2004]

§ 542.2 Procedures for selecting low theft light duty truck lines with a majority of major parts interchangeable with those of a passenger motor vehicle line.

(a) Scope. This section sets forth the procedures for motor vehicle manufacturers and NHTSA to follow in the determination of whether any light duty truck lines that have or are likely to have a low theft rate have major parts interchangeable with a majority of the covered major parts of a passenger motor vehicle line.

(b) Application. These procedures apply to:

(1) Each manufacturer that produces—

(i) At least one passenger motor vehicle line identified in 49 CFR 541.3(a)(1) and (2) that has been or will be introduced into commerce in the United States, and

(ii) At least one light duty truck line that has been or will be introduced into commerce in the United States and that the manufacturer identifies as likely to have a theft rate below the median theft rate; and

(2) Each of those likely sub-median theft rate light duty truck lines.

(c) Procedures. (1) For each light duty truck line that a manufacturer identifies under appendix C of part 541 of this chapter as having or likely to have a theft rate below the median rate, the manufacturer identifies how many and which of the major parts of that line will be interchangeable with the covered major parts of any of its passenger motor vehicle lines.

(2) If the manufacturer concludes that a light duty truck line that has or is likely to have a theft rate below the median theft rate has major parts that are interchangeable with a majority of
the covered major parts of a passenger motor vehicle line, the manufacturer determines whether all the vehicles of those lines with sub-median or likely sub-median theft rates will account for more than 90 percent of the total annual production of all of the manufacturer’s lines with those interchangeable parts.

(3) The manufacturer submits its evaluations and conclusions made under paragraphs (c)(1) and (2) of this section, together with the underlying factual information, to NHTSA not less than 15 months before the date of introduction. During this period, the manufacturer may request a meeting with the agency to further explain the bases for its evaluations and conclusions.

(4) Within 90 days after its receipt of the manufacturer’s submission under paragraph (c)(3) of this section, NHTSA considers that submission, if any, and independently makes, on a preliminary basis, the determinations of those light duty truck lines with sub-median or likely sub-median theft rates which should or should not be subject to § 541.5 of this chapter. NHTSA informs the manufacturer by letter of the agency’s preliminary determinations, together with the factual information considered by the agency in making them.

(5) The manufacturer may request the agency to reconsider any of its preliminary determinations made under paragraph (c)(4) of this section. The manufacturer must submit its request to the agency within 30 days of its receipt of the letter under paragraph (c)(4) of this section informing it of the agency’s evaluations and preliminary determinations. The request must include the facts and arguments underlying the manufacturer’s objections to the agency’s preliminary determinations. During this 30-day period, the manufacturer may also request a meeting with the agency to discuss those objections.

(6) Each of the agency’s preliminary determinations made under paragraph (c)(4) of this section becomes final 45 days after the agency sends the letter specified in that paragraph unless a request for reconsideration has been received in accordance with paragraph (c)(5) of this section. If such a request has been received, the agency makes its final determinations within 60 days of its receipt of the request. NHTSA informs the manufacturer by letter of those determinations and its response to the request for reconsideration.

[69 FR 17968, Apr. 6, 2004]

PART 543—EXEMPTION FROM VEHICLE THEFT PREVENTION STANDARD

Sec.

543.1 Scope.

543.2 Purpose.

543.3 Application.

543.4 Definitions.

543.5 Petition: General requirements.

543.6 Petition: Specific content requirements.

543.7 Processing an exemption petition.

543.8 Duration of exemption.

543.9 Terminating or modifying an exemption.

APPENDIX A TO PART 543—PERFORMANCE CRITERIA (SUBSECTIONS 8 THROUGH 21) OF C.R.C., C. 1038.114 (IN EFFECT MARCH 30, 2011)

SOURCE: 52 FR 33829, Sept. 8, 1987, unless otherwise noted.

§ 543.1 Scope.

This part establishes procedures under section 605 of the Motor Vehicle Information and Cost Savings Act (15 U.S.C. 2025) for filing and processing petitions to exempt lines of passenger motor vehicles from part 541 of this chapter, and procedures for terminating or modifying an exemption.

§ 543.2 Purpose.

The purpose of this part is to specify the content and format of petitions which may be filed by manufacturers of passenger motor vehicles to obtain an exemption from the parts-marking requirements of the vehicle theft prevention standard for passenger motor vehicle lines which include, as standard equipment, an antitheft device if the agency concludes that the device is likely to be as effective in reducing and
§ 543.3

deterring motor vehicle theft as compliance with the parts-marking re-
quirements. This part also provides the procedures that the agency will follow
in processing those petitions and in terminating or modifying exemptions.

§ 543.3 Application.

This part applies to manufacturers of
vehicles subject to the requirements of
part 541 of this chapter, and to any in-
terested person who seeks to have
NHTSA terminate an exemption.

[70 FR 28851, May 19, 2005]

§ 543.4 Definitions.

(a) Statutory terms. All terms defined
in sections 2, 601, and 605 of the Motor
Vehicle Information and Cost Savings
Act are used in accordance with their
statutory meanings unless otherwise
defined in paragraph (b) of this section.

(b) Other definitions.

Line or car line means a name which
a manufacturer applies to a group of
motor vehicles of the same make which
have the same body or chassis, or oth-
erwise are similar in construction or
design. A “line” may, for example, in-
clude 2-door, 4-door, station wagon, and
hatchback vehicles of the same make.

NHTSA means the National Highway
Traffic Safety Administration.

EFFECTIVE DATE NOTE: At 81 FR 66841,
Sept. 29, 2016, § 543.4 was amended by adding
definitions for “Accessory mode” and “Im-
mobilizer” in paragraph (b), effective Nov.
28, 2016. For the convenience of the user, the
added text is set forth as follows:

§ 543.4 Definitions.

* * * * * * * * * * * * * * * * *

(b) * * *

Accessory mode means the ignition switch
setting in which certain electrical systems
(such as the radio and power windows) can be
operated without the operation of the vehi-
cle’s propulsion engine.

Immobilizer means a device that, when acti-
vated, is intended to prevent a motor vehicle
from being powered by its own propulsion
system.

* * * * * * * * * * * * * * * * *

§ 543.5 Petition: General requirements.

(a) For each model year, a manufac-
turer may petition NHTSA for an ex-
emption of one car line from the re-
quirements of part 541 of this chapter.
However, for car lines not subject to
the requirements of part 541 of this
chapter until September 1, 2006, a man-
ufacturer may not petition NHTSA for
an exemption for model years before
model year 2006.

(b) Each petition filed under this part
for an exemption must—

(1) Be written in the English lan-
guage;

(2) Be submitted in three copies to:
Administrator, National Highway Traf-
ic Safety Administration, 400 Seventh
Street, SW., Washington, DC 20590;

(3) State the full name and address of
the petitioner, the nature of its organi-
zation (individual, partnership, cor-
poration, etc.), and the name of the
State or country under the laws of
which it is organized;

(4) Be submitted at least 8 months
before the commencement of produc-
tion of the lines specified under para-
grah (5) of § 543.5(b) for the first model
year in which the petitioner wishes
those lines to be exempted, and iden-
tify that model year;

(5) Identify the passenger motor vehi-
cle line or lines for which exemption is
sought;

(6) Set forth in full the data, views,
and arguments of the petitioner sup-
porting the exemption, including the
information specified in § 543.6; and

(7) Specify and segregate any part of
the information and data submitted
which the petitioner requests be with-
held from public disclosure in accord-
ance with part 512,
Confidential Business
Information, of this chapter.

[52 FR 33829, Sept. 8, 1987, as amended at 59
FR 10756, Mar. 6, 1994; 70 FR 28851, May 19,
2005]

EFFECTIVE DATE NOTE: At 81 FR 66841,
Sept. 29, 2016, § 543.5 was amended by revising
paragraphs (b)(2), (6), and (7) and adding
paragraphs (b)(8) and (9), effective Nov. 28,
2016. For the convenience of the user, the re-
vised and added text is set forth as follows:

§ 543.5 Petition: General requirements.

* * * * * * * * * * * * * * * * *

(b) * * *

(2) Be submitted in three copies to: Adminis-
trator, National Highway Traffic Safety
§ 543.6 Petition: Specific content requirements.

(a) Each petition for exemption filed under this part must include:

(1) A statement that an antitheft device will be installed as standard equipment on all vehicles in the line for which an exemption is sought;

(2) A list naming each component in the antitheft system, and a diagram showing the location of each of those components within the vehicle;

(3) A discussion that explains the means and process by which the device is activated and functions, including any aspect of the device designed to—
 (i) Facilitate or encourage its activation by motorists,
 (ii) Attract attention to the efforts of an unauthorized person to enter or move a vehicle by means other than a key,
 (iii) Prevent defeating or circumventing the device by an unauthorized person attempting to enter a vehicle by means other than a key,
 (iv) Prevent the operation of a vehicle which an unauthorized person has entered using means other than a key, and
 (v) Ensure the reliability and durability of the device;

(4) The reasons for the petitioner's belief that the antitheft device will be effective in reducing and deterring motor vehicle theft, including any theft data and other data that are available to the petitioner and form a basis for that belief;

(5) The reasons for the petitioner's belief that the agency should determine that the antitheft device is likely to be as effective as compliance with the parts-marking requirements of part 541 in reducing and deterring motor vehicle theft, including any statistical data that are available to the petitioner and form a basis for petitioner's belief that a line of passenger motor vehicles equipped with the antitheft device is likely to have a theft rate equal to or less than that of passenger motor vehicles of the same, or a similar, line which have parts marked in compliance with part 541.

(b) Any petitioner submitting data under paragraph (a) (4) or (5) of this section shall submit an explanation of its belief that the data are sufficiently representative and reliable to warrant NHTSA's reliance upon them.

§ 543.7 Processing an exemption petition.

(a) NHTSA processes any complete petition. If a manufacturer submits a petition that does not contain all the information required by this part, NHTSA informs the manufacturer of the areas of insufficiency and advises the manufacturer that the agency does not process the petition until it receives the required information.

(b) The agency grants a petition for an exemption from the parts-marking requirements of part 541 either in whole or in part, if it determines that, based upon substantial evidence, the standard equipment antitheft device is likely to be as effective in reducing and deterring motor vehicle theft as compliance with the parts-marking requirements of part 541.

(c) The agency issues its decision either to grant or deny an exemption petition not later than 120 days after the date on which a complete petition is filed.

(d) Any exemption granted under this part applies only to the vehicle line or lines that are the subject of the grant, and are equipped with the antitheft device on which the line's exemption was based.

(e) An exemption granted under this part is effective for the model year beginning after the model year in which NHTSA issue the notice of exemption.
§ 543.8

unless the notice of exemption specifies a later model year.

(f) NHTSA publishes a notice of its decision to grant or deny an exemption petition in the Federal Register, and notifies the petitioner in writing of the agency’s decision.

Effective Date Notes: 1. At 81 FR 66841, Sept. 29, 2016, §543.7 was redesignated as §543.8 and a new §543.7 was added, effective Nov. 28, 2016. For the convenience of the user, the new §543.7 is set forth as follows:

§ 543.7 Petitions based on performance criteria.

A petition submitted under this section must include:

(a) A statement that the entire line of vehicles is equipped with an immobilizer, as standard equipment, that meets one of the following:

(1) The performance criteria (subsections 8 through 21) of C.R.C, c. 1038.114, Theft Protection and Rollaway Prevention (in effect March 30, 2011), as excerpted in appendix A of this part;

(2) National Standard of Canada CAN/ULC–S338–98, Automobile Theft Deterrent Equipment and Systems: Electronic Immobilization (May 1998);

(3) United Nations Economic Commission for Europe (UN/ECE) Regulation No. 97 (ECE R97), Uniform Provisions Concerning Approval of Vehicle Alarm System (VAS) and Motor Vehicles with Regard to Their Alarm System (AS) in effect August 8, 2007; or

(4) UN/ECE Regulation No. 116 (ECE R116), Uniform Technical Prescriptions Concerning the Protection of Motor Vehicles Against Unauthorized Use in effect on February 10, 2009.

(b) Compliance documentation kept to demonstrate the basis for certification with the performance criteria specified in paragraph (a) of this section.

(c) A statement that the immobilizer device is durable and reliable.

2. At 81 FR 66841, Sept. 29, 2016, the newly designated §543.8 was amended by revising paragraph (f) and adding paragraph (g), effective Nov. 28, 2016. For the convenience of the user the revised and added text is set forth as follows:

§ 543.8 Processing an exemption petition.

* * * * *

(f) If the petition is sought under §543.6, NHTSA publishes a notice of its decision to grant or deny an exemption petition in the Federal Register and notifies the petitioner in writing of the agency’s decision to grant or deny an exemption petition.

§ 543.8 Duration of exemption.

Each exemption under this part continues in effect unless it is modified or terminated under §543.9, or the manufacturer ceases production of the exempted line.

Effective Date Note: At 81 FR 66841, Sept. 29, 2016, §543.8 was redesignated as §543.9, and the newly redesignated §543.9 was revised, effective Nov. 28, 2016. For the convenience of the user, the revised text is set forth as follows:

§ 543.9 Duration of exemption.

Each exemption under this part continues in effect unless it is modified or terminated under §543.10, or the manufacturer ceases production of the exempted line.

§ 543.9 Terminating or modifying an exemption.

(a) On its own initiative or in response to a petition, NHTSA may commence a proceeding to terminate or modify any exemption granted under this part.

(b) Any interested person may petition the agency to commence a proceeding to terminate or modify an exemption.

(c)(1) In a petition to terminate an exemption, the petitioner must:

(i) Identify the vehicle line or lines that are the subject of the exemption;

(ii) State the reasons for petitioner’s belief that the standard equipment antitheft device installed under the exemption is not as effective as compliance with the parts-marking requirements of part 541 in reducing and deterring motor vehicle theft;

(iii) Comply with §543.5, paragraphs (b) (1) through (3) and (7);

(2) In a petition to modify an exemption, the petitioner must:

(i) Identify the vehicle line or lines that are the subject of the exemption;

(ii) Request permission to use an antitheft device similar to, but different from the standard equipment antitheft device which is installed under the exemption;

(iii) Comply with §543.5, paragraphs (b) (1) through (3) and (7); and

(iv) Provide the same information for the modified device that is required under §543.6 for a new device, except
that the information specified by §543.6(a)(3) need be provided only to the extent that the modified device differs from the standard equipment antitheft device installed under the exemption.

(d) NHTSA processes any complete petition. If a person submits a petition under this section that does not contain all the information required by it, NHTSA informs the manufacturer of the areas of insufficiency and advises the manufacturer that the agency does not process the petition until it receives the required information.

(e) If NHTSA denies a petition requesting a proceeding to terminate or modify an exemption, the agency notifies the petitioner by letter.

(f) If NHTSA commences a termination proceeding on its own initiative or in response to a petition, the agency provides the manufacturer of the exempted line with a copy of the petition, if any, a written statement of NHTSA’s reasons for commencing the proceeding, and an opportunity to present its written views.

(g)(1) The agency terminates an exemption if it determines that the antitheft device installed under the exemption has not been as effective as parts-marking in reducing and deterring motor vehicle theft.

(2) Except as provided in paragraph (g)(3) of this section, a decision to terminate an exemption under this section takes effect on the following dates:

(i) The last day of the model year in which NHTSA issues the termination decision, or

(ii) Six months after the manufacturer receives written notice of the termination.

(3) If a manufacturer shows good cause why terminating its exemption effective on a date later than the one specified in paragraph (g)(2) of this section is consistent with the public interest and the purposes of the Act, the agency may set such later date.

(h)(1) The agency modifies an exemption if it determines, based on substantial evidence, that the modified antitheft device described in the petition is likely to be as effective in reducing and deterring motor vehicle theft as compliance with the parts-marking requirements of part 541.

(2)(i) Except as provided in paragraph (h)(2)(ii) of this section, a decision to modify an exemption under this section takes effect on the first day of the model year following the model year in which NHTSA issued the modification decision.

(ii) If a manufacturer shows good cause why modifying its exemption effective on a date earlier than the one specified in paragraph (h)(2)(i) of this section is consistent with the public interest and the purposes of the Act, the agency may set such earlier date.

(1) [Reserved]

(j) NHTSA publishes notice in the Federal Register of any agency decision terminating or modifying an exemption, and notifies the affected manufacturer in writing.

EFFECTIVE DATE NOTE: At 81 FR 66841, Sept. 29, 2016, §543.9 was redesignated as §543.10, effective Nov. 28, 2016.

APPENDIX A TO PART 543—PERFORMANCE CRITERIA (SUBSECTIONS 8 THROUGH 21) OF C.R.C., C. 1038.114 (IN EFFECT MARCH 30, 2011)

In order to be eligible for an exemption under §543.7(a)(1), the entire vehicle line must be equipped with an immobilizer meeting the following criteria:

(1) Subject to paragraph (2) of this appendix, an immobilization system shall arm automatically within a period of not more than 1 minute after the motors used for the vehicle’s propulsion are turned off, if the vehicle remains in a mode of operation other than accessory mode or on throughout that period.

(2) If the disarming device is a keypad or biometric identifier, the immobilization system shall arm automatically within a period of not more than 1 minute after the disarming device is removed from the vehicle, if the vehicle remains in a mode of operation other than accessory mode or on throughout that period.

(3) If a manufacturer shows good cause why terminating its exemption effective on a date later than the one specified in paragraph (g)(2) of this section is consistent with the public interest and the purposes of the Act, the agency may set such later date.

(h)(1) The agency modifies an exemption if it determines, based on substantial evidence, that the modified antitheft device described in the petition is likely to be as effective in reducing and deterring motor vehicle theft as compliance with the parts-marking requirements of part 541.

(2)(i) Except as provided in paragraph (h)(2)(ii) of this section, a decision to modify an exemption under this section takes effect on the first day of the model year following the model year in which NHTSA issued the modification decision.

(ii) If a manufacturer shows good cause why modifying its exemption effective on a date earlier than the one specified in paragraph (h)(2)(i) of this section is consistent with the public interest and the purposes of the Act, the agency may set such earlier date.

(1) [Reserved]

(j) NHTSA publishes notice in the Federal Register of any agency decision terminating or modifying an exemption, and notifies the affected manufacturer in writing.

EFFECTIVE DATE NOTE: At 81 FR 66841, Sept. 29, 2016, §543.9 was redesignated as §543.10, effective Nov. 28, 2016.
Disarming occurs automatically by the presence of a disarming device and the device is inside the vehicle.

(4) If armed, the immobilization system shall prevent the vehicle from moving more than 3 meters (9.8 feet) under its own power by inhibiting the operation of at least one electronic control unit and shall not have any impact on the vehicle’s brake system except that it may prevent regenerative braking and the release of the parking brake.

(5) During the disarming process, a code shall be sent to the inhibited electronic control unit in order to allow the vehicle to move under its own power.

(6) It shall not be possible to disarm the immobilization system by interrupting its normal operating voltage.

(7) When the normal starting procedure requires that the disarming device mechanically latch into a receptacle and the device is physically separate from the ignition switch key, one or more motors used for the vehicle’s propulsion shall start only after the device is removed from that receptacle.

(8) (i) The immobilization system shall have a minimum capacity of 50,000 code variants, shall not be disarmed by a code that can disarm all other immobilization systems of the same make and model; and

(11) The immobilization system’s conformity to paragraph (10) of this appendix shall be demonstrated by testing that is carried out without damaging the vehicle.

(12) Paragraph (10)(1) of this appendix does not apply to the addition of a disarming device that is validated by the immobilization system.

(13) The immobilization system shall be designed so that it can neither be bypassed nor rendered ineffective in a manner that would allow a vehicle to move under its own power, or be disarmed, using one or more of the tools and equipment listed in paragraph (14) of this appendix.

(1) Within a period of less than 5 minutes, when tested as installed in the vehicle; or

(2) Within a period of less than 2.5 minutes, when bench-tested outside the vehicle.

(14) During a test referred to in paragraph (13) of this appendix, only the following tools or equipment may be used: Scissors, wire strippers, wire cutters and electrical wires, a hammer, a slide hammer, a chisel, a punch, a wrench, a screwdriver, pliers, steel rods and spikes, a hacksaw, a battery operated drill, a battery operated angle grinder; and a battery operated jigsaw.
number of vehicles that meet the requirements of 49 CFR part 541, and the number of vehicles that are excluded from the requirements of 49 CFR part 541 pursuant to 49 CFR 541.3(b)(2).

[72 FR 46176, Aug. 17, 2007]

§545.2 Purpose.
The purpose of these requirements is to assist the National Highway Traffic Safety Administration in determining whether a manufacturer has complied with the requirements of 49 CFR 541.5.

§545.3 Applicability.
This subpart applies to manufacturers of motor vehicles.

§545.4 Response to inquiries.
(a) At any time prior to August 31, 2007, each manufacturer must, upon request from the Office of Vehicle Safety Compliance, provide information identifying the vehicles (by make, model, and vehicle identification number) that have been certified as complying with the requirements of 49 CFR part 541. The manufacturer's designation of a vehicle as a certified vehicle is irrevocable.

(b) At any time prior to August 31, 2007, each manufacturer must, upon request from the Office of Vehicle Safety Compliance, provide information identifying the vehicles (by make, model, and vehicle identification number) that are excluded from the requirements of 49 CFR part 541 pursuant to 49 CFR 541.3(b)(2).

[70 FR 28851, May 19, 2005, as amended at 72 FR 46176, Aug. 17, 2007]

§545.5 Definitions.
Production year means the 12-month period between September 1 of 2006 and August 31, 2007, inclusive.
Small-volume line means a line with an annual production of not more than 3,500 vehicles.

§545.6 Reporting requirements for vehicles listed in §541.3(a)(1).
(a) General reporting requirements. Within 60 days after the end of the production year ending August 31, 2007, each manufacturer shall submit a report to the National Highway Traffic Safety Administration concerning its compliance with 49 CFR part 541 for vehicles listed in §541.3(a)(1) that were manufactured between September 1, 2006 and August 31, 2007. Each report must—

(1) Identify the manufacturer;
(2) State the full name, title, and address of the official responsible for preparing the report;
(3) Identify the production year being reported on;
(4) Contain a statement regarding whether or not the manufacturer complied with the requirements of 49 CFR part 541 for the period covered by the report, and the basis for that statement;
(5) Provide the information specified in paragraph (b) of this section;
(6) Be written in the English language; and
(7) Be submitted to: Administrator, National Highway Traffic Safety Administration, Room 400, 7th Street, SW., Washington, DC 20590.

(b) Report content—(1) Basis for Statement of Compliance. Each manufacturer shall provide the number of motor vehicles listed in §541.3(a)(1) that were manufactured between September 1, 2006 and August 31, 2007 (excluding those motor vehicles that were subject to the requirements of 49 CFR part 541 before September 1, 2006).
(2) Production. Each manufacturer shall provide (1) the number of motor vehicles manufactured between September 1, 2006 and August 31, 2007 (excluding those motor vehicles that were subject to the requirements of 49 CFR part 541 before September 1, 2006), that meet the requirements of 49 CFR 541.5; and (2) the number of motor vehicles manufactured between September 1, 2006 and August 31, 2007 (excluding those motor vehicles that were subject to the requirements of 49 CFR part 541 before September 1, 2006), that are exempt from 49 CFR part 541 pursuant to 49 CFR part 543.
(3) Statement regarding compliance. Each manufacturer must provide a statement regarding whether or not the manufacturer complied with 49 CFR 541.5 requirements as applicable to the period covered by the report, and the basis for that statement.

[70 FR 28851, May 19, 2005, as amended at 72 FR 46176, Aug. 17, 2007]
§ 545.7 Reporting requirements for vehicles listed in § 541.3(b)(2).

(a) General reporting requirements. Within 60 days after the end of the production year ending August 31, 2007, each manufacturer must submit a report to the National Highway Traffic Safety Administration concerning small-volume lines that were manufactured between September 1, 2006 and August 31, 2007. Each report must—

(1) Identify the manufacturer;

(2) State the full name, title, and address of the official responsible for preparing the report;

(3) Identify the production year being reported on;

(4) Provide the information specified in paragraph (b) of this section;

(5) Be written in the English language; and

(6) Be submitted to: Administrator, National Highway Traffic Safety Administration, Room 400, 7th Street, SW., Washington, DC 20590.

(b) Report content. Within 60 days after the end of the production year ending August 31, 2007, each manufacturer shall provide: (1) The name of each small-volume line the manufacturer produces; (2) the number of motor vehicles in each small-volume line the manufacturer produced.

§ 545.8 Records.

Each manufacturer shall maintain records of the Vehicle Identification Number for each vehicle for which information is reported under §§ 545.6(b)(2) and 545.7(b)(2) until December 31, 2008.

§ 545.9 Petition to extend period to file report.

A manufacturer may petition for extension of time to submit a report under this part. A petition will be granted only if the petitioner shows good cause for the extension and if the extension is consistent with the public interest. The petition must be received not later than 15 days before expiration of the time stated in § 545.5(a). The filing of a petition does not automatically extend the time for filing a report. The petition must be submitted to: Administrator, National Highway Traffic Safety Administration, 400 7th Street, SW., Washington, DC 20590.
Subpart A—General

§ 551.1 Scope.
This part contains rules of procedure generally applicable to the transaction of official business under the National Traffic and Motor Vehicle Safety Act of 1966, the Motor Vehicle Information and Cost Savings Act, and the Highway Safety Act of 1966. These rules apply in addition to the rules governing specific proceedings. In case of inconsistency with these general rules, the specific rules prevail.

[33 FR 19700, Dec. 25, 1968, unless otherwise noted. Redesignated at 35 FR 5118, Mar. 26, 1970.]

Subpart B (Reserved)

Subpart C—Submittals in Writing

§ 551.31 Form of communications.
Any communication in writing relating to official business (including formal documents) shall be on opaque and durable paper not larger than 9 by 14 inches in size. Tables, charts, or originals of other documents that are attached to communications shall be folded to this size, if possible. The left margin of communications shall be at least 1½ inches wide, and if a communication is bound, it shall be bound on the left side. All copies submitted shall be legible.

§ 551.45 What is the purpose of this subpart?
The purpose of this subpart is to establish a procedure for foreign manufacturers, assemblers and importers of motor vehicles and motor vehicle equipment to designate an agent in the United States on whom service of administrative or judicial notices or processes may be made.
§ 551.46 Who must comply with this subpart and when?

(a) All foreign manufacturers, assemblers, and importers of motor vehicles or motor vehicle equipment (hereinafter referred to as “foreign manufacturers”) must comply with this subpart before offering a motor vehicle or item of motor vehicle equipment for importation into the United States.

(b) Unless and until a foreign manufacturer appoints an agent in accordance with the requirements of this subpart, it may not import motor vehicles or motor vehicle equipment into the United States.

§ 551.47 Who may serve as an agent for a foreign manufacturer?

Only an individual, a domestic firm or a domestic corporation that is a permanent resident of the United States may serve as an agent under this subpart.

§ 551.48 May an official of a foreign manufacturer serve as its agent?

(a) Generally no; an agent must be a permanent resident of the United States. Typically officials of foreign manufacturers and importers are not United States residents.

(b) Occasionally an official of a foreign manufacturer also serves as an official of a domestic firm or corporation or is a permanent resident of the United States. In such cases, the official may serve as agent and sign the designation documents both on behalf of the foreign manufacturer and as agent. However, the foreign manufacturer must submit to NHTSA, along with the designation documents, a letter explaining that the individual signing the designation is both an official of the foreign manufacturer with authority to appoint an agent and a permanent resident of the United States or official of a domestic firm or corporation. If NHTSA does not receive an explanatory letter at the same time it receives the designation, the agency will deem the designation insufficient under this subpart and reject the submission.

§ 551.49 May a foreign manufacturer replace its agent?

(a) Yes, a foreign manufacturer may replace its agent in the same way it originally designated the agent. It must submit designation documents that meet the form and content requirements identified in the following section of this subpart. Until NHTSA receives designation documents meeting those requirements or a letter withdrawing an existing designation, the individual or domestic corporation originally designated will continue to serve as its agent for service of process.

(b) A foreign manufacturer that has withdrawn but not replaced its agent may not continue to import motor vehicles or motor vehicle equipment into the United States. In order to do so, it must appoint a new agent in accordance with the requirements of this subpart.

§ 551.50 May more than one foreign manufacturer designate the same person as agent?

Yes, any number of foreign manufacturers separately may designate the same person as agent.

§ 551.51 May an agent assign performance of its functions to another individual or entity?

No, an agent may not assign performance of its functions.

§ 551.52 How long will a foreign manufacturer’s designation of agent remain in effect?

(a) A designation of agent remains in effect until replaced or withdrawn by a foreign manufacturer.

(b) A foreign manufacturer that has withdrawn but not replaced its agent may not continue to import motor vehicles or motor vehicle equipment into the United States. In order to do so, it must appoint a new agent in accordance with the requirements of this subpart.

FORM AND CONTENTS OF DESIGNATION

§ 551.53 What is the required format for a designation?

(a) All documents submitted under this subpart must be:

(1) Original documents;
§ 551.59 May the same individual sign both the Designation by Foreign Manufacturer and Acceptance by Agent?

(a) Generally no; the Designation by Manufacturer must be signed by an official or employee of the foreign manufacturer and the Acceptance by Agent must be signed by the foreign manufacturer’s agent, in the case of an individual, or by an official or employee, in the case of a domestic firm or corporation serving as its agent.

(b) Occasionally an official of a foreign manufacturer also serves as an official of a domestic firm or corporation or is a permanent resident of the...
§ 551.60 When must the Designation by Foreign Manufacturer be signed?

(a) The foreign manufacturer must sign the Designation by Foreign Manufacturer on or before the date that the agent signs the Acceptance by Agent. It is not possible for an individual or entity to accept a designation as agent until on or after the date on which a foreign manufacturer makes the designation.

(b) If the Designation by Foreign Manufacturer is dated after the Acceptance by Agent, NHTSA will deem the designation insufficient under this subpart and reject the submission.

§ 551.61 When must the Acceptance by Agent be signed?

(a) The agent, in the case of an individual, or an employee or official, in the case of a domestic firm or corporation serving as agent, must sign the Acceptance by Agent on or after the date that the manufacturer signs the Designation by Foreign Manufacturer. It is not possible for an individual or entity to accept a designation as agent until on or after the date on which the foreign manufacturer makes the designation.

(b) If the Acceptance by Agent is dated before the Designation by Foreign Manufacturer, NHTSA will deem the designation insufficient under this subpart and reject the submission.

§ 551.62 Where should a foreign manufacturer mail the designation?

Foreign manufacturers must mail their designations to the Office of the Executive Secretariat, National Highway Traffic Safety Administration, Room 5221, 400 Seventh Street, SW, Washington, DC 20590. No other NHTSA office is authorized to accept designation documents. To avoid delays, the agency suggests using express mail services.

§ 551.63 May a foreign manufacturer submit a designation by email or facsimile?

No, the statute requires designation documents submitted by foreign manufacturers to contain original ink signatures. NHTSA will reject designation documents submitted via email or facsimile, as they do not satisfy this requirement.

§ 551.64 What if designation documents submitted by a foreign manufacturer do not comply with this subpart?

Designations of agent are binding on the foreign manufacturer even when their form and contents do not comply with this subpart, unless rejected by the agency.

§ 551.65 What if a foreign manufacturer changes its name, address or product names or marks?

(a) A foreign manufacturer must provide written notice to NHTSA of any changes in its name, address or marks, trade names, or other designations of origin appearing on its products.

(b) Foreign manufacturers should mail notices to the Office of the Executive Secretariat, National Highway Traffic Safety Administration, Room 5221, 400 Seventh Street, SW, Washington, DC 20590. To avoid delays, the agency suggests using express mail services.

Method of Service of Process

§ 551.66 What is the legal effect of service of process on an agent?

Service on an agent of administrative or judicial notices or process is deemed to be service on a manufacturer.
§ 551.67 Where and how may an agent be served?

An agent may be served at the agent's office or usual place of residence, by registered or certified mail addressed to the agent with return receipt requested, or by any other manner authorized by law.

§ 551.68 What if an agent cannot be served?

If an agent cannot be served because the agent cannot be located, has ceased to exist or does not receive correctly addressed mail, service may be made by posting the notice or process in the Office of the Secretary of Transportation.
PART A: DESIGNATION BY FOREIGN MANUFACTURER

Pursuant to 49 U.S.C. § 30164 and 49 C.F.R. Part 551, Subpart D, the Foreign Manufacturer listed below hereby designates the following Agent on whom service of all administrative and judicial processes and notices may be made. This designation is for service of process only and for no other purpose. It shall remain in effect until it is withdrawn or another Agent is designated in accordance with the requirements of 49 U.S.C. § 30164 and 49 C.F.R. Part 551, Subpart D.

The Manufacturer identified below hereby certifies:

1. This designation is in valid form and binding on the Manufacturer under the laws, corporate bylaws or other requirements governing the making of designations at the place and time where it is made.

2. The full legal name, principal place of business and mailing address of the Manufacturer are:

3. The Manufacturer's products will be sold under the following trade or brand names, marks, logos or other designations of origin (List all names, marks, logos or designations):

4. The full legal name, principal place of business, mailing address and telephone number of the Agent are:

By:

Signature of Manufacturer's Authorized Representative Month / Day / Year

Printed Name Title

PART B: ACCEPTANCE BY AGENT

The undersigned hereby accepts appointment as Agent solely for the purpose of service of process on the Manufacturer under 49 U.S.C. § 30164 and 49 C.F.R. Part 551, Subpart D. I understand that this appointment shall remain in effect until withdrawn or replaced by the Manufacturer in accordance with the requirements of 49 U.S.C. § 30164 and 49 C.F.R. Part 551, Subpart D. I understand also that I may not assign performance of my functions under this Designation to another person.

By:

Signature of Agent Month / Day / Year

(Date of acceptance must be on or after date of designation)

Printed Name Title

TO AVOID DELAYS, LEAVE NO SPACES BLANK; DO NOT SEND VIA FAX/SCANNER OR EMAIL.

Mail original documents with ink signatures only to: Office of the Executive Secretariat, National Highway Traffic Safety Administration, Room 5221, 400 Seventh Street, SW, Washington, DC 20590

192
§ 552.5 Improperly filed petitions.

(a) A petition that is not addressed as specified in §552.4, but that meets the other requirements of that section, will be treated as a properly filed petition, received as of the time it is discovered and identified.

(b) A document that fails to conform to one or more of the requirements of §552.4(a) through (e) will not be treated as a petition under this part. Such a document will be treated according to the existing correspondence or other appropriate procedures of the NHTSA, and any suggestions contained in it
§ 552.6 Technical review.

The appropriate Associate Administrator conducts a technical review of the petition. The technical review may consist of an analysis of the material submitted, together with information already in the possession of the agency. It may also include the collection of additional information, or a public meeting in accordance with §552.7.

(30 FR 17267, Apr. 5, 1995)

§ 552.7 Public meeting.

If the Associate Administrator decides that a public meeting on the subject of the petition would contribute to the determination whether to commence a proceeding, he issues a notice of public meeting for publication in the Federal Register to advise interested persons of the time, place, and subject matter of the public meeting and invite their participation. Interested persons may submit their views and evidence through oral or written presentations, or both. There is no cross examination of witnesses. A transcript of the meeting is kept and exhibits may be accepted as part of the transcript. Sections 556 and 557 of title 5, U.S.C., do not apply to meetings held under this part. The Chief Counsel designates a member of his staff to serve as legal officer at the meeting.

§ 552.8 Notification of agency action on the petition.

After considering the technical review conducted under §552.6, and taking into account appropriate factors, which may include, among others, allocation of agency resources, agency priorities and the likelihood of success in litigation which might arise from the order, the Administrator will grant or deny the petition. NHTSA will notify the petitioner of the decision to grant or deny the petition within 120 days after its receipt of the petition.

(30 FR 17267, Apr. 5, 1995)

§ 552.9 Grant of petition.

(a) If a petition for rulemaking with respect to a motor vehicle safety standard is granted, a rulemaking proceeding is promptly commenced in accordance with applicable NHTSA and statutory procedures. The granting of such a petition and the commencement of a rulemaking proceeding does not signify, however, that the rule in question will be issued. A decision as to the issuance of the rule is made on the basis of all available information developed in the course of the rulemaking proceeding, in accordance with statutory criteria.

(b) If a petition with respect to a noncompliance or a defect is granted, a proceeding to determine the existence of the noncompliance or defect is promptly commenced by the initiation of an investigation by the Office of Standards Enforcement or the Office of Defects Investigation, as appropriate.

§ 552.10 Denial of petition.

If a petition is denied, a Federal Register notice of the denial is issued within 45 days of the denial, setting forth the reasons for denial of the petition.

SOURCE: 65 FR 30744, May 12, 2000, unless otherwise noted.

§ 552.11 Application.

This subpart establishes procedures for the submission and disposition of petitions filed by interested parties to initiate rulemaking to add a test procedure to 49 CFR 571.208, S28.

§ 552.12 Definitions.

For purposes of this subpart, the following definitions apply:

(a) Dynamic automatic suppression system (DASS) means a portion of an air bag system that automatically controls whether or not the air bag deploys during a crash by:

1 Sensing the location of an occupant, moving or still, in relation to the air bag;
§ 552.13 Form of petition.

Each petition filed under this subpart shall—

(a) Be submitted to: Administrator,
National Highway Traffic Safety Adminis-
tration, 400 Seventh Street, S.W.,
Washington, DC 20590.

(b) Be written in the English lan-
guage.

(c) State the name and address of the
petitioner.

(d) Set forth in full the data, views
and arguments of the petitioner sup-
porting the requested test procedure,
including all of the content informa-
tion specified by §552.14. Any docu-
ments incorporated by reference in the
procedure shall be submitted with the
petition.

(e) Specify and segregate any part of
the information and data submitted
that the petitioner wishes to have
withheld from public disclosure in ac-
cordance with part 512 of this chapter
including, if requested, the name and
address of the petitioner.

(f) Not request confidential treat-
ment for the requested test procedure
and, to the extent confidential treat-
ment is requested concerning a par-
ticular DASS or data and analysis sub-
mitted in support of the petition, pro-
vide a general non-confidential descrip-
tion of the operation of the DASS and
of the data and analysis supporting the
petition.

(g) Set forth a requested effective
date and be submitted at least nine
months before that date.

§ 552.14 Content of petition.

The petitioner shall provide the fol-
lowing information:

(a) A set of proposed test procedures
for S28.1, S28.2, S28.3, and S28.4 of
Standard No. 208 which the petitioner
believes are appropriate for assessing a
particular DASS.

(1) For S28.1 of Standard No. 208, the
petitioner shall specify at least one
specific position for the Part 572 sub-
part O 5th percentile female dummy
that is:

(i) Outside but adjacent to the ASZ,
and

(ii) Representative of an unbelted occu-
pant position that is likely to occur
during a frontal crash.

(2) For S28.2 of Standard No. 208, the
petitioner shall specify at least one
specific position for the Part 572 Sub-
part P 3-year-old child dummy and at
least one specific position for the Part
572 Subpart N 6-year-old child dummy
that are:

(i) Outside but adjacent to the ASZ,
and

(ii) Representative of unbelted occu-
pant positions that are likely to occur
during a frontal crash where pre-crash
braking occurs.

(3) For S28.3 of Standard No. 208, the
petitioner shall specify a procedure
which tests the operation of the DASS
by moving a test device toward the
driver air bag in a manner that simu-
lates the motion of an unbelted occu-
pant during pre-crash braking or other
pre-crash maneuver. The petitioner
shall include in the procedure a means for de-
termining whether the driver air bag
was suppressed before any portion of
the specified test device entered the
ASZ during the test. The procedure
shall also include a means of deter-
mining when the specified test device
occupies the ASZ.

(4) For S28.4 of Standard No. 208, the
petitioner shall specify a procedure
which tests the operation of the DASS
by moving a test device toward the
passenger air bag in a manner that simu-
lates the motion of an unbelted occu-
pant during pre-crash braking or
§ 552.15 Processing of petition.

(a) NHTSA will process any petition that contains the information specified by this subpart. If a petition fails to provide any of the information, NHTSA will not process the petition but will advise the petitioner of the information that shall be provided if the agency is to process the petition. The agency will seek to notify the petitioner of

196
any such deficiency within 30 days after receipt of the petition.

(b) At any time during the agency’s consideration of a petition submitted under this part, the Administrator may request the petitioner to provide additional supporting information and data and/or provide a demonstration of any of the requested test procedures. The agency will seek to make any such request within 60 days after receipt of the petition. Such demonstration may be at either an agency designated facility or one chosen by the petitioner, provided that, in either case, the facility shall be located in North America. If such a request is not honored to the satisfaction of the agency, the petition will not receive further consideration until the requested information is submitted.

(c) The agency will publish in the Federal Register either a Notice of Proposed Rulemaking proposing adoption of the requested test procedures, possibly with changes and/or additions, or a notice denying the petition. The agency will seek to issue either notice within 120 days after receipt of a complete petition. However, this time period may be extended by any time period during which the agency is awaiting additional information it requests from the petitioner or is awaiting a requested demonstration. The agency contemplates a 30 to 60 day comment period for any Notice of Proposed Rulemaking, and will endeavor to issue a final rule within 60 days thereafter.

PART 553—RULEMAKING PROCEDURES

Subpart A—General

§553.1 Applicability.

This part prescribes rulemaking procedures that apply to the issuance, amendment, and revocation of rules pursuant to Title 49, Subtitle VI of the United States Code (49 U.S.C. 30101, et seq.).

§553.3 Definitions.

Administrator means the Administrator of the National Highway Traffic Safety Administration or a person to whom he has delegated final authority in the matter concerned.

Rule includes any order, regulation, or Federal motor vehicle safety standard issued under Title 49.

Title 49 means 49 U.S.C. 30101, et seq.

§553.5 Regulatory docket.

(a) Information and data deemed relevant by the Administrator relating to rulemaking actions, including notices of proposed rulemaking; comments received in response to notices; petitions
for rulemaking and reconsideration; denials of petitions for rulemaking and reconsideration; records of additional rulemaking proceedings under §553.25; and final rules are maintained in the Docket Room, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590.

(b) Any person may examine any docketed material at the Docket Room at any time during regular business hours after the docket is established, except material ordered withheld from the public under applicable provisions of Title 49 and section 552(b) of title 5 of the U.S.C., and may obtain a copy of it upon payment of a fee.

§ 553.7 Records.

Records of the National Highway Traffic Safety Administration relating to rulemaking proceedings are available for inspection as provided in section 552(b) of title 5 of the U.S.C. and part 7 of the regulations of the Secretary of Transportation (part 7 of this title).

Subpart B—Procedures for Adoption of Rules

§ 553.11 Initiation of rulemaking.

The Administrator may initiate rulemaking either on his own motion or on petition by any interested person after a determination in accordance with Part 552 of this title that grant of the petition is advisable. The Administrator may, in his discretion, also consider the recommendations of other agencies of the United States.

§ 553.13 Notice of proposed rulemaking.

Unless the Administrator, for good cause, finds that notice is impracticable, unnecessary, or contrary to the public interest, and incorporates that finding and a brief statement of the reasons for it in the rule, a notice of proposed rulemaking is issued and interested persons are invited to participate in the rulemaking proceedings under applicable provisions of Title 49.

§ 553.14 Direct final rulemaking.

If the Administrator, for good cause, finds that notice is unnecessary, and incorporates that finding and a brief
§ 553.23 Consideration of comments received.

All timely comments are considered before final action is taken on a rulemaking proposal or direct final rule. Late filed comments will be considered to the extent practicable.

[80 FR 36492, June 25, 2015]
§ 553.25 Additional rulemaking proceedings.

The Administrator may initiate any further rulemaking proceedings that he finds necessary or desirable. For example, interested persons may be invited to make oral arguments, to participate in conferences between the Administrator or his representative and interested persons at which minutes of the conference are kept, to appear at informal hearings presided over by officials designated by the Administrator, at which a transcript or minutes are kept, or participate in any other proceeding to assure informed administrative action and to protect the public interest.

§ 553.27 Hearings.

(a) Sections 556 and 557 of title 5, United States Code, do not apply to hearings held under this part. Unless otherwise specified, hearings held under this part are informal, non-adversary, fact-finding proceedings, at which there are no formal pleadings or adverse parties. Any rule issued in a case in which an informal hearing is held is not necessarily based exclusively on the record of the hearing.

(b) The Administrator designates a representative to conduct any hearing held under this part. The Chief Counsel designates a member of his staff to serve as legal officer at the hearing.

§ 553.29 Adoption of final rules.

Final rules are prepared by representatives of the office concerned and the Office of the Chief Counsel. The rule is then submitted to the Administrator for its consideration. If the Administrator adopts the rule, it is published in the Federal Register, unless all persons subject to it are named and are personally served with a copy of it.

§§ 553.31–553.33 [Reserved]

§ 553.35 Petitions for reconsideration.

(a) Any interested person may petition the Administrator for reconsideration of any rule issued under this part. The petition shall be submitted to: Administrator, National Highway Traffic Safety Administration, 400 Seventh Street, SW, Washington, DC, 20590. It is requested, but not required, that 10 copies be submitted. The petition must be received not later than 45 days after publication of the rule in the Federal Register. Petitions filed after that time will be considered as petitions filed under Part 552 of this chapter. The petition must contain a brief statement of the complaint and an explanation as to why compliance with the rule is not practicable, is unreasonable, or is not in the public interest. Unless otherwise specified in the final rule, the statement and explanation together may not exceed 15 pages in length, but necessary attachments may be appended to the submission without regard to the 15-page limit.

(b) If the petitioner requests the consideration of additional facts, he must state the reason they were not presented to the Administrator within the prescribed time.

(c) The Administrator does not consider repetitious petitions.

(d) Unless the Administrator otherwise provides, the filing of a petition under this section does not stay the effectiveness of the rule.

§ 553.37 Proceedings on petitions for reconsideration.

The Administrator may grant or deny, in whole or in part, any petition for reconsideration without further proceedings. In the event he determines to reconsider any rule, he may issue a final decision on reconsideration without further proceedings, or he may provide such opportunity to submit comment or information and data as he deems appropriate. Whenever the Administrator determines that a petition should be granted or denied, he prepares a notice of the grant or denial of a petition for reconsideration, for issuance to the petitioner, and issues it to the petitioner. The Administrator may consolidate petitions relating to the same rule.

§ 553.39 Effect of petition for reconsideration on time for seeking judicial review.

The filing of a timely petition for reconsideration of any rule issued under this part postpones the expiration of the statutory period in which to seek judicial review of that rule only as to
the petitioner, and not as to other interested persons. For the petitioner, the period for seeking judicial review will commence at the time the agency takes final action upon the petition for reconsideration.

(60 FR 63651, Dec. 12, 1995)

APPENDIX A TO PART 553—STATEMENT OF POLICY: ACTION ON PETITIONS FOR RECONSIDERATION

It is the policy of the National Highway Traffic Safety Administration to issue notice of the action taken on a petition for reconsideration within 90 days after the closing date for receipt of such petitions, unless it is found impracticable to take action within that time. In cases where it is so found and the delay beyond that period is expected to be substantial, notice of that fact, and the date by which it is expected that action will be taken, will be published in the Federal Register.

APPENDIX B TO PART 553—STATEMENT OF POLICY: RULEMAKINGS INVOLVING THE ASSESSMENT OF THE FUNCTIONAL EQUIVALENCE OF SAFETY STANDARDS

(a) Based on a comparison of the performance of vehicles or equipment, the National Highway Traffic Safety Administration (NHTSA) may tentatively determine that a foreign motor vehicle safety standard is better than or at least functionally equivalent to a Federal Motor Vehicle Safety Standard (FMVSS), either on its own motion or in connection with a petition for rulemaking by any interested party under 49 CFR Part 552. Such determinations will be made in accordance with the process described in the flowchart in Figure 1 of this Appendix.

(b) Under the process, if NHTSA decides that there is reason to believe that a foreign standard is better than or at least functionally equivalent to a FMVSS in accordance with the process, it will commence a rulemaking proceeding that may lead to the issuance of a proposal to add the foreign standard as an alternative compliance option to the FMVSS, to harmonize the FMVSS with the foreign standard or to upgrade the FMVSS to the level of the foreign standard, as appropriate. Such a proposal will request comment on the agency’s tentative determination regarding relative benefits and functional equivalence as well as the proposed amendment. Final determinations regarding these matters will also be made in accordance with the analytical criteria in the flowchart.

(c) As used in this appendix, the term “standard” refers to mandatory requirements and thus has the same meaning given the term “technical regulation” in Annex 1 to the World Trade Organization Technical Barriers to Trade Agreement.
EXPLANATION OF FLOWCHART

A. Ultimate Goal

The ultimate goal in comparing standards is to assess the real world safety performance of the covered vehicles or equipment. Particularly in the case of crashworthiness standards, the most reliable basis for making that assessment is fatality and injury data directly drawn from actual crashes. Accordingly, NHTSA will make appropriate efforts to ensure the availability of such data regarding crashes in the U.S.

B. Guiding Principles

Best Practices

NHTSA pursues a "best practices" policy in comparing U.S. and foreign safety standards, i.e., NHTSA will propose to upgrade its standards if it tentatively concludes that a Country B standard offers greater benefits than the counterpart FMVSS, and if upgrading appears appropriate, considering the incremental costs and benefits and applicable statutory criteria. (For a discussion of another type of rulemaking proposal that may be considered in these circumstances, see the paragraph below on comparisons that indicate that a foreign standard's safety benefits are greater than those of the counterpart FMVSS.)

Conservatism

1. NHTSA places priority on preserving the safety benefits of the FMVSSs.

2. NHTSA can best preserve those benefits by being conservative in reaching any conclusion that a Country B standard is better than or at least functionally equivalent to the counterpart FMVSS. One reason for conservatism is that differences from vehicle model to vehicle model and manufacturer to manufacturer in margins of compliance may confound efforts to assess the relative benefits of two standards. Further, there may be circumstantial differences, such as special environmental conditions, driver demographics, driver behavior, occupant behavior (e.g., level of safety belt use), road conditions, size distribution of vehicle fleet (e.g., proportion of big versus small vehicles and disparity between extremes), that could influence real world safety benefits. These differences may result in a particular standard having a safety record in a foreign country that would not necessarily be repeated in the United States.

Best Available Evidence

1. NHTSA will base its comparison of standards on the best available evidence. If available, estimates of real world safety benefits based on fatality and injury data directly drawn from actual crashes are the best evidence. If such data are not available, then estimates based on other information, such as compliance test data, may be used, although increased caution needs to be exercised in making judgment based on those estimates. If sufficient crash data regarding real world safety benefits are available, and a comparison of those benefits shows that the Country B standard is less beneficial than the counterpart Federal Motor Vehicle Safety Standard (FMVSS), NHTSA would avoid wasting resources making comparisons on the basis of less probative types of evidence.

2. The types of benefits examined in comparing two standards might differ depending on whether the standards are crash avoidance standards or crashworthiness standards. Translating differences in performance (an input measure) into numbers of crashes or numbers of deaths and injuries (output measures) is more difficult in the case of crash avoidance standards. As a result, while the relative benefits of two crashworthiness standards would typically be assessed in terms of their impacts on deaths and injuries in crashes, the relative merits of two different crash avoidance standards might well be assessed in terms of their impact on vehicle or equipment performance.

Sufficiency of Evidence

1. Many types of data are available for a comparison of two standards. Often there is an abundance of one type of data and little or no data from other sources. If insufficient data are available, and such data either cannot be generated through engineering analysis (e.g., real world safety benefits estimates), or conducting additional research and development is not cost effective, then NHTSA will stop consideration of such data and consider the other available data instead.

2. The essentially horizontal, left-to-right path through the flowchart is intended to illustrate the sources of data that will be considered and provide a rough idea of the priority they will receive. Each step branches independently to the tentative determination of relative benefits and functional equivalency by its “yes” path. This may seem to preclude later steps once any “yes” path is encountered. In practice, however, all data sources will be considered to the extent that they are available before a final determination regarding these matters is made.

Reciprocity

1. NHTSA will take steps to encourage reciprocity by other countries in the making of functional equivalence determinations.

2. When NHTSA’s comparison of standards indicates that one of the FMVSSs has benefits equal to or greater than the counterpart Country B standard, NHTSA may forward the results of that comparison to Country B
and request that consideration be given by
Country B to determining that the FMVSS
is better than or at least functionally equiv-
alent to the counterpart Country B standard,
and to subsequently amending its standard
accordingly.

C. Agency Decisions in Which Flowchart Is
Used

This flowchart guides agency decisions in
connection with a rulemaking proceeding
that involves the issue of relative benefits
and functional equivalence.

1. Decision whether to grant a rulemaking pe-
tition. If the agency receives a petition for
rulemaking based on a claim that one of
Country B’s standards is better than or at
least functionally equivalent to one of the
Federal Motor Vehicle Safety Standards
(FMVSSs), the agency will consider the mer-
its of the petition in accordance with 49 CFR
Part 552. Petitions for rulemaking, defect,
and noncompliance orders, and with the
functional equivalence process set forth in
the flowchart. If it appears that there is rea-
son to believe that Country B’s standard pro-
vides safety benefits are greater than or at
least equal to those of the FMVSS, the agen-
cy will likely grant the petition and com-
ments a rulemaking proceeding.

The agency emphasizes that its priority
with respect to international harmonization
is identifying and adopting those foreign
safety standards that represent best prac-
tices. Accordingly, if resource limitations
make it necessary to choose between com-
peting petitions in granting or processing
them, the agency would give priority to pet-
tions asking the agency to upgrade one of its
standards to the level of a superior foreign
standard over petitions simply asking the
agency to add a compliance alternative.

2. Decision whether to issue a notice of pro-
posed rulemaking. If NHTSA grants the peti-
tion, it will proceed, as in any other rule-
making regarding the FMVSSs, to determine
whether amending an FMVSS would be ap-
propriate under the applicable statutory cri-
tera in chapter 301 of title 49, U.S.C. Fol-
lowing the process set forth in the flowchart,
the agency will use data submitted by the
petitioner, supplemented by data from other
sources, to compare performance and ten-
atively determine whether Country B’s
standard specified in the petition is better
than or at least functionally equivalent to
the FMVSS specified in the petition.

This comparison could have a variety of
possible outcomes:

a. The comparison may indicate that the for-

teen standard’s safety benefits are less than
those of the counterpart FMVSS. If NHTSA
determines that the foreign standard results
in fewer safety benefits than the counterpart
FMVSS, it will terminate the rulemaking
proceeding.

b. The comparison may indicate that the for-

teen standard’s safety benefits are approxi-
mately equal to those of the counterpart
FMVSS. If the agency tentatively determines
that the safety benefits of a foreign standard
are approximately equal to those of a
FMVSS, it will take one of two steps in most
instances. One possibility is that it will de-
velop a notice of proposed rulemaking
(NPRM) proposing to amend the FMVSS by
adding the foreign standard as an alternative
to the existing requirements of the FMVSS.

The other possibility is that the agency will
develop an NPRM proposing to harmonize
the FMVSS with the foreign standard. This
second approach would enable NHTSA to
maintain a single set of requirements and
test procedures in its standard, thereby
minimizing any drain on its enforcement re-
sources. An additional possibility that might
be considered in some instances would be
“qualified functional equivalence.” Under
this third approach, the agency would regard
Country B’s standard to be functionally
equivalent if it is supplemented by a speci-

fied requirement in the counterpart FMVSS.

c. The comparison may indicate that the for-

teen standard’s safety benefits are greater than
those of the counterpart FMVSS. If NHTSA
tentatively determines that the foreign
standard results in greater safety benefits
than the counterpart FMVSS, and if upgrad-
ing is appropriate, based on the incremental
benefits and costs and applicable statutory
criteria, the agency issues an NPRM pro-
posing to upgrade the FMVSS to the level of
Country B’s std. If upgrading is not appro-
priate, NHTSA considers issuing an NPRM
proposing to add the requirements of Coun-
try B’s std to the FMVSS as an alternative
compliance option. The proposal to add the
compliance option would set forth the basis
for the agency’s conclusion that upgrading
the FMVSS is inappropriate.

If NHTSA issues an NPRM, it would request
comment on the tentative determination and
the proposed amendment.

3. Decision whether to issue a final rule. Any
final decision to make a determination re-
garding relative benefits and functional
equivalency and to amend the FMVSS will
be made in accordance with the process in
the flowchart and applicable law and only
after careful consideration and analysis of
the public comments.

[63 FR 26514, May 13, 1998]
APPENDIX C TO PART 553—STATEMENT OF POLICY: IMPLEMENTATION OF THE UNITED NATIONS/ECONOMIC COMMISSION FOR EUROPE (UN/ECE) 1998 AGREEMENT ON GLOBAL TECHNICAL REGULATIONS—AGENCY POLICY GOALS AND PUBLIC PARTICIPATION

I. AGENCY POLICY GOALS FOR THE 1998 GLOBAL AGREEMENT AND INTERNATIONAL MOTOR VEHICLE SAFETY HARMONIZATION

A. Paramount Policy Goal Under the 1998 Global Agreement

Continuously improve safety and seek high levels of safety, particularly by developing and adopting new global technical regulations reflecting consideration of current and anticipated technology and safety problems.

B. Other Policy Goals

1. Adopt and maintain U.S. standards that fully meet the need in the U.S. for vehicle safety.
2. Harmonize U.S. standards with those of other countries or regions, particularly by raising U.S. standards at least to the level of the best practices in those other safety standards.
3. Enhance regulatory effectiveness through regulatory cooperation with other countries and regions, thereby providing greater safety protection with available government resources.

II. PUBLIC PARTICIPATION AND THE ESTABLISHING OF GLOBAL TECHNICAL REGULATIONS FOR MOTOR VEHICLE SAFETY, THEFT, AND ENERGY EFFICIENCY

A. Summary of the Process Under the 1998 Global Agreement for Establishing Global Technical Regulations

1. Proposal Stage

A Contracting Party submits a proposal for either a harmonized or new global technical regulation to the Executive Committee of the 1998 Global Agreement (i.e., the Contracting Parties to the Agreement). If appropriate, the Committee then refers the proposal to a working party of experts to develop the technical elements of the regulation.

2. Recommendation Stage

When a working party of experts recommends a harmonized or new global technical regulation, it sends a report and the recommended regulation to the Executive Committee. The Committee then determines whether the recommendations are adequate and considers the establishment of the recommended regulation.

3. Establishment Stage

If the Executive Committee reaches consensus in favor of that recommended global technical regulation, the global technical regulation is established in the Global Registry.

B. Notice of Annual Work Program of WP.29

Each year, NHTSA will publish a notice concerning the motor vehicle safety, theft, and energy efficiency aspects of the annual program of work for the UN/ECE’s World Forum for Harmonization of Vehicle Regulations (WP.29). Each notice will include:

1. A calendar of scheduled meetings of WP.29 participants and working parties of experts, and meetings of the Executive Committee; and
2. A list of the global technical regulations that:
 a. Have been proposed and referred to a working party of experts, or
 b. Have been recommended by a working party of experts.

Periodically, the notice will also include a request for public comments on the subjects for which global technical regulations should be established under the 1998 Global Agreement. The agency will publish a subsequent notice identifying the priorities on which NHTSA will focus in the future under the 1998 Global Agreement.

C. Public Meetings

NHTSA will hold periodic public meetings on its activities under the 1998 Global Agreement. If the extent of recent and anticipated significant developments concerning those activities so warrant, NHTSA will hold a public meeting within the 60-day period before each of the three sessions of WP.29 held annually. At each of these public meetings, NHTSA will:

1. Brief the public on the significant developments that occurred at the session of WP.29, the meetings of the working parties of experts and the meetings of the Executive Committee since the previous public meeting;
2. Based on the availability of provisional agendas, inform the public about the significant issues to be addressed at upcoming session of WP.29 and meetings of the working parties of experts and any votes scheduled at the next session of the Executive Committee on recommended global technical regulations; and
3. Invite public comment and questions concerning those past developments and upcoming issues and votes and the general positions that the U.S. could take regarding those votes, and concerning any other significant developments and upcoming matters relating to pending proposed or recommended global technical regulations.
Appropriate agency officials will participate in the public meetings. These public meetings may be held separately from or in conjunction with the agency’s quarterly meetings on its vehicle rulemaking and research and development programs. The agency may hold additional public meetings.

D. Notices Concerning Individual Global Technical Regulations

1. Notice Requesting Written Comment on Proposed Global Technical Regulations
 a. Proposals by the U.S. (See Figure 1.)
 Before submitting a draft U.S. proposal for a global technical regulation to WP.29, NHTSA will publish a notice requesting public comments on the draft proposal. In the case of a draft proposal for a harmonized global technical regulation, the notice will compare that regulation with any existing, comparable U.S. standard, including the relative impacts of the regulation and standard. In the case of a draft proposal for a new global technical regulation, the notice will generally discuss the problem addressed by the proposal, the rationale for the proposed approach for addressing the problem, and the impacts of the proposal. NHTSA will consider the public comments and, as it deems appropriate, revise the proposal and any of its supporting documentation and then submit the proposal to WP.29.
 b. Proposals by a Contracting Party other than the U.S. (See Figure 2.)
 After a proposal by a Contracting Party other than the U.S. has been referred to a working party of experts and has been made available in English by WP.29, NHTSA will make the draft proposal available in the DOT docket (http://dms.dot.gov). The agency will then publish a notice requesting public comment on the draft proposal and will consider the comments in developing a U.S. position on the proposal.

2. Notice Requesting Written Comment on Recommended Global Technical Regulations

If a working party of experts recommends a global technical regulation and sends a report and the recommended regulation to the Executive Committee, NHTSA will make an English language version of the report and the regulation available in the DOT docket (http://dms.dot.gov) after they are made available by WP.29. The agency will publish a notice requesting public comment on the report and regulation. Before participating in a vote of the Executive Committee regarding the establishment of the regulation, the agency will consider the comments and develop a U.S. position on the recommended technical regulation.

3. Notice Requesting Written Comment on Established Global Technical Regulations

If a global technical regulation is established in the Global Registry by a consensus vote of the Executive Committee, and if the U.S. voted for establishment, NHTSA will publish a notice requesting public comment on adopting the regulation as a U.S. standard. Any decision by NHTSA whether to issue a final rule adopting the regulation or to issue a notice terminating consideration of that regulation will be made in accordance with applicable U.S. law and only after careful consideration and analysis of public comments.

E. Availability of Documents

As we obtain English versions of key documents relating to motor vehicle safety, theft or energy conservation that are generated under the 1998 Agreement (e.g., proposals referred to a working party of experts, and reports and recommendations issued by a working party), we will place them in the internet-accessible DOT docket (http://dms.dot.gov). Within the limits of available resources, we will also place the documents on an international activities page that will be included in our Website (http://www.nhtsa.dot.gov/ourfacts/rules/international/index.html).
Figure 1
US Proposal
for a Harmonized or New Global Technical Regulation
PART 554—STANDARDS ENFORCEMENT AND DEFECTS INVESTIGATION

§ 554.1 Scope.

This part establishes procedures for enforcing Federal motor vehicle safety standards and associated regulations, investigating possible safety-related defects, and making non-compliance and defect determinations.

§ 554.2 Purpose.

The purpose of this part is to inform interested persons of the procedures followed by the National Highway Traffic Safety Administration in order more fairly and effectively to implement 49 U.S.C. Chapter 301.

[60 FR 17267, Apr. 5, 1995]

§ 554.3 Application.

This part applies to actions, investigations, and defect and noncompliance decisions of the National Highway Traffic Safety Administration under 49 U.S.C. 30116, 30117, 30118, 30120, and 30165.

[60 FR 17267, Apr. 5, 1995]

§ 554.4 Office of Vehicle Safety Compliance.

The Office of Vehicle Safety Compliance investigates compliance with Federal motor vehicle safety standards and associated regulations, and to this end may:

(a) Verify that manufacturers certify compliance with all applicable safety standards;

(b) Collect field reports from all sources;

(c) Inspect manufacturers' certification test data and other supporting evidence, including dealer communications;

(d) Inspect vehicles and equipment already in use or new vehicles and equipment at any stage of the manufacturing, distribution and sales chain;

(e) Conduct selective compliance tests; and

(f) Utilize other means necessary to conduct investigations.

§ 554.5 Office of Defects Investigation.

The Office of Defects Investigation conducts investigations to implement the provisions of the Act concerning the identification and correction of safety-related defects in motor vehicles and motor vehicle equipment. It elicits from every available source and evaluates on a continuing basis any information suggesting the existence of a safety-related defect.

§ 554.6 Opening an investigation.

(a) A compliance or defect investigation is opened either on the motion of the Administrator or his delegate or on the granting of a petition of an interested party under part 552 of this chapter.

(b) A manufacturer is notified immediately by telephone of any compliance test failure in order to enable the manufacturer to begin his own investigation. Notification is sent by mail at the beginning of any defect or noncompliance investigation.

§ 554.7 Investigation priorities.

(a) Compliance investigation priorities are reviewed annually and are set according to the following criteria:

(1) Prior compliance test data;

(2) Accident data;

(3) Engineering analysis of vehicle and equipment designs;

(4) Consumer complaints; and

(5) Market share.

(b) Defects inputs are reviewed periodically by an appropriate panel of engineers in consultation with the Office of Chief Counsel to determine whether a formal investigation should be opened by the Office of Defects Investigation.
§ 554.8 Monthly reports.

(a) Compliance. A monthly compliance report is issued which lists investigations opened, closed, and pending during that month, identifies compliance test reports accepted, and indicates how individual reports may be obtained.

(b) Defects. A monthly defects report is issued which lists investigations opened, closed, pending, and suspended during that month. An investigation may be designated “suspended” where the information available is insufficient to warrant further investigation. Suspended cases are automatically closed 60 days after appearing in a monthly report unless new information is received which justifies a different disposition.

§ 554.9 Availability of files.

All files of closed or suspended investigations are available for public inspection in the NHTSA Technical Reference Library. Communications between the agency and a manufacturer with respect to ongoing investigations are also available. Such files and communications may contain material which is considered confidential but has been determined to be necessary to the subject proceeding. Material which is considered confidential but has not been determined to be necessary to the subject proceeding will not be disclosed. Reproduction of entire public files or of individual documents can be arranged.

§ 554.10 Initial determinations and public meetings.

(a) An initial decision of failure to comply with safety standards or of a safety-related defect is made by the Administrator or his delegate based on the completed investigative file compiled by the appropriate office.

(b) The decision is communicated to the manufacturer in a letter which makes available all information on which the decision is based. The letter advises the manufacturer of his right to present information, views, and arguments to establish that there is no defect or failure to comply or that the alleged defect does not affect motor vehicle safety. The letter also specifies the time and place of a public meeting for the presentation of arguments or sets a date by which written comments must be submitted. Submission of all information, whether at a public meeting or in written form, is normally scheduled about 30 days after the initial decision. The deadline for submission of information can be extended for good cause shown.

(c) Public notice of an initial decision is made in a Federal Register notice that—

(1) Identifies the motor vehicle or item of equipment and its manufacturer;

(2) Summarizes the information on which the decision is based.

(3) Gives the location of all information available for public examination; and

(4) States the time and place of a public meeting or the deadline for written submission in which the manufacturer and interested persons may present information, views, and arguments respecting the decision.

(d) A transcript of the public meeting is kept and exhibits may be offered. There is no cross-examination of witnesses.

[45 FR 10797, Feb. 19, 1980, as amended at 60 FR 17267, Apr. 5, 1995]

§ 554.11 Final decisions.

(a) The Administrator bases his final decision on the completed investigative file and on information, views, and arguments submitted at the public meeting.

(b) If the Administrator decides that a failure to comply or a safety-related defect exists, he orders the manufacturer to furnish the notification specified in 49 U.S.C. 30118 and 30119 and to remedy the defect or failure to comply.

(c) If the Administrator closes an investigation following an initial determination, without making a final determination that a failure to comply or a safety-related defect exists, he or she will so notify the manufacturer and publish a notice of that closing in the Federal Register.

(d) A statement of the Administrator's final decision and the reasons for it appears in each completed public file.

[60 FR 17268, Apr. 5, 1995]
§ 555.1 Scope.
This part establishes requirements for the temporary exemption by the National Highway Traffic Safety Administration (NHTSA) of certain motor vehicles from compliance with one or more Federal motor vehicle safety standards in accordance with 49 U.S.C. 30113, and of certain passenger motor vehicles from compliance with all or part of a Federal bumper standard in accordance with 49 U.S.C. 32502.

[64 FR 2661, Jan. 19, 1999]

§ 555.2 Purpose.
(a) The purpose of this part is to provide a means by which manufacturers of motor vehicles may obtain temporary exemptions from Federal motor vehicle safety standards on the basis of substantial economic hardship, facilitation of the development of new motor vehicle safety or low-emission engine features, or existence of an equivalent overall level of motor vehicle safety.

(b) The purpose of this part is also to provide a means by which manufacturers of passenger motor vehicles may obtain a temporary exemption from compliance with all or part of a Federal bumper standard issued under part 581 of this chapter on a basis similar to that provided for exemptions from the Federal motor vehicle safety standards.

[38 FR 2694, Jan. 29, 1973, as amended at 64 FR 2861, Jan. 19, 1999]

§ 555.3 Application.
This part applies to manufacturers of motor vehicles and passenger motor vehicles.

[64 FR 2661, Jan. 19, 1999]

§ 555.4 Definitions.
Administrator means the National Highway Traffic Safety Administrator or his delegate.

Passenger motor vehicle means a motor vehicle with motive power designed to carry not more than 12 individuals, but does not include a truck not designed primarily to carry its operator or passengers, or a motorcycle.

United States means the several States, the District of Columbia, the Commonwealth of Puerto Rico, Guam, the Virgin Islands, the Canal Zone, and American Samoa.

[38 FR 2694, Jan. 29, 1973, as amended at 64 FR 2861, Jan. 19, 1999]

§ 555.5 Application for exemption.
(a) A manufacturer of motor vehicles or passenger motor vehicles may apply to NHTSA for a temporary exemption from any Federal motor vehicle safety or bumper standard or for a renewal of any exemption on the bases of substantial economic hardship, making easier the development or field evaluation of new motor vehicle safety or impact protection, or low-emission vehicle features, or that compliance with a standard would prevent it from selling a vehicle with an overall level of safety or impact protection at least equal to that of nonexempted vehicles.
§ 555.6 Basis for application.

(a) If the basis of the application is that compliance with the standard would cause substantial economic hardship to a manufacturer that has tried to comply with the standard in good faith, the applicant shall provide the following information:

(1) Engineering and financial information demonstrating in detail how compliance or failure to obtain an exemption would cause substantial economic hardship, including—

(i) A list or description of each item of motor vehicle equipment that would have to be modified in order to achieve compliance;

(ii) The itemized estimated cost to modify each such item of motor vehicle equipment if compliance were to be achieved—

(A) As soon as possible,

(B) At the end of a 1-year exemption period (if the petition is for 1 year or more),

(C) At the end of a 2-year exemption period (if the petition is for 2 years or more),

(D) At the end of a 3-year exemption period (if the petition is for 3 years),

(iii) The estimated price increase per vehicle to balance the total costs incurred pursuant to paragraph (a)(1)(ii) of this section and a statement of the anticipated effect of each such price increase;

(iv) Corporate balance sheets and income statements for the three fiscal years immediately preceding the filing of the application;

(v) Projected balance sheet and income statement for the fiscal year following a denial of the application; and

(vi) A discussion of any other hardships (e.g., loss of market, difficulty of obtaining goods and services for compliance) that the petitioner desires the agency to consider.

(b) Each application filed under this part for an exemption or its renewal must—

(1) Be written in the English language;

(2) Be submitted in three copies to: Administrator, National Highway Traffic Safety Administration, Washington, DC 20590;

(3) State the full name and address of the applicant, the nature of its organization (individual, partnership, corporation, etc.) and the name of the State or country under the laws of which it is organized;

(4) State the number and title, and the text or substance of the standard or portion thereof from which the temporary exemption is sought, and the length of time desired for such exemption;

(5) Set forth the basis for the application and the information required by § 555.6(a), (b), (c), or (d) as appropriate.

(6) Specify any part of the information and data submitted which petitioner requests be withheld from public disclosure in accordance with part 512 of this chapter.

(i) The information and data which petitioner requests be withheld from public disclosure must be submitted in accordance with §512.4 of this chapter.

(ii) The petitioner's request for withholding from public disclosure must be accompanied by a certification in support as set forth in appendix A to part 512 of this chapter.

(7) Set forth the reasons why the granting of the exemption would be in the public interest, and, as applicable, consistent with the objectives of 49 U.S.C. Chapter 301 or Chapter 325.

(c) The knowing and willful submission of false, fictitious or fraudulent information will subject the petitioner to the civil and criminal penalties of 18 U.S.C. 1001.

tried in good faith to comply with the standard;

(iv) A description of the steps to be taken, while the exemption is in effect, and the estimated date by which full compliance will be achieved either by design changes or termination of production of nonconforming vehicles; and

(v) The total number of motor vehicles produced by or on behalf of the petitioner in the 12-month period prior to filing the petition, and the inclusive dates of the period. (49 U.S.C. 30113(d) limits eligibility for exemption on the basis of economic hardship to manufacturers whose total motor vehicle production in the year preceding the filing of their applications does not exceed 10,000.)

(b) If the basis of the application is that the exemption would make easier the development or field evaluation of a new motor vehicle safety or impact protection features providing a safety or impact protection level at least equal to that of the standard, the applicant shall provide the following information:

(1) A description of the safety or impact protection features, and research, development, and testing documentation establishing the innovative nature of such features.

(2) An analysis establishing that the level of safety or impact protection of the feature is equivalent to or exceeds the level of safety or impact protection established in the standard from which exemption is sought, including—

(i) A detailed description of how a vehicle equipped with the safety or impact protection feature differs from one that complies with the standard;

(ii) If applicant is presently manufacturing a vehicle conforming to the standard, the results of tests conducted to substantiate certification to the standard; and

(iii) The results of tests conducted on the safety or impact protection features that demonstrates performance which meets or exceeds the requirements of the standard.

(3) Substantiation that a temporary exemption would facilitate the development or field evaluation of the vehicle.

(4) A statement whether, at the end of the exemption period, the manufacturer intends to conform to the standard, apply for a further exemption, or petition for rulemaking to amend the standard to incorporate the safety or impact protection features.

(5) A statement that not more than 2,500 exempted vehicles will be sold in the United States in any 12-month period for which an exemption may be granted pursuant to this paragraph. An application for renewal of such an exemption shall also include the total number of exempted vehicles sold in the United States under the existing exemption.

(c) If the basis of the application is that the exemption would make the development or field evaluation of a low-emission vehicle easier and would not unreasonably lower the safety or impact protection level of that vehicle, the applicant shall provide—

(1) Substantiation that the vehicle is a low-emission vehicle as defined by 49 U.S.C. 30113(a).

(2) Research, development, and testing documentation establishing that a temporary exemption would not unreasonably degrade the safety or impact protection of the vehicle, including—

(i) A detailed description of how the motor vehicle equipped with the low-emission engine would, if exempted, differ from one that complies with the standard;

(ii) If the applicant is presently manufacturing a vehicle conforming to the standard, the results of tests conducted to substantiate certification to the standard;

(iii) The results of any tests conducted on the vehicle that demonstrate its failure to meet the standard, expressed as comparative performance levels; and

(iv) Reasons why the failure to meet the standard does not unreasonably degrade the safety or impact protection of the vehicle.

(3) Substantiation that a temporary exemption would facilitate the development or field evaluation of the vehicle.

(4) A statement whether, at the end of the exemption period, the manufacturer intends to conform with the standard.

(5) A statement that not more than 2,500 exempted vehicles will be sold in
§ 555.7 Processing of applications.

(a) The NHTSA publishes in the Federal Register, affording opportunity for comment, a notice of each application containing the information required by this part. However, if the NHTSA finds that an application does not contain the information required by this part, it so informs the applicant, pointing out the areas of insufficiency and stating that the application will not receive further consideration until the required information is submitted.

(b) No public hearing, argument, or other formal proceeding is held directly on an application filed under this part before its disposition under this section.

(c) Any interested person may, upon written request, appear informally before an appropriate official of the NHTSA to discuss an application for exemption or the action taken in response to a petition.

(d) If the Administrator determines that the application does not contain adequate justification, he denies it and notifies the petitioner in writing. He also publishes in the Federal Register a notice of the denial and the reasons for it.

(e) If the Administrator determines that the application contains adequate justification, he grants it, and notifies the petitioner in writing. He also publishes in the Federal Register a notice of the grant and the reasons for it.

(f) Unless a later effective date is specified in the notice of the grant, a temporary exemption is effective upon publication of the notice in the Federal Register and exempts vehicles manufactured on and after the effective date.

§ 555.8 Termination of temporary exemptions.

(a) A temporary exemption from a standard granted on the basis of substantial economic hardship terminates according to its terms but not later than 3 years after the date of issuance unless terminated sooner pursuant to paragraph (d) of this section.

(b) A temporary exemption from a standard granted on a basis other than substantial economic hardship terminates according to its terms but not later than 2 years after the date of issuance unless terminated sooner pursuant to paragraph (d) of this section.

(c) Any interested person may petition for the termination or modification of an exemption granted under this part. The petition will be processed in accordance with the procedures of part 552 of this chapter.

(d) The Administrator terminates or modifies a temporary exemption if he determines that—

(1) The temporary exemption is no longer consistent with the public interest and the objectives of the Act; or

(2) The temporary exemption was granted on the basis of false, fraudulent, or misleading representations or information.

(e) If an application for renewal of a temporary exemption that meets the requirements of §555.5 has been filed not later than 60 days before the termination date of an exemption, the exemption does not terminate until the Administrator grants or denies the application for renewal.

(f) The Administrator publishes in the FEDERAL REGISTER a notice of:

(1) An application for termination or modification of an exemption and the action taken in response to it; and

(2) Any termination or modification of an exemption pursuant to the Administrator's own motion.

§ 555.9 Temporary exemption labels.

A manufacturer of an exempted vehicle shall—

(a) Submit to the Administrator, within 30 days after receiving notification of the grant of an exemption, a sample of the certification label required by part 567 of this chapter and paragraph (c) of this section;

(b) Affix securely to the windshield or side window of each exempted vehicle a label in the English language containing the statement required by paragraph (c)(1) or (2) of this section, and with the words "Shown above" omitted.

(c) Meet all applicable requirements of part 567 of this chapter, except that—

(1) The statement required by §567.4(g)(5) of this chapter shall end with the phrase "except for Standards Nos. [listing the standards by number and title for which an exemption has been granted] exempted pursuant to NHTSA Exemption No.

(2) Instead of the statement required by §567.5(c)(7)(iii), the following statement shall appear:

THIS VEHICLE CONFORMS TO ALL APPLICABLE FEDERAL MOTOR VEHICLE SAFETY (AND BUMPER) STANDARDS IN EFFECT IN [Month, Year] EXCEPT FOR STANDARD NOS. [Listing the standards by number and title for which an exemption has been granted] EXEMPTED PURSUANT TO NHTSA EXEMPTION NO.

§ 555.10 Availability for public inspection.

(a) Information relevant to an application under this part, including the application and supporting data, memoranda of informal meetings with the applicant or any other interested person, and the grant or denial of the application, is available for public inspection, except as specified in paragraph (b) of this section, in Room PL–401 (Docket Management), 400 Seventh Street, SW., Washington, DC 20590.

Copies of available information may be obtained, as provided in part 7 of the regulations of the Office of the Secretary of Transportation (49 CFR part 7).
§ 555.11

(b) Except for the release of confidential information authorized by part 512 of this chapter, information made available for inspection under paragraph (a) shall not include materials not relevant to the petition for which confidentiality is requested and granted in accordance with 49 U.S.C. 30106 and 30107 and section 552(b) of title 5 of the U.S.C.

Subpart B—Vehicles Built in Two or More Stages and Altered Vehicles

SOURCE: 70 FR 7429, Feb. 14, 2005, unless otherwise noted.

§ 555.12 Petition for exemption.

An alterer; an incomplete vehicle manufacturer intending to certify the vehicle in accordance with 49 CFR 567.5(f); an intermediate manufacturer intending to certify the vehicle in accordance with 49 CFR 567.5(g); a final-stage manufacturer; or an industry trade association representing a group of alterers, incomplete vehicle manufacturers, intermediate manufacturers and/or final-stage manufacturers may seek, as to any vehicle configuration altered and/or built in two or more stages, a temporary exemption or a renewal of a temporary exemption from any performance requirement for which a Federal motor vehicle safety standard specifies the use of a dynamic test procedure to determine compliance. Each petition for an exemption under this section must be submitted to NHTSA and must:

(a) Be written in the English language;

(b) Be submitted in three copies to: Administrator, National Highway Traffic Safety Administration, 400 Seventh St., SW., Washington, DC 20590;

(c) State the full name and address of the applicant, the nature of its organization (e.g., individual, partnership, corporation, or trade association), the name of the State or country under the laws of which it is organized, and the name of each alterer, incomplete vehicle manufacturer, intermediate manufacturer and/or final-stage manufacturer for which the exemption is sought;

(d) State the number, title, paragraph designation, and the text or substance of the portion(s) of the standard(s) from which the exemption is sought;

(e) Describe by type and use each vehicle configuration (or range of vehicle configurations) for which the exemption is sought;

(f) State the estimated number of units of each vehicle configuration to be produced annually by each of the manufacturer(s) for whom the exemption is sought;

(g) Specify any part of the information and data submitted that the petitioner requests be withheld from public disclosure in accordance with part 512 of this chapter, as provided by § 555.5(b)(6).

(1) The information and data which petitioner requests be withheld from public disclosure in accordance with part 512 of this chapter, as provided by §555.5(b)(6).

(2) The petitioner’s request for withholding from public disclosure must be accompanied by a certification in support as set forth in appendix A to part 512 of this chapter.

[71 FR 28196, May 15, 2006]
§ 555.13 Basis for petition.

The petition shall:

(a) Discuss any factors (e.g., demand for the vehicle configuration, loss of market, difficulty in procuring goods and services necessary to conduct dynamic tests) that the applicant desires NHTSA to consider in deciding whether to grant the application based on economic hardship.

(b) Explain the grounds on which the applicant asserts that the application of the dynamic test requirements of the standard(s) in question to the vehicles covered by the application would cause substantial economic hardship to each of the manufacturers on whose behalf the application is filed, providing a complete financial statement for each manufacturer and a complete description of each manufacturer’s good faith efforts to comply with the standards, including a discussion of:

(1) The extent that no Type (1) or Type (2) statement with respect to such standard is available in the incomplete vehicle document furnished, per part 568 of this chapter, by the incomplete vehicle manufacturer or by a prior intermediate-stage manufacturer or why, if one is available, it cannot be followed;

(2) A description of the incomplete vehicle to be used to manufacture the vehicle(s) subject to the petition. This description must identify the manufacturer of the incomplete vehicle, state the incomplete vehicle’s GVWR, and provide other available specifications;

(3) The availability of alternative incomplete vehicles, including incomplete vehicles of different size, GVWR, and number of axles, from the same and other incomplete vehicle manufacturers, that could allow the petitioner to rely on Incomplete Vehicle Documents when certifying the completed vehicle, instead of petitioning under this subpart;

(4) The existence, or lack thereof, of generic or cooperative testing that would provide a basis for demonstrating compliance with the standard(s); and

(c) Explain why the requested temporary exemption would not unreasonably degrade safety.

[71 FR 28196, May 15, 2006]

§ 555.14 Processing of petitions.

The Administrator shall notify the petitioner whether the petition is complete within 30 days of receipt. The Administrator shall attempt to approve or deny any complete petition submitted under this subpart within 120 days after the agency acknowledges that the application is complete. Upon good cause shown, the Administrator may review a petition on an expedited basis.

§ 555.15 Time period for exemptions.

Subject to §555.16, each temporary exemption granted by the Administrator under this subpart shall be in effect for a period of three years from the effective date. The Administrator shall identify each exemption by a unique number.

§ 555.16 Renewal of exemptions.

An alterer, intermediate or final-stage manufacturer or a trade association representing a group of alterers or, intermediate and/or final-stage manufacturers may apply for a renewal of a temporary exemption. Any such renewal petition shall be filed at least 60 days prior to the termination date of the existing exemption and shall include all the information required in an initial petition. If a petition for renewal of a temporary exemption that meets the requirements of this subpart has been filed not later than 60 days before the termination date of an exemption, the exemption does not terminate until the Administrator grants or denies the petition for renewal.

§ 555.17 Termination of temporary exemptions.

The Administrator may terminate or modify a temporary exemption if (s)he determines that:

(a) The temporary exemption was granted on the basis of false, fraudulent, or misleading representations or information; or

(b) The temporary exemption is no longer consistent with the public interest and the objectives of the Act.

§ 555.18 Temporary exemption labels.

An alterer or final-stage manufacturer of a vehicle that is covered by
Pt. 556

49 CFR Ch. V (10–1–16 Edition)

one or more exemptions issued under this sub-part shall affix a label that meets all the requirements of 49 CFR 555.9.

PART 556—EXEMPTION FOR INCONSEQUENTIAL DEFECT OR NONCOMPLIANCE

Sec. 556.1 Scope.
556.2 Purpose.
556.3 Application.
556.4 Petition for exemption.
556.5 Processing of petition.
556.6 Meetings.
556.7 Disposition of petition.
556.8 Rescission of decision.
556.9 Public inspection of relevant information.

SOURCE: 42 FR 7145, Feb. 7, 1977, unless otherwise noted.

§ 556.1 Scope.

This part sets forth procedures, pursuant to section 157 of the Act, for exempting manufacturers of motor vehicles and replacement equipment from the Act’s notice and remedy requirements when a defect or noncompliance is determined to be inconsequential as it relates to motor vehicle safety.

§ 556.2 Purpose.

The purpose of this part is to enable manufacturers of motor vehicles and replacement equipment to petition the NHTSA for exemption from the notification and remedy requirements of the Act due to the inconsequentiality of the defect or noncompliance as it relates to motor vehicle safety, and to give all interested persons an opportunity for presentation of data, views, and arguments on the issues of inconsequentiality.

§ 556.3 Application.

This part applies to manufacturers of motor vehicles and replacement equipment.

§ 556.4 Petition for exemption.

(a) A manufacturer who has determined the existence, in a motor vehicle or item of replacement equipment that he produces, of a defect related to motor vehicle safety or a noncompliance with an applicable Federal motor vehicle safety standard, or who has received notice of an initial determination by the NHTSA of the existence of a defect related to motor vehicle safety or a noncompliance, may petition for exemption from the Act’s notification and remedy requirements on the grounds that the defect or noncompliance is inconsequential as it relates to motor vehicle safety.

(b) Each petition submitted under this part shall—

(1) Be written in the English language;

(2) Be submitted in three copies to: Administrator, National Highway Traffic Safety Administration, Washington, DC 20590;

(3) State the full name and address of the applicant, the nature of its organization (e.g., individual, partnership, or corporation) and the name of the State or country under the laws of which it is organized.

(4) Describe the motor vehicle or item of replacement equipment, including the number involved and the period of production, and the defect or noncompliance concerning which an exemption is sought; and

(5) Set forth all data, views, and arguments of the petitioner supporting his petition.

(6) Be accompanied by three copies of the report the manufacturer has submitted, or is submitting, to NHTSA in accordance with part 573 of this chapter, relating to its determination of the existence of safety related defect or noncompliance with an applicable safety standard that is the subject of the petition.

(c) In the case of defects related to motor vehicle safety or noncompliances determined to exist by a manufacturer, petitions under this part must be submitted not later than 30 days after such determination. In the case of defects related to motor vehicle safety or noncompliances initially determined to exist by the NHTSA, petitions must be submitted not later than 30 days after notification of the determination has been received by the manufacturer. Such a petition will not
§ 556.5 Processing of petition.
(a) The NHTSA publishes a notice of each petition in the Federal Register. Such notice includes:
(1) A brief summary of the petition;
(2) A statement of the availability of the petition and other relevant information for public inspection; and
(3)(i) In the case of a defect related to motor vehicle safety or a noncompliance determined to exist by the manufacturer, an invitation to interested persons to submit written data, views, and arguments concerning the petition, and, upon request by the petitioner or interested persons, a statement of the time and place of a public meeting at which such materials may be presented orally if any person so desires.
(ii) In the case of a defect related to motor vehicle safety or a noncompliance initially determined to exist by the NHTSA, an invitation to interested persons to submit written data, views, and arguments concerning the petition or to submit such data, views, and arguments orally at the meeting held pursuant to section 152(a) of the Act following the initial determination, or at a separate meeting if deemed appropriate by the agency.
§ 556.6 Meetings.
(a) At a meeting held under this part, any interested person may make oral (as well as written) presentations of data, views, and arguments on the question whether the defect or noncompliance described in the Federal Register notice is inconsequential as it relates to motor vehicle safety.
(b) Sections 556 and 557 of Title 5, U.S.C., do not apply to any meeting held under this part. Unless otherwise specified, any meeting held under this part is an informal, nonadversary, fact-finding proceeding, at which there are no formal pleadings or adverse parties. A decision to grant or deny a petition, after a meeting on such petition, is not necessarily based exclusively on the record of the meeting.
(c) The Administrator designates a representative to conduct any meeting held under this part. The Chief Counsel designates a member of his staff to serve as legal officer at the meeting. A transcript of the proceeding is kept and exhibits may be kept as part of the transcript.
§ 556.7 Disposition of petition.
Notice of either a grant or denial of a petition for exemption from the notice and remedy requirements of the Act based upon the inconsequentiality of a defect or noncompliance is issued to the petitioner and published in the Federal Register. The effect of a grant of a petition is to relieve the manufacturer from any further responsibility to provide notice and remedy of the defect or noncompliance. The effect of a denial is to continue in force, as against a manufacturer, all duties contained in the Act relating to notice and remedy of the defect or noncompliance. Any interested person may appeal the grant or denial of a petition by submitting written data, views, or arguments to the Administrator.
§ 556.8 Rescission of decision.
The Administrator may rescind a grant or denial of an exemption issued under this part any time after the receipt of new data and notice and opportunity for comment thereon, in accordance with §§ 556.5 and 556.7.
§ 556.9 Public inspection of relevant information.
Information relevant to a petition under this part, including the petition and supporting data, memoranda of informal meetings with the petitioner or any other interested person concerning the petition, and the notice granting or denying the petition, are available for public inspection in the Docket Section, Room 5109, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 20590. Copies of available information may be obtained in accordance with part 7 of the regulations of the Office of
§ 557.1 Scope.

This part establishes procedures under section 156 of the National Traffic and Motor Vehicle Safety Act of 1966, as amended (88 Stat. 1470, 15 U.S.C. 1416), for the submission and disposition of petitions filed by interested persons for hearings on the question of whether a manufacturer has reasonably met his obligation to notify owners, purchasers, and dealers of a safety-related defect or failure to comply with a Federal motor vehicle safety standard, or to remedy such defect or failure to comply. This part also establishes procedures for holding a hearing on these questions.

§ 557.2 Purpose.

The purpose of this part is to enable the National Highway Traffic Safety Administration to identify and respond on a timely basis to petitions for hearings on whether a manufacturer has reasonably met his obligation to notify or remedy, and to establish the procedures for such hearings.

§ 557.3 General.

Any interested person may file with the Administrator a petition requesting him to hold a hearing on—

(a) Whether a manufacturer has reasonably met his obligation to notify owners, purchasers, and dealers of a safety-related defect in any motor vehicle or item of replacement equipment manufactured by him;

(b) Whether a manufacturer has reasonably met his obligation to notify owners, purchasers, and dealers of a failure to comply with an applicable Federal motor vehicle safety standard in any motor vehicle or item of replacement equipment manufactured by him;

(c) Whether the manufacturer has reasonably met his obligation to remedy a safety-related defect in any motor vehicle or item of replacement equipment manufactured by him; or

(d) Whether the manufacturer has reasonably met his obligation to remedy a failure to comply with an applicable Federal motor vehicle safety standard in any motor vehicle or item of replacement equipment manufactured by him.

§ 557.4 Requirements for petition.

A petition filed under this part should be addressed and submitted to: Administrator, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 20590. Each petition filed under this part must—

(a) Be written in the English or Spanish language;

(b) Have, preceding its text, the word “Petition”;

(c) Contain a brief statement concerning the alleged failure of a manufacturer to meet reasonably his obligations to notify or remedy;

(d) Contain a brief summary of the data, views, or arguments that the petitioner wishes to present in a hearing on whether or not a manufacturer has reasonably met his obligations to notify or remedy;

(e) Specifically request a hearing.

§ 557.5 Improperly filed petitions.

(a) A petition that is not addressed as specified in §557.4, but that meets the other requirements of that section, will
be treated as a properly filed petition, received as of the time it is discovered and identified.

(b) A document that fails to conform to one or more of the requirements of §557.4(a) (1) through (5) will not be treated as a petition under this part. Such a document will be treated according to the existing correspondence and other procedures of the NHTSA, and any information contained in it will be considered at the discretion of the Administrator.

§ 557.6 Determination whether to hold a public hearing.
(a) The Administrator considers the following factors in determining whether to hold a hearing:
(1) The nature of the complaint;
(2) The seriousness of the alleged breach of obligation to remedy;
(3) The existence of similar complaints;
(4) The ability of the NHTSA to resolve the problem without holding a hearing; and
(5) Other pertinent matters.
(b) If, after considering the above factors, the Administrator determines that a hearing should be held, the petition is granted. If it is determined that a hearing should not be held, the petition is denied. In either case, the petitioner is notified of the grant or denial not more than 60 days after receipt of the petition by the NHTSA.

(c) If a petition submitted under this part is denied, a FEDERAL REGISTER notice of the denial is issued within 45 days of the denial, setting forth the reasons for it.

(d) The Administrator may conduct a hearing under this part on his own motion.

§ 557.7 Public hearing.
If the Administrator decides that a public hearing under this part is necessary, he issues a notice of public hearing in the FEDERAL REGISTER, to advise interested persons of the time, place, and subject matter of the public hearing and invite their participation. Interested persons may submit their views through oral or written presentation, or both. There is no cross-examination of witnesses. A transcript of the hearing is kept and exhibits may be accepted as part of the transcript. Sections 556 and 557 of title 5, U.S.C., do not apply to hearings held under this part. When appropriate, the Chief Counsel designates a member of his staff to serve as legal officer at the hearing.

§ 557.8 Determination of manufacturer’s obligation.
If the Administrator determines, on the basis of the information presented at a hearing or any other information that is available to him, that the manufacturer has not reasonably met his obligation to notify owners, dealers, and purchasers of a safety-related defect or failure to comply with a Federal motor vehicle safety standard or to remedy such defect or failure to comply, he orders the manufacturer to take specified action to comply with his obligation, consistent with the authority granted the Administrator by the Act.

PART 562—LIGHTING AND MARKING OF AGRICULTURAL EQUIPMENT

Sec. 562.1 Scope and purpose.
562.3 Definitions.
562.5 Applicability.
562.7 Lighting and marking requirements for new agricultural equipment.
562.9 Compliance not affected by addition of certain materials and equipment.
562.11 Incorporation by reference.

SOURCE: 81 FR 40533, June 22, 2016, unless otherwise noted.

§ 562.1 Scope and purpose.
This part establishes minimum lighting and marking standards for new agricultural equipment as required by the Moving Ahead for Progress in the 21st Century Act (Sec. 31601, Pub. L. 112–141).

§ 562.3 Definitions.
Agricultural equipment has the meaning given the term “agricultural field equipment” in the ANSI/ASAE 390.4
§ 562.5 Applicability.

This standard applies to new agricultural equipment that may be operated on a public road.

§ 562.7 Lighting and marking requirements for new agricultural equipment.

New agricultural equipment that may be operated on a public road must meet the lighting and marking standards set forth in ANSI/ASAE 279.14 JUL2008, “Lighting and Marking of Agricultural Equipment on Highways” (incorporated by reference, see § 562.11).

§ 562.9 Compliance not affected by addition of certain materials and equipment.

(a) Successor standards. Equipping new agricultural equipment that may be operated on a public road with lighting and marking materials and equipment that comply with a revision of ANSI/ASAE Standard 279 adopted after the version cited in § 562.7 does not affect compliance with the requirements of this part.

(b) Additional materials and equipment. Equipping new agricultural equipment that may be operated on a public road with lighting and marking materials and equipment that are in addition to the minimum requirements specified in § 562.7 does not affect compliance with the requirements of this part.

§ 562.11 Incorporation by reference.

Certain material is incorporated by reference into this part with the approval of the Director of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. You may inspect approved material at the National Highway Traffic Safety Administration, 1200 New Jersey Avenue SE., Washington, DC 20590 or at the National Archives and Records Administration. For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (a) American Society of Agricultural and Biological Engineers (ASABE) 2950 Niles Road, St. Joseph, Michigan 49085-9659, (269) 429-0300, http://www.asabe.org/publications/publications/standards.aspx.

(b) [Reserved]

PART 563—EVENT DATA RECORDERS

Sec. 563.1 Scope.

563.2 Purpose.

563.3 Application.

563.4 [Reserved]

563.5 Definitions.

563.6 Requirements for vehicles.

563.7 Data elements.

563.8 Data format.

563.9 Data capture.

563.10 Crash test performance and survivability.

563.11 Information in owner’s manual.

563.12 Data retrieval tools.

SOURCE: 71 FR 51043, Aug. 28, 2006, unless otherwise noted.

§ 563.1 Scope.

This part specifies uniform, national requirements for vehicles equipped with event data recorders (EDRs) concerning the collection, storage, and retrievability of onboard motor vehicle crash event data. It also specifies requirements for vehicle manufacturers to make tools and/or methods commercially available so that crash investigators and researchers are able to retrieve data from EDRs.

§ 563.2 Purpose.

The purpose of this part is to help ensure that EDRs record, in a readily usable manner, data valuable for effective crash investigations and for analysis of safety equipment performance.
These data will help provide a better understanding of the circumstances in which crashes and injuries occur and will lead to safer vehicle designs.

§ 563.3 Application.

This part applies to the following vehicles manufactured on or after September 1, 2012, if they are equipped with an event data recorder: passenger cars, multipurpose passenger vehicles, trucks, and buses with a GVWR of 3,855 kg (8,500 pounds) or less and an unloaded vehicle weight of 2,495 kg (5,500 pounds) or less, except for walk-in van-type trucks or vehicles designed to be sold exclusively to the U.S. Postal Service. This part also applies to manufacturers of those vehicles. However, vehicles manufactured before September 1, 2013 that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having been previously certified to the Federal motor vehicle safety standards in accordance with part 567 of this chapter need not meet the requirements of this part.

(73 FR 2179, Jan. 14, 2008)

§ 563.4 [Reserved]

§ 563.5 Definitions.

(a) Motor vehicle safety standard definitions. Unless otherwise indicated, all terms that are used in this part and are defined in the Motor Vehicle Safety Standards, part 571 of this subchapter, are used as defined therein.

(b) Other definitions.

ABS activity means the anti-lock brake system (ABS) is actively controlling the vehicle’s brakes.

Air bag warning lamp status means whether the warning lamp required by FMVSS No. 208 is on or off.

Capture means the process of buffering EDR data in a temporary, volatile storage medium where it is continuously updated at regular time intervals.

Delta–V, lateral means the cumulative change in velocity, as recorded by the EDR of the vehicle, along the lateral axis, starting from crash time zero and ending at 0.25 seconds, recorded every 0.01 seconds.

Delta–V, longitudinal means the cumulative change in velocity, as recorded by the EDR of the vehicle, along the longitudinal axis, starting from crash time zero and ending at 0.25 seconds, recorded every 0.01 seconds.

Deployment time, frontal air bag means (for both driver and right front passenger) the elapsed time from crash time zero to the deployment command, or for multi-staged air bag systems, the deployment command for the first stage.

Disposal means the deployment command of the second (or higher, if present) stage of a frontal air bag for the purpose of disposing the propellant from the air bag device.

End of event time means the moment at which the resultant cumulative delta–V within a 20 ms time period becomes 0.8 km/h (0.5 mph) or less, or the moment at which the crash detection algorithm of the air bag control unit resets.

Engine RPM means

(1) For vehicles powered by internal combustion engines, the number of revolutions per minute of the main crankshaft of the vehicle’s engine; and

(2) For vehicles not entirely powered by internal combustion engines, the number of revolutions per minute of the motor shaft at the point at which it enters the vehicle transmission gearbox.

Engine throttle, percent full means the driver-requested acceleration as measured by the throttle position sensor on the accelerator pedal compared to the fully-depressed position.

Event means a crash or other physical occurrence that causes the trigger threshold to be met or exceeded, or any non-reversible deployable restraint to be deployed, whichever occurs first.

Event data recorder (EDR) means a device or function in a vehicle that records the vehicle’s dynamic time-series data during the time period just prior to a crash event (e.g., vehicle speed vs. time) or during a crash event (e.g., delta–V vs. time), intended for retrieval after the crash event. For the purposes of this definition, the event data do not include audio and video data.
Frontal air bag means an inflatable restraint system that requires no action by vehicle occupants and is used to meet the applicable frontal crash protection requirements of FMVSS No. 208.

Ignition cycle, crash means the number (count) of power cycles applied to the recording device at the time when the crash event occurred since the first use of the EDR.

Ignition cycle download means the number (count) of power cycles applied to the recording device at the time when the data was downloaded since the first use of the EDR.

Lateral acceleration means the component of the vector acceleration of a point in the vehicle in the y-direction. The lateral acceleration is positive from left to right, from the perspective of the driver when seated in the vehicle facing the direction of forward vehicle travel.

Longitudinal acceleration means the component of the vector acceleration of a point in the vehicle in the x-direction. The longitudinal acceleration is positive in the direction of forward vehicle travel.

Maximum delta–V, lateral means the maximum value of the cumulative change in velocity, as recorded by the EDR, of the vehicle along the lateral axis, starting from crash time zero and ending at 0.3 seconds.

Maximum delta–V, longitudinal means the maximum value of the cumulative change in velocity, as recorded by the EDR, of the vehicle along the longitudinal axis, starting from crash time zero and ending at 0.3 seconds.

Maximum delta–V, resultant means the time-correlated maximum value of the cumulative change in velocity, as recorded by the EDR or processed during data download, along the vector-added longitudinal and lateral axes.

Multi-event crash means the occurrence of 2 events, the first and last of which begin not more than 5 seconds apart.

Non-volatile memory means the memory reserved for maintaining recorded EDR data in a semi-permanent fashion. Data recorded in non-volatile memory is retained after loss of power and can be retrieved with EDR data extraction tools and methods.

Normal acceleration means the component of the vector acceleration of a point in the vehicle in the z-direction. The normal acceleration is positive in a downward direction and is zero when the accelerometer is at rest.

Occupant position classification means the classification indicating that the seating posture of a front outboard occupant (both driver and right front passenger) is determined as being out-of-position.

Occupant size classification means, for the right front passenger, the classification of the occupant as a child (as defined in 49 CFR part 572, subpart N or smaller) or not as an adult (as defined in 49 CFR part 572, subpart O), and for the driver, the classification of the driver as being a 5th percentile female (as defined in 49 CFR Part 572, subpart O) or larger.

Pretensioner means a device that is activated by a vehicle’s crash sensing system and removes slack from a vehicle safety belt system.

Record means the process of saving captured EDR data into a non-volatile device for subsequent retrieval.

Safety belt status means the feedback from the safety system that is used to determine that an occupant’s safety belt (for both driver and right front passenger) is fastened or unfastened.

Seat track position switch, foremost, status means the status of the switch that is installed to detect whether the seat is moved to a forward position.

Service brake, on or off means the status of the device that is installed in or connected to the brake pedal system to detect whether the pedal was pressed. The device can include the brake pedal switch or other driver-operated service brake control.

Side air bag means any inflatable occupant restraint device that is mounted to the seat or side structure of the vehicle interior, and that is designed to deploy in a side impact crash to help mitigate occupant injury and/or ejection.

Side curtain/tube air bag means any inflatable occupant restraint device that is mounted to the side structure of the vehicle interior, and that is designed to deploy in a side impact crash or rollover and to help mitigate occupant injury and/or ejection.
Speed, vehicle indicated means the vehicle speed indicated by a manufacturer-designated subsystem designed to indicate the vehicle’s ground travel speed during vehicle operation.

Stability control means any device that complies with FMVSS No. 126, “Electronic stability control systems.”

Steering input means the angular displacement of the steering wheel measured from the straight-ahead position (position corresponding to zero average steer angle of a pair of steered wheels).

Suppression switch status means the status of the switch indicating whether an air bag suppression system is on or off.

Time from event 1 to 2 means the elapsed time from time zero of the first event to time zero of the second event.

Time, maximum delta–V, lateral means the time from crash time zero to the point where the maximum value of the cumulative change in velocity is found, as recorded by the EDR, along the lateral axis.

Time, maximum delta–V, longitudinal means the time from crash time zero to the point where the maximum value of the cumulative change in velocity is found, as recorded by the EDR, along the longitudinal axis.

Time, maximum delta–V, resultant means the time from crash time zero to the point where the maximum delta–V resultant occurs, as recorded by the EDR or processed during data download.

Time to deploy, pretensioner means the elapsed time from crash time zero to the deployment command for the safety belt pretensioner (for both driver and right front passenger).

Time to deploy, side air bag/curtain means the elapsed time from crash time zero to the deployment command for a side air bag or a side curtain/tube air bag (for both driver and right front passenger).

Time to first stage means the elapsed time between time zero and the time when the first stage of a frontal air bag is commanded to fire.

Time to nth stage means the elapsed time from crash time zero to the deployment command for the nth stage of a frontal air bag (for both driver and right front passenger).

Time zero means whichever of the following occurs first:

1. For systems with “wake-up” air bag control systems, the time at which the occupant restraint control algorithm is activated; or

2. For continuously running algorithms,
 (i) The first point in the interval where a longitudinal cumulative delta–V of over 0.8 km/h (0.5 mph) is reached within a 20 ms time period; or
 (ii) For vehicles that record “delta–V, lateral,” the first point in the interval where a lateral cumulative delta–V of over 0.8 km/h (0.5 mph) is reached within a 5 ms time period; or

3. Deployment of a non-reversible deployable restraint.

Trigger threshold means a change in vehicle velocity, in the longitudinal direction, that equals or exceeds 8 km/h within a 150 ms interval. For vehicles that record “delta–V, lateral,” trigger threshold means a change in vehicle velocity in either the longitudinal or lateral direction that equals or exceeds 8 km/h within a 150 ms interval.

Vehicle roll angle means the angle between the vehicle’s y-axis and the ground plane.

Volatile memory means the memory reserved for buffering of captured EDR data. The memory is not capable of retaining data in a semi-permanent fashion. Data captured in volatile memory is continuously overwritten and is not retained in the event of a power loss or retrievable with EDR data extraction tools.

X-direction means in the direction of the vehicle’s X-axis, which is parallel to the vehicle’s longitudinal centerline. The X-direction is positive in the direction of forward vehicle travel.

Y-direction means in the direction of the vehicle’s Y-axis, which is perpendicular to its X-axis and in the same horizontal plane as that axis. The Y-direction is positive from left to right, from the perspective of the driver when seated in the vehicle facing the direction of forward vehicle travel.
§ 563.6

Z-direction means in the direction of the vehicle’s Z-axis, which is perpendicular to the X- and Y-axes. The Z-direction is positive in a downward direction.

§ 563.6 Requirements for vehicles.

Each vehicle equipped with an EDR must meet the requirements specified in §563.7 for data elements, §563.8 for data format, §563.9 for data capture, §563.10 for crash test performance and survivability, and §563.11 for information in owner’s manual.

§ 563.7 Data elements.

(a) Data elements required for all vehicles. Each vehicle equipped with an EDR must record all of the data elements listed in Table I, during the interval/time and at the sample rate specified in that table.

<table>
<thead>
<tr>
<th>Data element name</th>
<th>Condition for recording</th>
<th>Recording interval/time 1 (relative to time zero)</th>
<th>Data sample rate (samples per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta-V, longitudinal</td>
<td>If recorded 1</td>
<td>0 to 250 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>100</td>
</tr>
<tr>
<td>Maximum delta-V, longitudinal</td>
<td>If recorded 1</td>
<td>0–300 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>N/A</td>
</tr>
<tr>
<td>Time, maximum delta-V</td>
<td>If recorded 1</td>
<td>0–300 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>N/A</td>
</tr>
<tr>
<td>Speed, vehicle indicated</td>
<td>If recorded</td>
<td>1.0 sec</td>
<td>N/A</td>
</tr>
<tr>
<td>Engine throttle, % full (or accelerator pedal, % full)</td>
<td>If recorded</td>
<td>1.0 sec</td>
<td>N/A</td>
</tr>
<tr>
<td>Service brake, on/off</td>
<td>If recorded</td>
<td>1.0 sec</td>
<td>N/A</td>
</tr>
<tr>
<td>Ignition cycle, download</td>
<td>If recorded</td>
<td>At time of download 2</td>
<td>N/A</td>
</tr>
<tr>
<td>Safety belt status, driver</td>
<td>If recorded</td>
<td>Event</td>
<td>N/A</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to deploy, in the case of a single stage air bag, or time to first stage deployment, in the case of a multi-stage air bag, driver</td>
<td>If recorded</td>
<td>Event</td>
<td>N/A</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to deploy, in the case of a single stage air bag, or time to first stage deployment, in the case of a multi-stage air bag, front passenger</td>
<td>If recorded</td>
<td>Event</td>
<td>N/A</td>
</tr>
<tr>
<td>Multi-event, number of event</td>
<td>If recorded</td>
<td>Event</td>
<td>N/A</td>
</tr>
<tr>
<td>Time from event 1 to 2</td>
<td>If recorded</td>
<td>As needed</td>
<td>N/A</td>
</tr>
<tr>
<td>Complete file recorded (yes, no)</td>
<td>If recorded</td>
<td>Following other data</td>
<td>N/A</td>
</tr>
<tr>
<td>Time, maximum delta-V</td>
<td>If recorded</td>
<td>0–300 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(1) Pre-crash data and crash data are asynchronous. The sample time accuracy requirement for pre-crash time is 0.1 to 1.0 sec. (e.g., T = 0.1 would need to occur between 0.1 and 0.2 seconds.)

2 The ignition cycle at the time of download is not required to be recorded at the time of the crash, but shall be reported during the download process.

(b) Data elements required for vehicles under specified conditions. Each vehicle equipped with an EDR must record each of the data elements listed in column 1 of Table I for which the vehicle meets the condition specified in column 2 of that table, during the interval/time and at the sample rate specified in that table.

Table II—Data Elements Required for Vehicles Under Specified Minimum Conditions

<table>
<thead>
<tr>
<th>Data element name</th>
<th>Condition for recording</th>
<th>Recording interval/time 1 (relative to time zero)</th>
<th>Data sample rate (samples per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral acceleration</td>
<td>If recorded 2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Longitudinal acceleration</td>
<td>If recorded 2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Normal acceleration</td>
<td>If recorded 2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Delta-V, lateral</td>
<td>If recorded 2</td>
<td>0–250 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>100</td>
</tr>
<tr>
<td>Data element name</td>
<td>Condition for requirement</td>
<td>Recording interval/time</td>
<td>Data sample rate (per sec-ond)</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------</td>
<td>-------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Maximum delta-V, lateral</td>
<td>If recorded 0-300 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Time maximum delta-V, lateral</td>
<td>If recorded 0-300 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Time for maximum delta-V, resultant.</td>
<td>If recorded 0-300 ms or 0 to End of Event Time plus 30 ms, whichever is shorter.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Engine rpm</td>
<td>If recorded 5.0 to 0 sec</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Vehicle roll angle</td>
<td>If recorded 1.0 up to 5.0 sec</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ABS activity (engaged, non-engaged).</td>
<td>If recorded 5.0 to 0 sec</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Stability control (on, off, or engaged).</td>
<td>If recorded 5.0 to 0 sec</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Steering input</td>
<td>If recorded 1.0 sec</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Frontal air bag suppression switch status, front passenger. (on, off, or auto).</td>
<td>If recorded 1.0 sec</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Frontal air bag deployment, time to nth stage.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Frontal air bag deployment, time to nth stage, right front passenger.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Frontal air bag deployment, nth stage disposal, driver, Y/N (whether the nth stage deployment was for occupant restraint or propellant disposal purposes).</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Frontal air bag deployment, nth stage disposal, right front passenger, Y/N (whether the nth stage deployment was for occupant restraint or propellant disposal purposes).</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Side air bag deployment, time to deploy, driver.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Side air bag deployment, time to deploy, right front passenger.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Side curtain/tube air bag deployment, time to deploy, driver side.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Side curtain/tube air bag deployment, time to deploy, right side.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Pretensioner deployment, time to fire, driver.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Pretensioner deployment, time to fire, right front passenger.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Seat track position switch, foremost, status, driver.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Seat track position switch, foremost, status, right front passenger.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Occupant size classification, right front passenger.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Occupant position classification, driver.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Occupant position classification, right front passenger.</td>
<td>Event</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

1 Pre-crash data and crash data are asynchronous. The sample time accuracy requirement for pre-crash time is 0.1 to 1.0 sec (e.g. T = 1.0 would need to occur between −1.0 to 0 seconds.)
2 “If recorded” means if the data is recorded in non-volatile memory for the purpose of subsequent downloading.
3 “Vehicle roll angle” may be recorded in any time duration; (−1.0 sec to 5.0 sec is suggested.)
4 List this element n times, once for each stage of a multi-stage air bag system.

§ 563.8 Data format.

(a) The data elements listed in Tables I and II, as applicable, must be reported in accordance with the range, accuracy, and resolution specified in Table III.

<table>
<thead>
<tr>
<th>Data element</th>
<th>Minimum range</th>
<th>Accuracy ¹</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral acceleration</td>
<td>At option of manufacturer.</td>
<td>At option of manufacturer.</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Longitudinal acceleration</td>
<td>At option of manufacturer.</td>
<td>At option of manufacturer.</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Normal Acceleration</td>
<td>At option of manufacturer.</td>
<td>At option of manufacturer.</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Longitudinal delta-V</td>
<td>-100 km/h to +100 km/h.</td>
<td>±10%</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Lateral delta-V</td>
<td>-100 km/h to +100 km/h.</td>
<td>±10%</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Maximum delta-V, longitudinal</td>
<td>-100 km/h to +100 km/h.</td>
<td>±10%</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Maximum delta-V, lateral</td>
<td>-100 km/h to +100 km/h.</td>
<td>±10%</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Time, maximum delta-V, longitudinal</td>
<td>0–300 ms, or 0 – End of Event Time plus 30 ms, whichever is shorter.</td>
<td>±3 ms</td>
<td>2.5 ms.</td>
</tr>
<tr>
<td>Time, maximum delta-V, lateral</td>
<td>0–300 ms, or 0 – End of Event Time plus 30 ms, whichever is shorter.</td>
<td>±3 ms</td>
<td>2.5 ms.</td>
</tr>
<tr>
<td>Time, maximum delta-V, resultant</td>
<td>0–300 ms, or 0 – End of Event Time plus 30 ms, whichever is shorter.</td>
<td>±3 ms</td>
<td>2.5 ms.</td>
</tr>
<tr>
<td>Vehicle Roll Angle</td>
<td>-1080 deg to +1080 deg.</td>
<td>±10%</td>
<td>10 deg.</td>
</tr>
<tr>
<td>Speed, vehicle indicated</td>
<td>0 km/h to 200 km/h</td>
<td>±1 km/h</td>
<td>1 km/h.</td>
</tr>
<tr>
<td>Engine throttle, percent full</td>
<td>0 to 100%</td>
<td>±5%</td>
<td>1%</td>
</tr>
<tr>
<td>Engine rpm</td>
<td>0 to 10,000 rpm</td>
<td>±100 rpm</td>
<td>100 rpm.</td>
</tr>
<tr>
<td>Service brake</td>
<td>On or Off</td>
<td>N/A</td>
<td>On or Off.</td>
</tr>
<tr>
<td>ABS activity</td>
<td>On or Off</td>
<td>N/A</td>
<td>On or Off.</td>
</tr>
<tr>
<td>Stability control</td>
<td>On, Off, or Engaged</td>
<td>N/A</td>
<td>On, Off, or Engaged.</td>
</tr>
<tr>
<td>Steering input</td>
<td>-250 deg CW to +250 deg CCW.</td>
<td>±5%</td>
<td>±1%</td>
</tr>
<tr>
<td>Ignition cycle, crash</td>
<td>0 to 60,000</td>
<td>±1 cycle</td>
<td>1 cycle.</td>
</tr>
<tr>
<td>Ignition cycle, download</td>
<td>0 to 60,000</td>
<td>±1 cycle</td>
<td>1 cycle.</td>
</tr>
<tr>
<td>Safety belt status, driver</td>
<td>On or Off</td>
<td>N/A</td>
<td>On or Off.</td>
</tr>
<tr>
<td>Safety belt status, right front passenger</td>
<td>On or Off</td>
<td>N/A</td>
<td>On or Off.</td>
</tr>
<tr>
<td>Frontal air bag warning lamp</td>
<td>On or Off</td>
<td>N/A</td>
<td>On or Off.</td>
</tr>
<tr>
<td>Frontal air bag suppression switch status, right front passenger</td>
<td>On, Off, or Auto</td>
<td>N/A</td>
<td>On, Off, or Auto.</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to deploy/first stage, driver</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to deploy/first stage, right front passenger</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to nth stage, driver</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Data element</td>
<td>Minimum range</td>
<td>Accuracy</td>
<td>Resolution</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Frontal air bag deployment, time to nth stage, right front passenger.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Frontal air bag deployment, nth stage disposal, driver.</td>
<td>Yes or No</td>
<td>N/A</td>
<td>Yes or No.</td>
</tr>
<tr>
<td>Frontal air bag deployment, nth stage disposal, right front passenger.</td>
<td>Yes or No</td>
<td>N/A</td>
<td>Yes or No.</td>
</tr>
<tr>
<td>Side air bag deployment, time to deploy, driver.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Side air bag deployment, time to deploy, right front passenger.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Side curtain/tube air bag deployment, time to deploy, driver.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Side curtain/tube air bag deployment, time to deploy, right side.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Pretensioner deployment, time to fire, driver.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Pretensioner deployment, time to fire, right front passenger.</td>
<td>0 to 250 ms</td>
<td>±2 ms</td>
<td>1 ms.</td>
</tr>
<tr>
<td>Seat track position switch, foremost, status, driver.</td>
<td>Yes or No</td>
<td>N/A</td>
<td>Yes or No.</td>
</tr>
<tr>
<td>Seat track position switch, foremost, status, right front passenger.</td>
<td>Yes or No</td>
<td>N/A</td>
<td>Yes or No.</td>
</tr>
<tr>
<td>Occupant size classification, driver.</td>
<td>5th percentile female or larger.</td>
<td>N/A</td>
<td>Yes or No.</td>
</tr>
<tr>
<td>Occupant size classification, right front passenger.</td>
<td>Child</td>
<td>N/A</td>
<td>Yes or No.</td>
</tr>
<tr>
<td>Occupant position classification, driver.</td>
<td>Out of position</td>
<td>N/A</td>
<td>Yes or No.</td>
</tr>
<tr>
<td>Occupant position classification, right front passenger.</td>
<td>Out of position</td>
<td>N/A</td>
<td>Yes or No.</td>
</tr>
<tr>
<td>Multi-event, number of event.</td>
<td>1 or 2</td>
<td>N/A</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Time from event 1 to 2 ..</td>
<td>0 to 5.0 sec</td>
<td>0.1 sec</td>
<td>0.1 sec</td>
</tr>
<tr>
<td>Complete file recorded ..</td>
<td>Yes or No</td>
<td>N/A</td>
<td>Yes or No.</td>
</tr>
</tbody>
</table>

1 Accuracy requirement only applies within the range of the physical sensor. For vehicles manufactured after September 1, 2014, if measurements captured by a sensor exceed the design range of the sensor, the reported element must indicate when the measurement first exceeded the design range of the sensor.

(b) Acceleration Time-History data and format: the longitudinal, lateral, and normal acceleration time-history data, as applicable, must be filtered either during the recording phase or during the data downloading phase to include:

1 The Time Step (TS) that is the inverse of the sampling frequency of the acceleration data and which has units of seconds;

2 The number of the first point (NFP), which is an integer that when multiplied by the TS equals the time relative to time zero of the first acceleration data point;

3 The number of the last point (NLP), which is an integer that when multiplied by the TS equals the time relative to time zero of the last acceleration data point; and
§ 563.9

(4) NLP—NFP + 1 acceleration values sequentially beginning with the acceleration at time NFP * TS and continue sampling the acceleration at TS increments in time until the time NLP * TS is reached.

§ 563.9 Data capture.

The EDR must capture and record the data elements for events in accordance with the following conditions and circumstances:

(a) In a frontal air bag deployment crash, capture and record the current deployment data. In a side or side curtain/tube air bag deployment crash, where lateral delta-V is recorded by the EDR, capture and record the current deployment data. The memory for the air bag deployment event must be locked to prevent any future overwriting of the data.

(b) In an event that does not meet the criteria in §563.9(a), capture and record the current event data, up to two events, subject to the following conditions:

(1) If an EDR non-volatile memory buffer void of previous-event data is available, the current event data is recorded in the buffer.

(2) If an EDR non-volatile memory buffer void of previous-event data is not available, the manufacturer may choose to either overwrite any previous event data that does not deploy an air bag with the current event data, or to not record the current event data.

(3) EDR buffers containing previous frontal, side, or side curtain/tube air bag deployment-event data must not be overwritten by the current event data.

[76 FR 47489, Aug. 5, 2011]

§ 563.10 Crash test performance and survivability.

(a) Each vehicle subject to the requirements of S5, S14.5, S15, or S17 of 49 CFR 571.208, Occupant crash protection, must comply with the requirements in subpart (c) of this section when tested according to S8, S16, and S18 of 49 CFR 571.208.

(b) Each vehicle subject to the requirements of 49 CFR 571.214, Side impact protection, that meets a trigger threshold or has a frontal air bag deployment, must comply with the requirements of subpart (c) of this section when tested according to the conditions specified in 49 CFR 571.214 for a moving deformable barrier test.

(c) The data elements required by §563.7, except for the “Engine throttle, percent full,” “engine RPM,” and “service brake, on/off,” must be recorded in the format specified by §563.8, exist at the completion of the crash test, and be retrievable by the methodology specified by the vehicle manufacturer under §563.12 for not less than 10 days after the test, and the complete data recorded element must read “yes” after the test.

§ 563.11 Information in owner’s manual.

(a) The owner’s manual in each vehicle covered under this regulation must provide the following statement in English:

This vehicle is equipped with an event data recorder (EDR). The main purpose of an EDR is to record, in certain crash or near crash-like situations, such as an air bag deployment or hitting a road obstacle, data that will assist in understanding how a vehicle’s systems performed. The EDR is designed to record data related to vehicle dynamics and safety systems for a short period of time, typically 30 seconds or less. The EDR in this vehicle is designed to record such data as:

• How various systems in your vehicle were operating;
• Whether or not the driver and passenger safety belts were buckled/fastened;
• How far (if at all) the driver was depressing the accelerator and/or brake pedal; and,
• How fast the vehicle was traveling.

These data can help provide a better understanding of the circumstances in which crashes and injuries occur. NOTE: EDR data are recorded by your vehicle only if a non-trivial crash situation occurs; no data are recorded by the EDR under normal driving conditions and no personal data (e.g., name, gender, age, and crash location) are recorded. However, other parties, such as law enforcement, could combine the EDR data with the type of personally identifying data routinely acquired during a crash investigation.

To read data recorded by an EDR, special equipment is required, and access to the vehicle or the EDR is needed. In addition to the vehicle manufacturer, other parties, such as law enforcement, that have the special equipment, can read the information if they have access to the vehicle or the EDR.
(b) The owner's manual may include additional information about the form, function, and capabilities of the EDR, in supplement to the required statement in §563.11(a).

§ 563.12 Data retrieval tools.

Each manufacturer of a motor vehicle equipped with an EDR shall ensure by licensing agreement or other means that a tool(s) is commercially available that is capable of accessing and retrieving the data stored in the EDR that are required by this part. The tool(s) shall be commercially available not later than 90 days after the first sale of the motor vehicle for purposes other than resale.

PART 564—REPLACEABLE LIGHT SOURCE AND SEALED BEAM HEADLAMP INFORMATION

§ 564.1 Scope.

This part requires the submission of dimensional, electrical specification, and marking/designation information as specified in Appendices A and B of this part, for original equipment replaceable light sources used in motor vehicle headlighting systems. This part also serves as a repository for design information as specified in appendix C of this part, for original equipment and replacement standardized sealed beam units used in motor vehicle headlighting systems.

§ 564.2 Purposes.

The purposes of this part are achieved through its Appendices:

(a) The purposes of appendix A of this part are to ensure:

(1) The availability to replacement light source manufacturers of the manufacturing specifications of original equipment light sources so that replacement light sources are interchangeable with original equipment light sources and provide equivalent performance, and

(2) That redesigned or newly developed light sources are designated as distinct, different, and noninterchangeable with previously existing light sources.

(b) The purposes of appendix B of this part are to ensure:

(1) That original equipment light sources are replaceable and that replacement light sources provide equivalent performance, and

(2) That redesigned or newly developed light sources are designated as distinct, different, and noninterchangeable with previously existing light sources.

(c) The purpose of appendix C of this part is to ensure the availability to original equipment and replacement sealed beam headlamp manufacturers of the manufacturing specifications of standardized sealed beam headlamp units used on motor vehicles so that all sealed beam headlamp units of a specific type are interchangeable with all other units of that same type and provide equivalent performance.

§ 564.3 Applicability.

This part applies to replaceable light sources used as original equipment, and standardized sealed beam headlamp units used as original equipment and replacement equipment in motor vehicle headlighting systems.

§ 564.4 Definitions.

All terms defined in the Act and the regulations and standards issued under its authority are used as defined therein.

§ 564.5 Information filing; agency processing of filings.

(a) Each manufacturer of a motor vehicle, original equipment headlamp, or...
§ 564.5
original equipment headlamp replaceable light source, which intends to manufacture a replaceable light source as original equipment or to incorporate a replaceable light source in its headlamps or motor vehicles, shall furnish the information specified in appendix A. If the rated laboratory life of the light source is not less than 2,000 hours, the manufacturer shall furnish the information specified in either appendix A or appendix B of this part. Information shall be furnished to: Associate Administrator for Rulemaking, National Highway Traffic Safety Administration, 1200 New Jersey Avenue, SE., West Building, Washington, DC 20590 Attention: Part 564-Replaceable Light Source Information (unless the Agency has already filed such information in Docket No. NHTSA 98–3397).

(b) The manufacturer shall submit such information not later than 60 days before it intends to begin manufacture of the replaceable light source to which the information applies, or to incorporate the light source into a headlamp, or to incorporate the light source into a motor vehicle of its manufacture. Each submission shall consist of one original set of information and ten legible reproduced copies, all on 8½ by 11-inch paper.

(c) The Associate Administrator promptly reviews each submission and informs the manufacturer not later than 30 days after its receipt whether the submission has been accepted. Upon acceptance, the Associate Administrator files the information in Docket No. NHTSA 98–3397. The Associate Administrator does not accept any submission that does not contain all the information specified in appendix A or appendix B of this part, or whose accompanying information indicates that any new light source which is the subject of a submission is interchangeable with any replaceable light source for which the agency has previously filed information in Docket No. NHTSA 98–3397.

(d) A manufacturer may request modification of a light source for which information has previously been filed in Docket No. NHTSA 98–3397, and the submission shall be processed in the manner provided by §564.5(c). A request for modification shall contain the following:

 (1) All the information specified in appendix A or appendix B of this part that is relevant to the modification requested,

 (2) The reason for the requested modification,

 (3) A statement that the use of the light source as modified will not create a noncompliance with any requirement of Federal Motor Vehicle Safety Standard No. 108 (49 CFR 571.108) when used to replace an unmodified light source in a headlamp certified by its manufacturer as conforming to all applicable Federal motor vehicle safety standards, together with reasons in support of the statement; and

 (4) Information demonstrating that the modification would not adversely affect interchangeability with the original light source.

After review of the request for modification, the Associate Administrator may seek further information either from the manufacturer or through a notice published in the FEDERAL REGISTER requesting comment on whether a modified light source incorporating the changes requested will create a noncompliance with Federal Motor Vehicle Safety Standard No. 108 when substituted for an unmodified light source. If the Associate Administrator seeks public comment on a submission(s) he shall publish a notice stating whether(s) he has accepted or rejected the submission. If a submission is accepted, the Associate Administrator files the information in Docket No. NHTSA 98–3397. If a submission is rejected, a manufacturer may submit information with respect to it, as provided in paragraph 564.5(a), for consideration as a new light source after such changes as will insure that it is not interchangeable with the light source for which modification was originally requested.

(e) Information submitted under this section is made available by NHTSA for public inspection as soon as practicable after its receipt, but not later than the date on which a vehicle equipped with a new or revised replaceable light source is offered for sale.
APPENDIX A TO PART 564—INFORMATION TO BE SUBMITTED FOR REPLACEABLE LIGHT SOURCES

I. Filament or Discharge Arc Position Dimensions and Tolerances Using Either Direct Filament or Discharge Arc Dimensions or the Three Dimensional Filament or Discharge Arc Tolerance Box

A. Lower beam filament dimensions or filament tolerance box dimensions and relation of these to the bulb base reference plane and centerline.
1. Axial location of the filament centerline or the filament tolerance box relative to the bulb base reference plane.
2. Vertical location of the filament centerline or the filament tolerance box relative to the bulb base centerline.
3. Transverse location of the filament centerline or the filament tolerance box relative to the bulb base centerline.
4. Filament tolerance box dimensions, if used.

B. Upper beam filament dimensions or the filament tolerance box dimensions, and relation of these to the bulb base reference plane and centerline.
1. Axial location of the filament centerline or the filament tolerance box relative to the bulb base reference plane.
2. Vertical location of the filament centerline or the filament tolerance box relative to the bulb base centerline.
3. Transverse location of the filament centerline or the filament tolerance box relative to the bulb base centerline.
4. Filament tolerance box dimensions, if used.

C. If the replaceable light source has both a lower beam and an upper beam filament, the dimensional relationship between the two filament centerlines or the filament tolerance boxes may be provided instead of referencing the upper beam filament centerline or filament tolerance box to the bulb base centerline or reference plane.

D. Size, length, shape, or other pertinent features and dimensions for providing undistorted walls for the filament capsule.

III. Bulb Base Interchangeability Dimensions and Tolerance

A. Angular locations, diameters, key/keyway sizes, and any other interchangeability dimensions for indexing the bulb base in the bulb holder.
B. Diameter, width, depth, and surface finish of seal groove, surface, or other pertinent sealing features.
C. Diameter of the bulb base at the interface of the base and its perpendicular reference surface.
D. Dimensions of features related to retention of the bulb base in the bulb holder such as tabs, keys, keyways, surfaces, etc.

IV. Bulb Holder Interchangeability Dimensions and Tolerance

A. Mating angular locations, diameters, key/keyway sizes, and any other interchangeability dimensions for indexing the bulb base in the bulb holder.
B. Mating diameter, width, depth, and surface finish of seal groove, surface, or other pertinent sealing features.
C. Mating diameter of the bulb holder at the interface of the bulb base aperture and its perpendicular reference surface.
D. Mating dimensions of features related to retention of the bulb base in the bulb holder such as tabs, keys, keyways, surfaces, etc.

V. Wiring Harness Connector to Bulb Base Interchangeability Dimensions and Tolerances

A. Maximum depth of harness connector insertion into bulb base.
B. Location of electrical pins in bulb base.
C. Dimensions of electrical pins in bulb base—length, diameter, width, thickness and etc.
D. Fit of harness connector into bulb base providing all necessary dimensions, key/keyway controls, and dimensions, tapers etc.
E. Dimensions and location of locking features for wiring harness connector to bulb base.
F. Identification of upper beam, lower beam, and common terminals.

VI. Seal Specifications (if Replaceable Light Source is Intended to be of a Sealed Base Design)

A. Type.
B. Material.
C. Dimensions.

VII. Electrical Specifications for Each Filament at 12.8 Volts

A. Maximum power (in watts).
B. Luminous Flux with tolerance (in lumens) with black cap if so equipped, measured in accordance with the document: Illuminating Engineering Society of North America, LM-45; IES Approved Method for Electrical and Photometric Measurements of General Service Incandescent Filament Lamps (April 1980). This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the Illuminating Engineering Society of North America, 365 East 47th St., New York, NY 10017. Copies may be inspected at the National Highway Traffic Safety Administration, Technical Information Services, 1200 New Jersey Avenue, Washington, DC 20590, or at the National Archives and Records Administration (NARA).

For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_regulations/code_of_federal_regulations/ibr_locations.html.

VIII. Bulb Markings/Designation—ANSI NUMBER, ECE IDENTIFIER, MANUFACTURER’S PART NUMBER, INDIVIDUALLY OR IN ANY COMBINATION

IX. All Other Information, Dimensions or Performance Specifications Necessary for Interchangeability, Replaceability, or System Test Purposes not Listed in Sections I Through VIII

IF A BALLAST IS REQUIRED FOR OPERATION, A COMPLETE LISTING OF THE REQUIREMENTS AND PARAMETERS BETWEEN THE LIGHT SOURCE AND BALLAST, AND BALLAST AND THE VEHICLE SHALL ALSO BE PROVIDED.

APPENDIX B TO PART 564—INFORMATION TO BE SUBMITTED FOR LONG LIFE REPLACEABLE LIGHT SOURCES OF LIMITED DEFINITION

1. Filament or Discharge Arc Position Dimensions and Tolerances Using Either Direct Filament or Discharge Arc Dimensions or the Three Dimensional Filament Discharge Arc Tolerance Box

A. Lower beam filament or discharge arc dimensions or filament or discharge arc tolerance box dimensions and relation of these to the bulb base reference plane and centerline.
1. Axial location of the filament or discharge arc centerline or the filament or discharge arc tolerance box relative to the bulb base centerline.
2. Vertical location of the filament or discharge arc centerline or the filament or discharge arc tolerance box relative to the bulb base centerline.
3. Transverse location of the filament or discharge arc centerline or the filament or discharge arc tolerance box relative to the bulb base centerline.
4. Filament or discharge arc tolerance box dimensions, if used.

B. Upper beam filament or discharge arc dimensions or the filament or discharge arc tolerance box dimensions and relation of these to the bulb base reference plane and centerline.
1. Axial location of the filament or discharge arc centerline or the filament or discharge arc tolerance box relative to the bulb base reference plane.
2. Vertical location of the filament or discharge arc centerline or the filament or discharge arc tolerance box relative to the bulb base centerline.
3. Transverse location of the filament or discharge arc centerline or the filament or discharge arc tolerance box relative to the bulb base centerline.
4. Filament or discharge arc tolerance box dimensions, if used.

C. If the replaceable light source has both a lower beam and upper beam filament or discharge arc, the dimensional relationship between the two filament or discharge arc centerlines or the filament or discharge arc tolerance boxes may be provided instead of referencing the upper beam filament or discharge arc centerline or filament or discharge arc tolerance box to the bulb base centerline or reference plane.

D. For a light source using excited gas mixtures as a filament, necessary fiducial information and specifications including electrode position dimensions, and tolerance information that provide similar location and characteristics information required by paragraphs A, B, and C of this section I for light sources using a resistive type filament.

1. Axial location of the filament or discharge arc centerline or the filament or discharge arc tolerance box relative to the bulb base centerline.
2. Vertical location of the filament or discharge arc centerline or the filament or discharge arc tolerance box relative to the bulb base centerline.
3. Transverse location of the filament or discharge arc centerline or the filament or discharge arc tolerance box relative to the bulb base centerline.
4. Filament or discharge arc tolerance box dimensions, if used.

III. Ballb Holder Interchangeability Dimensions and Tolerances

A. Mating angular locations, diameters, key/keyway sizes, and any other interchangeability dimensions for indexing the bulb base in the bulb holder.

B. Diameter, width, depth, and surface finish of seal groove, surface, or other pertinent sealing features.

C. Diameter of the bulb base at the interface of the base and its perpendicular reference surface.

D. Dimensions of features related to retention of the bulb base in the bulb holder such as tabs, keys, keyways, surface, etc.
B. Mating diameter, width, depth, and surface, or other pertinent sealing features.
C. Mating diameter of the bulb holder at the interface of the bulb base aperture and its perpendicular reference surface.
D. Mating dimensions of features related to retention of the bulb base in the bulb holder such as tabs, keys, keyways, surface, or any other characteristics necessary for mating dimensions.

IV. Electrical Specifications for Each Light Source That Operates With a Ballast and Rated Life of the Light Source/Ballast Combination

A. Maximum power (in watts).
B. Luminous Flux (in lumens).
C. Rated laboratory life of the light source/ballast combination (not less than 2,000 hours).

V. Applicable to Light Sources That Operate With a Source Voltage Other Than 12.8 Volts Direct Current, and When a Proprietary Ballast Must Be Used With the Light Source

A. Manufacturer’s part number for the ballast.
B. Any other characteristics necessary for system operation.

VI. Bulb Markings/Designation—ANSI NUMBER, ECE IDENTIFIER, MANUFACTURER’S PART NUMBER, INDIVIDUAL OR IN ANY COMBINATION

VII. All Other Identification, Dimensions or Performance Specifications Necessary for Replaceability or Systems Test Not Listed in Sections I Through VI

APPENDIX C TO PART 564—INFORMATION APPLICABLE TO STANDARDIZED SEALED BEAM HEADLAMP UNITS

I. Dimensional Information Specific to a Type of Standardized Sealed Beam Unit

A. Dimensions marked “I”, indicating interchangeability, for which conformance is mandatory.
B. All other dimensions which are for design purposes.

II. Dimensional Information Applicable to the Use of Nonadjustable Headlamp Aiming Device Locating Plates

III. Dimensional Information Applicable to Mounting Features, Including Mounting Rings and Lamp Bodies, Specific to a Type of Standardized Sealed Beam Unit

A. Dimensions marked “I”, indicating interchangeability, for which conformance is mandatory.
B. All other dimensions which are for design purposes.
§ 565.22 Definitions.

§ 565.23 General requirements.

§ 565.24 Motor vehicles imported into the United States.

§ 565.25 Content requirements.

§ 565.26 Reporting requirements.

SOURCE: 73 FR 23379, Apr. 30, 2008, unless otherwise noted.

Subpart A—General Applicability of Subparts

§ 565.1 Purpose and scope.

This part specifies the format, content and physical requirements for a vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns.

§ 565.2 Application.

(a)(1) Except as provided in paragraph (a)(2) of this section, subpart B of this part 565 applies to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers (including trailer kits), incomplete vehicles, low speed vehicles, and motorcycles manufactured on or after October 27, 2008 whose VINs have a letter “A” or “B” in the 10th position, and to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers (including trailer kits), incomplete vehicles, low speed vehicles, and motorcycles manufactured on or after April 30, 2009. Vehicles imported into the United States under 49 CFR 591.5(f), other than by the corporation responsible for the assembly of that vehicle or a subsidiary of such a corporation, are excluded from requirements of §§ 565.22(b), 565.23(c), 565.23(g), 565.13(h), 565.14 and 565.15.

(b) All motor vehicles identified as model year 2009 or earlier vehicles by their manufacturer.

(73 FR 25370, May 16, 2008)

Subpart B—VIN Requirements

§ 565.10 Purpose and scope.

This part specifies the format, content and physical requirements for a vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns.

§ 565.11 Applicability.

See subpart A of this part 565 regarding the general applicability of this subpart. This part applies to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers (including trailer kits), incomplete vehicles, low speed vehicles, and motorcycles manufactured on or after October 27, 2008 whose VINs have a letter “A” or “B” in the 10th position, and to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers (including trailer kits), incomplete vehicles, low speed vehicles, and motorcycles manufactured on or after April 30, 2009 that are not identified by their manufacturer as model year 2009 or earlier vehicles. Vehicles imported into the United States under 49 CFR 591.5(f), other than by the corporation responsible for the assembly of that vehicle or a subsidiary of such a corporation, are excluded from requirements of §§ 565.13(b), 565.13(c), 565.13(g), 565.13(h), 565.14 and 565.15.

§ 565.12 Definitions.

(a) Federal Motor Vehicle Safety Standards Definitions. Unless otherwise indicated, all terms used in this part that are defined in 49 CFR 571.3 are used as defined in 49 CFR 571.3.

(b) Body type means the general configuration or shape of a vehicle distinguished by such characteristics as the number of doors or windows, cargo-carrying features and the roofline (e.g., sedan, fastback, hatchback).
(c) Check digit means a single number or the letter X used to verify the accuracy of the transcription of the vehicle identification number.

(d) Engine type means a power source with defined characteristics such as fuel utilized, number of cylinders, displacement, and net brake horsepower. The specific manufacturer and make shall be represented if the engine powers a passenger car or a multipurpose passenger vehicle, or truck with a gross vehicle weight rating of 4536 kg (10,000 lb) or less.

(e) High-volume manufacturer, for purposes of this part, means a manufacturer of 1,000 or more vehicles of a given type each year.

(f) Incomplete vehicle means an assembly consisting, as a minimum, of frame and chassis structure, power train, steering system, suspension system and braking system, to the extent that those systems are to be part of the completed vehicle, that requires further manufacturing operations, other than the addition of readily attachable components, such as mirrors or tire and rim assemblies, or minor finishing operations such as painting, to become a completed vehicle.

(g) Line means a name that a manufacturer applies to a family of vehicles within a make which have a degree of commonality in construction, such as body, chassis or cab type.

(h) Low-volume manufacturer, for purposes of this part, means a manufacturer of fewer than 1,000 vehicles of a given type each year.

(i) Make means a name that a manufacturer applies to a group of vehicles or engines.

(j) Manufacturer means a person—

(1) Manufacturing or assembling motor vehicles or motor vehicle equipment; or

(2) Importing motor vehicles or motor vehicle equipment for resale.

(k) Manufacturer identifier means the first three digits of a VIN of a vehicle manufactured by a high-volume manufacturer, and the first three digits of a VIN and the twelfth through fourteenth digits of a VIN of a vehicle manufactured by a low-volume manufacturer.

(l) Model means a name that a manufacturer applies to a family of vehicles of the same type, make, line, series and body type.

(m) Model year means the year used to designate a discrete vehicle model, irrespective of the calendar year in which the vehicle was actually produced, provided that the production period does not exceed 24 months.

(n) Plant of manufacture means the plant where the manufacturer affixes the VIN.

(o) Series means a name that a manufacturer applies to a subdivision of a "line" denoting price, size or weight identification and that is used by the manufacturer for marketing purposes.

(p) Trailer kit means a trailer that is fabricated and delivered in complete but unassembled form and that is designed to be assembled without special machinery or tools.

(q) Type means a class of vehicle distinguished by common traits, including design and purpose. Passenger cars, multipurpose passenger vehicles, trucks, buses, trailers, incomplete vehicles, low speed vehicles, and motorcycles are separate types.

(r) VIN means a series of Arabic numbers and Roman letters that is assigned to a motor vehicle for identification purposes.

§ 565.13 General requirements.

(a) Each vehicle manufactured in one stage shall have a VIN that is assigned by the manufacturer. Each vehicle manufactured in more than one stage shall have a VIN assigned by the incomplete vehicle manufacturer. Vehicle alterers, as specified in 49 CFR 567.7, shall utilize the VIN assigned by the original manufacturer of the vehicle.

(b) Each VIN shall consist of seventeen (17) characters.

(c) A check digit shall be part of each VIN. The check digit shall appear in position nine (9) of the VIN, on the vehicle and on any transfer documents containing the VIN prepared by the manufacturer to be given to the first owner for purposes other than resale.

(d) The VINs of any two vehicles subject to the Federal motor vehicle safety standards and manufactured within a 60-year period beginning with the 1980 model year shall not be identical.
(e) The VIN of each vehicle shall appear clearly and indelibly upon either a part of the vehicle, other than the glazing, that is not designed to be removed except for repair or upon a separate plate or label that is permanently affixed to such a part.

(f) The VIN for passenger cars, multipurpose passenger vehicles, low speed vehicles, and trucks of 4536 kg or less GVWR shall be located inside the passenger compartment. It shall be readable, without moving any part of the vehicle, through the vehicle glazing under daylight lighting conditions by an observer having 20/20 vision (Snellen) whose eye-point is located outside the vehicle adjacent to the left windshield pillar. It shall be located in such a manner as not to cover, obscure, or overlay any part of any identification number affixed by the original manufacturer. Motor vehicles conforming to Canada Motor Vehicle Safety Standard 115 are exempt from this paragraph.

(a) Importers shall utilize the VIN assigned by the original manufacturer of the motor vehicle.

(b) All passenger cars, multipurpose passenger vehicles, low speed vehicles and trucks of 4536 kg or less GVWR certified by a Registered Importer under 49 CFR part 592 whose VINs do not comply with part 565.13 and 565.14 shall have a plate or label that contains the following statement, in characters that have a minimum height of 4 mm and the identification number assigned by the vehicle's original manufacturer inserted in the blank: SUBSTITUTE FOR U.S. VIN: ________ SEE 49 CFR PART 565. The plate or label shall conform to § 565.13 (h) and (i). The plate or label shall be permanently affixed inside the passenger compartment. The plate or label shall be readable, without moving any part of the vehicle, through the vehicle glazing under daylight conditions by an observer having 20/20 vision (Snellen) whose eye-point is located outside the vehicle adjacent to the left windshield pillar. It shall be located in such a manner as not to cover, obscure, or overlay any part of any identification number affixed by the original manufacturer. Motor vehicles conforming to Canada Motor Vehicle Safety Standard 115 are exempt from this paragraph.

§ 565.15 Content requirements.

(a) The first section shall consist of three characters that occupy positions one through three (1–3) in the VIN. This section shall uniquely identify the manufacturer and type of the vehicle if the manufacturer is a high-volume manufacturer. If the manufacturer is a low-volume manufacturer, positions one through three (1–3) along with positions twelve through fourteen (12–14) in the VIN shall uniquely identify the manufacturer and type of the motor vehicle. These characters are assigned in accordance with §565.16(a). A “9” shall be placed in the third position of the VIN if the manufacturer identifier is six characters. A “9” in the third position always indicates the presence of a six-character manufacturer identifier. The National Highway Traffic Safety Administration offers access to manufacturer identifier assignments via its search engine at the following Internet Web site: http://www.nhtsa.dot.gov/cars/rules/manufacturer.

(b) The second section shall consist of five characters, which occupy positions four through eight (4–8) in the VIN. This section shall uniquely identify the attributes of the vehicle as specified in Table I. For passenger cars, and for multipurpose passenger vehicles and trucks with a gross vehicle weight rating of 4536 kg (10,000 lb) or less, the fourth character (position 7) of this section shall be alphabetic. The characters utilized and their placement within the section may be determined by the manufacturer, but the specified attributes must be decipherable with information supplied by the manufacturer in accordance with §565.16(c). In submitting the required information to
NHTSA relating gross vehicle weight rating, the designations in Table II shall be used. The use of these designations within the VIN itself is not required. Tables I and II follow:

Table I—Type of Vehicle and Information Decipherable

- **Passenger car:** Make, line, series, body type, engine type, and all restraint devices and their location.
- **Multipurpose passenger vehicle:** Make, line, series, body type, engine type, gross vehicle weight rating, and for multipurpose passenger vehicles with a gross vehicle weight rating (GVWR) of 4536 kg (10,000 lb) or less all restraint devices and their location.
- **Truck:** Make, model or line, series, chassis, cab type, engine type, brake system, gross vehicle weight rating, and for trucks with a gross vehicle weight rating (GVWR) of 4536 kg (10,000 lb) or less all restraint devices and their location.
- **Bus:** Make, model or line, series, body type, engine type, and brake system.
- **Trailer, including trailer kits and incomplete trailer:** Make, type of trailer, body type, length and axle configuration.
- **Motorcycle:** Make, type of motorcycle, line, engine type, and net brake horsepower.
- **Incomplete vehicle other than a trailer:** Make, model or line, series, cab type, engine type, and brake system.
- **Low speed vehicle:** Make, engine type, brake system, restraint system type, body type, and gross vehicle weight rating.

Note to Table I: Engine net brake horsepower when encoded in the VIN shall differ by no more than 10 percent from the actual net brake horsepower; shall in the case of motorcycle with an actual net brake horsepower of 2 or less, be not more than 2; and shall be greater than 2 in the case of a motorcycle with an actual brake horsepower greater than 2.

Table II—Gross Vehicle Weight Rating Classes—Continued

<table>
<thead>
<tr>
<th>Class</th>
<th>Greater than</th>
<th>Class</th>
<th>Greater than</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1360 kg.</td>
<td>E</td>
<td>2722 kg. to 3175 kg.</td>
</tr>
<tr>
<td>B</td>
<td>1360 kg. to 1814 kg.</td>
<td>F</td>
<td>3175 kg. to 3629 kg.</td>
</tr>
<tr>
<td>C</td>
<td>1814 kg. to 2268 kg.</td>
<td>G</td>
<td>3629 kg. to 4082 kg.</td>
</tr>
<tr>
<td>D</td>
<td>2268 kg. to 2722 kg.</td>
<td>H</td>
<td>4082 kg. to 4536 kg.</td>
</tr>
<tr>
<td>E</td>
<td>2722 kg. to 3175 kg.</td>
<td>I</td>
<td>4536 kg. to 5000 kg.</td>
</tr>
<tr>
<td>F</td>
<td>3175 kg. to 3629 kg.</td>
<td>J</td>
<td>5000 kg. to 5500 kg.</td>
</tr>
<tr>
<td>G</td>
<td>3629 kg. to 4082 kg.</td>
<td>K</td>
<td>5500 kg. to 6000 kg.</td>
</tr>
<tr>
<td>H</td>
<td>4082 kg. to 4536 kg.</td>
<td>L</td>
<td>6000 kg. to 6500 kg.</td>
</tr>
<tr>
<td>I</td>
<td>4536 kg. to 5000 kg.</td>
<td>M</td>
<td>6500 kg. to 7000 kg.</td>
</tr>
<tr>
<td>J</td>
<td>5000 kg. to 5500 kg.</td>
<td>N</td>
<td>7000 kg. to 7500 kg.</td>
</tr>
<tr>
<td>K</td>
<td>5500 kg. to 6000 kg.</td>
<td>O</td>
<td>7500 kg. to 8000 kg.</td>
</tr>
<tr>
<td>L</td>
<td>6000 kg. to 6500 kg.</td>
<td>P</td>
<td>8000 kg. to 8500 kg.</td>
</tr>
<tr>
<td>M</td>
<td>6500 kg. to 7000 kg.</td>
<td>Q</td>
<td>8500 kg. to 9000 kg.</td>
</tr>
<tr>
<td>N</td>
<td>7000 kg. to 7500 kg.</td>
<td>R</td>
<td>9000 kg. to 9500 kg.</td>
</tr>
<tr>
<td>O</td>
<td>7500 kg. to 8000 kg.</td>
<td>S</td>
<td>9500 kg. to 10000 kg.</td>
</tr>
<tr>
<td>P</td>
<td>8000 kg. to 8500 kg.</td>
<td>T</td>
<td>10000 kg. to 10500 kg.</td>
</tr>
<tr>
<td>Q</td>
<td>8500 kg. to 9000 kg.</td>
<td>U</td>
<td>10500 kg. to 11000 kg.</td>
</tr>
<tr>
<td>R</td>
<td>9000 kg. to 9500 kg.</td>
<td>V</td>
<td>11000 kg. to 11500 kg.</td>
</tr>
<tr>
<td>S</td>
<td>9500 kg. to 10000 kg.</td>
<td>W</td>
<td>11500 kg. to 12000 kg.</td>
</tr>
<tr>
<td>T</td>
<td>10000 kg. to 10500 kg.</td>
<td>X</td>
<td>12000 kg. to 12500 kg.</td>
</tr>
<tr>
<td>U</td>
<td>10500 kg. to 11000 kg.</td>
<td>Y</td>
<td>12500 kg. to 13000 kg.</td>
</tr>
<tr>
<td>V</td>
<td>11000 kg. to 11500 kg.</td>
<td>Z</td>
<td>13000 kg. to 13500 kg.</td>
</tr>
</tbody>
</table>

(c) The third section shall consist of one character, which occupies position nine (9) in the VIN. This section shall be the check digit whose purpose is to provide a means for verifying the accuracy of any VIN transcription. After all other characters in VIN have been determined by the manufacturer, the check digit shall be calculated by carrying out the mathematical computation specified in paragraphs (c) (1) through (4) of this section.

(1) Assign to each number in the VIN its actual mathematical value and assign to each letter the value specified for it in Table III, as follows:

Table III—Assigned Values

<table>
<thead>
<tr>
<th>Letter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
</tr>
<tr>
<td>H</td>
<td>8</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>3</td>
</tr>
<tr>
<td>M</td>
<td>4</td>
</tr>
<tr>
<td>N</td>
<td>5</td>
</tr>
<tr>
<td>P</td>
<td>7</td>
</tr>
<tr>
<td>R</td>
<td>9</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
</tr>
</tbody>
</table>
(2) Multiply the assigned value for each character in the VIN by the position weight factor specified in Table IV, as follows:

TABLE IV—VIN POSITION AND WEIGHT FACTOR

<table>
<thead>
<tr>
<th>Position</th>
<th>Weight Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>8</td>
</tr>
<tr>
<td>2d</td>
<td>7</td>
</tr>
<tr>
<td>3d</td>
<td>6</td>
</tr>
<tr>
<td>4th</td>
<td>5</td>
</tr>
<tr>
<td>5th</td>
<td>4</td>
</tr>
<tr>
<td>6th</td>
<td>3</td>
</tr>
<tr>
<td>7th</td>
<td>2</td>
</tr>
<tr>
<td>8th</td>
<td>10</td>
</tr>
<tr>
<td>9th</td>
<td>(check digit)</td>
</tr>
<tr>
<td>10th</td>
<td>9</td>
</tr>
<tr>
<td>11th</td>
<td>8</td>
</tr>
<tr>
<td>12th</td>
<td>7</td>
</tr>
<tr>
<td>13th</td>
<td>6</td>
</tr>
<tr>
<td>14th</td>
<td>5</td>
</tr>
<tr>
<td>15th</td>
<td>4</td>
</tr>
<tr>
<td>16th</td>
<td>3</td>
</tr>
<tr>
<td>17th</td>
<td>2</td>
</tr>
</tbody>
</table>

(3) Add the resulting products and divide the total by 11.

(4) The check digit is based on either the Fractional Remainder or the Decimal Equivalent Remainder as reflected in Table V. All Decimal Equivalent Remainders in Table V are rounded to the nearest thousandth. The check digit, zero through nine (0–9) or the letter “X” shall appear in VIN position nine (9).

TABLE V—NINTH POSITION CHECK DIGIT VALUES

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Digit</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>X</td>
</tr>
</tbody>
</table>

(5) A sample check digit calculation is shown in Table VI as follows:

TABLE VI—CALCULATION OF A CHECK DIGIT

<table>
<thead>
<tr>
<th>Vin Position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample VIN</td>
<td>G</td>
<td>4</td>
<td>A</td>
<td>H</td>
<td>5</td>
<td>9</td>
<td>H</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assigned Value</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Weight Factor</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Multiply Assigned value times weight factor</td>
<td>8</td>
<td>49</td>
<td>24</td>
<td>5</td>
<td>32</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>80</td>
<td>0</td>
<td>45</td>
<td>56</td>
<td>7</td>
<td>6</td>
<td>40</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

Add products: 8 + 49 + 24 + 5 + 32 + 15 + 18 + 80 + 0 + 45 + 56 + 7 + 6 + 40 + 12 + 2 = 411.

Divide by 11: 411/11 = 37.3636.

If the fourth digit is 5 or greater, round up. If the fourth digit is 4 or smaller, round down.

In the example above, the remainder is 4/11 or 0.364 when rounded up.

Looking up the remainder in Table V—Ninth Position Check Digit Values indicates that “4” is the check digit to be inserted in position nine (9) of the VIN for this sample digit calculation.

(d) The fourth section shall consist of eight characters, which occupy positions ten through seventeen (10–17) of the VIN. The last five (5) characters of this section shall be numeric for passenger cars and for multipurpose passenger vehicles and trucks with a gross vehicle weight rating of 4536 kg. (10,000 lbs.) or less, and the last four (4) characters shall be numeric for all other vehicles.

(1) The first character of the fourth section shall represent the vehicle model year. The year shall be designated as indicated in Table VII as follows:

TABLE VII—YEAR CODES FOR VIN

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>5</td>
</tr>
<tr>
<td>2006</td>
<td>6</td>
</tr>
<tr>
<td>2007</td>
<td>7</td>
</tr>
<tr>
<td>2008</td>
<td>8</td>
</tr>
</tbody>
</table>
§ 565.16 Reporting requirements.

The information collection requirements contained in this part have been approved by the Office of Management and Budget under the provisions of the Paperwork Reduction Act (44 U.S.C. 3501 et seq) and have been assigned OMB Control Number 2127-0510.

(a) The National Highway Traffic Safety Administration (NHTSA) has contracted with the SAE International to coordinate the assignment of manufacturer identifiers to manufacturers in the United States. Manufacturer identifiers will be supplied by SAE at no charge. All requests for assignments of manufacturer identifiers should be forwarded directly to: SAE International, 400 Commonwealth Drive, Warrendale, Pennsylvania, 15096. Attention: WMI Coordinator (telephone: 724–776–4841). Any requests for identifiers submitted to NHTSA will be forwarded to SAE. Manufacturers may request a specific identifier or may request only assignment of an identifier(s). SAE will review requests for specific identifiers to determine that they do not conflict with an identifier already assigned or block of identifiers already reserved. SAE will confirm the assignments in writing to the requester. Once confirmed by SAE, the identifier need not be resubmitted to NHTSA.

(b) Manufacturers of vehicles subject to this part shall submit, either directly or through an agent, the unique identifier for each make and type of vehicle it manufactures at least 60 days before affixing the first VIN using the identifier. Manufacturers whose unique identifier appears in the fourth section of the VIN shall also submit the three characters of the first section that constitutes a part of their identifier.

(c) Manufacturers of vehicles subject to the requirements of this part shall submit to NHTSA the information necessary to decipher the characters contained in its VINS. Amendments to this information shall be submitted to the agency for VINS containing an amended coding. The agency will not routinely provide written approvals of these submissions, but will contact the manufacturer should any corrections to these submissions be necessary.

(d) The information required under paragraph (c) of this section shall be

TABLE VII—YEAR CODES FOR VIN—Continued

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>9</td>
</tr>
<tr>
<td>2010</td>
<td>A</td>
</tr>
<tr>
<td>2011</td>
<td>B</td>
</tr>
<tr>
<td>2012</td>
<td>C</td>
</tr>
<tr>
<td>2013</td>
<td>D</td>
</tr>
<tr>
<td>2014</td>
<td>E</td>
</tr>
<tr>
<td>2015</td>
<td>F</td>
</tr>
<tr>
<td>2016</td>
<td>G</td>
</tr>
<tr>
<td>2017</td>
<td>H</td>
</tr>
<tr>
<td>2018</td>
<td>J</td>
</tr>
<tr>
<td>2019</td>
<td>K</td>
</tr>
<tr>
<td>2020</td>
<td>L</td>
</tr>
<tr>
<td>2021</td>
<td>M</td>
</tr>
<tr>
<td>2022</td>
<td>N</td>
</tr>
<tr>
<td>2023</td>
<td>P</td>
</tr>
<tr>
<td>2024</td>
<td>Q</td>
</tr>
<tr>
<td>2025</td>
<td>R</td>
</tr>
<tr>
<td>2026</td>
<td>S</td>
</tr>
<tr>
<td>2027</td>
<td>T</td>
</tr>
<tr>
<td>2028</td>
<td>V</td>
</tr>
<tr>
<td>2029</td>
<td>W</td>
</tr>
<tr>
<td>2030</td>
<td>X</td>
</tr>
<tr>
<td>2031</td>
<td>Y</td>
</tr>
<tr>
<td>2032</td>
<td>1</td>
</tr>
<tr>
<td>2033</td>
<td>2</td>
</tr>
<tr>
<td>2034</td>
<td>3</td>
</tr>
<tr>
<td>2035</td>
<td>4</td>
</tr>
<tr>
<td>2036</td>
<td>5</td>
</tr>
<tr>
<td>2037</td>
<td>6</td>
</tr>
<tr>
<td>2038</td>
<td>7</td>
</tr>
<tr>
<td>2039</td>
<td>8</td>
</tr>
</tbody>
</table>

Note to Table VII: For passenger cars, and for multipurpose passenger vehicles and trucks with a gross vehicle weight rating of 4536 kg (10,000 lb) or less, if position 7 is numeric, the Model Year in position 10 of the VIN refers to a year in the range 1980–2009. If position 7 is alphabetic, the Model Year in Position 10 of the VIN refers to a year in the range 2010–2039.

(2) The second character of the fourth section shall represent the plant of manufacture.

(3) The third through the eighth characters of the fourth section (positions 12 through 17) shall represent the number sequentially assigned by the manufacturer in the production process if the manufacturer is a high-volume manufacturer. If a manufacturer is a low-volume manufacturer, the third, fourth, and fifth characters of the fourth section (positions 12, 13, and 14), combined with the three characters of the first section (positions 1, 2, and 3), shall uniquely identify the manufacturer and type of the motor vehicle and the sixth, seventh, and eighth characters of the fourth section (positions 15, 16, and 17) shall represent the number sequentially assigned by the manufacturer in the production process.
§ 565.20 Purpose and scope.

This part specifies the format, content and physical requirements for a vehicle identification number (VIN) system and its installation to simplify vehicle identification information retrieval and to increase the accuracy and efficiency of vehicle recall campaigns.

§ 565.21 Applicability.

See subpart A of this part 565 regarding the applicability of this subpart. This part applies to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers (including trailer kits), incomplete vehicles, and motorcycles. Vehicles imported into the United States under 49 CFR 591.5(f), other than by the corporation responsible for the assembly of that vehicle or a subsidiary of such a corporation, are excluded from requirements of § 565.23(b), §§ 565.23(c), 565.23(g), 565.23(h), 565.24 and 565.25.

§ 565.22 Definitions.

(a) Federal Motor Vehicle Safety Standards Definitions. Unless otherwise indicated, all terms used in this part that are defined in 49 CFR 571.3 are used as defined in 49 CFR 571.3.

(b) Body type means the general configuration or shape of a vehicle distinguished by such characteristics as the number of doors or windows, cargo-carrying features and the roofline (e.g., sedan, fastback, hatchback).

(c) Check digit means a single number or the letter X used to verify the accuracy of the transcription of the vehicle identification number.

(d) Engine type means a power source with defined characteristics such as fuel utilized, number of cylinders, displacement, and net brake horsepower. The specific manufacturer and make shall be represented if the engine powers a passenger car or a multipurpose passenger vehicle, or truck with a gross vehicle weight rating of 4536 kg. (10,000 lbs.) or less.

(e) Incomplete vehicle means an assemblage consisting, as a minimum, of frame and chassis structure, power train, steering system, suspension system and braking system, to the extent that those systems are to be part of the completed vehicle, that requires further manufacturing operations, other than the addition of readily attachable components, such as mirrors or tire and rim assemblies, or minor finishing operations such as painting, to become a completed vehicle.

(f) Line means a name that a manufacturer applies to a family of vehicles within a make which have a degree of commonality in construction, such as body, chassis or cab type.

(g) Make means a name that a manufacturer applies to a group of vehicles or engines.

(h) Manufacturer means a person—

(1) Manufacturing or assembling motor vehicles or motor vehicle equipment; or

(2) Importing motor vehicles or motor vehicle equipment for resale.

(i) Model means a name that a manufacturer applies to a family of vehicles of the same type, make, line, series and body type.

(j) Model Year means the year used to designate a discrete vehicle model, irrespective of the calendar year in which the vehicle was actually produced, provided that the production period does not exceed 24 months.

(k) Plant of manufacture means the plant where the manufacturer affixes the VIN.

(l) Series means a name that a manufacturer applies to a subdivision of a “line” denoting price, size or weight
identification and that is used by the manufacturer for marketing purposes.

(m) **Trailer kit** means a trailer that is fabricated and delivered in complete but unassembled form and that is designed to be assembled without special machinery or tools.

(n) **Type** means a class of vehicle distinguished by common traits, including design and purpose. Passenger cars, multipurpose passenger vehicles, trucks, buses, trailers, incomplete vehicles and motorcycles are separate types.

(o) **VIN** means a series of Arabic numbers and Roman letters that is assigned to a motor vehicle for identification purposes.

§ 565.23 General requirements.

(a) Each vehicle manufactured in one stage shall have a VIN that is assigned by the manufacturer. Each vehicle manufactured in more than one stage shall have a VIN assigned by the incomplete vehicle manufacturer. Vehicle alterers, as specified in 49 CFR 567.7, shall utilize the VIN assigned by the original manufacturer of the vehicle.

(b) Each VIN shall consist of seventeen (17) characters.

(c) A check digit shall be part of each VIN. The check digit shall appear in position nine (9) of the VIN, on the vehicle and on any transfer documents containing the VIN prepared by the manufacturer to be given to the first owner for purposes other than resale.

(d) The VINs of any two vehicles manufactured within a 30-year period shall not be identical.

(e) The VIN of each vehicle shall appear clearly and indelibly upon either a part of the vehicle, other than the glazing, that is not designed to be removed except for repair or upon a separate plate or label that is permanently affixed to such a part.

(f) The VIN for passenger cars, multipurpose passenger vehicles and trucks of 4536 kg or less GVWR shall be located inside the passenger compartment. It shall be readable, without moving any part of the vehicle, through the vehicle glazing under daylight lighting conditions by an observer having 20/20 vision (Snellen) whose eye-point is located outside the vehicle adjacent to the left windshield pillar. Each character in the VIN subject to this paragraph shall have a minimum height of 4 mm.

(g) Each character in each VIN shall be one of the letters in the set: [ABCDEFGHJKLMNPRSTUVWXYZ] or a numeral in the set: [0123456789] assigned according to the method given in §565.25.

(h) All spaces provided for in the VIN must be occupied by a character specified in paragraph (g) of this section.

(i) The type face utilized for each VIN shall consist of capital, sanserif characters.

§ 565.24 Motor vehicles imported into the United States.

(a) Importers shall utilize the VIN assigned by the original manufacturer of the motor vehicle.

(b) A passenger car certified by a Registered Importer under 49 CFR part 592 shall have a plate or label that contains the following statement, in characters with a minimum height of 4 mm, with the identification number assigned by the original manufacturer provided in the blank: SUBSTITUTE FOR U.S. VIN: [312x320]lll SEE PART 565. The plate or label shall conform to §565.23 (h) and (i). The plate or label shall be permanently affixed inside the passenger compartment. The plate or label shall be readable, without moving any part of the vehicle, through the vehicle glazing under daylight lighting conditions by an observer having 20/20 vision (Snellen) whose eye-point is located outside the vehicle adjacent to the left windshield pillar. It shall be located in such a manner as not to cover, obscure, or overlay any part of any identification number affixed by the original manufacturer. Passenger cars conforming to Canadian Motor Vehicle Safety Standard 115 are exempt from this paragraph.

§ 565.25 Content requirements.

The VIN shall consist of four sections of characters which shall be grouped accordingly:

(a) The first section shall consist of three characters that occupy positions one through three (1–3) in the VIN.
This section shall uniquely identify the manufacturer, make and type of the motor vehicle if its manufacturer produces 500 or more motor vehicles of its type annually. If the manufacturer produces less than 500 motor vehicles of its type annually, these characters along with the third, fourth and fifth characters of the fourth section shall uniquely identify the manufacturer, make and type of the motor vehicle. These characters are assigned in accordance with §565.26(a).

(b) The second section shall consist of five characters, which occupy positions four through eight (4–8) in the VIN. This section shall uniquely identify the attributes of the vehicle as specified in Table VIII. For passenger cars, and for multipurpose passenger vehicles and trucks with a gross vehicle weight rating of 4536 kg (10,000 lb) or less, the first and second characters shall be alphabetic and the third and fourth characters shall be numeric. The fifth character may be either alphabetic or numeric. The characters utilized and their placement within the section may be determined by the manufacturer, but the specified attributes must be decipherable with information supplied by the manufacturer in accordance with §565.26(c). In submitting the required information to NHTSA relating to gross vehicle weight rating, the designations in Table IX shall be used. The use of these designations within the VIN itself is not required. Tables VIII and IX follow:

Table VIII—Type of Vehicle and Information Decipherable

Passenger car: Line, series, body type, engine type and restraint system type.

Multipurpose passenger vehicle: Line, series, body type, engine type, gross vehicle weight rating.

Truck: Model or line, series, chassis, cab type, engine type, brake system and gross vehicle weight rating.

Bus: Model or line, series, body type, engine type, and brake system.

Trailer, including trailer kits and incomplete trailer: Type of trailer, body type, length and axle configuration.

Incomplete Vehicle other than a trailer: Model or line, series, cab type, engine type and brake system.

Note to Table VIII: Engine net brake horsepower when encoded in the VIN shall differ by no more than 10 percent from the actual net brake horsepower; shall in the case of motorcycle with an actual net brake horsepower of 2 or less, be not more than 2; and shall be greater than 2 in the case of a motorcycle with an actual brake horsepower greater than 2.

Table IX—Gross Vehicle Weight Rating Classes—Continued

<table>
<thead>
<tr>
<th>Class</th>
<th>Gross Vehicle Weight Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Greater than 6350 kg to 7257 kg (14,001–16,000 lbs.)</td>
</tr>
<tr>
<td>5</td>
<td>Greater than 7257 kg to 8845 kg (16,001–19,500 lbs.)</td>
</tr>
<tr>
<td>6</td>
<td>Greater than 8845 kg to 11793 kg (19,501–26,000 lbs.)</td>
</tr>
<tr>
<td>7</td>
<td>Greater than 11793 kg to 14968 kg (26,001–33,000 lbs.)</td>
</tr>
<tr>
<td>8</td>
<td>Greater than 14968 kg (33,001 lbs. and over)</td>
</tr>
</tbody>
</table>

(c) The third section shall consist of one character, which occupies position nine (9) in the VIN. This section shall be the check digit whose purpose is to provide a means for verifying the accuracy of any VIN transcription. After all other characters in VIN have been determined by the manufacturer, the
check digit shall be calculated by carrying out the mathematical computation specified in paragraphs (c)(1) through (4) of this section.

(1) Assign to each number in the VIN its actual mathematical value and assign to each letter the value specified for it in Table X, as follows:

<table>
<thead>
<tr>
<th>TABLE X—ASSIGNED VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = 1</td>
</tr>
<tr>
<td>B = 2</td>
</tr>
<tr>
<td>C = 3</td>
</tr>
<tr>
<td>D = 4</td>
</tr>
<tr>
<td>E = 5</td>
</tr>
<tr>
<td>F = 6</td>
</tr>
<tr>
<td>G = 7</td>
</tr>
<tr>
<td>H = 8</td>
</tr>
<tr>
<td>J = 1</td>
</tr>
<tr>
<td>K = 2</td>
</tr>
<tr>
<td>L = 3</td>
</tr>
<tr>
<td>M = 4</td>
</tr>
<tr>
<td>N = 5</td>
</tr>
<tr>
<td>P = 7</td>
</tr>
<tr>
<td>R = 9</td>
</tr>
<tr>
<td>S = 2</td>
</tr>
<tr>
<td>T = 3</td>
</tr>
<tr>
<td>U = 4</td>
</tr>
<tr>
<td>V = 5</td>
</tr>
<tr>
<td>W = 6</td>
</tr>
<tr>
<td>X = 7</td>
</tr>
<tr>
<td>Y = 8</td>
</tr>
<tr>
<td>Z = 9</td>
</tr>
</tbody>
</table>

(2) Multiply the assigned value for each character in the VIN by the position weight factor specified in Table XI, as follows:

<table>
<thead>
<tr>
<th>TABLE XI—VIN POSITION AND WEIGHT FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st .. 8</td>
</tr>
<tr>
<td>2d ... 7</td>
</tr>
<tr>
<td>3d ... 6</td>
</tr>
<tr>
<td>4th .. 5</td>
</tr>
<tr>
<td>5th .. 4</td>
</tr>
<tr>
<td>6th .. 3</td>
</tr>
<tr>
<td>7th .. 2</td>
</tr>
<tr>
<td>8th .. 10</td>
</tr>
<tr>
<td>9th ... (check digit)</td>
</tr>
<tr>
<td>10th ... 9</td>
</tr>
<tr>
<td>11th ... 8</td>
</tr>
<tr>
<td>12th ... 7</td>
</tr>
<tr>
<td>13th ... 6</td>
</tr>
<tr>
<td>14th ... 5</td>
</tr>
<tr>
<td>15th ... 4</td>
</tr>
<tr>
<td>16th ... 3</td>
</tr>
<tr>
<td>17th ... 2</td>
</tr>
</tbody>
</table>

(3) Add the resulting products and divide the total by 11.

(4) The numerical remainder is the check digit. If the remainder is 10 the letter “X” shall be used to designate the check digit. The correct numeric remainder, zero through nine (0–9) or the letter “X,” shall appear in VIN position nine (9).

(5) A sample check digit calculation is shown in Table XII as follows:

<table>
<thead>
<tr>
<th>TABLE XII—CALCULATION OF A CHECK DIGIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN Position 12 1234567891011121314151617</td>
</tr>
<tr>
<td>Sample VIN G4AH59H5G118341</td>
</tr>
<tr>
<td>Assigned Value 17418598</td>
</tr>
<tr>
<td>Weight Factor 8765432</td>
</tr>
<tr>
<td>Multiply Assigned value times 8492453215188004556764012122</td>
</tr>
</tbody>
</table>

Add products: $8 \times 49 + 24 \times 5 + 32 \times 15 + 18 \times 80 + 0 + 45 \times 56 + 7 \times 6 + 40 + 12 + 12 + 2 = 411.$

Divide by 11: $411/11 = 37 \frac{4}{11}.$

The remainder is 4; this is the check digit to be inserted in position nine (9) of the VIN.

(d) The fourth section shall consist of eight characters, which occupy positions ten through seventeen (10–17) of the VIN. The last five (5) characters of this section shall be numeric for passenger cars and for multipurpose passenger vehicles and trucks with a gross vehicle weight rating of 4536 kg. (10,000 lbs.) or less, and the last four (4) characters shall be numeric for all other vehicles.

(1) The first character of the fourth section shall represent the vehicle model year. The year shall be designated as indicated in Table XIII as follows:

<table>
<thead>
<tr>
<th>TABLE XIII—YEAR CODES FOR VIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1980</td>
</tr>
<tr>
<td>1981</td>
</tr>
<tr>
<td>1982</td>
</tr>
</tbody>
</table>
(2) The second character of the fourth section shall represent the plant of manufacture.

(3) The third through the eighth characters of the fourth section shall represent the number sequentially assigned by the manufacturer in the production process if the manufacturer produces 500 or more vehicles of its type annually. If the manufacturer produces less than 500 motor vehicles of its type annually, the third, fourth and fifth characters of the fourth section, combined with the three characters of the first section, shall uniquely identify the manufacturer, make and type of the motor vehicle and the sixth, seventh, and eighth characters of the fourth section shall represent the number sequentially assigned by the manufacturer in the production process.

§ 565.26 Reporting requirements.

The information collection requirements contained in this part have been approved by the Office of Management and Budget under the provisions of the Paperwork Reduction Act (44 U.S.C. 3501 et seq.) and have been assigned OMB Control Number 2127–0510.

(a) The National Highway Traffic Safety Administration (NHTSA) has contracted with the SAE International (SAE) to coordinate the assignment of manufacturer identifiers. Manufacturer identifiers will be supplied by SAE at no charge. All requests for assignments of manufacturer identifiers should be forwarded directly to: SAE International, 400 Commonwealth Drive, Warrendale, Pennsylvania 15096, Attention: WMI Coordinator. Any requests for identifiers submitted to NHTSA will be forwarded to SAE. Manufacturers may request a specific identifier or may request only assignment of an identifier(s). SAE will review requests for specific identifiers to determine that they do not conflict with an identifier already assigned or block of identifiers already reserved. SAE will confirm the assignments in writing to the requester. Once confirmed by SAE, the identifier need not be resubmitted to NHTSA.

(b) Manufacturers of vehicles subject to this part shall submit, either directly or through an agent, the unique identifier for each make and type of vehicle it manufactures at least 60 days before affixing the first VIN using the identifier. Manufacturers whose unique identifier appears in the fourth section of the VIN shall also submit the three characters of the first section that constitutes a part of their identifier.

(c) Manufacturers of vehicles subject to the requirements of this part shall submit to NHTSA the information necessary to decipher the characters contained in its VINs. Amendments to this information shall be submitted to the agency for VINs containing an amended coding. The agency will not routinely provide written approvals of these submissions, but will contact the manufacturer should any corrections to these submissions be necessary.

(d) The information required under paragraph (c) of this section shall be submitted at least 60 days prior to offering for sale the first vehicle identified by a VIN containing that information, or if information concerning vehicle characteristics sufficient to specify the VIN code is unavailable to the manufacturer by that date, then within one week after that information first becomes available. The information

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>D</td>
</tr>
<tr>
<td>1984</td>
<td>E</td>
</tr>
<tr>
<td>1985</td>
<td>F</td>
</tr>
<tr>
<td>1986</td>
<td>G</td>
</tr>
<tr>
<td>1987</td>
<td>H</td>
</tr>
<tr>
<td>1988</td>
<td>I</td>
</tr>
<tr>
<td>1989</td>
<td>J</td>
</tr>
<tr>
<td>1990</td>
<td>K</td>
</tr>
<tr>
<td>1991</td>
<td>L</td>
</tr>
<tr>
<td>1992</td>
<td>M</td>
</tr>
<tr>
<td>1993</td>
<td>N</td>
</tr>
<tr>
<td>1994</td>
<td>P</td>
</tr>
<tr>
<td>1995</td>
<td>Q</td>
</tr>
<tr>
<td>1996</td>
<td>R</td>
</tr>
<tr>
<td>1997</td>
<td>S</td>
</tr>
<tr>
<td>1998</td>
<td>T</td>
</tr>
<tr>
<td>1999</td>
<td>U</td>
</tr>
<tr>
<td>2000</td>
<td>V</td>
</tr>
<tr>
<td>2001</td>
<td>W</td>
</tr>
<tr>
<td>2002</td>
<td>X</td>
</tr>
<tr>
<td>2003</td>
<td>Y</td>
</tr>
<tr>
<td>2004</td>
<td>Z</td>
</tr>
<tr>
<td>2005</td>
<td>A</td>
</tr>
<tr>
<td>2006</td>
<td>B</td>
</tr>
<tr>
<td>2007</td>
<td>C</td>
</tr>
<tr>
<td>2008</td>
<td>D</td>
</tr>
<tr>
<td>2009</td>
<td>E</td>
</tr>
<tr>
<td>2010</td>
<td>F</td>
</tr>
<tr>
<td>2011</td>
<td>G</td>
</tr>
<tr>
<td>2012</td>
<td>H</td>
</tr>
<tr>
<td>2013</td>
<td>I</td>
</tr>
</tbody>
</table>
shall be addressed to: Administrator, National Highway Traffic Safety Administration, 1200 New Jersey Avenue, SE., Washington, DC 20590, Attention: VIN Coordinator.

PART 566—MANUFACTURER IDENTIFICATION

§ 566.1 Scope.
This part requires manufacturers of motor vehicles, and of motor vehicle equipment to which a motor vehicle safety standard applies, to submit identifying information and a description of the items they produce.

§ 566.2 Purpose.
The purpose of this part is to facilitate the regulation of manufacturers under the National Traffic and Motor Vehicle Safety Act, and to aid in establishing a code numbering system for all regulated manufacturers.

§ 566.3 Application.
This part applies to all manufacturers of motor vehicles, and to manufacturers of motor vehicle equipment, other than tires, to which a motor vehicle safety standard applies (hereafter referred to as “covered equipment”).

§ 566.4 Definitions.
All terms defined in the Act and the rules and standards issued under its authority are used as defined therein. Specifically, incomplete vehicle, intermediate manufacturer, and final-stage manufacturer are used as defined in Part 568—Vehicles Manufactured in Two or More Stages. (Authority: 15 U.S.C. 1392, 1397)

§ 566.5 Requirements.
Each manufacturer of motor vehicles, and each manufacturer of covered equipment, shall furnish the information specified in paragraphs (a) through (c) of this section to: Administrator, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590.

(a) Full individual, partnership, or corporate name of the manufacturer.
(b) Residence address of the manufacturer and State of incorporation if applicable.
(c) Description of each type of motor vehicle or of covered equipment manufactured by the manufacturer, including, for motor vehicles, the approximate ranges of gross vehicle weight ratings for each type.

(1) Except as noted below, the description may be of general types, such as “passenger cars” or “brake fluid.”
(2) In the case of multipurpose passenger vehicles, trucks, and trailers, the description shall be specific enough also to indicate the types of use for which the vehicles are intended, such as “tank trailer,” “motor home,” or “cargo van.”
(3) In the case of motor vehicles produced in two or more stages, if the manufacturer is an incomplete vehicle manufacturer, the description shall so state and include a description indicating the stage of completion of the vehicle and, where known, the types of use for which the vehicle is intended.

Example: “Incomplete vehicle manufacturer—Chassis-cab intended for completion as van-type truck.”

If the manufacturer is an intermediate manufacturer, or a final stage manufacturer, the description shall so state and include a brief description of the work performed.

Example: “Multipurpose passenger vehicles: Motor homes with GVWR from 8,000 to 12,000...”
§ 566.6 Submittal of information.

Each manufacturer required to submit the information under §566.5 shall submit the information not later than February 1, 1972. After that date, each person who begins to manufacture a type of motor vehicle or covered equipment for which he has not submitted the required information shall submit the information specified in paragraphs (a) through (c) of §566.5 not later than 30 days after he begins manufacture. Each manufacturer who has submitted required information shall keep his entry current, accurate and complete by submitting revised information not later than 30 days after the relevant changes in his business occur.

§ 567.1 Purpose.

The purpose of this part is to specify the content and location of, and other requirements for, the certification label to be affixed to motor vehicles as required by the National Traffic and Motor Vehicle Safety Act, as amended (the Vehicle Safety Act) (49 U.S.C. 30115) and the Motor Vehicle Information and Cost Savings Act, as amended (the Cost Savings Act), (49 U.S.C. 30254 and 33109), to address certification-related duties and liabilities, and to provide the consumer with information to assist him or her in determining which of the Federal Motor Vehicle Safety Standards (part 571 of this chapter), Bumper Standards (part 581 of this chapter), and Federal Theft Prevention Standards (part 541 of this chapter), are applicable to the vehicle.

§ 567.2 Application.

(a) This part applies to manufacturers includingALTERERS of motor vehicles to which one or more standards are applicable.

(b) In the case of imported motor vehicles that do not have the label required by 49 CFR 567.4, Registered Importers of vehicles admitted into the United States under 49 U.S.C. 30141–30147 and 49 CFR part 591 must affix a label as required by 49 CFR 567.4, after the vehicle has been brought into conformity with the applicable Safety, Bumper and Theft Prevention Standards.

§ 567.3 Definitions.

Addendum means the document described in §568.5 of this chapter.

Altered vehicle means a completed vehicle previously certified in accordance with §567.4 or §567.5 that has been altered other than by the addition, substitution, or removal of readily attachable components, such as mirrors or tire and rim assemblies, or by minor finishing operations such as painting, before the first purchase of the vehicle other than for resale, in such a manner as may affect the conformity of the vehicle with one or more Federal Motor Vehicle Safety Standard(s) or the validity of the vehicle’s stated weight ratings or vehicle type classification.

ALTERER means a person who alters by addition, substitution, or removal of
components (other than readily attachable components) a certified vehicle before the first purchase of the vehicle other than for resale.

Chassis-cab means an incomplete vehicle, with a completed occupant compartment, that requires only the addition of cargo-carrying, work-performing, or load-bearing components to perform its intended functions.

Completed vehicle means a vehicle that requires no further manufacturing operations to perform its intended function.

Final-stage manufacturer means a person who performs such manufacturing operations on an incomplete vehicle that it becomes a completed vehicle.

Incomplete trailer means a vehicle that is capable of being drawn and that consists, at a minimum, of a chassis (including the frame) structure and suspension system but needs further manufacturing operations performed on it to become a completed vehicle.

Incomplete vehicle means

(1) An assemblage consisting, at a minimum, of chassis (including the frame) structure, power train, steering system, suspension system, and braking system, in the state that those systems are to be part of the completed vehicle, but requires further manufacturing operations to become a completed vehicle; or

(2) An incomplete trailer.

Incomplete vehicle document or IVD means the document described in 49 CFR 568.4(a) and (b).

Incomplete vehicle manufacturer means a person who manufactures an incomplete vehicle by assembling components none of which, taken separately, constitute an incomplete vehicle.

Intermediate manufacturer means a person, other than the incomplete vehicle manufacturer or the final-stage manufacturer, who performs manufacturing operations on a vehicle manufactured in two or more stages.

§ 567.4 Requirements for manufacturers of motor vehicles.

(a) Each manufacturer of motor vehicles (except vehicles manufactured in two or more stages) shall affix to each vehicle a label, of the type and in the manner described below, containing the statements specified in paragraph (g) of this section.

(b) The label shall be riveted or permanently affixed in such a manner that it cannot be removed without destroying or defacing it.

(c) Except for trailers and motorcycles, the label shall be affixed to either the hinge pillar, door-latch post, or the door edge that meets the door-latch post, next to the driver’s seating position, or if none of these locations is practicable, to the left side of the instrument panel. If that location is also not practicable, the label shall be affixed to the inward-facing surface of the door next to the driver’s seating position. If none of the preceding locations is practicable, notification of that fact, together with drawings or photographs showing a suggested alternate location in the same general area, shall be submitted for approval to the Administrator, National Highway Traffic Safety Administration, Washington, D.C. 20590. The location of the label shall be such that it is easily readable without moving any part of the vehicle except an outer door.

(d) The label for trailers shall be affixed to a location on the forward half of the left side, such that it is easily readable from outside the vehicle without moving any part of the vehicle.

(e) The label for motorcycles shall be affixed to a permanent member of the vehicle as close as is practicable to the intersection of the steering post with the handle bars, in a location such that it is easily readable without moving any part of the vehicle except the steering system.

(f) The lettering on the label shall be of a color that contrasts with the background of the label.

(g) The label shall contain the following statements, in the English language, lettered in block capitals and numerals not less than three thirty-seconds of an inch high, in the order shown:

(1) Name of manufacturer: Except as provided in paragraphs (g)(1)(i), (ii) and (iii) of this section, the full corporate or individual name of the actual assembler of the vehicle shall be spelled out, except that such abbreviations as "Co." or "Inc." and their foreign equivalents, and the first and middle
initials of individuals, may be used. The name of the manufacturer shall be preceded by the words “Manufactured
By” or “Mfd By.” In the case of imported vehicles to which the label re-
quired by this section is affixed by the Registered Importer, the name of the
Registered Importer shall also be placed on the label in the manner de-
scribed in this paragraph, directly below the name of the actual assem-
bler.

(i) If a vehicle is assembled by a corporation that is controlled by another
corporation that assumes responsibility for conformity with the stan-
ards, the name of the controlling corporation may be used.

(ii) If a vehicle is fabricated and de-
livered in complete but unassembled form, such that it is designed to be as-
sembled without special machinery or tools, the fabricator of the vehicle may
affix the label and name itself as the manufacturer for the purposes of this
section.

(iii) If a trailer is sold by a person
who is not its manufacturer, but who is
engaged in the manufacture of trailers
and assumes legal responsibility for all
duties and liabilities imposed by the
Act with respect to that trailer, the
name of that person may appear on the
label as the manufacturer. In such a
case the name shall be preceded by the
words “Responsible Manufacturer” or
“Resp Mfr.”

(2) Month and year of manufacture:
This shall be the time during which
work was completed at the place of
main assembly of the vehicle. It may
be spelled out, as “June 2000”, or ex-
pressed in numerals, as “6/00”.

(3) “Gross Vehicle Weight Rating” or
“GVWR” followed by the appropriate
value in pounds, which shall not be less
than the sum of the unloaded vehicle
weight, rated cargo load, and 150
pounds times the number of the vehi-
cle’s designated seating positions. How-
ever, for school buses the minimum oc-
cupant weight allowance shall be 120
pounds per passenger and 150 pounds
for the driver.

(4) “Gross Axle Weight Rating” or
“GAWR,” followed by the appropriate
value in pounds, for each axle, identi-
fied in order from front to rear (e.g.,
front, first intermediate, second inter-
mediate, rear). The ratings for any con-
secutive axles having identical gross
axle weight ratings when equipped with
tires having the same tire size designa-
tion may, at the option of the manu-
facturer, be stated as a single value,
with the label indicating to which
axles the ratings apply.

Examples of combined ratings: GAWR:
(a) All axles—2,400 kg (5,290 lb) with LT245/
75R16(E) tires.
(b) Front—5,215 kg (11,500 lb) with 295/
75R22.5(G) tires.
First intermediate to rear—9,070 kg (20,000
lb) with 295/75R22.5(G) tires.

(5) One of the following statements,
as appropriate:
(i) For passenger cars, the statement:
“This vehicle conforms to all applica-
tble Federal motor vehicle safety,
bumper, and theft prevention standards
in effect on the date of manufacture
shown above.” The expression “U.S.”
or “U.S.A.” may be inserted before the
word “Federal”.

(ii) In the case of multipurpose pas-
senger vehicles (MPVs) and trucks with
a GVWR of 6,000 pounds or less, the
statement: “This vehicle conforms to
all applicable Federal motor vehicle
safety and theft prevention standards
in effect on the date of manufacture
shown above.” The expression “U.S.”
or “U.S.A.” may be inserted before the
word “Federal”.

(iii) In the case of multipurpose pas-
senger vehicles (MPVs) and trucks with
a GVWR of over 6,000 pounds, the state-
ment: “This vehicle conforms to all ap-
plicable Federal motor vehicle safety
standards in effect on the date of man-
ufacture shown above.” The expression
“U.S.” or “U.S.A.” may be inserted be-
fore the word “Federal”.

(iv) For all other vehicles, the state-
ment: “This vehicle conforms to all ap-
plicable Federal motor vehicle safety
standards in effect on the date of man-
ufacture shown above.” The expression
“U.S.” or “U.S.A.” may be inserted be-
fore the word “Federal”.

(6) Vehicle identification number.
(7) The type classification of the ve-
hicle as defined in §571.3 of this chapter
(e.g., truck, MPV, bus, trailer).

(h) Multiple GVWR–GAWR ratings. (1)
(For passenger cars only) In cases in
which different tire sizes are offered as
a customer option, a manufacturer
may at its option list more than one set of values for GVWR and GAWR, to meet the requirements of paragraphs (g) (3) and (4) of this section. If the label shows more than one set of weight rating values, each value shall be followed by the phrase "with tires," inserting the proper tire size designations. A manufacturer may, at its option, list one or more tire sizes where only one set of weight ratings is provided.

Example: Passenger Car
GVWR: 4,400 lb with P195/65R15 tires; 4,800 lb with P205/75R15 tires.
GAWR: Front—2,000 lb with P195/65R15 tires at 24 psi; 2,200 lb with P205/75R15 tires at 24 psi. Rear—2,400 lb with P195/65R15 tires at 28 psi; 2,600 lb with P205/75R15 tires at 28 psi.

(2) (For multipurpose passenger vehicles, trucks, buses, trailers, and motorcycles) The manufacturer may, at its option, list more than one GVWR-GAWR-tire-rim combination on the label, as long as the listing contains the tire-rim combination installed as original equipment on the vehicle by the manufacturer and conforms in content and format to the requirements for tire-rim-inflation information set forth in Standard Nos. 110, 120, 129 and 139 (§§ 571.110, 571.120, 571.129 and 571.139 of this chapter).

(3) At the option of the manufacturer, additional GVWR-GAWR ratings for operation of the vehicle at reduced speeds may be listed at the bottom of the certification label following any information that is required to be listed.

(i) [Reserved]

(j) A manufacturer may, at its option, provide information concerning which tables in the document that accompanies the vehicle, pursuant to § 575.6(a) of this chapter apply to the vehicle. This information may not precede or interrupt the information required by paragraph (g) of this section.

(k) In the case of passenger cars imported into the United States under 49 CFR 591.5(f) in which the label required by this section has not been affixed by the original assembler of the passenger car, a label meeting the requirements of this paragraph shall be affixed before the vehicle is imported into the United States, if the car is from a line listed in appendix A of 49 CFR part 541. This label shall be in addition to, and not in place of, the label required by paragraphs (a) through (j), inclusive, of this section.

(1) The label shall be riveted or permanently affixed in such a manner that it cannot be removed without destroying or defacing it.

(2) The label shall be affixed to either the hinge pillar, door-latch post, or the door edge that meets the door-latch post, next to the driver’s seating position, or, if none of these locations is practicable, to the left side of the instrument panel. If that location is also not practicable, the label shall be affixed to the inward-facing surface of the door next to the driver’s seating position. The location of the label shall be such that it is easily readable without moving any part of the vehicle except an outer door.

(3) The lettering on the label shall be of a color that contrasts with the background of the label.

(4) The label shall contain the following statements, in the English language, lettered in block capitals and numerals not less than thirty seconds of an inch high, in the order shown:

(i) Model year (if applicable) or year of manufacture and line of the vehicle, as reported by the manufacturer that produced or assembled the vehicle. "Model year" is used as defined in § 593.4 of this chapter. "Line" is used as defined in § 541.4 of this chapter.

(ii) Name of the importer. The full corporate or individual name of the importer of the vehicle shall be spelled out, except that such abbreviations as "Co." or "Inc." and their foreign equivalents and the middle initial of individuals, may be used. The name of the importer shall be preceded by the words "Imported By".

(iii) The statement: “This vehicle conforms to the applicable Federal motor vehicle theft prevention standard in effect on the date of manufacture.”

(l) In the case of a passenger car imported into the United States under 49 CFR 591.5(f) which does not have a vehicle identification number that complies with 49 CFR 565.4 (b), (c), and (g) at the time of importation, the Registered Importer shall permanently
§ 567.5 Requirements for manufacturers of vehicles manufactured in two or more stages.

(a) Location of information labels for incomplete vehicles. Each incomplete vehicle manufacturer or intermediate vehicle manufacturer shall permanently affix a label to each incomplete vehicle, in the location and form specified in §567.4, and in a manner that does not obscure other labels. If the locations specified in 49 CFR 567.4(c) are not practicable, the label may be provided as part of the IVD package so that it can be permanently affixed in the acceptable locations provided for in that subsection when the vehicle is sufficiently manufactured to allow placement in accordance therewith.

(b) Incomplete vehicle manufacturers.

(1) Except as provided in paragraph (f) of this section and notwithstanding the certification of a final-stage manufacturer under §567.5(d)(2)(v), each manufacturer of an incomplete vehicle assumes legal responsibility for all certification-related duties and liabilities under the Vehicle Safety Act with respect to:

(i) Components and systems it installs or supplies for installation on the incomplete vehicle, unless changed by a subsequent manufacturer;

(ii) The vehicle as further manufactured or completed by an intermediate or final-stage manufacturer, to the extent that the vehicle is completed in accordance with the IVD; and

(iii) The accuracy of the information contained in the IVD.

(2) Except as provided in paragraph (f) of this section, each incomplete vehicle manufacturer shall affix an information label to each incomplete vehicle that contains the following statements:

(i) Name of incomplete vehicle manufacturer preceded by the words “incomplete vehicle MANUFACTURED BY” or “incomplete vehicle MFD BY”.

(ii) Month and year of manufacture of the incomplete vehicle. This may be spelled out, as in “JUNE 2000”, or expressed in numerals, as in “6/00”. No preface is required.

(iii) “Gross Vehicle Weight Rating” or “GVWR” followed by the appropriate value in kilograms and (pounds), which shall not be less than the sum of the unloaded vehicle weight, rated cargo load, and 150 pounds times the number of the vehicle’s designated seating positions, if known. However, for school buses the minimum occupant weight allowance shall be 120 pounds per passenger and 150 pounds for the driver.

(iv) “Gross Axle Weight Rating” or “GAWR,” followed by the appropriate value in kilograms and (pounds) for each axle, identified in order from front to rear (e.g., front, first intermediate, second intermediate, rear). The ratings for any consecutive axles having identical gross axle weight ratings when equipped with tires having the same tire size designation may be stated as a single value, with the label indicating to which axles the ratings apply.

(v) Vehicle Identification Number.

(c) Intermediate manufacturers. (1) Except as provided in paragraphs (f) and (g) of this section and notwithstanding the certification of a final-stage manufacturer under §567.5(d)(2)(v), each intermediate manufacturer of a vehicle manufactured in two or more stages assumes legal responsibility for all certification-related duties and liabilities under the Vehicle Safety Act with respect to:

(i) Components and systems it installs or supplies for installation on
the incomplete vehicle, unless changed by a subsequent manufacturer;

(ii) The vehicle as further manufactured or completed by an intermediate or final-stage manufacturer, to the extent that the vehicle is completed in accordance with the addendum to the IVD furnished by the intermediate vehicle manufacturer;

(iii) Any work done by the intermediate manufacturer on the incomplete vehicle that was not performed in accordance with the IVD or an addendum of a prior intermediate manufacturer; and

(iv) The accuracy of the information in any addendum to the IVD furnished by the intermediate vehicle manufacturer.

(2) Except as provided in paragraphs (f) and (g) of this section, each intermediate manufacturer of an incomplete vehicle shall affix an information label, in a manner that does not obscure the labels applied by previous stage manufacturers, to each incomplete vehicle, which contains the following statements:

(i) Name of intermediate manufacturer, preceded by the words “INTERMEDIATE MANUFACTURE BY” or “INTERMEDIATE MFR”.

(ii) Month and year in which the intermediate manufacturer performed its last manufacturing operation on the incomplete vehicle. This may be spelled out, as “JUNE 2000”, or expressed as numerals, as “6/00”. No preface is required.

(iii) “Gross Vehicle Weight Rating” or “GVWR”, followed by the appropriate value in kilograms and (pounds), if different from that identified by the incomplete vehicle manufacturer.

(iv) “Gross Axle Weight Rating” or “GAWR”, followed by the appropriate value in kilograms and (pounds) for each axle, identified in order from front to rear (e.g., front, first intermediate, second intermediate, rear). The ratings for any consecutive axles having identical gross axle weight ratings when equipped with tires having the same tire size designation may be stated as a single value, with the label indicating to which axles the ratings apply.

Examples of combined ratings: (a) All axles—2,400 kg (5,290 lb) with LT245/75R16(E) tires; (b) Front—5,215 kg (11,500 lb) with 295/75R22.5(G) tires; (c) First intermediate to rear—9,070 kg (20,000 lb) with 295/75R22.5(G) tires.
§ 567.6 Requirements for persons who do not alter certified vehicles or do so with readily attachable components.

A person who does not alter a motor vehicle or who alters such a vehicle only by the addition, substitution, or removal of readily attachable components such as mirrors or tires and rim assemblies, or minor finishing operations such as painting, in such a manner that the vehicle's stated weight ratings are still valid, need not affix a label to the vehicle. If such a person is a distributor of the motor vehicle, allowing the manufacturer's label to remain affixed to the vehicle shall satisfy the distributor's certification requirements under the Vehicle Safety Act.

§ 567.7 Requirements for persons who alter certified vehicles.

(a) With respect to the vehicle alterations it performs, an alterer:

(1) Has a duty to determine continued conformity of the altered vehicle with applicable Federal motor vehicle safety, Bumper, and Theft Prevention standards, and

(2) Assumes legal responsibility for all duties and liabilities for certification under the Vehicle Safety Act.
(b) The vehicle manufacturer’s certification label and any information labels shall remain affixed to the vehicle and the alterer shall affix to the vehicle an additional label in the manner and location specified in §567.4, in a manner that does not obscure any previously applied labels, and containing the following information:

(1) The statement: “This vehicle was altered by (individual or corporate name) in (month and year in which alterations were completed) and as altered it conforms to all applicable Federal Motor Vehicle Safety, Bumper and Theft Prevention Standards affected by the alteration and in effect in (month, year).” The second date shall be no earlier than the date of manufacture of the certified vehicle (as specified on the certification label), and no later than the date alterations were completed.

(2) If the gross vehicle weight rating or any of the gross axle weight ratings of the vehicle as altered are different from those shown on the original certification label, the modified values shall be provided in the form specified in §567.4(g)(3) and (4).

(3) If the vehicle as altered has a different type classification from that shown on the original certification label, the type as modified shall be provided.

§ 568.4 Requirements for incomplete vehicle manufacturers.

(a) The incomplete vehicle manufacturer shall furnish for each incomplete vehicle, at or before the time of delivery, an incomplete vehicle document (“IVD”) that contains the following statements, in the order shown, and all other information required by this part to be included therein:

(1) Name and mailing address of the incomplete vehicle manufacturer.

(2) Month and year during which the incomplete vehicle manufacturer performed its last manufacturing operation on the incomplete vehicle.

(3) Identification of the incomplete vehicle(s) to which the document applies. The identification shall be by vehicle identification number (VIN) or groups of VINS to permit a person to ascertain positively that a document
§ 568.5 Requirements for intermediate manufacturers.

Each intermediate manufacturer of a vehicle manufactured in two or more stages shall furnish to the final-stage manufacturer the document required by 49 CFR 568.4 in the manner specified in that section. If any of the changes in the vehicle made by the intermediate manufacturer affects the validity of the statements in the IVD, that manufacturer shall furnish an addendum to

(4) Gross vehicle weight rating (GVWR) of the completed vehicle for which the incomplete vehicle is intended.

(5) Gross axle weight rating (GAWR) for each axle of the completed vehicle for which the incomplete vehicle is intended, listed and identified in order from front to rear (e.g., front, first intermediate, second intermediate, rear). The ratings for any consecutive axles having identical gross axle weight ratings when equipped with tires having the same tire size designation may, at the option of the incomplete vehicle manufacturer, be stated as a single value, with the label indicating to which axles the ratings apply.

Examples of combined ratings:

(a) All axles—2,400 kg (5,290 lb) with LT245/75R16(E) tires;
(b) Front—5,215 kg (11,500 lb) with 295/75R22.5(G) tires.

(6) Listing of the vehicle types as defined in 49 CFR 571.3 (e.g., truck, MPV, bus, trailer) into which the incomplete vehicle may appropriately be manufactured.

(7) Listing, by number, of each standard, in effect at the time of manufacture of the incomplete vehicle, that applies to any of the vehicle types listed in paragraph (a)(6) of this section, followed in each case by one of the following three types of statement, as applicable:

(i) Type 1—A statement that the vehicle when completed will conform to the standard if no alterations are made in identified components of the incomplete vehicle.

Example: 104—This vehicle when completed will conform to FMVSS No. 104, Windshield Wiping and Washing Systems, if no alterations are made in the windshield wiper components.

(ii) Type 2—A statement of specific conditions of final manufacture under which the manufacturer specifies that the completed vehicle will conform to the standard.

Example: 121—This vehicle when completed will conform to FMVSS No. 121, Air Brake Systems, if it does not exceed any of the gross axle weight ratings, if the center of gravity at GVWR is not higher than nine feet above the ground, and if no alterations are made in any brake system component.

(iii) Type 3—A statement that conformity with the standard cannot be determined based upon the components supplied on the incomplete vehicle, and that the incomplete vehicle manufacturer makes no representation as to conformity with the standard.

(8) Each document shall contain a table of contents or chart summarizing all the standards applicable to the vehicle pursuant to 49 CFR 568.4(a)(7).

(9) A certification that the statements contained in the incomplete vehicle document are accurate as of the date of manufacture of the incomplete vehicle and can be used and relied on by any intermediate and/or final-stage manufacturer as a basis for certification.

(b) To the extent the IVD expressly incorporates by reference body builder or other design and engineering guidance (Reference Material), the incomplete vehicle manufacturer shall make such Reference Material readily available to subsequent manufacturers. Reference Materials incorporated by reference in the IVD shall be deemed to be part of the IVD.

(c) The IVD shall be attached to the incomplete vehicle in such a manner that it will not be inadvertently detached, or alternatively, it may be sent directly to a final-stage manufacturer, intermediate manufacturer or purchaser for purposes other than resale to whom the incomplete vehicle is delivered. The Reference Material in paragraph (b) of this section need not be attached to each vehicle.

the IVD that contains its name and mailing address and an indication of all changes that should be made in the IVD to reflect changes that it made to the vehicle. The addendum shall contain a certification by the intermediate manufacturer that the statements contained in the addendum are accurate as of the date of manufacture by the intermediate manufacturer and can be used and relied on by any subsequent intermediate manufacturer(s) and the final-stage manufacturer as a basis for certification.

§ 569.3 Definitions.

The National Highway Traffic Safety Admin., DOT § 569.3

§ 568.6 Requirements for final-stage manufacturers.

Each final-stage manufacturer shall complete the vehicle in such a manner that it conforms to the applicable standards in effect on the date selected by the final-stage manufacturer, including the date of manufacture of the incomplete vehicle, the date of final completion, or a date between those two dates. This requirement shall, however, be superseded by any conflicting provisions of a standard that applies by its terms to vehicles manufactured in two or more stages.

§ 568.7 Requirements for manufacturers who assume legal responsibility for a vehicle.

(a) If an incomplete vehicle manufacturer assumes legal responsibility for all duties and liabilities imposed on manufacturers by the National Traffic and Motor Vehicle Safety Act, as amended (49 U.S.C. chapter 301) (hereafter referred to as the Act), with respect to a vehicle as finally manufactured, the requirements of §§ 568.4, 568.5 and 568.6 do not apply to that vehicle. In such a case, the incomplete vehicle manufacturer shall ensure that a label is affixed to the final vehicle in conformity with 49 CFR 567.5(f).

(b) If an intermediate manufacturer of a vehicle assumes legal responsibility for all duties and liabilities imposed on manufacturers by the Vehicle Safety Act, with respect to the vehicle as finally manufactured, §§ 568.5 and 568.6 do not apply to that vehicle. In such a case, the intermediate manufacturer shall ensure that a label is affixed to the final vehicle in conformity with 49 CFR 567.5(g). The assumption of responsibility by an intermediate manufacturer does not, however, change the requirements for incomplete vehicle manufacturers in § 568.4.

PART 569—REGROOVED TIRES

Sec.

569.1 Purpose and scope.

569.3 Definitions.

569.5 Applicability.

569.7 Requirements.

569.9 Labeling of regroovable tires.

AUTHORITY: Secs. 119, 204, 80 Stat. 728, 729 (15 U.S.C. 1407, 1424); and Secretary’s delegation of authority, 49 CFR 1.4(c).

§ 569.1 Purpose and scope.

This part sets forth the conditions under which regrooved and regroovable tires manufactured or regrooved after the effective date of the regulation may be sold, offered for sale, introduced for sale or delivered for introduction into interstate commerce.

[42 FR 21613, Apr. 28, 1977]

§ 569.3 Definitions.

(a) Statutory definitions. All terms used in this part that are defined in section 102 of the National Traffic and Motor Vehicle Safety Act of 1966 (15 U.S.C. 1391) are used as defined in the Act.

(b) Motor Vehicle Safety Standard definitions. Unless otherwise indicated, all terms used in this part that are defined in the Motor Vehicle Safety Standards, part 571, of this subchapter (hereinafter “The Standards”), are used as defined therein without regard to the applicability of a standard in which a definition is contained.

(c) Regroovable tire means a tire, either original tread or retread, designed and constructed with sufficient tread material to permit renewal of the tread pattern or the generation of a new tread pattern in a manner which conforms to this part.

(d) Regrooved tire means a tire, either original tread or retread, on which the tread pattern has been renewed or a new tread has been produced by cutting into the tread of a worn tire to a depth equal to or deeper than the molded original groove depth.

§ 569.5 Applicability.
(a) General. Except as provided in paragraph (b) of this section, this part applies to all motor vehicle regrooved or regroovable tires manufactured or regrooved after the effective date of the regulation.
(b) Export. This part does not apply to regrooved or regroovable tires intended solely for export and so labeled or tagged.

§ 569.7 Requirements.
(a) Regrooved tires. (1) Except as permitted by paragraph (a)(2) of this section, no person shall sell, offer for sale, or introduce or deliver for introduction into interstate commerce regrooved tires produced by removing rubber from the surface of a worn tire tread to generate a new tread pattern. Any person who regrooves tires and leases them to owners or operators of motor vehicles and any person who regrooves his own tires for use on motor vehicles is considered to be a person delivering for introduction into interstate commerce within the meaning of this part.
(2) A regrooved tire may be sold, offered for sale, or introduced for sale or delivered for introduction into interstate commerce only if it conforms to each of the following requirements:
(i) The tire being regrooved shall be a regroovable tire;
(ii) After regrooving, cord material below the grooves shall have a protective covering of tread material at least \(\frac{3}{32} \)-inch thick;
(iii) After regrooving, the new grooves generated into the tread material and any residual original molded tread groove which is at or below the new regrooved depth shall have a minimum of 90 linear inches of tread edges per linear foot of the circumference;
(iv) After regrooving, the new groove width generated into the tread material shall be a minimum of \(\frac{3}{16} \)-inch and a maximum of \(\frac{5}{16} \)-inch;
(v) After regrooving, all new grooves cut into the tread shall provide unobstructed fluid escape passages; and
(vi) After regrooving, the tire shall not contain any of the following defects, as determined by a visual examination of the tire either mounted on the rim, or dismounted, whichever is applicable:
(A) Cracking which extends to the fabric,
(B) Groove cracks or wear extending to the fabric, or
(C) Evidence of ply, tread, or sidewall separation;
(vii) If the tire is siped by cutting the tread surface without removing rubber, the tire cord material shall not be damaged as a result of the siping process, and no sipe shall be deeper than the original or retread groove depth.

§ 569.9 Labeling of regroovable tires.
(a) Regroovable tires. After August 30, 1969, each tire designed and constructed for regrooving shall be labeled on both sidewalls with the word “Regroovable” molded on or into the tire in raised or recessed letters 0.025 to 0.040 inch. The word “Regroovable” shall be in letters 0.38 to 0.50 inch in height and not less than 4 inches and not more than 6 inches in length. The lettering shall be located in the side-wall of the tire between the maximum section width and the bead in an area which will not be obstructed by the rim flange.

PART 570—VEHICLE IN USE INSPECTION STANDARDS
Subpart A—Vehicles With GVWR of 10,000 Pounds or Less

Sec. 570.1 Scope.
570.2 Purpose.
570.3 Applicability.
570.4 Definitions.
570.5 Service brake system.

258
§ 570.5 Service brake system.

Unless otherwise noted, the force to be applied during inspection procedures to power-assisted and full-power brake systems is 25 lb, and to all other systems, 50 lb.

(a) Failure indicator. The brake system failure indicator lamp, if part of a vehicle’s original equipment, shall be operable. (This lamp is required by Federal Motor Vehicle Safety Standard No. 105, 49 CFR 571.105, on every new passenger car manufactured on or after January 1, 1968, and on other types of motor vehicles manufactured on or after September 1, 1975.)

(1) Inspection procedure. Apply the parking brake and turn the ignition to start, or verify lamp operation by other means indicated by the vehicle manufacturer that the brake system failure indicator lamp is operable.

(b) Brake system integrity. The brake system shall demonstrate integrity as indicated by no perceptible decrease in pedal height under a 125 pound force applied to the brake pedal or by no illumination of the brake system failure indicator lamp. The brake system shall withstand the application of force to the pedal without failure of any line or other part.

(1) Inspection procedure. With the engine running on vehicles equipped with power brake systems, and the ignition turned to “on” in other vehicles, apply a force of 125 pounds to the brake pedal and hold for 10 seconds. Note any decrease in pedal height, and whether the lamp illuminates.

(c) Brake pedal reserve. When the brake pedal is fully depressed, the distance that the pedal has traveled from its free position shall be not greater than 80 percent of the total distance from its free position to the floorboard or other object that restricts pedal travel.

(1) Inspection procedure. Measure the distance (A) from the free pedal position to the floorboard or other object
that restricts brake pedal travel. Depress the brake pedal, and with the force applied measure the distance (B) from the depressed pedal position to the floorboard or other object that restricts pedal travel. Determine the percentage as

\[
\left(\frac{A-B}{A}\right) \times 100.
\]

The engine must be operating when power-assisted brakes are checked. The pedal reserve check is not required for vehicles equipped with full power (central hydraulic) brake systems, or to vehicles with brake systems designed to operate with greater than 80 percent pedal travel.

(d) Service brake performance. Compliance with one of the following performance criteria will satisfy the requirements of this section. Verify that tire inflation pressure is within the limits recommended by vehicle manufacturer before conducting either of the following tests.

(1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 20 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively.

 (i) Inspection procedure. The vehicle shall be tested on a drive-on platform, or a roller-type brake analyzer with the capability of measuring equalization. The test shall be conducted in accordance with the test equipment manufacturer’s specifications. Note the left to right brake force variance.

(2) Road test. The service brake system shall stop the vehicle in a distance of 25 feet or less from a speed of 20 miles per hour without leaving a 12-foot-wide lane.

 (i) Inspection procedure. The road test shall be conducted on a level (not to exceed plus or minus one percent grade) dry, smooth, hard-surfaced road that is free from loose material, oil, or grease. The service brakes shall be applied at a vehicle speed of 20 miles per hour and the vehicle shall be brought to a stop as specified. Measure the distance required to stop.

(e) Brake hoses and assemblies. Brake hoses shall not be mounted so as to contact the vehicle body or chassis. Hoses shall not be cracked, chafed, or flattened. Protective devices, such as “rub rings,” shall not be considered part of the hose or tubing.

 (1) Inspection procedure. Examine visually, inspecting front brake hoses through all wheel positions from full left to full right for conditions indicated.

Note: To inspect for paragraphs (f), (g), and (h) of this section, remove at a minimum one front wheel and one rear wheel.

(f) Disc and drum condition. If the drum is embossed with a maximum safe diameter dimension or the rotor is embossed with a minimum safety thickness dimension, the drum or disc shall be within the appropriate specifications. These dimensions will be found on motor vehicles manufactured since January 1, 1971, and may be found on vehicles manufactured for several years prior to that time. If the drums and discs are not embossed, the drums and discs shall be within the manufacturer’s specifications.

 (1) Inspection procedure. Examine visually for condition indicated, measuring as necessary.

(g) Friction materials. On each brake the thickness of the lining or pad shall not be less than one thirty-second of an inch over the rivet heads, or the brake shoe on bonded linings or pads. Brake linings and pads shall not have cracks or breaks that extend to rivet holes except minor cracks that do not impair attachment. Drum brake linings shall be securely attached to brake shoes. Disc brake pads shall be securely attached to shoe plates.

 (1) Inspection procedure. Examine visually for conditions indicated, and measure height of rubbing surface of lining over rivet heads. Measure bonded lining thickness over shoe surface at the thinnest point on the lining or pad.

(h) Structural and mechanical parts. Backing plates and caliper assemblies shall not be deformed or cracked. System parts shall not be broken, misaligned, missing, binding, or show evidence of severe wear. Automatic adjusters and other parts shall be assembled and installed correctly.
§ 570.6 Brake power unit.

(a) Vacuum hoses shall not be collapsed, abraded, broken, improperly mounted, or audibly leaking. With residual vacuum exhausted and a constant 25 pound force on the brake pedal, the pedal shall fall slightly when the engine is started, demonstrating integrity of the power assist system. This test is not applicable to vehicles equipped with full power brake system as the service brake performance test shall be considered adequate test of system performance.

(1) Inspection procedure. With engine running, examine hoses visually and aurally for conditions indicated. Stop engine and apply service brakes several times to destroy vacuum in system. Depress brake pedal with 25 pounds of force and while maintaining that force, start the engine. If brake pedal does not fall slightly under force when the engine starts, there is a malfunction in the power assist system.

§ 570.7 Steering systems.

(a) System play. Lash or free play in the steering system shall not exceed values shown in Table 1.

(1) Inspection procedure. With the engine on and the wheels in the straight ahead position, turn the steering wheel in one direction until there is a perceptible movement of a front wheel. If a point on the steering wheel rim moves more than the value shown in Table 1 before perceptible return movement of the wheel under observation, there is excessive lash or free play in the steering system.

(b) Linkage play. Free play in the steering linkage shall not exceed one-quarter of an inch.

(1) Inspection procedure. Elevate the front end of the vehicle to load the ball joints. Insure that wheel bearings are correctly adjusted. Grasp the front and rear of a tire and attempt to turn the tire and wheel assembly left and right. If the free movement at the front or rear tread of the tire exceeds one-quarter inch there is excessive steering linkage play.

(c) Free turning. Steering wheels shall turn freely through the limit of travel in both directions.

(1) Inspection procedure. Turn off steering wheel through the limit of travel in both directions. Feel for binding or jamming in the steering gear mechanism.

(d) Alignment. Toe-in and toe-out measurements shall not be greater than 1.5 times the value listed in the vehicle manufacturer’s service specification for alignment setting.

(1) Inspection procedure. Verify that toe-in or toe-out is not greater than 1.5 times the values listed in the vehicle manufacturer’s service specification for alignment settings as measured by a bar-type scuff gauge or other toe-in measuring device. Values to convert toe-in readings in inches to scuff gauge readings in ft/mi side-slip for different wheel sizes are provided in Table 1. Tire diameters used in computing scuff gauge readings are based on the average maximum tire dimensions of grown tires in service for typical wheel and tire assemblies.

Table 1—Steering System Free Play Values

<table>
<thead>
<tr>
<th>Steering wheel diameter (inches)</th>
<th>Lash (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 or less</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>2 1/4</td>
</tr>
<tr>
<td>20</td>
<td>2 1/2</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1—Toe-in Settings from Vehicle MFR’s Service Specifications

<table>
<thead>
<tr>
<th>Wheel size (inches)</th>
<th>Nominal tire diameter (inches)</th>
<th>Readings in ft per mile sideslip</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.2</td>
<td>26.2</td>
<td>23.0</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.4</td>
<td>25.0</td>
<td>20.0</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>23.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>

VerDate Sep 11 2014 11:07 Jan 24, 2017 Jkt 238230 PO 00000 Frm 00271 Fmt 8010 Sfmt 8010 Q:\49\49V6.TXT 31lpowell on DSK54DXVN1OFR with $$_JOB
(e) Power steering system. The power steering system shall not have cracked or slipping belts, or insufficient fluid in the reservoir.

(1) Inspection procedure. Examine fluid reservoir and pump belts for conditions indicated.

{38 FR 23950, Sept. 5, 1973, as amended at 39 FR 12868, Apr. 9, 1974}

§ 570.8 Suspension systems.

(a) Suspension condition. Ball joint seals shall not be cut or cracked. Structural parts shall not be bent or damaged. Stabilizer bars shall be connected. Springs shall not be broken, or extended above the vehicle manufacturer's design height. Spacers, if installed, shall be installed on both front springs, both rear springs, or on all four springs. Shock absorber mountings, shackles, and U-bolts shall be securely attached. Rubber bushings shall not be cracked, extruded out from or missing from suspension joints. Radius rods shall not be missing or damaged.

(1) Inspection procedure. Examine front and rear end suspension parts for conditions indicated.

(b) Shock absorber condition. There shall be no oil on the shock absorber housing attributable to leakage by the seal, and the vehicle shall not continue free rocking motion for more than two cycles.

(1) Inspection procedure. Examine shock absorbers for oil leaking from within, then with vehicle on a level surface, push down on one end of vehicle and release. Note number of cycles of free rocking motion. Repeat procedure at other end of vehicle.

{38 FR 23950, Sept. 5, 1973, as amended at 44 FR 68470, Nov. 29, 1979}

§ 570.9 Tires.

(a) Tread depth. The tread on each tire shall be not less than two thirty seconds of an inch deep.

(1) Inspection procedure. Passenger car tires have tread depth indicators that become exposed when tread depth is less than two thirty seconds of an inch. Inspect for indicators in any two adjacent major grooves at three locations spaced approximately equally around the outside of the tire. For vehicles other than passenger cars, it may be necessary to measure tread depth with a tread gauge.

(b) Type. Vehicle shall be equipped with tires on the same axle that are matched in tire size designation, construction, and profile.

(1) Inspection procedures. Examine visually. A major mismatch in tire size designation, construction, and profile between tires on the same axle, or a major deviation from the size as recommended by the manufacturer (e.g., as indicated on the glove box placard on 1968 and later passenger cars) are causes for rejection.

(c) General condition. Tires shall be free from chunking, bumps, knots, or bulges evidencing cord, ply, or tread separation from the casing or other adjacent materials.

(1) Inspection procedure. Examine visually for conditions indicated.

(d) Damage. Tire cords or belting materials shall not be exposed, either to the naked eye or when cuts or abrasions on the tire are probed.

(1) Inspection procedures. Examine visually for conditions indicated, using a blunt instrument if necessary to probe cuts or abrasions.

{38 FR 23950, Sept. 5, 1973, as amended at 39 FR 12868, Apr. 9, 1974; 39 FR 19781, June 4, 1974}

§ 570.10 Wheel assemblies.

(a) Wheel integrity. A tire rim, wheel disc, or spider shall have no visible cracks, elongated bolt holes, or indication of repair by welding.

(1) Inspection procedure. Examine visually for conditions indicated.
§ 570.55 Hydraulic brake system.

The following requirements apply to vehicles with hydraulic brake systems.

(a) Brake system failure indicator. The hydraulic brake system failure indicator lamp, if part of a vehicle’s original equipment, shall be operable.

(1) Inspection procedure. Apply the parking brake and turn the ignition to start to verify that the brake system failure indicator lamp is operable, or verify by other means recommended by the vehicle manufacturer.

(b) Brake system integrity. The hydraulic brake system shall demonstrate integrity as indicated by no perceptible decrease in pedal height under a 125-pound force applied to the brake pedal and by no illumination of the brake system failure indicator lamp. The brake system shall withstand the application of force to the pedal without failure of any tube, hose or other part.

(1) Inspection procedure. With the engine running in vehicles equipped with power brake systems and the ignition turned to “on” in other vehicles, apply a force of 125 pounds to the brake pedal and hold for 10 seconds. Note any additional decrease in pedal height after the initial decrease, and whether the brake system failure indicator lamp illuminates.

(c) Brake pedal reserve. When the brake pedal is depressed with a force of 50 pounds, the distance that the pedal has traveled from its free position shall be not greater than 80 percent of the total distance from its free position to

(b) Deformation. The lateral and radial runout of each rim bead area shall not exceed one-eighth of an inch of total indicated runout.

(1) Inspection procedure. Using a runout indicator gauge, and a suitable stand, measure lateral and radial runout of rim bead through one full wheel revolution and note runout in excess of one-eighth of an inch.

(c) Mounting. All wheel nuts and bolts shall be in place and tight.

(1) Inspection procedure. Check wheel retention for conditions indicated.

§ 570.56 Vacuum brake assist unit and vacuum brake system.

The following requirements apply to vehicles with vacuum brake assist units and vacuum brake systems.

(a) Vacuum brake assist unit integrity. The vacuum brake assist unit shall demonstrate integrity as indicated by a decrease in pedal height when the engine is started and a constant 50-pound force is maintained on the pedal.

(1) Inspection procedure. Stop the engine and apply service brake several times to destroy vacuum in system. Depress the brake pedal with 50 pounds of force and while maintaining that force, start the engine. If the brake pedal does not move slightly under force when the engine starts, there is a malfunction in the power assist unit.

(b) Low-vacuum indicator. If the vehicle has a low-vacuum indicator, the indicator activation level shall not be less than 8 inches of mercury.

(1) Inspection procedure. Run the engine to evacuate the system fully. Shut off the engine and slowly reduce the vacuum in the system by moderate brake applications until the vehicle vacuum gauge reads 8 inches of mercury. Observe the functioning of the low-vacuum indicator.

(c) Vacuum brake system integrity. The vacuum brake system shall demonstrate integrity by meeting the following requirements:

(i) The vacuum brake system shall provide vacuum reserve to permit one service brake application with a brake pedal force of 50 pounds after the engine is turned off without actuating the low vacuum indicator.

(ii) Trailer vacuum brakes shall operate in conjunction with the truck or truck tractor brake pedal.

(2) Inspection procedure. (i) Check the trailer vacuum system by coupling trailer(s) to truck or truck tractor and opening trailer shutoff valves. Start the engine and after allowing approximately 1 minute to build up the vacuum, apply and release the brake pedal. In the case of trailer brakes equipped with brake chamber rods, observe the chamber rod movement. Run the engine to re-establish maximum vacuum, then shut off the engine and apply the brakes with a 50-pound force on the brake pedal. Note the brake application and check for low-vacuum indicator activation.

(ii) For a combination vehicle equipped with breakaway protection and no reservoir on the towing vehicle supply line, close the supply line shut-off valve and disconnect the supply line. Apply a 50-pound force to the brake pedal on the towing vehicle and release. Trailer brakes should remain in the applied position.

(d) Vacuum system hoses, tubes and connections. Vacuum hoses, tubes and connections shall be in place and properly supported. Vacuum hoses shall not be collapsed, cracked or abraded.
(1) **Inspection procedure.** With the engine running, examine hoses and tubes for the conditions indicated and note broken or missing clamps.

§ 570.57 Air brake system and air-over-hydraulic brake subsystem.

The following requirements apply to vehicles with air brake and air-over-hydraulic brake systems. Trailer(s) must be coupled to a truck or truck-tractor for the purpose of this inspection, except as noted.

(a) **Air brake system integrity.** The air brake system shall demonstrate integrity by meeting the following requirements:

(1) With the vehicle in a stationary position, compressed air reserve shall be sufficient to permit one full service brake application, after the engine is stopped and with the system fully charged, without lowering reservoir pressure more than 20 percent below the initial reading.

(2) The air brake system compressor shall increase the air pressure in the reservoir(s) from the level developed after the test prescribed in §570.57(a)(1) to the initial pressure noted before the full brake application, with the engine running at the manufacturer’s maximum recommended number of revolutions per minute with the compressor governor in the cut-off position, in not more than 30 seconds for vehicles manufactured prior to March 1, 1975. For vehicles, manufactured on or after March 1, 1975, the time allowed for air pressure buildup shall not exceed 45 seconds.

(3) The warning device (visual or audible) connected to the brake system air pressure source shall be activated when air pressure is lowered to an activating level that is not less than 50 psi. For vehicles manufactured to conform to Federal Motor Vehicle Safety Standard No. 121, the low-pressure indicator shall be activated when air pressure is lowered to an activating level that is not less than 60 psi.

(4) The governor cut-in pressure shall be not lower than 80 psi, and the cut-out pressure shall be not higher than 135 psi, unless other values are recommended by the vehicle manufacturer.

(5) Air brake pressure shall not drop more than 2 psi in 1 minute for single vehicles or more than 3 psi in 1 minute for combination vehicles, with the engine stopped and service brakes released. There may be an additional 1 psi drop per minute for each additional towed vehicle.

(6) With the reservoir(s) fully charged, air pressure shall not drop more than 3 psi in 1 minute for single vehicles or more than 4 psi in 1 minute for combination vehicles, with the engine stopped and service brakes fully applied. There may be an additional 1 psi drop per minute for each additional towed vehicle.

(7) The compressor drive belt shall not be badly worn or frayed and belt-tension shall be sufficient to prevent slippage.

Inspection procedure. With the air system charged, open the drain cocks in the service and supply reservoir on the truck or truck-tractor. Note the pressure at which the visual or audible warning device connected to the low-pressure indicator is activated. Close the drain cocks, and, with the trailer(s) uncoupled, check air pressure buildup at the manufacturer’s recommended engine speed. Observe the time required to raise the air pressure from 85 to 100 psi. Continue running the engine until the governor cuts out and note the pressure. Reduce engine speed to idle, couple the trailer(s), if applicable, and make a series of brake applications. Note the pressure at which the governor cuts in. Increased engine speed to fast idle and charge the system to its governed pressure. Stop the engine and record the pressure drop in psi per minute with brakes released and with brakes fully applied.

(b) **Air brake system hoses, tubes and connections.** Air system tubes, hoses and connections shall not be restricted, cracked or improperly supported, and the air hose shall not be abraded.

(1) **Inspection procedure.** Stop the engine and examine air hoses, tubes and connections visually for conditions specified.

(c) **Air-over-hydraulic brake subsystem integrity.** The air-over-hydraulic brake subsystem shall demonstrate integrity by meeting the following requirements:
§ 570.58 Electric brake system.

(a) Electric brake system integrity. The average brake amperage value shall be not more than 20 percent above, and not less than 30 percent below, the brake manufacturer’s maximum current rating. In progressing from zero to maximum, the ammeter indication shall show no fluctuation evidencing a short circuit or other interruption of current.

(1) Inspection procedure. Insert a low range (0 to 25 amperes for most 2- and 4-brake systems and 0 to 40 amperes for a 6-brake system) d.c. ammeter into the brake circuit between the controller and the brakes. With the controller in the “off” position, the ammeter should read zero. Gradually apply the controller to the “full on” position for a brief period (not to exceed 1 minute) and observe the maximum ammeter reading. Gradually return the controller to “full off” and observe return to zero amperes. Divide the maximum ammeter reading by the number of brakes and determine the brake amperage value.

(b) Electric brake wiring condition. Electric brake wiring shall not be frayed. Wiring clips or brackets shall not be broken or missing. Terminal
§ 570.60 Steering system.

(a) System play. Lash or free play in the steering system shall not exceed the values shown in Table 2.

(1) Inspection procedure. With the engine on and the steering axle wheels in the straight ahead position, turn the steering wheel in one direction until there is a perceptible movement of the wheel. If a point on the steering wheel rim moves more than the value shown in Table 1 before perceptible return movement of the wheel under observation, there is excessive lash or free play in the steering system.

Note: Inspect for paragraphs (b), (c) and (d) of this section on vehicles equipped with brake inspection ports or access openings, and when removal of wheel is not required.

(b) Disc and drum condition. If the drum is embossed with a maximum safe diameter dimension or the rotor is embossed with a minimum safe thickness dimension, the drum or disc shall be within the appropriate specifications. These dimensions will generally be found on motor vehicles manufactured since January 1, 1971, and may be found on vehicles manufactured for several years prior to that time. If the drums and discs are not embossed, they shall be within the manufacturer’s specifications.

(1) Inspection procedure. Examine visually for conditions indicated.

(c) Friction materials. On each brake, the thickness of the lining or pad shall not be less than one thirty-second of an inch over the fastener, or one-sixteenth of an inch over the brake shoe on bonded linings or pads. Brake linings and pads shall not have cracks or breaks that extend to rivet holes except minor cracks that do not impair attachment. The wire in wire-backed lining shall not be visible on the friction surface. Drum brake linings shall be securely attached to brake shoes. Disc brake pads shall be securely attached to shoe plates.

(1) Inspection procedure. Examine visually for the conditions indicated, and measure the height of the rubbing surface of the lining over the fastener heads. Measure bonded lining thickness over the surface at the thinnest point on the lining or pad.

(d) Structural and mechanical parts. Backing plates, brake spiders and caliper assemblies shall not be deformed or cracked. System parts shall not be broken, misaligned, missing, binding, or show evidence of severe wear. Automatic adjusters and other parts shall be assembled and installed correctly.

(1) Inspection procedure. Examine visually for conditions indicated.

§ 570.59 Service brake system.

(a) Service brake performance. Compliance with any one of the following performance criteria will satisfy the requirements of this section. Verify that tire inflation pressure is within the limits recommended by the vehicle manufacturer before conducting either of the following tests.

(1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively.

(i) Inspection procedure. The vehicle shall be tested on a drive-on platform, or a roller-type brake analyzer with the capability of measuring equalization. The test shall be conducted in accordance with the test equipment manufacturer’s specifications. Note the brake force variance.

(2) Road test. The service brake system shall stop single unit vehicles, except truck-tractors, in a distance of not more than 35 feet, or combination vehicles and truck-tractors in a distance of not more than 40 feet, from a speed of 20 mph, without leaving a 12-foot-wide lane.

(i) Inspection procedure. The road test shall be conducted on a level (not to exceed plus or minus 1 percent grade), dry, smooth, hard-surfaced road that is free from loose material, oil or grease. The service brakes shall be applied at a vehicle speed of 20 mph and the vehicle shall be brought to a stop as specified. Measure the distance required to stop.

Note: Inspect for paragraphs (b), (c) and (d) of this section on vehicles equipped with brake inspection ports or access openings, and when removal of wheel is not required.

(b) Disc and drum condition. If the drum is embossed with a maximum safe diameter dimension or the rotor is embossed with a minimum safe thickness dimension, the drum or disc shall be within the appropriate specifications. These dimensions will generally be clean. Conductor wire gauge shall not be below the brake manufacturer’s minimum recommendation.

(1) Inspection procedure. Examine visually for conditions specified.
TABLE 2. STEERING WHEEL FREE PLAY VALUES

<table>
<thead>
<tr>
<th>Steering wheel diameter (inches)</th>
<th>Lash (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 or less</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>2 1/4</td>
</tr>
<tr>
<td>20</td>
<td>2 1/2</td>
</tr>
<tr>
<td>22</td>
<td>2 3/4</td>
</tr>
</tbody>
</table>

(b) Linkage play. Free play in the steering linkage shall not exceed the values shown in Table 3.

(1) Inspection procedure. Elevate the front end of the vehicle to load the ball joints of the vehicle if so equipped. Insure that wheel bearings are correctly adjusted. Grasp the front and rear of a tire and attempt to turn the tire and wheel assemble left and right. If the free movement at the front or rear tread of the tire exceeds the applicable value shown in Table 3, there is excessive steering linkage play.

TABLE 3. FRONT WHEEL STEERING LINKAGE FREE PLAY

<table>
<thead>
<tr>
<th>Nominal bead diameter or rim size (inches)</th>
<th>Play (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 or less</td>
<td>1/4</td>
</tr>
<tr>
<td>16.01 through 18.00</td>
<td>3/8</td>
</tr>
<tr>
<td>18.01 or more</td>
<td>1/2</td>
</tr>
</tbody>
</table>

(c) Free turning. Steering wheels shall turn freely through the limit of travel in both directions.

(1) Inspection procedure. With the engine running on a vehicle with power steering, or the steerable wheels elevated on a vehicle without power steering, turn the steering wheel through the limit of travel in both directions. Feel for binding or jamming in the steering gear mechanism.

(d) Alignment. Toe-in or toe-out condition shall not be greater than 1.5 times the values listed in the vehicle manufacturer’s service specification for alignment setting.

(1) Inspection procedure. Drive the vehicle over a sideslip indicator or measure with a tread gauge, and verify that the toe-in or toe-out is not greater than 1.5 times the values listed in the vehicle manufacturer’s service specification.

(e) Power steering system. The power steering system shall not have cracked, frayed or slipping belts, chafed or abraded hoses, show signs of leakage or have insufficient fluid in the reservoir.

(1) Inspection procedure. Examine fluid reservoir, hoses and pump belts for the conditions indicated.

NOTE: Inspection of the suspension system must not precede the service brake performance test.

§ 570.61 Suspension system.

(a) Suspension condition. Ball joint seals shall not be cut or cracked, other than superficial surface cracks. Ball joints and kingpins shall not be bent or damaged. Stabilizer bars shall be connected. Springs shall not be broken and coil springs shall not be extended by spacers. Shock absorber mountings, shackles, and U-bolts shall be securely attached. Rubber bushings shall not be cracked, extruded out from or missing from suspension joints. Radius rods shall not be missing or damaged.

(1) Inspection procedure. Examine front and rear end suspension parts for the conditions indicated.

(b) Shock absorber condition. There shall be no oil on the shock absorber housings attributable to leakage by the seal.

(1) Inspection procedure. Examine shock absorbers for oil leakage from within.

§ 570.62 Tires.

(a) Tread depth. The tread shall be not less than four thirty-seconds of an inch deep on each front tire of any vehicle other than a trailer and not less than two thirty-sixths of an inch on all other tires.

(1) Inspection procedure. For tires with treadwear indicators, check for indicators in any two adjacent major grooves at three locations spaced approximately 120° apart around the circumference of the tire. For tires without treadwear indicators, measure the tread depth with a suitable gauge or scale in two adjacent major grooves at 3 locations spaced approximately 120° apart around the circumference of the tire at the area of greatest wear.

(b) Type. Vehicles should be equipped with tires on the same axle that are matched in construction and tire size designation, and dual tires shall be matched for overall diameter within one-half inch.
§ 570.63 Wheel assemblies.

(a) Wheel integrity. A tire rim, wheel disc or spider shall have no visible cracks, elongated bolt holes, or indications of in-service repair by welding.

(1) Inspection procedure. Examine visually for the conditions indicated.

(b) Cast wheels. Cast wheels shall not be cracked or show evidence of excessive wear in the clamp area.

(1) Inspection procedure. Examine visually for the conditions indicated.

(c) Mounting. All wheel nuts shall be in place and tight.

(1) Inspection procedure. Check wheel retention for the conditions indicated.

PART 571—FEDERAL MOTOR VEHICLE SAFETY STANDARDS

Subpart A—General

Sec. 571.1 Scope.
571.3 Definitions.
571.4 Explanation of usage.
571.5 Matter incorporated by reference.
571.7 Applicability.
571.8 Effective date.
571.9 Separability.
571.10 Designation of seating positions.

Subpart B—Federal Motor Vehicle Safety Standards

571.101 Standard No. 101; Controls and displays.
571.102 Standard No. 102; Transmission shift position sequence, starter interlock, and transmission braking effect.
571.103 Standard No. 103; Windshield defrosting and defogging systems.
571.104 Standard No. 104; Windshield wiping and washing systems.
571.105 Standard No. 105; Hydraulic and electric brake systems.
571.106 Standard No. 106; Brake hoses.
571.107 [Reserved]
571.108 Standard No. 108; Lamps, reflective devices, and associated equipment.
571.109 Standard No. 109; New pneumatic and certain specialty tires.
571.110 Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10,000 pounds) or less.
571.111 Standard No. 111; Rear visibility.
571.112 [Reserved]
571.113 Standard No. 113; Hood latch system.
571.114 Standard No. 114; Theft protection.
571.115 [Reserved]
571.116 Standard No. 116; Motor vehicle brake fluids.
571.117 Standard No. 117; Retreaded pneumatic tires.
571.118 Standard No. 118; Power-operated window, partition, and roof panel systems.
571.119 Standard No. 119; New pneumatic tires for motor vehicles with a GVWR of more than 4,536 kilograms (10,000 pounds) and motorcycles.
571.120 Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity information for motor vehicles with a GVWR of more than 4,536 kilograms (10,000 pounds).
571.121 Standard No. 121; Air brake systems.
571.122 Standard No. 122; Motorcycle brake systems.
571.122a Standard No. 122; Motorcycle brake systems.
§ 571.1 Scope.

§ 571.3 Definitions.

(a) Statutory definitions. All terms defined in section 102 of the Act are used in their statutory meaning.

(b) Other definitions. As used in this chapter—

Approved, unless used with reference to another person, means approved by the Secretary.

Boat trailer means a trailer designed with cradle-type mountings to transport a boat and configured to permit launching of the boat from the rear of the trailer.

Bus means a motor vehicle with motive power, except a trailer, designed for carrying more than 10 persons.

Curb weight means the weight of a motor vehicle with standard equipment; maximum capacity of engine fuel, oil, and coolant; and, if so equipped, air conditioning and additional weight optional engine.

Designated seating capacity means the number of designated seating positions provided.

Designated seating position means:

(1) For vehicles manufactured prior to September 1, 2011, any plan view location capable of accommodating a person at least as large as a 5th percentile adult female, if the overall seat configuration and design and vehicle design is such that the position is likely to be used as a seating position while the vehicle is in motion, except for auxiliary seating accommodations such as temporary or folding jump seats. Any bench or split-bench seat in a passenger car, truck or multipurpose passenger vehicle with a GVWR less than 4,536 kilograms (10,000 pounds), having greater than 127 centimeters (50 inches) of hip room (measured in accordance with Society of Automotive Engineers (SAE) Recommended Practice J1100a, revised September 1975, “Motor Vehicle Dimensions” (incorporated by reference, see §571.5), shall have not less than three designated seating positions, unless the seat design or vehicle design is such that the center position cannot be used for seating. For the sole purpose of determining the classification of any vehicle sold or introduced into interstate commerce for purposes that include carrying students to and from school or related events, any location in such a vehicle intended for securement of an occupied wheelchair during vehicle operation is regarded as four designated seating positions.

(2) For vehicles manufactured on and after September 1, 2011, designated seating position means a seat location that has a seating surface width, as described in §571.10(c) of this part, of at least 330 mm (13 inches). The number of designated seating positions at a seat location is determined according to the procedure set forth in §571.10(b) of this part. However, for trucks and multipurpose passenger vehicles with a gross vehicle weight rating greater than 10,000 lbs, police vehicles as defined in S7 of FMVSS No. 208, firefighting vehicles, ambulances, and motor homes, a seating location that is labeled in accordance with S4.4 of FMVSS No. 207 will not be considered a designated seating position. For the sole purpose of determining the classification of any vehicle sold or introduced into interstate commerce for purposes that include carrying students to and from school or related events, any location in such a vehicle intended for securement of an occupied wheelchair during vehicle operation is regarded as four designated seating positions.

Driver means the occupant of a motor vehicle seated immediately behind the steering control system.

Emergency brake means a mechanism designed to stop a motor vehicle after a failure of the service brake system.

5th percentile adult female means a person possessing the dimensions and weight of the 5th percentile adult female specified for the total age group in “Weight, Height, and Selected Body Dimensions of Adults: United States—1960–1962,” first published as Public Health Service Publication No. 1000 Series 11–No. 8, June 1965 and republished as DHEW Publication No. (HRA) 76–1074 (incorporated by reference, see §571.5).

Firefighting vehicle means a vehicle designed exclusively for the purpose of fighting fires.

Fixed collision barrier means a flat, vertical, unyielding surface with the following characteristics:

(1) The surface is sufficiently large that when struck by a tested vehicle, no portion of the vehicle projects or passes beyond the surface.

(2) The approach is a horizontal surface that is large enough for the vehicle to attain a stable attitude during its approach to the barrier, and that does not restrict vehicle motion during impact.
§ 571.3 49 CFR Ch. V (10–1–16 Edition)

(3) When struck by a vehicle, the surface and its supporting structure absorb no significant portion of the vehicle’s kinetic energy, so that a performance requirement described in terms of impact with a fixed collision barrier must be met no matter how small an amount of energy is absorbed by the barrier.

Forward control means a configuration in which more than half of the engine length is rearward of the foremost point of the windshield base and the steering wheel hub is in the forward quarter of the vehicle length.

Full trailer means a trailer, except a pole trailer, that is equipped with two or more axles that support the entire weight of the trailer.

Gross axle weight rating or GAWR means the value specified by the vehicle manufacturer as the load-carrying capacity of a single axle system, as measured at the tire-ground interfaces.

Gross combination weight rating or GCWR means the value specified by the manufacturer as the loaded weight of a combination vehicle.

Gross vehicle weight rating or GVWR means the value specified by the manufacturer as the loaded weight of a single vehicle.

R-Point means the pivot center of the torso and thigh on the three-dimensional device used in defining and measuring vehicle seating accommodation, as defined in Society of Automotive Engineers (SAE) Recommended Practice J1100, revised February 2001, “Motor Vehicle Dimensions” (incorporated by reference, see §571.5).

Head impact area means all nonglazed surfaces of the interior of a vehicle that are statically contactable by a 6.5-inch diameter spherical head form of a measuring device having a pivot point to “top-of-head” dimension infinitely adjustable from 29 to 33 inches in accordance with the following procedure, or its graphic equivalent:

(a) At each designated seating position, place the pivot point of the measuring device—

(1) For seats that are adjustable fore and aft, at—

(i) The seating reference point; and

(ii) A point 5 inches horizontally forward of the seating reference point and vertically above the seating reference point an amount equal to the rise which results from a 5-inch forward adjustment of the seat or 0.75 inch; and

(2) For seats that are not adjustable fore and aft, at the seating reference point.

(b) With the pivot point to “top-of-head” dimension at each value allowed by the device and the interior dimensions of the vehicle, determine all contact points above the lower windshield glass line and forward of the seating reference point.

(c) With the head form at each contact point, and with the device in a vertical position if no contact points exists for a particular adjusted length, pivot the measuring device forward and downward through all arcs in vertical planes to 90° each side of the vertical longitudinal plane through the seating reference point, until the head form contacts an interior surface or until it is tangent to a horizontal plane 1 inch above the seating reference point, whichever occurs first.

Interior compartment door means any door in the interior of the vehicle installed by the manufacturer as a cover for storage space normally used for personal effects.

Longitudinal or longitudinally means parallel to the longitudinal centerline of the vehicle.

Low-speed vehicle (LSV) means a motor vehicle,

(1) That is 4-wheeled,

(2) Whose speed attainable in 1.6 km (1 mile) is more than 32 kilometers per hour (20 miles per hour) and not more than 40 kilometers per hour (25 miles per hour) on a paved level surface, and

(3) Whose GVWR is less than 1,361 kilograms (3,000 pounds).

Motorcycle means a motor vehicle with motive power having a seat or saddle for the use of the rider and designed to travel on not more than three wheels in contact with the ground.

Motor-driven cycle means a motorcycle with a motor that produces 5-brake horsepower or less.

Motor home means a multipurpose passenger vehicle with motive power that is designed to provide temporary residential accommodations, as evidenced by the presence of at least four of the following facilities: Cooking; refrigeration or ice box; self-contained...
toilet; heating and/or air conditioning; a potable water supply system including a faucet and a sink; and a separate 110–125 volt electrical power supply and/or propane.

Multifunction school activity bus (MFSAB) means a school bus whose purposes do not include transporting students to and from home or school bus stops.

Multipurpose passenger vehicle means a motor vehicle with motive power, except a low-speed vehicle or trailer, designed to carry 10 persons or less which is constructed either on a truck chassis or with special features for occasional off-road operation.

Open-body type vehicle means a vehicle having no occupant compartment top or an occupant compartment top that can be installed or removed by the user at his convenience.

Outboard designated seating position means a designated seating position where a longitudinal vertical plane tangent to the outboard side of the seat cushion is less than 12 inches from the innermost point on the inside surface of the vehicle at a height between the design H-point and the shoulder reference point (as shown in fig. 1 of Federal Motor Vehicle Safety Standard No. 210) and longitudinally between the front and rear edges of the seat cushion.

Overall vehicle width means the nominal design dimension of the widest part of the vehicle, exclusive of signal lamps, marker lamps, outside rearview mirrors, flexible fender extensions, and mud flaps, determined with doors and windows closed and the wheels in the straight-ahead position.

Parking brake means a mechanism designed to prevent the movement of a stationary motor vehicle.

Passenger car means a motor vehicle with motive power, except a low-speed vehicle, multipurpose passenger vehicle, motorcycle, or trailer, designed for carrying 10 persons or less.

Pelvic impact area means that area of the door or body side panel adjacent to any outboard designated seating position which is bounded by horizontal planes 7 inches above and 4 inches below the seating reference point and vertical transverse planes 8 inches forward and 2 inches rearward of the seating reference point.

Pole trailer means a motor vehicle without motive power designed to be drawn by another motor vehicle and attached to the towing vehicle by means of a reach or pole, or by being boomed or otherwise secured to the towing vehicle, for transporting long or irregularly shaped loads such as poles, pipes, or structural members capable generally of sustaining themselves as beams between the supporting connections.

Recreation vehicle trailer means a trailer, except a trailer designed primarily to transport cargo, designed to be drawn by a vehicle with motive power by means of a bumper, frame or fifth wheel hitch and designed to provide temporary residential accommodations, as evidenced by the presence of at least four of the following facilities: cooking; refrigeration or ice box; self-contained toilet; heating and/or air conditioning; a potable water supply system including a faucet and a sink; and a separate 110–125 volt electrical power supply and/or propane. “Recreation vehicle trailer” includes trailers used for personal purposes, commonly known as “sport utility RVs” or “toy haulers,” which usually have spacious rather than incidental living quarters and provide a cargo area for smaller items for personal use such as motorcycles, mountain bikes, all terrain vehicles (ATVs), snowmobiles, canoes or other types of recreational gear.

School bus means a bus that is sold, or introduced in interstate commerce, for purposes that include carrying students to and from school or related events, but does not include a bus designed and sold for operation as a common carrier in urban transportation.

Seating reference point (SgRP) means the unique design H-point, as defined in Society of Automotive Engineers (SAE) Recommended Practice J1100, revised June 1984, “Motor Vehicle Dimensions” (incorporated by reference, see §571.5), which:

1. Establishes the rearmost normal design driving or riding position of each designated seating position, which includes consideration of all modes of
adjustment, horizontal, vertical, and tilt, in a vehicle;

(2) Has X, Y, and Z coordinates, as defined in Society of Automotive Engineers (SAE) Recommended Practice J1000, revised June 1984, “Motor Vehicle Dimensions” (incorporated by reference, see §571.5), established relative to the designed vehicle structure;

(3) Simulates the position of the pivot center of the human torso and thigh; and

(4) Is the reference point employed to position the two-dimensional drafting template with the 95th percentile leg described in Society of Automotive Engineers (SAE) Standard J826, revised May 1987, “Devices for Use in Defining and Measuring Vehicle Seating Accommodation” (incorporated by reference, see §571.5), or, if the drafting template with the 95th percentile leg cannot be positioned in the seating position, is located with the seat in its most rearward adjustment position.

Semitrailer means a trailer, except a pole trailer, so constructed that a substantial part of its weight rests upon or is carried by another motor vehicle.

Service brake means the primary mechanism designed to stop a motor vehicle.

Speed attainable in 1 mile means the speed attainable by accelerating at maximum rate from a standing start for 1 mile, on a level surface.

Speed attainable in 2 miles means the speed attainable by accelerating at maximum rate from a standing start for 2 miles, on a level surface.

Torso line means the line connecting the “H” point and the shoulder reference point as defined in Society of Automotive Engineers (SAE) Standard J787b, revised September 1966, “Motor Vehicle Seat Belt Anchorage” (incorporated by reference, see §571.5).

Trailer means a motor vehicle with or without motive power, designed for carrying persons or property and for being drawn by another motor vehicle.

Trailer converter dolly means a trailer chassis equipped with one or more axles, a lower half of a fifth wheel and a drawbar.

Truck means a motor vehicle with motive power, except a trailer, designed primarily for the transportation of property or special purpose equipment.

Truck tractor means a truck designed primarily for drawing other motor vehicles and not so constructed as to carry a load other than a part of the weight of the vehicle and the load so drawn.

Unloaded vehicle weight means the weight of a vehicle with maximum capacity of all fluids necessary for operation of the vehicle, but without cargo, occupants, or accessories that are ordinarily removed from the vehicle when they are not in use.

95th percentile adult male means a person possessing the dimensions and weight of the 95th percentile adult male specified “Weight, Height, and Selected Body Dimensions of Adults: United States—1960–1962,” first published as Public Health Service Publication No. 1000 Series 11-No. 8, June 1965 and republished as DHEW Publication No. (HRA) 76–1074 (incorporated by reference, see §571.5).

Vehicle fuel tank capacity means the tank’s unusable capacity (i.e., the volume of fuel left at the bottom of the tank when the vehicle’s fuel pump can no longer draw fuel from the tank) plus its usable capacity (i.e., the volume of fuel that can be pumped into the tank through the filler pipe with the vehicle on a level surface and with the unusable capacity already in the tank). The term does not include the vapor volume of the tank (i.e., the space above the fuel tank filler neck) nor the volume of the fuel tank filler neck.

EDITORIAL NOTE: For Federal Register citations affecting §571.3, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.

§ 571.4 Explanation of usage.

The word any, used in connection with a range of values or set of items in the requirements, conditions, and procedures of the standards or regulations in this chapter, means generally the totality of the items or values, any one of which may be selected by the Administration for testing, except where clearly specified otherwise.
Examples: “The vehicle shall meet the requirements of §4.1 when tested at any point between 18 and 22 inches above the ground.” This means that the vehicle must be capable of meeting the specified requirements at every point between 18 and 22 inches above the ground. The test in question for a given vehicle may call for a single test (a single impact, for example), but the vehicle must meet the requirement at whatever point the Administration selects, within the specified range.

“Each tire shall be capable of meeting the requirements of this standard when mounted on any rim specified by the manufacturer as suitable for use with that tire.” This means that, where the manufacturer specifies more than one rim as suitable for use with a tire, the tire must meet the requirements with whatever rim the Administration selects from the specified group.

“Any one of the items listed below may, at the option of the manufacturer, be substituted for the hardware specified in §4.1.” Here the wording clearly indicates that the selection of items is at the manufacturer’s option.

[36 FR 2511, Feb. 5, 1971]

§ 571.5 Matter incorporated by reference.

(a) Certain material is incorporated by reference into this part with the approval of the Director of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51. To enforce any edition other than that specified in this section, the National Highway Traffic Safety Administration (NHTSA) must publish notice of change in the Federal Register and the material must be available to the public. All approved material is available for inspection at NHTSA, 1200 New Jersey Avenue SE., Washington, DC 20590, and at the National Archives and Records Administration (NARA). For information on the availability of this material at NHTSA, or if you experience difficulty obtaining the standards referenced below, contact NHTSA Office of Technical Information Services, phone number (202) 366-6030, or go to: http://www.archives.gov/federal-register/cfr/ibr-locations.html.

(b) American Association of Textile Chemists and Colorists (AATCC), 1 Davis Dr., P.O. Box 12215, Research Triangle Park, NC 27709. Web site: http://www.aatcc.org.

(2) AATCC Gray Scale for Evaluating Change in Color into §§571.209; 571.213.

(d) ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428–2959. Telephone: (610) 832–9500; Fax (610) 832–9555; Web site: http://www.astm.org.

(26) ASTM E4–89, “Standard Pr...

(2) [Reserved]

(2) [Reserved]

(1) CIE 1931 Chromaticity Diagram, developed 1931, into § 571.108.

(2) [Reserved]

(2) [Reserved]

(2) [Reserved]

§ 571.5 49 CFR Ch. V (10–1–16 Edition)

(3) “Parts List; Ejection Mitigation Headform Drawing Package,” December 2010, into § 571.226.

(4) “Parts List and Drawings; Ejection Mitigation Headform Drawing Package” December 2010, into § 571.226.

(2) SAE Recommended Practice J211a, “Instrumentation for Impact Tests,” revised December 1971, into § 571.222.

(4) SAE Recommended Practice J211/1, revised March 1995, “Instrumentation for Impact Test—Part 1—Electronic Instrumentation” into §§ 571.202a; 571.208; 571.218; 571.403.

(8) SAE Recommended Practice J657b, “Bulb Sockets,” revised April 1964, into § 571.108.

(17) SAE Recommended Practice J673a, “Automotive Glazing,” revised August 1967, into § 571.205(a).

(18) SAE Recommended Practice J673, “Automotive Safety Glasses,” revised April 1993, into § 571.121.

(22) SAE Recommended Practice J800c, “Motor Vehicle Seat Belt Assembly Installations,” revised November 1973, into § 571.209.

(27) SAE Recommended Practice J839h, “Passenger Car Side Door Latch
Natl’l Highway Traffic Safety Admin., DOT

§ 571.7

§ 571.7 Applicability.

(a) General. Except as provided in paragraphs (c) and (d) of this section, each standard set forth in subpart B of this part applies according to its terms to all motor vehicles or items of motor

VerDate Sep<11>2014 11:07 Jan 24, 2017 Jkt 238230 PO 00000 Frm 00289 Fmt 8010 Sfmt 8010 Q:\49\49V6.TXT 31lpowell on DSK54DXVN1OFR with $$_JOB
(a) Firefighting vehicles. Notwithstanding the effective date provisions of the motor vehicle safety standards in this part, the effective date of any standard or amendment of a standard issued after September 1, 1971, to which firefighting vehicles must conform shall be, with respect to such vehicles, either 2 years after the date on which such standard or amendment is published in the rules and regulations section of the Federal Register, or the effective date specified in the notice, whichever is later, except as such standard or amendment may otherwise specifically provide with respect to firefighting vehicles.

(b) Vehicles built in two or more stages vehicles and altered vehicles. Unless Congress directs or the agency expressly determines that this paragraph does not apply, the date for manufacturer certification of compliance with any standard, or amendment to a standard, that is issued on or after September 1, 2006 is, insofar as its application to intermediate and final-stage manufacturers andALTERERS is concerned, one year after the last applicable date for manufacturer certification of compliance. Nothing in this provision shall be construed as prohibiting earlier compliance with the standard or amendment or as precluding NHTSA from extending a compliance effective date for intermediate and final-stage manufacturers andALTERERS by more than one year.

§ 571.9 Separability.

If any standard established in this part or its application to any person or circumstance is held invalid, the remainder of the part and the application of that standard to other persons or circumstances is not affected thereby.

§ 571.10 Designation of seating positions.

(a) Application. This section applies to passenger cars, trucks, multipurpose passenger vehicles, and buses manufactured on or after September 1, 2010. However, paragraph (b) of this section does not apply to trucks and multipurpose passenger vehicles with a gross vehicle weight rating greater than 10,000 lbs, school buses, police vehicles as defined in §7 of Standard No. 208 (49 CFR 571.208), firefighting vehicles, ambulances, or motor homes. To determine the number of passenger seating positions in school buses, see §4.1 of Standard No. 222 (49 CFR 571.222).
(b) Number of designated seating positions. The formula for calculating the number of designated seating positions (N) for any seat location with a seating surface width greater than 330 mm (13 inches) is as follows:

1. For seat locations with a seating surface width, as described in paragraph (c), of less than 1400 mm (55.2 inches): \(N = \text{The greater of 1 or \left[\text{seating surface width (in mm)}/350 \right] rounded down to the nearest whole number}; \)

2. For seat locations with a seating surface width, as described in paragraph (c), greater than or equal to 1400 mm (55.2 inches): \(N = \text{No less than \left[\text{seating surface width (in mm)}/450 \right] rounded down to the nearest whole number.} \)

(c) Seating surface measurement. (1) As used in this section, “seating surface” only includes the seat cushion and soft trim and excludes unpadded trim components such as a decorative seat shield, seat adjusters, or adjuster covers. As used in paragraphs (c)(1)(ii) and (iii) of this section, “outboard” and “inboard” are determined with respect to the measurement zone established in paragraph (c)(1)(i) of this section. As used in this section, “seating surface width” is the maximum horizontal width of a seating surface determined by the following procedure:

(i) Establish a measurement zone bounded by two vertical planes oriented perpendicular to the direction the seat is facing. One is located 150 mm (5.9 inches) behind the front leading surface of the seat and the other is located 250 mm (9.8 inches) behind the front leading surface of the seat. A measurement location within this zone is any vertical plane parallel to the planes establishing the boundary of the zone.

(ii) For each measurement location within this zone, establish vertical reference planes parallel to the direction the seat faces that intersect the most outboard point on each side of the seating surface at that measurement location. If outboard interior trim contacts the top surface of the seat cushion, establish another vertical plane parallel to the direction the seat faces that intersects the most inboard point of contact between outboard interior trim and the top surface of the seat cushion.

(iii) For measurement within the zone, measure horizontally between and perpendicular to the most inboard vertical reference planes established in (ii), as shown in Figure 1 (provided for illustration purposes).

(2) Adjacent seating surfaces are considered to form a single, continuous seating surface whose overall width is measured as specified in (c)(1) of this section, unless

(i) The seating surfaces are separated by:

(A) A fixed trimmed surface whose top surface is unpadded and that has a width not less than 140 mm (5.5 inches), as measured in each transverse vertical plane within that measurement zone, or

(B) A void whose cross section in each transverse vertical plane within that measurement zone is a rectangle that is not less than 140 mm (5.5 inches) wide and not less than 140 mm (5.5 inches) deep. The top edge of the cross section in any such plane is congruent with the transverse horizontal line that intersects the lowest point on the portion of the top profile of the seating surfaces that lie within that plane, or

(ii) Interior trim interrupts the measurement of the nominal hip room between adjacent seating surfaces, measured laterally along the “X” plane through the H-point. For purposes of this paragraph, the H-point is located using the SAE three-dimensional H-point machine per Society of Automotive Engineers (SAE) Surface Vehicle Standard J826, revised July 1995, ‘‘Devices for Use in Defining and Measuring Vehicle Seating Accommodation’’ (incorporated by reference, see section 571.5) with the legs and leg weights removed, or

(iii) The seating surfaces are adjacent outboard seats, and the lateral distance between any point on the seat cushion of one seat and any point on the seat cushion of the other seat is not less than 140 mm (5.5 inches).

(3) Folding, removable, and adjustable seats are measured in the configuration that results in the single largest maximum seating surface width.
§ 571.101 Standard No. 101; Controls and displays.

S1. Scope. This standard specifies performance requirements for location, identification, color, and illumination of motor vehicle controls, telltales and indicators.

S2. Purpose. The purpose of this standard is to ensure the accessibility, visibility and recognition of motor vehicle controls, telltales and indicators, and to facilitate the proper selection of controls under daylight and nighttime conditions, in order to reduce the safety hazards caused by the diversion of the driver’s attention from the driving task, and by mistakes in selecting controls.

S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses.

S4. Definitions.

Adjacent, with respect to a control, telltale or indicator, and its identifier means:
(a) The identifier is in close proximity to the control, telltale or indicator; and
(b) No other control, telltale, indicator, identifier or source of illumination appears between the identifier and the telltale, indicator, or control that the identifier identifies.

Common space means an area on which more than one telltale, indicator, identifier, or other message may be displayed, but not simultaneously.

Control means the hand-operated part of a device that enables the driver to...
change the state or functioning of the vehicle or a vehicle subsystem.

Indicator means a device that shows the magnitude of the physical characteristics that the instrument is designed to sense.

Identifier means a symbol, word, or words used to identify a control, telltale, or indicator.

Multi-function control means a control through which the driver may select, and affect the operation of, more than one vehicle function.

Multi-task display means a display on which more than one message can be shown simultaneously.

Telltale means an optical signal that, when illuminated, indicates the actuation of a device, a correct or improper functioning or condition, or a failure to function.

§5. Requirements. Each passenger car, multipurpose passenger vehicle, truck and bus that is fitted with a control, a telltale or an indicator listed in Table 1 or Table 2 must meet the requirements of this standard for the location, identification, color, and illumination of that control, telltale or indicator. However, the requirements for telltales and indicators do not apply to vehicles with GVWRs of 4,536 kg or greater if these specified vehicles are manufactured before September 1, 2013.

§5.1 Location

§5.1.1 The controls listed in Table 1 and in Table 2 must be located so they are operable by the driver under the conditions of §5.6.2.

§5.1.2 The telltales and indicators listed in Table 1 and Table 2 and their identification must be located so that, when activated, they are visible to a driver under the conditions of §5.6.1 and §5.6.2.

§5.1.3 Except as provided in §5.1.4, the identification for controls, telltales and indicators must be placed on or adjacent to the telltale, indicator or control that it identifies.

§5.1.4 The requirement of §5.1.3 does not apply to a multi-function control, provided the multi-function control is associated with a multi-task display that:

(a) Is visible to the driver under the conditions of §5.6.1 and §5.6.2,

(b) Identifies the multi-function control with which it is associated graphically or using words,

(c) For multi-task displays with layers, identifies on the top-most layer each system for which control is possible from the associated multi-function control, including systems not otherwise regulated by this standard. Subfunctions of the available systems need not be shown on the top-most layer of the multi-task display, and

(d) Identifies the controls of Table 1 and Table 2 with the identification specified in those tables or otherwise required by this standard, whenever those are the active functions of the multi-function control. For lower levels of multi-task displays with layers, identification is permitted but not required for systems not otherwise regulated by this standard.

(e) Does not display telltales listed in Table 1 or Table 2.

§5.2 Identification

§5.2.1 Except for the Low Tire Pressure Telltale, each control, telltale and indicator that is listed in column 1 of Table 1 or Table 2 must be identified by the symbol specified for it in column 2 or the word or abbreviation specified for it in column 3 of Table 1 or Table 2. If a symbol is used, each symbol provided pursuant to this paragraph must be substantially similar in form to the symbol as it appears in Table 1 or Table 2. If a symbol is used, each symbol provided pursuant to this paragraph must have the proportional dimensional characteristics of the symbol as it appears in Table 1 or Table 2. The Low Tire Pressure Telltale (either the display identifying which tire has low pressure or the display which does not identify which tire has low pressure) shall be identified by the appropriate symbol designated in column 4, or both the symbol in column 4 and the words in column 3. No identification is required for any horn (i.e., audible warning signal) that is activated by a lanyard or by the driver pressing on the center of the face plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving position and which is located on
the left side of the steering column so that it is the control on that side of the column nearest to the steering wheel face plane. However, if identification is provided for a horn control in the center of the face plane of the steering wheel hub, the identifier must meet Table 2 requirements for the horn.

5.2.2 Any symbol, word, or abbreviation not shown in Table 1 or Table 2 may be used to identify a control, a telltale or an indicator that is not listed in those tables.

5.2.3 Supplementary symbols, words, or abbreviations may be used at the manufacturer’s discretion in conjunction with any symbol, word, or abbreviation specified in Table 1 or Table 2.

5.2.4 [Reserved]

5.2.5 A single symbol, word, or abbreviation may be used to identify any combination of the control, indicator, and telltale for the same function.

5.2.6 Except as provided in 5.2.7, all identifications of telltales, indicators and controls listed in Table 1 or Table 2 must appear to the driver to be perceptually upright. A rotating control that has an “off” position shall appear to the driver perceptually upright when the rotating control is in the “off” position.

5.2.7 The identification of the following items need not appear to the driver to be perceptually upright:
(a) A horn control;
(b) Any control, telltale or indicator located on the steering wheel, when the steering wheel is positioned for the motor vehicle to travel in a direction other than straight forward; and
(c) Any rotating control that does not have an “off” position.

5.2.8 Each control for an automatic vehicle speed system (cruise control) and each control for heating and air conditioning systems must have identification provided for each function of each such system.

5.2.9 Each control that regulates a system function over a continuous range must have identification provided for the limits of the adjustment range of that function. If color coding is used to identify the limits of the adjustment range of a temperature function, the hot limit must be identified by the color red and the cold limit by the color blue. If the status or limit of a function is shown by a display not adjacent to the control for that function, both the control (unless it is a multi-function control complying with 5.1.4) and the display must be independently identified as to the function of the control, in compliance with 5.2.1, on or adjacent to the control and on or adjacent to the display.

Example 1. A slide lever controls the temperature of the air in the vehicle heating system over a continuous range, from no heat to maximum heat. Since the control regulates a single function over a quantitative range, only the extreme positions require identification.

Example 2. A switch has three positions, for heat, defrost, and air conditioning. Since each position regulates a different function, each position must be identified.

5.3 Illumination

5.3.1 Timing of Illumination
(a) Except as provided in 5.3.1(c), the identifications of controls for which the word “Yes” is specified in column 5 of Table 1 must be capable of being illuminated whenever the headlamps are activated. This requirement does not apply to a control located on the floor, floor console, steering wheel, steering column, or in the area of windshield header, or to a control for a heating and air-conditioning system that does not direct air upon the windshield.

(b) Except as provided in 5.3.1(c), the indicators and their identifications for which the word “Yes” is specified in column 5 of Table 1 must be illuminated whenever the vehicle’s propulsion system and headlamps are activated.

(c) The indicators, their identifications and the identifications of controls need not be illuminated when the headlamps are being flashed or operated as daytime running lamps.

(d) At the manufacturer’s option, any control, indicator, or their identifications may be capable of being illuminated at any time.

(e) A telltale must not emit light except when identifying the malfunction or vehicle condition it is designed to indicate, or during a bulb check.
§571.101 Brightness of illumination of controls and indicators

S5.3.2 Means must be provided for illuminating the indicators, identifications of controls and indicators listed in Table 1 to make them visible to the driver under daylight and nighttime driving conditions.

S5.3.2.1 The means of providing the required visibility must:

(a) Be adjustable to provide at least two levels of brightness;

(b) At a level of brightness other than the highest level, the identification of controls and indicators must be barely discernible to the driver who has adapted to dark ambient roadway condition;

(c) May be operable manually or automatically; and

(d) May have levels of brightness other than the two required visible levels of brightness, at which those items and identification are not visible.

(1) If the level of brightness is adjusted by automatic means to a point where those items or their identification are not visible to the driver, means shall be provided to enable the driver to restore visibility.

S5.3.3 Brightness of telltale illumination

(a) Means must be provided for illuminating telltales and their identification sufficiently to make them visible to the driver under daylight and nighttime driving conditions.

(b) The means for providing the required visibility may be adjustable manually or automatically, except that the telltales and identification for brakes, highbeams, turn signals, and safety belts may not be adjustable under any driving condition to a level that is invisible.

S5.3.4 Brightness of interior lamps. (a) Any source of illumination within the passenger compartment which is forward of a transverse vertical plane 110 mm rearward of the manikin “H” point with the driver’s seat in its rearmost driving position, which is not used for the controls and displays regulated by this standard, which is not a telltale, and which is capable of being illuminated while the vehicle is in motion, shall have either:

(1) Light intensity which is manually or automatically adjustable to provide at least two levels of brightness;

(2) A single intensity that is barely discernible to a driver who has adapted to dark ambient roadway conditions; or

(3) A means of being turned off.

(b) Paragraph (a) of S5.3.4 does not apply to buses that are normally operated with the passenger compartment illuminated.

S5.3.5 The provisions of S5.3.4 do not apply to buses that are normally operated with the passenger compartment illuminated.

S5.4 Color

S5.4.1 The light of each telltale listed in Table 1 must be of the color specified for that telltale in column 6 of that table.

S5.4.2 Any indicator or telltale not listed in Table 1 and any identification of that indicator or telltale must not be a color that masks the driver’s ability to recognize any telltale, control, or indicator listed in Table 1.

S5.4.3 Each identifier used for the identification of a telltale, control or indicator must be in a color that stands out clearly against the background. However, this requirement does not apply to an identifier for a horn control in the center of the face plane of the steering wheel hub. For vehicles with a GVWR of under 4,536 kg (10,000 pounds), the compliance date for this provision is September 1, 2011. For vehicles with a GVWR of 4,536 kg (10,000 pounds) or over, the compliance date for this provision is September 1, 2013.

S5.5 Common space for displaying multiple messages

S5.5.1 A common space may be used to show messages from any sources,
subject to the requirements in S5.5.2 through S5.5.6.

S5.5.2 The telltales for any brake system malfunction required by Table 1 to be red, air bag malfunction, low tire pressure, electronic stability control malfunction (as of September 1, 2011), passenger air bag off, high beam, turn signal, and seat belt must not be shown in the same common space.

S5.5.3 The telltales and indicators that are listed in Table 1 and are shown in the common space must illuminate at the initiation of any underlying condition.

S5.5.4 Except as provided in S5.5.5, when the underlying conditions exist for actuation of two or more telltales, the messages must be either:

(a) Repeated automatically in sequence, or
(b) Indicated by visible means and capable of being selected for viewing by the driver under the conditions of S5.6.2.

S5.5.5 In the case of the telltale for a brake system malfunction, air bag malfunction, side air bag malfunction, low tire pressure, electronic stability control malfunction (as of September 1, 2011), passenger air bag off, high beam, turn signal, or seat belt that is designed to display in a common space, that telltale must displace any other symbol or message in that common space while the underlying condition for the telltale’s activation exists.

S5.5.6(a) Except as provided in S5.5.6(b), messages displayed in a common space may be cancelable automatically or by the driver.

(b) Telltales for high beams, turn signal, low tire pressure, and passenger air bag off, and telltales for which the color red is required in Table 1 must not be cancelable while the underlying condition for their activation exists.

S5.6 Conditions

S5.6.1 The driver has adapted to the ambient light roadway conditions.

S5.6.2 The driver is restrained by the seat belts installed in accordance with 49 CFR 571.208 and adjusted in accordance with the vehicle manufacturer’s instructions.
Table 1
Controls, Telltales, and Indicators
With Illumination or Color Requirements

<table>
<thead>
<tr>
<th>Column 1 ITEM</th>
<th>Column 2 SYMBOL</th>
<th>Column 3 WORDS OR ABBREVIATIONS</th>
<th>Column 4 FUNCTION</th>
<th>Column 5 ILLUMINATION</th>
<th>Column 6 COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highbeam ²</td>
<td>![Symbol]</td>
<td>------</td>
<td>Telltale</td>
<td>------</td>
<td>Blue or Green ⁴</td>
</tr>
<tr>
<td>Position, side marker, end-outline marker, identification, or clearance lamps ³, ⁸</td>
<td>![Symbol]</td>
<td>Marker Lamps or MK Lps ¹, ³</td>
<td>Control</td>
<td>Yes</td>
<td>------</td>
</tr>
<tr>
<td>Windshield wiping system ³</td>
<td>![Symbol]</td>
<td>Wiper or Wipe</td>
<td>Control</td>
<td>Yes</td>
<td>------</td>
</tr>
<tr>
<td>Windshield washing system ³</td>
<td>![Symbol]</td>
<td>Washer or Wash</td>
<td>Control</td>
<td>Yes</td>
<td>------</td>
</tr>
<tr>
<td>Windshield washing and wiping system combined ³</td>
<td>![Symbol]</td>
<td>Washer-Wiper or Wash-Wipe</td>
<td>Control</td>
<td>Yes</td>
<td>------</td>
</tr>
<tr>
<td>Windshield defrosting and defogging system ³</td>
<td>![Symbol]</td>
<td>Defrost, Defog, or Def.</td>
<td>Control</td>
<td>Yes</td>
<td>------</td>
</tr>
<tr>
<td>Rear window defrosting and defogging system ³</td>
<td>![Symbol]</td>
<td>Rear Defrost, Rear Defog, Rear Def., or R-Def.</td>
<td>Control</td>
<td>Yes</td>
<td>------</td>
</tr>
</tbody>
</table>

¹ For items 1 through 5, the symbols are as follows:
² For items 7 through 10, the symbols are as follows:
³ The words or abbreviations are as follows:
⁴ The color requirements are as follows:
<table>
<thead>
<tr>
<th>Column 1 ITEM</th>
<th>Column 2 SYMBOL</th>
<th>Column 3 WORDS OR ABBREVIATIONS</th>
<th>Column 4 FUNCTION</th>
<th>Column 5 ILLUMINATION</th>
<th>Column 6 COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake system malfunction</td>
<td></td>
<td>Brake</td>
<td>Telltale</td>
<td></td>
<td>Red 4</td>
</tr>
<tr>
<td>Antilock brake system malfunction for vehicles subject to FMVSS 105 or 135</td>
<td></td>
<td>Antilock, Anti-lock, or ABS</td>
<td>Telltale</td>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td>Malfunction in Variable Brake Proportioning System</td>
<td></td>
<td>Brake Proportioning</td>
<td>Telltale</td>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td>Regenerative brake system malfunction</td>
<td></td>
<td>RBS or ABS/RBS</td>
<td>Telltale</td>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td>Malfunction in antilock system for vehicles other than trailers subject to FMVSS 121</td>
<td></td>
<td>ABS or Antilock</td>
<td>Telltale</td>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td>Antilock brake system trailer fault for vehicles subject to FMVSS 121</td>
<td></td>
<td>Trailer ABS or Trailer Antilock</td>
<td>Telltale</td>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td>Brake pressure (for vehicles subject to FMVSS 105 or 135)</td>
<td></td>
<td>Brake Pressure</td>
<td>Telltale</td>
<td></td>
<td>Red 4</td>
</tr>
<tr>
<td>Low brake fluid condition (for vehicles subject to FMVSS 105 or 135)</td>
<td></td>
<td>Brake Fluid</td>
<td>Telltale</td>
<td></td>
<td>Red 4</td>
</tr>
<tr>
<td>Parking brake applied (for vehicles subject to FMVSS 105 or 135)</td>
<td></td>
<td>Park or Parking Brake</td>
<td>Telltale</td>
<td></td>
<td>Red 4</td>
</tr>
<tr>
<td>Brake lining wear-out condition (for vehicles subject to FMVSS 135)</td>
<td></td>
<td>Brake Wear</td>
<td>Telltale</td>
<td></td>
<td>Red 4</td>
</tr>
<tr>
<td>Electronic Stability Control System Malfunction (for vehicles subject to FMVSS 126)</td>
<td></td>
<td>ESC</td>
<td>Telltale</td>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td>Feature</td>
<td>Indicator</td>
<td>Type</td>
<td>Control</td>
<td>Yes</td>
<td>Yellow</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Electronic Stability Control “OFF”</td>
<td></td>
<td>ESC OFF</td>
<td>Control</td>
<td>Yes</td>
<td>Yellow</td>
</tr>
<tr>
<td>(for vehicles subject to FMVSS 126)</td>
<td></td>
<td></td>
<td>Telltale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Stability Control System Malfunction</td>
<td></td>
<td>ESC</td>
<td>Telltale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(for vehicles subject to FMVSS 136)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Level</td>
<td>Fuel</td>
<td>Telltale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine oil pressure</td>
<td>Oil</td>
<td>Telltale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine coolant temperature</td>
<td>Temp</td>
<td>Telltale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical charge</td>
<td>Volts or Charge or Amp</td>
<td>Telltale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine stop</td>
<td>Engine Stop</td>
<td>Control</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic vehicle speed</td>
<td></td>
<td>Control</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
§571.101

<table>
<thead>
<tr>
<th>Column 1 ITEM</th>
<th>Column 2 SYMBOL</th>
<th>Column 3 WORDS OR ABBREVIATIONS</th>
<th>Column 4 FUNCTION</th>
<th>Column 5 ILLUMINATION</th>
<th>Column 6 COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speedometer</td>
<td>———</td>
<td>MPH, or MPH and km/h</td>
<td>Indicator</td>
<td>Yes</td>
<td>———</td>
</tr>
<tr>
<td>Heating and Air conditioning system</td>
<td>———</td>
<td>———</td>
<td>Control</td>
<td>Yes</td>
<td>———</td>
</tr>
<tr>
<td>Automatic transmission control position</td>
<td>———</td>
<td>PRND</td>
<td>Indicator</td>
<td>Yes</td>
<td>———</td>
</tr>
<tr>
<td>Heating and/or air conditioning fan</td>
<td>———</td>
<td>Fan</td>
<td>Control</td>
<td>Yes</td>
<td>———</td>
</tr>
</tbody>
</table>
| Low Tire Pressure (including malfunction)
(See FMVSS 138) | ![symbol] | ![symbol] Low Tire | Telltale | ——— | Yellow |
| Low Tire Pressure (including malfunction that identifies involved tire)
(See FMVSS 138) | ![symbol] | ![symbol] Low Tire | Telltale | ——— | Yellow |
| Tire Pressure Monitoring System Malfunction
(See FMVSS 138) | ——— | TPMS | Telltale | ——— | Yellow |

Notes:

1. An identifier is shown in this table if it is required for a control for which an illumination requirement exists or if it is used for a telltale for which a color requirement exists. If a line appears in column 2 and column 3, the control, telltale, or indicator is required to be identified, however the form of the identification is the manufacturer’s option. Telltales are not considered to have an illumination requirement, because by definition the telltale must light when the condition for its activation exists.

2. Additional requirements in FMVSS 108.

3. Framed areas of the symbol may be solid; solid areas may be framed.

4. Blue may be blue-green. Red may be red-orange.

5. Symbols employing four lines instead of five may also be used.

6. The pair of arrows is a single symbol. When the controls or telltales for left and right turn operate independently, however, the two arrows may be considered separate symbols and be spaced accordingly.

7. Not required when arrows of turn signal telltales that otherwise operate independently flash simultaneously as hazard warning telltale.

8. Separate identification is not required if function is combined with master lighting switch.
9 Refer to FMVSS 105 or FMVSS 135, as appropriate, for additional specific requirements for brake telltale labeling and color. If a single telltale is used to indicate more than one brake system condition, the brake system malfunction identifier must be used.
10 Requirement effective September 1, 2011.
11 A manufacturer may use this telltale in flashing mode to indicate ESC operation.
12 This symbol may also be used to indicate the malfunction of related systems/functions, including traction control, trailer stability assist, corner brake control, and other similar functions that use throttle and/or individual wheel torque control to operate and share common components with ESC.
13 Combination of the engine oil pressure symbol and the engine coolant temperature symbol in a single telltale is permitted.
14 Use when engine control is separate from the key locking system.
15 If the speedometer is graduated in both miles per hour and in kilometers per hour, the scales must be identified “MPH” and “km/h”, respectively, in any combination of upper- and lowercase letters.
16 The letters ‘P’, ‘R’, ‘N’, and ‘D’ are considered separate identifiers for the individual gear positions. Their locations within the vehicle, and with respect to each other, are governed by FMVSS 102. The letter ‘D’ may be replaced by another alphanumerical character or symbol chosen by the manufacturer.
17 Required only for FMVSS 138 compliant vehicles.
18 Alternatively, either low tire pressure telltale may be used to indicate a TPMS malfunction. See FMVSS 138.
19 Required only for vehicles manufactured on or after September 1, 2007.
Table 2
Identifiers for Controls, Telltales and Indicators with No Color or Illumination Requirements

<table>
<thead>
<tr>
<th>Column 1 ITEM</th>
<th>Column 2 SYMBOL</th>
<th>Column 3 WORD(S) OR ABBREVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand Throttle Control</td>
<td>—</td>
<td>Throttle</td>
</tr>
<tr>
<td>Engine Start Control</td>
<td>—</td>
<td>Engine Start_1</td>
</tr>
<tr>
<td>Manual Choke Control</td>
<td>—</td>
<td>Choke</td>
</tr>
<tr>
<td>Odometer</td>
<td>—</td>
<td>Kilometers or km, if kilometers are shown. Otherwise, no identifier is required.</td>
</tr>
<tr>
<td>Horn</td>
<td>🅰️</td>
<td>Horn</td>
</tr>
<tr>
<td>Master Lighting Switch</td>
<td>🕯️</td>
<td>Lights</td>
</tr>
<tr>
<td>Headlamps and Taillamps Control</td>
<td>—</td>
<td>— 4,5</td>
</tr>
<tr>
<td>Low Brake Air Pressure Telltale (for vehicles subject to FMVSS 121)</td>
<td>—</td>
<td>Brake Air</td>
</tr>
<tr>
<td>Seat Belt Unfastened Telltale</td>
<td>🧡 or 🤦</td>
<td>Fasten Belts or Fasten Seat Belts</td>
</tr>
</tbody>
</table>

Notes:
1. Use when engine control is separate from the key locking system.
2. Any combination of upper- or lowercase letters may be used.
3. Framed areas may be filled.
4. If a line appears in Column 2 and Column 3, the Control, Telltale or Indicator is required to be identified, however the form of the identification is the manufacturer's option.
5. Separate identification not required if function is combined with Master Lighting Switch.

§ 571.102 Standard No. 102; Transmission shift position sequence, starter interlock, and transmission braking effect.

S1. Purpose and scope. This standard specifies the requirements for the transmission shift position sequence, a starter interlock, and for a braking effect of automatic transmissions, to reduce the likelihood of shifting errors, to prevent starter engagement by the driver when the transmission is in any drive position, and to provide supplemental braking at speeds below 40 kilometers per hour (25 miles per hour).

S2. Application. This standard applies to passenger cars, multi-purpose passenger vehicles, trucks, and buses.

S3. Requirements.

S3.1 Automatic transmissions.

S3.1.1 Location of transmission shift positions on passenger cars. A neutral position shall be located between forward drive and reverse drive positions.

S3.1.1.1 Transmission shift levers. If a steering-column-mounted transmission shift lever is used, movement from neutral position to forward drive position shall be clockwise. If the transmission shift lever sequence includes a park position, it shall be located at the end, adjacent to the reverse drive position.

S3.1.2 Transmission braking effect. In vehicles having more than one forward transmission gear ratio, one forward drive position shall provide a greater degree of engine braking than the highest speed transmission ratio at vehicle speeds below 40 kilometers per hour (25 miles per hour).

S3.1.3 Starter interlock. Except as provided in §3.1.3.1 through §3.1.3.3, the engine starter shall be inoperative when the transmission shift position is in a forward or reverse drive position.

S3.1.3.1 After the driver has activated the vehicle’s propulsion system:

(a) The engine may stop and restart automatically when the transmission shift position is in any forward drive gear;

(b) The engine may not automatically stop when the transmission is in reverse gear; and

(c) The engine may automatically restart in reverse gear only if the vehicle satisfies (1) and (2):

(1) When the engine is automatically stopped in a forward drive shift position and the driver selects Reverse, the engine restarts immediately whenever the service brake is applied.

(2) When the engine is automatically stopped in a forward drive shift position and the driver selects Reverse, the engine does not start automatically if the service brake is not applied.

S3.1.3.2 Notwithstanding §3.1.3.1, the engine may stop and start at any time after the driver has activated the vehicle’s propulsion system if the vehicle can meet the requirements specified in paragraphs (a) and (b):

(a) For passenger cars, multi-purpose passenger vehicles, trucks and buses with a GVWR less than or equal to 4,536 kg (10,000 pounds), the vehicle’s propulsion system can propel the vehicle in the normal travel mode in all forward and reverse drive gears without the engine operating. For passenger cars, multipurpose passenger vehicles, trucks and buses with a GVWR greater than 4,536 kg (10,000 pounds), the vehicle’s propulsion system can propel the vehicle in the normal travel mode in Reverse and at least one forward drive gear without the engine operating.

(b) If the engine automatically starts while the vehicle is traveling at a steady speed and steady accelerator control setting, the engine does not cause the vehicle to accelerate.

S3.1.3.3 If the transmission shift position is in Park, automatically stopping or restarting the engine shall not take the transmission out of Park.

S3.1.4 Identification of shift positions and of shift position sequence.

S3.1.4.1 Except as provided in §3.1.4.3, the transmission shift position sequence includes a park position, identification of shift positions, including the positions in relation to each other and the position selected, shall be displayed in view of the driver whenever any of the following conditions exist:

(a) The ignition is in a position where the transmission can be shifted; or

(b) The transmission is not in park.

S3.1.4.2 Except as provided in §3.1.4.3, if the transmission shift position sequence does not include a park
position, identification of shift positions, including the positions in relation to each other and the position selected, shall be displayed in view of the driver whenever the ignition is in a position in which the engine is capable of operation.

S3.1.4.3 Such information need not be displayed when the ignition is in a position that is used only to start the vehicle.

S3.1.4.4 All of the information required to be displayed by S3.1.4.1 or S3.1.4.2 shall be displayed in view of the driver in a single location. At the option of the manufacturer, redundant displays providing some or all of the information may be provided.

S3.2 Manual transmissions. Identification of the shift lever pattern of manual transmissions, except three forward speed manual transmissions having the standard “H” pattern, shall be displayed in view of the driver at all times when a driver is present in the driver’s seating position.
(1) For a passenger car equipped with a heating system other than a heat exchanger type that uses the engine's coolant as a means to supply the heat to the heat exchanger, the procedure shall be that specified by the vehicle's manufacturer for cold weather starting, except that connection to a power or heat source external to the vehicle is not permitted.

(2) For all other passenger cars, either—
 (i) The engine speed shall not exceed 1,500 r.p.m. in neutral gear; or
 (ii) The engine speed and load shall not exceed the speed and load at 40 kilometers per hour in the manufacturer's recommended gear with road load;

(c) A room air change of 90 times per hour is not required;

(d) The windshield wipers may be used during the test if they are operated without manual assist;

(e) One or two windows may be open a total of 25 millimeters;

(f) The defroster blower may be turned on at any time; and

(g) The wind velocity is at any level from 0 to 3 kilometers per hour.

(h) The test chamber temperature and the wind velocity shall be measured, after the engine has been started, at the forwardmost point of the vehicle or a point 914 millimeters from the base of the windshield, whichever is farther forward, at a level halfway between the top and bottom of the windshield on the vehicle centerline.

§ 571.104 Standard No. 104; Windshield wiping and washing systems.

S1. Scope. This standard specifies requirements for windshield wiping and washing systems.

S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses.

S3. Definitions. The term seating reference point is substituted for the terms manikin H point, manikin H point with seat in rearmost position and H point wherever any of these terms appear in any SAE Standard or SAE Recommended Practice referred to in this standard.

Daylight opening means the maximum unobstructed opening through the glazing surface, as defined in paragraph 2.3.12 of section E, “Ground Vehicle Practice,” of SAE Aerospace-Automotive Drawing Standards (1963) (incorporated by reference, see §571.5).

Glazing surface reference line means the line resulting from the intersection of the glazing surface and a horizontal plane 635 millimeters above the seating reference point, as shown in Figure 1 of SAE Recommended Practice J903a (1966) (incorporated by reference, see §571.5).

Overall width means the maximum overall body width dimension “W116”, as defined in section E, “Ground Vehicle Practice,” of SAE Aerospace-Automotive Drawing Standards (1963) (incorporated by reference, see §571.5).

Plan view reference line means—
 (a) For vehicles with bench-type seats, a line parallel to the vehicle longitudinal centerline outboard of the steering wheel centerline 0.15 times the difference between one-half of the shoulder room dimension and the steering wheel centerline-to-car-centerline dimension as shown in Figure 2 of SAE Recommended Practice J903a (1966) (incorporated by reference, see §571.5); or
 (b) For vehicles with individual-type seats, either—
 (i) A line parallel to the vehicle longitudinal centerline which passes through the center of the driver’s designated seating position; or
 (ii) A line parallel to the vehicle longitudinal centerline located so that the geometric center of the 95 percent eye range contour is positioned on the longitudinal centerline of the driver’s designated seating position.

Shoulder room dimension means the front shoulder room dimension “W3” as defined in section E, “Ground Vehicle Practice,” of SAE Aerospace-Automotive Drawing Standards (1963) (incorporated by reference, see §571.5).

95 percent eye range contour means the 95th percentile tangential cutoff specified in SAE Recommended Practice J941 (1965) (incorporated by reference, see §571.5).

S4. Requirements.
§ 571.104

S4.1 Windshield wiping system. Each vehicle shall have a power-driven windshield wiping system that meets the requirements of S4.1.1.

S4.1.1 Frequency.

S4.1.1.1 Each windshield wiping system shall have at least two frequencies or speeds.

S4.1.1.2 One frequency or speed shall be at least 45 cycles per minute regardless of engine load and engine speed.

S4.1.1.3 Regardless of engine speed and engine load, the highest and one lower frequency or speed shall differ by at least 15 cycles per minute. Such lower frequency or speed shall be at least 20 cycles per minute regardless of engine speed and engine load.

S4.1.1.4 Compliance with subparagraphs S4.1.1.2 and S4.1.1.3 may be demonstrated by testing under the conditions specified in sections 4.1.1 and 4.1.2 of SAE Recommended Practice J903a (1966) (incorporated by reference, see § 571.5).

S4.1.2 Wiped area. When tested wet in accordance with SAE Recommended Practice J903a (1966) (incorporated by reference, see § 571.5), each passenger car windshield wiping system shall wipe the percentage of Areas A, B, and C of the windshield (established in accordance with S4.1.2.1) that (1) is specified in column 2 of the applicable table following subparagraph S4.1.2.1 and (2) is within the area bounded by a perimeter line on the glazing surface 25 millimeters from the edge of the daylight opening.

S4.1.2.1 Areas A, B, and C shall be established as shown in Figures 1 and 2 of SAE Recommended Practice J903a (1966) (incorporated by reference, see § 571.5) using the angles specified in Columns 3 through 6 of Table I, II, III, or IV, as applicable.

TABLE I—Passenger Cars of Less Than 1520 Millimeters in Overall Width

<table>
<thead>
<tr>
<th>Column 1—Area</th>
<th>Column 2—Minimum percent to be wiped</th>
<th>Angles in degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Column 3—Left</td>
<td>Column 4—Right</td>
</tr>
<tr>
<td>A</td>
<td>80</td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td>94</td>
<td>13</td>
</tr>
<tr>
<td>C</td>
<td>99</td>
<td>7</td>
</tr>
</tbody>
</table>

TABLE II—Passenger Cars of 1520 or More But Less Than 1630 Millimeters in Overall Width

<table>
<thead>
<tr>
<th>Column 1—Area</th>
<th>Column 2—Minimum percent to be wiped</th>
<th>Angles in degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Column 3—Left</td>
<td>Column 4—Right</td>
</tr>
<tr>
<td>A</td>
<td>80</td>
<td>17</td>
</tr>
<tr>
<td>B</td>
<td>94</td>
<td>13</td>
</tr>
<tr>
<td>C</td>
<td>99</td>
<td>7</td>
</tr>
</tbody>
</table>

TABLE III—Passenger Cars of 1630 or More But Less Than 1730 Millimeters in Overall Width

<table>
<thead>
<tr>
<th>Column 1—Area</th>
<th>Column 2—Minimum percent to be wiped</th>
<th>Angles in degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Column 3—Left</td>
<td>Column 4—Right</td>
</tr>
<tr>
<td>A</td>
<td>80</td>
<td>17</td>
</tr>
<tr>
<td>B</td>
<td>94</td>
<td>13</td>
</tr>
<tr>
<td>C</td>
<td>99</td>
<td>7</td>
</tr>
</tbody>
</table>

TABLE IV—Passenger Cars of 1730 or More Millimeters in Overall Width

<table>
<thead>
<tr>
<th>Column 1—Area</th>
<th>Column 2—Minimum percent to be wiped</th>
<th>Angles in degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Column 3—Left</td>
<td>Column 4—Right</td>
</tr>
<tr>
<td>A</td>
<td>80</td>
<td>17</td>
</tr>
<tr>
<td>B</td>
<td>94</td>
<td>13</td>
</tr>
<tr>
<td>C</td>
<td>99</td>
<td>7</td>
</tr>
</tbody>
</table>

S4.2 Windshield washing system.

S4.2.1 Each passenger car shall have a windshield washing system that meets the requirements of SAE Recommended Practice J942 (1965) (incorporated by reference, see § 571.5), except that the reference to “the effective wipe pattern defined in SAE J903, paragraph 3.1.2” in paragraph 3.1 of SAE Recommended Practice J942 (1965) shall be deleted and “the areas established in accordance with subparagraph S4.1.2.1 of Motor Vehicle Safety Standard No. 104” shall be inserted in lieu thereof.

S4.2.2 Each multipurpose passenger vehicle, truck, and bus shall have a windshield washing system that meets
§ 571.105 Standard No. 105; Hydraulic and electric brake systems.

S1. Scope. This standard specifies requirements for hydraulic and electric service brake systems, and associated parking brake systems.

S2. Purpose. The purpose of this standard is to insure safe braking performance under normal and emergency conditions.

S3. Application. This standard applies to multi-purpose passenger vehicles, trucks, and buses with a GVWR greater than 3,500 kilograms (7,716 pounds) that are equipped with hydraulic or electric brake systems.

S4. Definitions.

Antilock brake system or ABS means a portion of a service brake system that automatically controls the degree of rotational wheel slip during braking by:

1. Sensing the rate of angular rotation of the wheels;
2. Transmitting signals regarding the rate of wheel angular rotation to one or more controlling devices which interpret those signals and generate responsive controlling output signals; and
3. Transmitting those controlling signals to one or more modulators which adjust brake actuating forces in response to those signals.

Backup system means a portion of a service brake system, such as a pump, that automatically supplies energy, in the event of a primary brake power source failure.

Brake power assist unit means a device installed in a hydraulic brake system that reduces the operator effort required to actuate the system, and that if inoperative does not prevent the operator from braking the vehicle by a continued application of muscular force on the service brake control.

Brake power unit means a device installed in a brake system that provides the energy required to actuate the brakes, either directly or indirectly through an auxiliary device, with the operator action consisting only of modulating the energy application level.

Directly Controlled Wheel means a wheel for which the degree of rotational wheel slip is sensed, either at that wheel or on the axle shaft for that wheel and corresponding signals are transmitted to one or more modulators that adjust the brake actuating forces at that wheel. Each modulator may also adjust the brake actuating forces at other wheels that are on the same axle or in the same axle set in response to the same signal or signals.

Electric vehicle or EV means a motor vehicle that is powered by an electric motor drawing current from rechargeable storage batteries, fuel cells, or other portable sources of electrical current, and which may include a non-electrical source of power designed to charge batteries and components thereof.

Electrically-actuated service brakes means service brakes that utilize electrical energy to actuate the foundation brakes.

Full brake application means a brake application in which the force on the brake pedal reaches 150 pounds within 0.3 seconds from the point of application of force to the brake control.

Hydraulic brake system means a system that uses hydraulic fluid as a medium for transmitting force from a service brake control to the service brake, and that may incorporate a brake power assist unit, or a brake power unit.

Indirectly Controlled Wheel means a wheel at which the degree of rotational wheel slip is not sensed, but at which the modulator of an antilock braking system adjusts its brake actuating forces in response to signals from one or more sensed wheels.

Initial brake temperature means the average temperature of the service
§ 571.105 49 CFR Ch. V (10–1–16 Edition)

brakes on the hottest axle of the vehicle 0.2 mi before any brake application.

Lightly loaded vehicle weight means:
(a) For vehicles with a GVWR of 10,000 lbs. or less, unloaded vehicle weight plus 400 lbs. (including driver and instrumentation);

(b) For vehicles with a GVWR greater than 10,000 lbs., unloaded vehicle weight plus 500 lbs. (including driver and instrumentation).

Maximum drive-through speed means the highest possible constant speed at which the vehicle can be driven through 200 feet of a 500-foot radius curve arc without leaving the 12-foot lane.

Parking mechanism means a component or subsystem of the drive train that locks the drive train when the transmission control is placed in a parking or other gear position and the ignition key is removed.

Peak friction coefficient or PFC means the ratio of the maximum value of braking test wheel longitudinal force to the simultaneous vertical force occurring prior to wheel lockup, as the braking torque is progressively increased.

Pressure component means a brake system component that contains the brake system fluid and controls or senses the fluid pressure.

Regenerative braking system or RBS means an electrical energy system that is installed in an EV for recovering or dissipating kinetic energy, and which uses the propulsion motor(s) as a retarder for partial braking of the EV while returning electrical energy to the propulsion batteries or dissipating electrical energy.

Skid number means the frictional resistance of a pavement measured in accordance with ASTM E274-70 (incorporated by reference, see §571.5) at 40 mph, omitting water delivery as specified in paragraphs 7.1 and 7.2 of that method.

Snub means the braking deceleration of a vehicle from a higher reference speed to a lower reference speed that is greater than zero.

Spike stop means a stop resulting from the application of 200 lbs of force on the service brake control in 0.08 s.

Split service brake system means a brake system consisting of two or more subsystems actuated by a single control, designed so that a single failure in any subsystem (such as a leakage-type failure of a pressure component of a hydraulic subsystem except structural failure of a housing that is common to two or more subsystems, or an electrical failure in an electric subsystem) does not impair the operation of any other subsystem.

Stopping distance means the distance traveled by a vehicle from the point of application of force to the brake control to the point at which the vehicle reaches a full stop.

Tandem axle means a group of two or more axles placed in close arrangement one behind the other with the center lines of adjacent axles not more than 72 inches apart.

Variable proportioning brake system means a system that automatically adjusts the braking force at the axles to compensate for vehicle static axle loading and/or dynamic weight transfer between axles during deceleration.

Wheel lockup means 100 percent wheel slip.

S5. Requirements.

S5.1 Service brake systems. Each vehicle must be equipped with a service brake system acting on all wheels. Wear of the service brake must be compensated for by means of a system of automatic adjustment. Each passenger car and each multipurpose passenger vehicle, truck, and bus with a GVWR of 10,000 pounds or less must be capable of meeting the requirements of S5.1.1 through S5.1.6 under the conditions prescribed in S6, when tested according to the procedures and in the sequence set forth in S7. Each school bus with a GVWR greater than 10,000 pounds must be capable of meeting the requirements of S5.1.1 through S5.1.7 under the conditions specified in S6, when tested according to the procedures and in the sequence set forth in S7. Each multipurpose passenger vehicle, truck and bus (other than a school bus) with a GVWR greater than 10,000 pounds must be capable of meeting the requirements of S5.1.1, S5.1.2, S5.1.3, and S5.1.7 under the conditions specified in S6, when tested according to the procedures and in the sequence set forth in S7. Except as noted in S5.1.1.2 and S5.1.1.4, if a vehicle is incapable of
attaining a speed specified in S5.1.1, S5.1.2, S5.1.3, or S5.1.6. Its service brakes must be capable of stopping the vehicle from the multiple of 5 mph that is 4 to 8 mph less than the speed attainable in 2 miles, within distances that do not exceed the corresponding distances specified in Table II. If a vehicle is incapable of attaining a speed specified in S5.1.4 in the time or distance interval set forth, it must be tested at the highest speed attainable in the time or distance interval specified.

S5.1.1 Stopping distance.

(a) The service brakes shall be capable of stopping each vehicle with a GVWR of less than 8,000 pounds, and each school bus with a GVWR between 8,000 pounds and 10,000 pounds in four effectiveness tests within the distances and from the speeds specified in S5.1.1.1, S5.1.1.2, S5.1.1.3, and S5.1.1.4.

(b) The service brakes shall be capable of stopping each vehicle with a GVWR of between 8,000 pounds and 10,000 pounds, other than a school bus, in three effectiveness tests within the distances and from the speeds specified in S5.1.1.1, S5.1.1.2, and S5.1.1.4.

(c) The service brakes shall be capable of stopping each vehicle with a GVWR greater than 10,000 pounds in two effectiveness tests within the distances and from the speeds specified in S5.1.1.2 and S5.1.1.3. Each school bus with a GVWR greater than 10,000 pounds manufactured after January 12, 1996 and before March 1, 1999 and which is equipped with an antilock brake system may comply with paragraph S5.1.1.1 rather than the first effectiveness test, as specified in S5.1.1.1. Each school bus with a GVWR greater than 10,000 pounds manufactured on or after March 1, 1999 shall be capable of stopping from 30 mph and 60 mph within the corresponding distances specified in column III of Table II.

S5.1.1.1 In the first (preburnished) effectiveness test, the vehicle shall be capable of stopping from 30 mph and 60 mph, and each vehicle with a GVWR greater than 10,000 pounds (other than a school bus) shall be capable of stopping from 60 mph, within the corresponding distances specified in Column II of Table II. If the speed attainable in 2 miles is not less than 84 mph, a passenger car or other vehicle with a GVWR of 10,000 pounds or less shall also be capable of stopping from 80 mph within the corresponding distances specified in Column II of Table II.

S5.1.1.3 In the third effectiveness test the vehicle shall be capable of stopping at lightly loaded vehicle weight from 60 mph within the corresponding distance specified in column I of table II.

S5.1.1.4 In the fourth effectiveness test, a vehicle with a GVWR of 10,000 pounds or less shall be capable of stopping from 30 and 60 mph within the corresponding distances specified in column I of table II. If the speed attainable in 2 miles is not less than 84 mph, a passenger car, or other vehicle with a GVWR of 10,000 lbs., or less, shall also be capable of stopping from 80 mph within the corresponding distance specified in column I of table II.

If the speed attainable in 2 miles is not less than 99 mph, a passenger car shall, in addition, be capable of stopping from the applicable speed indicated below, within the corresponding distance specified in column I of table II.

<table>
<thead>
<tr>
<th>Speed attainable in 2 miles (mph)</th>
<th>Required to stop from (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not less than 99 but less than 104</td>
<td>95</td>
</tr>
<tr>
<td>104 or more</td>
<td>100</td>
</tr>
</tbody>
</table>

For an EV, the speed attainable in 2 miles is determined with the propulsion batteries at a state of charge of not less than 95 percent at the beginning of the run.

S5.1.2 Partial failure.

S5.1.2.1 In vehicles manufactured with a split service brake system, in the event of a rupture or leakage type of failure in a single subsystem, other than a structural failure of a housing that is common to two or more subsystems, the remaining portion(s) of the service brake system shall continue to operate and shall be capable of
§ 571.105 49 CFR Ch. V (10–1–16 Edition)

stopping a vehicle from 60 mph within the corresponding distance specified in column IV of table II.

S5.1.2.2 In vehicles not manufactured with a split service brake system, in the event of any one rupture or leakage type of failure in any component of the service brake system the vehicle shall, by operation of the service brake control, be capable of stopping 10 times consecutively from 60 mph within the corresponding distance specified in column IV of table II.

S5.1.2.3 For a vehicle manufactured with a service brake system in which the brake signal is transmitted electrically between the brake pedal and some or all of the foundation brakes, regardless of the means of actuation of the foundation brakes, the vehicle shall be capable of stopping from 60 mph within the corresponding distance specified in column IV of Table II with any single failure in any circuit that electrically transmits the brake signal, and with all other systems intact.

S5.1.2.4 For an EV manufactured with a service brake system that incorporates RBS, the vehicle shall be capable of stopping from 60 mph within the corresponding distance specified in Column IV of Table II with any inoperative unit or brake power assist unit.

S5.1.3 Inoperative brake power assist unit or brake power unit. A vehicle equipped with one or more brake power assist units shall meet the requirements of either S5.1.3.1, S5.1.3.2, or S5.1.3.4 (chosen at the option of the manufacturer), and a vehicle equipped with one or more brake power units shall meet the requirements of either S5.1.3.1, S5.1.3.3, or S5.1.3.4 (chosen at the option of the manufacturer).

S5.1.3.1 The service brakes on a vehicle equipped with one or more brake power assist units or brake power units, with one such unit inoperative and depleted of all reserve capability, shall be capable of stopping a vehicle from 60 mph within the corresponding distance specified in column IV of table II.

S5.1.3.2 Brake power assist units. The service brakes on a vehicle equipped with one or more brake power assist units, with one such unit inoperative, shall be capable of stopping a vehicle from 60 mph:

(a) In six consecutive stops at an average deceleration for each stop that is not lower than that specified in column I of table III, when the inoperative unit is not initially depleted of all reserve capability;

(b) In a final stop, at an average deceleration that is not lower than 7 FPSPS for passenger cars (equivalent stopping distance 554 feet) or 6 FPSPS for vehicles other than passenger cars (equivalent stopping distance 646 feet), as applicable, when the inoperative unit is depleted of all reserve capacity.

S5.1.3.3 Brake power units. The service brakes of a vehicle equipped with one or more brake power units with an accumulator-type reserve system, with any one failure in any one unit shall be capable of stopping the vehicle from 60 mph—

(a) In 10 consecutive stops at an average deceleration for each stop that is not lower than that specified in column II of table III, when the unit is not initially depleted of all reserve capacity;

(b) In a final stop, at an average deceleration that is not lower than 7 FPSPS for passenger cars (equivalent stopping distance 554 feet) or 6 FPSPS for vehicles other than passenger cars (equivalent stopping distance 646 feet), as applicable, when the inoperative unit is depleted of all reserve capacity.

S5.1.3.4 Brake power assist and brake power units. The service brakes of a vehicle equipped with one or more brake power assist units or brake power units with a backup system, with one brake power assist unit or brake power unit inoperative and depleted of all reserve capability and with only the backup system operating in the failed subsystem, shall be capable of stopping the vehicle from 60 mph in 15 consecutive stops at an average deceleration for each stop that is not lower than 12 fpsps (equivalent stopping distance 323 feet).

S5.1.3.5 Electric brakes. Each vehicle with electrically-actuated service brakes (brake power unit) shall comply with the requirements of S5.1.3.1 with any single electrical failure in the electrically-actuated service brakes and all other systems intact.
S5.1.4 Fade and recovery. The service brakes shall be capable of stopping each vehicle in two fade and recovery tests as specified below.

S5.1.4.1 The control force used for the baseline check stops or snubs shall be not less than 10 pounds, nor more than 60 pounds, except that the control force for a vehicle with a GVWR of 10,000 pounds or more may be between 10 pounds and 90 pounds.

S5.1.4.2 (a) Each vehicle with GVWR of 10,000 lbs or less shall be capable of making 5 fade stops (10 fade stops on the second test) from 60 mph at a deceleration not lower than 15 fpsps for each stop, followed by 5 fade stops at the maximum deceleration attainable from 5 to 15 fpsps.

(b) Each vehicle with a GVWR greater than 10,000 pounds shall be capable of making 10 fade snubs (20 fade snubs on the second test) from 40 mph to 20 mph at 10 fpsps for each snub.

S5.1.4.3 (a) Each vehicle with a GVWR of 10,000 pounds or less shall be capable of making five recovery stops from 30 mph at 10 fpsps for each stop, with a control force application that falls within the following maximum and minimum limits:

(1) A maximum for the first four recovery stops of 150 pounds, and for the fifth stop, of 45 pounds more than the average control force for the baseline check; and

(2) A minimum of—

(A) The average control force for the baseline check minus 10 pounds, or

(B) The average control force for the baseline check times 0.60, whichever is lower (but in no case lower than 5 pounds).

(b) Each vehicle with a GVWR of more than 10,000 pounds shall be capable of making five recovery snubs from 40 mph to 20 mph at 10 fpsps for each snub, with a control force application that falls within the following maximum and minimum limits:

(1) A maximum for the first four recovery snubs of 150 pounds, and for the fifth stop, of 60 pounds more than the average control force for the baseline check (but in no case more than 110 pounds).

(2) A minimum of—

(A) The average control force for the baseline check minus 10 pounds, or

(B) The average control force for the baseline check times 0.60, whichever is lower (but in no case lower than 5 pounds).

S5.1.5 Water recovery. The service brakes shall be capable of stopping each vehicle in a water recovery test, as specified below.

S5.1.5.1 The control force used for the baseline check stops or snubs shall be not less than 10 pounds, nor more than 60 pounds, except that the control force for a vehicle with a GVWR of 10,000 pounds or more may be between 10 and 90 pounds.

S5.1.5.2 (a) After being driven for 2 minutes at a speed of 5 mph in any combination of forward and reverse directions through a trough having a water depth of 6 inches, each vehicle with a GVWR of 10,000 pounds or less shall be capable of making five recovery stops from 30 mph at 10 fpsps for each stop with a control force application that falls within the following maximum and minimum limits:

(1) A maximum for the first four recovery stops of 150 pounds, and for the fifth stop, of 45 pounds more than the average control force for the baseline check (but in no case more than 90 pounds, except that the maximum control force for the fifth stop in the case of a vehicle manufactured before September 1, 1976, shall be not more than plus 60 pounds of the average control force for the baseline check (but in no case more than 110 pounds).

(2) A minimum of—

(A) The average control force for the baseline check minus 10 pounds, or

(B) The average control force for the baseline check times 0.60, whichever is lower (but in no case lower than 5 pounds).

(b) After being driven for 2 minutes at a speed of 5 mph in any combination of forward and reverse directions through a trough having a water depth of 6 inches, each vehicle with a GVWR of more than 10,000 pounds shall be capable of making five recovery stops from 30 mph at 10 fpsps for each stop with a control force application that falls within the following maximum and minimum limits:

(1) A maximum for the first four recovery stops of 150 pounds, and for the fifth stop, of 60 pounds more than the
average control force for the baseline check (but in no case more than 110 pounds); and
(2) A minimum of—
(A) The average control force for the baseline check minus 10 pounds, or
(B) The average control force for the baseline check times 0.60, whichever is lower (but in no case lower than 5 pounds).

S5.1.6 Spike stops. Each vehicle with a GVWR of 10,000 lbs. or less shall be capable of making 10 spike stops from 30 mph, followed by 6 effectiveness (check) stops from 60 mph, at least one of which shall be within a corresponding stopping distance specified in column I of table II.

S5.1.7 Stability and control during braking. When stopped four consecutive times under the conditions specified in S6, each vehicle with a GVWR of 10,000 pounds manufactured on or after July 1, 2005 and each vehicle with a GVWR greater than 10,000 pounds manufactured in two or more stages on or after July 1, 2006 shall stop from 30 mph or 75 percent of the maximum drive-through speed, whichever is less, at least three times within the 12-foot lane, without any part of the vehicle leaving the roadway. Stop the vehicle with the vehicle at its lightly loaded vehicle weight, or at the manufacturer’s option, at its lightly loaded vehicle weight plus not more than an additional 1000 pounds for a roll bar structure on the vehicle.

S5.2 Parking Brake System. Each vehicle shall be manufactured with a parking brake system of a friction type with a solely mechanical means to retain engagement, which shall under the conditions of S6, when tested according to the procedures specified in S7, meet the requirements specified in S5.2.1, S5.2.2, or S5.2.3 as appropriate, with the system engaged—
(a) In the case of a vehicle with a GVWR of 4,536 kilograms (10,000 pounds) or less, with a force applied to the control not to exceed 125 pounds for a foot-operated system and 150 pounds for a hand-operated system.
(b) In the case of a vehicle with a GVWR greater than 4,536 kilograms (10,000 pounds), with a force applied to the control not to exceed 150 pounds for a foot-operated system and 125 pounds for a hand-operated system.

S5.2.1. Except as provided in §5.2.2, the parking brake system on a passenger car and on a school bus with a GVWR of 10,000 pounds or less shall be capable of holding the vehicle stationary (to the limit of traction on the braked wheels) for 5 minutes in both a forward and reverse direction on a 30 percent grade.

S5.2.2 A vehicle of a type described in S5.2.1 at the option of the manufacturer may meet the requirements of S5.2.2.1, S5.2.2.2, and S5.2.2.3 instead of the requirements of S5.2.1 if:
(a) The vehicle has a transmission or transmission control which incorporates a parking mechanism, and
(b) The parking mechanism must be engaged before the ignition key can be removed.

S5.2.2.1 The vehicle’s parking brake and parking mechanism, when both are engaged, shall be capable of holding the vehicle stationary (to the limit of traction of the braked wheels) for 5 minutes, in both forward and reverse directions, on a 30 percent grade.

S5.2.2.2 The vehicle’s parking brake, with the parking mechanism not engaged, shall be capable of holding the vehicle stationary for 5 minutes, in both forward and reverse directions, on a 20 percent grade.

S5.2.2.3 With the parking mechanism engaged and the parking brake not engaged, the parking mechanism shall not disengage or fracture in a manner permitting vehicle movement, when the vehicle is impacted at each end, on a level surface, by a barrier moving at 2½ mph.

S5.2.3 (a) The parking brake system on a multipurpose passenger vehicle, truck or bus (other than a school bus) with a GVWR of 4,536 kilograms (10,000 pounds) or less shall be capable of holding the vehicle stationary for 5 minutes, in both forward and reverse directions, on a 20 percent grade.
(b) The parking brake system on a multipurpose passenger vehicle, truck, or bus (including a school bus) with a GVWR greater than 4,536 kilograms (10,000 pounds) shall be capable of holding the vehicle stationary for 5 minutes, in both forward and reverse directions, on a 20 percent grade.
§ 571.105

S5.3 Brake system indicator lamp. Each vehicle shall have a brake system indicator lamp or lamps, mounted in front of and in clear view of the driver, which meet the requirements of S5.3.1 through S5.3.5. A vehicle with a GVWR of 10,000 pounds or less may have a single common indicator lamp. A vehicle with a GVWR of greater than 10,000 pounds may have an indicator lamp which is common for gross loss of pressure, drop in the level of brake fluid, or application of the parking brake, but shall have a separate indicator lamp for antilock brake system malfunction. However, the options provided in S5.3.1(a) shall not apply to a vehicle manufactured without a split service brake system; such a vehicle shall, to meet the requirements of S5.3.1(a), be equipped with a malfunction indicator that activates under the conditions specified in S5.3.1(a)(4). This warning indicator shall, instead of meeting the requirements of S5.3.2 through S5.3.5, activate (while the vehicle remains capable of meeting the requirements of S5.1.2.2 and the ignition switch is in the “on” position) a continuous or intermittent audible signal and a flashing warning light, displaying the words “STOP-BRAKE FAILURE” in block capital letters not less than one-quarter of an inch in height.

S5.3.1 An indicator lamp shall be activated when the ignition (start) switch is in the “on” (“run”) position and whenever any of the conditions (a) or (b), (c), (d), (e), (f), and (g) occur:

(a) A gross loss of pressure (such as caused by rupture of a brake line but not by a structural failure of a housing that is common to two or more subsystems) due to one of the following conditions (chosen at the option of the manufacturer):

(1) Before or upon application of a differential pressure of not more than 225 lb/in² between the active and failed brake system measured at a master cylinder outlet or a slave cylinder outlet.

(2) Before or upon application of 50 pounds of control force upon a fully manual service brake.

(3) Before or upon application of 25 pounds of control force upon a service brake with a brake power assist unit.

(4) When the supply pressure in a brake power unit drops to a level not less than one-half of the normal system pressure.

(b) A drop in the level of brake fluid in any master cylinder reservoir compartment to less than the recommended safe level specified by the manufacturer or to one-fourth of the fluid capacity of that reservoir compartment, whichever is greater.

(c) A malfunction that affects the generation or transmission of response or control signals in an antilock brake system, or a total functional electrical failure in a variable proportioning brake system.

(d) Application of the parking brake.

(e) For a vehicle with electrically-actuated service brakes, failure of the source of electric power to the brakes, or diminution of state of charge of the batteries to less than a level specified by the manufacturer for the purpose of warning a driver of degraded brake performance.

(f) For a vehicle with electric transmission of the service brake control signal, failure of a brake control circuit.

(g) For an EV with RBS that is part of the service brake system, failure of the RBS.

S5.3.2 (a) Except as provided in paragraph (b) of this section, all indicator lamps shall be activated as a check of lamp function either when the ignition (start) switch is turned to the “on” (run) position when the engine is not running, or when the ignition (start) switch is in a position between “on” (run) and “start” that is designated by the manufacturer as a check position.

(b) The indicator lamps need not be activated when a starter interlock is in operation.

S5.3.3 (a) Each indicator lamp activated due to a condition specified in S5.3.1 shall remain activated as long as the malfunction exists, whenever the ignition (start) switch is in the “on” (run) position when the engine is not running, or when the ignition (start) switch is in a position between “on” (run) and “start” that is designated by the manufacturer as a check position.

(b) For vehicles manufactured on and after September 1, 1999 with GVWRs greater than 10,000 lbs, each message about the existence of a malfunction, as described in S5.3.1(c), shall be stored in the antilock brake system after the
§ 571.105
ignition switch is turned to the “off” position and the indicator lamp shall be automatically reactivated when the ignition switch is again turned to the “on” position. The indicator lamp shall also be activated as a check of lamp function whenever the ignition is turned to the “run” position. The indicator lamp shall be deactivated at the end of the check of lamp function unless there is a malfunction or a message about a malfunction that existed when the key switch was last turned to the “off” position.

S5.3.4 When an indicator lamp is activated it may be steady burning or flashing.

S5.3.5 (a) Each indicator lamp shall display word, words or abbreviation, in accordance with the requirements of Standard No. 101 (49 CFR 571.101) and/or this section, which shall have letters not less than 1/8-inch high and be legible to the driver in daylight when lighted. Words in addition to those required by Standard No. 101 and/or this section and symbols may be provided for purposes of clarity.

(b) If a single common indicator is used, the lamp shall display the word “Brake”. The letters and background of a single common indicator shall be of contrasting colors, one of which is red.

(c)(1) If separate indicators are used for one or more of the conditions described in S5.3.1(a) through S5.3.1(g) of this standard, the indicator display shall include the word “Brake” and appropriate additional labeling, except as provided in (c)(1) (A) through (D) of this paragraph.

(A) If a separate indicator lamp is provided for gross loss of pressure, the words “Brake Pressure” shall be used for S5.3.1(a).

(B) If a separate indicator lamp is provided for low brake fluid, the words “Brake Fluid” shall be used for S5.3.1(b), except for vehicles using hydraulic system mineral oil.

(C) If a separate indicator lamp is provided for an anti-lock system, the single word “Antilock” or “Anti-lock”, or the abbreviation “ABS”, may be used for S5.3.1(c).

(D) If a separate indicator lamp is provided for application of the parking brake, the single word “Park” may be used for S5.3.1(d).

(E) If a separate indicator is used for the regenerative brake system, the symbol “RBS” may be used. RBS failure may also be indicated by a lamp displaying the symbol “ABS/RBS.”

(2) Except for a separate indicator lamp for an anti-lock system, a regenerative system, or an indicator for both anti-lock and regenerative system, the letters and background of each separate indicator lamp shall be of contrasting colors, one of which is red. The letters and background of a separate lamp for an anti-lock system, a regenerative system, or a lamp displaying both an anti-lock and a regenerative system shall be of contrasting colors, one of which is yellow.

S5.4 Reservoirs.

S5.4.1 Master cylinder reservoirs. A master cylinder shall have a reservoir compartment for each service brake subsystem serviced by the master cylinder. Loss of fluid from one compartment shall not result in a complete loss of brake fluid from another compartment.

S5.4.2 Reservoir capacity. Reservoirs, whether for master cylinders or other type systems, shall have a total minimum capacity equivalent to the fluid displacement resulting when all the wheel cylinders or caliper pistons serviced by the reservoirs move from a new lining, fully retracted position (as adjusted initially to the manufacturer’s recommended setting) to a fully worn, fully applied position, as determined in accordance with S7.18(c) of this standard. Reservoirs shall have completely separate compartments for each subsystem except that in reservoir systems utilizing a portion of the reservoir for a common supply to two or more subsystems, individual partial compartments shall each have a minimum volume of fluid equal to at least the volume displaced by the master cylinder piston servicing the subsystem, during a full stroke of the piston. Each brake power unit reservoir servicing only the brake system shall have a minimum capacity equivalent to the fluid displacement required to charge the system piston(s) or accumulator(s) to normal operating pressure plus the displacement resulting when
all the wheel cylinders or caliper pistons serviced by the reservoir or accumulator(s) move from a new lining fully retracted position (as adjusted initially to the manufacturer’s recommended setting) to a fully worn, fully applied position.

§5.4.3 Reservoir labeling—Each vehicle equipped with hydraulic brakes shall have a brake fluid warning statement that reads as follows, in letters at least one-eighth of an inch high: “WARNING, Clean filler cap before removing. Use only fluid from a sealed container.” (Inserting the recommended type of brake fluid as specified in 49 CFR 571.116, e.g., “DOT 3”). The lettering shall be—

(a) Permanently affixed, engraved, or embossed;

(b) Located so as to be visible by direct view, either on or within 4 inches of the brake fluid reservoir filler plug or cap; and

(c) Of a color that contrasts with its background, if it is not engraved or embossed.

§5.5 Antilock and variable proportioning brake systems.

§5.5.1 Each vehicle with a GVWR greater than 10,000 pounds, except for any vehicle with a speed attainable in 2 miles of not more than 33 mph, shall be equipped with an antilock brake system that directly controls the wheels of at least one front axle and the wheels of at least one rear axle of the vehicle. On each vehicle with a GVWR greater than 10,000 pounds but not greater than 19,500 pounds and motor homes with a GVWR greater than 10,000 pounds but not greater than 22,500 pounds manufactured before March 1, 2001, the antilock brake system may also directly control the wheels of the rear drive axle by means of a single sensor in the driveline. Wheels on other axles of the vehicle may be indirectly controlled by the antilock brake system.

§5.5.2 In the event of any failure (structural or functional) in an antilock or variable proportioning brake system, the vehicle shall be capable of meeting the stopping distance requirements specified in §5.1.2 for service brake system partial failure. For an EV that is equipped with both ABS and RBS that is part of the service brake system, the ABS must control the RBS.

§5.6 Brake system integrity. Each vehicle shall be capable of completing all performance requirements of §5 without—

(a) Detachment or fracture of any component of the braking system, such as brake springs and brake shoe or disc pad facing, other than minor cracks that do not impair attachment of the friction facing. All mechanical components of the braking system shall be intact and functional. Friction facing tearout (complete detachment of lining) shall not exceed 10 percent of the lining on any single frictional element.

(b) Any visible brake fluid or lubricant on the friction surface of the brake, or leakage at the master cylinder or brake power unit reservoir cover, seal and filler openings.

S6 Test conditions. The performance requirements of §5 shall be met under the following conditions. Where a range of conditions is specified, the vehicle shall be capable of meeting the requirements at all points within the range. Compliance of vehicles manufactured in two or more stages may, at the option of the final-stage manufacturer, be demonstrated to comply with this standard by adherence to the instructions of the incomplete manufacturer provided with the vehicle in accordance with §568.4(a)(7)(ii) and §568.5 of title 49 of the Code of Federal Regulations.

§6.1 Vehicle weight.

§6.1.1 Other than tests specified at lightly loaded vehicle weight in §7.5(a), §7.7, §7.8, and §7.9, the vehicle is loaded to its GVWR such that the weight on each axle as measured at the tire-ground interface is in proportion to its GAWR, except that each fuel tank is filled to any level from 100 percent of capacity (corresponding to full GVWR) to 75 percent. However, if the weight on any axle of a vehicle at lightly loaded vehicle weight exceeds the axle’s proportional share of the gross vehicle weight rating, the load required to reach GVWR is placed so that the weight on that axle remains the same as a lightly loaded vehicle weight.

§6.1.2 For applicable tests specified in §7.5(a), §7.7, §7.8, and §7.9, vehicle weight is lightly loaded vehicle weight,
with the added weight, except for the roll bar structure allowed for trucks and buses with a GVWR greater than 10,000 pounds, distributed in the front passenger seat area in passenger cars, multipurpose passenger vehicles, and trucks, and in the area adjacent to the driver’s seat in buses.

S6.2 Electric vehicles and electric brakes.

S6.2.1 The state of charge of the propulsion batteries is determined in accordance with SAE Recommended Practice J227a (1976) (incorporated by reference, see §571.5). The applicable sections of SAE J227a (1976) are 3.2.1 through 3.2.4, 3.3.1 through 3.3.2.2, 3.4.1 and 3.4.2, 4.2.1, 5.2, 5.2.1, and 5.3.

S6.2.2 At the beginning of the first effectiveness test specified in S7.3, and at the beginning of each burnishing procedure, each EV’s propulsion battery is at the maximum state of charge recommended by the manufacturer, as stated in the vehicle operator’s manual or on a label that is permanently attached to the vehicle, or, if the manufacturer has made no recommendation, at a state of charge of not less than 95 percent. If batteries are replaced rather than recharged, each replacement battery shall be charged and measured for state of charge in accordance with these procedures. No further charging of any propulsion battery occurs during any of the performance tests in the test sequence of this standard. If the propulsion batteries are depleted during a test sequence such that the vehicle reaches automatic shut-down, will not accelerate, or the low state of charge warning lamp is illuminated, the vehicle is to be accelerated to brake test speed by auxiliary means.

S6.2.3 At the beginning of each performance test in the test sequence (S7.3, S7.5, S7.7 through S7.11, and S7.13 through S7.19 of this standard), unless otherwise specified, each propulsion battery of an EV is at the maximum state of charge recommended by the manufacturer, as stated in the vehicle operator’s manual or on a label that is permanently attached to the vehicle, or, if the manufacturer has made no recommendation, at a state of charge of not less than 95 percent. If batteries are replaced rather than recharged, each replacement battery shall be charged and measured for state of charge in accordance with these procedures. No further charging of any propulsion battery occurs during any of the performance tests in the test sequence of this standard. If the propulsion batteries are depleted during a test sequence such that the vehicle reaches automatic shut-down, will not accelerate, or the low state of charge warning lamp is illuminated, the vehicle is to be accelerated to brake test speed by auxiliary means.

S6.2.4 (a) For an EV equipped with RBS, the RBS is considered to be part of the service brake system if it is automatically controlled by an application of the service brake control, if there is no means provided for the driver to disconnect or otherwise deactivate it, and if it is activated in all transmission positions, including neutral. The RBS is operational during all burnishes and all tests, except for the test of a failed RBS.

(b) For an EV equipped with an RBS that is not part of the service brake system, the RBS is operational and set to produce the maximum regenerative braking effect during the burnishes, and is disabled during the test procedures. If the vehicle is equipped with a neutral gear that automatically disables the RBS, the test procedures which are designated to be conducted in gear may be conducted in neutral.

S6.2.5 For tests conducted “in neutral,” the operator of an EV with no “neutral” position (or other means such as a clutch for disconnecting the drive train from the propulsion motor(s)) does not apply any electromotive force to the propulsion motor(s). Any electromotive force that is applied to the propulsion motor(s) automatically remains in effect unless
S6.2.6 A vehicle equipped with electrically-actuated service brakes also performs the following test series. Conduct 10 stopping tests from a speed of 100 kph or the maximum vehicle speed, whichever is less. At least two of the 10 stopping distances must be less than or equal to 70 meters. The vehicle is loaded to GVWR for these tests and the transmission is in the neutral position when the service brake control is actuated and throughout the remainder of the test. The battery or batteries providing power to those electrically-actuated brakes, at the beginning of each test, shall be in a depleted state of charge for conditions (a), (b), or (c) of this paragraph as appropriate. An auxiliary means may be used to accelerate an EV to test speed.

(a) For an EV equipped with electrically-actuated service brakes deriving power from the propulsion batteries, and with automatic shut-down capability of the propulsion motor(s), the propulsion batteries are at not more than five percent above the EV actual automatic shut-down critical value. The critical value is determined by measuring the state-of-charge of each propulsion battery at the instant that automatic shut-down occurs and averaging the states-of-charge recorded.

(b) For an EV equipped with electrically-actuated service brakes deriving power from the propulsion batteries, and with no automatic shut-down capability of the propulsion motor(s), the propulsion batteries are at an average of not more than five percent above the GVWR actual state of charge at which the brake failure warning signal, required by §571.105(e) of this standard, is illuminated.

(c) For a vehicle which has an auxiliary battery (or batteries) that provides electrical energy to operate the electrically-actuated service brakes, the auxiliary battery(batteries) is (are) at (at an average of) not more than five percent above the actual state of charge at which the brake failure warning signal, required by §571.105(e) of this standard, is illuminated.

S6.3 Tire inflation pressure. Tire inflation pressure is the pressure recommended by the vehicle manufacturer for the GVWR of the vehicle.

S6.4 Transmission selector control. For S7.3, S7.5, S7.8, S7.15, S7.17, S7.11.1.2, S7.11.2.2, S7.11.3.2, and as required for S7.13, the transmission selector control is in neutral for all decelerations. For all other tests during all decelerations, the transmission selector is in the control position, other than overdrive, recommended by the manufacturer for driving on a level surface at the applicable test speed. To avoid engine stall during tests required to be run in gear, a manual transmission may be shifted to neutral (or the clutch disengaged) when the vehicle speed decreases to 20 mph.

S6.5 Engine. Engine idle speed and ignition timing settings are according to the manufacturer’s recommendations. If the vehicle is equipped with an adjustable engine speed governor, it is adjusted according to the manufacturer’s recommendation.

S6.6 Vehicle openings. All vehicle openings (doors, windows, hood, trunk, convertible top, cargo doors, etc.) are closed except as required for instrumentation purposes.

S6.7 Ambient temperature. The ambient temperature is any temperature between 32°F and 100°F.

S6.8 Wind velocity. The wind velocity is zero.

S6.9 Road surface.

S6.9.1 For vehicles with a GVWR of 10,000 pounds or less, road tests are conducted on a 12-foot-wide, level roadway, having a skid number of 81. Burnish stops are conducted on any surface. The parking brake test surface is clean, dry, smooth, Portland cement concrete.

S6.9.2 For vehicles with a GVWR greater than 10,000 pounds, road tests (excluding stability and control during braking tests) are conducted on a 12-foot-wide, level roadway, having a peak friction coefficient of 0.9 when measured using an ASTM E1337–90 (Reapproved 2008) (incorporated by reference, see §571.5), standard reference test tire, in accordance with ASTM E1337–90 (Reapproved 2008) (incorporated by reference, see §571.5), at a speed of 40 mph, without water delivery. Burnish stops are conducted on any surface. The parking brake test
§ 571.105

49 CFR Ch. V (10–1–16 Edition)

surface is clean, dry, smooth, Portland cement concrete.

S6.9.2(b) For vehicles with a GVWR greater than 10,000 pounds, stability and control during braking tests are conducted on a 500-foot-radius curved roadway with a wet level surface having a peak friction coefficient of 0.5 when measured on a straight or curved section of the curved roadway using an ASTM E1136–93 (Reapproved 2003) standard reference tire, in accordance with ASTM E1337–90 (Reapproved 2008) at a speed of 40 mph, with water delivery.

S6.10 Vehicle position and wheel lock-up restrictions. The vehicle is aligned in the center of the roadway at the start of each brake application. Stops, other than spike stops, are made without any part of the vehicle leaving the roadway.

S6.10.1 For vehicles with a GVWR of 10,000 pounds or less, stops are made with wheel lockup permitted only as follows:

(a) At vehicle speeds above 10 mph, there may be controlled wheel lockup on an antilock-equipped axle, and lockup of not more than one wheel per vehicle, uncontrolled by an antilock system. (Dual wheels on one side of an axle are considered a single wheel.)

(b) At vehicle speeds of 10 mph or less, any wheel may lock up for any duration.

(c) Unlimited wheel lockup is allowed during spike stops (but not spike check stops), partial failure stops, and inoperative brake power or power assist unit stops.

S6.10.2 For vehicles with a GVWR greater than 10,000 pounds, stops are made with wheel lockup permitted only as follows:

(a) At vehicle speeds above 20 mph, any wheel on a nonsteerable axle other than the two rearmost nonliftable, nonsteerable axles may lock up for any duration. The wheels on the two rearmost nonliftable, nonsteerable axles may lock up according to (b).

(b) At vehicle speeds above 20 mph, one wheel on any axle or two wheels on any tandem may lock up for any duration.

(c) At vehicle speeds above 20 mph, any wheel not permitted to lock in (a) or (b) may lock up repeatedly, with each lockup occurring for a duration of one second or less.

(d) At vehicle speeds of 20 mph or less, any wheel may lock up for any duration.

(e) Unlimited wheel lockup is allowed during partial failure stops, and inoperative brake power or power assist stops.

S6.11 Thermocouples. The brake temperature is measured by plug-type thermocouples installed in the approximate center of the facing length and width of the most heavily loaded shoe or disc pad, one per brake, as shown in figure 1. A second thermocouple may be installed at the beginning of the test sequence if the lining wear is expected to reach a point causing the first thermocouple to contact the metal rubbing surface of a drum or rotor. For centergrooved shoes or pads, thermocouples are installed within one-eighth of an inch to one-quarter inch of the groove and as close to the center as possible.

S6.12 Initial brake temperature. Unless otherwise specified the brake temperature is 150 °F to 200 °F.

S6.13 Control forces. Unless otherwise specified, the force applied to a brake control is not less than 15 lb and not more than 150 lb.

S6.14 Special drive conditions. A vehicle with a GVWR greater than 10,000 pounds equipped with an interlocking axle system or a front wheel drive system that is engaged and disengaged by the driver is tested with the system disengaged.

S6.15 Selection of compliance options. Where manufacturer options are specified, the manufacturer shall select the option by the time it certifies the vehicle and may not thereafter select a different option for the vehicle. Each manufacturer shall, upon request from the National Highway Traffic Safety Administration, provide information regarding which of the compliance options it has selected for a particular vehicle or make/model.

S7. Test procedure and sequence. Each vehicle shall be capable of meeting all the applicable requirements of S5 when tested according to the procedures and sequence set forth below, without replacing any brake system part or making any adjustments to the
§ 571.105

brake system other than as permitted in the burnish and reburnish procedures and in S7.9 and S7.10. (For vehicles only having to meet the requirements of S5.1.1, S5.1.2, S5.1.3, and S5.1.7 in section S5.1, the applicable test procedures and sequence are S7.1, S7.2, S7.4, S7.5(b), S7.5(a), S7.6, S7.7, S7.5(a), S7.8, S7.9, S7.10, and S7.18. However, at the option of the manufacturer, the following test procedure and sequence may be conducted: S7.1, S7.2, S7.3, S7.4, S7.5(b), S7.7, S7.5(a), S7.8, S7.9, S7.10, and S7.18. The choice of this option must not be construed as adding to the requirements specified in S5.1.2 and S5.1.3.) Automatic adjusters must remain activated at all times. A vehicle shall be deemed to comply with the stopping distance requirements of S5.1 if at least one of the stops at each speed and load specified in each of S7.3, S7.5(b), S7.8, S7.9, S7.10, S7.15 and S7.17 (check stops) is made within a stopping distance that does not exceed the corresponding distance specified in Table II. When the transmission selector control is required to be in neutral for a deceleration, a stop or snub must be obtained by the following procedures:

(a) Exceed the test speed by 4 to 8 mph;

(b) Close the throttle and coast in gear to approximately 2 mph above the test speed;

(c) Shift to neutral; and

(d) When the test speed is reached, apply the service brakes.

S7.1 Brake warning. If the initial brake temperature for the first stop in a test procedure (other than S7.7 and S7.16) has not been reached, heat the brakes to the initial brake temperature by making not more than 10 snubs at a speed of not more than 40 to 10 mph, at a deceleration not greater than 10 fpsps.

S7.2 Pretest instrumentation check. Conduct a general check of instrumentation by making not more than 10 stops from a speed of not more than 30 mph on 10 snubs at a speed of not more than 40 to 10 mph, at a deceleration of not more than 10 fpsps. If instrument repair, replacement, or adjustment is necessary, make not more than 10 additional stops or snubs after such repair, replacement, or adjustment.

S7.3 Service brake system—first (preburnish) effectiveness test. Make six stops from 30 mph. Then make six stops from 60 mph.

S7.4 Service brake system—burnish procedure.

S7.4.1 Vehicles with GVWR of 10,000 lb or less.

S7.4.1.1 Burnish. Burnish the brakes by making 200 stops from 40 mph at 12 fpsps (the 150 lb control force limit does not apply here). The interval from the start of one service brake application to the start of the next shall be either the time necessary to reduce the initial brake temperature to between 230 °F. and 270 °F., or the distance of 1 mile, whichever occurs first. Accelerate to 40 mph after each stop and maintain that speed until making the next stop.

S7.4.1.2 Brake adjustment—post burnish. After burnishing, adjust the brakes in accordance with the manufacturer’s published recommendations.

S7.4.2 Vehicles with GVWR greater than 10,000 pounds.

S7.4.2.1 Burnish. Vehicles are burnished according to the following procedures. Make 500 snubs between 40 mph and 20 mph at a deceleration rate of 10 f.p.s.p.s. Except where an adjustment is specified, after each brake application accelerate to 40 mph and maintain that speed until making the next brake application at a point 1 mile from the initial point of the previous brake application. If the vehicle cannot attain a speed of 40 mph in 1 mile, continue to accelerate until the vehicle reaches 40 mph or until the vehicle has traveled 1.5 miles from the initial point of the previous brake application, whichever occurs first. The brakes shall be adjusted three times during the burnish procedure, in accordance with the manufacturer’s recommendations, after 125, 250, and 375 snubs.

S7.4.2.2 Brake adjustment—post burnish. After burnishing, adjust the brakes in accordance with the manufacturer’s published recommendations.

S7.5 (a) Stability and control during braking (vehicles with a GVWR greater than 10,000 pounds). Make four stops in the lightly-loaded weight condition specified in S6.1.7. Use a full brake application for the duration of the stop,
§ 571.105 49 CFR Ch. V (10–1–16 Edition)

with the clutch pedal depressed or the transmission selector control in the neutral position, for the duration of each stop.

(b) Service brake system—second effectiveness test. For vehicles with a GVWR of 10,000 pounds or less, or any school bus, make six stops from 30 mph. Then, for any vehicle, make six stops from 60 mph. Then, for a vehicle with a GVWR of 10,000 pounds or less, make four stops from 80 mph if the speed attainable in 2 miles is not less than 84 mph.

§ 7.6 First reburnish. Repeat § 7.4, except make 35 burnish stops or snubs. In the case of vehicles burnished in accordance with § 7.4.2.1(a) of this section, reburnish the vehicle by making 35 snubs from 60 to 20 mph, but if the hottest brake temperature reaches 500 °F ±50 °F, make the remainder of the brake applications from the highest snub condition listed in Table IV that will maintain the hottest brake temperature at 500 °F ±50 °F. If at a snub condition of 40 to 20 mph, the temperature of the hottest brake exceeds 550 °F, make the remainder of the 35 brake applications from the snub condition without regard to brake temperature.

§ 7.7 Parking brake test. The parking brake tests for any vehicle on different grades, in different directions, and for different loads may be conducted in any order. The force required for actuation of a hand-operated brake system shall be measured at the center of the hand grip area or at a distance of 11/2 inches from the end of the actuation lever, as illustrated in Figure II.

§ 7.7.1 Test procedure for requirements of §5.2.1 and §5.2.3.

§ 7.7.1.1 Condition the parking brake friction elements so that the temperature at the beginning of the test is at any level not more than 150 °F. (when the temperature of components on both ends of an axle are averaged).

§ 7.7.1.2 Drive the vehicle, loaded to GVWR, onto the specified grade with the longitudinal axis of the vehicle in the direction of the slope of the grade, stop the vehicle and hold it stationary by application of the service brake control, and place the transmission in neutral.

§ 7.7.1.3 With the vehicle held stationary by means of the service brake control, apply the parking brake by a single application of the force specified in (a), (b), or (c) of this paragraph, except that a series of applications to achieve the specified force may be made in the case of a parking brake system design that does not allow the application of the specified force in a single application:

(a) In the case of a passenger car or other vehicle with a GVWR of 10,000 lbs. or less, not more than 125 pounds for a foot-operated system, and not more than 90 pounds for a hand-operated system; and

(b) In the case of a vehicle with a GVWR greater than 4,536 kilograms (10,000 pounds) not more than 150 pounds for a foot-operated system, and not more than 125 pounds for a hand-operated system.

(c) For a vehicle using an electrically-activated parking brake, apply the parking brake by activating the parking brake control.

§ 7.7.1.4 Following the application of the parking brake in accordance with §7.7.1.3, release all force on the service brake control and commence the measurement of time if the vehicle remains stationary. If the vehicle does not remain stationary, reapplication of the service brake to hold the vehicle stationary, with reapplication of a force to the parking brake control at the level specified in §7.7.1.3 (a) or (b) as appropriate for the vehicle being tested (without release of the ratcheting or other holding mechanism of the parking brake) may be used twice to attain a stationary position.

§ 7.7.1.5 Following observation of the vehicle in a stationary condition for the specified time in one direction, repeat the same test procedure with the vehicle orientation in the opposite direction on the specified grade.

§ 7.7.1.6 Check the operation of the parking brake application indicator required by §5.3.1(d).

§ 7.7.2 Test procedure for requirements of §5.2.2

(a) Check that transmission must be placed in park position to release key;

(b) Test as in §7.7.1, except in addition place the transmission control to engage the parking mechanism; and
(c) Test as in S7.7.1 except on a 20 percent grade, with the parking mechanism not engaged.

S7.7.3 Lightly loaded vehicle. Repeat S7.7.1 or S7.7.2 as applicable except with the vehicle at lightly loaded vehicles weight or at manufacturer's option, for a vehicle with GVWR greater than 10,000 pounds, at lightly loaded vehicle weight plus not more than an additional 1,000 pounds for a roll bar structure on the vehicle.

S7.7.4 Non-service brake type parking brake systems. For vehicles with parking brake systems not utilizing the service brake friction elements, burnish the friction elements of such systems prior to parking brake tests according to the manufacturer's published recommendations as furnished to the purchaser. If no recommendations are furnished, run the vehicle in an unburnished condition.

S7.8 Service brake system test—lightly loaded vehicle (third effectiveness) test. Make six stops from 60 mph with vehicle at lightly loaded vehicle weight, or at manufacturer's option for a vehicle with GVWR greater than 10,000 pounds, at lightly loaded vehicle weight plus not more than an additional 1,000 pounds for a roll bar structure on the vehicle. (This test is not applicable to a vehicle which has a GVWR of not less than 7,716 pounds and not greater than 10,000 pounds and is not a school bus.)

S7.9 Service brake system test—partial failure.

S7.9.1 With the vehicle at lightly loaded vehicle weight or at the manufacturer's option for a vehicle with GVWR greater than 10,000 pounds, at lightly loaded vehicle weight plus not more than an additional 1,000 pounds for a roll bar structure on the vehicle, alter the service brake system to produce any one rupture or leakage type of failure, other than a structural failure of a housing that is common to two or more subsystems. Determine the control force, pressure levels, or fluid level (as appropriate for the indicator being tested) necessary to activate the brake system indicator lamp. Make four stops if the vehicle is equipped with a split service brake system, or 10 stops if the vehicle is not so equipped, each from 60 mph, by a continuous application of the service brake control. Restore the service brake system to normal at completion of this test.

S7.9.2 Repeat S7.9.1 for each of the other subsystems.

S7.9.3 Repeat S7.9.1 and S7.9.2 with vehicle at GVWR. Restore the service brake system to normal at completion of this test.

S7.9.4 (For vehicles with antilock and/or variable proportioning brake systems.) With vehicle at GVWR, disconnect functional power source, or otherwise render antilock system inoperative. Disconnect variable proportioning brake system. Make four stops, each from 60 mph. If more than one antilock or variable proportioning brake subsystem is provided, disconnect or render one subsystem inoperative and run as above. Restore system to normal at completion of this test. Repeat for each subsystem provided.

Determine whether the brake system indicator lamp is activated when the electrical power source to the antilock or variable proportioning unit is disconnected.

S7.9.5 For a vehicle in which the brake signal is transmitted electrically between the brake pedal and some or all of the foundation brakes, regardless of the means of actuation of the foundation brakes, the tests in S7.9.1 through S7.9.3 of this standard are conducted by inducing any single failure in any circuit that electrically transmits the brake signal, and all other systems intact. Determine whether the brake system indicator lamp is activated when the failure is induced.

S7.9.6 For an EV with RBS that is part of the service brake system, the tests specified in S7.9.1 through S7.9.3 are conducted with the RBS disconnected and all other systems intact. Determine whether the brake system indicator lamp is activated when the RBS is disconnected.

S7.10 Service brake system—inoperative brake power unit or brake power assist unit test. (For vehicles equipped with brake power unit or brake power assist unit.)

S7.10.1 Regular procedure. (This test need not be run if the option in S7.10.2 is selected.) On vehicles with brake power assist units, render the brake
§ 571.105 49 CFR Ch. V (10–1–16 Edition)

power assist unit inoperative, or one of the brake power assist unit subsystems if two or more subsystems are provided, by disconnecting the relevant power supply. Exhaust any residual brake power reserve capability of the disconnected system. On vehicles with brake power units, disconnect the primary source of power. Make four stops, each from 60 mph by a continuous application of the service brake control. Restore the system to normal at completion of this test. For vehicles equipped with more than one brake power unit or brake power assist unit, conduct tests of each in turn.

S7.10.2 Optional Procedures. On vehicles with brake power assist units, the unit is charged to maximum prior to start of test. (Engine may be run up in speed, then throttle closed quickly to attain maximum charge on vacuum assist units.) Brake power units shall also be charged to maximum accumulator pressure prior to start of test. No recharging is allowed after start of test.

(a) (For vehicles with brake power assist units.) Disconnect the primary source of power. Make six stops each from 60 mph, to achieve the average deceleration for each stop as specified in table III. Apply the brake control as quickly as possible. Maintain control force until vehicle has stopped.

At the completion of the stops specified above, deplete the system of any residual brake power reserve capability. Make one stop from 60 mph at an average deceleration of not lower than 7 fpsps for passenger cars (equivalent stopping distance 554 feet), or 6 fpsps for vehicles other than passenger cars (equivalent stopping distance 646 feet) and determine whether the control force exceeds 150 pounds.

(b) (For vehicles with brake power units with accumulator type systems.) Test as in S7.10.2(a), except make 10 stops instead of 6 and, at the completion of the 10 stops, deplete the failed element of the brake power unit of any residual brake power reserve capability before making the final stop.

(c) (For vehicles with brake power assist or brake power units with backup systems.) If the brake power or brake power assist unit operates in conjunction with a backup system and the backup system is activated automatically in the event of a primary power failure, the backup system is operative during this test. Disconnect the primary source of power of one subsystem. Make 15 stops, each from 60 mph, with the backup system activated for the failed subsystem, to achieve an average deceleration of 12 fpsps for each stop.

(d) Restore systems to normal at completion of these tests. For vehicles equipped with more than one brakepower assist or brakepower unit, conduct tests of each in turn.

S7.10.3 Electric brakes.

(a) For vehicles with electrically-actuated service brakes, the tests in S7.10.1 or S7.10.2 are conducted with any single electrical failure in the electric brake system instead of the brake power or brake power assist systems, and all other systems intact.

(b) For EVs with RBS that is part of the service brake system, the tests in S7.10.1 or S7.10.2 are conducted with the RBS discontinued and all other systems intact.

S7.11 Service brake system—first fade and recovery test.

S7.11.1 Baseline check stops or snubs.

S7.11.1.1 Vehicles with GVWR of 10,000 pounds or less. Make three stops from 30 mph at 10 fpsps for each stop. Control force readings may be terminated when vehicle speed falls to 5 mph. Average the maximum brake control force required for the three stops.

S7.11.1.2 Vehicles with GVWR greater than 10,000 pounds. With transmission in neutral (or declutched), make three snubs from 40 to 20 mph at 10 fpsps for each snub. Average the maximum brake control force required for the three snubs.

S7.11.2 Fade stops or snubs.

S7.11.2.1 Vehicles with GVWR of 10,000 pounds or less. Make 5 stops from 60 mph at 15 fpsps followed by 5 stops at the maximum attainable deceleration between 5 and 15 fpsps for each stop. Establish an initial brake temperature before the first brake application of 130° to 150 °F. Initial brake temperatures before brake applications for subsequent stops are those occurring at the distance intervals. Attain the required deceleration within 1 second and, as a minimum, maintain it for the
remainder of the stopping time. Control force readings may be terminated when vehicle speed falls to 5 mph. Leave an interval of 0.4 mi between the start of brake applications. Accelerate immediately to the initial test speed after each stop. Drive 1 mi at 30 mph after the last fade stop, and immediately follow the recovery procedure specified in S7.11.3.1.

S7.11.2.2 Vehicles with GVWR greater than 10,000 lb. With transmission in neutral (or declutched) make 10 snubs from 40 to 20 mph at 10 fpsps for each snub. Establish an initial brake temperature before the first brake application of 130 °F. to 150 °F. Initial brake temperatures before brake application for subsequent snubs are those occurring in the time intervals specified below. Attain the required deceleration within 1 s and maintain it for the remainder of the snubbing time. Leave an interval of 30 s between snubs (start of brake application to start of brake application). Accelerate immediately to the initial test speed after each snub. Drive for 1.5 mi at 40 mph after the last snub and immediately follow the recovery procedure specified in S7.11.3.2.

S7.11.3 Recovery stops or snubs.

S7.11.3.1 Vehicles with GVWR of 10,000 lb or less. Make five stops from 30 mph at 10 fpsps for each stop. Control force readings may be terminated when vehicle speed falls to 5 mph. Allow a braking distance interval of 1 mi. Immediately after each stop accelerate at maximum rate to 30 mph and maintain that speed until making the next stop. Record the maximum control force for each stop.

S7.11.3.2 Vehicles with GVWR greater than 10,000 lb. With transmission in neutral (or declutched) make five snubs from 40 to 20 mph at 10 fpsps for each snub. After each snub, accelerate at maximum rate to 40 mph and maintain that speed until making the next brake application at a point 1.5 mi from the point of the previous brake application. Record the maximum control force for each snub.

S7.12 Service brake system—second reburnish. Repeat S7.6.

S7.13 Service brake system—second fade and recovery test. Repeat S7.11 except in S7.11.2 run 15 fade stops or 20 snubs instead of 10.

S7.14 Third reburnish. Repeat S7.6.

S7.15 Service brake system—fourth effectiveness test. Repeat S7.5. Then (for passenger cars) make four stops from either 95 mph if the speed attainable in 2 mi is 99 to (but not including) 104 mph, or 100 mph if the speed attainable in 2 mi is 104 mph or greater.

S7.16 Service brake system—water recovery test.

S7.16.1 Baseline check stop. Make three stops from 30 mph at 10 fpsps for each stop. Control force readings may be terminated when vehicle speed falls to 5 mph. Average the maximum brake control force required for the three stops.

S7.16.2 Wet brake recovery stops. With the brakes fully released at all times, drive the vehicle for 2 min at a speed of 5 mph in any combination of forward and reverse directions, through a trough having a water depth of 6 in. After leaving the trough, immediately accelerate at a maximum rate to 30 mph without a brake application. Immediately upon reaching that speed make five stops, each from 30 mph at 10 fpsps for each stop. After each stop (except the last), accelerate the vehicle immediately at a maximum rate to a speed of 30 mph and begin the next stop.

S7.17 Spike stops. Make 10 successive spike stops from 30 mph with the transmission in neutral, with no reverse stops. Make spike stops by applying a control force of 200 lb while recording control force versus time. Maintain control force until vehicle has stopped. At completion of 10 spike stops, make six effectiveness stops from 60 mph.

S7.18 Final inspection. Inspect—

(a) The service brake system for detachment or fracture of any components, such as brake springs and brake shoes or disc pad facing.

(b) The friction surface of the brake, the master cylinder or brake power unit reservoir cover and seal and filler openings, for leakage of brake fluid or lubricant.

(c) The master cylinder or brake power unit reservoir for compliance
with the volume and labeling requirements of S5.4.2 and S5.4.3. In determining the fully applied worn condition assume that the lining is worn to: (1) Rivet or bolt heads on riveted or bolted linings, or (2) within one thirty-seconds of an inch of shoe or pad mounting surface on bonded linings, or (3) the limit recommended by the manufacturer, whichever is larger relative to the total possible shoe or pad movement. Drums or rotors are assumed to be at nominal design drum diameter or rotor thickness. Linings are assumed adjusted for normal operating clearance in the released position.

(d) The brake system indicator light(s), for compliance with operation in various key positions, lens color, labeling, and location, in accordance with S5.3.

S7.19 Moving barrier test. (Only for vehicles that have been tested according to S7.7.2.) Load the vehicle to GVWR, release parking brake, and place the transmission selector control to engage the parking mechanism. With a moving barrier as described in paragraph 4.3 of SAE Recommended Practice J972 (2000) (incorporated by reference, see §571.5), impact the vehicle from the front at 2½ mph. Keep the longitudinal axis of the barrier parallel with the longitudinal axis of the vehicle. Repeat the test, impacting the vehicle from the rear.

NOTE: The vehicle used for this test need not be the same vehicle that has been used for the braking tests.

Figure 1—Typical Plug Thermocouple Installations

NOTE: The second thermocouple shall be installed at .080 inch depth within 1 inch circumferentially of the thermocouple installed at .040 inch depth.
TABLE I—Brake Test Procedure Sequence and Requirements

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Test load</th>
<th>Test procedure</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Instrumentation check</td>
<td>Light</td>
<td>S7.2</td>
<td>S5.1.1.1</td>
</tr>
<tr>
<td>2. First (preburnish) effectiveness test</td>
<td>Light</td>
<td>X</td>
<td>S7.3</td>
</tr>
<tr>
<td>3. Burnish procedure</td>
<td>Light</td>
<td>X</td>
<td>S7.4</td>
</tr>
<tr>
<td>4. Second effectiveness test</td>
<td>Light</td>
<td>X</td>
<td>S7.5(b)</td>
</tr>
<tr>
<td>5. First reburnish</td>
<td>Light</td>
<td>X</td>
<td>S7.6</td>
</tr>
<tr>
<td>6. Parking brake</td>
<td>Light</td>
<td>X</td>
<td>S7.7</td>
</tr>
<tr>
<td>7. Stability and control during braking (braking-in-a-curve test)</td>
<td>Light</td>
<td>X</td>
<td>S7.5(a)</td>
</tr>
<tr>
<td>8. Third effectiveness (lightly loaded vehicle)</td>
<td>Light</td>
<td>X</td>
<td>S7.8</td>
</tr>
<tr>
<td>9. Partial failure</td>
<td>Light</td>
<td>X</td>
<td>S7.9</td>
</tr>
<tr>
<td>10. Inoperative brake power and power assist units</td>
<td>Light</td>
<td>X</td>
<td>S7.10</td>
</tr>
<tr>
<td>11. First fade and recovery</td>
<td>Light</td>
<td>X</td>
<td>S7.11</td>
</tr>
<tr>
<td>12. Second reburnish</td>
<td>Light</td>
<td>X</td>
<td>S7.12</td>
</tr>
<tr>
<td>13. Second fade and recovery</td>
<td>Light</td>
<td>X</td>
<td>S7.13</td>
</tr>
<tr>
<td>14. Third reburnish</td>
<td>Light</td>
<td>X</td>
<td>S7.14</td>
</tr>
<tr>
<td>15. Fourth effectiveness</td>
<td>Light</td>
<td>X</td>
<td>S7.15</td>
</tr>
<tr>
<td>16. Water recovery</td>
<td>Light</td>
<td>X</td>
<td>S7.16</td>
</tr>
<tr>
<td>17. Spike stops</td>
<td>Light</td>
<td>X</td>
<td>S7.17</td>
</tr>
<tr>
<td>18. Final inspection</td>
<td>Light</td>
<td>X</td>
<td>S7.18</td>
</tr>
<tr>
<td>19. Moving barrier test</td>
<td>Light</td>
<td>X</td>
<td>S7.19</td>
</tr>
</tbody>
</table>

LEVER TYPE A

LEVER TYPE B

LOCATION FOR MEASURING BRAKE APPLICATION FORCE (HAND BRAKE)
TABLE III—INOPERATIVE BRAKE POWER ASSIST AND BRAKE POWER UNITS

<table>
<thead>
<tr>
<th>Stop No.</th>
<th>Average deceleration, FPSPS</th>
<th>Equivalent stopping distance, feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Column 1—brake power assist</td>
<td>Column 2—brake power unit</td>
</tr>
<tr>
<td></td>
<td>(a) (b) and (c)</td>
<td>(a) (b) and (c)</td>
</tr>
<tr>
<td>1</td>
<td>16.0 14.0 16.0 13.0</td>
<td>242 277</td>
</tr>
<tr>
<td>2</td>
<td>12.0 12.0 13.0 11.0</td>
<td>323 323</td>
</tr>
<tr>
<td>3</td>
<td>10.0 10.0 12.0 10.0</td>
<td>388 388</td>
</tr>
<tr>
<td>4</td>
<td>9.0 8.5 11.0 9.5</td>
<td>431 456</td>
</tr>
<tr>
<td>5</td>
<td>8.0 7.5 10.0 9.0</td>
<td>484 517</td>
</tr>
<tr>
<td>6</td>
<td>7.5 6.7 9.5 8.5</td>
<td>517 580</td>
</tr>
<tr>
<td>7</td>
<td>6.7 7.0 9.0 8.0</td>
<td>554 646</td>
</tr>
<tr>
<td>8</td>
<td>NA NA 8.5 7.5</td>
<td>NA NA</td>
</tr>
<tr>
<td>9</td>
<td>NA NA 8.0 7.0</td>
<td>NA NA</td>
</tr>
<tr>
<td>10</td>
<td>NA NA 7.5 6.5</td>
<td>NA NA</td>
</tr>
<tr>
<td>11</td>
<td>NA NA 7.0 6.0</td>
<td>NA NA</td>
</tr>
</tbody>
</table>

1 Depleted. (a) Passenger cars; (b) vehicles other than passenger cars with GVWR of 10,000 lbs or less; (c) vehicles with GVWR greater than 10,000 lbs; NA = Not applicable.

§571.106 Standard No. 106; Brake hoses.

S1. Scope. This standard specifies labeling and performance requirements for motor vehicle brake hose, brake hose assemblies, and brake hose end fittings.

S2. Purpose. The purpose of this standard is to reduce deaths and injuries occurring as a result of brake system failure from pressure or vacuum loss due to hose or hose assembly rupture.

S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers, and motorcycles, and to hydraulic, air, and vacuum brake hose, brake hose assemblies, and brake hose end fittings for use in those vehicles.

S4. Definitions.

Armor means protective material installed on a brake hose to increase the resistance of the hose or hose assembly to abrasion or impact damage.

Brake hose means a flexible conduit, other than a vacuum tubing connector.
manufactured for use in a brake system to transmit or contain the fluid pressure or vacuum used to apply force to a vehicle's brakes. For hose, a dimensional description such as "1/4-inch hose" refers to the nominal inside diameter. For tubing, a dimensional description such as "1/4-in tubing" refers to the nominal outside diameter.

Brake hose assembly means a brake hose, with or without armor, equipped with end fittings for use in a brake system, but does not include an air or vacuum assembly prepared by the owner or operator of a used vehicle, by his employee, or by a repair facility, for installation in that used vehicle.

Brake hose end fitting means a coupler, other than a clamp, designed for attachment to the end of a brake hose.

Free length means the linear measurement of hose exposed between the end fittings of a hose assembly in a straight position.

Permanently attached end fitting means an end fitting that is attached by deformation of the fitting about the hose by crimping or swaging, or an end fitting that is attached by use of a sacrificial sleeve or ferrule that requires replacement each time a hose assembly is rebuilt.

Preformed means a brake hose that is manufactured with permanent bends and is shaped to fit a specific vehicle without further bending.

Rupture means any failure that results in separation of a brake hose from its end fitting or in leakage.

Vacuum tubing connector means a flexible conduit of vacuum that (i) connects metal tubing to metal tubing in a brake system, (ii) is attached without end fittings, and (iii) when installed, has an unsupported length less than the total length of those portions that cover the metal tubing.

S5. **Requirements—hydraulic brake hose, brake hose assemblies, and brake hose end fittings.**

S5.1 **Construction.** (a) Each hydraulic brake hose assembly shall have permanently attached brake hose end fittings which are attached by deformation of the fitting about the hose by crimping or swaging.

(b) Each hydraulic brake hose assembly that is equipped with a permanent supplemental support integrally attached to the assembly and is manufactured as a replacement for use on a vehicle not equipped, as an integral part of the vehicle's original design, with a means of attaching the support to the vehicle shall be equipped with a bracket that is integrally attached to the supplemental support and that adapts the vehicle to properly accept this type of brake hose assembly.

S5.2 **Labeling.**

S5.2.1 Each hydraulic brake hose, except hose sold as part of a motor vehicle, shall have at least two clearly identifiable stripes of at least one-sixteenth of an inch in width, placed on opposite sides of the brake hose parallel to its longitudinal axis. One stripe may be interrupted by the information required by S5.2.2, and the other stripe may be interrupted by additional information at the manufacturer's option. However, hydraulic brake hose manufactured for use only in an assembly whose end fittings prevent its installation in a twisted orientation in either side of the vehicle, need not meet the requirements of S5.2.1.

S5.2.2 Each hydraulic brake hose shall be labeled, or cut from bulk hose that is labeled, at intervals of not more than 6 inches, measured from the end of one legend to the beginning of the next, in block capital letters and numerals at least one-eighth of an inch high, with the information listed in paragraphs (a) through (e) of this section. The information need not be present on hose that is sold as part of a brake hose assembly or a motor vehicle.

(a) The symbol DOT, constituting a certification by the hose manufacturer that the hose conforms to all applicable motor vehicle safety standards.

(b) A designation that identifies the manufacturer of the hose, which shall be filed in writing with: Office of Vehicle Safety Compliance, Equipment Division NVS–222, National Highway Traffic Safety Administration, 400 Seventh St. SW., Washington, DC 20590. The marking may consist of a designation other than block capital letters required by S5.2.2.

(c) The month, day, and year, of manufacture, expressed in numerals. For example, 10/1/96 means October 1, 1996.
§571.106

49 CFR Ch. V (10–1–16 Edition)

(d) The nominal inside diameter of the hose expressed in inches or fractions of inches, or in millimeters followed by the abbreviation “mm.”

e) Either “HR” to indicate that the hose is regular expansion hydraulic hose or “HL” to indicate that the hose is low expansion hydraulic hose.

S5.2.3 Package labeling for brake hose assemblies designed to be used with a supplemental support. (a) Each hydraulic brake hose assembly that is equipped with a permanent supplemental support integrally attached to the assembly and is manufactured as a replacement assembly for a vehicle equipped, as an integral part of the vehicle’s original design, with a means of attaching the support to the vehicle shall be sold in a package that is marked or labeled as follows: “FOR USE ON [insert Manufacturer, Model Name] ONLY”;

(b) Each hydraulic brake hose assembly that is equipped with a permanent supplemental support integrally attached to the assembly and is manufactured as a replacement for use on a vehicle not equipped, as an integral part of the vehicle’s original design, with a means of attaching the support to the vehicle shall comply with paragraphs (a)(1) and (2) of this section:

(1) Be sold in a package that is marked or labeled as follows: “FOR USE ONLY WITH A SUPPLEMENTAL SUPPORT.”

(2) Be accompanied by clear, detailed instructions explaining the proper installation of the brake hose and the supplemental support bracket to the vehicle and the consequences of not attaching the supplemental support bracket to the vehicle. The instructions shall be printed on or included in the package specified in paragraph (a)(1) of this section.

S5.2.4 Each hydraulic brake hose assembly, except those sold as part of a motor vehicle, shall be labeled by means of a band around the brake hose assembly as specified in this paragraph or, at the option of the manufacturer, by means of labeling as specified in S5.2.4.1. The band may at the manufacturer’s option be attached so as to move freely along the length of the assembly, as long as it is retained by the end fittings. The band shall be etched, embossed, or stamped in block capital letters, numerals or symbols at least one-eighth of an inch high, with the following information:

(a) The symbol DOT constituting certification by the hose assembler that the hose assembly conforms to all applicable motor vehicle safety standards.

(b) A designation that identifies the manufacturer of the hose assembly, which shall be filed in writing with: Office of Vehicle Safety Compliance, Equipment Division NVS-222, National Highway Traffic Safety Administration, 400 Seventh St. SW., Washington, DC 20590. The designation may consist of block capital letters, numerals or a symbol.

S5.2.4.1 At least one end fitting of a hydraulic brake hose assembly shall be etched, stamped or embossed with a designation at least one-sixteenth of an inch high that identifies the manufacturer of the hose assembly and is filed in accordance with S5.2.4(b).

S5.3 Test requirements. A hydraulic brake hose assembly or appropriate part thereof shall be capable of meeting any of the requirements set forth under this heading, when tested under the conditions of S13 and the applicable procedures of S6. However, a particular hose assembly or appropriate part thereof need not meet further requirements after having been subjected to and having met the constriction requirement (S5.3.1) and any one of the requirements specified in S5.3.2 through S5.3.13.

S5.3.1 Constriction. Except for that part of an end fitting which does not contain hose, every inside diameter of any section of a hydraulic brake hose assembly shall be not less than 64 percent of the nominal inside diameter of the brake hose (S6.12).

S5.3.2 Expansion and burst strength. The maximum expansion of a hydraulic brake hose assembly at 1,000 psi, 1,500 psi and 2,900 psi shall not exceed the values specified in Table I (S6.1), except that a brake hose larger than 3/16 inch or 5 mm is not subject to the 2,900 psi expansion test requirements. The hydraulic brake hose assembly shall then withstand water pressure of 4,000 psi for 2 minutes without rupture, and then shall not rupture at less than 7,000 psi. The assembly shall withstand a burst pressure of 10,000 psi without rupturing.
§ 571.106

Natl’l Highway Traffic Safety Admin., DOT

psi for a ¼ inch, 3 mm, or smaller diameter hose, or at less than 5,000 psi for a hose with a diameter larger than ¼ inch or 3 mm (S6.2).

Table I—Maximum Expansion of Free Length Brake Hose, CC/FT

<table>
<thead>
<tr>
<th>Hydraulic brake hose, inside diameter</th>
<th>Test pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,000 psi</td>
</tr>
<tr>
<td></td>
<td>Regular exp. hose</td>
</tr>
<tr>
<td>¼ inch, or 3mm, or less</td>
<td>0.66</td>
</tr>
<tr>
<td>>¼ inch or 3mm, to ¾ inch or 5 mm</td>
<td>0.86</td>
</tr>
<tr>
<td>>¾ inch or 5 mm</td>
<td>1.04</td>
</tr>
</tbody>
</table>

S5.3.3 Whip resistance. A hydraulic brake hose assembly shall not rupture when run continuously on a flexing machine for 35 hours (S6.3).

S5.3.4 Tensile strength. A hydraulic brake hose assembly shall withstand a pull of 325 pounds without separation of the hose from its end fittings during a slow pull test, and shall withstand a pull of 370 pounds without separation of the hose from its end fittings during a fast pull test (S6.4).

S5.3.5 Water absorption and burst strength. A hydraulic brake hose assembly, after immersion in water for 70 hours (S6.5), shall withstand water pressure of 4,000 psi for 2 minutes, and then shall not rupture at less than 5,000 psi (S6.2).

S5.3.6 Water absorption and tensile strength. A hydraulic brake hose assembly, after immersion in water for 70 hours (S6.5), shall withstand a pull of 325 pounds without separation of the hose from its end fittings during a slow pull test, and shall withstand a pull of 370 pounds without separation of the hose from its end fittings during a fast pull test (S6.4).

S5.3.7 Water absorption and whip resistance. A hydraulic brake hose assembly, after immersion in water for 70 hours (S6.5), shall not rupture when run continuously on a flexing machine for 35 hours (S6.3).

S5.3.8 Low-temperature resistance. A hydraulic brake hose conditioned at a temperature between minus 49 degrees Fahrenheit (minus 45 degrees Celsius) and minus 54 degrees Fahrenheit (minus 48 degrees Celsius) for 70 hours shall not show cracks visible without magnification when bent around a cylinder as specified in S6.6 (S6.6).

S5.3.9 Brake fluid compatibility, constriction, and burst strength. Except for brake hose assemblies designed for use with mineral or petroleum-based brake fluids, a hydraulic brake hose assembly shall meet the constriction requirement of S5.3.1 after having been subjected to a temperature of 248 degrees Fahrenheit (120 degrees Celsius) for 70 hours while filled with SAE RM-66-04 “Compatibility Fluid,” as described in Appendix B of SAE Standard J1703 JAN95 (incorporated by reference, see § 571.5). It shall then withstand water pressure of 4,000 psi for 2 minutes and thereafter shall not rupture at less than 5,000 psi (S6.2 except all sizes of hose are tested at 5,000 psi).

S5.3.10 Ozone resistance. A hydraulic brake hose shall not show cracks visible under 7-power magnification after exposure to ozone for 70 hours at 104 °F. (S6.8).

S5.3.12 High temperature impulse test. A brake hose assembly tested under the conditions in S6.10:

(a) Shall withstand pressure cycling for 150 cycles, at 295 degrees Fahrenheit (146 degrees Celsius) without leakage;

(b) Shall not rupture during a 2-minute, 4,000 psi pressure hold test, and;

(c) Shall not burst at a pressure less than 5,000 psi.

S5.3.13 End fitting corrosion resistance. After 24 hours of exposure to salt spray, a hydraulic brake hose end fitting shall show no base metal corrosion on the end fitting surface except where crimping or the application of labeling information has caused displacement of the protective coating (S6.11).
§ 571.106 49 CFR Ch. V (10–1–16 Edition)

S6. Test procedures—Hydraulic brake hose, brake hose assemblies, and brake hose end fittings.

S6.1.1 Apparatus. Utilize a test apparatus (as shown in Figure 1) which consists of:

(a) Source for required fluid pressure;
(b) Test fluid of water without any additives and free of gases;
(c) Reservoir for test fluid;
(d) Pressure gauges;
(e) Brake hose end fittings in which to mount the hose vertically; and
(f) Graduate burette with 0.05 cc increments.

![FIG. 1—EXPANSION TEST APPARATUS](https://example.com/image1)

S6.1.2 Preparation. (a) Measure the free length of the hose assembly.

(b) Mount the hose so that it is in a vertical straight position without tension when pressure is applied.

(c) Fill the hose with test fluid and bleed all gases from the system.

(d) Close the valve to the burette and apply 1,500 psi for 10 seconds; then release pressure.

S6.1.3 Calculation of expansion at 1,000 and 1,500 psi. (a) Adjust the fluid level in the burette to zero.

(b) Close the valve to the burette, apply pressure at the rate of 15,000 psi per minute, and seal 1,000 psi in the hose (1,500 psi in the second series, and 2,900 psi in the third series).

(c) After 3 seconds open the valve to the burette for 10 seconds and allow the fluid in the expanded hose to rise into the burette.

(d) Repeat the procedure in steps (b) and (c) twice. Measure the amount of test fluid which has accumulated in the burette as a result of the three applications of pressure.

(e) Calculate the volumetric expansion per foot by dividing the total accumulated test fluid by 3 and further dividing by the free length of the hose in feet.

S6.2 Burst strength test. (a) Connect the brake hose to a pressure system and fill it completely with water, allowing all gases to escape.

(b) Apply water pressure of 4,000 psi at a rate of 15,000 psi per minute.

(c) After 2 minutes at 4,000 psi, increase the pressure at the rate of 15,000 psi per minute until the pressure exceeds 5,000 psi for a brake hose larger than 1/8 inch or 3 mm diameter, or until the pressure exceeds 7,000 psi for a brake hose of 1/8 inch, 3 mm, or smaller diameter.

S6.3 Whip resistance test.

S6.3.1 Apparatus. Utilize test apparatus that is dynamically balanced and includes:

(a) A movable header consisting of a horizontal bar equipped with capped end fittings and mounted through bearings at each end to points 4 inches from the center of two vertically rotating disks whose edges are in the same vertical plane;

(b) An adjustable stationary header parallel to the movable header in the same horizontal plane as the centers of the disks, and fitted with open end fittings;

(c) An elapsed time indicator; and

(d) A source of water pressure connected to the open end fittings.

S6.3.2 Preparation. (a) Except for the supplemental support specified in S6.3.2(d), remove all external appendages including, but not limited to, hose armor, chafing collars, mounting brackets, date band and spring guards.

(b) Measure the hose free length.

(c) Mount the hose in the whip test machine, introducing slack as specified in Table II for the size hose tested, measuring the projected length parallel to the axis of the rotating disks.
The manufacturer may, at his option, adapt the fitting attachment points to permit mounting hose assemblies equipped with angled or other special fittings in the same orientation as hose assemblies equipped with straight fittings.

(d) In the case of a brake hose assembly equipped with a permanent supplemental support integrally attached to the assembly, the assembly may be mounted using the supplemental support and associated means of simulating its attachment to the vehicle. Mount the supplemental support in the same vertical and horizontal planes as the stationary header end of the whip test fixture described in §6.3.1(b). Mount or attach the supplemental support so that it is positioned in accordance with the recommendation of the assembly manufacturer for attaching the supplemental support on a vehicle.

<table>
<thead>
<tr>
<th>TABLE II—HOSE LENGTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free length between end fittings, inches</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8 to 15 1/2, inclusive</td>
</tr>
<tr>
<td>10 to 15 1/2, inclusive</td>
</tr>
<tr>
<td>Over 15 1/2 to 19 inclusive</td>
</tr>
<tr>
<td>Over 19 to 24, inclusive</td>
</tr>
</tbody>
</table>

§6.3.3 Operation. (a) Apply 235 psi water pressure and bleed all gases from the system.

(b) Drive the movable head at 800 rpm.

§6.4 Tensile strength test. Utilize a tension testing machine conforming to the requirements of ASTM E4-03 (incorporated by reference, see §571.5) and provided with a recording device to measure the force applied.

§6.4.1 Preparation. Mount the hose assembly to ensure straight, evenly distributed machine pull.

§6.4.2 Operation. (a) Conduct the slow pull test by applying tension at a rate of 1 inch per minute travel of the moving head until separation occurs.

(b) Conduct the fast pull test by applying tension at a rate of 2 inches per minute travel of the moving head until separation occurs.

§6.5 Water absorption sequence tests.

(a) Prepare three brake hose assemblies and measure the free length of the hose assemblies.

(b) Immerse the brake hose assemblies in distilled water at 185 degrees Fahrenheit (85 degrees Celsius) for 70 hours. Remove the brake hose assemblies from the water and condition in air at room temperature for 30 minutes.

(c) Conduct the tests in §6.2, §6.3, and §6.4, using a different hose for each sequence.

§6.6 Low temperature resistance test.

§6.6.1 Preparation. (a) Remove hose armor, if any, and condition the hose in a straight position in air at a temperature between minus 49 degrees Fahrenheit and minus 54 degrees Fahrenheit (minus 45 degrees Celsius and minus 48 degrees Celsius) for 70 hours.

(b) Condition a cylinder in air at a temperature between minus 49 degrees Fahrenheit and minus 54 degrees Fahrenheit (minus 45 degrees Celsius and minus 48 degrees Celsius) for 70 hours, using a cylinder of 2 1/2 inches in diameter for tests of hose less than 1/4 inch or 3 mm, 3 inches in diameter for tests of 1/4 inch or 3 mm hose, 3 1/2 inches in diameter for tests of 3/16 to 1/4 inch hose or 4 mm to 6 mm hose, and 4 inches in diameter for tests of hose greater than 1/4 inch or 6 mm in diameter.

§6.6.2 Flexibility testing. Bend the conditioned hose 180 degrees around the conditioned cylinder at a steady rate in a period of 3 to 5 seconds. Examine without magnification for cracks.

§6.7 Brake fluid compatibility test.

§6.7.1 Preparation. (a) Attach a hose assembly below a 1-pint reservoir filled with 100 ml. of SAE RM-66-04 Compatibility Fluid as shown in Figure 2.

(b) Fill the hose assembly with brake fluid, seal the lower end, and place the test assembly in an oven in a vertical position.
§ 571.106

322

49 CFR Ch. V (10–1–16 Edition)

S6.7.2 Oven treatment. (a) Condition the hose assembly at 200 °F. for 70 hours.

(b) Cool the hose assembly at room temperature for 30 minutes.

(c) Drain the brake hose assembly, immediately determine that every inside diameter of any section of the hose assembly, except for that part of an end fitting which does not contain hose, is not less than 64 percent of the nominal inside diameter of the hose, and conduct the test specified in S6.2.

S6.8 Ozone resistance test. Utilize a cylinder with a diameter eight times the nominal outside diameter of the brake hose excluding armor.

S6.8.1 Preparation. After removing any armor, bind a hydraulic brake hose 360° around the cylinder. In the case of hose shorter than the circumference of the cylinder, bend the hose so that as much of its length as possible is in contact.

S6.8.2 Exposure to ozone. (a) Condition the hose on the cylinder in air at room temperature for 24 hours.

(b) Immediately thereafter, condition the hose on the cylinder for 70 hours in an exposure chamber having an ambient air temperature of 104 degrees Fahrenheit (40 degrees Celsius) during the test and containing air mixed with ozone in the proportion of 100 parts of ozone per 100 million parts of air by volume.

(c) Examine the hose for cracks under 7-power magnification, ignoring areas immediately adjacent to or within the area covered by binding.

S6.9 Dynamic ozone test.

S6.9.1 Apparatus. Utilize a test apparatus shown in Figure 3 which is constructed so that:

(a) It has a fixed pin with a vertical orientation over which one end of the brake hose is installed.

(b) It has a movable pin that is oriented 30 degrees from vertical, with the top of the movable pin angled towards the fixed pin. The moveable pin maintains its orientation to the fixed pin throughout its travel in the horizontal plane. The other end of the brake hose is installed on the movable pin.
S6.9.2 Preparation. (a) Precondition the hose assembly by laying it on a flat surface in an unstressed condition, at room temperature, for 24 hours.

(b) Cut the brake hose assembly to a length of 8.6 inches (218 mm), such that no end fittings remain on the cut hose.

(c) Mount the brake hose onto the test fixture by fully inserting the fixture pins into each end of the hose. Secure the hose to the fixture pins using a band clamp at each end of the hose.

(d) Place the test fixture into an ozone chamber

(e) Stabilize the atmosphere in the ozone chamber so that the ambient temperature is 104 °F (40 degrees Celsius) and the air mixture contains air mixed with ozone in the proportion of 100 parts of ozone per 100 million parts of air by volume. This atmosphere is to remain stable throughout the remainder of the test.

(f) Begin cycling the movable pin at a rate of 0.3 Hz. Continue the cycling for 48 hours.

(g) At the completion of 48 hours of cycling, remove the test fixture from the ozone chamber. Without removing the hose from the test fixture, visually examine the hose for cracks without magnification, ignoring areas immediately adjacent to or within the area covered by the band clamps. Examine the hose with the movable pin at any point along its travel.

S6.10 High temperature impulse test.

S6.10.1 Apparatus. (a) A pressure cycling machine to which one end of the brake hose assembly can be attached, with the entire hose assembly installed vertically inside of a circulating air oven. The machine shall be capable of increasing the pressure in the hose from zero psi to 1600 psi, and decreasing
§ 571.106

the pressure in the hose from 1600 psi to zero psi, within 2 seconds.

(b) A circulating air oven that can reach a temperature of 295 degrees Fahrenheit (146 degrees Celsius) within 30 minutes, and that can maintain a constant 295 degrees F (146 degrees Celsius) thereafter, with the brake hose assembly inside of the oven and attached to the pressure cycling machine.

(c) A burst test apparatus to conduct testing specified in S6.2

S6.10.2 Preparation. (a) Connect one end of the hose assembly to the pressure cycling machine and plug the other end of the hose. Fill the pressure cycling machine and hose assembly with SAE RM–66–04 “Compatibility Fluid,” as described in Appendix B of SAE Standard J1703 JAN95 (incorporated by reference, see §571.5) and bleed all gases from the system.

(b) Place the brake hose assembly inside of the circulating air oven in a vertical position. Increase the oven temperature to 295 degrees F (146 degrees Celsius) and maintain this temperature throughout the pressure cycling test.

(c) During each pressure cycle, the pressure in the hose is increased from zero psi to 1600 psi and held constant for 1 minute, then the pressure is decreased from 1600 psi to zero psi and held constant for 1 minute. Perform 150 pressure cycles on the brake hose assembly.

(d) Remove the brake hose assembly from the oven, disconnect it from the pressure cycling machine, and drain the fluid from the hose. Cool the brake hose assembly at room temperature for 45 minutes.

(e) Wipe the brake hose using acetone to remove residual Compatibility Fluid. Conduct the burst strength test in S6.2, except all sizes of hose are tested at 5,000 psi.

S6.11 End fitting corrosion test. Utilize the apparatus described in ASTM B117–03 (incorporated by reference, see §571.5).

S6.11.1 Construction. Construct the salt spray chamber so that:

(a) The construction material does not affect the corrosiveness of the fog.

(b) The hose assembly is supported or suspended 30 degrees from the vertical and parallel to the principal direction of the horizontal flow of fog through the chamber.

(c) The hose assembly does not contact any metallic material or any material capable of acting as a wick.

(d) Condensation which falls from the assembly does not return to the solution reservoir for respraying.

(e) Condensation from any source does not fall on the brake hose assemblies or the solution collectors.

(f) Spray from the nozzles is not directed onto the hose assembly.

S6.11.2 Preparation. (a) Plug each end of the hose assembly.

(b) Mix a salt solution five parts by weight of sodium chloride to 95 parts of distilled water, using sodium chloride substantially free of nickel and copper, and containing on a dry basis not more than 0.1 percent of sodium iodide and not more than 0.3 percent total impurities. Ensure that the solution is free of suspended solids before the solution is atomized.

(c) After atomization at 95 degrees Fahrenheit (35 degrees Celsius), ensure that the collected solution is in the PH range of 6.5 to 7.2. Make the PH measurements at 77 degrees Fahrenheit (28 degrees Celsius).

(d) Maintain a compressed air supply to the nozzle or nozzles free of oil and dirt and between 10 and 25 psi.

S6.11.3 Operation. Subject the brake hose assembly to the salt spray continuously for 24 hours.

(a) Regulate the mixture so that each collector will collect from 1 to 2 milliliters of solution per hour for each 80 square centimeters of horizontal collecting area.

(b) Maintain exposure zone temperature at 95 degrees Fahrenheit (35 degrees Celsius).

(c) Upon completion, remove the salt deposit from the surface of the hose by washing gently or dipping in clean running water not warmer than 100 degrees Fahrenheit (38 degrees Celsius) and then drying immediately.

S6.12.1 Plug gauge. (a) Utilize a plug gauge as shown in Figure 4. Diameter
"A" is equal to 64 percent of the nominal inside diameter of the hydraulic brake hose being tested.

(b) Brake hose assemblies that are to be used for additional testing have constriction testing only at each end fitting. Other brake hose assemblies may be cut into 3-inch lengths to permit constriction testing of the entire assembly. Hose assemblies with end fittings that do not permit entry of the gauge (e.g., restrictive orifice or banjo fitting) are cut 3 inches from the point at which the hose terminates in the end fitting and then tested from the cut end.

(c) Hold the brake hose in a straight position and vertical orientation.

(d) Place the spherical end of the plug gauge just inside the hose or end fitting. If the spherical end will not enter the hose or end fitting using no more force than gravity acting on the plug gauge, this constitutes failure of the constriction test.

(e) Release the plug gauge. Within 3 seconds, the plug gauge shall fall under the force of gravity alone up to the handle of the gauge. If the plug gauge does not fully enter the hose up to the handle of the gauge within three seconds, this constitutes failure of the constriction test.

S6.12.2 Extended plug gauge. (a) The test in 6.12.1 may be conducted with an extended plug gauge to enable testing of the entire brake hose from one end fitting, without cutting the brake hose. The extended plug gauge weight and spherical diameter specifications are as shown in Figure 4, but the handle portion of the gauge may be deleted and the gauge length may be greater than 3 inches.

(b) The required performance of the extended plug gauge in S6.12.1(e) is that after the plug gauge is released, the extended plug gauge shall fall under the force of gravity alone at an average rate of 1 inch per second until the spherical diameter of the extended gauge passes through all portions of the brake hose assembly containing hose. If the extended plug gauge does not pass through all portions of the brake hose assembly containing hose at an average rate of 1 inch per second, this constitutes failure of the constriction test.

FIGURE 4. CONSTRUCTION TEST PLUG GAUGE

![Diagram of constriction test plug gauge]

- Handle
- Spherical Diameter
- "A" Dia.
- Weight of Gauge is 57 g (2.00 oz.)
- Dimensions in mm (inches)
§ 571.106

S6.12.3 Drop ball test. (a) Utilize a rigid spherical ball with a diameter equal to 64 percent of the nominal inside diameter of the hydraulic brake hose being tested. The weight of the spherical ball shall not exceed 2 ounces (57 grams).

(b) Hold the brake hose in a straight position and vertical orientation.

(c) Hold the ball just above the end fitting.

(d) Release the ball. The ball shall fall under the force of gravity alone completely through all portions of the brake hose assembly containing hose, at an average rate of 1 inch per second. Failure of the ball to pass completely through all portions of the brake hose assembly containing hose, at an average rate of 1 inch per second, constitutes failure of the constriction test.

S7. Requirements—Air brake hose, brake hose assemblies, and brake hose end fittings.

S7.1 Construction. Each air brake hose assembly shall be equipped with permanently attached brake hose end fittings or reusable brake hose end fittings. Each air brake hose constructed of synthetic or natural elastomeric rubber shall conform to the dimensional requirements specified in Table III, except for brake hose manufactured in metric sizes.

S7.2 Labeling

S7.2.1 Hose. Each air brake hose shall be labeled, or cut from bulk hose that is labeled, at intervals of not more than 6 inches, measured from the end of one legend to the beginning of the next, in block capital letters and numerals at least one-eighth of an inch high, with the information listed in paragraphs (a) through (e) of this section. The information need not be present on hose that is sold as part of a brake hose assembly or a motor vehicle.

(a) The symbol DOT, constituting a certification by the hose manufacturer that the hose conforms to all applicable motor vehicle safety standards.

(b) A designation that identifies the manufacturer of the hose, which shall be filed in writing with: Office of Vehicle Safety Compliance, Equipment Division NVS-222, National Highway Traffic Safety Administration, 400 Seventh St. SW., Washington, DC 20590. The designation may consist of block capital letters, numerals, or a symbol.

(c) The month, day, and year, or the month and year, of manufacture, expressed in numerals. For example, 10/1/96 means October 1, 1996.

(d) The nominal inside diameter of the hose expressed in inches or fractions of inches or in millimeters. The abbreviation “mm” shall follow hose sizes that are expressed in millimeters. (Examples: 3⁄8, 1⁄2 (1⁄2SP in the case of 1⁄2 inch special air brake hose), 4mm, 6mm.)

(e) The type designation corresponding to the brake hose dimensions in Table III. Type A shall be labeled with the letter “A”. Type AI shall be labeled with the letters “AI”, and type AII shall be labeled with the letters “AII”. Metric air brake hose shall be labeled with the letter “A.”

TABLE III—AIR BRAKE HOSE DIMENSIONS—INSIDE DIAMETER (ID) AND OUTSIDE DIAMETER (OD) DIMENSIONS IN INCHES (MILLIMETERS)

<table>
<thead>
<tr>
<th>Min. I.D.</th>
<th>Max. I.D.</th>
<th>Min. O.D.</th>
<th>Max. O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.227 (5.8)</td>
<td>0.289 (7.3)</td>
<td>0.352 (8.9)</td>
<td>0.407 (10.3)</td>
</tr>
<tr>
<td>0.469 (11.9)</td>
<td>0.594 (15.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.273 (6.9)</td>
<td>0.335 (8.5)</td>
<td>0.398 (10.1)</td>
<td>0.469 (11.9)</td>
</tr>
<tr>
<td>0.531 (13.5)</td>
<td>0.656 (16.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.594 (15.1)</td>
<td>0.656 (16.7)</td>
<td>0.719 (18.3)</td>
<td>0.781 (19.8)</td>
</tr>
<tr>
<td>0.844 (21.4)</td>
<td>1.031 (26.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.656 (16.7)</td>
<td>0.719 (18.3)</td>
<td>0.781 (19.8)</td>
<td>0.843 (21.4)</td>
</tr>
<tr>
<td>0.906 (23.0)</td>
<td>1.094 (27.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type AI (2)—Hose Size—Nominal Inside Diameter
§ 571.106

TABLE III—Air Brake Hose Dimensions—Inside Diameter (ID) and Outside Diameter (OD) Dimensions in Inches (Millimeters)—Continued

<table>
<thead>
<tr>
<th>Type AI(2)</th>
<th>Hose Size—Nominal Inside Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(%)</td>
</tr>
<tr>
<td>Min. I.D.</td>
<td>0.188</td>
</tr>
<tr>
<td>Max. I.D.</td>
<td>0.214</td>
</tr>
<tr>
<td>Min. O.D.</td>
<td>0.472</td>
</tr>
<tr>
<td>Max. O.D.</td>
<td>0.510</td>
</tr>
</tbody>
</table>

Notes:
1. Type A, sizes \(\frac{3}{8}, \frac{7}{16}, \text{and} \frac{1}{2}\) Special can be assembled with reusable end fittings. All sizes can be assembled using permanently-attached (crimped) end fittings.
2. Types AI and AII, all sizes, can be assembled with reusable or permanently-attached (crimped) end fittings.

S7.2.2 End fittings. Except for an end fitting that is attached by deformation of the fitting about a hose by crimping or swaging, at least one component of each air brake hose fitting shall be etched, embossed, or stamped in block capital letters and numerals at least one-sixteenth of an inch high with the following information:

(a) The symbol DOT, constituting a certification by the manufacturer of that component that the component conforms to all applicable motor vehicle safety standards.

(b) A designation that identifies the manufacturer of that component of the fitting, which shall be filed in writing with: Office of Vehicle Safety Compliance, Equipment Division NYS–222, National Highway Traffic Safety Administration, 400 Seventh St. S.W., Washington, DC 20590. The designation may consist of block capital letters, numerals, or a symbol.

(c) The letter “A” shall indicate intended use in air brake systems. In the case of an end fitting intended for use in a reusable assembly with brake hose subject to Table III, “AI” or “AII” shall indicate use with Type I or Type II hose, respectively.

(d) The nominal inside diameter of the hose to which the fitting is properly attached expressed in inches or fractions of inches or in millimeters. (See examples in S7.2.1 (d).) The abbreviation “mm” shall follow hose sizes that are expressed in millimeters.

S7.2.3 Assemblies. Each air brake hose assembly made with end fittings that are attached by crimping or swaging, except those sold as part of a motor vehicle, shall be labeled by means of a band around the brake hose assembly as specified in this paragraph or, at the option of the manufacturer, by means of labeling as specified in S7.2.3.1. The band may at the manufacturer’s option be attached so as to move freely along the length of the assembly, as long as it is retained by the end fittings. The band shall be etched, embossed, or stamped in block capital letters, numerals or symbols at least one-eighth of an inch high, with the following information:

(a) The symbol DOT, constituting certification by the hose assembler.
§ 571.106

49 CFR Ch. V (10–1–16 Edition)

that the hose assembly conforms to all applicable motor vehicle safety standards.

(b) A designation that identifies the manufacturer of the hose assembly, which shall be filed in writing with: Office of Crash Avoidance Standards, Vehicle Dynamics Division, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590. The designation may consist of block capital letters, numerals or a symbol.

S7.2.3.1 At least one end fitting of an air brake hose assembly made with end fittings that are attached by crimping or swaging shall be etched, stamped or embossed with a designation at least one-sixteenth of an inch high that identifies the manufacturer of the hose assembly and is filed in accordance with S7.2.3(b).

S7.3 Test requirements. Each air brake hose assembly or appropriate part thereof shall be capable of meeting any of the requirements set forth under this heading, when tested under the conditions of S13 and the applicable procedures of S8. However, a particular hose assembly or appropriate part thereof need not meet further requirements after having met the constriction requirement (S7.3.1) and then having been subjected to any one of the requirements specified in S7.3.2 through S7.3.13.

S7.3.1 Constriction. Every inside diameter of any section of an air brake hose assembly shall not be less than 66 percent of the nominal inside diameter of the brake hose. (S8.14)

S7.3.2 High temperature resistance. An air brake hose shall not show external or internal cracks, charring, or disintegration visible without magnification when straightened after being bent for 70 hours at 212 degrees Fahrenheit (100 degrees Celsius) over a small test cylinder having the radius specified in Table IV for the size of hose tested. (S8.1)

S7.3.3 Low temperature resistance. The inside and outside surfaces of an air brake hose shall not show cracks as a result of conditioning at minus 40 degrees Fahrenheit (minus 40 degrees Celsius) for 70 hours when bent around a large test cylinder having the radius specified in Table IV for the size of hose tested (S8.2).

<table>
<thead>
<tr>
<th>Table IV—Air Brake Hose diameters and test cylinder radii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal hose inside diameter, inches</td>
</tr>
<tr>
<td>Nominal hose inside diameter, millimeters</td>
</tr>
<tr>
<td>Small test cylinder, radius in inches (millimeters)</td>
</tr>
<tr>
<td>Large test cylinder, radius in inches (millimeters)</td>
</tr>
</tbody>
</table>

Notes:

1 These sizes are listed to provide test cylinder radii for brake hoses manufactured in these sizes. They do not represent conversions.

2 Small test cylinders are used for the high temperature resistance test.

3 Large test cylinders are used for the low temperature resistance, ozone resistance, and adhesion of wire-reinforced hose tests.

S7.3.4 Oil resistance. After immersion in ASTM No. 3 oil for 70 hours at 212 °F, the volume of a specimen prepared from the inner tube and cover of an air brake hose shall not increase more than 100 percent (S8.3).

S7.3.5 Ozone resistance. An air brake hose assembly shall not show cracks visible under 7-power magnification.
after exposure to ozone for 70 hours at 104 degrees Fahrenheit (40 degrees Celsius) when bent around a test cylinder of the radius specified in Table IV for the size of hose tested (§8.4).

§7.3.6 Length change. An air brake hose shall not contract in length more than 7 percent nor elongate more than 5 percent when subjected to air pressure of 200 psi (§8.5).

§7.3.7 Adhesion. (a) Except for hose reinforced by wire, an air brake hose shall withstand a tensile force of 8 pounds per inch of length before separation of adjacent layers (§8.6).

(b) An air brake hose reinforced by wire shall permit a steel ball to roll freely along the entire length of the inside of the hose when the hose is subjected to a vacuum of 25 inches of Hg and bent around a test cylinder (§8.13).

§7.3.8 Flex strength and air pressure leakage. An air brake hose assembly of the length specified in the table accompanying Figure 5, when subjected to a flex test and internal pressure cycling, shall be capable of having its internal pressure increased from zero to 140 psi within 2 minutes with pressurized air supplied through an orifice (§8.7).

§7.3.9 Corrosion resistance and burst strength. An air brake hose assembly exposed to salt spray shall not rupture when exposed to hydrostatic pressure of 900 psi (§8.8).

§7.3.10 Tensile strength. An air brake hose assembly designed for use between a frame and axle or between a towed and towing vehicle shall withstand, without separation of the hose from its end fittings, a pull of 250 pounds if it is ¼ inch or 6 mm or less in nominal inside diameter, or a pull of 325 pounds if it is larger than ¼ inch or 6 mm in nominal inside diameter. An air brake hose assembly designed for use between a frame and axle or between a towed and towing vehicle shall withstand, without separation of the hose from its end fittings, a pull of 250 pounds if it is ¼ inch or less or 6 mm or less in nominal inside diameter, or a pull of 325 pounds if it is larger than ¼ inch or 6 mm or less in nominal inside diameter. After immersion in distilled water for 70 hours, an air brake hose assembly designed for use between a frame and axle or between a towed and towing vehicle shall withstand, without separation of the hose from its end fittings, a pull of 250 pounds if it is ¼ inch or less or 6 mm or less in nominal inside diameter, or a pull of 325 pounds if it is larger than ¼ inch or 6 mm or less in nominal inside diameter (§8.10).

§7.3.11 Water absorption and tensile strength. After immersion in distilled water for 70 hours, an air brake hose assembly designed for use between a frame and axle or between a towed and towing vehicle shall withstand, without separation of the hose from its end fittings, a pull of 250 pounds if it is ¼ inch or less or 6 mm or less in nominal inside diameter, or a pull of 325 pounds if it is larger than ¼ inch or 6 mm or less in nominal inside diameter (§8.9).

§8. Test procedures—Air brake hose, brake hose assemblies, and brake hose end fittings.

§8.1 High temperature resistance test. (a) Utilize a small test cylinder with a radius specified in Table IV for the size of hose tested.

(b) Bind the hose around the cylinder and condition it in an air oven for 70 hours at 212 degrees Fahrenheit (100 degrees Celsius).

(c) Cool the hose to room temperature, remove it from the cylinder and straighten it.

(d) Without magnification, examine the hose externally and cut the hose lengthwise and examine the inner tube.

§8.2 Low temperature resistance test. (a) Utilize a large test cylinder with a radius specified in Table IV for the size of hose tested.

(b) Condition the cylinder and the brake hose, in a straight position, in a cold box at minus 40 °F. for 70 hours.
(c) With the hose and cylinder at minus 40 degrees Fahrenheit (minus 40 degrees Celsius), bend the hose 180 degrees around the cylinder at a steady rate in a period of 3 to 5 seconds. Remove the hose from the test cylinder and visibly examine the exterior of the hose for cracks without magnification.

(d) Allow the hose to warm at room temperature for 2 hours. All reusable end fittings are removed from the hose. All permanently-attached end fittings are cut away from the hose. Cut through one wall of the hose longitudinally along its entire length. Unfold the hose to permit examination of the interior surface. Visibly examine the interior of the hose for cracks without magnification.

S8.3 Oil resistance test. Utilize three test specimens and average the results.

S8.3.1 Preparation. Fashion a test specimen by cutting a rectangular block 2 inches long and not less than one-third of an inch in width, having a thickness of not more than one-sixteenth inch, from the brake hose and buff the specimen on both faces to ensure smooth surfaces.

S8.3.2 Measurement. (a) Weigh each specimen to the nearest milligram in air (W1) and in distilled water (W2) at room temperature. If wetting is necessary to remove air bubbles, dip the specimen in acetone and thoroughly rinse it with distilled water.

(b) Immerse each specimen in ASTM IRM 903 oil for 70 hours at 212 degrees Fahrenheit (100 degrees Celsius) and then cool in ASTM IRM 903 oil at room temperature for 30 to 60 minutes.

(c) Dip the specimen quickly in acetone and blot it lightly with filter paper.

(d) Weigh each specimen in a tared weighing bottle (W3) and in distilled water (W4) within five minutes of removal from the cooling liquid.

(e) Calculate the percentage increase in volume follows:

Percent of increase=
\[
\frac{(W_3 - W_4) - (W_1 - W_2)}{(W_1 - W_2)} \times 100
\]

S8.4 Ozone resistance test. Conduct the test specified in S6.8, using air brake hose, except use the large test cylinder specified in Table IV for the size of hose tested.

S8.5 Length change test. (a) Position a test hose in a straight, horizontal position, and apply air pressure of 10 psi thereto.

(b) Measure the hose to determine original free length.

(c) Without releasing the 10 psi, raise the air pressure to the test hose to 200 psi.

(d) Measure the hose under 200 psi to determine final free length. An elongation or contraction is an increase or decrease, respectively, in the final free length from the original free length of the hose.

S8.6 Adhesion test for air brake hose not reinforced by wire.

S8.6.1 Apparatus. A tension testing machine that is power-driven and that applies a constant rate of extension is used for measuring the force required to separate the layers of the test specimen. The apparatus is constructed so that:

(a) The recording head includes a freely rotating form with an outside diameter substantially the same as the inside diameter of the hose specimen to be placed on it.

(b) The freely rotating form is mounted so that its axis of rotation is in the plane of the ply being separated from the specimen and so that the applied force is perpendicular to the tangent of the specimen circumference at the line of separation.

(c) The rate of travel of the power-actuated grip is a uniform one inch per minute and the capacity of the machine is such that maximum applied tension during the test is not more than 85 percent nor less than 15 percent of the machine's rated capacity.

(d) The machine produces a chart with separation as one coordinate and applied tension as the other.

S8.6.2 Preparation. (a) Cut a test specimen of 1 inch or more in length from the hose to be tested and cut the layer to be tested of that test specimen longitudinally along its entire length to the level of contact with the adjacent layer.

(b) Peel the layer to be tested from the adjacent layer to create a flap large enough to permit attachment of the power-actuated clamp of the apparatus.
(c) Mount the test specimen on the freely rotating form with the separated layer attached to the power-actuated clamp.

S8.6.3 [Reserved]

S8.6.4 Calculations. (a) The adhesion value shall be the minimum force recorded on the chart excluding that portion of the chart which corresponds to the initial and final 20 percent portion along the displacement axis.

(b) Express the force in pounds per inch of length.

S8.7 Flex strength and air pressure test.

S8.7.1 Apparatus. A flex testing machine with a fixed hose assembly attachment point and a movable hose assembly attachment point, which meets the dimensional requirements of Figure 5 for the size of hose being tested. The attachment points connect to the end fittings on the hose assembly without leakage and, after the hose assembly has been installed for the flex test, are restrained from rotation. The movable end has a linear travel of 6 inches and a cycle rate of 100 cycles per minute. The machine is capable of increasing the air pressure in the hose assembly from zero to 150 psi within 2 seconds, and decreasing the air pressure in the hose assembly from 150 to zero psi within 2 seconds.

FIGURE 5. FLEX TEST APPARATUS

![Diagram of flex test apparatus]

<table>
<thead>
<tr>
<th>Table Accompanying Figure 5—Dimensions in Inches (Millimeters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free hose length</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>10.00 (254)</td>
</tr>
<tr>
<td>11.00 (279)</td>
</tr>
<tr>
<td>14.00 (355)</td>
</tr>
</tbody>
</table>

Note (1): This is an approximate average radius.
§ 571.106 49 CFR Ch. V (10–1–16 Edition)

S8.7.2 Preparation. (a) Lay the hose material on a flat surface in an unstressed condition. Apply a permanent marking line along the centerline of the hose on the uppermost surface.

(b) Prepare the hose assembly with a free length as shown in the table accompanying Figure 5. The end fittings shall be attached according to the end fitting manufacturer’s instructions.

(c) Plug the ends of the hose assembly and conduct the salt spray test in S6.11 using an air brake hose assembly. Remove the plugs from the end fittings.

(d) Within 168 hours of completion of the salt spray test, expose the hose assembly to an air temperature of 212 degrees Fahrenheit (100 degrees Celsius) for 70 hours, with the hose in a straight position. Remove the hose and cool it at room temperature for 2 hours. Within 166 hours, subject the hose to the flexure test in S8.7.2(e).

(e) Install the hose assembly on the flex testing machine as follows. With the movable hose attachment point at the mid point of its travel, attach one end of the hose to the movable attachment point with the marked line on the hose in the uppermost position. Attach the other end of the hose to the fixed attachment point allowing the hose to follow its natural curvature.

(f) Cycle the air pressure in the hose by increasing the pressure in the hose from zero psi to 150 psi and holding constant for one minute, then decreasing the pressure from 150 psi to zero psi and holding constant for one minute. Continue the pressure cycling for the duration of the flex testing. Begin the flex testing by cycling the movable attachment point through 6 inches of travel at a rate of 100 cycles per minute. Stop the flex testing and pressure cycling after one million cycles have been completed.

(g) Install an orifice with a hole diameter of 0.0625 inches and a thickness of 0.032 inches in the air pressure supply line to the hose assembly. Provide a gauge or other means to measure air pressure in the hose assembly. Regulate the supply air pressure to the orifice to 150 psi.

(h) Apply 150 psi air pressure to the orifice. After 2 minutes have elapsed, measure the air pressure in the brake hose assembly, while pressurized air continues to be supplied through the orifice.

S8.8 Corrosion resistance and burst strength test. (a) Conduct the test specified in S6.11 using an air brake hose assembly. Remove the plugs from the ends of the hose assembly.

(b) Fill the hose assembly with water, allowing all gases to escape. Apply water pressure at a uniform rate of increase of approximately 1,000 psi per minute until the hose ruptures.

S8.9 Tensile strength test. Utilize a tension testing machine conforming to the requirements of ASTM E4–03 (incorporated by reference, see §571.5) and provided with a recording device to measure the force applied.

(a) Attach an air brake hose assembly to the testing machine to permit straight, even, machine pull on the hose. Use adapters to mount hose assemblies equipped with angled end fittings so that the hose is in a straight position when installed on the machine.

(b) Apply tension at a rate of 1 inch per minute travel of the moving head until separation occurs.

S8.10 Water Absorption and tensile strength test. Immerse an air brake hose assembly in distilled water at room temperature for 70 hours. Thirty minutes after removal from the water, conduct the test specified in S8.9.

S8.11 Zinc chloride resistance test. Immerse an air brake hose in a 50 percent zinc chloride aqueous solution at room temperature for 200 hours. Remove it from the solution and examine it under 7-power magnification for cracks.

S8.12 End fitting corrosion resistance test. Conduct the test specified in S6.11 using an air brake hose assembly.

S8.13 Adhesion test for air brake hose reinforced by wire. (a) Place a steel ball with a diameter equal to 73 percent of the nominal inside diameter of the hose being tested inside of the hose. Plug one end of the hose. Attach the other end of the hose to a source of vacuum.

(b) Subject the hose to a vacuum of 25 inches of Hg for five minutes. With the vacuum still applied to the hose, bend the hose 180 degrees around a large test cylinder with a radius specified in Table IV for the size of hose.
(c) With the vacuum still applied to the hose, return the hose to a straight position. Attempt to roll the ball inside the hose using gravity from one end of the hose to the other end.

S8.14 Constriction test. Perform the constriction test in S6.12 using an air brake hose, except that the spherical diameter “A” of the plug gauge in Figure 4, or the diameter of the rigid spherical ball in S6.12.3(a), shall be 66 percent of the nominal inside diameter of the air brake hose being tested.

S9. Requirements—vacuum brake hose, brake hose assemblies, and brake hose end fittings.

S9.1 Labeling.

S9.1.1 Hose. Each vacuum brake hose shall be labeled, or cut from bulk hose that is labeled, at intervals of not more than 6 inches, measured from the end of one legend to the beginning of the next, in block capital letters and numerals at least one-eighth of an inch high, with the information listed in paragraphs (a) through (e) of this section. The information need not be present on hose that is sold as part of a brake hose assembly or a motor vehicle. (a) The symbol DOT, constituting a certification by the hose manufacturer that the hose conforms to all applicable motor vehicle safety standards.

(b) A designation that identifies the manufacturer of the hose, which shall be filed in writing with: Office of Crash Avoidance Standards, Vehicle Dynamics Division, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 20590. The designation may consist of block capital letters, numerals or a symbol.

(c) The month, day, and year, or the month and year, of manufacture, expressed in numerals. For example, 10/1/96 means October 1, 1996.

(d) The nominal inside diameter of the hose expressed in inches or fractions of inches or in millimeters, or the nominal outside diameter of plastic tubing expressed in inches or fractions of inches or in millimeters followed by the letters OD. The abbreviation “mm” shall follow hose sizes that are expressed in millimeters. (Example of inside diameter: ½, ¼, 4 mm. Example of outside diameter: ½ OD, 12 mm OD.)

(e) The letters “VL” or “VH” shall indicate that the component is a light-duty vacuum brake hose or heavy-duty vacuum brake hose, respectively.

S9.1.2 End fittings. Except for an end fitting that is attached by heat shrinking or by interference fit with plastic vacuum hose or that is attached by deformation of the fitting about a hose by crimping or swaging, at least one component of each vacuum brake hose fitting shall be etched, embossed, or stamped in block capital letters and numerals at least one-sixteenth of an inch high with the following information:

(a) The symbol DOT, constituting a certification by the manufacturer of that component that the component conforms to all applicable motor vehicle safety standards.

(b) A designation that identifies the manufacturer of that component of the fitting, which shall be filed in writing with: Office of Crash Avoidance Standards, Vehicle Dynamics Division, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 20590. The designation may consist of block capital letters, numerals or a symbol.

(c) The letters “VL” or “VH” shall indicate that the end fitting is intended for use in a light-duty or heavy-duty vacuum brake system, respectively.

(d) The nominal inside diameter of the hose to which the fitting is properly attached expressed in inches or fractions of inches or in millimeters, or the outside diameter of the plastic tubing to which the fitting is properly attached expressed in inches or fraction of inches or in millimeters followed by the letter OD (See examples in S9.1.1(d)). The abbreviation “mm” shall follow hose sizes that are expressed in millimeters.

S9.1.3 Assemblies. Each vacuum brake hose assembly made with end fittings that are attached by crimping or swaging and each plastic tube assembly made with end fittings that are attached by heat shrinking or dimensional interference fit, except those sold as part of a motor vehicle, shall be labeled by means of a band around the
brake hose assembly as specified in this paragraph or, at the option of the manufacturer, by means of labeling as specified in S9.1.3.1. The band may at the manufacturer’s option be attached so as to move freely along the length of the assembly, as long as it is retained by the end fittings. The band shall be etched, embossed, or stamped in block capital letters, numerals or symbols at least one-eighth of an inch high, with the following information:

(a) The symbol DOT, constituting certification by the hose assembler that the hose assembly conforms to all applicable motor vehicle safety standards.

(b) A designation that identifies the manufacturer of the hose assembly, which shall be filed in writing with: Office of Crash Avoidance Standards, Vehicle Dynamics Division, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590. The designation may consist of block capital letters, numerals or a symbol.

S9.1.3.1 At least one end fitting of a vacuum brake hose assembly made with end fittings that are attached by crimping or swaging, or of a plastic tubing assembly made with end fittings that are attached by heat shrinking or dimensional interference fit shall be etched, stamped or embossed with a designation at least one-sixteenth of an inch high that identifies the manufacturer of the hose assembly and is filed in accordance with S9.1.3(b).

S9.2 Test requirements. Each vacuum brake hose assembly or appropriate part thereof shall be capable of meeting any of the requirements set forth under this heading, when tested under the conditions of S13 and the applicable procedures of S10. However, a particular hose assembly or appropriate part thereof need not meet further requirements after having met the constriction requirement (S9.2.1) and then having been subjected to any one of the requirements specified in S9.2.2 through S9.2.10.

S9.2.1 Constriction. Except for that part of an end fitting which does not contain hose, every inside diameter of any section of a vacuum brake hose assembly shall not be less than 75 percent of the nominal inside diameter of the hose if for heavy duty, or 70 percent of the nominal inside diameter of the hose if for light duty (S10.11).

S9.2.2 High temperature resistance. A vacuum brake hose tested under the conditions specified in S10.1:

(a) Shall not have collapse of the outside diameter exceeding 10 percent of the initial outside diameter for a heavy-duty vacuum brake hose, or exceeding 15 percent of the initial outside diameter for a light-duty vacuum brake hose;

(b) Shall not show external cracks, charring, or disintegration visible without magnification, and;

(c) Shall not leak when subjected to a hydrostatic pressure test.

S9.2.3 Low temperature resistance. A vacuum brake hose tested under the conditions specified in S10.2 shall:

(a) Not show cracks visible without magnification after conditioning at minus 40 degrees Fahrenheit (minus 40 degrees Celsius) for 70 hours when bent around a cylinder having the radius specified in Table V for the size hose tested; and

(b) Not leak when subjected to a hydrostatic pressure test (S10.1(e)).

S9.2.4 Ozone resistance. A vacuum brake hose shall not show cracks visible under 7-power magnification after exposure to ozone for 70 hours (S10.3).

S9.2.5 Burst strength. A vacuum brake hose shall not rupture under hydrostatic pressure of 350 psi (S10.4).

S9.2.6 Vacuum. The collapse of the outside diameter of a vacuum brake hose under internal vacuum of 26 inches of Hg. for five minutes shall not exceed one-sixteenth of an inch (S10.5).

S9.2.7 Bend. The collapse of the outside diameter of a vacuum brake hose, other than a preformed vacuum brake hose, at the middle point of the test length when bent until the ends touch shall not exceed the values given in Table V for the size of hose tested (S10.6).
TABLE V—VACUUM BRAKE HOSE TEST REQUIREMENTS

<table>
<thead>
<tr>
<th>Hose inside diameter*</th>
<th>High temperature resistance</th>
<th>Low temperature resistance</th>
<th>Bend</th>
<th>Deformation—colapsed inside diameter (dimension D), inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches</td>
<td>Milimeters</td>
<td>Hose length, inches</td>
<td>Hose length, inches</td>
<td>Hose length, inches</td>
</tr>
<tr>
<td>7/32</td>
<td>5</td>
<td>8</td>
<td>11/8</td>
<td>13/8</td>
</tr>
<tr>
<td>1/4</td>
<td>6</td>
<td>9</td>
<td>11/8</td>
<td>13/8</td>
</tr>
<tr>
<td>9/32</td>
<td>8</td>
<td>10</td>
<td>11/8</td>
<td>13/8</td>
</tr>
<tr>
<td>5/8</td>
<td>10</td>
<td>12</td>
<td>20 1/2</td>
<td>23 3/8</td>
</tr>
<tr>
<td>1/2</td>
<td>12</td>
<td>14</td>
<td>20 1/2</td>
<td>23 3/8</td>
</tr>
<tr>
<td>9/16</td>
<td>14</td>
<td>16</td>
<td>20 1/2</td>
<td>23 3/8</td>
</tr>
<tr>
<td>3/4</td>
<td>16</td>
<td>18</td>
<td>20 1/2</td>
<td>23 3/8</td>
</tr>
</tbody>
</table>

*These sizes are listed to provide test values for brake hoses manufactured in these sizes. They do not represent conversions.

S9.2.8 Swell and adhesion. Following exposure to Reference Fuel B (as described in ASTM D471-98 (incorporated by reference, see §571.5)), every inside diameter of any section of a vacuum brake hose shall not be less than 75 percent of the nominal inside diameter of the hose if for heavy duty, or 70 percent of the nominal inside diameter of the hose if for light duty. The vacuum brake hose shall show no leakage in a vacuum test of 26 inches of Hg for 10 minutes. A vacuum hose that is constructed of two or more layers shall withstand a force of 6 pounds per inch of length before separation of adjacent layers. (S10.7).

S9.2.9 Deformation. A vacuum brake hose shall return to 90 percent of its original outside diameter within 60 seconds after five applications of force as specified in S10.8, except that a wire-reinforced hose need only return to 85 percent of its original outside diameter. In the case of a heavy duty hose, the first application of force shall not exceed a peak value of 70 pounds, and the fifth application of force shall reach a peak value of at least 40 pounds. In the case of light duty hose the first application of force shall not exceed a peak value of 50 pounds, and the fifth application of force shall reach a peak value of at least 20 pounds (S10.9).

S9.2.10 End fitting corrosion resistance. After 24 hours of exposure to salt spray, vacuum brake hose end fittings shall show no base metal corrosion of the end fitting surface except where crimping or the application of labeling information has caused displacement of the protective coating. (S10.10).

S10. Test procedures—Vacuum brake hose, brake hose assemblies, and brake hose end fittings.

S10.1 High temperature resistance test.

(a) Measure the initial outside diameter of the hose.

(b) Subject the hose to an internal vacuum of 26 inches of Hg at an ambient temperature of 257 degrees Fahrenheit (125 degrees Celsius) for a period of 96 hours. Remove the hose to room temperature and atmospheric pressure.

(c) Within 5 minutes of completion of the conditioning in S10.1(b), measure the outside diameter at the point of greatest collapse and calculate the percentage collapse based on the initial outside diameter.

(d) Cool the hose at room temperature for 5 hours. Bend the hose around a mandrel with a diameter equal to five times the initial outside diameter of the hose. Examine the exterior of the hose for cracks, charring, or disintegration visible without magnification. Remove the hose from the mandrel.

(e) Fill the hose assembly with water, allowing all gases to escape. Apply water pressure in the hose of 175 psi within 10 seconds. Maintain an internal hydrostatic pressure of 175 psi for one minute and examine the hose for visible leakage.

S10.2 Low temperature resistance test.

(a) Conduct the test specified in S8.2(a) through (c) using vacuum brake hose...
with the cylinder radius specified in Table V for the size of hose tested.

(b) Remove the hose from the test cylinder, warm the hose at room temperature for 5 hours, and conduct the hydrostatic pressure test in §10.1(e).

571.106 con (b) Remove the hose from the test cylinder, warm the hose at room temperature for 5 hours, and conduct the hydrostatic pressure test in §10.1(e).

571.106 con (b) Remove the hose from the test cylinder, warm the hose at room temperature for 5 hours, and conduct the hydrostatic pressure test in §10.1(e).

(b) Remove the hose from the test cylinder, warm the hose at room temperature for 5 hours, and conduct the hydrostatic pressure test in §10.1(e).

S10.3 Ozone resistance test. Conduct the test specified in §8.8 using vacuum brake hose.

S10.4 Burst strength test. Conduct the test specified in §8.8 using vacuum brake hose.

(b) Remove the hose from the test cylinder, warm the hose at room temperature for 5 hours, and conduct the hydrostatic pressure test in §10.1(e).

S10.5 Vacuum test. Utilize a 12-inch vacuum brake hose assembly sealed at one end. (a) Measure the hose outside diameter.

(b) Attach the hose to a source of vacuum and subject it to a vacuum of 26 inches of Hg for 5 minutes.

(c) Measure the hose to determine the minimum outside diameter while the hose is still subject to vacuum.

S10.6 Bend test. (a) Bend a vacuum brake hose, of the length prescribed in Table V, in the direction of its normal curvature until the ends just touch as shown in Figure 6.

(b) Measure the outside diameter of the specimen at point A before and after bending.

(c) The difference between the two measurements is the collapse of the hose outside diameter on bending.

FIG. 6—BEND TEST OF VACUUM BRAKE HOSE.

S10.7 Swell and adhesion test. (a) Fill a specimen of vacuum brake hose 12 inches long with ASTM Reference Fuel B as described in ASTM D471-98 (incorporated by reference, see §571.5).

(b) Maintain reference fuel in the hose under atmospheric pressure at room temperature for 48 hours.

(c) Remove fuel and conduct the constriction test in §10.11.

(d) Attach the hose to a source of vacuum and subject it to a vacuum of 26 inches of Hg for 10 minutes. Remove the hose from the vacuum source.

(e) For a vacuum brake hose constructed of two or more layers, conduct the test specified in §8.8 using the vacuum brake hose.

S10.8 [Reserved]

S10.9 Deformation test. Table VI specifies the test specimen dimensions.

(b) Apply gradually increasing force to the test specimen to compress its inside diameter to that specified in Table VI (dimension D of Figure 7) for the size of hose tested.

FIG. 7—DEFORMED SPECIMEN OF VACUUM BRAKE HOSE.

TABLE VI—DIMENSIONS OF TEST SPECIMEN AND FEELER GAGE FOR DEFORMATION TEST

<table>
<thead>
<tr>
<th>Hose inside diameter*</th>
<th>Specimen dimensions (see Fig. 7)</th>
<th>Feeler gage dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>in.</td>
<td>mm</td>
<td>Depth (inch)</td>
</tr>
<tr>
<td>5/32</td>
<td>5</td>
<td>3/64</td>
</tr>
<tr>
<td>1/4</td>
<td>6</td>
<td>5/32</td>
</tr>
<tr>
<td>1/2</td>
<td>8</td>
<td>3/32</td>
</tr>
<tr>
<td>9/32</td>
<td>10</td>
<td>1/16</td>
</tr>
<tr>
<td>15/32</td>
<td>12</td>
<td>1/16</td>
</tr>
<tr>
<td>3/8</td>
<td>14</td>
<td>1/4</td>
</tr>
<tr>
<td>7/16</td>
<td>16</td>
<td>1/4</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>3/16</td>
</tr>
</tbody>
</table>

*These sizes are listed to provide test values for brake hoses manufactured in these sizes. They do not represent conversions.

(b) Apply gradually increasing force to the test specimen to compress its inside diameter to that specified in Table VI (dimension D of Figure 7) for the size of hose tested.
(c) After 5 seconds release the force and record the peak load applied.
(d) Repeat the procedure four times permitting a 10-second recovery period between load applications.

S10.10 End fitting corrosion resistance test. Conduct the test specified in S6.11 using a vacuum brake hose assembly.

S10.11 Constriction test. Perform the constriction test in S6.12 using a vacuum brake hose, except that the spherical diameter “A” of the plug gauge in Figure 4, or the diameter of the rigid spherical ball in S6.12.3(a), shall be 75 percent of the nominal inside diameter of the vacuum brake hose if it is heavy duty, or 70 percent of the nominal inside diameter of the vacuum brake hose if it is light duty.

S11. Requirements—Plastic air brake tubing, plastic air brake tubing assemblies, and plastic air brake tube end fittings.

11.1 Construction. Each plastic air brake tubing assembly shall be equipped with permanently attached end fittings or reusable end fittings. Plastic air brake tubing shall conform to the dimensional requirements specified in Table VII. (S12.1)

TABLE VII—PLASTIC AIR BRAKE TUBING DIMENSIONS

<table>
<thead>
<tr>
<th>Nominal tubing outside diameter</th>
<th>Maximum outside diameter</th>
<th>Minimum outside diameter</th>
<th>Nominal inside diameter</th>
<th>Nominal wall thickness</th>
<th>Wall thickness tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>inches</td>
<td>mm</td>
<td>inches</td>
<td>mm</td>
<td>inches</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>----</td>
<td>--------</td>
</tr>
<tr>
<td>1⁄8 inch</td>
<td>3.25</td>
<td>0.128</td>
<td>3.10</td>
<td>0.122</td>
<td>2.01</td>
</tr>
<tr>
<td>5⁄32 inch</td>
<td>4.04</td>
<td>0.159</td>
<td>3.89</td>
<td>0.153</td>
<td>2.34</td>
</tr>
<tr>
<td>3⁄16 inch</td>
<td>4.83</td>
<td>0.190</td>
<td>4.67</td>
<td>0.184</td>
<td>2.97</td>
</tr>
<tr>
<td>1⁄4 inch</td>
<td>6.43</td>
<td>0.253</td>
<td>6.27</td>
<td>0.247</td>
<td>4.32</td>
</tr>
<tr>
<td>5⁄32 inch</td>
<td>8.03</td>
<td>0.316</td>
<td>7.82</td>
<td>0.308</td>
<td>5.89</td>
</tr>
<tr>
<td>3⁄16 inch</td>
<td>9.63</td>
<td>0.379</td>
<td>9.42</td>
<td>0.371</td>
<td>6.38</td>
</tr>
<tr>
<td>1⁄4 inch</td>
<td>12.18</td>
<td>0.478</td>
<td>11.92</td>
<td>0.472</td>
<td>9.00</td>
</tr>
<tr>
<td>5⁄16 inch</td>
<td>19.00</td>
<td>0.748</td>
<td>18.74</td>
<td>0.742</td>
<td>12.00</td>
</tr>
<tr>
<td>3⁄8 inch</td>
<td>21.00</td>
<td>0.827</td>
<td>20.74</td>
<td>0.821</td>
<td>14.38</td>
</tr>
</tbody>
</table>

S11.2 Labeling.

S11.2.1 Plastic air brake tubing. Plastic air brake tubing shall be labeled, or cut from bulk tubing that is labeled, at intervals of not more than 6 inches, measured from the end of one legend to the beginning of the next, in block capital letters and numerals at least one-eighth of an inch high, with the information listed in paragraphs (a) through (e) of this section. The information need not be present on tubing that is sold as part of a motor vehicle.

(a) The symbol DOT, constituting a certification by the hose manufacturer that the hose conforms to all applicable motor vehicle safety standards.
(b) A designation that identifies the manufacturer of the tubing, which shall be filed in writing with: Office of Vehicle Safety Compliance, Equipment Division NVS–222, National Highway Traffic Safety Administration, 400 Seventh St. SW., Washington, DC 20590.

The designation may consist of block capital letters, numerals, or a symbol.
(c) The month, day, and year, or the month and year, of manufacture, expressed in numerals. For example, 10/1/96 means October 1, 1996.
(d) The nominal outside diameter expressed in inches or fractions of inches or in millimeters followed by the letters OD. The abbreviation “mm” shall follow tubing sizes that are expressed in millimeters. (Examples: 3⁄8 OD, 6 mm OD.)
(e) The letter “A” shall indicate intended use in air brake systems.

S11.2.2 End fittings. Except for an end fitting that is attached by deformation of the fitting about the tubing by crimping or swaging, at least one component of each plastic air brake tubing end fitting shall be etched, embossed, or stamped in block capital letters and numerals at least one-sixteenth of an inch high with the following information:

(a) The symbol DOT, constituting a certification by the manufacturer that the end fitting conforms to all applicable motor vehicle safety standards.

(b) A designation that identifies the manufacturer of the end fitting, which shall be filed in writing with: Office of Vehicle Safety Compliance, Equipment Division NVS–222, National Highway Traffic Safety Administration, 400 Seventh St. SW., Washington, DC 20590. The designation may consist of block capital letters, numerals, or a symbol.

(c) The letter “A” shall indicate intended use in air brake systems.

(d) The nominal outside diameter of the plastic tubing to which the fitting is properly attached expressed in inches or fractions of inches or in millimeters followed by the letters OD. The abbreviation “mm” shall follow tubing sizes that are expressed in millimeters. (Examples: 3⁄8 OD, 6 mm OD)

S11.2.3 Assemblies. Each plastic air brake tubing assembly made with end fittings that are attached by crimping or swaging, except those sold as part of a motor vehicle, shall be labeled by means of a band around the brake tubing assembly as specified in this paragraph or, at the option of the manufacturer, by means of labeling as specified in S11.2.3.1. The band may at the manufacturer’s option be attached so as to move freely along the length of the assembly, as long as it is retained by the end fittings. The band shall be etched, embossed, or stamped in block capital letters, numerals or symbols at least one-eighth of an inch high, with the following information:

(a) The symbol DOT, constituting certification by the tubing assembler that the tubing assembly conforms to all applicable motor vehicle safety standards.

(b) A designation that identifies the manufacturer of the hose assembly, which shall be filed in writing with: Office of Vehicle Safety Compliance, Equipment Division NVS–222, National Highway Traffic Safety Administration, 400 Seventh St. SW., Washington, DC 20590. The designation may consist of block capital letters, numerals, or a symbol.

S11.2.3.1 At least one end fitting of a plastic air brake tubing assembly made with end fittings that are attached by crimping or swaging shall be etched, stamped, or embossed with a designation at least one-sixteenth of an inch high that identifies the manufacturer of the tubing assembly and is filed in accordance with S11.2.3(b).

S11.3 Test requirements. Each plastic air brake tubing assembly or appropriate part thereof shall be capable of meeting any of the requirements set forth under this heading, when tested under the conditions of S13 and the applicable procedures of S12. However, a particular tubing assembly or appropriate part thereof need not meet further requirements after having met the constriction requirement (S11.3.1) and then having been subjected to any one of the requirements specified in S11.3.2 through S11.3.24. Unless otherwise specified, testing is conducted on a sample of tubing 12 inches in length.

S11.3.1 Constriction. Every inside diameter of any section of a plastic air brake tubing assembly shall not be less than 66 percent of the nominal inside diameter of the brake tubing. (S12.2)

S11.3.2 High temperature conditioning and dimensional stability. Plastic air brake tubing shall conform to the dimensions in Table VII after conditioning in air at 230 degrees Fahrenheit (110 degrees Celsius) for four hours. (S12.3)

S11.3.3 Boiling water conditioning and dimensional stability. Plastic air brake tubing shall conform to the dimensions in Table VII after conditioning in boiling water for two hours. (S12.4)

S11.3.4 Burst Strength. Plastic air brake tubing shall not rupture when subjected to the burst strength pressure in Table VIII for the size of tubing being tested. (S12.5)

S11.3.5 Moisture absorption and burst strength. Plastic air brake tubing shall not rupture when subjected to 80 percent of the burst strength pressure in Table VIII, after the tubing has been dried in an oven and then conditioned in a 100 percent relative humidity atmosphere at 75 degrees Fahrenheit (24 degrees Celsius) for 100 hours. (S12.6)
§571.106

TABLE VIII—PLASTIC AIR BRAKE TUBING MECHANICAL PROPERTIES

<table>
<thead>
<tr>
<th>Nominal tubing OD</th>
<th>Burst strength pressure (\text{kPa})</th>
<th>Supported bend radius (\text{mm})</th>
<th>Unsupported bend radius (\text{mm})</th>
<th>Conditioned tensile load (\text{lb})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3⁄16 inch</td>
<td>1557</td>
<td>38.1</td>
<td>38.1</td>
<td>1557</td>
</tr>
<tr>
<td>5⁄32 inch</td>
<td>1557</td>
<td>12.7</td>
<td>12.7</td>
<td>1557</td>
</tr>
<tr>
<td>1⁄8 inch</td>
<td>6900</td>
<td>9.4</td>
<td>9.4</td>
<td>156</td>
</tr>
<tr>
<td>3⁄32 inch</td>
<td>1557</td>
<td>9.4</td>
<td>9.4</td>
<td>1557</td>
</tr>
<tr>
<td>5⁄64 inch</td>
<td>1557</td>
<td>6.3</td>
<td>6.3</td>
<td>1557</td>
</tr>
<tr>
<td>1⁄32 inch</td>
<td>1557</td>
<td>3.1</td>
<td>3.1</td>
<td>1557</td>
</tr>
<tr>
<td>5⁄128 inch</td>
<td>1557</td>
<td>1.9</td>
<td>1.9</td>
<td>1557</td>
</tr>
<tr>
<td>1⁄64 inch</td>
<td>1557</td>
<td>1.2</td>
<td>1.2</td>
<td>1557</td>
</tr>
</tbody>
</table>

NOTES: (1) Supported bend radius for tests specifying cylinders around which the tubing is bent. (2) Unsupported bend radius for the collapse resistance test in which the tubing is not supported by a cylinder during bending.

S11.3.6 *Ultraviolet light resistance.* Plastic air brake tubing shall not rupture when subjected to 80 percent of the burst strength pressure in Table VIII for the size of tubing being tested, after being exposed to ultraviolet light for 300 hours and then impacted with a one pound weight dropped from a height of 12 inches. (S12.12)

S11.3.7 *Low temperature flexibility.* The outer surface of plastic air brake tubing shall not show cracks visible without magnification as a result of conditioning in air at 230 degrees Fahrenheit (110 degrees Celsius) for 24 hours, and then conditioning in air at minus 40 degrees Fahrenheit (minus 40 degrees Celsius) for four hours, and then bending the tubing 180 degrees around a test cylinder having a radius equal to six times the nominal outside diameter of the tubing. (S12.8)

S11.3.8 *High temperature flexibility.* Plastic air brake tubing shall not rupture or burst when subjected to 80 percent of the burst strength pressure in Table VIII for the size of tubing being tested, after the tubing has been:

(a) Conditioned in air at 230 degrees Fahrenheit (110 degrees Celsius) for 72 hours while bent 180 degrees around a cylinder having a radius equal to the supported bend radius in Table VIII for the size of tubing being tested; and

(b) Cooled to room temperature while remaining on the cylinder, then straightened; and

(c) Bent 180 degrees around the cylinder in the opposite direction of the first bending. (S12.9)

S11.3.9 *High temperature resistance.* Plastic air brake tubing shall not rupture or burst when subjected to 80 percent of the burst strength pressure in Table VIII for the size of tubing being tested, after the tubing has been conditioned in air at 230 degrees Fahrenheit (110 degrees Celsius) for 72 hours. (S12.10)

S11.3.10 *High temperature conditioning, low temperature impact resistance.* Plastic air brake tubing shall not rupture or burst when subjected to 80 percent of the burst strength pressure in Table VIII for the size of tubing being tested, after the tubing has been conditioned in air at 230 degrees Fahrenheit (110 degrees Celsius) for 24 hours, then conditioned in air at minus 40 degrees Fahrenheit (minus 40 degrees Celsius) for 4 hours and impacted with a one pound weight dropped from a height of 12 inches. (S12.11)

S11.3.11 *Boiling water conditioning, low temperature impact resistance.* Plastic air brake tubing shall not rupture when subjected to 80 percent of the burst strength pressure in Table VIII for the size of tubing being tested, after the tubing has been conditioned in boiling water for two hours, then conditioned in air at minus 40 degrees Fahrenheit (minus 40 degrees Celsius) for 4 hours, and then impacted with a one pound weight dropped from a height of 12 inches. (S12.12)
S11.3.12 Zinc chloride resistance. The outer surface of plastic air brake tubing shall not show cracks visible under 7-power magnification after immersion in a 50 percent zinc chloride aqueous solution for 200 hours while bent around a cylinder having a radius equal to the supported bend radius in Table VIII for the size of tubing tested. (S12.13)

S11.3.13 Methyl alcohol resistance. The outer surface of plastic air brake tubing shall not show cracks visible under 7-power magnification after immersion in a 95 percent methyl alcohol aqueous solution for 200 hours while bent around a cylinder having a radius equal to the supported bend radius in Table VIII for the size of tubing tested. (S12.14)

S11.3.14 High temperature conditioning and collapse resistance. The collapse of the outside diameter of plastic air brake tubing shall not exceed twenty percent of the original outside diameter when bent 180 degrees on a holding fixture to the unsupported bend radius specified in Table VIII and conditioned in air at 200 degrees Fahrenheit (93 degrees Celsius) for 24 hours. (S12.15)

S11.3.15 Ozone resistance. The outer surface of plastic air brake tubing shall not show cracks visible under 7-power magnification after exposure to ozone for 70 hours at 104 degrees Fahrenheit (40 degrees Celsius). (S12.16)

S11.3.16 Oil resistance. Plastic air brake tubing shall not rupture when subjected to 80 percent of the burst strength pressure in Table VIII for the size of tubing being tested, after the tubing has been conditioned in ASTM IRM 903 oil at 212 degrees Fahrenheit (100 degrees Celsius) for 70 hours. (S12.17)

S11.3.17 Tensile strength. A plastic air brake tubing assembly designed for use between frame and axle or between a towed and a towing vehicle shall withstand, without separation of the hose from its end fittings, a pull of 35 pounds if it is $\frac{3}{8}$ inch, 3 mm, or less in nominal outside diameter, 40 pounds if it is $\frac{3}{4}$ inch or $\frac{1}{4}$ inch, 4 mm in nominal outside diameter, 50 pounds if it is $\frac{1}{2}$ to $\frac{3}{4}$ inch or 5 mm to 10 mm in nominal outside diameter, 150 pounds if it is $\frac{1}{2}$ to $\frac{5}{8}$ inch or 11 mm to 16 mm in nominal outside diameter, or 325 pounds if it is larger than $\frac{5}{8}$ inch or 16 mm in nominal outside diameter. (S12.18)

S11.3.18 Boiling water conditioning and tensile strength. A plastic air brake tubing assembly when subjected to a tensile pull test shall either elongate 50 percent or withstand the conditioned tensile load in Table VIII without separation from its end fittings, with one end of the assembly conditioned in boiling water for 5 minutes. (S12.19)

S11.3.19 Thermal conditioning and tensile strength. A plastic air brake tubing assembly when subjected to a tensile pull test shall either elongate 50 percent or withstand the conditioned tensile load in Table VIII without separation from its end fittings after the assembly has been subjected to four cycles of conditioning in air at minus 40 degrees Fahrenheit (minus 40 degrees Celsius) for thirty minutes, normalizing at room temperature, conditioning in boiling water for 15 minutes, and normalizing at room temperature. (S12.20)

S11.3.20 Vibration resistance. A plastic air brake tubing assembly with an internal air pressure of 120 psig shall not rupture or leak more than 50 cm³ per minute at a temperature of minus 40 degrees Fahrenheit (minus 40 degrees Celsius) and 25 cm³ per minute at a temperature of 75 degrees Fahrenheit (24 degrees Celsius), after the assembly has been subjected to 1,000,000 cycles of vibration testing with one end of the assembly fixed and the other end stroked $\frac{1}{2}$-inch at 600 cycles per minute. In addition, end fittings that use a threaded retention nut shall retain at least 20 percent of the original retention nut tightening torque upon completion of the vibration testing. The vibration test shall be conducted in an environmental chamber and the air temperature shall be cycled between minus 40 degrees Fahrenheit...
(minus 40 degrees Celsius) and 220 degrees Fahrenheit (104 degrees Celsius) during the test. (S12.21)

S11.3.21 End fitting retention. The end fittings of a plastic air brake tubing assembly shall not rupture when the assembly is filled with water and pressurized to the burst strength pressure in Table VIII. (S12.22)

S11.3.22 Thermal conditioning and end fitting retention. The end fittings of a plastic air brake tubing assembly shall not rupture when the assembly is filled with ASTM IRM 903 oil and:

(a) Conditioning in air at 200 degrees Fahrenheit (93 degrees Celsius) for 24 hours with atmospheric pressure inside the tubing assembly; and

(b) Increasing the pressure inside the tubing assembly to 450 psi, and holding this pressure for five minutes while maintaining an air temperature of 200 degrees Fahrenheit (93 degrees Celsius); and

(c) Reducing the pressure inside the tubing assembly to 75 degrees Fahrenheit (24 degrees Celsius) for 1 hour; and

(d) Conditioning the tubing assembly in air at minus 40 degrees Fahrenheit (minus 40 degrees Celsius) for 24 hours with atmospheric pressure inside the tubing assembly; and

(e) Increasing the pressure inside the tubing assembly to 450 psi, and holding this pressure for five minutes while maintaining an air temperature of minus 40 degrees Fahrenheit (minus 40 degrees Celsius). (S12.23)

S11.3.23 End fitting serviceability. A plastic air brake end fitting that uses a threaded retention nut shall not rupture or leak more than 25 cm³ per minute when pressurized to 120 psi after five assembly cycles. (S12.24)

S11.3.24 End fitting corrosion resistance. After 24 hours of exposure to salt spray, air brake hose end fittings shall show no base metal corrosion on the end fitting surface except where crimping or the application of labeling information causes a displacement of the protective coating. (S12.25)

S12. Test procedures—Plastic air brake tubing, plastic air brake tubing assemblies, plastic air brake tubing end fittings.

S12.1 Air brake tubing dimensions. Measure the tubing dimensions including wall thickness, inside diameter, and outside diameter, using appropriate metrology apparatus such as micrometers, dial indicators and gauges, or optical comparators. To account for slight out-of-round conditions, diameter measurements may be calculated using the average of the major and minor diameters.

S12.2 Constriction test. Perform the constriction test in S6.12 using an air brake tubing assembly, except that the spherical diameter “A” of the plug gauge in Figure 4, or the diameter of the rigid spherical ball in S6.12.3(a), shall be 66 percent of the nominal inside diameter of the tubing as specified in Table VII.

S12.3 High temperature conditioning and dimensional stability test. (a) Condition the tubing at 230 degrees Fahrenheit (110 degrees Celsius) for 4 hours in an air oven.

(b) Remove the tubing from the oven and allow to cool at room temperature for 30 minutes.

(c) Measure the dimensions of the tubing using the procedure in S12.1.

S12.4 Boiling water conditioning and dimensional stability test. (a) Utilize a container constructed of a non-reactive material large enough so that the tubing to be tested does not touch any surface of the container. Fill container with distilled water.

(b) Slip the tubing over a stainless steel wire for positioning it in the pot.

(c) Bring the water to a boil. Place the tubing in the water and position it so that it does not touch the container. Boil the tubing for two hours. Replenish the water as necessary, adding it slowly so that the water in the pot boils continuously.

(d) Remove the tubing from the water and allow to cool at room temperature for 30 minutes. Wipe off any water that remains on the tubing.

(e) Measure the dimensions of the tubing using the procedure in S12.1.

S12.5 Burst strength test. (a) Utilize an air brake tubing assembly or prepare a 12 inch length of tubing and install end fittings according to the end fitting manufacturer’s instructions.

(b) Plug one end of the assembly, fill it with water, and connect the other end to a source of water pressure. Bleed
any air from the assembly and water pressure system.
(c) Increase the water pressure inside the tubing assembly at a rate of 3,000 psi per minute to the burst strength pressure for the size of tubing being tested as specified in Table VIII.

S12.6 Moisture absorption and burst strength. (a) Prepare a sample of tubing twelve inches in length.
(b) Condition the tubing at 230 degrees Fahrenheit (110 degrees Celsius) for 24 hours in an air oven. Remove the tubing from the oven and within 30 seconds, and weigh it to establish the initial weight. The weight shall be measured with a resolution of 0.01 gram; if the scale has a higher resolution, then values of 0.005 gram and above shall be rounded to the nearest 0.01 gram and values below 0.005 gram shall be truncated.
(c) Place the tubing in an environmental chamber and condition it for 100 hours at 100 percent relative humidity and a temperature of 75 degrees Fahrenheit (24 degrees Celsius).
(d) Remove the tubing from the chamber and within a period of 5 minutes, remove all surface moisture from the tubing using cloth and weigh the tubing to establish the conditioned weight. Weight shall be measured to the nearest 0.01 gram as in S12.6(b).
(e) Calculate percentage of moisture absorption as follows:

\[
\left(\frac{\text{Conditioned Weight} - \text{Initial Weight}}{\text{Initial Weight}}\right) \times 100
\]

(f) Install end fittings according to the end fitting manufacturers instructions.
(g) Conduct the burst strength test in S12.5 except use 80 percent of the burst strength pressure for the size of tubing being tested as specified in Table VIII.

S12.7 Ultraviolet light resistance test. (a) Apparatus. An accelerated weathering test machine for ultraviolet light conditioning of plastic air brake tubing. The machine shall be equipped with fluorescent UVA-340 light bulbs and automatic irradiance control. Also utilize an impact test apparatus as shown in Figure 8.
(b) Test standards. The testing is in accordance with ASTM G154-00, ASTM G151-97, and ASTM D4329-99 (all incorporated by reference, see §571.5).
(c) Preparation. (1) Utilize a 12 inch length of plastic air brake tubing. Mask 1 inch of each end of the tubing where end fittings will be attached using opaque tape.
(2) Attach the tubing to the test rack of the machine, securing it at the ends along the masked sections. Wipe the outside surface of the tubing with acetone to remove any surface contaminants. Place the tubing and rack in the accelerated weathering test machine so that the center of the tubing assembly is approximately in the center of the UV light exposure area of the test machine. (If multiple plastic brake tubing assemblies are tested, then their position in the machine should be rotated according to ASTM D4329-99 S7.4.1, except the rotation shall be each 96 hours instead of weekly.) The distance from the light bulb to the tubing shall be approximately 2 inches. Set the UV irradiance to 0.85 watts per square meter at 340 nm and maintain this level during the testing. Maintain a temperature inside the test chamber of 113 degrees Fahrenheit (45 degrees Celsius), and use only atmospheric humidity. Expose the tubing at this UV irradiance level for 300 hours continuously. Remove the tubing from the test chamber.
(3) Place the tubing inside the impact test apparatus, and drop the impacter onto the tubing from a height of 12 inches.
(4) Remove the masking material from the ends of the tubing. Install end fittings according to the end fitting manufacturer’s instructions. Conduct the burst strength test in S12.5 except use 80 percent of the burst strength pressure for the size of tubing being tested as specified in Table VIII.
Table 8. Impact Test Apparatus

<table>
<thead>
<tr>
<th>Nominal tubing outside diameter</th>
<th>Hole diameter “D”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8 inch</td>
<td>3.96 mm 0.156</td>
</tr>
<tr>
<td>5/32 inch</td>
<td>4.75 mm 0.187</td>
</tr>
<tr>
<td>3/16 inch</td>
<td>5.54 mm 0.218</td>
</tr>
<tr>
<td>1/4 inch</td>
<td>7.14 mm 0.281</td>
</tr>
</tbody>
</table>

0.454 kg (1.00 lb.) mass, 31.75 mm (1.25 in.) diameter, 15.88 mm (0.625 in.) spherical radius on impact surface. Mass slides freely within fixture and falls 305 mm (12.00 in.) with no tubing in fixture (falls 305 mm minus diameter of tubing when used for testing).

Release and lifting handle, weight included in mass total weight.
TABLE ACCOMPANYING FIGURE 8—Continued

<table>
<thead>
<tr>
<th>Nominal tubing outside diameter</th>
<th>Hole diameter ''D''</th>
<th>mm</th>
<th>inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>5⁄16 inch</td>
<td>8.71</td>
<td>0.343</td>
<td></td>
</tr>
<tr>
<td>3⁄8 inch</td>
<td>10.31</td>
<td>0.406</td>
<td></td>
</tr>
<tr>
<td>1⁄2 inch</td>
<td>13.49</td>
<td>0.531</td>
<td></td>
</tr>
<tr>
<td>5⁄8 inch</td>
<td>16.66</td>
<td>0.656</td>
<td></td>
</tr>
<tr>
<td>3⁄4 inch</td>
<td>20.32</td>
<td>0.800</td>
<td></td>
</tr>
<tr>
<td>10 mm</td>
<td>6.80</td>
<td>0.268</td>
<td></td>
</tr>
<tr>
<td>8 mm</td>
<td>8.80</td>
<td>0.346</td>
<td></td>
</tr>
<tr>
<td>12 mm</td>
<td>10.80</td>
<td>0.425</td>
<td></td>
</tr>
<tr>
<td>16 mm</td>
<td>12.80</td>
<td>0.504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.80</td>
<td>0.661</td>
<td></td>
</tr>
</tbody>
</table>

S12.8 *Low temperature flexibility test.*

(a) Utilize a cylinder having a radius of six times the nominal outside diameter of the tubing.

(b) Condition the tubing in an air oven at 230 degrees Fahrenheit (110 degrees Celsius) for 24 hours. Remove from the oven and cool at room temperature for 30 minutes.

(c) Condition the cylinder and the tubing in an environmental chamber at minus 40 degrees Fahrenheit (minus 40 degrees Celsius) for four hours.

(d) With the tubing and test cylinder at minus 40 degrees Fahrenheit (minus 40 degrees Celsius), bend the tubing 180 degrees around the cylinder at a steady rate in a period of 4 to 8 seconds.

S12.9 *High temperature flexibility test.*

(a) Utilize a cylinder having a radius equal to the supported bend radius in Table VIII for the size of tubing being tested.

(b) Bend the tubing 180 degrees around the cylinder and hold in place with a clamp or other suitable support, applying only enough force on the tubing to hold it in position.

(c) Condition the tubing and cylinder in an air oven at 230 degrees Fahrenheit (110 degrees Celsius) for 72 hours. Remove the tubing and cylinder from the oven and cool at room temperature for two hours.

(d) Remove the clamps or supports from the tubing and straighten the tubing at a steady rate in a period of 4 to 8 seconds.

(e) Rebend the tubing 180 degrees around the cylinder, at the same point but in the opposite direction of the bending in S12.9(b), at a steady rate in a period of 4 to 8 seconds.

(f) Conduct the burst strength test in S12.5 except use 80 percent of the burst strength pressure for the size of tubing being tested as specified in Table VIII.

S12.10 *High temperature resistance test.* Condition the tubing in an air oven at 230 degrees Fahrenheit (110 degrees Celsius) for 72 hours. Remove the tubing and allow to cool at room temperature for 30 minutes. Conduct the burst strength test in S12.5 except use 80 percent of the burst strength pressure for the size of tubing being tested as specified in Table VIII.

S12.11 *High temperature conditioning, low temperature impact resistance test.*

(a) Apparatus. Utilize an impact test apparatus as shown in Figure 8.

(b) Condition the tubing in an air oven at 230 degrees Fahrenheit (110 degrees Celsius) for 72 hours. Remove the tubing and allow to cool at room temperature for 30 minutes.

(c) Condition the tubing and the impact test apparatus in an environmental chamber at minus 40 degrees Fahrenheit (minus 40 degrees Celsius) for 4 hours.

(d) With the tubing and impact test apparatus at minus 40 degrees Fahrenheit (minus 40 degrees Celsius), place the tubing inside the apparatus and drop the impactor onto the tubing from a height of 12 inches. Remove the tubing from the chamber and allow to warm at room temperature for one hour.

(e) Conduct the burst strength test in S12.5 except use 80 percent of the burst strength pressure for the size of tubing being tested as specified in Table VIII.

S12.12 *Boiling water conditioning, low temperature impact resistance test.*

(a) Apparatus. Utilize an impact test apparatus as shown in Figure 8.

(b) Condition the tubing in boiling water using the test in S12.4 (a) through (d), except that the length of tubing shall be 12 inches.

(c) Condition the tubing and the impact test apparatus in an environmental chamber at minus 40 degrees Fahrenheit (minus 40 degrees Celsius) for 4 hours.

(d) With the tubing and impact test apparatus at minus 40 degrees Fahrenheit (minus 40 degrees Celsius), place the tubing inside the apparatus and drop the impactor onto the tubing from a height of 12 inches. Remove the tubing from the chamber and allow to...
warm at room temperature for one hour.

(c) Conduct the burst strength test in S12.5 except use 80 percent of the burst strength pressure for the size of tubing being tested as specified in Table VIII.

S12.13 Zinc chloride resistance test. (a) Utilize a cylinder having a radius equal to the supported bend radius in Table VIII for the size of tubing being tested. The cylinder is constructed of a non-reactive material or coated to prevent chemical reaction with zinc chloride. The length of the tubing sample is long enough so that its ends will not be submerged during the immersion in zinc chloride, or the ends of the tubing are plugged to keep the zinc chloride from entering the tubing.

(b) Bend the tubing 180 degrees around the cylinder and hold in place with a clamp or other suitable support constructed of non-reactive materials, applying only enough force on the tubing to hold it in position.

(c) Immerse the tubing and cylinder in a 50 percent zinc chloride aqueous solution at room temperature for 200 hours.

(d) Remove the tubing and cylinder from the solution. While still on the test cylinder, inspect the tubing under 7-power magnification for cracks.

S12.14 Methyl alcohol resistance. (a) Utilize a cylinder having a radius equal to the supported bend radius in Table VIII for the size of tubing being tested. The cylinder is constructed of a non-reactive material or coated to prevent chemical reaction with methyl alcohol.

(b) Bend the tubing 180 degrees around the cylinder and hold in place with a clamp or other suitable support constructed of non-reactive materials, applying only enough force on the tubing to hold it in position. The ends of the tubing may be shortened so that they will be fully submerged in the methyl alcohol.

(c) Immerse the tubing and cylinder in a 95 percent methyl alcohol aqueous solution at room temperature for 200 hours.

(d) Remove the tubing and cylinder from the solution. While still on the test cylinder, inspect the tubing under 7-power magnification for cracks.

S12.15 High temperature conditioning and collapse resistance test. (a) Apparatus. A holding device consisting of two vertical pins affixed to a flat, horizontal plate. Each pin projects 1 inch above the top surface of the plate. Each pin is approximately equal to the inside diameter of the tubing being tested. Using the unsupported bend radius for the size of tubing being tested from Table VIII, the distance between the pin centerlines is equal to:

\[2 \times \text{unsupported bend radius} + [\text{nominal OD of tubing}]\]

(b) Preparation. (1) Use the unsupported bend radius for the size of tubing being tested from Table VIII and cut the tubing to the following length:

\[3.14 \times [\text{unsupported bend radius}] + [10 \times [\text{nominal tubing OD}]] + 2 \text{ inches}\]

or

\[3.14 \times [\text{unsupported bend radius}] + [10 \times [\text{nominal tubing OD}]] + 50 \text{ mm}\]

(2) Place a reference mark at the center of the sample. At this mark, measure the initial outside diameter of the tubing. If the tubing is slightly out-of-round, use the elliptical minor diameter as the initial outside diameter.

(3) Install the tubing completely over the pins of the holding device so that the tubing is bent 180 degrees. If the tubing has a natural curvature, the tubing shall be bent in the direction of the natural curvature.

(4) Condition the holding device and tubing in an air oven at 200 degrees Fahrenheit (93 degrees Celsius) for 24 hours. Remove the holding device and tubing and allow to cool at room temperature for thirty minutes.

(5) With the tubing still mounted to the holding device, measure the elliptical minor diameter of the tubing at the reference mark to determine the final outside diameter.

(c) Calculation. Calculate the percentage collapse of the outside diameter of the tubing as follows: (\[\text{Initial Outside Diameter—Final Outside Diameter}\] + \[\text{Initial Outside Diameter}\]) \times 100

S12.16 Ozone resistance test. Conduct the test specified in S6.8 using plastic air brake tubing.

S12.17 Oil resistance test. (a) Utilize a plastic air brake tubing assembly or prepare a 12 inch length of tubing and install end fittings according to the
end fitting manufacturer’s instructions.

(b) Immerse the tubing in ASTM IRM 903 oil at 212 degrees Fahrenheit (100 degrees Celsius) for 70 hours. Remove and allow to cool at room temperature for 30 minutes. Wipe any excess oil from the tubing assembly.

(c) Conduct the burst strength test in S12.5 except use 80 percent of the burst strength pressure for the size of tubing being tested as specified in Table VIII and, at the manufacturer’s option, oil may be used as the test medium instead of water.

S12.18 Tensile strength test. Conduct the test in S8.9 using a plastic air brake tubing assembly or an assembly prepared from a 12 inch length of air brake tubing with end fittings installed according to the end fitting manufacturer’s instructions.

S12.19 Boiling water conditioning and tensile strength. (a) Apparatus. Use a tension testing machine as specified in S8.9. The lower attachment point of the machine is equipped with a heated, open-top container that is water tight. The inside of the container (lower attachment point) and upper attachment point of the machine have provisions to quickly attach a brake hose assembly for tensile testing.

(b) Preparation. Prepare an air brake tubing assembly with a free length of 6 inches (six inches of exposed tubing between the end fittings), with the end fittings installed in accordance with the end fitting manufacturer’s instructions. If necessary install adapters on the end fittings to permit attachment to the machine, to keep water from entering the tubing assembly, and/or to ensure that the tubing assembly is in a straight position when installed on the machine. Subject the tubing assembly to four complete cycles of the following sequence:

1. Condition the tubing assembly in an environmental chamber at minus 40 degrees Fahrenheit (minus 40 degrees Celsius) for 30 minutes. Remove from the chamber and allow to warm at room temperature for 30 minutes.
2. Condition the tubing assembly by submerging it in boiling water for 15 minutes. Remove and allow to cool at room temperature for 30 minutes. Install the tubing assembly on the tension testing machine and apply tension to the tubing assembly at a rate of one inch per minute travel of the moving head until either the conditioned tensile load in Table VIII for the size of tubing being tested is reached or the free length of the tubing assembly reaches 9 inches, whichever occurs first.

S12.20 Thermal conditioning and tensile strength—(a) Apparatus. Use a tension testing machine as specified in S8.9.

(b) Preparation. Prepare an air brake tubing assembly with a free length of 6 inches (six inches of exposed tubing between the end fittings), with the end fittings installed in accordance with the end fitting manufacturer’s instructions. If necessary install adapters on the end fittings to permit attachment to the machine, to keep water from entering the tubing assembly, and/or to ensure that the tubing assembly is in a straight position when installed on the machine. Subject the tubing assembly to four complete cycles of the following sequence:

1. Condition the tubing assembly in an environmental chamber at minus 40 degrees Fahrenheit (minus 40 degrees Celsius) for 30 minutes. Remove from the chamber and allow to warm at room temperature for 30 minutes.
2. Condition the tubing assembly by submerging it in boiling water for 15 minutes. Remove and allow to cool at room temperature for 30 minutes. Install the tubing assembly on the tension testing machine and apply tension to the tubing assembly at a rate of one inch per minute travel of the moving head until either the conditioned tensile load in Table VIII for the size of tubing being tested is reached or the free length of the tubing assembly reaches 9 inches, whichever occurs first.

S12.21 Vibration resistance test. (a) Apparatus. A vibration testing machine that supports a brake tubing assembly by its end fittings in approximately a straight line and includes the following features:

1. One tubing assembly attachment point is fixed and the other moves in a plane perpendicular to a line projected between the attachment points. The movable attachment point moves in a linear direction and travels ½ inch total and at its midpoint of travel fails on a line projected between the attachment points. The movable attachment
point has a cycle rate of 600 cycles per minute.

(2) The distance between the attachment points is adjustable to compensate for varying lengths of brake tubing assemblies.

(3) The actuating mechanism for the movable attachment point is balanced to prevent introduction of machine vibration into the brake tubing assembly.

(4) The machine has a compressed air supply system that pressurizes the air brake tubing assembly through one fitting while the other fitting is plugged. The machine’s compressed air supply system includes a pressure gauge or monitoring system and an air flow meter.

(5) The machine is constructed so that an air brake tubing assembly mounted on it can be conditioned in an environmental test chamber.

(b) Preparation.

(1) Prepare an air brake tubing assembly with a free length of 18 inches (18 inches of exposed tubing between the end fittings), with the end fittings installed in accordance with the end fitting manufacturer’s instructions. Record the initial tightening torque for an end fitting that uses a threaded retaining nut.

(2) Install the air brake tubing assembly on the vibration testing machine and, with the movable attachment point at the midpoint of its travel, adjust the distance between the attachment points so that they are 1/2 inch closer together than the distance at which the tubing assembly is taut.

(3) With the tubing assembly inside the environmental chamber, apply compressed air to the tubing assembly at a regulated pressure of 120 psi and maintain the supply of air to the tubing assembly for the duration of the test. Set the temperature of the environmental chamber to 220 degrees Fahrenheit (104 degrees Celsius) and initiate cycling of the movable attachment point. After 250,000 cycles, set the temperature of the environmental chamber to minus 40 degrees Fahrenheit (minus 40 degrees Celsius). Measure the air flow rate just prior to 1,000,000 cycles and if the compressed air flow rate supplied to the air brake tubing assembly exceeds 50 cubic centimeters per minute this constitutes failure of the test. Stop the cycling at 1,000,000 cycles and set the environmental chamber temperature to 75 degrees Fahrenheit (24 degrees Celsius), while air pressure is still supplied to the air brake tubing assembly. After one hour, measure the compressed air flow rate supplied to the air brake tubing assembly and if the rate exceeds 25 cubic centimeters per minute this constitutes failure of the test.

(4) For end fittings that use a threaded retaining nut, apply 20 percent of the original tightening torque as recorded in S12.21(b)(1). If the retention nut visibly moves, this constitutes a failure of the test.

S12.22 End fitting retention test. (a) Utilize an air brake tubing assembly or prepare a 12 inch length of tubing and install end fittings according to the end fitting manufacturer’s instructions.

(b) Plug one end of the assembly, fill it with water, and connect the other end to a source of water pressure. Bleed any air from the assembly and water pressure system.

(c) Increase the pressure inside the tubing assembly at a rate of 3,000 psi per minute to 50 percent of the burst strength pressure for the size of tubing being tested as specified in Table VIII. Hold the pressure constant for 30 seconds.

(d) Increase the pressure inside the tubing assembly at a rate of 3,000 psi per minute to the burst strength pressure for the size of tubing being tested as specified in Table VIII.

S12.23 Thermal conditioning and end fitting retention test—(a) Apparatus. A source of hydraulic pressure that includes a pressure gauge or monitoring system, uses ASTM IRM 903 oil, and is constructed so that an air brake tubing assembly mounted to it can be conditioned in an environmental test chamber.

(b) Preparation. Utilize an air brake tubing assembly or prepare a 12 inch
length of tubing and install end fittings according to the end fitting manufacturer’s instructions. Attach one end of the assembly to the hydraulic pressure supply and plug the other end of the assembly, fill the assembly with ASTM IRM 903 oil and bleed any air from the assembly, and place the tubing assembly inside an environmental chamber. Conduct the following tests:

1. With atmospheric pressure applied to the oil inside the tubing assembly, set the environmental chamber temperature to 200 degrees Fahrenheit (93 degrees Celsius) and condition the tubing assembly for 24 hours.

2. With the temperature maintained at 200 degrees Fahrenheit (93 degrees Celsius), increase the oil pressure inside the tubing assembly at a rate of 3,000 psi per minute to 450 psi, and hold this pressure for 5 minutes.

3. Decrease the oil pressure inside the tubing assembly at a rate of 3,000 psi per minute to atmospheric pressure and set the temperature of the environmental chamber to 75 degrees Fahrenheit (24 degrees Celsius). Condition the tubing assembly at this temperature for 1 hour.

4. Set the temperature of the environmental chamber to minus 40 degrees Fahrenheit (minus 40 degrees Celsius) and condition the tubing assembly for 24 hours.

5. With the temperature maintained at minus 40 degrees Fahrenheit (minus 40 degrees Celsius), increase the hydraulic pressure inside the tubing assembly at a rate of 3,000 psi per minute to 450 psi, and hold this pressure for 5 minutes.

S12.24 End fitting serviceability—(a) Apparatus. A source of air pressure that includes a pressure gauge or monitoring system and is equipped with a mass air flow meter.

(b) Preparation. Prepare a 12-inch length of tubing and plug one end. Assemble the end fitting with the threaded retention nut on the other end of the tubing according to the end fitting manufacturer’s instructions, then disassemble the fitting. Repeat the assembly and disassembly sequence three more times, and then reassemble the end fitting (five total assembly steps).

(c) Attach the end fitting with the threaded retention nut to the source of air pressure. Pressurize the tubing at a rate of 3,000 psi per minute to a pressure of 120 psi. If the end fitting leaks, measure and record the leakage rate using the mass air flow meter.

S12.25 End fitting corrosion resistance. Utilize an air brake tubing assembly or prepare a 12-inch length of tubing and install end fittings according to the end fitting manufacturer’s instructions. Conduct the test specified in S6.11 using a plastic air brake tubing assembly.

S13. Test Conditions. Each hose assembly or appropriate part thereof shall be able to meet the requirements of S5, S7, S9, and S11, under the following conditions.

S13.1 The temperature of the testing room is 75 degrees Fahrenheit (24 degrees Celsius).

S13.2 The brake hoses and brake hose assemblies are at least 24 hours old, and unused.

S13.3 Specified test pressures are gauge pressures (psig).

[38 FR 31303, Nov. 13, 1973]

EDITORIAL NOTE: For Federal Register citations affecting §571.106, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.

§ 571.107 [Reserved]

§ 571.108 Standard No. 108; Lamps, reflective devices, and associated equipment.

S1 Scope. This standard specifies requirements for original and replacement lamps, reflective devices, and associated equipment.

S2 Purpose. The purpose of this standard is to reduce traffic accidents and deaths and injuries resulting from traffic accidents, by providing adequate illumination of the roadway, and by enhancing the conspicuity of motor vehicles on the public roads so that their presence is perceived and their signals understood, both in daylight and in darkness or other conditions of reduced visibility.

S3 Application. This standard applies to:

S3.1 Passenger cars, multipurpose passenger vehicles, trucks, buses, trailers (except pole trailers and trailer converter dollies), and motorcycles;
§ 571.108

S3.2 Retroreflective sheeting and reflex reflectors manufactured to conform to S8.2 of this standard; and

S3.3 Lamps, reflective devices, and associated equipment for replacement of like equipment on vehicles to which this standard applies.

§ 4 Definitions.

Aiming plane means a plane defined by the surface of the three aiming pads on the lens.

Aiming reference plane means a plane which is perpendicular to the longitudinal axis of the vehicle and tangent to the forwardmost aiming pad on the headlamp.

Aiming screws are the horizontal and vertical adjusting screws with self-locking features used to aim and retain a headlamp unit in the proper position.

Axis of reference means the characteristic axis of the lamp for use as the direction of reference (H = 0°, V = 0°) for angles of field for photometric measurements and for installing the lamp on the vehicle.

Backup lamp means a lamp or lamps which illuminate the road to the rear of a vehicle and provide a warning signal to pedestrians and other drivers when the vehicle is backing up or is about to back up.

Beam contributor means an indivisible optical assembly including a lens, reflector, and light source, that is part of an integral beam headlighting system and contributes only a portion of a headlamp beam.

Cargo lamp is a lamp that is mounted on a multipurpose passenger vehicle, truck, or bus for the purpose of providing illumination to load or unload cargo.

Clearance lamps are lamps which show to the front or rear of the vehicle, mounted on the permanent structure of the vehicle as near as practicable to the upper left and right extreme edges to indicate the overall width and height of the vehicle.

Coated materials means a material which has a coating applied to the surface of the finished sample to impart some protective properties. Coating identification means a mark of the manufacturer’s name, formulation designation number, and recommendations for application.

Color Fundamental definitions of color are expressed by Chromaticity Coordinates according to the CIE 1931 Standard Colorimetric System, as described in the CIE 1931 Chromaticity Diagram (incorporated by reference, see § 571.5).

Color bleeding means the migration of color out of a plastic part onto the surrounding surface.

Combination clearance and side marker lamps are single lamps which simultaneously fulfill the requirements of clearance and side marker lamps.

Combination headlamp means a headlamp that is a combination of two different headlamp types chosen from a type F sealed beam headlamp, an integral beam headlamp, or a replaceable bulb headlamp.

Cracking means a separation of adjacent sections of a plastic material with penetration into the specimen.

Crazing means a network of apparent fine cracks on or beneath the surface of materials.

Cutoff means a generally horizontal, visual/optical aiming cue in the lower beam that marks a separation between areas of higher and lower luminance.

Daytime running lamps (DRLs) are steady burning lamps that are used to improve the conspicuity of a vehicle from the front and front sides when the regular headlamps are not required for driving.

Delamination means a separation of the layers of a material including coatings.

Design voltage means the voltage used for design purposes.

Direct reading indicator means a device that is mounted in its entirety on a headlamp or headlamp aiming or headlamp mounting equipment, is part of a VHAD, and provides information about headlamp aim in an analog or digital format.

Effective light-emitting surface means that portion of a lamp that directs light to the photometric test pattern, and does not include transparent lenses, mounting hole bosses, reflex reflector area, heads or rims that may glow or produce small areas of increased intensity as a result of uncontrolled light from an area of 1/2° radius around a test point.
Effective projected luminous lens area means the area of the orthogonal projection of the effective light-emitting surface of a lamp on a plane perpendicular to a defined direction relative to the axis of reference. Unless otherwise specified, the direction is coincident with the axis of reference.

Exposed means material used in lenses or optical devices exposed to direct sunlight as installed on the vehicle.

Filament means that part of the light source or light emitting element(s), such as a resistive element, the excited portion of a specific mixture of gases under pressure, or any part of other energy conversion sources, that generates radiant energy which can be seen.

Flash means a cycle of activation and deactivation of a lamp by automatic means continuing until stopped either automatically or manually.

Fully opened means the position of the headlamp concealment device in which the headlamp is in the design open operating position.

H-V axis means the line from the center of the principal filament of a lamp to the intersection of the horizontal (H) and vertical (V) lines of a photometric test screen.

Haze means the cloudy or turbid appearance of an otherwise transparent specimen caused by light scattered from within the specimen or from its surface.

Headlamp means a lighting device providing an upper and/or a lower beam used for providing illumination forward of the vehicle.

Headlamp concealment device means a device, with its operating system and components, that provides concealment of the headlamp when it is not in use, including a movable headlamp cover and a headlamp that displaces for concealment purposes.

Headlamp mechanical axis means the line formed by the intersection of a horizontal and a vertical plane through the light source parallel to the longitudinal axis of the vehicle. If the mechanical axis of the headlamp is not at the geometric center of the lens, then the location will be indicated by the manufacturer on the headlamp.

Headlamp test fixture means a device designed to support a headlamp or headlamp assembly in the test position specified in the laboratory tests and whose mounting hardware and components are those necessary to operate the headlamp as installed in a motor vehicle.

High-mounted stop lamp means a lamp mounted high and possibly forward of the tail, stop, and rear turn signal lamps intended to give a steady stop warning through intervening vehicles to operators of following vehicles.

Identification lamps are lamps used in groups of three, in a horizontal row, which show to the front or rear or both, having lamp centers spaced not less than [6 in] 15.2 mm nor more than [12 in] 30.4 mm apart, mounted on the permanent structure as near as practicable to the vertical centerline and the top of the vehicle to identify certain types of vehicles.

Integral beam headlamp means a headlamp (other than a standardized sealed beam headlamp designed to conform to paragraph S10.13 or a replaceable bulb headlamp designed to conform to paragraph S10.15) comprising an integral and indivisible optical assembly including lens, reflector, and light source, except that a headlamp conforming to paragraph S10.18.8 or paragraph S10.18.9 may have a lens designed to be replaceable.

License plate lamp means a lamp used to illuminate the license plate on the rear of a vehicle.

Lower beam means a beam intended to illuminate the road and its environs ahead of the vehicle when meeting or closely following another vehicle.

Material means the type and grade of plastics, composition, and manufacturer’s designation number and color.

Mechanically aimable headlamp means a headlamp having three pads on the lens, forming an aiming plane used for laboratory photometric testing and for adjusting and inspecting the aim of the headlamp when installed on the vehicle.

Motor driven cycle means every motorcycle, including every motor scooter, with a motor which produces not more than 5 horsepower, and every bicycle with motor attached.
Motorcycle or motor driven cycle headlamp means a major lighting device used to produce general illumination ahead of the vehicle.

Mounting ring means the adjustable ring upon which a sealed beam unit is mounted.

Mounting ring (type F sealed beam) means the adjustable ring upon which a sealed beam unit is mounted and which forces the sealed beam unit to seat against the aiming ring when assembled into a sealed beam assembly.

Multiple compartment lamp means a device which gives its indication by two or more separately lighted areas which are joined by one or more common parts, such as a housing or lens.

Multiple lamp arrangement means an array of two or more separate lamps on each side of the vehicle which operate together to give a signal.

Optically combined means a lamp having a single or two filament light source or two or more separate light sources that operate in different ways, and has its optically functional lens area wholly or partially common to two or more lamp functions.

Overall width means the nominal design dimension of the widest part of the vehicle, exclusive of signal lamps, marker lamps, outside rearview mirrors, flexible fender extensions, mud flaps, and outside door handles determined with doors and windows closed, and the wheels in the straight-ahead position. Running boards may also be excluded from the determination of overall width if they do not extend beyond the width as determined by the other items excluded by this definition.

Parking lamps are lamps on both the left and right of the vehicle which show to the front and are intended to mark the vehicle when parked or serve as a reserve front position indicating system in the event of headlamp failure.

Protected means material used in inner lenses for optical devices where such lenses are protected from exposure to the sun by an outer lens made of materials meeting the requirements for exposed plastics.

Rated voltage means the nominal circuit or vehicle electrical system voltage classification.

Reflex reflectors are devices used on vehicles to give an indication to approaching drivers using reflected light from the lamps of the approaching vehicle.

Remote reading indicator means a device that is not mounted in its entirety on a headlamp or headlamp aiming or headlamp mounting equipment, but otherwise meets the definition of a direct reading indicator.

Replaceable bulb headlamp means a headlamp comprising a bonded lens and reflector assembly and one or two replaceable light sources, except that a headlamp conforming to paragraph S10.18.8 or paragraph S10.18.9 may have a lens designed to be replaceable.

Replaceable light source means an assembly of a capsule, base, and terminals that is designed to conform to the requirements of appendix A or appendix B of 49 CFR part 564 Replaceable Light Source Information of this Chapter.

Retaining ring means the clamping ring that holds a sealed beam unit against a mounting ring.

Retaining ring (type F sealed beam) means the clamping ring that holds a sealed beam unit against a mounting ring, and that provides an interface between the unit’s aiming/seating pads and the headlamp aimer adapter (locating plate).

School bus signal lamps are alternately flashing lamps mounted horizontally both front and rear, intended to identify a vehicle as a school bus and to inform other users of the highway that such vehicle is stopped on the highway to take on or discharge school children.

Sealed beam headlamp means an integral and indivisible optical assembly including the light source with “SEALED BEAM” molded in the lens.

Sealed beam headlamp assembly means a major lighting assembly which includes one or more sealed beam units used to provide general illumination ahead of the vehicle.

Seasoning means the process of energizing the filament of a headlamp at design voltage for a period of time equal to 1% of design life, or other equivalent method.

Semiautomatic headlamp beam switching device is one which provides either automatic or manual control of beam switching at the option of the driver.
When the control is automatic the headlamps switch from the upper beam to the lower beam when illuminated by the headlamps on an approaching vehicle and switch back to the upper beam when the road ahead is dark. When the control is manual, the driver may obtain either beam manually regardless of the conditions ahead of the vehicle.

Side marker lamps are lamps which show to the side of the vehicle, mounted on the permanent structure of the vehicle as near as practicable to the front and rear edges to indicate the overall length of the vehicle. Additional lamps may also be mounted at intermediate locations on the sides of the vehicle.

Stop lamps are lamps giving a steady light to the rear of a vehicle to indicate a vehicle is stopping or diminishing speed by braking.

Taillamps are steady burning low intensity lamps used to designate the rear of a vehicle.

Test voltage means the specified voltage and tolerance to be used when conducting a test.

Turn signal lamps are the signaling element of a turn signal system which indicates the intention to turn or change direction by giving a flashing light on the side toward which the turn will be made.

Turn signal flasher means a device which causes a turn signal lamp to flash as long as it is turned on.

Turn signal operating unit means an operating unit that is part of a turn signal system by which the operator of a vehicle causes the signal units to function.

Upper beam means a beam intended primarily for distance illumination and for use when not meeting or closely following other vehicles.

Vehicle headlamp aiming device or VHAD means motor vehicle equipment, installed either on a vehicle or headlamp, which is used for determining the horizontal or vertical aim, or both the vertical and horizontal aim of the headlamp.

Vehicular hazard warning signal flasher means a device which, as long as it is turned on, causes all the required turn signal lamps to flash.

Vehicle headlamp aiming device or VHAD means motor vehicle equipment, installed either on a vehicle or headlamp, which is used for determining the horizontal or vertical aim, or both the vertical and horizontal aim of the headlamp.

Vehicular hazard warning signal operating unit means a driver controlled device which causes all required turn signal lamps to flash simultaneously to indicate to approaching drivers the presence of a vehicular hazard.

Visually/optically aimable headlamp means a headlamp which is designed to be visually/optically aimable in accordance with the requirements of paragraph S10.18.9 of this standard.

S5 References to SAE publications. Each required lamp, reflective device, and item of associated equipment must be designed to conform to the requirements of applicable SAE publications as referenced and subreferenced in this standard. The words “it is recommended that,” “recommendations,” or “should be” appearing in any SAE publication referenced or subreferenced in this standard must be read as setting forth mandatory requirements.

S5.1 Each required lamp, reflective device, and item of associated equipment must be designed to conform to the requirements of applicable SAE publications as referenced and subreferenced in this standard. The words “it is recommended that,” “recommendations,” or “should be” appearing in any SAE publication referenced or subreferenced in this standard must be read as setting forth mandatory requirements.

S5.2 Incorporation by reference. The Director of the Federal Register approves the incorporation by reference of the following material in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51. All material is available for inspection at the NHTSA Reading Room, 1200 New Jersey Avenue, SE., Washington, DC 20590, or at NARA. For information on the availability of this material at NARA, call 202–401–6030, or go to: http://www.archives.gov/federal_register/cod_of_federal_regulations/ibr_locations.html.

The material is also available at the publisher whose name and address follow the standard number:

2. Society of Automotive Engineers (SAE) Standard J941b, revised FEB

§571.108

S6.1 Required lamps, reflective devices, and associated equipment by vehicle type.

S6.1.1 Quantity. Except as provided in succeeding paragraphs of this S6.1.1 each vehicle must be equipped with at least the number of lamps, reflective devices, and items of associated equipment specified for that vehicle type and size in Table I and Section 6.6, designed to conform to the requirements of this standard. Multiple license plate lamps and backup lamps may be used to fulfill photometric requirements for those functions.

S6.1.1.1 Conspicuity systems. Each trailer of 2032 mm or more in overall width, and with a GVWR over 10,000 lbs., except a trailer designed exclusively for living or office use, and each truck tractor must be equipped with retroreflective sheeting, reflex reflectors, or a combination of retroreflective sheeting and reflex reflectors as specified in S8.2.

S6.1.1.2 High-mounted stop lamps. Each multipurpose passenger vehicle, truck, and bus required by this standard to be equipped with a high-mounted stop lamp, whose vertical centerline, when the vehicle is viewed from the rear, is not located on a fixed body panel but separates one or two moveable body sections, such as doors, which lacks sufficient space to install a single high-mounted stop lamp on the centerline above such body sections, must have two high-mounted stop lamps identical in size and shape.

S6.1.1.2.1 The two lamps must be located at the same height, with one vertical edge of each lamp on the vertical edge of the body section nearest the vehicle centerline.

S6.1.1.3 Truck tractor rear turn signal lamps. A truck tractor need not be equipped with turn signal lamps mounted on the rear if the turn signal lamps installed at or near the front are of double face construction and are located such that they meet the photometric requirements for double faced turn signal lamps specified in Footnote 6 of Table VII.

S6.1.1.3.1 The flashing signal from a double faced signal lamp must not be obliterated when subjected to external light rays from either in front or behind, at any and all angles.

S6.1.1.4 Daytime running lamps. Any pair of lamps on the front of a passenger car, multipurpose passenger vehicle, truck, or bus, whether or not required by this standard, other than parking lamps or fog lamps, may be wired to be automatically activated, as determined by the manufacturer of the vehicle, in a steady burning state as daytime running lamps (DRLs) in accordance with S7.10.5.

S6.1.2 Color. The color in all lamps and reflective devices to which this standard applies must be as specified in Table I. The color identified as amber is identical to the color identified as yellow.

S6.1.3 Mounting location.

S6.1.3.1 Each lamp, reflective device, and item of associated equipment must be securely mounted on a rigid part of the vehicle, other than glazing, that is not designed to be removed except for repair, within the mounting location and height limits as specified in Table I, and in a location where it complies with all applicable photometric requirements, effective projected luminous lens area requirements, and visibility requirements with all obstructions considered.

S6.1.3.2 When multiple lamp arrangements for rear turn signal lamps, stop lamps, or taillamps are used, with only a portion of the lamps installed on a fixed part of the vehicle, the lamp or lamps that are installed to the non-fixed part of the vehicle will be considered auxiliary lamps.

S6.1.3.3 License plate lamp. The license plate lamp or lamps installed on vehicles other than motorcycles and motor driven cycles must be mounted so as to illuminate the license plate without obstruction from any designed feature unless the lamp or lamps is (are) designed to comply with all the photometric requirements with these obstructions considered.

S6.1.3.4 High-mounted stop lamps.

S6.1.3.4.1 Interior mounting. A high-mounted stop lamp mounted inside the vehicle must have means provided to minimize reflections from the light of the lamp upon the rear window glazing that might be visible to the driver when viewed directly, or indirectly in the rearview mirror.
§ 571.108

S6.1.3.4.2 Accessibility. Each high-mounted stop lamp must provide access for convenient replacement of bulbs without special tools.

S6.1.3.5 Headlamp beam mounting.

S6.1.3.5.1 Vertical headlamp arrangement.

S6.1.3.5.1.1 Where multiple headlamps with single light sources are installed in a vertical orientation the lower beam must be provided by the uppermost headlamp.

S6.1.3.5.1.2 Where headlamps with two vertically oriented light sources are installed the lower beam must be provided by the uppermost light source or by all light sources.

S6.1.3.5.2 Horizontal headlamp arrangement.

S6.1.3.5.2.1 Where multiple headlamps with single light sources are installed in a horizontal orientation the lower beam must be provided by the most outboard headlamp.

S6.1.3.5.2.2 Where headlamps with two horizontally oriented light sources are installed the lower beam must be provided by the outboard light source or by all light sources.

S6.1.3.6 Auxiliary lamps mounted near identification lamps. Each auxiliary lamp must be located at least twice the distance from any required identification lamp as the distance between two adjacent required identification lamps.

S6.1.4 Mounting height. The mounting height of each lamp and reflective device must be measured from the center of the item, as mounted on the vehicle at curb weight, to the road surface.

S6.1.4.1 High-mounted stop lamps.

S6.1.4.1.1 A high-mounted stop lamp mounted below the rear window must have no lens portion lower than 153 mm [6 in] below the lower edge of the rear glazing on convertibles, or 77 mm [3 in] on other passenger cars.

S6.1.5 Activation. Each lamp must be activated as specified, in the combinations specified, and in response to the inputs specified in Table I and Table II.

S6.1.5.1 Hazard warning signal. In all passenger cars, multipurpose passenger vehicles, trucks, and buses, the activation of the vehicular hazard warning signal operating unit must cause to flash simultaneously sufficient turn signal lamps to meet, as a minimum, the turn signal photometric requirements of this standard.

S6.1.5.2 Simultaneous beam activation.

S6.1.5.2.1 On any vehicle to which this standard applies where the headlighting system is designed to conform to the photometric requirements of UB1 of Table XVIII and LB1M or LB1V of Table XIX—a, the lamps marked “L” or “LF” may remain permanently activated when the lamps marked “U” or “UF” are activated.

S6.1.5.2.2 On any vehicle to which this standard applies where an integral beam headlighting system is designed to conform to the photometric requirements of UB6 of Table XVIII and LB6M of Table XIX–b or LB4V of Table XIX–c, the lower beam headlamps must remain permanently activated when the upper beam headlamps are activated.

S6.1.5.2.3 On any vehicle to which this section applies where the headlighting system is designed to conform to the photometric requirements of UB2 of Table XVIII and LB2M or LB2V of Table XIX—a, a lower beam light source may remain permanently activated when an upper beam light source is activated if the lower beam light source contributes to the upper beam photometric compliance of the headlighting system.

S6.2 Impairment.

S6.2.1 No additional lamp, reflective device, or other motor vehicle equipment is permitted to be installed that impairs the effectiveness of lighting equipment required by this standard.

S6.2.2 If any required lamp or reflective device is obstructed by motor vehicle equipment (e.g., mirrors, snow plows, wrecker booms, backhoes, winches, etc.) including dealer installed equipment, and cannot meet the applicable photometry and visibility requirements, the vehicle must be equipped with an additional lamp or device of the same type which meet all applicable requirements of this standard, including photometry and visibility.

S6.2.3 Headlamp obstructions.

S6.2.3.1 When activated in the steady burning state, headlamps (excluding headlamps mounted on motorcycles) must not have any styling ornament or other feature, such as a
translucent cover or grill, in front of the lens
S6.2.3.2 Headlamp wipers may be used in front of the lens provided that the headlamp system is designed to conform with all applicable photometric requirements with the wiper stopped in any position in front of the lens.

S6.3 Equipment combinations. Two or more lamps, reflective devices, or items of associated equipment may be combined if the requirements for each lamp, reflective device, and item of associated equipment are met with the following exceptions:
S6.3.1 No high-mounted stop lamp is permitted to be combined with any other lamp or reflective device, other than with a cargo lamp.
S6.3.2 No high-mounted stop lamp is permitted to be optically combined with any cargo lamp.
S6.3.3 No clearance lamp is permitted to be optically combined with any taillamp.

S6.4 Lens area, visibility and school bus signal lamp aiming.
S6.4.1 Effective projected luminous lens area. Each turn signal lamp, stop lamp, high-mounted stop lamp, and school bus signal lamp must meet the applicable effective projected luminous lens area requirement specified in Tables IV–a, IV–b, and IV–c.
S6.4.2 Visibility. Each backup lamp, single or combination of dual high-mounted stop lamp(s), and school bus signal lamp must meet the applicable visibility requirement specified in Table V–a.
S6.4.3 Visibility options. A manufacturer must certify compliance of each lamp function to one of the following visibility requirement options, and it may not thereafter choose a different option for that vehicle:
(a) Lens area option. When a vehicle is equipped with any lamp listed in Table V–b each such lamp must provide not less than 1250 sq mm of unobstructed effective projected luminous lens area in any direction throughout the pattern defined by the corner points specified in Table V–b for each such lamp; or
(b) Luminous intensity option. When a vehicle is equipped with any lamp listed in Table V–c each such lamp must provide a luminous intensity of not less than that specified in Table V–c in any direction throughout the pattern defined by the corner points specified in Table V–c for each such lamp when measured in accordance with the photometry test requirements of this standard.

S6.4.4 Legacy visibility alternative. As an alternative to S6.4.3, each passenger car and motorcycle, and each multipurpose passenger vehicle, truck, trailer, and bus that is of less than 2032 mm overall width, that is manufactured on or before September 1, 2011, and each multipurpose passenger vehicle, truck, trailer, and bus that is of 2032 mm or more overall width, that is manufactured on or before September 1, 2014, must have each lamp located so that it meets the visibility requirements specified in Table V–d.

S6.4.5 School bus signal lamp aiming. Each school bus signal lamp must be mounted on the vehicle with its aiming plane vertical and normal to the vehicle longitudinal axis. Aim tolerance must be no more than 5 in vertically and 10 in horizontally at 25 ft from the lamp. If the lamps are aimed or inspected by use of SAE Recommended Practice J602–1963 (incorporated by reference, see §571.5), the graduation settings for aim must be 2° D and 0° sideways for aiming and the limits must be 3° U to 7° D and from 10° R to 10° L for inspection.

S6.5 Marking. A summary of the marking requirements of this standard and their location in the standard is contained in Table III.

S6.5.1 DOT marking. The lens of each original equipment and replacement headlamp, and of each original equipment and replacement beam contributor, and each replacement headlamp lens for an integral beam or replaceable bulb headlamp, must be marked with the symbol “DOT” either horizontally or vertically to indicate certification under 49 U.S.C. 30115.
S6.5.1.1 The DOT marking requirements for conspicuity materials are specified in S8.2 of this standard.
S6.5.1.2 Each original equipment or replacement lamp or reflective device specified in Table I, except for a headlamp, or an item of associated equipment specified in S9 may be marked with the symbol “DOT” which
§ 571.108

constitutes a certification that it conforms to the requirements of this standard.

S6.5.2 DRL marking. Each original equipment and replacement lamp used as a daytime running lamp (DRL), unless optically combined with a headlamp, must be permanently marked “DRL” on its lens in letters not less than 3 mm high.

S6.5.3 Headlamp markings.

S6.5.3.1 Trademark. The lens of each original and replacement equipment headlamp, and of each original and replacement equipment beam contributor must be marked with the name and/or trademark registered with the U.S. Patent and Trademark Office of the manufacturer of such headlamp or beam contributor, of its importer, or any manufacturer of a vehicle equipped with such headlamp or beam contributor. Nothing in this standard authorizes the marking of any such name and/or trademark by one who is not the owner, unless the owner has consented to it.

S6.5.3.2 Voltage and trade number. Each original and replacement equipment headlamp, and each original and replacement equipment beam contributor must be marked with its voltage and with its part or trade number.

S6.5.3.3 Sealed beam headlamp markings.

S6.5.3.3.1 Each sealed beam headlamp lens must be molded with “sealed beam” and the appropriate designation code as shown in Table II in characters no less than 6.35 mm in size.

S6.5.3.3.2 The face of any character molded on the surface of the lens must not be raised more than 0.5 mm above the lens surface.

S6.5.3.3.3 Type 1C1, 2C1, and 2D1 headlamps must have no raised markings on the outside surface of the lens between the diameters of 40 mm and 90 mm about the lens center.

S6.5.3.3.4 Type 1A1, 2A1, 2B1, and 2E1 headlamps must have no raised markings on the outside surface of the lens within a diameter of 70 mm about the lens center.

S6.5.3.3.5 Type LF, UF, 1G1, 2G1, and 2H1 headlamps must have no raised markings on the outside surface of the lens within a diameter of 35 mm about the lens center.

S6.5.3.6 A Type 1C1 replacement headlamp may be marked “1” rather than “1C1”. A Type 2C1 replacement headlamp may be marked “2” rather than “2C1”. A Type 2D1 replacement headlamp may be marked “TOP” or “2” rather than “2D1”.

S6.5.3.4 Replaceable bulb headlamp markings.

S6.5.3.4.1 The lens of each replaceable bulb headlamp must bear permanent marking in front of each replaceable light source with which it is equipped that states either: The HB Type, if the light source conforms to S11 of this standard for filament light sources, or the bulb marking/designation provided in compliance with Section VIII of appendix A of 49 CFR Part 564 (if the light source conforms to S11 of this standard for discharge light sources).

S6.5.3.4.1.1 No marking need be provided if the only replaceable light source in the headlamp is type HB1.

S6.5.3.5 Additional headlamp markings. Additional marking requirements for headlamps are found in, S10.14.4, S10.15.4, S10.17.2, S10.18.3, S10.18.7, and S10.18.9 of this standard.

S6.5.3.6 Each replacement headlamp lens must also be marked with the manufacturer and the part or trade number of the lens manufacturer or importer that is registered with the U.S. Patent and Trademark Office. Nothing in this standard authorizes the marking of any such name and/or trademark by one who is not the owner, unless the owner has consented to it.

S6.6 Associated equipment.

S6.6.1 All vehicles to which this standard applies, except trailers, must be equipped with a turn signal operating unit, a turn signal flasher, a turn signal pilot indicator, a headlamp beam switching device, and an upper beam headlamp indicator meeting the requirements of S9.

S6.6.2 All vehicles to which this standard applies except trailers and motorcycles must be equipped with a vehicular hazard warning operating unit, a vehicular hazard warning signal flasher, and a vehicular hazard warning signal flasher.
§ 571.108 49 CFR Ch. V (10–1–16 Edition)

signal pilot indicator meeting the requirements of S9.

S6.6.3 License plate holder. Each rear license plate holder must be designed and constructed to provide a substantial plane surface on which to mount the plate.

S6.6.3.1 For motor vehicles on which the license plate is designed to be mounted on the vehicle such that the upper edge of the license plate is 1.2 m or less from the ground, the plane of the license plate mounting surface and the plane on which the vehicle stands must be perpendicular within 30° upward (an installed plate will face above the horizon) and 15° downward (an installed plate will face below the horizon).

S6.6.3.2 For motor vehicles on which the license plate is designed to be mounted on the vehicle such that the upper edge of the license plate is more than 1.2m from the ground, the plane of the license plate mounting surface and the plane on which the vehicle stands must be perpendicular within ±15°.

S6.7 Replacement equipment.

S6.7.1 General.

S6.7.1.1 Each replacement lamp, reflective device, or item of associated equipment, including a combination lamp, must:

(a) Be designed to conform to meet all requirements specified in this standard for that type of lamp, reflective device, or other item of equipment (in the case of a combination lamp, it must meet these requirements for each function); and

(b) Include all of the functions of the lamp, reflective device, or item of associated equipment, including a combination lamp, it is designed to replace or is capable of replacing (other than functions not required by this standard).

S6.7.1.2 Each replacement lamp, reflective device, or item of associated equipment, including a combination lamp, which is designed or recommended for particular vehicle models must be designed so that it does not take the vehicle out of compliance with this standard when the individual device is installed on the vehicle. Except as provided in S6.7.1.3, the determination of whether a vehicle would be taken out of compliance with this standard when an individual device is installed on the vehicle is made without regard to whether additional devices, including separate lamps or reflective devices sold together with the device, would also be installed.

S6.7.1.3 In the case of a lamp or other device that is used on each side of the vehicle in pairs, the determination (for the purposes of S6.7.1.2) of whether a vehicle would be taken out of compliance with this standard when an individual device is installed on the vehicle is made assuming that the other matched paired device would be installed on the other side of the vehicle, whether or not the matched paired devices are sold together. This provision does not limit the responsibilities of manufacturers, distributors, dealers or motor vehicle repair businesses under 49 U.S.C. 30122, Making safety devices and elements inoperative.

S6.7.2 Version of this standard. The requirements of S6.7.1 must be met, at the option of the manufacturer, using either the current version of this standard or the standard in effect at the time of manufacture of the original equipment being replaced.

S7 Signal lamp requirements.

S7.1 Turn signal lamps.

S7.1.1 Front turn signal lamps.

S7.1.1.1 Number. See Tables I–a and I–c.

S7.1.1.2 Color of light. See Tables I–a and I–c.

S7.1.1.3 Mounting location. See Tables I–a and I–c.

S7.1.1.4 Mounting height. See Tables I–a and I–c.

S7.1.1.5 Activation. See Tables I–a and I–c.

S7.1.1.6 Effective projected luminous lens area. See Table IV–a.

S7.1.1.7 Visibility. See S6.4.

S7.1.1.8 Indicator. See S9.3.

S7.1.1.9 Markings. See S6.5.1.2.

S7.1.1.10 Spacing to other lamps.

S7.1.1.10.1 Each front turn signal lamp must also be designed to comply with any additional photometry requirements based on its installed spacing to other lamps as specified by this section. Where more than one spacing relationship exists for a turn signal lamp the requirement must be the one
that specifies the highest luminous intensity multiplier of Tables VI–a and VI–b.

S7.1.1.10.2 Spacing measurement for non-reflector lamps. For any front turn signal lamp that does not employ a reflector to meet photometric requirements, the spacing must be measured from the light source of the turn signal lamp to the lighted edge of any lower beam headlamp, or any lamp such as an auxiliary lower beam headlamp or fog lamp used to supplement the lower beam headlamp.

S7.1.1.10.3 Spacing measurement for lamps with reflectors. For any front turn signal lamp which employs a reflector, such as a parabolic reflector, to meet photometric requirements, the spacing must be measured from the geometric centroid of the turn signal lamp effective projected luminous lens area, to the lighted edge of any lower beam headlamp, or any lamp such as an auxiliary lower beam headlamp or fog lamp used to supplement the lower beam headlamp.

S7.1.1.10.4 Spacing based photometric multipliers.

(a) where the spacing measurement of S7.1.1.10.2 or S7.1.1.10.3 between a turn signal lamp and the lighted edge of any lower beam headlamp is less than 100 mm the photometric multiplier must be 2.5.

(b) where the spacing measurement of S7.1.1.10.2 or S7.1.1.10.3 between a turn signal lamp and the lighted edge of any lamp such as an auxiliary lower beam headlamp or fog lamp used to supplement the lower beam headlamp is at least 75 mm but less than 100 mm the photometric multiplier of Table VI must be 1.5.

(c) where the spacing measurement of S7.1.1.10.2 or S7.1.1.10.3 between a turn signal lamp and the lighted edge of any lamp such as an auxiliary lower beam headlamp or fog lamp used to supplement the lower beam headlamp is at least 60 mm but less than 75 mm the photometric multiplier must be 2.0.

(d) where the spacing measurement of S7.1.1.10.2 or S7.1.1.10.3 between a turn signal lamp and the lighted edge of any lamp such as an auxiliary lower beam headlamp or fog lamp used to supplement the lower beam headlamp is less than 60 mm the photometric multiplier must be 2.5.

S7.1.1.11 Multiple compartment lamps and multiple lamps.

S7.1.1.11.1 A multiple compartment lamp or multiple lamps may be used to meet the photometric requirements of a front turn signal lamp provided the requirements of S6.1.3.2 are met.

S7.1.1.11.2 If a multiple compartment lamp or multiple lamps are used on a passenger car or on a multipurpose passenger vehicle, truck, bus, or trailer of less than 2032 mm in overall width, and the distance between adjacent light sources does not exceed 560 mm for two compartment or lamp arrangements and does not exceed 410 mm for three compartments or lamp arrangements, then the combination of the compartments or lamps must be used to meet the photometric requirements for the corresponding number of lighted sections specified in Tables VI–a or VI–b.

S7.1.1.11.3 If the distance between adjacent light sources exceeds the previously stated dimensions, each compartment or lamp must comply with the photometric requirements for one lighted section specified in Tables VI–a or VI–b.

S7.1.1.11.4 Lamps installed on vehicles 2032 mm or more in overall width. Multiple compartment front turn signal lamps installed on multipurpose passenger vehicles, trucks, and buses 2032 mm or more in overall width require measurement of the photometrics for the entire lamp and not for individual compartments.

S7.1.1.12 Ratio to parking lamps and clearance lamps.

S7.1.1.12.1 When a parking lamp, or a clearance lamp on a multipurpose passenger vehicle, truck, trailer, or bus of 2032 mm or more in overall width, is combined with a front turn signal lamp, the luminous intensity of the front turn signal lamp at each identified test point must not be less than the luminous intensity of the parking lamp or clearance lamp at that same test point times the multiplier shown for that test point in Tables VI–a or VI–b.

S7.1.1.12.2 If a multiple compartment or multiple lamp arrangement is
used on a passenger car or on a multi-purpose passenger vehicle, truck, bus, or trailer of less than 2032 mm in overall width, and the distance between the optical axes for both the parking lamp and turn signal lamp is within 560 mm for two compartment or lamp arrangements or 410 mm for three compartment or lamp arrangements, then the ratio must be computed with all compartments or lamps lighted.

S7.1.1.12.3 If a multiple compartment or multiple lamp arrangement is used and the distance between optical axes for one of the functions exceeds 560 mm for two compartment or lamp arrangements or 410 mm for three compartments or lamp arrangements, then the ratio must be computed for only those compartments or lamps where the parking lamp and turn signal lamp are optically combined.

S7.1.1.12.4 Where the clearance lamp is combined with the turn signal lamp, and the maximum luminous intensity of the clearance lamp is located below horizontal and within an area generated by a 1.0 degree radius around a test point, the ratio for the test point may be computed using the lowest value of the clearance lamp luminous intensity within the generated area.

S7.1.1.13 Photometry.

S7.1.1.13.1 When tested according to the procedure of S14.2.1, each front turn signal lamp must be designed to conform to the base photometry requirements plus any applicable multipliers as shown in Tables VI-a and VI-b for the number of lamp compartments or individual lamps and the type of vehicle it is installed on.

S7.1.1.13.2 As an alternative to S7.1.1.13.1, a front turn signal lamp installed on a motorcycle may be designed to conform to the photometry requirements of Table XIII-a when tested according to the procedure of S14.2.1.

S7.1.1.14 Physical tests. Each front turn signal lamp must be designed to conform to the performance requirements of the vibration test, moisture test, dust test, and corrosion test of S14.5, and the color test and plastic optical material test of S14.4.

S7.1.2 Rear turn signal lamps.

S7.1.2.1 Number. See Tables I-a, I-b, and I-c.

S7.1.2.2 Color of light. See Tables I-a, I-b, and I-c.

S7.1.2.3 Mounting location. See Tables I-a, I-b, and I-c and S6.1.3.2.

S7.1.2.4 Mounting height. See Tables I-a, I-b, and I-c.

S7.1.2.5 Activation. See Tables I-a, I-b, and I-c.

S7.1.2.6 Effective projected luminous lens area. See Table IV-a.

S7.1.2.7 Visibility. See S6.4.

S7.1.2.8 Indicator. See S9.3.

S7.1.2.9 Markings. See S6.5.1.2.

S7.1.2.10 Spacing to other lamps. No requirement.

S7.1.2.11 Multiple compartments and multiple lamps.

S7.1.2.11.1 A multiple compartment lamp or multiple lamps may be used to meet the photometric requirements of a rear turn signal lamp provided the requirements of S6.1.3.2 are met.

S7.1.2.11.2 If a multiple compartment lamp or multiple lamps are used on a passenger car or on a multipurpose passenger vehicle, truck, bus, or trailer of less than 2032 mm in overall width, and the distance between adjacent light sources does not exceed 560 mm for two compartment or lamp arrangements and does not exceed 410 mm for three compartment or lamp arrangements, then the combination of the compartments or lamps must be used to meet the photometric requirements for the corresponding number of lighted sections specified in Table VII.

S7.1.2.11.3 If the distance between adjacent light sources exceeds the previously stated dimensions, each compartment or lamp must comply with the photometric requirements for one lighted section specified in Table VII.

S7.1.2.11.4 Lamps installed on vehicles 2032 mm or more in overall width. Multiple compartment rear turn signal lamps installed on multipurpose passenger vehicles, trucks, and buses 2032 mm or more in overall width require measurement of the photometrics for the entire lamp and not for individual compartments.

S7.1.2.12 Ratio to taillamps and clearance lamps.

S7.1.2.12.1 When a taillamp, or a clearance lamp on a multipurpose passenger vehicle, truck, trailer, or bus of 2032 mm or more in overall width, is combined with a rear turn signal lamp,
the luminous intensity of the rear turn signal lamp at each identified test point must not be less than the luminous intensity of the taillamp or clearance lamp at that same test point times the multiplier shown for that test point in Table VII.

§71.1.2.12.2 If a multiple compartment or multiple lamp arrangement is used on a passenger car or on a multipurpose passenger vehicle, truck, bus, or trailer of less than 2032 mm in overall width, and the distance between the optical axes for both the taillamp and turn signal lamp is within 560 mm for two compartment or lamp arrangement or 410 mm for three compartments or lamp arrangements, then the ratio must be computed with all compartments or lamps lighted.

§71.1.2.12.3 If a multiple compartment or multiple lamp arrangement is used and the distance between optical axes for one of the functions exceeds 560 mm for two compartment or lamp arrangements or 410 mm for three compartment or lamp arrangements, then the ratio must be computed for only those compartments or lamps where the taillamp and turn signal lamp are optically combined.

§71.1.2.12.4 Where the taillamp or clearance lamp is combined with the turn signal lamp, and the maximum luminous intensity of the taillamp or clearance lamp is located below horizontal and within an area generated by a 0.5 ° radius around a test point for a taillamp on a passenger car or on a multipurpose passenger vehicle, truck, bus, or trailer of less than 2032 mm in overall width, or by a 1.0 ° radius around a test point for a taillamp or clearance lamp on a vehicle 2032 mm or more in overall width, the ratio for the test point may be computed using the lowest value of the taillamp or clearance lamp luminous intensity within the generated area.

§71.1.2.13 Photometry.

§71.1.2.13.2 As an alternative to §71.1.2.13.1, a rear turn signal lamp installed on a motorcycle may be designed to conform to the photometry requirements of Table XIII-a when tested according to the procedure of §14.2.1.

§71.1.2.14 Physical tests. Each rear turn signal lamp must be designed to conform to the performance requirements of the vibration test, moisture test, dust test, and corrosion test of §14.5, and the color test and plastic optical material test of §14.4.

§7.1.3 Combined lamp bulb indexing.

§7.1.3.1 Each turn signal lamp optically combined with a taillamp or parking lamp, or clearance lamp where installed on a vehicle 2032 mm or more in overall width, where a two-filament bulb is used must have a bulb with an indexing base and a socket designed so that bulbs with non-indexing bases cannot be used.

§7.1.3.2 Removable sockets must have an indexing feature so that they cannot be re-inserted into lamp housings in random positions, unless the lamp will perform its intended function with random light source orientation.

§7.2 Taillamps.

§7.2.1 Number. See Tables I-a, I-b, and I-c.

§7.2.2 Color of light. See Tables I-a, I-b, and I-c.

§7.2.3 Mounting location. See Tables I-a, I-b, and I-c and §6.1.3.2.

§7.2.4 Mounting height. See Tables I-a, I-b, and I-c.

§7.2.5 Activation. See Tables I-a, I-b, and I-c.

§7.2.6 Effective projected luminous lens area. No requirement.

§7.2.7 Visibility. See §6.4.

§7.2.8 Indicator. No requirement.

§7.2.9 Markings. See §6.5.1.2.

§7.2.10 Spacing to other lamps. No requirement.

§7.2.11 Multiple compartments and multiple lamps.

§7.2.11.1 A multiple compartment lamp or multiple lamps may be used to meet the photometric requirements of a taillamp provided the requirements of §6.1.3.2 are met.

§7.2.11.2 If a multiple compartment lamp or multiple lamps are used and the distance between the optical axes

361
§ 571.108

does not exceed 560 mm for two compartment or lamp arrangements and does not exceed 410 mm for three compartment or lamp arrangements, then the combination of the compartments or lamps must be used to meet the photometric requirements for the corresponding number of lighted sections specified in Table VIII.

S7.2.11.3 If the distance between optical axes exceeds the previously stated dimensions, each compartment or lamp must comply with the photometric requirements for one lighted section specified in Table VIII.

S7.2.11.4 Taillamps installed on vehicles 2032 mm or more in overall width. A maximum of two taillamps and/or two compartments per side may be mounted closer together than 560 mm providing that each compartment and/or lamp meets the single lighted section photometric requirements specified in Table VIII. Each lamp and/or compartment utilized in this manner must meet the single lighted section requirements for all functions for which it is designed.

S7.2.12 Ratio. See S7.1.2.12 for rear turn signal lamps and S7.3.12 for stop lamps.

S7.2.13 Photometry. Each taillamp must be designed to conform to the photometry requirements of Table VIII, when tested according to the procedure of S14.2.1, for the number of lamp compartments or individual lamps and the type of vehicle it is installed on.

S7.2.14 Physical tests. Each taillamp must be designed to conform to the performance requirements of the vibration test, moisture test, dust test, and corrosion test of S14.5, and the color test and plastic optical material test of S14.4.

S7.3 Stop lamps.

S7.3.1 Number. See Tables I-a, I-b, and I-c.

S7.3.2 Color of light. See Tables I-a, I-b, and I-c.

S7.3.3 Mounting location. See Tables I-a, I-b, and I-c and S6.1.3.2.

S7.3.4 Mounting height. See Tables I-a, I-b, and I-c.

S7.3.5 Activation. See Tables I-a, I-b, and I-c.

S7.3.6 Effective projected luminous lens area. See Table IV-a.

S7.3.7 Visibility. See S6.4.

S7.3.8 Indicator. No requirement.

S7.3.9 Markings. See S6.5.1.2.

S7.3.10 Spacing to other lamps. No requirement.

S7.3.11 Multiple compartments and multiple lamps.

S7.3.11.1 A multiple compartment lamp or multiple lamps may be used to meet the photometric requirements of a stop lamp provided the requirements of S6.1.3.2 are met.

S7.3.11.2 If a multiple compartment lamp or multiple lamps are used on a passenger car or on a multipurpose passenger vehicle, truck, bus, or trailer of less than 2032 mm in overall width, and the distance between adjacent light sources does not exceed 560 mm for two compartment or lamp arrangements and does not exceed 410 mm for three compartment or lamp arrangements, then the combination of the compartments or lamps must be used to meet the photometric requirements for the corresponding number of lighted sections specified in Table IX.

S7.3.11.3 If the distance between adjacent light sources exceeds the previously stated dimensions, each compartment or lamp must comply with the photometric requirements for one lighted section specified in Table IX.

S7.3.11.4 Lamps installed on vehicles 2032 mm or more in overall width. Multiple compartment stop lamps installed on multipurpose passenger vehicles, trucks, and buses 2032 mm or more in overall width require measurement of the photometrics for the entire lamp and not for individual compartments.

S7.3.12 Ratio to taillamps.

S7.3.12.1 When a taillamp is combined with a stop lamp, the luminous intensity of the stop lamp at each identified test point must not be less than the luminous intensity of the taillamp at that same test point times the multiplier shown for that test point in Table IX.

S7.3.12.2 If a multiple compartment or multiple lamp arrangement is used on a passenger car or on a multipurpose passenger vehicle, truck, bus, or trailer of less than 2032 mm in overall width, and the distance between the optical axes for both the taillamp and stop lamp is within 560 mm for two compartment or lamp arrangements or
§ 571.108

410 mm for three compartment or lamp arrangements, then the ratio must be computed with all compartments or lamps lighted.

S7.3.12.3 If a multiple compartment or multiple lamp arrangement is used and the distance between optical axes for one of the functions exceeds 560 mm for two compartment or lamp arrangements or 410 mm for three compartments or lamp arrangements, then the ratio must be computed with all compartments or lamps lighted.

S7.3.12.4 Where the taillamp is combined with the stop lamp, and the maximum luminous intensity of the taillamp is located below horizontal and within an area generated by a 0.5 ° radius around a test point for a taillamp on a passenger car or on a multipurpose passenger vehicle, truck, bus, or trailer of less than 2032 mm in overall width, or by a 1.0 ° radius around a test point for a taillamp on a vehicle 2032 mm or more in overall width, the ratio for the test point may be computed using the lowest value of the taillamp luminous intensity within the generated area.

S7.3.13 Photometry.
S7.3.13.1 Each stop lamp must be designed to conform to the photometry requirements of Table IX, when tested according to the procedure of S14.2.1, for the number of lamp compartments or individual lamps and the type of vehicle it is installed on.

S7.3.13.2 A stop lamp installed on a motor driven cycle may be designed to conform to the photometry requirements of Table XIII-b when tested according to the procedure of S14.2.1.

S7.3.14 Physical tests. Each stop lamp must be designed to conform to the performance requirements of the vibration test, moisture test, dust test, and corrosion test of S14.5, and the color test and plastic optical material test of S14.4.

S7.3.15 Combined lamp bulb indexing.
S7.3.15.1 Each stop lamp optically combined with a taillamp where a two-filament bulb is used must have a bulb with an indexing base and a socket designed so that bulbs with non-indexing bases cannot be used.

S7.3.15.2 Removable sockets must have an indexing feature so that they cannot be re-inserted into lamp housings in random positions, unless the lamp will perform its intended function with random light source orientation.

S7.4 Side marker lamps.
S7.4.1 Number. See Tables I-a, I-b, and I-c.
S7.4.2 Color of light. See Tables I-a, I-b, and I-c.
S7.4.3 Mounting location. See Tables I-a, I-b, and I-c.
S7.4.4 Mounting height. See Tables I-a, I-b, and I-c.
S7.4.5 Activation. See Tables I-a, I-b, and I-c.
S7.4.6 Effective projected luminous lens area. No requirement.
S7.4.7 Visibility. No requirement.
S7.4.8 Indicator. No requirement.
S7.4.9 Markings. See S6.5.1.2.
S7.4.10 Spacing to other lamps. No requirement.
S7.4.11 Multiple compartments and multiple lamps. No requirement.
S7.4.12 Ratio. No requirement.
S7.4.13 Photometry.
S7.4.13.1 Each side marker lamp must be designed to conform to the photometry requirements of Table X, when tested according to the procedure of S14.2.1, for the lamp color as specified by this section.
S7.4.13.2 Inboard photometry. For each motor vehicle less than 30 feet in overall length, the minimum photometric intensity requirements for a side marker lamp may be met for all inboard test points at a distance of 15 feet from the vehicle and on a vertical plane that is perpendicular to the longitudinal axis of the vehicle and located midway between the front and rear side marker lamps.
S7.4.14 Physical tests. Each side marker lamp must be designed to conform to the performance requirements of the vibration test, moisture test, dust test, and corrosion test of S14.5, and the color test and plastic optical material test of S14.4.

S7.5 Clearance and identification lamps.
S7.5.1 Number. See Tables I-a and I-b.
S7.5.2 Color of light. See Tables I-a and I-b.
§ 571.108

S7.5.3 Mounting location. See Tables I–a and I–b.
S7.5.4 Mounting height. See Tables I–a and I–b.
S7.5.5 Activation. See Tables I–a and I–b.
S7.5.6 Effective projected luminous lens area. No requirement.
S7.5.7 Visibility. No requirement.
S7.5.8 Indicator. No requirement.
S7.5.9 Markings. See S6.5.1.2.
S7.5.10 Spacing to other lamps. No requirement.
S7.5.11 Multiple compartments and multiple lamps. No requirement.
S7.5.12 Ratio.
S7.5.12.1 Clearance lamps. See S7.1.1.12 for front turn signal lamps and S7.1.2.12 for rear turn signal lamps.
S7.5.12.2 Identification lamps. No requirement.
S7.5.13 Photometry. Each clearance or identification lamp must be designed to conform to the photometry requirements of Table XI, for the applicable lamp color, when tested according to the procedure of S14.2.1.
S7.5.14 Physical tests. Each clearance lamp must be designed to conform to the performance requirements of the vibration test, moisture test, dust test, and corrosion test of S14.5, and the color test and plastic optical material test of S14.4.

S7.6 Backup lamps.
S7.6.1 Number. See Table I–a and S6.1.1.
S7.6.2 Color of light. See Tables I–a, I–b, and I–c.
S7.6.3 Mounting location. See Table I–a.
S7.6.4 Mounting height. No requirement.
S7.6.5 Activation. See Table I–a.
S7.6.6 Effective projected luminous lens area. No requirement.
S7.6.7 Visibility. See Table V–a.
S7.6.8 Indicator. No requirement.
S7.6.9 Markings. See S6.5.1.2.
S7.6.10 Spacing to other lamps. No requirement.
S7.6.11 Multiple compartments and multiple lamps. No requirement.
S7.6.12 Ratio. No requirement.

S7.6.13 Photometry. Each backup lamp must be designed to conform to the photometry requirements of Table XII, when tested according to the procedure of S14.2.1, as specified by this section.
S7.6.14 Physical tests. Each backup lamp must be designed to conform to the performance requirements of the vibration test, moisture test, dust test, and corrosion test of S14.5, and the color test and plastic optical material test of S14.4.
S7.7 License plate lamps.
S7.7.1 Number. See Tables I–a, I–b, and I–c.
S7.7.2 Color of light. See Tables I–a, I–b, and I–c.
S7.7.3 Mounting location. See Tables I–a, I–b, and I–c.
S7.7.4 Mounting height. No requirement.
S7.7.5 Activation. See Tables I–a, I–b, and I–c.
S7.7.6 Effective projected luminous lens area. No requirement.
S7.7.7 Visibility. No requirement.
S7.7.8 Indicator. No requirement.
S7.7.9 Markings. See S6.5.1.2.
S7.7.10 Spacing to other lamps. No requirement.
S7.7.11 Multiple compartments and multiple lamps. No requirement.
S7.7.12 Ratio. No requirement.
S7.7.13 Photometry.
S7.7.13.1 Each license plate lamp must be designed to conform to the photometry requirements of this section when tested according to the procedure of S14.2.2.
S7.7.13.2 An illumination value of no less than 8 lx [0.75 fc] must be met at each test station target location shown in Figure 19.
S7.7.13.3 The ratio of the average of the two highest illumination values divided by the average of the two lowest illumination values must not exceed 20:1 for vehicles other than motorcycles and motor driven cycles.
S7.7.13.4 The ratio of the highest illumination value divided by the average of the two lowest illumination values must not exceed 15:1 for motorcycles and motor driven cycles.
S7.7.14 Physical tests. Each license plate lamp must be designed to conform to the performance requirements of the vibration test, moisture test,
§ 571.108

Installation.
S7.7.15.1 Each license plate lamp installed on a vehicle other than a motorcycle or motor driven cycle must be of such size and design as to provide illumination on all parts of a 150 mm by 300 mm test plate.

S7.7.15.2 Each license plate lamp installed on a motorcycle or motor driven cycle must be of such size and design as to provide illumination on all parts of a 100 mm by 175 mm test plate.

S7.7.15.3 The light rays must reach all portions of an imaginary plate of the same size at least 25 mm ahead of the actual plate measured perpendicular to the plane of the plate.

S7.7.15.4 Incident light from single lamp. When a single lamp as shown in Figure 20 is used to illuminate the license plate, the lamp and license plate holder must bear such relation to each other that at no point on the plate must the incident light make an angle of less than 8° to the plane of the plate, this angle being measured from the edge of the light emitting surface of the lamp farthest from the surface of the plate.

S7.7.15.5 Incident light from multiple lamps. When two or more lamps as shown in Figure 20 are used to illuminate the license plate, the particular lamp is designed to illuminate. The angle must be measured in the same manner as S7.7.15.4.

Parking lamps.
S7.8.1 Number. See Table I–a.
S7.8.2 Color of light. See Table I–a.
S7.8.3 Mounting location. See Table I–a.
S7.8.4 Mounting height. See Table I–a.
S7.8.5 Activation. See Table I–a.
S7.8.6 Effective projected luminous lens area. No requirement.
S7.8.7 Visibility. See S6.4.
S7.8.8 Indicator. No requirement.
S7.8.9 Markings. See S6.5.1.2.
S7.8.10 Spacing to other lamps. No requirement.
S7.8.11 Multiple compartments and multiple lamps. No requirement.

Photometry.
S7.8.12 Ratio. See S7.1.1.12 for front turn signal lamps.
S7.8.13 Photometry. Each parking lamp must be designed to conform to the photometry requirements of Table XIV, when tested according to the procedure of S14.2.1, as specified by this section.

Physical tests.
S7.8.14 Physical tests. Each parking lamp must be designed to conform to the performance requirements of the vibration test, moisture test, dust test, and corrosion test of S14.5, and the color test and plastic optical material test of S14.4.

High-mounted stop lamps.
S7.9.1 Number. See Table I–a and S6.1.1.2.
S7.9.2 Color of light. See Table I–a.
S7.9.3 Mounting location. See Table I–a.
S7.9.4 Mounting height. See Table I–a and S6.1.4.1.
S7.9.5 Activation. See Table I–a.
S7.9.6 Effective projected luminous lens area. See Table IV–b.
S7.9.7 Visibility. See Table V–a.
S7.9.8 Indicator. No requirement.
S7.9.9 Markings. See S6.5.1.2.
S7.9.10 Spacing to other lamps. No requirement.
S7.9.11 Multiple compartments and multiple lamps. No requirement.
S7.9.12 Ratio. No requirement.
S7.9.13 Photometry. Each high-mounted stop lamp must be designed to conform to the photometry requirements of Table XV, when tested according to the procedure of S14.2.1, as specified by this section.
S7.9.14 Physical tests.
S7.9.14.1 Each high-mounted stop lamp must be designed to conform to the performance requirements of the vibration test of S14.5, and the color test and plastic optical material test of S14.4.
S7.9.14.2 Each high-mounted stop lamp that is not mounted inside the vehicle must be designed to conform to the performance requirements of the moisture test, dust test, and corrosion test of S14.5.

Daytime running lamps (DRLs).
S7.10.1 Number. See Table I–a.
S7.10.2 Color of light. See Table I–a.
S7.10.3 Mounting location. See Table I–a.
§ 571.108

S7.10.4 Mounting height. See Table I–a. and S7.10.13(b).
S7.10.5 Activation. See Table I–a. and S7.10.10.1(c).
S7.10.6 Effective projected luminous lens area. No requirement.
S7.10.7 Visibility. No requirement.
S7.10.8 Indicator. No requirement.
S7.10.9 Markings. See S6.5.
S7.10.10 Spacing to other lamps.
S7.10.10.1 Spacing to turn signal lamps. Each DRL not optically combined with a turn signal lamp must be located on the vehicle so that the distance from its lighted edge to the optical center of the nearest turn signal lamp is not less than 100 mm unless,
(a) The luminous intensity of the DRL is not more than 2,600 cd at any location in the beam and the turn signal lamp meets 2.5 times the base front turn signal photometric requirements, or
(b) The DRL is optically combined with a lower beam headlamp and the turn signal lamp meets 2.5 times the base front turn signal photometric requirements, or
(c) The DRL is deactivated when the turn signal or hazard warning signal lamp is activated.
S7.10.11 Multiple compartments and multiple lamps. No requirement.
S7.10.12 Ratio. No requirement.
S7.10.13 Photometry. Each DRL must have a luminous intensity not less than 500 cd at test point H–V, nor more than 3,000 cd at any location in the beam when tested according to the procedure of S14.2.4 as specified by this section, unless it is:
(a) A lower beam headlamp intended to operate as a DRL at full voltage, or a voltage lower than used to operate it as a lower beam headlamp, or
(b) An upper beam headlamp intended to operate as a DRL, whose luminous intensity at test point H–V is not more than 7,000 cd, and whose mounting height is not higher than 864 mm.
S7.10.14 Physical tests. Each DRL that is not combined with another required lamp must be designed to conform to the performance requirements of the color test and plastic optical material test of S14.4.
S7.11 School bus signal lamps.
S7.11.1 Number. See Table I–a.
S7.11.2 Color of light. See Table I–a.
S7.11.3 Mounting location. See Table I–a.
S7.11.4 Mounting height. See Table I–a.
S7.11.5 Activation. See Table I–a.
S7.11.6 Effective projected luminous lens area. See Table IV–c.
S7.11.7 Visibility. See Table V–a.
S7.11.8 Indicator. No requirement.
S7.11.9 Markings. See S6.5.1.2.
S7.11.10 Spacing to other lamps. No requirement.
S7.11.11 Multiple compartments and multiple lamps. No requirement.
S7.11.12 Ratio. No requirement.
S7.11.13 Photometry. Each school bus signal lamp must be designed to conform to the photometry requirements of Table XVII, when tested according to the procedure of S14.2.1, for the lamp color as specified by this section.
S7.11.14 Physical tests. Each school bus signal lamp must be designed to conform to the performance requirements of the vibration test, moisture test, dust test, and corrosion test of S14.5, and the color test and plastic optical material test of S14.4.
S8 Reflective device requirements.
S8.1 Reflex reflectors.
S8.1.1 Number. See Tables I–a, I–b, and I–c.
S8.1.2 Color. See Tables I–a, I–b, and I–c.
S8.1.3 Mounting location. See Tables I–a, I–b, and I–c.
S8.1.5 Activation. No requirement.
S8.1.6 Effective projected luminous lens area. No requirement.
S8.1.7 Visibility. No requirement.
S8.1.8 Indicator. No requirement.
S8.1.9 Markings. See S6.5.1.2.
S8.1.10 Spacing to other lamps or reflective devices. No requirement.
S8.1.11 Photometry. Each reflex reflector must be designed to conform to the photometry requirements of Table XVI–a when tested according to the procedure of S14.2.3 for the reflex reflector color as specified by this section.
S8.1.12 Physical tests. Each reflex reflector must be designed to conform to the performance requirements of the vibration test, moisture test, dust test, and corrosion test of S14.5, and the
color test and plastic optical material test of S14.4.

S8.1.1P3 Alternative side reflex reflector material. Reflective material conforming to GSA Federal Specification L–S–300 (incorporated by reference, see §571.5), may be used for side reflex reflectors if this material as used on the vehicle, meets the performance requirements of Table XVI–a.

S8.2 Conspicuity systems. The requirement for conspicuity systems may be met with retroreflective sheeting, conspicuity reflex reflectors, or a combination of retroreflective sheeting and conspicuity reflex reflectors.

S8.2.1 Retroreflective sheeting.

S8.2.1.1 Retroreflective sheeting must consist of a smooth, flat, transparent exterior film with retroreflective elements embedded or suspended beneath the film so as to form a non-exposed retroreflective optical system.

S8.2.1.2 Retroreflective sheeting material. Retroreflective sheeting must meet the requirements, except photometry, of ASTM D 4956–90 (incorporated by reference, see §571.5) for Type V Sheetling. Sheetling of Grade DOT–C2 of no less than 50 mm wide, Grade DOT–C3 of no less than 75 mm wide, or Grade DOT–C4 of no less than 100 mm wide may be used.

S8.2.1.3 Certification marking. The letters DOT–C2, DOT–C3, or DOT–C4, as appropriate, constituting a certification that the retroreflective sheeting conforms to the requirements of this standard, must appear at least once on the exposed surface of each white or red segment of retroreflective sheeting, and at least once every 300 mm on retroreflective sheeting that is white only. The characters must be not less than 3 mm high, and must be permanently stamped, etched, molded, or printed in indelible ink.

S8.2.1.4 Application pattern.

S8.2.1.4.1 Alternating red and white materials.

S8.2.1.4.1.1 As shown in Figures 12–1 and 12–2, where alternating material is installed, except for a segment that is trimmed to clear obstructions, or lengthened to provide red sheeting near red lamps, alternating material must be installed with each white and red segment having a length of 300 ±150 mm.

S8.2.1.4.1.2 Neither white nor red sheeting must represent more than two thirds the aggregate of any continuous strip marking the width of a trailer, or any continuous or broken strip marking its length.

S8.2.1.5 Application location. Conspicuity systems need not be installed, as illustrated in Figure 12–2, on discontinuous surfaces such as outside ribs, stake post pickets on platform trailers, and external protruding beams, or to items of equipment such as door hinges and lamp bodies on trailers and body joints, stiffening beads, drip rails, and rolled surfaces on truck tractors.

S8.2.1.6 Application spacing. As illustrated in Figure 12–2, the edge of any white sheeting must not be located closer than 75 mm to the edge of the luminous lens area of any red or amber lamp that is required by this standard. The edge of any red sheeting must not be located closer than 75 mm to the edge of the luminous lens area of any amber lamp that is required by this standard.

S8.2.1.7 Photometry. Each retroreflective sheeting must be designed to conform to the photometry requirements of Table XVI–c when tested according to the procedure of S14.2.3 for the color and grade as specified by this section.

S8.2.2 Conspicuity reflex reflectors.

S8.2.2.1 Certification marking. The exposed surface of each conspicuity reflex reflector must be marked with the letters DOT–C which constitutes a certification that the reflector conforms to the conspicuity reflex reflector requirements of this standard. The certification must be not less than 3 mm high, and must be permanently stamped, etched, molded, or printed in indelible ink.

S8.2.2.2 Application pattern.

S8.2.2.2.1 Alternating red and white materials. Conspicuity reflex reflectors must be installed in a repetitive pattern of two or three white reflectors alternating with two or three red reflectors, with the center of each reflector not more than 100 mm from the center of each adjacent reflector.
§ 571.108 49 CFR Ch. V (10–1–16 Edition)

S8.2.2.2 White material. White conspicuity reflex reflectors must be installed with the center of each reflector not more than 100 mm from the center of each adjacent reflector.

S8.2.2.3 Photometry.

S8.2.2.3.1 Each red conspicuity reflex reflector must be designed to conform to the photometry requirements of Table XVI—a for a red reflex reflector and Table XVI—b for a red conspicuity reflex reflector when tested according to the procedure of S14.2.3 as specified by this section.

S8.2.2.3.2 Each white conspicuity reflex reflector installed in only a horizontal orientation must be designed to conform to the photometry requirements of Table XVI—a for a white reflex reflector and Table XVI—b for a white horizontal conspicuity reflex reflector when tested according to the procedure of S14.2.3 as specified by this section.

S8.2.3 Conspicuity system installation on trailers.

S8.2.3.1 Trailer rear.

S8.2.3.1.1 Element 1—alternating red and white materials. As shown in Figure 11, a strip of sheeting or conspicuity reflex reflectors, as horizontal as practicable, must be applied across the full width of the trailer, as close to the extreme edges as practicable, and as close as practicable to not less than 375 mm and not more than 1525 mm above the road surface at the strip centerline with the trailer at curb weight.

S8.2.3.1.2 Element 2—white. (not required for container chassis or for platform trailers without bulkheads).

S8.2.3.1.2.1 As shown in Figure 11, two pairs of strips of sheeting or conspicuity reflex reflectors, each pair consisting of strips 300 mm long of Grade DOT–C2, DOT–C3, or DOT–C4, must be applied horizontally and vertically to the right and left upper contours of the body, as viewed from the rear, as close to the top of the trailer and as far apart as practicable.

S8.2.3.1.2.2 If the perimeter of the body, as viewed from the rear, is other than rectangular, the strips may be applied along the perimeter, as close as practicable to the uppermost and outermost areas of the rear of the body on the left and right sides.

S8.2.3.1.3 Element 3—alternating red and white materials. (not required for trailers without underride protection devices).

S8.2.3.1.3.1 As shown in Figure 11, a strip of Grade DOT–C2 sheeting no less than 38 mm wide or reflectors must be applied across the full width of the horizontal member of the rear underride protection device.

S8.2.3.2 Trailer side—alternating red and white materials.

S8.2.3.2.1 As shown in Figure 11, a strip of sheeting or conspicuity reflex reflectors must be applied to each side, as horizontal as practicable, originating and terminating as close to the front and rear as practicable, as close as practicable to not less than 375 mm and not more than 1525 mm above the road surface at the strip centerline at curb weight, except that at the location chosen the strip must not be obscured in whole or in part by other motor vehicle equipment or trailer cargo.

S8.2.3.2.2 The strip need not be continuous as long as not less than half the length of the trailer is covered and the spaces are distributed as evenly as practicable.

S8.2.3.2.3 If necessary to clear rivet heads or other similar obstructions, Grade DOT–C2 sheeting may be separated into two 25 mm wide strips of the same length and color, separated by a space of not more than 25 mm and used in place of the retroreflective sheeting that would otherwise be applied.

S8.2.4 Conspicuity system installation on truck tractors.

S8.2.4.1 Element 1—alternating red and white materials. As shown in Figure 13, two strips of sheeting or conspicuity reflex reflectors, each not less than 600 mm long, located as close as practicable to the edges of the rear fenders, mudflaps, or the mudflap support brackets, must be applied to mark the width of the truck tractor.
§ 571.108

S8.2.4.1.1 The strips must be mounted as horizontal as practicable, in a vertical plane facing the rear, on the rear fenders, on the mudflap support brackets, on plates attached to the mudflap support brackets, or on the mudflaps.

S8.2.4.1.2 Strips on mudflaps must be mounted not lower than 300 mm below the upper horizontal edge of the mudflap. If the vehicle is certified with temporary mudflap support brackets, the strips must be mounted on the mudflaps or on plates transferable to permanent mudflap support brackets.

S8.2.4.1.3 For a truck tractor without mudflaps, the strips may be mounted outboard of the frame on brackets behind the rear axle or on brackets ahead of the rear axle and above the top of the rear tires at unladen vehicle height, or they may be mounted directly or indirectly to the back of the cab as close to the outer edges as practicable, above the top of the tires, and not more than 1525 mm above the road surface at unladen vehicle height.

S8.2.4.1.4 If the strips are mounted on the back of the cab, no more than 25% of their cumulative area may be obscured by vehicle equipment as determined in a rear orthogonal view.

S8.2.4.2 Element 2—white. As shown in Figure 13, two pairs of strips of sheeting or conspicuity reflex reflectors, each pair consisting of strips 300 mm long, must be applied horizontally and vertically as practicable to the right and left upper contours of the cab, as close to the top of the cab and as far apart as practicable.

S8.2.4.2.1 No more than 25% of their cumulative area may be obscured by vehicle equipment as determined in a rear orthogonal view.

S8.2.4.2.2 If one pair must be relocated to avoid obscuration by vehicle equipment, the other pair may be relocated in order to be mounted symmetrically.

S8.2.4.2.3 If the rear window is so large as to occupy all the practicable space, the material may be attached to the edge of the window itself.

S9 Associated equipment requirements.

S9.1 Turn signal operating unit.

S9.1.1 The turn signal operating unit installed on passenger cars, multi-purpose passenger vehicles, trucks, and buses less than 2032 mm in overall width must be self-canceling by steering wheel rotation and capable of cancellation by a manually operated control.

S9.1.2 Physical tests. Each turn signal operating unit must be designed to conform to all applicable performance requirements of §149.

S9.2 Turn signal flasher.

S9.2.1 The means of producing the turn signal pilot indicator signal may be incorporated in the flasher. A means of producing an audible signal may be incorporated in the flasher.

S9.2.2 Physical tests. Each turn signal flasher must be designed to conform to all applicable performance requirements of §149.

S9.3 Turn signal pilot indicator.

S9.3.1 Each vehicle equipped with a turn signal operating unit where any turn signal lamp is not visible to the driver must also have an illuminated pilot indicator to provide a clear and unmistakable indication that the turn signal system is activated.

S9.3.2 The indicator must consist of one or more lights flashing at the same frequency as the turn signal lamps.

S9.3.3 The indicator must function satisfactorily under all test conditions imposed on the turn signal flasher in §149.

S9.3.4 Indicator size and color.

S9.3.4.1 If the indicator is located inside the vehicle it must emit a green colored light and have a minimum area equivalent to a \(\frac{3}{16}\) in diameter circle.

S9.3.4.2 If the indicator is located outside of the vehicle it must emit a yellow light and have a minimum projected illuminated area of 0.1 sq in.

S9.3.5 The minimum required illuminated area of the indicator must be visible to any tangent on the 95th eyellipse as defined in SAE Recommended Practice J941b (1969) (incorporated by reference, see §571.5), with the steering wheel turned to a straight ahead driving position and in the design location for an adjustable wheel or column.

S9.3.6 Turn signal lamp failure. Failure of one or more turn signal lamps such that the minimum photometric performance specified in Tables VI or VII is not being met must be indicated by the turn signal pilot indicator by a
§ 571.108

“steady on”, “steady off”, or by a significant change in the flashing rate, except when a variable-load turn signal flasher is used on a multipurpose passenger vehicle, truck, or bus 2032 mm or more in overall width, on a truck that is capable of accommodating a slide in camper, or on any vehicle equipped to tow trailers.

89.4 Headlamp beam switching device. Each vehicle must have a means of switching between lower and upper beams designed and located so that it may be operated conveniently by a simple movement of the driver’s hand or foot. The switch must have no dead point and, except as provided by S6.1.5.2, the lower and upper beams must not be energized simultaneously except momentarily for temporary signaling purposes or during switching between beams.

89.4.1 Semi-automatic headlamp beam switching device. As an alternative to S9.4, a vehicle may be equipped with a semi-automatic means of switching between lower and upper beams.

89.4.1.1 Operating instructions. Each semi-automatic headlamp switching device must include operating instructions to permit a driver to operate the device correctly including; how to turn the automatic control on and off, how to adjust the provided sensitivity control, and any other specific instructions applicable to the particular device.

89.4.1.2 Manual override. The device must include a means convenient to the driver for switching to the opposite beam from the one provided.

89.4.1.3 Fail safe operation. A failure of the automatic control portion of the device must not result in the loss of manual operation of both upper and lower beams.

89.4.1.4 Automatic dimming indicator. There must be a convenient means of informing the driver when the device is controlling the headlamps automatically. The device shall not affect the function of the upper beam indicator light.

89.4.1.5 Lens accessibility. The device lens must be accessible for cleaning when the device is installed on a vehicle.

89.4.1.6 Mounting height. The center of the device lens must be mounted no less than 24 in. above the road surface.

89.4.1.7 Physical tests. Each semi-automatic headlamp beam switching device must be designed to conform to all applicable performance requirements of S14.9.

89.5 Upper beam headlamp indicator. Each vehicle must have a means for indicating to the driver when the upper beams of the headlighting system are activated.

89.5.1 Indicator size and location. The upper beam headlamp indicator must have a minimum area equivalent to that of a ⅜ in diameter circle, and be plainly visible to drivers of all heights under normal driving conditions when headlamps are required.

89.6 Vehicular hazard warning signal operating unit.

89.6.1 The unit may be an independent device or it may be combined with the turn signal operating unit. If combined with the turn signal operating unit, the actuating motion of the hazard function must differ from the actuating motion of the turn signal function.

89.6.2 Operating unit switch. The unit must operate independently of the ignition or equivalent switch. If the actuation of the hazard function requires the operation of more than one switch, a means must be provided for actuating all switches simultaneously by a single driver action.

89.6.3 Physical tests. Each vehicular hazard warning signal operating unit must be designed to conform to all applicable performance requirements of S14.9.

89.7 Vehicular hazard warning signal flasher.

89.7.1 The means of producing the hazard warning signal pilot indicator signal may be incorporated in the flasher. A means of producing an audible signal may be incorporated in the flasher.

89.7.2 Physical tests. Each vehicular hazard warning signal flasher must be designed to conform to all applicable performance requirements of S14.9.

89.8 Vehicular hazard warning signal pilot indicator.

89.8.1 In vehicles equipped with right hand and left hand turn signal
pilot indicators, both pilot indicators and/or a separate pilot indicator must flash simultaneously while the vehicle hazard warning signal operating unit is turned on.

§9.8.2 In vehicles equipped with a single turn signal pilot indicator, a separate vehicular hazard warning signal pilot indicator must flash and the turn signal pilot indicator may flash while the vehicle hazard warning signal operating unit is turned on.

§9.8.3 The indicator must function satisfactorily under all test conditions imposed on the vehicular hazard warning signal flasher in §14.9.

§9.8.4 Indicator size and color. If the vehicular hazard warning signal pilot indicator is not combined with the turn signal pilot indicator, it must emit a red color and have a minimum area equivalent to a 0.5 in diameter circle.

§10 Headlighting system requirements.

§10.1 Vehicle headlighting systems.

§10.1.1 Each passenger car, multipurpose passenger vehicle, truck and bus must be equipped with a headlighting system conforming to the requirements of Table II and this standard.

§10.2 [Reserved]

§10.3 Number. See Tables I–a and I–c.

§10.4 Color of light. See Tables I–a and I–c.

§10.5 Mounting location. See Tables I–a and I–c and §6.1.3.5.

§10.6 Mounting height. See Tables I–a and I–c.

§10.7 Activation. See Tables I–a and I–c, Table II, and §6.1.5.

§10.8 Effective projected luminous lens area. No requirement.

§10.9 Visibility. No requirement.

§10.10 Indicator. See §9.5.

§10.11 Markings. See §6.5.

§10.12 Spacing to other lamps. See §6.1.3.5.

§10.13 Sealed beam headlighting systems. All sealed beam headlighting systems must be of a type designated in Table II–a. Each sealed beam headlighting system must be designed to conform to the specifications furnished with respect to it pursuant to Appendix C of part 564 of this chapter and Table II–a of this standard. The dimensions applicable to the design of a specific type are those identified with an “I” for interchangeability specified on the applicable drawing(s) filed in Docket No. NHTSA 98–3397.

§10.13.1 Installation. A sealed beam headlighting system must consist of the correct number of designated headlamp units as specified for the applicable system in Table II–a. The units must have their beams activated as specified in Table II–a. A system must provide in total not more than two upper beams and two lower beams.

§10.13.2 Simultaneous aim. Type F sealed beam headlamps may be mounted on common or parallel seating and aiming planes to permit simultaneous aiming of both headlamps provided that there is no provision for adjustment between the common or parallel aiming and seating planes of the two lamps. When tested with any conforming Type UF and LF headlamps in accordance with §14.2.5, the assembly (consisting of the Type UF and LF headlamps, mounting rings, the aiming/seating rings, and aim adjustment mechanism) must be designed to conform to the applicable photometric requirements.

§10.13.3 Photometry. Each sealed beam headlamp must be designed to conform to the photometry requirements of Table XVIII for upper beam and Table XIX for lower beam as specified in Table II–a for the specific headlamp unit and aiming method, when tested according to the procedure of §14.2.5.

§10.13.4 Physical tests.

§10.13.4.1 Each sealed beam headlamp must be designed to conform to the performance requirements of the corrosion test, vibration test, inward force test (for lamps which are externally aimed only), torque deflection test (for lamps which are externally aimed only), headlamp connector test, headlamp wattage test, and aiming adjustment tests of §14.6.

§10.13.4.2 Each sealed beam headlamp except a Type G or Type H must be designed to conform to the performance requirements of the retaining ring test of §14.6.
§571.108 49 CFR Ch. V (10–1–16 Edition)

to the performance requirements of the color test of S14.4. Each sealed beam headlamp that does not incorporate a glass lens must be designed to conform to the plastic optical materials test of S14.4.

S10.14 Integral beam headlighting systems. All integral beam headlighting systems must be of a type designated in Table II-c.

S10.14.1 Installation. An integral beam headlighting system must consist of the correct number of designated headlamp units as specified for the applicable system in Table II-c. The units must have their beams activated as specified in Table II-c. A system must provide in total not more than two upper beams and two lower beams.

S10.14.2 Aimability.
S10.14.2.1 A system that incorporates any headlamp or beam contributor that does not have a VHAD as an integral and indivisible part of the headlamp or beam contributor must be designed so that the applicable photometric requirements are met when any correctly aimed and photometrically conforming headlamp or beam contributor is removed from its mounting and aiming mechanism, and is replaced without realign by any conforming headlamp or beam contributor of the same type.

S10.14.2.2 A system that incorporates more than one beam contributor providing a lower beam, and/or more than one beam contributor providing an upper beam, shall be designed to conform to the on-vehicle aiming requirements specified in S10.18.8.

S10.14.3 Simultaneous aim. An integral beam headlighting system consisting of four individual headlamps or beam contributors may have the headlamp units mounted in an assembly to permit simultaneous aiming of the beam(s) contributors, providing that with any complying contributor the assembly complete with all lamps meets the applicable photometric requirements when tested in accordance with S14.2.5.

S10.14.4 Markings. An integral beam headlamp with a single light source providing the lower beam must have its lens permanently marked with “L”. An integral beam headlamp with a single light source providing the upper beam must have its lens permanently marked with “U”.

S10.14.5 Additional light sources. An integral beam headlamp may incorporate light sources that are used for purposes other than headlighting and are capable of being replaced.

S10.14.6 Photometry. Each integral beam headlamp must be designed to conform to the photometry requirements of Table XVIII for upper beam and Table XIX for lower beam as specified in Table II-c for the specific headlamp unit and aiming method, when tested according to the procedure of S14.2.5.

S10.14.7 Physical tests.
S10.14.7.1 Each integral beam headlamp must be designed to conform to the performance requirements of the corrosion test, temperature cycle test, vibration test, inward force test (for lamps which are externally aimed only), headlamp connector test, and aiming adjustment tests of S14.6.

S10.14.7.2 Each integral beam headlamp that is not designed to conform to the performance requirements of the sealing test of S14.6 must be designed to conform to the performance requirements of the connector-corrosion test, dust test, and humidity test of S14.6.

S10.14.7.3 Each integral beam headlamp except those with a glass lens must be designed to conform to the performance requirements of the abrasion test of S14.6.

S10.14.7.4 Each integral beam headlamp except those with a non-replaceable glass lens must be designed to conform to the performance requirements of the chemical resistance test of S14.6.

S10.14.7.5 Each integral beam headlamp except those with a glass lens and a non-plastic reflector must be designed to conform to the performance requirements of the internal heat test of S14.6.

S10.14.7.6 Each integral beam headlamp incorporating a replaceable lens must be designed to conform to the performance requirements of the chemical resistance of reflectors of replaceable lens headlamps test and the corrosion resistance of reflectors of replaceable lens headlamps test of S14.6.
S10.14.7.7 Each integral beam headlamp capable of being mechanically aimed by externally applied headlamp aiming devices specified in SAE Recommended Practice J602–1980 (incorporated by reference, see §571.5), must be designed to conform to the performance requirements of the torque deflection test of S14.6.

S10.14.7.8 Each integral beam headlamp must be designed to conform to the performance requirements of the color test of S14.4. Each integral beam headlamp that does not incorporate a glass lens must be designed to conform to the performance requirements of the plastic optical materials test of S14.4.

S10.15 Replaceable bulb headlighting systems. All replaceable bulb headlighting systems must be of a type designated in Table II-d.

S10.15.1 Installation. A replaceable bulb headlighting system must consist of either two or four headlamps as specified for the applicable system in Table II-d. The headlamps must have their beams activated as specified in Table II-d. A system must provide in total not more than two upper beams and two lower beams and must incorporate not more than two replaceable light sources in each headlamp.

S10.15.2 Aiming restrictions. Each replaceable bulb headlamp designed to conform to the external aiming requirements of S10.18.7 must have no mechanism that allows adjustment of an individual light source, or if there are two light sources, independent adjustments of each reflector.

S10.15.3 Replacement lens reflector units. Each lens reflector unit manufactured as replacement equipment must be designed to conform to applicable photometry requirements when any replaceable light source designated for such a unit is inserted in it.

S10.15.4 Markings.

S10.15.4.1 A replaceable bulb headlamp in a four headlamp system providing lower beam must have its lens permanently marked with “L.” A replaceable bulb headlamp in a four headlamp system providing upper beam must have its lens permanently marked with “U.”

S10.15.4.1.1 No such markings are required if the light sources in the headlamp are any combination of dual filament light sources other than HB2.

S10.15.5 Additional light sources. A replaceable bulb headlamp may incorporate replaceable light sources that are used for purposes other than headlights.

S10.15.6 Photometry. Each replaceable bulb headlamp must be designed to conform to the photometry requirements of Table XVIII for upper beam and Table XIX for lower beam as specified in Table II-d for the specific headlamp unit and aiming method, when tested according to the procedure of S14.25 using any replaceable light source designated for use in the system under test.

S10.15.7 Physical tests.

S10.15.7.1 Each replaceable bulb headlamp except those with a glass lens must be designed to conform to the performance requirements of the corrosion test, corrosion-connector test, dust test, temperature cycle test, humidity test, vibration test, inward force test (for lamps which are externally aimed only), headlamp connector test, and aiming adjustment tests of S14.6.

S10.15.7.2 Each replaceable bulb headlamp except those with a glass lens must be designed to conform to the performance requirements of the abrasion test of S14.6.

S10.15.7.3 Each replaceable bulb headlamp except those with a non-replaceable glass lens must be designed to conform to the performance requirements of the chemical resistance test of S14.6.

S10.15.7.4 Each replaceable bulb headlamp except those with a glass lens and a non-plastic reflector must be designed to conform to the performance requirements of the internal heat test of S14.6.

S10.15.7.5 Each replaceable bulb headlamp incorporating a replaceable lens must be designed to conform to the performance requirements of the chemical resistance of reflectors of replaceable lens headlamps test and the corrosion resistance of reflectors of replaceable lens headlamps test of S14.6.

S10.15.7.6 Each replaceable bulb headlamp capable of being mechanically aimed by externally applied headlamp aiming devices specified in SAE Recommended Practice J602–1980
§ 571.108
(incorporated by reference, see § 571.5), must be designed to conform to the performance requirements of the torque deflection test of S14.6.

(a) One half of any headlighting system of Table II which provides both a full upper beam and full lower beam, and is designed to conform to the requirements for that headlamp type. Where more than one lamp must be used, the lamps shall be mounted vertically, with the lower beam as high as practicable, or

(b) A headlighting system designed to conform to the requirements of paragraphs S10.17.1 through S10.17.5.

§ 571.17 Motorcycle headlighting systems. A motorcycle headlighting system may consist of:

(a) One half of any headlighting system of Table II which provides both a full upper beam and full lower beam, and is designed to conform to the requirements for that headlamp type. Where more than one lamp must be used, the lamps shall be mounted vertically, with the lower beam as high as practicable, or

(b) A headlighting system designed to conform to the requirements of paragraphs S10.17.1 through S10.17.5.

§ 571.17.1 Installation. The headlighting system installed on a motorcycle must consist of one of the system types specified in this paragraph, and must be located on the front.

(a) One half of any headlighting system of Table II which provides both a full upper beam and full lower beam, and is designed to conform to the requirements for that headlamp type. Where more than one lamp must be used, the lamps shall be mounted vertically, with the lower beam as high as practicable, or

(b) A headlighting system designed to conform to the requirements of paragraphs S10.17.1 through S10.17.5.
must be located on the vertical centerline with the upper beam no higher than the lower beam, or horizontally disposed about the vertical centerline and mounted at the same height.

S10.17.1.3.2 If the headlamps are horizontally disposed about the vertical centerline, the distance between the closest edges of their effective projected luminous lens areas must not be greater than 200 mm.

S10.17.2 Motorcycle replaceable bulb headlamp marking. Each replaceable bulb headlamp that is designed to conform to S10.17(b) and that is equipped with a light source other than a replaceable light source meeting the requirements of S11, must have the word “motorcycle” permanently marked on the lens in characters not less than 3 mm in height.

S10.17.3 Photometry. Each motorcycle headlamp that is not designed to conform to S10.17(a), must be designed to conform to the photometry requirements of Table XX when tested according to the procedure of S14.2.5.

S10.17.4 Physical tests. Each motorcycle headlamp that is not designed to conform to S10.17(a), must be designed to conform to the performance requirements of the vibration test, moisture test, dust test, and corrosion test of S14.5, the out of focus test of S14.3, the color test of S14.4, and each motorcycle headlamp that does not incorporate a glass lens must be designed to conform to the performance requirements of the plastic optical materials test of S14.4.

S10.17.5 Motorcycle headlamp modulation system. A headlamp on a motorcycle may be activated to modulate either the upper beam or the lower beam from its maximum intensity to a lesser intensity, provided that:

S10.17.5.1 Modulation.

(a) The rate of modulation must be 240 ±40 cycles per minute.

(b) The headlamp must be operated at maximum power for 50 to 70 percent of each cycle.

(c) The lowest intensity at any test point must be not less than 17 percent of the maximum intensity measured at the same point.

(d) The modulator switch must be wired in the power lead of the beam filament being modulated and not in the ground side of the circuit.

(e) Means must be provided so that both the lower beam and upper beam remain operable in the event of a modulator failure.

(f) The system must include a sensor mounted with the axis of its sensing element perpendicular to a horizontal plane. Headlamp modulation must cease whenever the level of light emitted by a tungsten filament light operating at 3000° Kelvin is either less than 270 lux of direct light for upward pointing sensors or less than 60 lux of reflected light for downward pointing sensors. The light is measured by a silicon cell type light meter that is located at the sensor and pointing in the same direction as the sensor. A Kodak Gray Card (Kodak R–27) is placed at ground level to simulate the road surface in testing downward pointing sensors.

(g) When tested in accordance with the test profile shown in Figure 9, the voltage drop across the modulator when the lamp is on at all test conditions for 12 volt systems and 6 volt systems must not be greater than 0.45 volt. The modulator must meet all the provisions of the standard after completion of the test profile shown in Figure 9.

(h) Means must be provided so that both the lower and upper beam function at design voltage when the headlamp control switch is in either the lower or upper beam position when the modulator is off.

S10.17.5.2 Replacement modulators. Each modulator not intended as original equipment, or its container, must be labeled with the maximum wattage, and the minimum wattage appropriate for its use.

S10.17.5.2.1 Replacement performance. Each modulator, not intended as original equipment, must comply with S10.17.5.1 (a) through (g) when connected to a headlamp of the minimum rated power and a headlamp of the maximum rated power, and must provide means so that the modulated beam functions at design voltage when the modulator is off.

S10.17.5.2.2 Replacement instructions. Instructions, with a diagram, must be provided for mounting the light sensor including location on the motorcycle,
distance above the road surface, and orientation with respect to the light.

S10.18 Headlamp aimability performance requirements (except for motorcycles)

S10.18.1 Headlamp mounting and aiming. Except as provided in this paragraph, each headlamp must be installed on a motor vehicle with a mounting and aiming mechanism that permits aim inspection and adjustment of both vertical and horizontal aim, and is accessible for those purposes without removal of any vehicle parts, except for protective covers removable without the use of tools.

S10.18.1.1 The axis of the light beams must be adjustable to the left, right, up, or down from the designed setting, the amount of adjustability to be determined by practical operating conditions and the type of equipment.

S10.18.1.2 The adjustments must be conveniently made by one person with tools ordinarily available. When the headlamps are secured, the aim will not be disturbed under ordinary conditions of service.

S10.18.2 Headlamp aiming systems. When a headlamp system is installed on a motor vehicle, it must be aimable with at least one of the following: an externally applied aiming device, as specified in S10.18.7; an on-vehicle headlamp aiming device installed by the vehicle or lamp manufacturer, as specified in S10.18.8; or by visual/optical means, as specified in S10.18.9.

S10.18.3 Aim adjustment interaction. When installed on the vehicle, adjustment of one aim axis through its full on-vehicle range must not cause the aim of the other axis to deviate more than \(\pm 0.76^\circ\). If the performance specified is not achievable, the requirements of S10.18.3.1 apply, except that if the aiming mechanism is not a VHAD, the requirements specific to VHADs are not applicable, and the instruction must be specific to the aiming mechanism installed.

S10.18.3.1 Should the mechanism not meet the requirements of S10.18.3, a cautionary label must be placed adjacent to the mechanism stating the caution and including either the reason for the caution or the corrective action necessary. Each such label must also refer the reader to the vehicle operator’s manual for complete instructions.

Each such vehicle must be equipped with an operator’s manual containing the complete instructions appropriate for the mechanism installed.

S10.18.4 Horizontal adjustment-visually aimed headlamp. A visually/optically aimable headlamp that has a lower beam must not have a horizontal adjustment mechanism unless such mechanism meets the requirements of this standard for on vehicle aiming as specified in S10.18.8.

S10.18.5 Optical axis marking. S10.18.5.1 Optical axis marking-vehicle. Each motor vehicle must be equipped with headlamps or beam contributors which have a mark or markings that are visible from the front of the headlamp when installed on the vehicle to identify the optical axis of the headlamp to assure proper horizontal and vertical alignment of the aiming screen or optical aiming equipment. The manufacturer is free to choose the design of the mark or markings. The mark or markings may be on the interior or exterior of the lens or indicated by a mark or central structure on the interior or exterior of the headlamp.

S10.18.5.2 Optical axis marking-lamp. Each headlamp or beam contributor that is not visually/optically aimable in accordance with S10.18.9 of this standard must be equipped with fiducial marks, aiming pads, or similar references of sufficient detail and accuracy, for determination of an appropriate vehicle plane to be used with the photometric procedures of S14.2.5 for correct alignment with the photometer axis when being tested for photometric compliance, and to serve for the aiming reference when the headlamp or beam contributor is installed on a motor vehicle. The fiducial marks, aiming pads, or similar references are protrusions, bubble vials, holes, indentations, ridges, scribed lines, or other readily identifiable marks established and described by the vehicle or headlamp manufacturer.

S10.18.5.3 Optical axis marking-visual/optical aim headlamp. There must be a mark or markings identifying the optical axis of the headlamp visible from the front of the headlamp when installed on the vehicle, to assure proper horizontal and vertical alignment of the aiming screen or optical aiming
equipment with the headlamp being aimed. The manufacturer is free to choose the design of the mark or markings. The mark or markings may be on the interior or exterior of the lens or indicated by a mark or central structure on the interior or exterior of the headlamp.

S10.18.6 Moveable reflectors. Each headlamp aimed by moving the reflector relative to the lens and headlamp housing, or vice versa, must conform with the photometric requirements applicable to it when tested according to the procedure of S14.2.5 with the lens at any position relative to the reflector within the full range of vertical pitch on the vehicle on which the headlamp system is installed and a horizontal range of ±2.5°. Additionally, it must comply with the aiming adjustment requirements of S14.6.

S10.18.7 External aiming. Each headlighting system that is capable of being mechanically aimed by externally applied headlamp aiming devices must be mechanically aimable using the equipment specified in SAE Recommended Practice J602–1980 (incorporated by reference, see §571.5), without the removal of any ornamental trim rings, covers, wipers or other vehicle parts.

S10.18.7.1 Headlamp aiming device locating plates. Each headlighting system which is designed to use the Headlamp Aiming Device Locating Plates with adjustable legs for the 100 x 165 mm unit, the 142 x 200 mm unit, the 146 mm diameter unit, or the 178 mm diameter unit of SAE Recommended Practice J602–1980, or the 92 x 150 mm Type F unit, and incorporate lens-mounted aiming pads as specified for those units pursuant to Appendix C of part 564 of this chapter. If so designed, no additional lens marking is necessary to designate the type of plate or dimensions.

S10.18.8 On-vehicle aiming. Each headlighting system that is capable of being aimed by equipment installed on the vehicle must include a Vehicle Headlamp Aiming Device (VHAD) that conforms to the following requirements:

S10.18.8.1 Aim. The VHAD must provide for headlamp aim inspection and adjustment in both the vertical and horizontal axes.

S10.18.8.1.1 Vertical aim. The VHAD must include the necessary references and scales relative to the horizontal plane to assure correct vertical aim for photometry and aiming purposes. An off vehicle measurement of the angle of the plane of the ground is permitted. In addition, an equal number of graduations from the “0” position representing angular changes in the axis in the upward and downward directions must be provided.
§ 571.108

S10.18.8.1.1 Each graduation must represent a change in the vertical position of the mechanical axis not larger than 0.19° (1 in at 25 ft) to provide for variations in aim at least 1.2° above and below the horizontal, and have an accuracy relative to the zero mark of less than 0.1°.

S10.18.8.1.2 The VHAD must be marked to indicate headlamp aim movement in the upward and downward directions.

S10.18.8.1.3 Each graduation must indicate a linear movement of the scale indicator of not less than 0.05 in (1.27 mm) if a direct reading analog indicator is used. If a remote reading indicator is provided, it must represent the actual aim movement in a clear, understandable format.

S10.18.8.1.4 The vertical indicator must perform through a minimum range of ±1.2°.

S10.18.8.1.5 Means must be provided in the VHAD for compensating for deviations in floor slope less than 1.2° from the horizontal that would affect the correct positioning of the headlamp for vertical aim.

S10.18.8.1.6 The graduations must be legible under an illumination level not greater than 30 foot candles, measured at the top of the graduation, by an observer having 20/20 vision (Snellen), and must permit aim adjustment to within 0.19° (1 in at 25 ft).

S10.18.8.2 Horizontal aim. The VHAD must include references and scales relative to the longitudinal axis of the vehicle necessary to assure correct horizontal aim for photometry and aiming purposes. An “0” mark must be used to indicate alignment of the headlamps relative to the longitudinal axis of the vehicle. In addition, an equal number of graduations from the “0” position representing equal angular changes in the axis relative to the vehicle axis must be provided.

S10.18.8.2.1 Each graduation must represent a change in the horizontal position of the mechanical axis not greater than 0.38° (2 in at 25 ft) to provide for variations in aim at least 0.76° (4 in at 25 ft) to the left and right of the longitudinal axis of the vehicle, and must have an accuracy relative to the zero mark of less than 0.1°.

S10.18.8.2.2 The VHAD must be marked to indicate headlamp aim movement in the left and right directions.

S10.18.8.2.3 The graduations must be legible under an illumination level not greater than 30 foot candles, measured at the top of the graduation, by an observer having 20/20 vision (Snellen), and must permit aim adjustment to within 0.38° (2 in at 25 ft).

S10.18.8.2.4 The horizontal indicator must perform through a minimum range of ±0.76° (4 in at 25 ft); however, the indicator itself must be capable of recalibration over a movement of ±2.5° relative to the longitudinal axis of the vehicle to accommodate any adjustment necessary for recalibrating the indicator after vehicle repair from accident damage.

S10.18.8.2 Aiming instructions.

S10.18.8.2.1 The instructions for properly aiming the headlighting system using the VHAD must be provided on a label permanently affixed to the vehicle adjacent to the VHAD, or in the vehicle operator’s manual. The instructions must advise that the headlighting system is properly aimed if the appropriate vertical plane (as defined by the vehicle manufacturer) is perpendicular to both the longitudinal axis of the vehicle, and a horizontal plane when the vehicle is on a horizontal surface, and the VHAD is set at “0” vertical and “0” horizontal.

S10.18.8.2.2 Should a remote indicator or a remote indicator and adjuster be provided, the instructions must be placed in the operator’s manual, and may also be placed on a label adjacent to the VHAD.

S10.18.8.3 Permanent calibration. Each headlamp equipped with a VHAD must be manufactured with its calibration permanently fixed by its manufacturer. Calibration in this case means the process of accurately aligning the geometry of the VHAD devices with the beam pattern for the purposes of compliance with the standard.

S10.18.8.4 Replacement units. When tested according to the procedure of S14.2.5 with any replacement headlamp unit(s) or light sources intended for use in the system under test, the VHAD and headlighting system must be designed to conform to the photometric...
S10.18.8.5 Physical tests. Each VHAD must be designed to conform with the performance requirements of §14.8.

S10.18.9 Visual/optical aiming. Each visually/optically aimable headlamp must be designed to conform to the following requirements:

S10.18.9.1 Vertical aim, lower beam. Each lower beam headlamp must have a cutoff in the beam pattern. It may be either on the left side or the right side of the optical axis, but once chosen for a particular headlamp system’s design, the side chosen for the cutoff must not be changed for any headlamps intended to be used as replacements for those system’s headlamps.

S10.18.9.1.1 Vertical position of the cutoff. The headlamp must be aimed vertically so that the cutoff is on the left side, at 0.4° down from the H–H line, or on the right side, at the H–H line.

S10.18.9.1.2 Vertical gradient. The gradient of the cutoff measured at either 2.5° L or 2.0° R must be not less than 0.13 based on the procedure of S10.18.9.1.5.

S10.18.9.1.3 Horizontal position of the cutoff. The width must be not less than 2°, with not less than 2° of its actual width centered at either 2.5° L, or 2.0° R.

S10.18.9.1.4 Maximum inclination of the cutoff. The vertical location of the highest gradient at the ends of the minimum width must be within ±0.2° of the vertical location of the maximum gradient measured at the appropriate vertical line (at either 2.5° L for a left side cutoff, or 2.0° R for a right side cutoff).

S10.18.9.1.5 Measuring the cutoff parameter.

S10.18.9.1.5.1 The headlamp is mounted on a headlamp test fixture which simulates its actual design location on any vehicle for which the headlamp is intended. The fixture, with the headlamp installed, is attached to the goniometer table in such a way that the fixture alignment axes are coincident with the goniometer axes. The headlamp is energized at the specified test voltage. The cutoff parameter must be measured at a distance of 10 m from a photosensor with a 10 mm diameter.

S10.18.9.1.5.2 The headlamp beam pattern is aimed with the cutoff at the H–H axis. There is no adjustment, shimming, or modification of the horizontal axis of the headlamp or test fixture, unless the headlamp is equipped with a VHAD. In this case the VHAD is adjusted to zero.

S10.18.9.1.5.3 A vertical scan of the beam pattern is conducted for a headlamp with a left side gradient by aligning the goniometer on a vertical line at 2.5° L and scanning from 1.5° U to 1.5° D. For a headlamp with a right side gradient, a vertical scan of the beam pattern is conducted by aligning the goniometer on a vertical line at 2.0° R and scanning from 1.5° U to 1.5° D.

S10.18.9.1.5.4 Determine the maximum gradient within the range of the scan by using the formula: \(G = \log(E(a) - \log(E(a + 0.1)) \), where “G” is the gradient, “E” is illumination and “a” is vertical angular position. The maximum value of the gradient “G” determines the vertical angular location of the cutoff. Perform vertical scans at 1.0° L and R of the measurement point of the maximum gradient to determine the inclination.

S10.18.9.2 Horizontal aim, lower beam. There is no adjustment of horizontal aim unless the headlamp is equipped with a horizontal VHAD. If the headlamp has a VHAD, it is set to zero.

S10.18.9.3 Vertical aim, upper beam.

S10.18.9.3.1 If the upper beam is combined in a headlamp with a lower beam, the vertical aim of the upper beam must not be changed from the aim set using the procedures of S10.18.9.1 and S10.18.9.2 used for the lower beam.

S10.18.9.3.2 If the upper beam is not combined in a headlamp with a lower beam, the vertical aim of the upper beam is adjusted so that the maximum beam intensity is located on the H–H axis.

S10.18.9.4 Horizontal aim, upper beam.

S10.18.9.4.1 If the upper beam is combined in a headlamp with a lower beam, the horizontal aim of the upper beam must not be changed from the aim set using the procedures of S10.18.9.1 and S10.18.9.2 used for the lower beam.
§ 571.108

S10.18.9.4.2 If the upper beam is not combined in a headlamp with the lower beam and has fixed horizontal aim or has a horizontal VHAD, then the headlamp is mounted on a headlamp test fixture which simulates its actual design location on any vehicle for which the headlamp is intended. The fixture, with the headlamp installed, is attached to the goniometer table in such a way that the fixture alignment axes are coincident with the goniometer axes. The headlamp must be energized at 12.8 ± 0.20 mV. There is no adjustment, shimming, or modification of the horizontal axis of the headlamp or test fixture, unless the headlamp is equipped with a VHAD. In this case the VHAD is adjusted to zero.

S10.18.9.4.3 If the upper beam is not combined in a headlamp with a lower beam, and it does not have a VHAD, the horizontal aim of the upper beam is adjusted so that the maximum beam intensity is located on the V–V axis.

S10.18.9.5 Photometry. When tested according to the procedure of S14.2.5, a visually/optically aimable headlamp must be designed to conform to the lower beam requirements of columns; LB1V or LB2V of Table XIX–a, or LB3V of Table XIX–b, or LB4V of Table XIX–c.

S10.18.9.6 Visual/optical aiming identification marking. Each letter used in marking according to this paragraph must be not less than 3 mm high.

S10.18.9.6.1 The lens of a lower beam headlamp must be marked “VOL” if the headlamp is intended to be visually/optically aimed using the left side of the lower beam pattern. The lens of a lower beam headlamp must be marked “VOR” if the headlamp is intended to be visually/optically aimed using the right side of the lower beam pattern. The lens of a headlamp that is solely an upper beam headlamp and intended to be visually/optically aimed using the upper beam must be marked “VO”.

S10.18.9.6.2 The lens of each sealed beam or integral beam headlamp must be marked “VOR” if the headlamp is of a type that was manufactured before May 1, 1997, and if such headlamp type has been redesigned since then to be visually/optically aimable.

S11 Replaceable light source requirements. Each replaceable light source must be designed to conform to the dimensions and electrical specifications furnished with respect to it pursuant to part 564 of this chapter, on file in Docket No. NHTSA 96–3397, and must conform to the following requirements:

S11.1 Markings. If other than an HB Type, the light source must be marked with the bulb marking designation specified for it in compliance with appendix A or appendix B of part 564 of this chapter. The base of each HB Type must be marked with its HB Type designation. Each replaceable light source must also be marked with the symbol DOT and with a name or trademark in accordance with S6.5.

S11.2 Ballast markings. If a ballast is required for operation, each ballast must bear the following permanent markings:

(a) Name or logo of ballast manufacturer;

(b) Ballast part number or unique identification;

(c) Part number or other unique identification of the light source for which the ballast is designed;

(d) Rated laboratory life of the light source/ballast combination, if the information for the light source has been filed in appendix B of part 564 of this chapter;

(e) A warning that ballast output voltage presents the potential for severe electrical shock that could lead to permanent injury or death;

(f) Ballast output power in watts and output voltage in rms volts AC or DC; and

(g) The symbol ‘DOT’.

S11.3 Gas discharge laboratory life. For light sources that use excited gas mixtures as a filament or discharge arc, the “rated laboratory life” is determined in accordance with sections 4.3 and 4.9 of SAE Recommended Practice J2009 FEB93, Forward Discharge Lighting Systems (incorporated by reference, see 571.108 S5.2 of this title).

S11.4 Physical tests.

S11.4.1 Each replaceable light source must be designed to conform with the performance requirements of the deflection test and pressure test requirements of S14.7.
§ 571.108

S11.4.2 Replaceable light sources must be designed to conform with the requirements of section VII of appendix A of part 564 of this chapter, or section IV of appendix B of part 564 of this chapter, for maximum power and luminous flux when test by the procedure of § 571.5.

S12 Headlamp concealment device requirements.

S12.1 While the headlamp is illuminated, its fully opened headlamp concealment device must remain fully opened should any loss of power to or within the headlamp concealment device occur.

S12.2 Whenever any malfunction occurs in a component that controls or conducts power for the actuation of the concealment device, each closed headlamp concealment device must be capable of being fully opened by a means not requiring the use of any tools. Thereafter, the headlamp concealment device must remain fully opened until intentionally closed.

S12.3 Except for malfunctions covered by S12.2, each headlamp concealment device must be capable of being fully opened and the headlamps illuminated by actuation of a single switch, lever, or similar mechanism, including a mechanism that is automatically actuated by a change in ambient light conditions.

S12.4 Each headlamp concealment device must be installed so that the headlamp may be mounted, aimed, and adjusted without removing any component of the device, other than components of the headlamp assembly.

S12.5 Except for cases of malfunction covered by S12.2, each headlamp concealment device must, within an ambient temperature range of –20 °F to + 120 °F, be capable of being fully opened in not more than 3 seconds after the actuation of a driver-operated control.

S12.6 As an alternative to complying with the requirements of S12.1 through S12.5, a vehicle with headlamps incorporating VHAD or visual/optical aiming in accordance with this standard may meet the requirements for Concealable lamps in paragraph 5.14 of UNECE Regulation 48 page 17 (incorporated by reference, see §571.5), in the English language version.

S12.7 Certification election. Manufacturers of vehicles with headlamps incorporating VHAD or visual/optical aiming must elect to certify to S12.1 through S12.5 or to S12.6 prior to, or at the time of certification of the vehicle, pursuant to 49 CFR Part 567. The selection is irrevocable.

S13 Replaceable headlamp lens requirements.

S13.1 A replacement lens for a replaceable bulb headlamp or integral beam headlamp that is not required to have a bonded lens must be provided with a replacement seal in a package that includes instructions for the removal and replacement of the lens, the cleaning of the reflector, and the sealing of the replacement lens to the reflector assembly.

S13.2 Each replacement headlamp lens with seal, when installed according to the lens manufacturer's instructions on an integral beam or replaceable bulb headlamp, must not cause the headlamp to fail to comply with any of the requirements of this standard.

S14 Physical and photometry test procedures and performance requirements.

S14.1 General test procedures and performance requirements.

S14.1.1 Each lamp, reflective device, item of conspicuity treatment, and item of associated equipment required or permitted by this standard must be designed to conform to all applicable physical test performance requirements specified for it.

S14.1.2 Plastic optical materials. All plastic materials used for optical parts such as lenses and reflectors on lamps or reflective devices required or allowed by this standard must be designed to conform to all applicable physical test performance requirements specified for it.

S14.1.3 All coatings used on optical materials must have added to their formulations an optical brightener, whose presence is detectable by ultraviolet light, to aid in testing for their presence. Other equivalent industry accepted methods may be used as an alternative.

S14.1.4 Samples.

S14.1.4.1 Samples submitted for laboratory test must be new, unused, manufactured from production tooling and
§ 571.108
49 CFR Ch. V (10–1–16 Edition)

assembled by production processes, and representative of the devices as regularly manufactured and marketed.

S14.1.4.2 Each test sample must include not only the device but also accessory equipment necessary to operate in its intended manner. Where necessary a mounting bracket shall be provided so that the device may be rigidly bolted in its operating position on the various test equipment.

S14.1.4.3 Dust and photometric tests may be made on a second set of mounted samples, if desired, to expedite completion of the tests.

S14.1.5 Laboratory facilities. The laboratory must be equipped to test the sample in accordance with the requirements of the specific device.

S14.2 Photometric test procedures. Each lamp and reflective device required or permitted by this standard must be designed to conform to the applicable photometric requirements.

S14.2.1 Photometry measurements for all lamps except license plate lamps, headlamps, and DRLs.

S14.2.1.1 Mounting. Photometry measurements are made with the sample lamp mounted in its normal operating position.

S14.2.1.2 School bus signal lamp aiming. A school bus signal lamp must be aimed with its aiming plane normal to the photometer axis and may be realigned for photometry by ±1⁄2° vertically and ±1° horizontally.

S14.2.1.3 Measurement distance. Photometric measurements are made at a distance between the light source and the point of measurement of at least 1.2 m for side marker lamps, clearance lamps, identification lamps, and parking lamps, and at least 3 m for turn signal lamps, stop lamps, taillamps, backup lamps, and school bus signal lamps.

S14.2.1.4 Location of test points. Test point location must comply with the following nomenclature:

(a) The line formed by the intersection of a vertical plane through the light source of the lamp and normal to the test screen is designated “V”.

(b) The line formed by the intersection of a horizontal plane through the light source and normal to the test screen is designated “H”.

(c) The point of intersection of these two lines is designated “H-V”.

(d) Other test points on the test screen are measured in terms of angles from the H and V lines.

(e) Angles to the right (R) and to the left (L) are regarded as being to the right and left of the V line when the observer stands behind the lamp and looks in the direction of its light beam when it is properly aimed for photometry. Similarly, the upward angles designated as U and the downward angles designated as D, refer to light directed at angles above and below the H line, respectively.

S14.2.1.5 Multiple compartment and multiple lamp photometry of turn signal lamps, stop lamps, and taillamps.

S14.2.1.5.1 When compartments of lamps or arrangements of multiple lamps are photometered together, the H–V axis intersects the midpoint between the optical axes.

S14.2.1.5.2 Luminous intensity measurements of multiple compartment lamps or multiple lamp arrangements are made either by:

(a) Measuring all compartments together, provided that a line from the optical axis of each compartment or lamp to the center of the photometer sensing device does not make an angle more than 0.6° with the H–V axis, or

(b) Measuring each compartment or lamp separately by aligning its optical axis with the photometer and adding the value at each test point.

S14.2.1.6 Bulbs. Except for a lamp having a sealed-in bulb, a lamp must meet the applicable requirements of this standard when tested with a bulb whose filament is positioned within ±0.10 in of the nominal design position specified in SAE Recommended Practice J573d (1968) (incorporated by reference, see §571.5) or specified by the bulb manufacturer and operated at the bulb’s rated mean spherical candela.
§ 571.108

S14.2.1.6.1 Each lamp designed to use a type of bulb that has not been assigned a mean spherical candela rating by its manufacturer and is not listed in SAE Recommended Practice J573d (1968) (incorporated by reference, see § 571.5), must meet the applicable requirements of this standard when used with any bulb of the type specified by the lamp manufacturer, operated at the bulb’s design voltage. A lamp that contains a sealed-in bulb must meet these requirements with the bulb operated at the bulb’s design voltage.

S14.2.1.6.2 A bulb that is not listed in SAE Recommended Practice J573d (1968) (incorporated by reference, see § 571.5) is not required to use a socket that conforms to the requirements of SAE Recommended Practice J567b (1964) (incorporated by reference, see § 571.5).

S14.2.2 License plate lamp photometry. Photometry compliance of license plate lamps is determined by measurement of the illumination falling upon test stations located on a test plate.

S14.2.2.1 Illumination surface. All illumination measurements are made on a rectangular test plate of clean, white blotting paper mounted on the license plate holder in the position normally taken by the license plate. The face of the test plate must be 1.5 mm from the face of the license plate holder.

S14.2.2.2 Test stations. Test stations must be located on the face of the test plate as shown in Figure 19 according to the type of vehicle on which the license plate lamps are installed.

S14.2.2.3 Bulb requirements of S14.2.1.6 apply to license plate lamp photometry.

S14.2.3 Reflex reflector and retroreflective sheeting photometry. Photometric measurements of reflex reflectors and retroreflective sheeting must be made at various observation and entrance angles as shown in Table XVI.

S14.2.3.1 Mounting. Each reflex reflector is mounted for photometry with the center of the reflex area at the center of goniometer rotation and at the same horizontal level as the source of illumination. The H–V axis of the reflex reflector is taken as parallel to the longitudinal axis of the vehicle for rear reflectors and perpendicular to a vertical plane passing through the longitudinal axis of the vehicle for side reflectors.

S14.2.3.2 Illumination source. The source of illumination is a lamp with a 50 mm effective diameter and a filament operating at 2856 °K.

S14.2.3.3 Measurement distance. The test distance is 30.5 m (100 ft).

S14.2.3.4 Test setup. The observation point is located directly above the source of illumination. The H–V axis of the reflex reflector is taken as parallel to the longitudinal axis of the vehicle for rear reflectors and perpendicular to a vertical plane passing through the longitudinal axis of the vehicle for side reflectors.

S14.2.3.5 Photodetector. The photodetector has an opening of not more than 13 mm vertically and 25 mm horizontally.

S14.2.3.6 Photometry surface. Reflex reflectors may have any linear or area dimensions but must have no more than 7740 sq mm projected area contained within a 254 mm diameter circle exposed for photometry.

S14.2.3.7 Procedure. Photometric measurements of reflex reflectors and retroreflective sheeting must be made at various observation and entrance angles as shown in Table XVI.

S14.2.3.7.1 The observation angle is the angle formed by a line from the observation point to the center of the reflector and a second line from the center of the reflector to the source of illumination.

S14.2.3.7.2 The entrance angle is the angle between the axis of the reflex reflector and a line from the center of the reflector to the source of illumination.

S14.2.3.7.3 The entrance angle is designated left, right, up, and down in accordance with the position of the source of illumination with respect to the axis of the reflex reflector as viewed from behind the reflector.

S14.2.3.7.4 Measurements are made of the luminous intensity which the reflex reflector is projecting toward the observation point and the illumination on the reflex reflector from the source of illumination.

S14.2.3.8 Measurements.

S14.2.3.8.1 Reflex reflectors. The required measurement for reflex reflectors at each test point as shown in Table XVI is the quotient of the projected luminous intensity divided by the illumination expressed as milliluxes per lux or candelas per footcandle.

S14.2.3.8.2 Retroreflective sheeting. The required measurement for retroreflective sheeting reflectors at each test point as shown in Table XVI.
§ 571.108

is candela per lux per square meter of area.

S14.2.3.3 Reflex reflector photometry measurement adjustments.

S14.2.3.3.1 Reflex reflectors, which do not have a fixed rotational position on the vehicle, are rotated about their axis through 360° to find the minimum photometric value which must be reported for each test point. If the output falls below the minimum requirement at any test point, the reflector is rotated ±5° about its axis from the angle where the minimum output occurred, and the maximum value within this angle is reported as a tolerance value.

S14.2.3.8.3 Reflex reflectors, which by their design or construction, permit mounting on a vehicle in a fixed rotational position, are tested in this position. A visual locator, such as the word TOP is not considered adequate to establish a fixed rotational position on the vehicle.

S14.2.3.3.3 If uncolored reflections from the front surface interfere with photometric readings at any test point, additional readings are taken 1° above, below, right, and left of the test point, and the lowest of these readings and its location is reported provided the minimum test point requirement for the test point is met.

S14.2.4 Daytime running lamp (DRL) photometry measurements.

S14.2.4.1 Each DRL is tested to the procedure of S14.2.5 when a test voltage of 12.8 v ±20 mv is applied to the input terminals of the lamp switch module or voltage-reducing equipment, whichever is closer to the electrical source on the vehicle.

S14.2.4.2 The test distance from the lamp to the photometer is not less than 18.3 m if the lamp is optically combined with a headlamp, or is a separate lamp, and not less than 3 m if the lamp is optically combined with a lamp, other than a headlamp, that is required by this standard.

S14.2.4.3 Except for a lamp having a sealed-in bulb, a lamp must meet the applicable requirements of this standard when tested with a bulb whose filament is positioned within ±0.010 in. of the nominal design position specified in SAE J573d. Lamp bulbs and Sealed Units, December 1968, (incorporated by reference, paragraph S5.2 of this section) or specified by the bulb manufacturer.

S14.2.5 Headlamp photometry measurements.

S14.2.5.1 Mounting. Photometry measurements at the applicable test points are made with the sample headlamp mounted in its normal operating position.

S14.2.5.2 Test points in the area from 10° U to 90° U must be measured from the normally exposed surface of the lens face.

S14.2.5.3 Measurement distance. Photometric measurements are made at a distance between the light source and the photometer sensor of at least 18.3 m.

S14.2.5.4 Seasoning and test voltage. All sealed beam headlamps, integral beam headlamps, beam contributors, and replaceable light sources are seasoned at design voltage for 1% of its average design life or 10 hours, whichever is less prior to a photometry test. A headlamp is tested at 12.8 v ±20 mv, D.C, as measured at the terminals of the lamp.

S14.2.5.5.1 Mechanically aimable headlamps using an external aimer. The headlamp is aimed mechanically with the aiming plane at the design angle(s) to the photometer axis and the mechanical axis of the headlamp on the photometer axis.

S14.2.5.5.2 Mechanically aimable headlamps equipped with a VHAD. The headlamp is aimed mechanically using the VHAD in accordance with the manufacturer's instructions as provided with the vehicle on which the headlamp is intended to be used.

S14.2.5.5.3 Visually aimable lower beam headlamps-vertical aim.

S14.2.5.5.3.1 A VOL cutoff headlamp must have the location of the cutoff maximum gradient, as determined by the method of this standard, positioned at 0.4° down from the H-H line.
§ 571.108

S14.2.5.3.2 A VOR cutoff headlamp must have the location of the cutoff maximum gradient, as determined by the method of this standard, positioned at the H–H line.

S14.2.5.4 Visually aimable lower beam headlamps-horizontal aim. There must be no adjustment of horizontal aim unless the headlamp is equipped with a horizontal VHAD. If the headlamp has a VHAD, it must be set to zero.

S14.2.5.5 Visually aimable upper beam headlamps-vertical aim.

S14.2.5.5.1 A headlamp whose upper beam is combined with a lower beam must not have its vertical aim changed from that set for the lower beam.

S14.2.5.5.2 A headlamp whose upper beam is not combined with a lower beam must have its maximum beam intensity positioned on the H–H axis.

S14.2.5.5.6 Visually aimable upper beam headlamps-horizontal aim.

S14.2.5.5.6.1 A headlamp whose upper beam is combined with a lower beam must not have its horizontal aim changed from that set for the lower beam.

S14.2.5.5.6.2 A headlamp whose upper beam is not combined with a lower beam and has a fixed horizontal aim or has a horizontal VHAD must be mounted in its normal operating position on a goniometer such that the mounting fixture alignment axes are coincident with the goniometer axes and must be energized at 12.8 v ± 20 mv. There must be no adjustment, shimming, or modification of the horizontal axis of the headlamp or test fixture, unless the headlamp is equipped with a VHAD, in which case the VHAD must be adjusted to zero.

S14.2.5.5.6.3 A headlamp whose upper beam is not combined with a lower beam and is not equipped with a horizontal VHAD, the horizontal aim must be adjusted so that the maximum beam intensity is positioned on the V–V axis.

S14.2.5.5.7 Simultaneous aim Type F sealed beam headlamps and beam contributor integral beam headlamps.

S14.2.5.5.7.1 A headlamp system permitted to use simultaneous aim of lower beams and upper beams must be aimed mechanically for lower beam photometry by centering the lower beam unit or the geometric center of all lower beam contributors on the photometer axis and aligning the aiming plane, aiming reference plane, or other appropriate vertical plane defined by the manufacturer perpendicular to the photometer axis.

S14.2.5.5.7.2 The headlamp must be aimed for upper beam photometry by moving the assembly in a plane parallel to the established lower beam aiming plane until the upper beam unit or the geometric center of all upper beam contributors is centered in the photometric axis.

S14.2.5.5.8 Motorcycle headlamp-upper beam headlamps designed to comply with Table XX. The upper beam of a multiple beam headlamp designed to comply with the requirements of Table XX must be aimed photoelectrically so that the center of the zone of highest intensity falls 0.4° vertically below the lamp axis and is centered laterally. The center of the zone of highest intensity must be established by the intersection of a horizontal plane passing through the point of maximum intensity, and the vertical plane established by balancing the photometric values at 3°L and 3°R.

S14.2.5.5.9 Motorcycle headlamp-lower beam headlamps designed to comply with Table XX. The beam from a single beam headlamp designed to comply with the requirements of Table XX must correspond to the design position vertical axis of the sample headlamp which is vertical and perpendicular to the longitudinal axis of the vehicle.

S14.2.5.7 Photometer.

S14.2.5.7.1 The photometer must be capable of measuring the luminous intensity of the sample headlamp throughout its illumination range.

S14.2.5.7.2 Sensor.

S14.2.5.7.2.1 The maximum effective area of the photometric sensor must fit within a circle whose diameter is equal to 0.009 times the actual test distance.
from the light source of the sample headlamp to the sensor.

S14.2.5.7.2.2 The sensor effective area is defined as the actual area of intercepted light striking the detector surface of the photometer. Sensor systems incorporating lens(es) that change the diameter of the intercepted light beam before it reaches the actual detector surface, the maximum size requirements must apply to the total area of the light actually intercepted by the lens surface.

S14.2.5.7.2.3 The sensor must be capable of intercepting all direct illumination from the largest illuminated dimension of the sample lamp at the test distance.

S14.2.5.7.3 The color response of the photometer must be corrected to that of the 1931 CIE Standard Observer (2-degree) Photopic Response Curve, as shown in the CIE 1931 Chromaticity Diagram (incorporated by reference, see §571.5).

S14.2.5.8 Location of test points.

S14.2.5.8.1 Test point positions are defined by the positioner. The following nomenclature applies:

S14.2.5.8.1.1 The letters “V” and “H” designate the vertical and horizontal planes intersecting both the headlamp light source and the photometer axis. “H–V” designates the zero test point angle at the intersection of the H and V planes. This intersection is parallel to the longitudinal axis of the vehicle.

S14.2.5.8.1.2 The letters “U”, “D”, “L”, and “R”, indicating up, down, left and right, respectively, designate the angular position from the H and V planes to the photometer as viewed from the headlamp.

S14.2.5.8.1.3 Horizontal angles designated L and R are defined as the plan view angle between the vertical plane and the projection of the light ray from the headlamp onto the horizontal plane.

S14.2.5.8.1.4 Vertical angles designated U and D are defined as the true angle between the horizontal plane and the light ray from the headlamp.

S14.2.5.9 Beam contributor photometry measurements. In a headlighting system where there is more than one beam contributor providing a lower beam, and/or more than one beam contributor providing an upper beam, each beam contributor must be designed to meet only the applicable photometric performance requirements based upon the following mathematical expression: conforming test point value = 2(test point value)/total number of lower or upper beam contributors for the vehicle, as appropriate.

S14.2.5.10 Moveable reflector aimed headlamp photometry measurements.

S14.2.5.10.1 A headlamp aimed by moving the reflector relative to the lens and headlamp housing, or vice versa, must conform to the photometry requirements applicable to it with the lens at any position relative to the reflector.

S14.2.5.10.2 These positions include not less than the full range of vertical pitch of the vehicle on which the headlamp is installed and not less than ±2.5° from the nominal horizontal aim position for the vehicle on which the headlamp is installed unless the headlamp is visually/optically aimed with a fixed horizontal aim.

S14.3 Motorcycle headlamp out of focus test procedure and performance requirements.

S14.3.1 Procedure. The sample device must be tested for photometry using bulbs having each of four out-of-focus filament positions. Where conventional bulbs with two pin bayonet bases are used, tests must be made with the light source 0.060 in. above, below, ahead, and behind the designated position. If prefocused bulbs are used, the limiting positions at which tests are made must be 0.020 in. above, below, ahead, and behind the designated position. The sample device may be reaimed for each of the out-of-focus positions of the light source.

S14.3.2 Performance requirements. The minimum photometric values for the out-of-design position must be 80% of the in-design position.

S14.4 General test procedures and performance requirements.

S14.4.1 Color test. The requirement applies to the overall effective color of light emitted by the device and not to the color of the light from a small area of the lens. It does not apply to any pilot, indicator, or tell-tale lights. The color of the sample device must comply when tested by either the Visual Method or the Tristimulus Method.
S14.4.1.1 Samples. A test sample for a reflex reflector may be either the reflex reflector or a disc of the same material, technique of fabrication, and dye formulation as the reflex reflector. If a disc is used, the thickness must be twice the thickness of the reflector as measured from the face of the lens to the apexes of the reflecting elements.

S14.4.1.2 General procedure.
S14.4.1.2.1 The device must be operated at design voltage.
S14.4.1.2.2 Components (bulbs, caps, lenses, and the like) must be tested in a fixture or manner simulating the intended application.
S14.4.1.2.3 The lamp shall be allowed to reach operating temperature before measurements are made.
S14.4.1.2.4 The entire light emitting surface of the sample must be visible from any point on the entrance window of the test instrument.
S14.4.1.2.5 The distance between the test instrument and the sample must be large enough so that further increases in distance will not affect the results.

S14.4.1.3 Visual method.
S14.4.1.3.1 Visual method procedure. The color of light from the sample device must be compared visually with the color of the light from a standard. The standard may consist of a filter or limit glass. In the case of white, CIE Source A is used only as a color reference. The chromaticity coordinates of the color standards must be as close as possible to the limits listed. The color of the standard filters is determined spectro-photometrically.

S14.4.1.3.2 Visual method performance requirements. The color must comply with the applicable requirement.

S14.4.1.3.2.1 Red. Red is not acceptable if it is less saturated (paler), yellower, or bluer than the limit standards.

S14.4.1.3.2.2 Yellow (Amber). Yellow is not acceptable if it is less saturated (paler), greener, or redder than the limit standards.

S14.4.1.3.2.3 White. White is not acceptable if its color differs materially from that of CIE Source A.

S14.4.1.3.2.4 Green. Green is not acceptable if it is less saturated (paler), yellower, or bluer than the limit standards.

S14.4.1.3.2.5 Blue. Blue is not acceptable if it is less saturated (paler), greener, or redder than the limit standards.

S14.4.1.4 Tristimulus method.
S14.4.1.4.1 Tristimulus method procedure.
S14.4.1.4.1.1 The color of light from the H–V point of a sample device must be measured by photoelectric receivers with spectral responses that approximate CIE standard spectral tristimulus valves.
S14.4.1.4.1.2 A sphere may be used to integrate light from a colored source provided that the color shift that results from the spectral selectivity of the sphere paint be corrected by the use of a filter, correction factor, or an appropriate calibration.
S14.4.1.4.1.3 Where the sample device does not have uniform spectral characteristics in all useful directions, color measurements must be made at as many directions of view as are required to evaluate the color for those directions that apply to the end use of the device.

S14.4.1.4.2 Tristimulus method performance requirements. The color must comply with the applicable requirement.

S14.4.1.4.2.1 Red. The color of light emitted must fall within the following boundaries:

\[y = 0.33 \] (yellow boundary)
\[y = 0.98 - x \] (purple boundary)

S14.4.1.4.2.2 Yellow (Amber). The color of light emitted must fall within the following boundaries:

\[y = 0.39 \] (red boundary)
\[y = 0.79 - 0.67x \] (white boundary)
\[y = x - 0.12 \] (green boundary)

S14.4.1.4.2.3 White (achromatic). The color of light emitted must fall within the following boundaries:

\[x = 0.31 \] (blue boundary)
\[y = 0.44 \] (green boundary)
\[x = 0.50 \] (yellow boundary)
\[y = 0.15 + 0.64x \] (green boundary)
\[y = 0.38 \] (red boundary)
\[y = 0.05 + 0.75x \] (purple boundary)

S14.4.1.4.2.4 Green. The color of light emitted must fall within the following boundaries:

\[y = 0.73 - 0.73x \] (yellow boundary)
\[x = 0.63y - 0.04 \] (white boundary)
\[y = 0.50 - 0.50x \] (blue boundary)
S14.4.1.2.5 Restricted Blue. The color of light emitted must fall within the following boundaries:

\[y = 0.07 + 0.81x \] (green boundary)
\[x = 0.40 - y \] (white boundary)
\[x = 0.13 + 0.60y \] (violet boundary)

S14.4.1.4.2.6 Signal Blue. The color of light emitted must fall within the following boundaries:

\[y = 0.32 \] (green boundary)
\[x = 0.16 \] (white boundary)
\[x = 0.40 - y \] (white boundary)
\[x = 0.13 + 0.60y \] (violet boundary)

S14.4.2 Plastic optical materials tests. Accelerated weathering procedures are not permitted.

S14.4.2.1 Samples.

S14.4.2.1.1 Samples of materials shall be injection molded into polished metal molds to produce test specimens with two flat and parallel faces. Alternative techniques may be used to produce equivalent specimens.

S14.4.2.1.2 Test specimens shape may vary, but each exposed surface must contain a minimum uninterrupted area of 32 sq cm.

S14.4.2.1.3 Samples must be furnished in thicknesses of 1.6 ± 0.25 mm, 2.3 ± 0.25 mm, 3.2 ± 0.25 mm, and 6.4 ± 0.25 mm.

S14.4.2.1.4 All samples must conform to the applicable color test requirement of this standard prior to testing.

S14.4.2.1.5 A control sample, kept properly protected from influences which may change its appearance and properties of each thickness, must be retained.

S14.4.2.2 Outdoor exposure test.

S14.4.2.2.1 Outdoor exposure tests of 3 years in duration must be made on samples of all materials, including coated and uncoated versions, used for optical parts of devices covered by this standard. Tests are to be conducted in Florida and Arizona.

S14.4.2.2.2 Concentrations of polymer components and additives used in plastic materials may be changed without outdoor exposure testing provided the changes are within the limits of composition represented by higher and lower concentrations of these polymer components and additives previously tested to this section and found to meet its requirements.

S14.4.2.2.3 Procedure.

S14.4.2.2.3.1 One sample of each thickness of each material must be mounted at each exposure site so that at least a minimum uninterrupted area of 32 sq cm of the exposed upper surface of the sample is at an angle of 45° to the horizontal facing south. The sample must be mounted in the open no closer than 30 cm (11.8 in) to its background.

S14.4.2.2.3.2 During the exposure time the samples must be cleaned once every three months by washing with mild soap or detergent and water, and then rinsing with distilled water. Rubbing must be avoided.

S14.4.2.2.4 Performance requirements. Plastic lenses, other than those incorporating reflex reflectors, used for inner lenses or those covered by another material and not exposed directly to sunlight must meet the optical material test requirements when covered by the outer lens or other material.

S14.4.2.2.4.1 After completion of the outdoor exposure test the haze and loss of surface luster as measured by ASTM D1003–92 (incorporated by reference, see §571.5) must not be greater than:

(a) 30% for materials used for outer lenses, other than those incorporating reflex reflectors;
(b) 7% for materials used for reflex reflectors and lenses used in front of reflex reflectors.

S14.4.2.2.4.2 After completion of the outdoor exposure test materials used for headlamp lenses must show no deterioration.

S14.4.2.2.4.3 After completion of the outdoor exposure test all materials, when compared with the unexposed control samples, must not show physical changes affecting performance such as color bleeding, delamination, crazing, or cracking. Additionally materials used for reflex reflectors and lenses used in front of reflex reflectors must not show surface deterioration or dimensional changes.

S14.4.2.2.4.4 After completion of the outdoor exposure test all materials, when compared with the unexposed control samples, must not have their luminous transmittance changed by more than 25% when tested in accordance with ASTM E308-66 (incorporated
§ 571.108

S14.4.2.4.5 After completion of the outdoor exposure test all materials must conform to the color test of this standard in the range of thickness stated by the material manufacturer.

S14.4.2.3 Heat test.

S14.4.2.3.1 Procedure. Two samples of each thickness of each material must be supported at the bottom, with at least 51 mm of the sample above the support, in the vertical position in such a manner that, on each side, the minimum uninterrupted area of exposed surface is not less than 3225 sq mm. The samples are placed in a circulating air oven at 79 ± 3 °C for two hours.

S14.4.2.3.2 Performance requirements. After completion of the heat exposure and cooling to room ambient temperature, a test specimen must show no change in shape and general appearance discernable to the naked eye when compared with an unexposed specimen and continue to conform to the applicable color test requirement of this standard.

S14.5 Signal lamp and reflective device physical test procedures and performance requirements.

S14.5.1 Vibration test.

S14.5.1.1 Procedure. The sample device, as mounted on the support supplied, must be bolted to the anvil end of the table of the vibration test machine of Figure 21 and vibrated approximately 750 cpm through a distance of 1⁄8 in. The table must be spring mounted at one end and fitted with steel calks on the underside of the other end. The calks are to make contact with the steel anvil once during each cycle at the completion of the fall. The rack must be operated under a spring tension of 60 to 70 lb. The test must be continued for 1 hour.

S14.5.1.2 Performance requirements. After completion of the vibration test a device showing evidence of material physical weakness, lens or reflector rotation, displacement or rupture of parts except bulb failures, must be considered to have failed, providing that the rotation of lens or reflector must not be considered as a failure when tests show compliance with specifications despite such rotation.

S14.5.2 Moisture test.

S14.5.2.1 Procedure. The sample device must be mounted in its normal operating position with all drain holes open and subjected to a precipitation of 0.1 in of water per minute, delivered at an angle of 45° from a nozzle with a solid cone spray. During the test the device must revolve about its vertical axis at a rate of 4 rpm for a period of 12 hours followed by a one hour drain period where the device does not rotate and the spray stops. After completion of the moisture test the device must be examined for moisture accumulation.

S14.5.2.2 Performance requirements. Accumulation of moisture in excess of 2 cc or any visible moisture in a sealed reflex unit must constitute a failure.

S14.5.3 Dust test.

S14.5.3.1 Samples. A sealed unit is not required to meet the requirements of this test.

S14.5.3.2 Procedure. The sample device with any drain hole closed must be mounted in its normal operating position, at least 6 in from the wall in a cubical box with inside measurements of 3 ft on each side containing 10 lb of fine powered cement in accordance with ASTM C150–56 (incorporated by reference, see § 571.5). At intervals of 15 minutes during a test period of 5 hours, the dust must be agitated by compressed air or fan blower by projecting blasts of air for a 2 second period in a downward direction into the dust in such a way that the dust is completely and uniformly diffused throughout the entire cube and allowed to settle. After the completion of the dust test the exterior surface of the device must be cleaned.

S14.5.3.3 Performance requirements. If after a photometry test the maximum photometric intensity of the device is not more than 10% less than the maximum photometric intensity of the same device after being cleaned both inside and outside, the device is considered to have met the requirements of the dust test.

S14.5.4 Corrosion test.

S14.5.4.1 Procedure. The sample device must be subjected to a salt spray (fog) test in accordance with the latest version of ASTM B117–73 (Reapproved 1979) (incorporated by reference, see
§ 571.108

§ 571.108, for a period of 50 hours, consisting of two periods of 24 hour exposure followed by a 1 hr drying time.

§ 571.5.4.2 Performance requirements. After the completion of the corrosion test there must be no evidence of excessive corrosion which would affect the proper function of the device.

§ 571.5 Performance requirements. After the completion of the corrosion test there must be no evidence of excessive corrosion which would affect the proper function of the device.

§ 571.5.4.2 Performance requirements. After the completion of the corrosion test there must be no evidence of excessive corrosion which would affect the proper function of the device.

S14.5.4.2 Performance requirements. After the completion of the corrosion test there must be no evidence of excessive corrosion which would affect the proper function of the device.

S14.6 Headlamp physical test procedures and performance requirements.

S14.6.1 Abrasion test.

S14.6.1.1 Procedure.

S14.6.1.1.1 Abrading pad. A new, unused abrading pad constructed of 0000 steel wool not less than 2.5 ± 1 cm wide, rubber cemented to a rigid base shaped to the same vertical contour of the lens, is used for each test. The abrading pad support is equal in size to the pad and the center of the support surface is within ±2 mm of parallel to the lens surface. The “grain” of the pad is oriented perpendicular to the direction of motion. The density of the pad is such that when the pad is resting unweighted on the lens, the base of the pad is no closer than 3.2 mm to the lens at its closest point.

S14.6.1.1.2 Abrading pad alignment. A sample headlamp is mounted in the abrasion test fixture of Figure 5 with the lens facing upward. When mounted on its support and resting on the lens of the test headlamp, the abrading pad is then weighted such that a pad pressure of 14 ± 1 KPa. exists at the center and perpendicular to the face of the lens.

S14.6.1.1.3 Abrasion test procedure. The pad is cycled back and forth (1 cycle) for 11 cycles at 4 ± 0.8 in (10 ± 2 cm) per second over at least 80% of the lens surface, including all the area between the upper and lower aiming pads, but not including lens trim rings and edges. A pivot must be used if it is required to follow the contour of the lens.

S14.6.1.2 Performance requirements. After completion of the abrasion test the sample headlamp must meet the requirements of the applicable photometry tests of Table XIX and Table XVIII. A ¼° reaim is permitted in any direction at any test point.

S14.6.2 Chemical resistance test.

S14.6.2.1 Procedure.

S14.6.2.1.1 Test fluids. The five test fluids used in the chemical resistance test include:

(a) ASTM Reference Fuel C, which is composed of Isooctane 50% volume and Toluene 50% volume. Isooctane must conform to A2.7 in the ASTM Motor Fuels section (incorporated by reference, see § 571.5), and Toluene must conform to ASTM D362–84 (incorporated by reference, see § 571.5). ASTM Reference Fuel C must be used as specified in: Paragraph A2.3.2 and A2.3.3 of the ASTM Motor Fuels section (incorporated by reference, see § 571.5); and OSHA Standard 29 CFR 1910.106—Handling, Storage and Use of Flammable Combustible Liquids;

(b) Tar remover (consisting by volume of 45% xylene and 55% petroleum base mineral spirits);

(c) Power steering fluid (as specified by the vehicle manufacturer for use in the motor vehicle on which the headlamp is intended to be installed);

(d) Windshield washer fluid consisting of 0.5% monoethanolamine with the remainder 50% concentration of methanol/distilled water by volume; and

(e) Antifreeze (50% concentration of ethylene glycol/distilled water by volume).

S14.6.2.1.2 Fluid application. The entire exterior lens surface of the sample headlamp mounted in the headlamp test fixture and top surface of the lens-reflector joint is wiped once to the left and once to the right with a 6 inch square soft cotton cloth (with pressure equally applied) which has been saturated once in a container with 2 ounces of five different test fluids listed above. The lamp is wiped within 5 seconds after removal of the cloth from the test fluid. A new lamp sample may be used with each fluid.

S14.6.2.1.3 Test duration. After the headlamp sample has been wiped with the test fluid, it must be stored in its designed operating attitude for 48 hours at a temperature of 23 °C ± 4 °C and a relative humidity of 30% ±10%. At the end of the 48-hour period, the headlamp is wiped clean with a soft dry cotton cloth and visually inspected.

S14.6.2.2 Performance requirements. After completion of the chemical resistance test, the sample headlamp must have no surface deterioration,
coating delamination, fractures, deterioration of bonding or sealing materials, color bleeding, or color pickup visible without magnification and the headlamp must meet the requirements of the applicable photometry tests of Table XIX and Table XVIII. A \(\frac{1}{4}\)° reaim is permitted in any direction at any test point.

S14.6.3 Corrosion test.

S14.6.3.1 Procedure. A sample headlamp, mounted on a headlamp test fixture in designed operating position and including all accessory equipment necessary to operate in its normal manner, is subjected to a salt spray (fog) test in accordance with ASTM B117–73 (incorporated by reference, see §571.5), for 50 total hours, consisting of two periods of 24 hours exposure followed by a 1 hour drying period. If a portion of the device is completely protected in service, that portion is covered to prevent salt fog entry during exposure. After removal from the salt spray and the final 1 hour drying period, the sample headlamp is examined for corrosion that affects any other applicable tests contained in S14.6. If such corrosion is found, the affected test(s) must be performed on the corrosion sample and the results recorded.

S14.6.3.2 Performance requirements. After completion of the corrosion test, the sample headlamp must not have any observed corrosion which would result in the failure of any other applicable tests contained in S14.6 and no corrosion of the headlamp mounting and aiming mechanism that would result in the failure of the aiming adjustment tests, inward force test, or torque deflection test of S14.6.

S14.6.4 Corrosion-connector test.

S14.6.4.1 Procedure. A headlamp connector test must be performed on each filament circuit of the sample headlamp prior to the test in S14.6.4.1.2 according to Figure 4 and S14.6.15. The power source is set to provide 12.8 volts and the resistance must be set to produce 10 amperes.

S14.6.4.1.1 A headlamp connector test must be performed on each filament circuit of the sample headlamp prior to the test in S14.6.4.1.2 according to Figure 4 and S14.6.15. The power source is set to provide 12.8 volts and the resistance must be set to produce 10 amperes.

S14.6.4.1.2 The headlamp, with connector attached to the terminals, unfixtured and in its designed operating attitude with all drain holes, breathing devices or other designed openings in their normal operating positions, is subjected to a salt spray (fog) test in accordance with ASTM B117–73 (incorporated by reference, see §571.5), for 240 hours, consisting of ten successive 24-hour periods.

S14.6.4.1.3 During each period, the headlamp is mounted in the middle of the chamber and exposed for 23 hours to the salt spray. The spray is not activated during the 24th hour. The bulb is removed from the headlamp and from the test chamber during the one hour of salt spray deactivation and reinserted for the start of the next test period, at the end of the first and last three 23-hour periods of salt spray exposure, and at the end of any two of the fourth through seventh 23-hour periods of salt-spray exposure.

S14.6.4.1.4 The test chamber is closed at all times except for a maximum of 2 minutes which is allowed for removal or replacement of a bulb during each period.

S14.6.4.1.5 After the ten periods, the lens-reflector unit without the bulb must be immersed in deionized water for 5 minutes, then secured and allowed to dry by natural convection only.

S14.6.4.1.6 Using the voltage, resistance and pre-test set up of S14.6.4.1.1 the current in each filament circuit must be measured after the test conducted in S14.6.4.1.2.

S14.6.4.2 Performance requirements.

S14.6.4.2.1 After the completion of the corrosion-connector test, the sample headlamp must show no evidence of external or internal corrosion or rust visible without magnification.

S14.6.4.2.2 Loss of adhesion of any applied coating must not occur more than 3.2 mm from any sharp edge on the inside or out.

S14.6.4.2.3 Corrosion may occur on terminals only if the test current produced during the test of S14.6.4.1.6 is not less than 9.7 amperes.

S14.6.5 Dust test.

S14.6.5.1 Procedure.

S14.6.5.1.1 A sample headlamp, mounted on a headlamp test fixture, with all drain holes, breathing devices or other designed openings in their normal operating positions, is positioned within a cubical box, with inside measurements of 900 mm on each side or larger if required for adequate wall clearance (i.e., a distance of at least 150
mm between the headlamp and any wall of the box).

S14.6.5.1.2 The box contains 4.5 kg of fine powdered cement which conforms to the ASTM C150–77 (incorporated by reference, see §571.5). Every 15 minutes, the cement is agitated by compressed air or fan blower(s) by projecting blasts of air for a two-second period in a downward direction so that the cement is diffused as uniformly as possible throughout the entire box.

S14.6.5.1.3 This test is continued for five hours after which the exterior surfaces of the headlamp are wiped clean.

S14.6.5.2 Performance requirements. After completion of the dust test, the sample headlamp must meet the requirements of the applicable photometry tests of Table XIX and Table XVIII. A ¼° reaim is permitted in any direction at any test point.

S14.6.6 Temperature cycle test and internal heat test.

S14.6.6.1 Samples. A sample headlamp with one or more replaceable light sources is tested according to the procedures of this section for a temperature cycle test and an internal heat test. The same sample headlamp is used in the temperature cycle test and then in the internal heat test.

S14.6.6.2 General procedure.

S14.6.6.2.1 Tests are made with all filaments lighted at design voltage that are intended to be used simultaneously in the headlamp and which in combination draw the highest total wattage. These include but are not limited to filaments used for turn signal lamps, fog lamps, parking lamps, and headlamp lower beams lighted with upper beams when the wiring harness is so connected on the vehicle.

S14.6.6.2.2 If a turn signal is included in the headlamp assembly, it is operated at 90 flashes a minute with a 75% ±2% current “on time.”

S14.6.6.2.3 If the lamp produces both the upper and lower beam, it is tested in both the upper beam mode and the lower beam mode under the conditions above described, except for a headlamp with a single type HB1 or type HB2 light source.

S14.6.6.3 Temperature cycle test.

S14.6.6.3.1 Procedure.

S14.6.6.3.1.1 A sample headlamp, mounted on a headlamp test fixture, is subjected to 10 complete consecutive cycles having the thermal cycle profile shown in Figure 6.

S14.6.6.3.1.2 During the hot cycle, the lamp, is energized commencing at point “A” of Figure 6 and de-energized at point “B.”

S14.6.6.3.1.3 Separate or single test chambers may be used to generate the environment of Figure 6.

S14.6.6.3.1.4 All drain holes, breathing devices or other openings or vents of the headlamps are set in their normal operating positions.

S14.6.6.3.2 Performance requirements. After completion of the temperature cycle test, the sample headlamp must:

(a) show no evidence of delamination, fractures, entry of moisture, or deterioration of bonding material, color bleeding, warp or deformation visible without magnification;

(b) show no lens warpage greater than 3 mm when measured parallel to the optical axis at the point of intersection of the axis of each light source with the exterior surface of the lens; and

(c) meet the requirements of the applicable photometry tests of Table XIX and Table XVIII. A ¼° reaim is permitted in any direction at any test point.

S14.6.6.4 Internal heat test.

S14.6.6.4.1 Procedure.

S14.6.6.4.1.1 A sample headlamp lens surface that would normally be exposed to road dirt is uniformly sprayed with any appropriate mixture of dust and water or other materials to reduce the photometric output at the H–V test point of the upper beam (or the ½D–1½°R test point of the lower beam as applicable) to 25% ±2% of the output originally measured in the applicable photometric compliance test.

S14.6.6.4.1.2 A headlamp with a single type HB1 or type HB2 light source is tested on the upper beam only.

S14.6.6.4.1.3 Such reduction is determined under the same conditions as that of the original photometric measurement.

S14.6.6.4.1.4 After the photometric output of the lamp has been reduced as specified above, the sample lamp and its mounting hardware must be mounted in an environmental chamber in a...
S14.6.6.4.2 Performance requirements. After completion of the temperature cycle test and meeting its requirements, and completion of the internal heat test, the sample headlamp must:

(a) have no lens warpage greater than 3 mm when measured parallel to the optical axis at the point of intersection of the axis of each light source with the exterior surface of the lens, and

(b) meet the requirements of the applicable photometry tests of Table XIX and Table XVIII. A 1/4" realm is permitted in any direction at any test point.

S14.6.7 Humidity test.

S14.6.7.1 Procedure.

S14.6.7.1.1 The test fixture consists of a horizontal steel plate to which three threaded steel or aluminum rods of 1/2 inch diameter are screwed vertically behind the headlamp.

S14.6.7.1.2 The sample headlamp assembly is clamped to the vertical rods, which are behind the headlamp. All attachments to the headlamp assembly are made behind the lens and vents or openings, and are not within 2 inches laterally of a vent inlet or outlet.

S14.6.7.1.3 The mounted headlamp assembly is oriented in its design operating position, and is placed in a controlled environment at a temperature of 100° + 7° – 0 °F (38° + 4° – 0 °C) with a relative humidity of not less than 90%. All drain holes, breathing devices, and other openings are set in their normal operation positions for all phases of the humidity test.

S14.6.7.1.4 The headlamp is subjected to 24 consecutive 3-hour test cycles. In each cycle, the headlamp is energized for 1 hour at design voltage with the highest combination of filament wattages that are intended to be used, and then de-energized for 2 hours. If the headlamp incorporates a turn signal then the turn signal flashes at 90 flashes per minute with a 75% ±2% current “on-time.”

S14.6.7.1.5 Within 3 minutes after the completion of the 24th cycle, the air flow test will begin. The following procedure shall occur: the mounted assembly is removed, placed in an insulating box and covered with foam material so that there is no visible air space around the assembly; the box is closed, taken to the air flow test chamber, and placed within it. Inside the chamber, the assembly with respect to the air flow, is oriented in its design operating position. The assembly is positioned in the chamber so that the center of the lens is in the center of the opening of the air flow entry duct during the test. The headlamp has at least 3 inches clearance on all sides, and at least 4 inches to the entry and exit ducts at the closest points. If vent tubes are used which extend below the lamp body, the 3 inches are measured from the bottom of the vent tube or its protection. The temperature of the chamber is 73° + 7° – 0 °F (23° + 4° – 0 °C) with a relative humidity of 30% + 10% – 0%. The headlamp is not energized.

S14.6.7.1.6 Before the test specified in paragraph S14.6.7.1.7 of this section, the uniformity of the air flow in the empty test chamber at a plane 4 inches downstream of the air entry duct is measured over a 4 inch square grid. The uniformity of air flow at each grid point is ±10% of the average air flow specified in paragraph S14.6.7.1.7 of this section.

S14.6.7.1.7 The mounted assembly in the chamber is exposed, for one hour, to an average air flow of 330 + 0 – 30 ft/ min as measured with an air velocity measuring probe having an accuracy of ±3% in the 330 ft/min range. The average air flow is the average of the velocity recorded at six points around the perimeter of the lens. The six points are determined as follows: At the center of the lens, construct a horizontal plane. The first two points are located in the plane, 1 inch outward from the intersection of the plane and each edge
of the lens. Then, trisect the distance between these two points and construct longitudinal vertical planes at the two intermediate locations formed by the trisection. The four remaining points are located in the vertical planes, one inch above the top edge of the lens, and one inch below the bottom edge of the lens.

S14.6.7.1.8 After one hour, the headlamp is removed and inspected for moisture.

S14.6.7.2 Performance requirements. After completion of the humidity test, the sample headlamp must show no evidence of interior delamination or moisture, fogging or condensation visible without magnification.

S14.6.8 Vibration test.

S14.6.8.1 Samples. The mounting bracket with a sample headlamp installed must not have a resonant frequency in the 10–55 Hz. range.

S14.6.8.2 Procedure. The mounted sample headlamp is bolted to the anvil end of the table of the vibration test machine of Figure 21 and vibrated 750 cpm through a distance of 1/8 in. The table is spring mounted at one end and fitted with steel calks on the underside of the other end. The table is of sufficient size to completely contain the test fixture base with no overhang. The calks are to make contact with the steel anvil once during each cycle at the completion of the fall. The rack is operated under a spring tension of 60 to 70 lb. The vibration is applied in the vertical axis of the headlamp as mounted on the vehicle. Bulb filaments are not energized during the test. The test is continued for 1 hour.

S14.6.8.3 Performance requirements. After completion of the vibration test, there must be no evidence of loose or broken parts, other than filaments, visible without magnification.

S14.6.9 Sealing test.

S14.6.9.1 Procedure.

S14.6.9.1.1 An unfixtureed sample headlamp in its design mounting position is placed in water at a temperature of 176° ± 5°F (80° ± 3°C) for one hour. The headlamp is energized in its highest wattage mode, with the test voltage at 12.8 ±0.1 V during immersion.

S14.6.9.1.2 The lamp is then de-energized and immediately submerged in its design mounting position into water at 32° + 5° – 0 °F (0° + 3° – 0 °C). The water is in a pressurized vessel, and the pressure is increased to 10 psi (70 kPa), upon placing the lamp in the water. The lamp must remain in the pressurized vessel for a period of thirty minutes.

S14.6.9.1.3 This entire procedure is repeated for four cycles.

S14.6.9.1.4 Then the lamp is inspected for any signs of water on its interior. During the high temperature portion of the cycles, the lamp is observed for signs of air escaping from its interior.

S14.6.9.2 Performance requirements. After completion of the sealing test, a sample headlamp confirmed to be sealed need not meet the corrosion test, dust test, or humidity test of this Section. If any water is on the interior or air escapes, the lamp is not a sealed lamp.

S14.6.10 Chemical resistance test of reflectors of replaceable lens headlamps test.

S14.6.10.1 Procedure.

S14.6.10.1.1 Test fluids. The three test fluids used in the chemical resistance test include:

(a) Tar remover (consisting by volume of 45% xylene and 55% petroleum base mineral spirits);

(b) Mineral spirits; and

(c) Fluids other than water contained in the manufacturer’s instructions for cleaning the reflector.

S14.6.10.1.2 Fluid application. With a sample headlamp in the headlamp test fixture and the lens removed, the entire surface of the reflector that receives light from a headlamp light source is wiped once to the left and once to the right with a 6-inch square soft cotton cloth (with pressure equally applied) which has been saturated once in a container with 2 ounces of one of the test fluids listed in S14.6.10.1.1. The lamp is wiped within 5 seconds after removal of the cloth from the test fluid.

S14.6.10.1.3 Test duration. After the headlamp has been wiped with the test fluid, it is stored in its designed operating attitude for 48 hours at a temperature of 70° ± 7 °F (23° ±4 °C) and a relative humidity of 30% ±10%. At the end of the 48-hour period, the headlamp is wiped clean with a soft dry cotton cloth and visually inspected.
§ 571.108

S14.6.10.2 Performance requirements. After completion of the chemical resistance test, the sample headlamp must have no surface deterioration, coating delamination, fractures, deterioration of bonding or sealing materials, color bleeding or color pickup visible without magnification and the headlamp must meet the requirements of the applicable photometry tests of Table XIX and Table XVIII. A ¼° re-aim is permitted in any direction at any test point.

S14.6.11 Corrosion resistance test of reflectors of replaceable lens headlamps test.

S14.6.11.1 Procedure.

S14.6.11.1.1 A sample headlamp with the lens removed, unfixed and in its designed operating attitude with all drain holes, breathing devices or other designed openings in their normal operating positions, must be subjected to a salt spray (fog) test in accordance with ASTM B117–73, Method of Salt Spray (Fog) Testing (incorporated by reference, see 571.108 S5.2 of this title), for 24 hours, while mounted in the middle of the chamber.

S14.6.11.1.2 Afterwards, the headlamp must be stored in its designed operating attitude for 48 hours at a temperature of 73 ± 7°F (23 ± 4°C) and a relative humidity of 30% ±10% and allowed to dry by natural convection only. At the end of the 48-hour period, the reflector must be cleaned according to the instructions supplied with the headlamp manufacturer’s replacement lens, and inspected. The lens and seal must then be attached according to these instructions and the headlamp tested for photometric performance.

S14.6.11.2 Performance requirements. After the completion of the corrosion test, the sample headlamp must show no evidence of corrosion or rust visible without magnification on any part of the headlamp reflector that receives light from a headlamp light source, on any metal light or heat shield assembly, or on a metal reflector of any other lamp. The sample headlamp with the replacement lens installed must meet the requirements of the applicable photometry tests of Table XIX and Table XVIII. A ¼° re-aim is permitted in any direction at any test point.

S14.6.12 Inward force test.

S14.6.12.1 Procedure. A sample headlamp mechanism, including the aiming adjusters, must be subjected to an inward force of 222 N directed normal to the headlamp aiming plane and symmetrically about the center of the headlamp lens face.

S14.6.12.2 Performance requirements. After the completion of the inward force test, a sample headlamp must not permanently recede by more than 2.5 mm. The aim of the headlamp must not permanently deviate by more than 3.2 mm at a distance of 7.6 m. The aim of any headlamp that is capable of being mechanically aimed by externally applied aiming devices must not change by more than 0.30°.

S14.6.13 Torque deflection test.

S14.6.13.1.1 The sample headlamp assembly is mounted in designed vehicle position and set at nominal aim (H = 0, V = 0).

S14.6.13.1.2 A sealed beam headlamp, except Type G and Type H, is removed from its mounting and replaced by the applicable deflectometer. (Type C and Type D-Figure 18, Type A and Type E-Figure 16, Type B-Figure 17, and Type F-Figure 14).

S14.6.13.1.3 Sealed beam headlamps Type G and Type H have the adapter of Figure 15 and the deflectometer of Figure 14 attached to the headlamp.

S14.6.13.1.4 A torque of 2.25 Nm must be applied to the headlamp assembly through the deflectometer and a reading on the thumbwheel is taken. The torque must be removed and a second reading on the thumbwheel is taken.

S14.6.13.1.5 Headlamps other than sealed beam headlamps must have the downward force used to create the torque applied parallel to the aiming reference plane, through the aiming pads, and displaced forward using a lever arm such that the force is applied on an axis that is perpendicular to the aiming reference plane and originates at the center of the aiming pad pattern (see Figure 9).

S14.6.13.1.6 For headlamps using the aiming pad locations of Group I, the distance between the point of application of force and the aiming reference plane is not less than 168.3 mm plus the distance from the aiming reference plane to the secondary plane, if used.
§ 571.108 49 CFR Ch. V (10–1–16 Edition)

S14.6.13.1.7 For headlamps using the aiming pad locations of Group II, the distance between the point of application of force and the aiming reference plane is not less than 167.9 mm plus the distance to the secondary plane, if used.

S14.6.13.1.8 For headlamps using the nonadjustable Headlamp Aiming Device Locating Plates for the 146 mm diameter, the 176 mm diameter, and the 92x150 mm sealed beam, the distance between the point of application of force and the aiming plane is not, respectively, less than 177.4 mm, 176.2 mm, and 193.7 mm.

S14.6.13.2 Performance requirements. The aim of each sample headlamp must not deviate more than 0.30° when the downward torque is removed.

S14.6.14 Retaining ring test.

S14.6.14.1 Procedure. A sample headlamp with the minimum flange thickness of: Type A–31.5 mm, Type B–10.1 mm, Type C–11.8 mm, Type D–11.8 mm, Type E–31.5 mm, and Type F–8.6 mm, is secured between the appropriate mounting ring and retaining ring (mounting ring and aiming ring for Type F).

S14.6.14.2 Performance requirements. The sample headlamp when secured per the procedure must be held tight enough that it will not rattle.

S14.6.15 Headlamp connector test.

S14.6.15.1 Procedure. A sample headlamp connected into the test circuit of Figure 4 has the power supply adjusted until 10 amperes DC are flowing through the circuit. The test is repeated for each filament circuit of the headlamp.

S14.6.15.2 Performance requirements. The voltage drop, as measured in the test circuit of Figure 4, must not exceed 40 mv DC in any applicable filament circuit of the sample headlamp.

S14.6.16 Headlamp wattage test.

S14.6.16.1 Procedure. A sample headlamp that has been seasoned is energized so as to have 12.8v ±20 mv DC applied across each filament circuit and the current flowing in each circuit is measured.

S14.6.16.2 Performance requirements. The wattage of each filament circuit of the sample headlamp must not exceed the applicable value for that type of headlamp as shown in Table II.

S14.6.17 Aiming adjustment test-laboratory.

S14.6.17.1 Procedure. A sample headlamp is mounted in design position at nominal (H = 0, V = 0) aim with an accurate measuring device such as a spot projector or other equally accurate means attached. The headlamp is adjusted to the extremes of travel in each horizontal and vertical direction.

S14.6.17.2 Performance requirements. Visually aimed lower beam headlamps without a VHAD are required not to have a horizontal adjustment mechanism and horizontal aim range requirements do not apply.

S14.6.17.2.1 A sample sealed beam headlamp, other than a Type F, tested per the procedure must provide a minimum of ±4.0° adjustment range in both the vertical and horizontal planes and if equipped with independent vertical and horizontal aiming screws, the adjustment must be such that neither the vertical nor horizontal aim must deviate more than 100 mm from horizontal or vertical planes, respectively, at a distance of 7.6 m through an angle of ±4.0°.

S14.6.17.2.2 A sample Type F sealed beam, integral beam, replaceable bulb, or combination headlamp tested per the procedure must provide a minimum of ±4.0° adjustment range in the vertical plane and ±2.5° in the horizontal plane and if equipped with independent vertical and horizontal aiming screws, the adjustment must be such that neither the vertical nor horizontal aim must deviate more than 100 mm from horizontal or vertical planes, respectively, at a distance of 7.6 m through an angle of ±2.5° and ±4.0°, respectively.

S14.6.17.2.3 A sample headlamp that is aimed by moving the reflector relative to the lens and headlamp housing, and vice versa must provide a minimum adjustment range in the vertical plane not less than the full range of the pitch on the vehicle on which it is installed and ±2.5° in the horizontal plane.

S14.6.18 Aiming adjustment test-on vehicle.

S14.6.18.1 Procedure.

S14.6.18.1.1 A sample headlamp is mounted on the vehicle at nominal (H
§ 571.108

= 0, \(V = 0 \) aim with an accurate measuring device such as a spot projector or other equally accurate means attached.

S14.6.18.1.2 The installed range of static pitch angle is, at a minimum, determined from unloaded vehicle weight to gross vehicle weight rating, and incorporates pitch angle effects from maximum trailer or trunk loadings, the full range of tire intermix sizes and suspensions recommended and/or installed by the vehicle manufacturer, and the anticipated effects of variable passenger loading.

S14.6.18.1.3 The headlamp is adjusted to the extremes of travel in each horizontal and vertical direction.

S14.6.18.2 Performance requirements.

S14.6.18.2.1 A sample headlamp tested per the procedure must provide a minimum vertical adjustment range not less than the full range of pitch of the vehicle on which it is installed.

S14.6.18.2.2 The vertical aim mechanism must be continuously variable over the full range.

S14.6.18.2.3 The adjustment of one aim axis through its full on-vehicle range must not cause the aim of the other axis to deviate more than \(\pm 0.76° \).

If this performance is not achievable, the requirements of S10.18.3.1 apply, except that if the aiming mechanism is not a VHAD, the requirements specific to VHADs are not applicable, and the instruction must be specific to the aiming mechanism installed.

S14.7 Replaceable light source physical test procedures and performance requirements.

S14.7.1 Deflection test for replaceable light sources.

S14.7.1.1 Procedure.

S14.7.1.1.1 With the sample light source rigidly mounted in a fixture in a manner indicated in Figure 8, a force 4.0 ±0.1 pounds (17.8 ±0.4N) is applied at a distance “A” from the reference plane perpendicular to the longitudinal axis of the glass capsule and parallel to the smallest dimension of the pressed glass capsule seal.

S14.7.1.1.2 The force is applied (using a rod with a hard rubber tip with a minimum spherical radius of .039 in [1 mm]) radially to the surface of the glass capsule in four locations in a plane parallel to the reference plane and spaced at a distance “A” from that plane. These force applications are spaced 90° apart starting at the point perpendicular to the smallest dimension of the pressed seal of the glass capsule.

S14.7.1.1.3. The bulb deflection is measured at the glass capsule surface at 180° opposite to the force application. Distance “A” for a replaceable light source other than an HB Type is the dimension provided in accordance with appendix A of part 564 of this chapter, section I.A.1 if the light source has a lower beam filament, or as specified in section I.B.1 if the light source has only an upper beam filament.

S14.7.1.2 Performance requirements. After completion of the deflection test, a sample light source must have no permanent deflection of the glass envelope exceeding 0.13 mm in the direction of applied force.

S14.7.2 Pressure test for replaceable light sources.

S14.7.2.1 Procedure.

S14.7.2.1.1 The capsule, lead wires and/or terminals, and seal on each sample Type HB1, Type HB3, Type HB4, and Type HB5 light source, and on any other replaceable light source which uses a seal, is installed in a pressure chamber as shown in Figure 10 so as to provide an airtight seal. The diameter of the aperture in Figure 10 on a replaceable light source (other than an HB Type) must be that dimension furnished for such light source in compliance with appendix A or appendix B of part 564 of this chapter.

S14.7.2.1.2 The light source is immersed in water for one minute while inserted in a cylindrical aperture specified for the light source, and subjected to an air pressure of 70 KPa (10 psig) on the glass capsule side.

S14.7.2.2 Performance requirements. After completion of the pressure test, the sample light source with an airtight seal on the low pressure (connector side) must show no evidence of air bubbles on that side.

S14.7.3 Replaceable light source power and flux measurement procedures. The measurement of maximum power and luminous flux that is submitted in compliance with section VII of appendix A of part 564 of this chapter, or section IV of appendix B of part 564 of this
§ 571.108 49 CFR Ch. V (10–1–16 Edition)

chapter, is made in accordance with this paragraph.

S14.7.3.1 *Seasoning.* The filament or discharge arc is seasoned before measurement of either maximum power and luminous flux.

S14.7.3.1.1 *Resistive filament source.* Seasoning of a light source with a resistive element type filament is made in accordance with this S14.2.5.4 of this standard.

S14.7.3.1.2 *Discharge source.* For a light source using excited gas mixtures as a filament or discharge arc, seasoning of the light source system, including any ballast required for its operation, is made in accordance with section 4.0 of SAE Recommended Practice J2009 (1993) (incorporated by reference, see §571.5).

S14.7.3.2 *Test voltage.* Measurements are made with a direct current test voltage of 12.8 v regulated within one quarter of one percent.

S14.7.3.3 *Luminous flux measurement.* The measurement of luminous flux is made in accordance with IES LM 45 (incorporated by reference, see §571.5).

S14.7.3.3.1 *Resistive filament light source setup.* Luminous flux measurements are made with the black cap installed on Type HB1, Type HB2, Type HB4, and Type HB5, and on any other replaceable light source so designed; and is with the electrical conductor and light source base shrouded with an opaque white cover, except for the portion normally located within the interior of the lamp housing. The measurement of luminous flux for the Types HB3 and HB4 is made with the base covered with a white cover as shown in the drawings for Types HB3 and HB4 filed in Docket No. NHTSA 98–3397. The white covers are used to eliminate the likelihood of incorrect lumen measurement that will occur should the reflectance of the light source base and electrical connector be low.

S14.7.3.3.2 *Discharge light source setup.* With the test voltage applied to the ballast input terminals, the measurement of luminous flux is made with the black cap installed, if so designed, and is made with an opaque white colored cover, except for the portion normally located within the interior of the lamp housing.

S14.8 *Vehicle headlamp aiming devices (VHAD) physical test procedures and performance requirements.*

S14.8.1 *Samples.* The same VHAD and associated headlamp(s) or headlamp assembly must be rigidly mounted in a headlamp test fixture with the aiming plane horizontal and vertical and with the scale on the device set at 0.

S14.8.2 *Scale graduation test.*

S14.8.2.1 *Procedure.* Check each graduation on the horizontal and vertical aim scales.

S14.8.2.2 *Performance requirements.* Scale graduation from correct aim must not exceed ±0.2° horizontally and ±0.1° vertically.

S14.8.3 *Cold scale graduation test.*

S14.8.3.1 *Procedure.* The VHAD and an unlighted headlamp assembly must then be stabilized at −7° ±3 °C in a circulating air environmental test chamber for a 30 minute temperature soak.

S14.8.3.2 *Performance requirements.* After completion of a 30 minute temperature soak the variation from correct aim shown by the sample VHAD must not exceed ±0.2° horizontally and ±0.1° vertically.

S14.8.4 *Hot scale graduation test.*

S14.8.4.1 *Procedure.* The VHAD and the headlamp assembly with its highest wattage filament, or combination of filaments intended to be used simultaneously, energized at its design voltage, is then stabilized at 38° ±3 °C in a circulating air environmental test chamber for a 30 minute temperature soak.

S14.8.4.2 *Performance requirements.* After completion of a 30 minute temperature soak the variation from correct aim shown by the sample VHAD must not exceed ±0.2° horizontally and ±0.1° vertically.

S14.8.5 *Thermal cycle test.*

S14.8.5.1 *Procedure.* The VHAD and an unlighted headlamp assembly are then placed in a circulating air environmental test chamber and exposed to a temperature of 60° ±5 °C for 24 hours, followed by a temperature of −40° ±3 °C for 24 hours, and are then permitted to return to room temperature.

S14.8.5.2 *Performance requirements.* After completion of the thermal cycle test the variation from correct aim shown by the sample VHAD must not exceed ±0.2° horizontally and ±0.1° vertically.
vertically and the VHAD and headlamp assembly must show no damage which would impair its ability to perform as specified in this standard.

S14.8.6 Corrosion test.
S14.8.6.1 Procedure. The VHAD and headlamp assembly are then tested according to the headlamp corrosion test of S14.6.3.
S14.8.6.2 Performance requirements. After completion of the corrosion test the sample VHAD and headlamp must not have any observed corrosion that would result in the failure of any other applicable tests contained in this section.

S14.8.7 Photometry test.
S14.8.7.1 Procedure. The VHAD and headlamp assembly are then tested for photometric compliance according to the procedure of S14.2.5 and for replacement units per S10.18.8.4.
S14.8.7.2 Performance requirements. The sample headlamp must comply with the applicable photometric requirements of Table XIX and Table XVIII and with replacement units installed per S10.18.8.4.

S14.9 Associated equipment physical test procedures and performance requirements.

S14.9.1 Turn signal operating unit durability test.
S14.9.1.1 Power supply specifications. During the test, the unit is operated at 6.4 volts for 6 volt systems or 12.8 volts for 12 volt systems from a power supply meeting the following requirements:
(a) An output current that is at least 10 times the load current;
(b) Voltage regulation that allows a voltage change of less than 5%;
(c) Ripple voltage of not more than 5%;
(d) A response time of not more than 25 milliseconds rise time from 0 to rated current at rated voltage in a pure resistance circuit; and
(e) An output impedance of not more than 0.005 ohms dc.
S14.9.1.2 Procedure. S14.9.1.2.1 The sample unit is operated with the maximum bulb load it will experience on the vehicle on which it will be installed. Bulbs that fail during the test are replaced. The turn signal flasher is not to be included in the test circuit. When the unit includes a self-canceling means, the test equipment is arranged so that the unit will be turned “off” in its normal operating manner.
S14.9.1.2.2 The test is conducted at a rate not to exceed 15 complete cycles per minute. One complete cycle consists of the following sequence: Off, left turn, off, right turn, and return to off.
S14.9.1.2.3 The voltage drop from the input terminal of the device to each lamp output terminal, including 3 in of 16 or 18 gage wire, is measured at the start of the test, at intervals of not more than 25,000 cycles during the test, and at the completion of the test.
S14.9.1.3 Performance requirements.
S14.9.1.3.1 A turn signal operating unit is considered to have met the requirements of the durability test if the unit remains operational after completing at least 100,000 cycles, and the voltage drop between the input contact and any output contact, including required length of wire, does not exceed 0.25 volts.
S14.9.1.3.2 A turn signal operating unit is considered to have met the requirements of the durability test if it remains operational after completing at least 175,000 cycles for a unit installed on a multipurpose passenger vehicle, truck, or bus 2032 mm or more in overall width, and the voltage drop between the input contact and any output contact, including required length of wire, does not exceed 0.25 volts.
S14.9.1.3.3 If stop signals also operate through the turn signal operating unit, the voltage drop of any additional switch contacts must meet the same requirements as the turn signal contacts.

S14.9.2 Vehicular hazard warning signal operating unit durability test.
S14.9.2.1 Procedure.
S14.9.2.1.1 The sample unit is operated at its rated voltage with the maximum bulb load it will experience on the vehicle on which it will be installed. Bulbs that fail during the test are replaced. The hazard warning signal flasher is not to be included in the test circuit.
S14.9.2.1.2 The unit is turned “on” and “off” in its normal operating manner at a rate not to exceed 15 complete cycles per minute. One complete cycle consists of the sequence: Off, on, and return to off. The test consists of 10,000
cycles at an ambient temperature of 75 ±10 °F followed by 1 hour constant “on” at the same temperature.

S14.9.2.1.3 The voltage drop from the input terminal of the device to each lamp output terminal, including 3 in of 16 or 18 gage wire, is measured at the start of the test and at the completion of the test.

S14.9.2.2 Performance requirements. A hazard warning signal operating unit is considered to have met the requirements of the durability test if it remains operational after completing 10,000 cycles and the 1 hour constant “on” and the voltage drop between the input contact and any output contact, including required length of wire, does not exceed 0.3 volts for either 6.4 or 12.8 line voltage both at the start and completion of the test.

S14.9.3 Turn signal flasher and vehicular hazard warning signal flasher tests.

S14.9.3.1 Standard test circuit. All turn signal flasher and vehicular hazard warning signal flasher tests use the standard test circuit of Figure 22.

S14.9.3.1.1 Test circuit setup.

S14.9.3.1.1.1 The effective series resistance in the total circuit between the power supply and the bulb sockets (excluding the flasher and bulb load(s) using shorting bars) is 0.10 ±0.01 ohm.

S14.9.3.1.1.2 The circuit resistance at A–B of Figure 22 is measured with flasher and bulb load(s) each shorted out with an effective shunt resistance not to exceed 0.005 ohms.

S14.9.3.1.1.3 The voltage to the bulbs at C–D of Figure 22 is adjusted to 12.8 volts (or 6.4 volts) with the flasher shorted out by an effective shunt resistance not to exceed 0.005 ohms. The load current is adjusted by simultaneously adjusting trimmer resistors, R.

S14.9.3.1.1.4 For testing fixed-load flashers at other required voltages, adjust the power supply to provide required voltages, at the required temperatures, at C–D of Figure 22, without readjustment of trimming resistors, R (each such required voltage being set with the minimum required load in place). The required voltage tests with the maximum load are conducted without readjusting each corresponding power supply voltage, previously set with minimum bulb load.

S14.9.3.1.1.6 A suitable high impedance measuring device connected to points X–Y in Figure 22 is used for measuring flash rate, percent current “on” time, and voltage drop across the flasher. The measurement of these quantities does not affect the circuit.

S14.9.3.2 Power supply specifications.

S14.9.3.2.1 Starting time, voltage drop, and flash rate and percent current “on” time tests. The power supply used in the standard test circuit for conducting the starting time, the voltage drop, and the flash rate and percent current “on” time tests must comply with the following specifications:

(a) Must not generate any adverse transients not present in motor vehicles;

(b) Be capable of supplying 11–16 vdc for 12 volt flashers and 5–9 vdc for 6 volt flashers to the input terminals of the standard test circuit;

(c) Be capable of supplying required design current(s) continuously and inrush currents as required by the design bulb load complement;

(d) Be capable of supplying an output voltage that does not deviate more than 2% with changes in the static load from 0 to maximum (not including inrush current) nor for static input line voltage variations;

(e) Be capable of supplying an output voltage that does not deviate more than 1.0 vdc from 0 to maximum load (including inrush current) and must recover 63% of its maximum excursion within 100 μsec; and

(f) Have a ripple voltage of 75mv, peak to peak.

S14.9.3.2.2 Durability tests. The power supply used in the standard test circuit for conducting durability tests must comply with the following specifications:

(a) Must not generate any adverse transients not present in motor vehicles;

(b) Be capable of supplying 13 vdc and 14 vdc for 12 volt flashers and 6.5 vdc and 7 vdc for 6 volt flashers to the
input terminals of the standard test circuit;

(c) Be capable of supplying a continuous output current of the design load for one flasher times the number of flashers and inrush currents as required by the design bulb load complement;

(d) Be capable of supplying an output voltage that does not deviate more than 2% with changes in the static load from 0 to maximum (not including inrush current) and means must be provided to compensate for static input line voltage variations;

(e) Be capable of supplying an output voltage that does not deviate more than 1.0 vdc from 0 to maximum load (including inrush current) and must recover 63% of its maximum excursion within 5 μsec; and

(f) Have a ripple voltage of 300 mv, peak to peak.

§571.108

S14.9.3.3 Turn signal flasher starting time test.

S14.9.3.3.1 Samples. Twenty sample flashers chosen from random from fifty representative samples are subjected to a starting time test using the standard test circuit.

S14.9.3.3.2 Procedure.

S14.9.3.3.2.1 The test is conducted in an ambient temperature of 75 ±10 °F with the design load (variable load flashers are tested with their minimum and their maximum design load) connected and the power source for the test circuit adjusted to apply design voltage at the bulbs.

S14.9.3.3.2.2 The time measurement starts when the voltage is initially applied. Compliance is based on an average of three starts for each sample separated by a cooling interval of 5 minutes.

S14.9.3.3.3 Performance requirements. The requirements of the starting time test are considered to have been met if 17 of 20 samples comply with the following:

(a) A flasher having normally closed contacts must open (turn off) within 1.0 second for a device designed to operate two signal lamps, or within 1.25 seconds for a device designed to operate more than two lamps, or

(b) A flasher having normally open contacts must complete the first cycle (close the contacts and then open the contacts) within 1.5 seconds.

S14.9.3.4 Turn signal flasher voltage drop test.

S14.9.3.4.1 Samples. The same twenty sample flashers used in the starting time test are subjected to a voltage drop test using the standard test circuit.

S14.9.3.4.2 Procedure.

S14.9.3.4.2.1 The test is conducted in an ambient temperature of 75 ±10 °F with the design load (variable load flashers are tested with their maximum design load) connected and the power source for the standard test circuit adjusted to apply 12.8 volts or 6.4 volts at the bulbs according to the flasher rating.

S14.9.3.4.2.2 The voltage drop is measured between the input and load terminals of the flasher during the “on” period after the flashers have completed at least five consecutive cycles.

S14.9.3.4.3 Performance requirements. The requirements of the voltage drop test are considered to have been met if 17 of 20 samples comply with the lowest voltage drop across any flasher not exceeding 0.80 volt.

S14.9.3.5 Turn signal flasher flash rate and percent current “on” time test.

S14.9.3.5.1 Samples. The same twenty sample flashers used in the voltage drop test are subjected to a flash rate and percent of current “on” time test.

S14.9.3.5.2 Procedure.

S14.9.3.5.2.1 The test is conducted using the standard test circuit with the design load (variable load flashers are tested with their minimum and their maximum design load) connected and design voltage applied to the bulbs.

S14.9.3.5.2.2 Compliance is determined using the following combinations of ambient temperature and bulb voltage:

(a) 12.8 volts (or 6.4 volts) and 75 ± 10 °F,
(b) 12.0 volts (or 6.0 volts) and 0 ± 5 °F,
(c) 15.0 volts (or 7.5 volts) and 0 ± 5 °F,
(d) 11.0 volts (or 5.5 volts) and 125 ± 5 °F, and
(e) 14.0 volts (or 7.0 volts) and 125 ± 5 °F.

S14.9.3.5.2.3 Flash rate and percent current “on” time are measured after
§ 571.108

the flashers have completed five consecutive cycles and are determined by an average of at least three consecutive cycles.

S14.9.3.5.3 Performance requirements. The requirements of the flash rate and percent current “on” time test are considered to have been met if 17 of 20 samples comply with the following:

(a) The performance of a normally closed type flasher must be within the unshaded portion of the polygon shown in Figure 2, or

(b) The performance of a normally open type flasher must be within the entire rectangle including the shaded areas shown in Figure 2.

S14.9.3.6 Turn signal flasher durability test.

S14.9.3.6.1 Samples. Twenty sample flashers chosen from random from the thirty samples not used in the previous tests are subjected to a durability test.

S14.9.3.6.2 Procedure.

(a) The performance of a normally closed type flasher must be within the unshaded portion of the polygon shown in Figure 2, or

(b) The performance of a normally open type flasher must be within the entire rectangle including the shaded areas shown in Figure 2.

S14.9.3.7 Vehicular hazard warning signal flasher starting time test.

S14.9.3.7.1 Samples. Twenty sample flashers chosen from random from fifty representative samples are subjected to a starting time test using the standard test circuit.

S14.9.3.7.2 Procedure. The test is conducted in an ambient temperature of 75° ±10 °F with the minimum and maximum load connected and the power source for the test circuit adjusted to apply design voltage at the bulbs.

S14.9.3.7.2.2 The time measurement starts when the voltage is initially applied.

S14.9.3.7.3 Performance requirements. The requirements of the starting time test are considered to have been met if 17 of 20 samples comply with the following:

(a) A flasher having normally closed contacts must open (turn off) within 1.5 seconds after the voltage is applied, or

(b) A flasher having normally open contacts must complete the first cycle (close the contacts and then open the contacts) within 1.5 seconds after the voltage is applied.

S14.9.3.8 Vehicular hazard warning signal flasher voltage drop test.

S14.9.3.8.1 Samples. The same twenty sample flashers used in the starting time test are subjected to a voltage drop test using the standard test circuit.

S14.9.3.8.2 Procedure.

(a) The test is conducted in an ambient temperature of 75° ±10 °F with the maximum design load connected and the power source for the test circuit adjusted to apply design voltage at the bulbs.

S14.9.3.8.2.2 The voltage drop is measured between the input and load terminals of the flasher during the “on” period after the flashers have completed at least five consecutive cycles.

S14.9.3.8.3 Performance requirements. The requirements of the voltage drop test are considered to have been met if 17 of 20 samples comply with the lowest voltage drop across any flasher must not exceed 0.8 volt.

S14.9.3.9 Vehicular hazard warning signal flasher flash rate and percent “on” time test.

S14.9.3.9.1 Samples. The same twenty sample flashers used in the voltage drop test are subjected to a flash rate and percent of current “on” time test.

S14.9.3.9.2 Procedure.
§ 571.108

S14.9.3.9.2.1 The test is conducted using the standard test circuit by and applying loads of from two signal lamps to the maximum design loading including pilot indicator.

S14.9.3.9.2.2 Compliance is determined using the following combinations of ambient temperature and bulb voltage:

(a) 12.8 volts (or 6.4 volts) and 75° ± 10° F,
(b) 11.0 volts (or 5.5 volts) and 125° ± 5° F,
(c) 11.0 volts (or 5.5 volts) and 0° ± 5° F,
(d) 13.0 volts (or 6.5 volts) and 125° ± 5° F, and
(e) 13.0 volts (or 6.5 volts) and 0° ± 5° F.

S14.9.3.9.2.3 Flash rate and percent current "on" time are measured after the flashers have completed five consecutive cycles and are determined by an average of at least three consecutive cycles.

S14.9.3.9.3 Performance requirements. The requirements of the flash rate and percent current "on" time test are considered to have been met if 17 of 20 samples comply with the following:

(a) The performance of a normally closed type flasher must be within the unshaded portion of the polygon shown in Figure 2, or
(b) The performance of a normally open type flasher must be within the entire rectangle including the shaded areas shown in Figure 2.

S14.9.3.10 Vehicular hazard warning signal flasher durability test.

S14.9.3.10.1 Samples. Twenty sample flashers chosen from random from the thirty samples not used in the previous tests are subjected to a durability test.

S14.9.3.10.2 Procedure.

S14.9.3.10.2.1 Conformance of the samples to the starting time, voltage drop, and flash rate and percent of current "on" time tests (limited to the 12.8 volts or 6.4 volts and 75° ± 10° F test condition only) is established.

S14.9.3.10.2.2 The test is conducted on each sample with the maximum design load connected and 13.0 volts (or 6.5 volts) applied to the input terminals of the standard test circuit.

S14.9.3.10.2.3 The flasher is subjected to continuous flashing for a total time of 36 hours in an ambient temperature of 75° ± 10° F.

S14.9.3.10.3 Performance requirements. The requirements of the durability test are considered to have been met if, after completion, 17 of 20 samples comply with the performance requirements of the starting time, voltage drop, and flash rate and percent of current "on" time tests (limited to the 12.8 volts or 6.4 volts and 75° ± 10° F test condition only) when tested in the standard test circuit with the power source adjusted to provide design voltage to the bulbs and with a minimum load of two signal lamp bulbs and the maximum design load, including pilot lamps, as specified by the manufacturer at an ambient temperature of 75° ± 10° F.

S14.9.3.11 Semiautomatic headlamp beam switching device tests.

S14.9.3.11.1 Test conditions. All tests are conducted with 13 volts input to the device unless otherwise specified.

S14.9.3.11.2 Sensitivity test.

S14.9.3.11.2.1 Samples. The sample device is mounted in and operated in the laboratory in the same environment as that encountered on the vehicle, that is tinted glass, grille work, etc.

S14.9.3.11.2.2 Procedure.

S14.9.3.11.2.2.1 The sample device is adjusted for sensitivity in accordance with the manufacturer's instructions. It is exposed to a light source capable of providing a variable intensity of at least 1.5 cd to 150 cd at 100 feet from the sample device.

S14.9.3.11.2.2.2 The device is switched to the lower beam mode in accordance with the "dim" limits specified and switched back to the upper beam mode in accordance with the "hold" limits specified for the specified test positions.

S14.9.3.11.2.3 To provide more complete information on sensitivity throughout the required vertical and horizontal angles, a set of constant footcandle curves are made at "dim" sensitivities of 17, 25, and 100 cd at 100 ft.

S14.9.3.11.3 Performance requirements.

S14.9.3.11.3.1 Operating limits.
<table>
<thead>
<tr>
<th>Test position (degrees)</th>
<th>Dim (cd at 100 ft)</th>
<th>Hold (cd at 100 ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H V</td>
<td>Adjust to 15</td>
<td>1.5 min to 3.75 max</td>
</tr>
<tr>
<td>H 2L</td>
<td>25 max</td>
<td>1.5 min.</td>
</tr>
<tr>
<td>H 4L</td>
<td>40 max</td>
<td>1.5 min.</td>
</tr>
<tr>
<td>H 6L</td>
<td>75 max</td>
<td>1.5 min.</td>
</tr>
<tr>
<td>H 2R</td>
<td>25 max</td>
<td>1.5 min.</td>
</tr>
<tr>
<td>H 5R</td>
<td>150 max to 40 min</td>
<td>1.5 min.</td>
</tr>
<tr>
<td>1D V</td>
<td>30 max</td>
<td>1.5 min.</td>
</tr>
</tbody>
</table>

S14.9.3.11.2.3.2 There must be no sensitivity voids shown in the constant footcandle curves within the area limited by the test positions.

S14.9.3.11.3 Voltage regulation test.

S14.9.3.11.3.1 Procedure.

S14.9.3.11.3.1.1 The sensitivity of the sample device is adjusted so that it complies with the sensitivity test.

S14.9.3.11.3.1.2 The "dim" sensitivity is measured at the H–V test position at 11 volts input to the device and at 15 volts input to the device.

S14.9.3.11.3.2 Performance requirements. The device must switch to the lower beam mode at between 8 (cd at 100 ft) and 25 (cd at 100 ft) with the input voltage at 11 volts and at 15 volts.

S14.9.3.11.4 Manual override test.

S14.9.3.11.4.1 Procedure.

S14.9.3.11.4.1.1 The sensitivity of the sample device is adjusted so that it complies with the sensitivity test.

S14.9.3.11.4.1.2 The device is exposed to a test light that causes it to switch to the lower beam mode.

S14.9.3.11.4.1.3 The manufacturer's instructions are followed to cause the device to override the test light and switch to upper beam.

S14.9.3.11.4.1.4 In a similar manner, the test light is extinguished to cause the device to switch to the upper beam mode.

S14.9.3.11.4.1.5 Again the manufacturer's instructions are followed to cause the device to switch to lower beam.

S14.9.3.11.4.2 Performance requirements. The device, when operated in accordance with the manufacturer's instructions, must switch to the opposite beam with the test light energized and with the test light extinguished.

S14.9.3.11.5 Warmup test.

S14.9.3.11.5.1 Procedure.

S14.9.3.11.5.1.1 The sensitivity of the sample device is adjusted so that it complies with the sensitivity test and the test lamp extinguished.

S14.9.3.11.5.1.2 The test lamp will then be energized at a level of 25 (cd at 100 ft) at the H–V position of the device and the time for the device to switch to lower beam is measured.

S14.9.3.11.5.2 Performance requirements. If the warmup time of the device exceeds 10 seconds it shall maintain the headlamps on lower beam during warmup.

S14.9.3.11.6 Temperature test.

S14.9.3.11.6.1 Procedure.

S14.9.3.11.6.1.1 The sample device is exposed for 1 hour in a temperature corresponding to that at the device mounting location.

S14.9.3.11.6.1.2 For a device mounted in the passenger compartment or the engine compartment, the temperature is 210 °F, mounted elsewhere, the temperature is 150 °F.

S14.9.3.11.6.1.3 After this exposure the H–V "dim" sensitivity of the sample device is measured over the temperature range of −30 °F to + 100 °F.

S14.9.3.11.6.2 Performance requirements. The device must switch to the lower beam mode between 8 (cd at 100 ft) and 25 (cd at 100 ft) over the temperature range of −30 °F to + 100 °F.

S14.9.3.11.7 Dust test.

S14.9.3.11.7.1 Procedure.

S14.9.3.11.7.1.1 The sensitivity of the sample device is adjusted so that it complies with the sensitivity test.

S14.9.3.11.7.1.2 The device is then subjected to the dust test of S14.5.3.

S14.9.3.11.7.1.3 At the conclusion of the dust exposure the lens of the device must be wiped clean and the H–V "dim" sensitivity of the sample device is measured.

S14.9.3.11.7.2 Performance requirements. The device must switch to the
lower beam mode between 8 (cd at 100 ft) and 25 (cd at 100 ft).
S14.9.3.11.8 Corrosion test.
S14.9.3.11.8.1 Procedure.
S14.9.3.11.8.1.1 The sensitivity of the sample device is adjusted so that it complies with the sensitivity test.
S14.9.3.11.8.1.2 All system components located outside the passenger compartment must be subjected to the corrosion test of S14.5.4 with the device not operating.
S14.9.3.11.8.1.3 Water is not permitted to accumulate on any connector socket.
S14.9.3.11.8.1.4 At the conclusion of the test the H–V “dim” sensitivity of the sample device must be measured.
S14.9.3.11.9 Vibration test.
S14.9.3.11.9.1 Procedure.
S14.9.3.11.9.1.1 The sensitivity of the sample device is adjusted so that it complies with the sensitivity test and the mechanical aim of the photounit determined.
S14.9.3.11.9.1.2 The sample device must be mounted in proper vehicle position and subjected to vibration of 5g constant acceleration for ½ hour in each of three directions: vertical; horizontal and parallel to the vehicle longitudinal axis; and horizontal and normal to the vehicle longitudinal axis.
S14.9.3.11.9.1.3 The vibration frequency must be varied from 30 to 200 and back to 30 cycles per second over a period of approximately 1 minute.
S14.9.3.11.9.1.4 The device must be operating during the test.
S14.9.3.11.9.1.5 At the conclusion of the test the H–V “dim” sensitivity of the sample device and the mechanical aim of the photounit must be measured.
S14.9.3.11.9.2 Performance requirements.
S14.9.3.11.9.2.1 The sample device must switch to the lower beam mode between 8 (cd at 100 ft) and 25 (cd at 100 ft).
S14.9.3.11.9.2.2 The mechanical aim of the device photounit must not have changed by more than 0.25° from the initial value.
S14.9.3.11.10 Sunlight test.
S14.9.3.11.10.1 Procedure.
S14.9.3.11.10.1.1 The sample device must be exposed for 1 hour in bright noontday sunlight (5000 fc minimum illumination with a clear sky) with the photounit aimed as it would be in service and facing an unobstructed portion of the horizon in the direction of the sun.
S14.9.3.11.10.1.2 The device must then be rested for 1 hour in normal room light at room temperature and the H–V “dim” sensitivity of the sample device is measured.
S14.9.3.11.11 Durability test.
S14.9.3.11.11.1 Procedure.
S14.9.3.11.11.1.1 The sensitivity of the sample device is adjusted so that it complies with the sensitivity test.
S14.9.3.11.11.1.2 The device photounit operated at a 13.0 input voltage on a cycle of 90 minutes on and 30 minutes off must be activated by a 60 cd light source at 100 ft, or equivalent, which is cycled on and off 4 times per minute for a period of 200 hours.
S14.9.3.11.11.1.3 The device must then rest for 2 hours in a lighted area of 50 to 150 fc after which the H–V “dim” sensitivity must be measured.
S14.9.3.11.11.2 Performance requirements. The sample device must switch to the lower beam mode between 8 (cd at 100 ft) and 25 (cd at 100 ft).
S14.9.3.11.12 Return to upper beam test.
S14.9.3.11.12.1 Procedure.
S14.9.3.11.12.1.1 The sensitivity of the sample device is adjusted so that it complies with the sensitivity test.
S14.9.3.11.12.1.2 The lens of the photounit must be exposed to light of 100 fc for 10 seconds.
S14.9.3.11.12.2 Performance requirements. The sample device must switch to upper beam mode within 2 seconds after the 100 fc light is extinguished.
<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Number and color</th>
<th>Mounting location</th>
<th>Mounting height</th>
<th>Device activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Passenger Cars, Multipurpose Passenger Vehicles (MPV), Trucks, and Buses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Beam Headlamps</td>
<td>White, of a</td>
<td>On the front, at the same height, symmetrically about the vertical centerline, as far apart as practicable.</td>
<td>Not less than 22 inches (55.9 cm) nor more than 54 inches (137.2 cm).</td>
<td>The wiring harness or connector assembly of each headlighting system must be designed so that only those light sources intended for meeting lower beam photometrics are energized when the beam selector switch is in the lower beam position, and that only those light sources intended for meeting upper beam photometrics are energized when the beam selector switch is in the upper beam position, except for certain systems listed in Table II. Steady burning, except that may be flashed for signaling purposes.</td>
</tr>
<tr>
<td>Upper Beam Headlamps</td>
<td>White, of a</td>
<td>On the front, at the same height, symmetrically about the vertical centerline, as far apart as practicable.</td>
<td>Not less than 22 inches (55.9 cm) nor more than 54 inches (137.2 cm).</td>
<td>Steady burning. Flash when the turn signal flasher is actuated by the turn signal operating unit.</td>
</tr>
<tr>
<td>Turn Signal Lamps</td>
<td>2 Amber</td>
<td>At or near the front, at the same height, symmetrically about the vertical centerline, as far apart as practicable.</td>
<td>Not less than 15 inches, nor more than 83 inches.</td>
<td>Steady burning. Must be activated when the headlamps are activated in a steady burning state or the parking lamps on passenger cars and MPVs, trucks, and buses less than 80 inches in overall width are activated. May be activated when the headlamps are activated at less than full intensity as Daytime Running Lamps (DRL).</td>
</tr>
<tr>
<td></td>
<td>2 Amber or red</td>
<td>On the rear, at the same height, symmetrically about the vertical centerline, as far apart as practicable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck tractor exception, see S6.1.1.3.</td>
<td></td>
<td></td>
<td></td>
<td>Steady burning except may be flashed for signaling purposes. Must be activated when the headlamps are activated in a steady burning state or the parking lamps on passenger cars and MPVs, trucks, and buses less than 80 inches in overall width are activated.</td>
</tr>
<tr>
<td>Tailamps</td>
<td>2 Red</td>
<td>On the rear, at the same height, symmetrically about the vertical centerline, as far apart as practicable.</td>
<td>Not less than 15 inches, nor more than 72 inches.</td>
<td>Steady burning. Must be activated upon application of the service brakes. When optically combined with a turn signal lamp, the circuit must be such that the stop signal cannot be activated if the turn signal lamp is flashing. May also be activated by a device designed to retard the motion of the vehicle.</td>
</tr>
<tr>
<td>Stop Lamps</td>
<td>2 Red</td>
<td>On the rear, at the same height, symmetrically about the vertical centerline, as far apart as practicable.</td>
<td>Not less than 15 inches, nor more than 72 inches.</td>
<td>Steady burning. May be activated when the headlamps are activated in a steady burning state or the parking lamps on passenger cars and MPVs, trucks, and buses less than 80 inches in overall width are activated.</td>
</tr>
<tr>
<td>Side Marker Lamps</td>
<td>2 Amber</td>
<td>On each side as far to the front as practicable.</td>
<td>Not less than 15 inches.</td>
<td>Steady burning except may be flashed for signaling purposes. Must be activated when the headlamps are activated in a steady burning state or the parking lamps on passenger cars and MPVs, trucks, and buses less than 80 inches in overall width are activated.</td>
</tr>
<tr>
<td></td>
<td>2 Red (not required on truck tractor).</td>
<td>On each side as far to the rear as practicable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting device</td>
<td>Number and color</td>
<td>Mounting location</td>
<td>Mounting height</td>
<td>Device activation</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Reflex Reflectors</td>
<td>2 Amber</td>
<td>On each side as far to the front as practicable.</td>
<td>Not less than 15 inches, nor more than 60 inches.</td>
<td>Not applicable.</td>
</tr>
<tr>
<td></td>
<td>2 Red (not required on truck tractor)</td>
<td>On each side as far to the rear as practicable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Red</td>
<td>On the rear, at the same height, symmetrically about the vertical centerline, as far apart as practicable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On a truck tractor may be mounted on the back of the cab not less than 4 inches above the height of the rear tires.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backup Lamp</td>
<td>1 White</td>
<td>On the rear</td>
<td>No requirement</td>
<td>Steady burning. Must be activated when the ignition switch is energized and reverse gear is engaged. Must not be energized when the vehicle is in forward motion.</td>
</tr>
<tr>
<td></td>
<td>Additional lamps permitted to meet requirements.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>License Plate Lamp</td>
<td>1 White</td>
<td>On the rear to illuminate license plate from top or sides.</td>
<td>No requirement</td>
<td>Steady burning. Must be activated when the headlamps are activated in a steady burning state or when the parking lamps on passenger cars and MPVs, trucks, and buses less than 80 inches in overall width are activated.</td>
</tr>
<tr>
<td></td>
<td>Additional lamps permitted to meet requirements.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Lamps Required on All Passenger Cars, and on Multipurpose Passenger Vehicles (MPV), Trucks, and Buses, Less Than 2032 MM in Overall Width

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Number and color</th>
<th>Mounting location</th>
<th>Mounting height</th>
<th>Device activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking lamps</td>
<td>2 Amber or white</td>
<td>On the front, at the same height, symmetrically about the vertical centerline, as far apart as practicable.</td>
<td>Not less than 15 inches, nor more than 72 inches.</td>
<td>Steady burning. Must be activated when the headlamps are activated in a steady burning state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On the rear</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Lamp(s) Required on All Passenger Cars, and on Multipurpose Passenger Vehicles (MPV), Trucks, and Buses, Less Than 2032 MM in Overall Width and With a GVWR of 10,000 Lbs or Less

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Number and color</th>
<th>Mounting location</th>
<th>Mounting height</th>
<th>Device activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>High mounted stop lamp</td>
<td>1 Red, or 2 red</td>
<td>On the rear includ- ing glazing, with the lamp center on the vertical centerline as viewed from the rear.</td>
<td>Not less than 34 inches except for passenger cars. See Section 6.1.4.1.</td>
<td>Steady burning. Must only be activated upon application of the service brakes or may be activated by a device designed to retard the motion of the vehicle.</td>
</tr>
<tr>
<td></td>
<td>where exceptions apply. See Section 6.1.1.2.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Lamps and Reflective Devices Required on All Passenger Cars, Multipurpose Passenger Vehicles (MPV), Trucks, and Buses, 30 Feet or Longer

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Number and color</th>
<th>Mounting location</th>
<th>Mounting height</th>
<th>Device activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate side marker lamps.</td>
<td>2 Amber</td>
<td>On each side located at or near the midpoint between the front and rear side marker lamps.</td>
<td>Not less than 15 inches.</td>
<td>Steady burning except may be flashed for signaling purposes. Must be activated when the headlamps are activated in a steady burning state or when the parking lamps on passenger cars and MPVs, trucks, and buses less than 80 inches in overall width are activated.</td>
</tr>
</tbody>
</table>
Table I–a—Required Lamps and Reflective Devices—Continued

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Number and color</th>
<th>Mounting location</th>
<th>Mounting height</th>
<th>Device activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate side reflex reflectors.</td>
<td>2 Amber</td>
<td>On each side located at or near the midpoint between the front and rear side reflex reflectors.</td>
<td>Not less than 15 inches, nor more than 60 inches.</td>
<td>Not applicable.</td>
</tr>
</tbody>
</table>

Additional Lamps Required on All Multipurpose Passenger Vehicles (MPV), Trucks, and Buses, 2032 MM or More in Overall Width

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Number and color</th>
<th>Mounting location</th>
<th>Mounting height</th>
<th>Device activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance lamps</td>
<td>2 Amber</td>
<td>On the front to indicate the overall width of the vehicle, or width of cab on truck tractor, at the same height, symmetrically about the vertical centerline. May be located at a location other than the front if necessary to indicate the overall width of the vehicle, or for protection from damage during normal operation of the vehicle.</td>
<td>As near the top as practicable.</td>
<td>Steady burning.</td>
</tr>
<tr>
<td></td>
<td>2 Red</td>
<td>On the rear to indicate the overall width of the vehicle, at the same height, symmetrically about the vertical centerline. May be located at a location other than the rear if necessary to indicate the overall width of the vehicle, or for protection from damage during normal operation of the vehicle.</td>
<td>As near the top as practicable, except where the rear identification lamps are mounted at the extreme height of the vehicle. Practicability of locating lamps on the vehicle header is presumed when the header extends at least 25 mm (1 inch) above the rear doors.</td>
<td>Steady burning.</td>
</tr>
<tr>
<td>Identification lamps</td>
<td>3 Amber</td>
<td>On the front, at the same height, as close as practicable to the vertical centerline, with lamp centers spaced not less than 6 inches or more than 12 inches apart.</td>
<td>As near the top of the vehicle or top of the cab as practicable.</td>
<td>Steady burning.</td>
</tr>
<tr>
<td></td>
<td>3 Red</td>
<td>On the rear, at the same height, as close as practicable to the vertical centerline, with lamp centers spaced not less than 6 inches or more than 12 inches apart.</td>
<td>As near the top as practicable. Practicability of locating lamps on the vehicle header is presumed when the header extends at least 25 mm (1 inch) above the rear doors.</td>
<td>Steady burning.</td>
</tr>
</tbody>
</table>
TABLE I–a—REQUIRED LAMPS AND REFLECTIVE DEVICES—Continued

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Number and color</th>
<th>Mounting location</th>
<th>Mounting height</th>
<th>Device activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Lamps Required on All School Buses Except Multifunction School Activity Buses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal warning lamps.</td>
<td>2 Red plus 2 amber optional.</td>
<td>On the front of the cab as far apart as practicable, but in no case shall the spacing between lamps be less than 40 inches. Amber lamps, when installed, at the same height as and just in-board of the red lamp.</td>
<td>As high as practicable but at least above the windshield.</td>
<td>Flashing alternately between 60 to 120 cycles per minute, with an activation period sufficient to allow the lamp to reach full brightness, when actuated by a manual switch. Amber lamps, when installed, may only be activated by manual or foot operation, and must be automatically deactivated and the red lamps must be automatically activated when the bus entrance door is opened.</td>
</tr>
<tr>
<td></td>
<td>2 Red plus 2 amber optional.</td>
<td>On the rear cab as far apart as practicable, but in no case shall the spacing between lamps be less than 40 inches. Amber lamps, when installed, at the same height as and just in-board of the red lamp.</td>
<td>As high as practicable but at least above the top of any side window opening.</td>
<td>Flashing alternately between 60 to 120 cycles per minute, with an activation period sufficient to allow the lamp to reach full brightness, when actuated by a manual switch. Amber lamps, when installed, may only be activated by manual or foot operation, and must be automatically deactivated and the red lamps must be automatically activated when the bus entrance door is opened.</td>
</tr>
</tbody>
</table>

Daytime Running Lamps Permitted But Not Required on Passenger Cars, Multipurpose Passenger Vehicles (MPV), Trucks, and Buses

| Daytime running lamp (DRL). | 2 identically colored either white, white to yellow, white to selective yellow, selective yellow, or yellow. | On the front, symmetrically disposed about the vertical centerline if not a pair of lamps required by this standard or if not optically combined with a pair of lamps required by this standard. | Not more than 1.067 meters above the road surface if not a pair of lamps required by this standard or if not optically combined with a pair of lamps required by this standard. See §571.10.13(b) for additional height limitation. | Steady burning. Automatically activated as determined by the vehicle manufacturer and automatically deactivated when the headlamp control is in any “on” position. Each DRL optically combined with a turn signal lamp must be automatically deactivated as a DRL when the turn signal lamp or hazard warning lamp is activated, and automatically reactivated as a DRL when the turn signal lamp or hazard warning lamp is deactivated. See §571.10.10.1(c) for additional activation requirements when mounted close to, or combined with, a turn signal lamp. |

TABLE I–b—REQUIRED LAMPS AND REFLECTIVE DEVICES

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Number and color</th>
<th>Mounting location</th>
<th>Mounting height</th>
<th>Device activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL TRAILERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn Signal Lamps</td>
<td>2 Red or amber</td>
<td>On the rear, at the same height, symmetrically about the vertical centerline, as far apart as practicable.</td>
<td>Not less than 15 inches, nor more than 83 inches.</td>
<td>Flash when the turn signal flasher is actuated by the turn signal operating unit. Steady burning.</td>
</tr>
<tr>
<td>Taillamps</td>
<td>2 Red or 1 red on trailers less than 30 inches wide.</td>
<td>On the rear, at the same height, symmetrically about the vertical centerline, as far apart as practicable. When a single lamp is installed it must be mounted at or near the vertical centerline.</td>
<td>Not less than 15 inches, nor more than 72 inches.</td>
<td></td>
</tr>
<tr>
<td>Lighting device</td>
<td>Number and color</td>
<td>Mounting location</td>
<td>Mounting height</td>
<td>Device activation</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Stop Lamps</td>
<td>2 Red, or 1 red on trailers less than 30 inches wide.</td>
<td>On the rear, at the same height, symmetrically about the vertical centerline, as far apart as practicable. When a single lamp is installed it must be mounted at or near the vertical centerline.</td>
<td>Not less than 15 inches, nor more than 72 inches.</td>
<td>Steady burning. Must be activated upon application of the service brakes. When optically combined with a turn signal lamp, the circuit must be such that the stop signal cannot be activated if the turn signal lamp is flashing. May also be activated by a device designed to retard the motion of the vehicle.</td>
</tr>
<tr>
<td>Side Marker Lamps</td>
<td>2 Amber. None required on trailers less than 1829 mm (6 ft) in overall length including the trailer tongue.</td>
<td>On each side as far to the front as practicable exclusive of the trailer tongue.</td>
<td>Not less than 15 inches.</td>
<td>Steady burning except may be flashed for signaling purposes.</td>
</tr>
<tr>
<td></td>
<td>2 Red.</td>
<td>On each side as far to the rear as practicable.</td>
<td>Not less than 15 inches. Not more than 60 inches on trailers 2032 mm or more in overall width.</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Reflex Reflectors.</td>
<td>2 Amber. None required on trailers less than 1829 mm (6 ft) in overall length including the trailer tongue.</td>
<td>On each side as far to the front as practicable exclusive of the trailer tongue.</td>
<td>Not less than 15 inches, nor more than 60 inches.</td>
<td>Steady burning execept may be flashed for signaling purposes.</td>
</tr>
<tr>
<td></td>
<td>2 Red.</td>
<td>On each side as far to the rear as practicable.</td>
<td>Not less than 15 inches. Not more than 60 inches on trailers 2032 mm or more in overall width.</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>License Plate Lamp</td>
<td>1 White. Additional lamps permitted to meet requirements.</td>
<td>On the rear to illuminate license plate from top or sides.</td>
<td>No requirement.</td>
<td>Steady burning.</td>
</tr>
</tbody>
</table>

Additional Lamps and Reflective Devices Required on all Trailers 30 Feet or Longer

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Number and color</th>
<th>Mounting location</th>
<th>Mounting height</th>
<th>Device activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate side marker lamps.</td>
<td>2 Amber.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

410
<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Number and color</th>
<th>Mounting location</th>
<th>Mounting height</th>
<th>Device activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate side reflex reflectors. A trailer equipped with a conspicuity</td>
<td>2 Amber</td>
<td>On each side located at or near the midpoint between the front and rear side</td>
<td>Not less than 15 inches, nor</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>treatment in conformance with §8.2 of this standard need not be equipped with</td>
<td>reflex reflectors</td>
<td>reflex reflectors.</td>
<td>more than 60 inches.</td>
<td></td>
</tr>
<tr>
<td>reflex reflectors if the conspicuity material is placed at the locations of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the required reflex reflectors.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Lamps Required on all Trailers 2032 MM or More in Overall Width</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance lamps ...</td>
<td>2 Amber</td>
<td>On the front to indicate the overall width of the vehicle, at the same height,</td>
<td>As near the top as practicable.</td>
<td>Steady burning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>symmetrically about the vertical centerline.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May be located at a location other than the front if necessary to indicate the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>overall width of the vehicle, or for protection from damage during normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>operation of the vehicle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Red</td>
<td>On the rear to indicate the overall width of the vehicle, at the same height,</td>
<td>As near the top as practicable,</td>
<td>Steady burning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>symmetrically about the vertical centerline.</td>
<td>except where the rear</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May be located at a location other than the rear if necessary to indicate the</td>
<td>identification lamps are</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>overall width of the vehicle, or for protection from damage during normal</td>
<td>mounted at the extreme</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>operation of the vehicle.</td>
<td>height of the vehicle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practicability of locating</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lamps on the vehicle header</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>is presumed when the header</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>extends at least 25 mm (1 inch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above the rear doors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Amber to front</td>
<td>On a boat trailer the requirement for front and rear clearance lamps may be</td>
<td>As near the top as practicable.</td>
<td>Steady burning.</td>
</tr>
<tr>
<td>and red to rear.</td>
<td></td>
<td>met by installation at or near the midpoint on each side of a dual facing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lamp so as to indicate the extreme width.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May be located at a location other than the front and the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rear if necessary to indicate the overall width of the vehicle, or for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>protection from damage during normal operation of the vehicle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Red</td>
<td>On the rear, at the same height, as close as practicable to the vertical centerline,</td>
<td>As near the top as practicable.</td>
<td>Steady burning.</td>
</tr>
<tr>
<td>Identification lamps</td>
<td></td>
<td>with lamp centers spaced not less than 6 inches or more than 12 inches apart.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VerDate Sep<11>2014 11:07 Jan 24, 2017 Jkt 238230 PO 00000 Frm 00421 Fmt 8010 Sfmt 8010 Q:\49\49V6.TXT 31lpowell on DSK54DXVN1OFR with $$_JOB
TABLE I—C—REQUIRED LAMPS AND REFLECTIVE DEVICES

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Number and color</th>
<th>Mounting location</th>
<th>Mounting height</th>
<th>Device activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Motorcycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Beam Headlamps.</td>
<td>White, of a headlighting system listed in S10.17.</td>
<td>On the front, at the same height, symmetrically about the vertical centerline, as far apart as practicable. See additional requirements in S10.17.1.1, S10.17.1.2, and S10.17.1.3.</td>
<td>Not less than 22 inches (55.9 cm) nor more than 54 inches (137.2 cm).</td>
<td>The wiring harness or connector assembly of each headlighting system must be designed so that only those light sources intended for meeting lower beam photometrics are energized when the beam selector switch is in the lower beam position, and that only those light sources intended for meeting upper beam photometrics are energized when the beam selector switch is in the upper beam position, except for certain systems listed in Table II. Steady burning, except that may be flashed for signaling purposes.</td>
</tr>
<tr>
<td>Upper Beam Headlamps.</td>
<td>White, of a headlighting system listed in S10.17.</td>
<td>On the front, at the same height, symmetrically about the vertical centerline, as far apart as practicable. See additional requirements in S10.17.1.1, S10.17.1.2, and S10.17.1.3.</td>
<td>Not less than 22 inches (55.9 cm) nor more than 54 inches (137.2 cm).</td>
<td>The upper beam or the lower beam, but not both, may be wired to modulate from a higher intensity to a lower intensity in accordance with S10.17.5. Flash when the turn signal flasher is actuated by the turn signal operating unit.</td>
</tr>
<tr>
<td>Turn Signal Lamps</td>
<td>2 Amber. None required on a motor driven cycle whose speed attainable in 1 mile is 30 mph or less.</td>
<td>At or near the front, at the same height, symmetrically about the vertical centerline, and having a minimum horizontal separation distance (centerline of lamps) of 16 inches. Minimum edge to edge separation distance between a turn signal lamp and headlamp is 4 inches.</td>
<td>Not less than 15 inches, nor more than 83 inches.</td>
<td></td>
</tr>
</tbody>
</table>
TABLE I—c—REQUIRED LAMPS AND REFLECTIVE DEVICES—Continued

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Number and color</th>
<th>Mounting location</th>
<th>Mounting height</th>
<th>Device activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taillamps</td>
<td>1 Red</td>
<td>On the rear, on the vertical centerline except that if two are used, they must be symmetrically disposed about the vertical centerline.</td>
<td>Not less than 15 inches, nor more than 72 inches.</td>
<td>Steady burning.</td>
</tr>
<tr>
<td>Stop Lamps</td>
<td>1 Red</td>
<td>On the rear, on the vertical centerline except that if two are used, they must be symmetrically disposed about the vertical centerline.</td>
<td>Not less than 15 inches, nor more than 72 inches.</td>
<td>Steady burning.</td>
</tr>
<tr>
<td>Reflex Reflectors</td>
<td>2 Amber</td>
<td>On each side as far to the front as practicable.</td>
<td>Not less than 15 inches, nor more than 60 inches.</td>
<td>Not applicable.</td>
</tr>
<tr>
<td></td>
<td>2 Red</td>
<td>On each side as far to the rear as practicable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Red</td>
<td>On the rear, on the vertical centerline except that, if two are used on the rear, they must be symmetrically disposed about the vertical centerline.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>License Plate Lamp</td>
<td>1 White</td>
<td>On the rear to illuminate license plate.</td>
<td>No requirement</td>
<td>Steady burning.</td>
</tr>
<tr>
<td>Additional lamps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSTEM DESIGNATION</td>
<td>UNIT NOMINAL SIZE</td>
<td>NUMBER OF HEADLAMPS</td>
<td>HEADLAMP DESIGNATION</td>
<td>BEAM COMPOSITION</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE A</td>
<td>100x165 mm</td>
<td>2</td>
<td>1A1</td>
<td>1 UB FILAMENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE B</td>
<td>142x200 mm</td>
<td>2</td>
<td>2B1</td>
<td>1 UB & 1 LB FILAMENTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE C</td>
<td>146 mm DIA.</td>
<td>2</td>
<td>1C1</td>
<td>1 UB FILAMENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE D</td>
<td>178 mm DIA.</td>
<td>2</td>
<td>2D1</td>
<td>1 UB & 1 LB FILAMENTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE E</td>
<td>100x165 mm</td>
<td>2</td>
<td>2E1</td>
<td>1 UB & 1 LB FILAMENTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE F(2)</td>
<td>92x150 mm</td>
<td>2</td>
<td>UF</td>
<td>1 UB FILAMENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE G</td>
<td>100x165 mm</td>
<td>2</td>
<td>1G1</td>
<td>1 UB FILAMENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE H</td>
<td>100x165 mm</td>
<td>2</td>
<td>2H1</td>
<td>1 UB & 1 LB FILAMENTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Headlamps marked "LF" may remain activated when headlamps marked "UP" are activated.
(2) Type F headlamps may be mounted on common or parallel seating and aiming planes to permit simultaneous aiming with restrictions. See §10.13.2.
Table II–b—Headlighting Systems—Combination

<table>
<thead>
<tr>
<th>System designation</th>
<th>System composition</th>
<th>Photometry requirements reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Table XVIII</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table XIX–a, XIX–b, XIX–c</td>
</tr>
<tr>
<td>Upper beam mechanical and visual aim</td>
<td>Lower beam mechanical and visual aim</td>
<td>Lower beam mechanical and visual aim</td>
</tr>
<tr>
<td>2 LAMP SYSTEM.</td>
<td>A COMBINATION OF TWO DIFFERENT HEADLAMPS CHOSEN FROM; TYPE F, AN INTEGRAL BEAM HEADLAMP, OR A REPLACEABLE BULB HEADLAMP.</td>
<td>UB2 (1)</td>
</tr>
<tr>
<td>4 LAMP SYSTEM.</td>
<td>ANY COMBINATION OF FOUR DIFFERENT HEADLAMPS CHOSEN FROM; TYPE F, AN INTEGRAL BEAM HEADLAMP (3), OR A REPLACEABLE BULB HEADLAMP.</td>
<td>UB1</td>
</tr>
</tbody>
</table>

(1) Headlamps designed to conform to the photometry requirements of UB2 and LB2M or LB2V may allow the lower beam light source(s) to remain activated when an upper beam light source is activated if the lower beam light source(s) contribute to upper beam photometric compliance.
(2) Lower beams may remain activated when upper beams are activated.
(3) Beam contributor photometric allocation formula of S14.2.5.9 may apply.

Table II–c—Headlighting Systems—Integral Beams

<table>
<thead>
<tr>
<th>System designation</th>
<th>Beam composition</th>
<th>Photometry requirements reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Table XVIII</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table XIX–a, XIX–b, XIX–c</td>
</tr>
<tr>
<td>Upper beam mechanical and visual aim</td>
<td>Lower beam mechanical and visual aim</td>
<td>Lower beam mechanical and visual aim</td>
</tr>
<tr>
<td>2 LAMP SYSTEM.</td>
<td>UPPER BEAM & LOWER BEAM UB2 (1) OR UB3</td>
<td>UB2 (1)</td>
</tr>
<tr>
<td>4 LAMP SYSTEM.</td>
<td>UPPER BEAM UB4</td>
<td>UPPER BEAM & LOWER BEAM UB6</td>
</tr>
<tr>
<td>4 LAMP SYSTEM.</td>
<td>UPPER BEAM (U) UB1</td>
<td>LOWER BEAM UB6</td>
</tr>
<tr>
<td>4 LAMP SYSTEM.</td>
<td>LOWER BEAM (L) UB6</td>
<td>LOWER BEAM UB1</td>
</tr>
<tr>
<td>4 LAMP SYSTEM.</td>
<td>LOWER BEAM UB6</td>
<td>LOWER BEAM UB1</td>
</tr>
<tr>
<td>BEAM CONTRIBUTOR.</td>
<td>UPPER BEAM & LOWER BEAM UB1</td>
<td>LOWER BEAM</td>
</tr>
</tbody>
</table>

(1) Headlamps designed to conform to the photometry requirements of UB2 and LB2M or LB2V may allow the lower beam light source(s) to remain activated when an upper beam light source is activated if the lower beam light source(s) contribute to upper beam photometric compliance.
(2) Lower beams may remain activated when upper beams are activated.
(3) Lower beams must remain activated when upper beams are activated.
(4) Beam contributor photometric allocation formula of S14.2.5.9 applies.

Table II–d—Headlighting Systems—Replaceable Bulb

<table>
<thead>
<tr>
<th>System designation</th>
<th>Light source composition</th>
<th>Photometry requirements reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Table XVIII</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table XIX–a, XIX–b, XIX–c</td>
</tr>
<tr>
<td>Upper beam mechanical and visual aim</td>
<td>Lower beam mechanical and visual aim</td>
<td>Lower beam mechanical and visual aim</td>
</tr>
<tr>
<td>2 LAMP SYSTEM.</td>
<td>ANY DUAL FILAMENT TYPE, OTHER THAN HB2, USED ALONE OR WITH ANOTHER DUAL FILAMENT TYPE OTHER THAN HB2. UB2 (1) OR UB3</td>
<td>UB2 (1)</td>
</tr>
<tr>
<td>2 LAMP SYSTEM.</td>
<td>HB2 OR ANY SINGLE FILAMENT TYPE USED ALONE OR WITH ANY OTHER SINGLE OR DUAL FILAMENT TYPE. UB2 (1) OR UB3</td>
<td>LB2M (1)</td>
</tr>
</tbody>
</table>

(1) Headlamps designed to conform to the photometry requirements of UB2 and LB2M or LB2V may allow the lower beam light source(s) to remain activated when an upper beam light source is activated if the lower beam light source(s) contribute to upper beam photometric compliance.
(2) Lower beams must remain activated when upper beams are activated.
(3) Beam contributor photometric allocation formula of S14.2.5.9 applies.
TABLE II—d—HEADLIGHTING SYSTEMS—REPLACEABLE BULB—Continued

<table>
<thead>
<tr>
<th>System designation</th>
<th>Light source composition</th>
<th>Photometry requirements reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Table XVIII</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper beam mechanical and visual aim</td>
</tr>
<tr>
<td>4 LAMP SYSTEM</td>
<td>ANY DUAL FILAMENT TYPE, OTHER THAN HB2, USED ALONE OR WITH ANOTHER DUAL FILAMENT TYPE OTHER THAN HB2.</td>
<td>UB1 (2) OR UB3</td>
</tr>
<tr>
<td>4 LAMP SYSTEM</td>
<td>HB2 OR ANY SINGLE FILAMENT TYPE USED ALONE OR WITH ANY OTHER SINGLE OR DUAL FILAMENT TYPE. (U & L).</td>
<td>UB1 (2)</td>
</tr>
</tbody>
</table>

(1) Headlamps designed to conform to the photometry requirements of UB2 and LB2M or LB2V may allow the lower beam light source(s) to remain activated when an upper beam light source is activated if the lower beam light source(s) contribute to upper beam photometric compliance.

(2) Lower beams may remain activated when upper beams are activated.

TABLE III—MARKING REQUIREMENTS LOCATION

<table>
<thead>
<tr>
<th>Lamp, reflective device, or other component</th>
<th>Marking</th>
<th>Marking location</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADLAMPS, BEAM CONTRIBUTORS, OR HEADLAMP REPLACEABLE LENS.</td>
<td>“DOT”</td>
<td>Lens</td>
<td>S6.5.1</td>
</tr>
<tr>
<td></td>
<td>Optical axis marking</td>
<td>See requirement</td>
<td>S10.18.5</td>
</tr>
<tr>
<td></td>
<td>Manufacturer name and/or trademark</td>
<td></td>
<td>S6.5.3</td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td>See requirement</td>
<td>S6.5.3</td>
</tr>
<tr>
<td></td>
<td>Part number or trade number</td>
<td>See requirement</td>
<td>S6.5.3</td>
</tr>
<tr>
<td></td>
<td>Manufacturer identification</td>
<td>Lens</td>
<td>S6.5.3</td>
</tr>
<tr>
<td>HEADLAMP REPLACEABLE LENS.</td>
<td>Headlamp identification.</td>
<td>Lens</td>
<td>S10.15.4</td>
</tr>
<tr>
<td>REPLACEABLE BULB HEADLAMPS.</td>
<td>“U” or “L” (4 lamp system)</td>
<td>See requirement</td>
<td>S10.18.5</td>
</tr>
<tr>
<td>SEALED BEAM HEADLAMPS.</td>
<td>Replaceable bulb type</td>
<td>Lens</td>
<td>S6.5.3.4</td>
</tr>
<tr>
<td></td>
<td>“sealed beam”</td>
<td>Lens</td>
<td>S6.5.3.3</td>
</tr>
<tr>
<td>INTEGRAL BEAM HEADLAMPS ... MOTORCYCLE REPLACEABLE BULB HEADLAMPS, VISUALLY/OPTICALLY AIMED HEADLAMPS.</td>
<td>Type designation</td>
<td>See requirements</td>
<td>S6.5.3.3</td>
</tr>
<tr>
<td></td>
<td>“U” or “L” (4 lamp system)</td>
<td>Lens</td>
<td>S10.14.4</td>
</tr>
<tr>
<td></td>
<td>“motorcycle”</td>
<td>Lens</td>
<td>S10.17.2</td>
</tr>
<tr>
<td>EXTERNALLY AIMED HEADLAMPS.</td>
<td>“VOR” or “VOL” or “VO”</td>
<td>Lens</td>
<td>S10.18.6.6</td>
</tr>
<tr>
<td>VEHICLE HEADLAMP AIMING DEVICES (VHAD). (HEADLAMP) REPLACEABLE LIGHT SOURCES.</td>
<td>Aiming scale(s)</td>
<td>See requirement</td>
<td>S10.18.8</td>
</tr>
<tr>
<td></td>
<td>Replaceable light source designation</td>
<td>See requirement</td>
<td>S11.1</td>
</tr>
<tr>
<td></td>
<td>Manufacturer name and/or trademark</td>
<td>See requirement</td>
<td>S11.2</td>
</tr>
<tr>
<td>REPLACEABLE LIGHT SOURCE BALLASTS.</td>
<td>Manufacturer name or logo</td>
<td>See requirement</td>
<td>S6.5.1.2</td>
</tr>
<tr>
<td></td>
<td>Part number</td>
<td>See requirement</td>
<td>S6.5.2</td>
</tr>
<tr>
<td>LAMPS (OTHER THAN HEADLAMPS), REFLECTIVE DEVICES, AND ASSOCIATED EQUIPMENT. DAYTIME RUNNING LAMPS (DRL). CONSPICUITY REFLEX REFLECTORS.</td>
<td>“DRL”</td>
<td>Lens</td>
<td>S8.2.2.1</td>
</tr>
</tbody>
</table>

| DOT-C | Exposed surface | S8.2.2.1 |
TABLE III—MARKING REQUIREMENTS LOCATION—Continued

<table>
<thead>
<tr>
<th>Lamp, reflective device, or other component</th>
<th>Marking</th>
<th>Marking location</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETROREFLECTIVE SHEETING “DOT–C2” or “DOT–C3” or “DOT–C4”</td>
<td>Exposed surface</td>
<td>S8.2.1.3</td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV—a—EFFECTIVE PROJECTED LUMINOUS LENS AREA REQUIREMENTS

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Passenger cars, multipurpose passenger vehicles, trucks, trailers, and buses of less than 2032 mm in overall width and with a GVWR of 10,000 lbs or less using a single lamp minimum effective projected luminous lens area (sq mm)</th>
<th>Multipurpose passenger vehicles, trucks, trailers, and buses 2032 mm or more in overall width and with a GVWR of 10,000 lbs or less using dual lamps of identical size and shape minimum effective projected luminous lens area each lamp (sq mm)</th>
<th>Motorcycles minimum effective projected luminous lens area (sq mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front turn signal lamp</td>
<td>2200</td>
<td>2200</td>
<td>2258</td>
</tr>
<tr>
<td>Rear turn signal lamp</td>
<td>5000</td>
<td>2200</td>
<td>5000</td>
</tr>
<tr>
<td>Stop lamp</td>
<td>5000</td>
<td>2200</td>
<td>5000</td>
</tr>
</tbody>
</table>

1 A motor driven cycle whose speed attainable in 1 mile is 30 mph or less may be equipped with a stop lamp whose minimum effective projected luminous lens area is not less than 2258 sq mm.

TABLE IV-b—EFFECTIVE PROJECTED LUMINOUS LENS AREA REQUIREMENTS

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Passenger cars, multipurpose passenger vehicles, trucks, and buses of less than 2032 mm in overall width and with a GVWR of 10,000 lbs or less using a single lamp minimum effective projected luminous lens area (sq mm)</th>
<th>Multipurpose passenger vehicles, trucks, and buses of less than 2032 mm in overall width and with a GVWR of 10,000 lbs or less using dual lamps of identical size and shape minimum effective projected luminous lens area each lamp (sq mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-mounted stop lamp</td>
<td>2903</td>
<td>1452</td>
</tr>
</tbody>
</table>

TABLE IV-c—EFFECTIVE PROJECTED LUMINOUS LENS AREA REQUIREMENTS

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>School bus minimum effective projected luminous lens area each lamp (sq mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>School bus signal lamp</td>
<td>12,258</td>
</tr>
</tbody>
</table>

TABLE V—a—VISIBILITY REQUIREMENTS OF INSTALLED LIGHTING DEVICES

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Required visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup lamp</td>
<td>Lamps must be mounted so that the optical center of at least one lamp is visible from any eye point elevation from at least 1828 mm (6 ft) to 610 mm (2 ft) above the horizontal plane on which the vehicle is standing; and from any position in the area, rearward of a vertical plane perpendicular to the longitudinal axis of the vehicle, 914 mm (3 ft), to the rear of the vehicle and extending 914 mm (3 ft) beyond each side of the vehicle.</td>
</tr>
<tr>
<td>High-mounted stop lamp</td>
<td>Signal must be visible to the rear through a horizontal angle from 45° to the left to 45° to the right of the longitudinal axis of the vehicle. (Single lamp or two lamps together where required by §6.1.1.2 of this standard).</td>
</tr>
<tr>
<td>School bus signal lamp</td>
<td>Signal of front lamps to the front and rear lamps to the rear must be unobstructed within area bounded by 5° up to 10° down and 30° left to 30° right.</td>
</tr>
</tbody>
</table>
§571.108

49 CFR Ch. V (10–1–16 Edition)

TABLE V–b—VISIBILITY REQUIREMENTS OF INSTALLED LIGHTING DEVICES—LENS AREA VISIBILITY OPTION

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Motorcycle</th>
<th>All other</th>
<th>Required visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn signal lamp</td>
<td>15° UP–20° IB</td>
<td>15° UP–45° IB.</td>
<td>15° UP–45° OB.</td>
</tr>
<tr>
<td></td>
<td>15° DOWN–20° IB.</td>
<td>15° DOWN–45° OB.</td>
<td>15° DOWN–45° OB.</td>
</tr>
<tr>
<td>Stop lamp</td>
<td>15° UP–45° RIGHT 4.</td>
<td>15° UP–45° IB.</td>
<td>15° UP–45° IB.</td>
</tr>
<tr>
<td></td>
<td>15° DOWN–45° RIGHT 4.</td>
<td>15° DOWN–45° LEFT 4.</td>
<td>15° DOWN–45° IB.</td>
</tr>
<tr>
<td>Taillamp ...</td>
<td>15° UP–45° RIGHT 5.</td>
<td>15° UP–45° IB.</td>
<td>15° UP–45° IB.</td>
</tr>
<tr>
<td></td>
<td>15° DOWN–45° RIGHT 5.</td>
<td>15° DOWN–45° LEFT 5.</td>
<td>15° DOWN–45° IB.</td>
</tr>
<tr>
<td>Parking lamp.</td>
<td>No Requirement</td>
<td>No Requirement</td>
<td>15° UP–45° IB.</td>
</tr>
<tr>
<td></td>
<td>No Requirement</td>
<td>No Requirement</td>
<td>15° DOWN–45° IB.</td>
</tr>
</tbody>
</table>

1 IB indicates an inboard direction (toward the vehicle’s longitudinal centerline) and OB indicates an outboard direction.
2 Where a lamp is mounted with its axis of reference less than 750 mm above the road surface, the vertical test point angles located below the horizontal plane subject to visibility requirements may be reduced to 5° down.
3 Where more than one lamp or optical area is lighted at the front on each side of a multipurpose passenger vehicle, truck, trailer, or bus, of 2032 mm or more overall width, only one such area need comply.
4 If a multiple lamp arrangement is used for a motorcycle stop lamp, the inboard angle for each lamp shall be 10 degrees.
5 If a multiple lamp arrangement is used for a motorcycle tail lamp, the inboard angle for each lamp shall be 45 degrees.

418
<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Corner points</th>
<th>Required visibility Minimum luminous intensity in any direction throughout the pattern defined by the specified corner points.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Motorcycle</td>
<td>All Other</td>
</tr>
<tr>
<td>Turn signal lamp</td>
<td>15° UP–20° IB</td>
<td>15° UP–80° OB</td>
</tr>
<tr>
<td>Stop lamp</td>
<td>15° UP–45° RIGHT</td>
<td>15° UP–45° LEFT</td>
</tr>
<tr>
<td></td>
<td>15° DOWN–45° LEFT</td>
<td>15° DOWN–45° IB</td>
</tr>
<tr>
<td>Taillamp</td>
<td>15° UP–80° RIGHT</td>
<td>15° UP–80° LEFT</td>
</tr>
<tr>
<td>Parking lamp</td>
<td>No Requirement</td>
<td>No Requirement</td>
</tr>
<tr>
<td></td>
<td>No Requirement</td>
<td>No Requirement</td>
</tr>
</tbody>
</table>

1 IB indicates an inboard direction (toward the vehicle's longitudinal centerline) and OB indicates an outboard direction.
2 Where a lamp is mounted with its axis of reference less than 750 mm above the road surface, the vertical test point angles located below the horizontal plane subject to visibility requirements may be reduced to 5° down.
3 Inboard and outboard corner points are 80° for a single taillamp installed on a motorcycle.
4 If a multiple lamp arrangement is used for a motorcycle stop lamp, the inboard angle for each lamp shall be 10 degrees.
5 If a multiple lamp arrangement is used for a motorcycle tail lamp, the inboard angle for each lamp shall be 45 degrees.
TABLE V-d—VISIBILITY REQUIREMENTS OF INSTALLED LIGHTING DEVICES (LEGACY VISIBILITY ALTERNATIVE)

<table>
<thead>
<tr>
<th>Lighting device</th>
<th>Required visibility ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn signal lamp</td>
<td>All passenger cars, multi-purpose passenger vehicles, trucks, buses, motorcycles, and trailers of less than 2032 mm overall width. All multipurpose passenger vehicles, trucks, buses, and trailers of 2032 mm or more overall width.</td>
</tr>
<tr>
<td>Stop lamp</td>
<td>Unobstructed minimum effective projected luminous lens area of 1250 sq mm through horizontal angle of H–45° IB to H–45° OB. Where more than one lamp or optical area is lighted on each side of the vehicle, only one such area on each side need comply.</td>
</tr>
<tr>
<td>Taillamp</td>
<td>Unobstructed minimum effective projected luminous lens area of 2 sq in through horizontal angle of H–45° IB to H–45° OB. Where more than one lamp or optical area is lighted on each side of the vehicle, only one such area on each side need comply.</td>
</tr>
</tbody>
</table>

¹ IB indicates an inboard direction (toward the vehicle’s longitudinal centerline) and OB indicates an outboard direction.
TABLE VI-a: FRONT TURN SIGNAL LAMP PHOTOMETRIC REQUIREMENTS

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>TEST POINT (degrees)</th>
<th>MINIMUM PHOTOMETRIC INTENSITY RATIO WHERE COMBINED WITH A</th>
<th>MINIMUM PHOTOMETRIC INTENSITY (cd)</th>
<th>GROUP MINIMUM PHOTOMETRIC INTENSITY (cd)</th>
<th>2.5X BASE REQUIREMENTS</th>
<th>GROUP MINIMUM PHOTOMETRIC INTENSITY (cd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PARKING LAMP</td>
<td>CLEARANCE LAMP<sup>(a)</sup></td>
<td>Lighted Sections</td>
<td>Lighted Sections</td>
<td>Lighted Sections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>20L</td>
<td>5U</td>
<td>3</td>
<td>3</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5U</td>
<td>3</td>
<td>3</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D</td>
<td>-</td>
<td>3</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>10L</td>
<td>5U</td>
<td>3</td>
<td>3</td>
<td>75</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D</td>
<td>-</td>
<td>3</td>
<td>75</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>5L</td>
<td>5U</td>
<td>5</td>
<td>5</td>
<td>175</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5L</td>
<td>5</td>
<td>5</td>
<td>200</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>5</td>
<td>5</td>
<td>200</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D</td>
<td>-</td>
<td>3</td>
<td>175</td>
<td>205</td>
</tr>
<tr>
<td>4</td>
<td>10R</td>
<td>5U</td>
<td>3</td>
<td>3</td>
<td>75</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D</td>
<td>-</td>
<td>3</td>
<td>75</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>5R</td>
<td>5U</td>
<td>3</td>
<td>3</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D</td>
<td>-</td>
<td>3</td>
<td>25</td>
<td>30</td>
</tr>
</tbody>
</table>

^(a) The measured values at each test point must not be less than 60% of the minimum value.

^(b) The photometric intensity values between test points must not be less than the lower specified minimum value of the two closest adjacent test points on a horizontal or vertical line.

^(c) Where turn signal lamps are mounted with their axis of reference less than 750 mm above the road surface, photometry requirements below 5° down may be met at 5° down rather than at the specified required downward angle.

^(d) When a clearance lamp on a vehicle 2032 mm or more in overall width is combined with a front turn signal lamp and the maximum luminous intensity of the clearance lamp is located below horizontal and within a 1° radius around the test point, the ratio for the test point may be computed by using the lowest value of the clearance lamp luminous intensity within the generated area.
TABLE VI-b: FRONT TURN SIGNAL LAMP PHOTOMETRY REQUIREMENTS

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>TEST POINT (degrees)</th>
<th>MINIMUM PHOTOMETRIC INTENSITY RATIO WHERE COMBINED WITH A:</th>
<th>2X BASE REQUIREMENTS</th>
<th>1.5X BASE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PARKING LAMP</td>
<td>CLEARANCE LAMP<sup>a</sup></td>
<td>MINIMUM PHOTOMETRIC INTENSITY<sup>ab</sup> (cd)</td>
<td>GROUP MINIMUM PHOTOMETRIC INTENSITY (cd)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lighted Sections</td>
<td>Lighted Sections</td>
</tr>
<tr>
<td>1</td>
<td>20L</td>
<td>5U 3 3</td>
<td>50 60 70</td>
<td>260 310 360</td>
</tr>
<tr>
<td></td>
<td>5D - 3</td>
<td>50 60 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10U 3 3</td>
<td>80 96 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10DF<sup>1</sup> 3 3</td>
<td>80 96 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10L</td>
<td>5U 3 3</td>
<td>150 176 200</td>
<td>500 590 680</td>
</tr>
<tr>
<td></td>
<td>5D - 3</td>
<td>150 176 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H 3 3</td>
<td>200 240 280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>V 5U 5 5</td>
<td>350 410 470</td>
<td></td>
<td>1900 2260 2590</td>
</tr>
<tr>
<td></td>
<td>5L 5 5</td>
<td>400 480 550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V 5 5</td>
<td>400 480 550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5R 5 5</td>
<td>400 480 550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>V 5D - 3</td>
<td>350 410 470</td>
<td></td>
<td>500 590 680</td>
</tr>
<tr>
<td></td>
<td>5U 3 3</td>
<td>150 176 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5D - 3</td>
<td>150 176 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10R</td>
<td>10U 3 3</td>
<td>80 96 110</td>
<td>260 310 360</td>
</tr>
<tr>
<td></td>
<td>10DF<sup>1</sup> 3 3</td>
<td>80 96 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5U - 3</td>
<td>50 60 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5D - 3</td>
<td>50 60 70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a The measured values at each test point must not be less than 60% of the minimum value.

^b The photometric intensity values between test points must not be less than the lower specified minimum value of the two closest adjacent test points on a horizontal or vertical line.

¹ Where turn signal lamps are mounted with their axis of reference less than 750 mm above the road surface, photometry requirements below 5° down may be met at 5° down rather than at the specified required downward angle.

² When a clearance lamp on a vehicle 2032 mm or more in overall width is combined with a front turn signal lamp and the maximum luminous intensity of the clearance lamp is located below horizontal and within a 1.0° radius around the test point, the ratio for the test point may be computed by using the lowest value of the clearance lamp luminous intensity within the generated area.
<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>TEST POINT DEGREES</th>
<th>TEST POINTS APPLICABLE TO DOUBLE FACED LAMPS</th>
<th>MINIMUM PHOTOMETRIC INTENSITY RATIO WHERE COMBINED WITH A TAIL LAMP OR CLEARANCE LAMP</th>
<th>MINIMUM PHOTOMETRIC INTENSITY (cd) RED LAMPS</th>
<th>GROUP MINIMUM PHOTOMETRIC INTENSITY (cd) AMBER LAMPS</th>
<th>MINIMUM PHOTOMETRIC INTENSITY (cd) AMBER LAMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LEFT SIDE LAMP</td>
<td>RIGHT SIDE LAMP</td>
<td>Lighted Sections</td>
<td>Lighted Sections</td>
<td>Lighted Sections</td>
</tr>
<tr>
<td>1</td>
<td>20L</td>
<td>SU NO YES</td>
<td>10 12 15</td>
<td>1</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 19 22</td>
<td>50 60 70</td>
<td>2</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 19 22</td>
<td>2627 30 35</td>
<td>3</td>
<td>2627</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>10L</td>
<td>SU NO YES</td>
<td>30 35 40</td>
<td>100</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 47 55</td>
<td>65 75 90</td>
<td>2</td>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>V SU YES</td>
<td>5 70 82 95</td>
<td>2</td>
<td>110</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 95 110</td>
<td>130120 150 175</td>
<td>3</td>
<td>130120</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V NO YES</td>
<td>5 80 95 110</td>
<td>5</td>
<td>130120</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 80 95 110</td>
<td>610290 710 825</td>
<td>5</td>
<td>610290</td>
<td>710</td>
</tr>
<tr>
<td>4</td>
<td>10R</td>
<td>SU NO YES</td>
<td>30 35 40</td>
<td>100</td>
<td>115</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 47 55</td>
<td>77 85 90</td>
<td>2</td>
<td>77</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>5R</td>
<td>SU NO YES</td>
<td>16 19 22</td>
<td>2</td>
<td>2627</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 19 22</td>
<td>2627 30 35</td>
<td>3</td>
<td>2627</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 19 22</td>
<td>2627 30 35</td>
<td>5</td>
<td>2627</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 80 95 110</td>
<td>8084 100 120</td>
<td>7</td>
<td>8084</td>
<td>100</td>
</tr>
</tbody>
</table>

MAXIMUM PHOTOMETRIC INTENSITY

1. The measured values at each test point must not be less than 60% of the minimum value.
2. The photometric intensity values between test points must not be less than the lower specified minimum value of the two closest adjacent test points on a horizontal or vertical line.
3. Where turn signal lamps are mounted with their axis of reference less than 75 mm above the road surface, photometry requirements below 5° down may be met at 5° down rather than at the required downward angle.
4. The maximum photometric intensity must not occur over any area larger than that generated by a 0.5° radius within a solid angle defined by the test point range.
5. Values preceded by a slash (/) apply only to multipurpose passenger vehicles, trucks, trailers, and buses of 2032 mm or more in overall width.
6. A double faced turn signal lamp installed as described in §6.1.1.3 on a truck tractor need only meet the photometric requirements for a left side lamp where the lamp is mounted on the left side of the vehicle, and for a right side lamp where the lamp is mounted on the right side of the vehicle.
7. Required only when combined turn signal lamp and clearance lamp is installed on a vehicle 2032 mm or more in overall width.
8. When a taillamp (or clearance lamp on a vehicle 2032 mm or more in overall width) is combined with a rear turn signal lamp and the maximum luminous intensity of the taillamp (or clearance lamp) is located below horizontal and within an area generated by a 0.5° radius around a test point (1.0° radius on lamps installed on a vehicle 2032 mm or more in overall width), the ratio for the test point may be computed by using the lowest value of the taillamp (or clearance lamp) luminous intensity within the generated area.
TABLE VIII: TAILLAMP PHOTOMETRY REQUIREMENTS

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>TEST POINT (degrees)</th>
<th>PHOTOMETRIC INTENSITY<sup>(X250)</sup> (cd)</th>
<th>GROUP MINIMUM PHOTOMETRIC INTENSITY<sup>(X250)</sup> (cd)</th>
<th>Lighted Sections</th>
<th>Lighted Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>1</td>
<td>20L</td>
<td>5U</td>
<td>0.3</td>
<td>18</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D</td>
<td>0.3</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10U</td>
<td>0.4</td>
<td>18</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10D<sup>(3)</sup></td>
<td>0.4</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>10L</td>
<td>5U</td>
<td>0.8</td>
<td>18</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D</td>
<td>0.8</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>V</td>
<td>5U</td>
<td>1.8</td>
<td>18</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5L</td>
<td>2.0</td>
<td>18</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
<td>2.0</td>
<td>18</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5R</td>
<td>2.0</td>
<td>18</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>10R</td>
<td>5U</td>
<td>0.8</td>
<td>18</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D</td>
<td>0.8</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>5R</td>
<td>10U</td>
<td>0.4</td>
<td>18</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10D<sup>(3)</sup></td>
<td>0.4</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5U</td>
<td>0.3</td>
<td>18</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D</td>
<td>0.3</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>

⁽¹⁾ The photometric intensity values between test points must not be less than the lower specified minimum value of the two closest adjacent test points on a horizontal or vertical line.

⁽²⁾ If the sum of intensity values for all points in the group is not less than the specified total value for the group, the measured intensity value for each individual test point is not required to meet the minimum value.

⁽³⁾ Where tail lamps are mounted with their axis of reference less than 750 mm above the road surface, photometry requirements below 5° down may be met at 5° down rather than at the specified required downward angle.

⁽⁴⁾ A taillamp shall not exceed the maximum intensity at H or above.
TABLE IX: STOP LAMP PHOTOMETRY REQUIREMENTS

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>TEST POINT (degrees)</th>
<th>MINIMUM PHOTOMETRIC INTENSITY RATIO WHERE COMBINED WITH A TAIL LAMP<sup>(1)</sup></th>
<th>MINIMUM PHOTOMETRIC INTENSITY<sup>(2)</sup> (cd)</th>
<th>GROUP MINIMUM PHOTOMETRIC INTENSITY (cd)</th>
<th>Lighted Sections</th>
<th>Lighted Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>20L</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>5U</td>
<td>3</td>
<td>10</td>
<td></td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>3</td>
<td>10</td>
<td></td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>5L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10D<sup>(3)</sup></td>
<td>3</td>
<td>16</td>
<td></td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>10D<sup>(3)</sup></td>
<td>3</td>
<td>16</td>
<td></td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>10L</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>5U</td>
<td>3</td>
<td>30</td>
<td></td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>3</td>
<td>30</td>
<td></td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>380</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>5U</td>
<td>5</td>
<td>70</td>
<td></td>
<td>70</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>5L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>5</td>
<td>80</td>
<td></td>
<td>80</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>10R</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>5U</td>
<td>3</td>
<td>30</td>
<td></td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>3</td>
<td>30</td>
<td></td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>10U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10D<sup>(3)</sup></td>
<td>3</td>
<td>16</td>
<td></td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>10D<sup>(3)</sup></td>
<td>3</td>
<td>16</td>
<td></td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>20R</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>5U</td>
<td>3</td>
<td>10</td>
<td></td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>3</td>
<td>10</td>
<td></td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

⁽¹⁾ The measured values at each test point must not be less than 60% of the minimum value.
⁽²⁾ The photometric intensity values between test points must not be less than the lower specified minimum value of the two closest adjacent test points on a horizontal or vertical line.
⁽³⁾ The maximum photometric intensity must not occur over any area larger than that generated by a 0.5° radius within a solid angle defined by the test point range.
<table>
<thead>
<tr>
<th>Test point (degrees)</th>
<th>Minimum photometric intensity (cd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>red lamps</td>
</tr>
<tr>
<td></td>
<td>amber lamps</td>
</tr>
<tr>
<td>10U: 45L (1)</td>
<td>0.25</td>
</tr>
<tr>
<td>V</td>
<td>0.25</td>
</tr>
<tr>
<td>45R (1)</td>
<td>0.25</td>
</tr>
<tr>
<td>H: 45L (1)</td>
<td>0.25</td>
</tr>
<tr>
<td>V</td>
<td>0.25</td>
</tr>
<tr>
<td>45R (1)</td>
<td>0.25</td>
</tr>
<tr>
<td>10D: 45L (1)</td>
<td>0.25</td>
</tr>
<tr>
<td>V</td>
<td>0.25</td>
</tr>
<tr>
<td>45R (1)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Where a side marker lamp installed on a motor vehicle less than 30 feet in overall length has the lateral angle nearest the other required side marker lamp on the same side of the vehicle reduced from 45° by design as specified by S7.4.13.2, the photometric intensity measurement may be met at the lesser angle.

The photometric intensity values between test points on a horizontal or vertical line must not be less than the lower specified minimum value of the two closest adjacent test points on a horizontal or vertical line.

Where side marker lamps are mounted with their axis of reference less than 750 mm above the road surface, photometry requirements below 5° down may be met at 5° down rather than at the specified required downward angle.

When a taillamp is combined with a stop lamp and the maximum luminous intensity of the taillamp is located below horizontal and within an area generated by a 0.5° radius around a test point (1.0° radius on lamps installed on a vehicle 2032 mm or more in overall width), the ratio for the test point may be computed by using the lowest value of the taillamp luminous intensity within the generated area.

Table X—Side Marker Lamp Photometry Requirements

<table>
<thead>
<tr>
<th>Test point (degrees)</th>
<th>Minimum photometric intensity (cd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>red lamps</td>
</tr>
<tr>
<td></td>
<td>amber lamps</td>
</tr>
<tr>
<td>10U: 45L (1)</td>
<td>0.25</td>
</tr>
<tr>
<td>V</td>
<td>0.25</td>
</tr>
<tr>
<td>45R (1)</td>
<td>0.25</td>
</tr>
<tr>
<td>H: 45L (1)</td>
<td>0.25</td>
</tr>
<tr>
<td>V</td>
<td>0.25</td>
</tr>
<tr>
<td>45R (1)</td>
<td>0.25</td>
</tr>
<tr>
<td>10D: 45L (1)</td>
<td>0.25</td>
</tr>
<tr>
<td>V</td>
<td>0.25</td>
</tr>
<tr>
<td>45R (1)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Values followed by a slash (/) apply only to lamps installed on multipurpose passenger vehicles, trucks, trailers, and buses of 2032 mm or more in overall width.
TABLE XI—CLEARANCE AND IDENTIFICATION LAMPS PHOTOMETRY REQUIREMENTS

<table>
<thead>
<tr>
<th>Test point (degrees)</th>
<th>Minimum photometric intensity (cd) (2) red lamps</th>
<th>Minimum photometric intensity (cd) (2) amber lamps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10U:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45L (4)</td>
<td>0.25</td>
<td>0.62</td>
</tr>
<tr>
<td>V</td>
<td>0.25</td>
<td>0.62</td>
</tr>
<tr>
<td>45R (4)</td>
<td>0.25</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45L (4)</td>
<td>0.25</td>
<td>0.62</td>
</tr>
<tr>
<td>V</td>
<td>0.25</td>
<td>0.62</td>
</tr>
<tr>
<td>45R (4)</td>
<td>0.25</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10D: (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45L (4)</td>
<td>0.25</td>
<td>0.62</td>
</tr>
<tr>
<td>V</td>
<td>0.25</td>
<td>0.62</td>
</tr>
<tr>
<td>45R (4)</td>
<td>0.25</td>
<td>0.62</td>
</tr>
<tr>
<td>Maximum photometric intensity (3) (cd) red lamps</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

(1) Where clearance lamps or identification lamps are mounted with their axis of reference less than 750mm above the road surface, photometry requirements below 5\(^\circ\) down may be met at 5\(^\circ\) down rather than at the specified required downward angle.

(2) The photometric intensity values between test points must not be less than the lower specified minimum value of the two closest adjacent test points on a horizontal or vertical line.

(3) When optically combined with a stop lamp or turn signal lamp, this maximum applies on or above the horizontal.

(4) Where clearance lamps are installed at locations other than on the front and rear due to the necessity to indicate the overall width of the vehicle, or for protection from damage during normal operation of the vehicle, they need not meet the photometric intensity requirement at any test point that is 45\(^\circ\) inboard.
TABLE XII: BACKUP LAMP PHOTOMETRY REQUIREMENTS

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>TEST POINT (degrees)</th>
<th>MAXIMUM PHOTOMETRIC INTENSITY (cd) ANY SINGLE LAMP</th>
<th>TWO LAMP SYSTEMS – EACH LAMP</th>
<th>SINGLE LAMP SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MINIMUM PHOTOMETRIC INTENSITY (cd)<sup>1</sup></td>
<td>GROUP MINIMUM PHOTOMETRIC INTENSITY (cd)<sup>2</sup></td>
<td>MINIMUM PHOTOMETRIC INTENSITY (cd)<sup>3</sup></td>
</tr>
<tr>
<td>1<sup>2(3)</sup></td>
<td>45L</td>
<td>300/600<sup>5(6)</sup></td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>300/600<sup>5(6)</sup></td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>-</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>2<sup>2(3)</sup></td>
<td>30L</td>
<td>300/600<sup>5(6)</sup></td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>300/600<sup>5(6)</sup></td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>-</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>10L</td>
<td>300/600<sup>5(6)</sup></td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10U</td>
<td>300/600<sup>5(6)</sup></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5U</td>
<td>300/600<sup>5(6)</sup></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>300/600<sup>5(6)</sup></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5U</td>
<td>300/600<sup>5(6)</sup></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10R</td>
<td>300/600<sup>5(6)</sup></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10U</td>
<td>300/600<sup>5(6)</sup></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5U</td>
<td>300/600<sup>5(6)</sup></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>-</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10L</td>
<td>300/600<sup>5(6)</sup></td>
<td>50</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5U</td>
<td>300/600<sup>5(6)</sup></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>-</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10R</td>
<td>300/600<sup>5(6)</sup></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>-</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>5<sup>2(3)</sup></td>
<td>30R</td>
<td>300/600<sup>5(6)</sup></td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>300/600<sup>5(6)</sup></td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>-</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>6<sup>2(3)</sup></td>
<td>45R</td>
<td>300/600<sup>5(6)</sup></td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>300/600<sup>5(6)</sup></td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>-</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

¹ The photometric intensity values between test points must not be less than the lower specified minimum value of the two closest adjacent test points on a horizontal or vertical line.

² When two lamps of the same or similarly opposite design are used, the tested photometric values along the vertical axis and the averages of the tested photometric values for the same horizontal test point left and right of vertical for one lamp must be used to determine compliance with the requirements.

³ When two lamps of differing designs are used, they must be tested individually and the tested photometric values added to determine the combined units compliance with twice the stated requirements.

⁴ If the sum of intensity values for all points in the group is not less than the specified total value for the group, the measured intensity value for each individual test point is not required to meet the minimum value.

⁵ The value before the slash applies to each lamp in a multiple lamp system; the value after the slash applies to a single lamp system.
<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>TEST POINT (degrees)</th>
<th>MINIMUM PHOTOOMETRIC INTENSITY RATIO WHERE COMBINED WITH A:</th>
<th>PHOTOMETRIC INTENSITY (°) FOR FRONT TURN SIGNAL LAMP</th>
<th>PHOTOMETRIC INTENSITY (°) FOR RED REAR TURN SIGNAL LAMP</th>
<th>PHOTOMETRIC INTENSITY (°) FOR AMBER REAR TURN SIGNAL LAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20L</td>
<td>SU 3 3 12.5 15 17.5</td>
<td>65 77.5 90</td>
<td>5 6 7.5</td>
<td>25 30 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD - 3 12.5 15 17.5</td>
<td>5 6 7.5</td>
<td>7.5 10 12.5</td>
<td>40 50 60</td>
</tr>
<tr>
<td></td>
<td>5L</td>
<td>10U 3 3 20 24 27.5</td>
<td>5 6 7.5</td>
<td>7.5 10 12.5</td>
<td>40 50 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HD - 3 20 24 27.5</td>
<td>8 9.5 11</td>
<td>13 15 17.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H 3 3 50 60 70</td>
<td>15 17.5 20</td>
<td>13 15 17.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD - 3 37.5 44 50</td>
<td>25 27.5 32.5</td>
<td>25 27.5 32.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10L</td>
<td>SU 3 3 37.5 44 50</td>
<td>65 147.5 170</td>
<td>50 57.5 67.5</td>
<td>57.5 67.5 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H 3 3 50 60 70</td>
<td>15 17.5 20</td>
<td>25 27.5 32.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5L 5 5 100 120 137.5</td>
<td>475 565 647.5</td>
<td>190 222.5 260</td>
<td>222.5 260 305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 5 5 100 120 137.5</td>
<td>55 65 75</td>
<td>65 75 87.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 5 5 100 120 137.5</td>
<td>475 565 647.5</td>
<td>190 222.5 260</td>
<td>222.5 260 305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 5 5 100 120 137.5</td>
<td>55 65 75</td>
<td>65 75 87.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD - 3 37.5 44 50</td>
<td>35 41 47.5</td>
<td>55 65 75</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10R</td>
<td>SU 3 3 37.5 44 50</td>
<td>65 147.5 170</td>
<td>50 57.5 67.5</td>
<td>57.5 67.5 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H 3 3 50 60 70</td>
<td>15 17.5 20</td>
<td>25 27.5 32.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5L 5 5 100 120 137.5</td>
<td>475 565 647.5</td>
<td>190 222.5 260</td>
<td>222.5 260 305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 5 5 100 120 137.5</td>
<td>55 65 75</td>
<td>65 75 87.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 5 5 100 120 137.5</td>
<td>475 565 647.5</td>
<td>190 222.5 260</td>
<td>222.5 260 305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 5 5 100 120 137.5</td>
<td>55 65 75</td>
<td>65 75 87.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD - 3 37.5 44 50</td>
<td>35 41 47.5</td>
<td>55 65 75</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5R</td>
<td>SU 3 3 37.5 44 50</td>
<td>65 147.5 170</td>
<td>50 57.5 67.5</td>
<td>57.5 67.5 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5L 5 5 100 120 137.5</td>
<td>475 565 647.5</td>
<td>190 222.5 260</td>
<td>222.5 260 305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 5 5 100 120 137.5</td>
<td>55 65 75</td>
<td>65 75 87.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 5 5 100 120 137.5</td>
<td>475 565 647.5</td>
<td>190 222.5 260</td>
<td>222.5 260 305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 5 5 100 120 137.5</td>
<td>55 65 75</td>
<td>65 75 87.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD - 3 37.5 44 50</td>
<td>35 41 47.5</td>
<td>55 65 75</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20R</td>
<td>SU 3 3 12.5 15 17.5</td>
<td>65 77.5 90</td>
<td>5 6 7.5</td>
<td>25 30 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD - 3 12.5 15 17.5</td>
<td>5 6 7.5</td>
<td>7.5 10 12.5</td>
<td>40 50 60</td>
</tr>
</tbody>
</table>

Maximum Photometric Intensity

- The measured values at each test point must not be less than 60% of the minimum value.
- The photometric intensity values between test points must not be less than the lower specified minimum value of the two closest adjacent test points on a horizontal or vertical line.
- The maximum photometric intensity must not occur over any area larger than that generated by a 0.5° radius within a solid angle defined by the test point range.
- Where tail signal lamps are mounted with their axis of reference less than 750 mm above the road surface, photometry requirements below 5° down may be met at 5° down rather than at the specified required downward angle.
- When a tail lamp is combined with a rear turn signal lamp and the maximum luminous intensity of the tail lamp is located below horizontal and within an area generated by a 0.5° radius around a test point that is the test point may be computed by using the lowest value of the tail lamp luminous intensity within the generated area.

<table>
<thead>
<tr>
<th>Photometry Requirement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Photometric Intensity</td>
<td>300</td>
<td>360</td>
<td>420</td>
<td>750</td>
<td>900</td>
</tr>
<tr>
<td>Maximum Photometric Intensity</td>
<td>300</td>
<td>360</td>
<td>420</td>
<td>750</td>
<td>900</td>
</tr>
<tr>
<td>GROUP</td>
<td>TEST POINT (degrees)</td>
<td>MINIMUM PHOTOMETRIC INTENSITY RATIO WHERE A MOTOR DRIVEN CYCLE STOP LAMP IS COMBINED WITH A TAIL LAMP<sup>(4)</sup></td>
<td>GROUP MINIMUM PHOTOMETRIC INTENSITY (cd) MOTOR DRIVEN CYCLE STOP LAMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lighted Sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20L SU 3</td>
<td>26</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20L SD 3</td>
<td>31</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20L 10U 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20L HD<sup>(5)</sup> 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10L SU 3</td>
<td>50</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10L H 3</td>
<td>59</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10L SD 3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>V SU 5</td>
<td>190</td>
<td>226</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V H 5</td>
<td>226</td>
<td>261</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V SD 5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10R SU 3</td>
<td>50</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10R H 3</td>
<td>59</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10R SD 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SR 3</td>
<td>26</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SR 10U 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SR HD<sup>(5)</sup> 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SR 20R 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum Photometric Intensity⁽³⁾

<table>
<thead>
<tr>
<th>GROUP</th>
<th>MAXIMUM PHOTOMETRIC INTENSITY<sup>(3)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>360</td>
</tr>
<tr>
<td>3</td>
<td>420</td>
</tr>
</tbody>
</table>

⁽¹⁾ The maximum photometric intensity must not occur over any area larger than that generated by a 0.5° radius within a solid angle defined by the test point range.

⁽²⁾ Where stop lamps are mounted with their axis of reference less than 750 mm above the road surface, photometry requirements below 5° down may be met at 5° down rather than at the specified required downward angle.

⁽³⁾ Requirements for a motor-driven cycle whose speed attainable in 1 mile is 30 mph or less.

⁽⁴⁾ When a taillamp is combined with a stop lamp and the maximum luminous intensity of the taillamp is located below horizontal and within an area generated by a 0.5° radius around a test point the ratio for the test point may be computed by using the lowest value of the taillamp luminous intensity within the generated area.
TABLE XIV: PARKING LAMP PHOTOMETRY REQUIREMENTS

<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>TEST POINT (degrees)</th>
<th>MINIMUM PHOTOMETRIC INTENSITY<sup>(cd)</sup></th>
<th>MAXIMUM PHOTOMETRIC INTENSITY<sup>(cd)</sup></th>
<th>GROUP MINIMUM PHOTOMETRIC INTENSITY<sup>(cd)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20L</td>
<td>5U 0.4</td>
<td>125</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D 0.4</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5L 10U 0.8</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10D<sup>(1)</sup> 0.8</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10L</td>
<td>5U 0.8</td>
<td>125</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H 1.4</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D 0.8</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>V</td>
<td>5U 2.8</td>
<td>125</td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5L 3.6</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H 4.0</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5R 3.6</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>V</td>
<td>5D 2.8</td>
<td>250</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5U 0.8</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H 1.4</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D 0.8</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10R</td>
<td>5U 0.8</td>
<td>125</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10D<sup>(1)</sup> 0.8</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5U 0.4</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5D 0.4</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

⁽¹⁾ The photometric intensity values between test points must not be less than the lower specified minimum value of the two closest adjacent test points on a horizontal or vertical line.

⁽²⁾ If the sum of intensity values for all points in the group is not less than the specified total value for the group, the measured intensity value for each individual test point is not required to meet the minimum value.

⁽³⁾ Where parking lamps are mounted with their axis of reference less than 750 mm above the road surface, photometry requirements below 5° down may be met at 5° down rather than at the specified required downward angle.
<table>
<thead>
<tr>
<th>GROUP NUMBER</th>
<th>TEST POINT (degrees)</th>
<th>MINIMUM PHOTOMETRIC INTENSITY<sup>(2)(5)(6)<sup>cd</sup></th>
<th>GROUP MINIMUM PHOTOMETRIC INTENSITY<sup>(3)</sup></th>
<th>MAXIMUM PHOTOMETRIC INTENSITY<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V 5U</td>
<td>25</td>
<td>125</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>5L H</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V 5H</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5R H</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V 5D</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5R 5U</td>
<td>25</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10R 5U</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10R H</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10R 5D</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5R 5D</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5L 5U</td>
<td>25</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10L 5U</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10L H</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10L 5D</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5L 5D</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10L 10U</td>
<td>8</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V 10U</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10R 10U</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁽¹⁾ The photometric intensity values between test points must not be less than the lower specified minimum value of the two closest adjacent test points on a horizontal or vertical line.

⁽²⁾ The photometric intensity at each test point must not be less than 60% of the specified minimum value when considering overall group photometry tables.

⁽³⁾ Where a pair of lamps identical in size and shape are used due to vehicle construction, they together must meet photometric requirements.

⁽⁴⁾ The maximum photometric intensity must not occur over any area larger than that generated by a 0.25° radius within a solid cone angle within the rectangle bounded by test points 10U-10L, 10U-10R, 5D-10L, and 5D-10R.
Table XVI–a—Reflex Reflector Photometry Requirements

<table>
<thead>
<tr>
<th>Observation angle (degrees)</th>
<th>Entrance angle (degrees)</th>
<th>Minimum performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Red reflectors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(cd/incident ft²)</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>10U</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>10D (1)</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>20L</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>20R</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>10U</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>10D (1)</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>20L</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>20R</td>
<td></td>
<td>0.03</td>
</tr>
</tbody>
</table>

(1) Where reflex reflectors are mounted with their axis of reference less than 750 mm above the road surface, photometry requirements below 5° down may be met at 5° down rather than at the required specified downward angle.

Table XVI–b—Additional Photometry Requirements for Conspicuity Reflex Reflectors

<table>
<thead>
<tr>
<th>Observation angle (degrees)</th>
<th>Entrance angle (degrees)</th>
<th>Minimum performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Red (mcd/lux)</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>20L TO 20R</td>
<td></td>
<td>1120</td>
</tr>
<tr>
<td>30L TO 30R</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>45L TO 45R</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>10U TO 10D</td>
<td></td>
<td>1120</td>
</tr>
</tbody>
</table>

Table XVI–c—Retroreflective Sheeting Photometry Requirements

<table>
<thead>
<tr>
<th>Observation angle (degrees)</th>
<th>Entrance angle (degrees)</th>
<th>Minimum performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grade dot-C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(cd/lux/ sq m)</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>–4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>–4</td>
</tr>
</tbody>
</table>

Table XVII—School Bus Signal Lamp Photometry Requirements

<table>
<thead>
<tr>
<th>Test point (degrees)</th>
<th>Minimum photometric intensity (cd) (2) red lamps</th>
<th>Minimum photometric intensity (cd) amber lamps</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>600</td>
<td>1500</td>
</tr>
<tr>
<td>5R</td>
<td>500</td>
<td>1500</td>
</tr>
<tr>
<td>10R</td>
<td>400</td>
<td>1000</td>
</tr>
<tr>
<td>20R</td>
<td>180</td>
<td>450</td>
</tr>
<tr>
<td>30R</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>5D:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30L</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>20L</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>10L</td>
<td>300</td>
<td>750</td>
</tr>
<tr>
<td>5L</td>
<td>450</td>
<td>1125</td>
</tr>
<tr>
<td>V</td>
<td>450</td>
<td>1125</td>
</tr>
<tr>
<td>5R</td>
<td>450</td>
<td>1125</td>
</tr>
<tr>
<td>10R</td>
<td>300</td>
<td>750</td>
</tr>
</tbody>
</table>

(2) Where reflex reflectors are mounted with their axis of reference less than 750 mm above the road surface, photometry requirements below 5° down may be met at 5° down rather than at the required specified downward angle.
Table XVII—School Bus Signal Lamp Photometry Requirements—Continued

<table>
<thead>
<tr>
<th>Test point (degrees)</th>
<th>Minimum photometric intensity (cd) red lamps</th>
<th>Minimum photometric intensity (cd) amber lamps</th>
</tr>
</thead>
<tbody>
<tr>
<td>20R</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>30R</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>10D: (1)</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>5L</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>V</td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>

(1) Where school bus signal lamps are mounted with their axis of reference less than 750 mm above the road surface, photometry requirements below 5° down may be met at 5° down rather than at the specified required downward angle.

(2) The photometric intensity values between test points must not be less than the lower specified minimum value of the two closest adjacent test points on a horizontal or vertical line.
TABLE XVIII: HEADLAMP UPPER BEAM PHOTOMETRY REQUIREMENTS

<table>
<thead>
<tr>
<th>TEST POINT (degrees)</th>
<th>UPPER BEAM #1 (UB1)</th>
<th>UPPER BEAM #2 (UB2)</th>
<th>UPPER BEAM #3 (UB3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAXIMUM PHOTOMETRIC INTENSITY (cd)</td>
<td>MINIMUM PHOTOMETRIC INTENSITY (cd)</td>
<td>MAXIMUM PHOTOMETRIC INTENSITY (cd)</td>
</tr>
<tr>
<td>2U V</td>
<td>- 1,500</td>
<td>- 1,500</td>
<td>- 1,000</td>
</tr>
<tr>
<td>1U 3L & 3R</td>
<td>- 5,000</td>
<td>- 5,000</td>
<td>- 2,000</td>
</tr>
<tr>
<td>H V</td>
<td>70,000</td>
<td>40,000</td>
<td>75,000</td>
</tr>
<tr>
<td>H 3L & 3R</td>
<td>- 15,000</td>
<td>- 15,000</td>
<td>- 10,000</td>
</tr>
<tr>
<td>H 6L & 6R</td>
<td>- 5,000</td>
<td>- 5,000</td>
<td>- 3,250</td>
</tr>
<tr>
<td>H 9L & 9R</td>
<td>- 3,000</td>
<td>- 3,000</td>
<td>- 1,500</td>
</tr>
<tr>
<td>H 12L & 12R</td>
<td>- 1,500</td>
<td>- 1,500</td>
<td>- 750</td>
</tr>
<tr>
<td>1.5D V</td>
<td>- 5,000</td>
<td>- 5,000</td>
<td>- 750</td>
</tr>
<tr>
<td>1.5D 9L & 9R</td>
<td>- 2,000</td>
<td>- 2,000</td>
<td>- 750</td>
</tr>
<tr>
<td>2.5D V</td>
<td>- 2,500</td>
<td>- 2,500</td>
<td>- 750</td>
</tr>
<tr>
<td>2.5D 12L & 12R</td>
<td>- 1,000</td>
<td>- 1,000</td>
<td>- 750</td>
</tr>
<tr>
<td>4D V</td>
<td>5,000</td>
<td>12,000</td>
<td>5,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UPPER BEAM #4 (UB4)</td>
<td>UPPER BEAM #5 (UB5)</td>
<td>UPPER BEAM #6 (UB6)</td>
</tr>
<tr>
<td>2U V</td>
<td>- 750</td>
<td>- 750</td>
<td>- 1,500</td>
</tr>
<tr>
<td>1U 3L & 3R</td>
<td>- 3,000</td>
<td>- 2,000</td>
<td>- 5,000</td>
</tr>
<tr>
<td>H V</td>
<td>60,000</td>
<td>18,000</td>
<td>15,000</td>
</tr>
<tr>
<td>H 3L & 3R</td>
<td>- 12,000</td>
<td>- 3,000</td>
<td>- 15,000</td>
</tr>
<tr>
<td>H 6L & 6R</td>
<td>- 3,000</td>
<td>- 2,000</td>
<td>- 5,000</td>
</tr>
<tr>
<td>H 9L & 9R</td>
<td>- 2,000</td>
<td>- 1,000</td>
<td>- 3,000</td>
</tr>
<tr>
<td>H 12L & 12R</td>
<td>- 750</td>
<td>- 750</td>
<td>- 1,500</td>
</tr>
<tr>
<td>1.5D V</td>
<td>- 3,000</td>
<td>- 2,000</td>
<td>- 5,000</td>
</tr>
<tr>
<td>1.5D 9L & 9R</td>
<td>- 1,250</td>
<td>- 750</td>
<td>- 1,000</td>
</tr>
<tr>
<td>2.5D V</td>
<td>- 1,500</td>
<td>- 1,000</td>
<td>- 750</td>
</tr>
<tr>
<td>2.5D 12L & 12R</td>
<td>- 600</td>
<td>- 400</td>
<td>- 750</td>
</tr>
<tr>
<td>4D V</td>
<td>5,000</td>
<td>2,500</td>
<td>5,000</td>
</tr>
<tr>
<td>TEST POINT (degrees)</td>
<td>LOWER BEAM #1M (LB1M)</td>
<td>LOWER BEAM #1V (LB1V)</td>
<td>LOWER BEAM #2M (LB2M)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM PHOTOMETRIC INTENSITY (cd)</td>
<td>MINIMUM PHOTOMETRIC INTENSITY (cd)</td>
<td>MAXIMUM PHOTOMETRIC INTENSITY (cd)</td>
</tr>
<tr>
<td>10° to 90° U</td>
<td>125</td>
<td>-</td>
<td>125</td>
</tr>
<tr>
<td>90° to 90° R</td>
<td>-</td>
<td>64</td>
<td>-</td>
</tr>
<tr>
<td>1.5° U</td>
<td>4L</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>1.5° U</td>
<td>1R to 3R</td>
<td>-</td>
<td>200</td>
</tr>
<tr>
<td>1.5° U</td>
<td>1R to R</td>
<td>1,400</td>
<td>-</td>
</tr>
<tr>
<td>1° U</td>
<td>1.5L to L</td>
<td>700</td>
<td>-</td>
</tr>
<tr>
<td>0.5° U</td>
<td>1.5L to L</td>
<td>1,000</td>
<td>-</td>
</tr>
<tr>
<td>0.5° U</td>
<td>1R to 3R</td>
<td>2,700</td>
<td>500</td>
</tr>
<tr>
<td>H</td>
<td>V</td>
<td>5,000</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>4L</td>
<td>-</td>
<td>135</td>
</tr>
<tr>
<td>H</td>
<td>8L</td>
<td>-</td>
<td>64</td>
</tr>
<tr>
<td>0.5° D</td>
<td>1.5L to L</td>
<td>3,000</td>
<td>-</td>
</tr>
<tr>
<td>0.5° D</td>
<td>1.5R</td>
<td>20,000</td>
<td>-</td>
</tr>
<tr>
<td>0.6° D</td>
<td>1.3R</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.8° D</td>
<td>V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.8° D</td>
<td>3.5L</td>
<td>-</td>
<td>12,000</td>
</tr>
<tr>
<td>1° D</td>
<td>6L</td>
<td>-</td>
<td>1,000</td>
</tr>
<tr>
<td>1.5° D</td>
<td>2R</td>
<td>-</td>
<td>15,000</td>
</tr>
<tr>
<td>1.5° D</td>
<td>9L & 9R</td>
<td>-</td>
<td>1,000</td>
</tr>
<tr>
<td>2° D</td>
<td>9L & 9R</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2° D</td>
<td>15L & 15R</td>
<td>-</td>
<td>1,250</td>
</tr>
<tr>
<td>2° D</td>
<td>2L & 2R</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.5° D</td>
<td>12L & 12R</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4° D</td>
<td>4R</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4° D</td>
<td>20L & 20R</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: These test points are boundaries, intensity values within this boundary must meet the listed photometry requirement.
<table>
<thead>
<tr>
<th>TEST POINT (degrees)</th>
<th>LOWER BEAM #3 M (LB3M)</th>
<th>LOWER BEAM #3V (LB3V)</th>
<th>LOWER BEAM #4M (LB4M)</th>
<th>LOWER BEAM #5M (LB5M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAXIMUM PHOTOMETRIC INTENSITY (cd)</td>
<td>MINIMUM PHOTOMETRIC INTENSITY (cd)</td>
<td>MAXIMUM PHOTOMETRIC INTENSITY (cd)</td>
<td>MINIMUM PHOTOMETRIC INTENSITY (cd)</td>
</tr>
<tr>
<td>4U</td>
<td>125</td>
<td>-</td>
<td>64</td>
<td>-</td>
</tr>
<tr>
<td>2U</td>
<td>135</td>
<td>-</td>
<td>135</td>
<td>-</td>
</tr>
<tr>
<td>1.5U</td>
<td>120</td>
<td>-</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>1.5U</td>
<td>1,400</td>
<td>-</td>
<td>1,400</td>
<td>-</td>
</tr>
<tr>
<td>1U</td>
<td>700</td>
<td>-</td>
<td>700</td>
<td>-</td>
</tr>
<tr>
<td>0.5U</td>
<td>1,000</td>
<td>-</td>
<td>1,000</td>
<td>-</td>
</tr>
<tr>
<td>0.5U</td>
<td>2,700</td>
<td>500</td>
<td>2,700</td>
<td>500</td>
</tr>
<tr>
<td>H</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>4L</td>
<td>135</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>H</td>
<td>8L</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>0.5D</td>
<td>1.5L to L</td>
<td>2,500</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.5D</td>
<td>1.5R</td>
<td>20,000</td>
<td>8,000</td>
<td>-</td>
</tr>
<tr>
<td>0.6D</td>
<td>1.3R</td>
<td>-</td>
<td>10,000</td>
<td>-</td>
</tr>
<tr>
<td>0.8D</td>
<td>V</td>
<td>-</td>
<td>4,500</td>
<td>-</td>
</tr>
<tr>
<td>1D</td>
<td>6L</td>
<td>-</td>
<td>12,000</td>
<td>1,800</td>
</tr>
<tr>
<td>1D</td>
<td>2L</td>
<td>15,000</td>
<td>-</td>
<td>15,000</td>
</tr>
<tr>
<td>1D</td>
<td>9L & 9R</td>
<td>750</td>
<td>-</td>
<td>750</td>
</tr>
<tr>
<td>2D</td>
<td>9L & 9R</td>
<td>-</td>
<td>-</td>
<td>1,250</td>
</tr>
<tr>
<td>2D</td>
<td>15L & 15R</td>
<td>1,000</td>
<td>-</td>
<td>700</td>
</tr>
<tr>
<td>2.5D</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.5D</td>
<td>12L & 12R</td>
<td>-</td>
<td>-</td>
<td>1,000</td>
</tr>
<tr>
<td>4D</td>
<td>V</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4D</td>
<td>4R</td>
<td>12,500</td>
<td>-</td>
<td>12,500</td>
</tr>
<tr>
<td>4D</td>
<td>20L & 20R</td>
<td>-</td>
<td>300</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: These test points are boundaries, intensity values within this boundary must meet the listed photometry requirement.
<table>
<thead>
<tr>
<th>TEST POINT (degrees)</th>
<th>MAXIMUM PHOTOMETRIC INTENSITY (cd)</th>
<th>LOWER BEAM # 4 V (LB4V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 16U to 90U</td>
<td>(1) 90L to 90R</td>
<td>125</td>
</tr>
<tr>
<td>4U</td>
<td>8L & 8R</td>
<td>-</td>
</tr>
<tr>
<td>2U</td>
<td>4L</td>
<td>-</td>
</tr>
<tr>
<td>1.5U</td>
<td>1R to 3R</td>
<td>-</td>
</tr>
<tr>
<td>1.5U</td>
<td>1R to R</td>
<td>1,400</td>
</tr>
<tr>
<td>1U</td>
<td>1.5L to L</td>
<td>700</td>
</tr>
<tr>
<td>0.5U</td>
<td>1.5L to L</td>
<td>1,000</td>
</tr>
<tr>
<td>0.5U</td>
<td>1R to 3R</td>
<td>2,700</td>
</tr>
<tr>
<td>H</td>
<td>V</td>
<td>5,000</td>
</tr>
<tr>
<td>H</td>
<td>4L</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>8L</td>
<td>-</td>
</tr>
<tr>
<td>0.5D</td>
<td>1.5L to L</td>
<td>-</td>
</tr>
<tr>
<td>0.5D</td>
<td>1.5R</td>
<td>-</td>
</tr>
<tr>
<td>0.6D</td>
<td>1.3R</td>
<td>-</td>
</tr>
<tr>
<td>0.86D</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>0.86D</td>
<td>3.5L</td>
<td>12,000</td>
</tr>
<tr>
<td>1D</td>
<td>6L</td>
<td>-</td>
</tr>
<tr>
<td>1.5D</td>
<td>2R</td>
<td>-</td>
</tr>
<tr>
<td>1.5D</td>
<td>9L & 9R</td>
<td>--</td>
</tr>
<tr>
<td>2D</td>
<td>9L & 9R</td>
<td>-</td>
</tr>
<tr>
<td>2D</td>
<td>15L & 15R</td>
<td>-</td>
</tr>
<tr>
<td>2.5D</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>2.5D</td>
<td>12L & 12R</td>
<td>-</td>
</tr>
<tr>
<td>4D</td>
<td>V</td>
<td>10,000</td>
</tr>
<tr>
<td>4D</td>
<td>4R</td>
<td>12,500</td>
</tr>
<tr>
<td>4D</td>
<td>20L & 20R</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) These test points are boundaries, intensity values within this boundary must meet the listed photometry requirement.
TABLE XX: MOTORCYCLE AND MOTOR DRIVEN CYCLE HEADLAMP PHOTOMETRY REQUIREMENTS

<table>
<thead>
<tr>
<th>TEST POINT (degrees)</th>
<th>MOTORCYCLE</th>
<th>MOTOR DRIVEN CYCLE</th>
<th>MOTOR DRIVEN CYCLE with Single Lamp System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAXIMUM PHOTOOMETRIC INTENSITY (cd)</td>
<td>MINIMUM PHOTOOMETRIC INTENSITY (cd)</td>
<td>MAXIMUM PHOTOOMETRIC INTENSITY (cd)</td>
</tr>
<tr>
<td>1.5U 1R to R</td>
<td>1,400</td>
<td>-</td>
<td>1,400</td>
</tr>
<tr>
<td>1.5U 1R to 3R</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1U 1.5L to L</td>
<td>700</td>
<td>-</td>
<td>700</td>
</tr>
<tr>
<td>0.5U 1.5L to L</td>
<td>1,000</td>
<td>-</td>
<td>1,000</td>
</tr>
<tr>
<td>0.5U 1R to 3R</td>
<td>2,700</td>
<td>-</td>
<td>2,700</td>
</tr>
<tr>
<td>1.5D 9L and 9R</td>
<td>700</td>
<td>-</td>
<td>700</td>
</tr>
<tr>
<td>2D V</td>
<td>-</td>
<td>7,000</td>
<td>-</td>
</tr>
<tr>
<td>2D 3L and 3R</td>
<td>-</td>
<td>4,000</td>
<td>-</td>
</tr>
<tr>
<td>2D 6L and 6R</td>
<td>-</td>
<td>1,500</td>
<td>-</td>
</tr>
<tr>
<td>2D 12L and 12R</td>
<td>-</td>
<td>700</td>
<td>-</td>
</tr>
<tr>
<td>3D 6L and 6R</td>
<td>-</td>
<td>800</td>
<td>-</td>
</tr>
<tr>
<td>4D V</td>
<td>-</td>
<td>2,000</td>
<td>-</td>
</tr>
<tr>
<td>4D 48</td>
<td>12,500</td>
<td>-</td>
<td>12,500</td>
</tr>
</tbody>
</table>

UPPER BEAM

<table>
<thead>
<tr>
<th>TEST POINT (degrees)</th>
<th>MOTORCYCLE</th>
<th>MOTOR DRIVEN CYCLE</th>
<th>MOTOR DRIVEN CYCLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAXIMUM PHOTOOMETRIC INTENSITY (cd)</td>
<td>MINIMUM PHOTOOMETRIC INTENSITY (cd)</td>
<td>MAXIMUM PHOTOOMETRIC INTENSITY (cd)</td>
</tr>
<tr>
<td>2U V</td>
<td>-</td>
<td>1,000</td>
<td>-</td>
</tr>
<tr>
<td>1U 3L and 3R</td>
<td>-</td>
<td>2,000</td>
<td>-</td>
</tr>
<tr>
<td>0.5D V</td>
<td>-</td>
<td>10,000</td>
<td>-</td>
</tr>
<tr>
<td>0.5D 6L and 6R</td>
<td>-</td>
<td>3,300</td>
<td>-</td>
</tr>
<tr>
<td>0.5D 9L and 9R</td>
<td>-</td>
<td>1,500</td>
<td>-</td>
</tr>
<tr>
<td>0.5D 12L and 12R</td>
<td>-</td>
<td>800</td>
<td>-</td>
</tr>
<tr>
<td>1D V</td>
<td>-</td>
<td>17,500</td>
<td>-</td>
</tr>
<tr>
<td>2D V</td>
<td>-</td>
<td>5,000</td>
<td>-</td>
</tr>
<tr>
<td>3D V</td>
<td>-</td>
<td>2,500</td>
<td>-</td>
</tr>
<tr>
<td>3D 6L and 6R</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3D 9L and 9R</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3D 12L and 12R</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4D V</td>
<td>-</td>
<td>1,500</td>
<td>-</td>
</tr>
<tr>
<td>4D V</td>
<td>-</td>
<td>7,500</td>
<td>-</td>
</tr>
<tr>
<td>ANYWHERE IN BEAM</td>
<td>75,000</td>
<td>-</td>
<td>75,000</td>
</tr>
</tbody>
</table>
FIGURE 1

CHROMATICITY DIAGRAM
§ 571.108

49 CFR Ch. V (10–1–16 Edition)

MECHANICAL AIMING DEVICE
LOCATING PLATE SETTINGS
FOR THE ADJUSTABLE LEGS

Notes:
Group I or Group II aiming pad locations
may be used

Group I aiming pad location (front view) is
that prescribed for 2B1 sealed beam units

Group II aiming pad location (front view) is
that prescribed for 1A1/2A1 sealed beam units

<table>
<thead>
<tr>
<th>Letter</th>
<th>MM</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>42.16 ± 0.25</td>
<td>1.660 ± 0.010</td>
</tr>
<tr>
<td>B</td>
<td>60.05 ± 1.00</td>
<td>2.364 ± 0.039</td>
</tr>
<tr>
<td>C</td>
<td>64.0 ± 1.00</td>
<td>2.520 ± 0.039</td>
</tr>
<tr>
<td>D</td>
<td>68.58 ± 0.51</td>
<td>2.700 ± 0.020</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mechanical aiming device locating plate
setting for the vertical adjustable leg.
(Millimeters)

Mechanical aiming device locating plate
setting for the horizontal adjustable leg.
(Millimeters)

REPLACEABLE BULB HEADLAMP AIM PADS

FIGURE 3
HEADLAMP CONNECTOR TEST SETUP

FIGURE 4
Ambient temperature transition rates:
Minimum 0.8°C per minute
Maximum 4°C per minute

Temperature °C

(48.9°C)
(22.8°C)
(-34.4°C)

Hours

Note: Ambient conditions 23°C ± 4°C and 30% RH ± 10%

THERMAL CYCLE PROFILE

FIGURE 6
DIRT / AMBIENT TEST SETUP

FIGURE 7

Headlamp With Mounting Hardware (Backside)

Target

Circulating Fan

2" Urethane Insulation Block Box
(Inside Dimensions 36" (915 mm) L,
x 24" (610 mm) W, x 12" (305 mm) H, minimum)
(Shown Cut Away With Top Cover Removed)
Nat'l Highway Traffic Safety Admin., DOT § 571.108

REPLACEABLE LIGHT SOURCE DEFLECTION TEST SETUP

FIGURE 8
§ 571.108

49 CFR Ch. V (10–1–16 Edition)

ENVIRONMENTAL TEST PROFILE

FIGURE 9
Air pressure gauge

Pressure Chamber

Replaceable Light source

Aperture in pressure chamber for light source made to dimensions listed for aperture for light source in response to Part 564.5(a)

Light source retainer or equivalent

REPLACEABLE LIGHT SOURCE PRESSURE TEST SETUP

FIGURE 10
Trailer Conspicuity Treatment Examples

FIGURE 11
FIGURE 12-1

TRAILER CONSPICUITY DETAIL I

L = Length of any continuous strip

X + X + ... < 2/3 L and Y + Y + ... < 2/3 L

Grade DOT-C2 = 300 mm (±150 mm) L x 50 mm W Minimum
Grade DOT-C3 = 300 mm (±150 mm) L x 75 mm W Minimum
Grade DOT-C4 = 300 mm (±150 mm) L x 100 mm W Minimum
TRAILER CONSPICUITY DETAIL II

FIGURE 12-2
§ 571.108 SAE HEADLAMP TEST FIXTURE

100 X 165 MM

DIMENSIONS ARE IN mm

MACHINE MATERIALS:

DIE-CAST ALUMINUM ALLOY AA-6061-T6 OR EQUIVALENT

SCREW MATERIALS:

ZINC PLATED STEEL SPRING STEEL

BASE BRASS-COPPER PLATE

WEIGHT AND EYE BOLT ASSEMBLY:

ALUMINUM/MACHINE THREADS

MACHINED DIA. 0.30 mm

SAE 100 X 165 mm - HEADLAMP TEST FIXTURE

SECTION AA- AA

SECTION B-B

SECTION A-A

Types A and E Headlamp Aim Deflection Test Setup

Figure 16
§ 571.108

SAE HEADLAMP TEST FIXTURE
142 X 200 MM

DIMENSIONS ARE IN mm

MACHINE MATERIALS:
DISC ARM AND BRACE—ALUMINUM SAE 44-001-70 OR EQUIV
COIL SPRING—LEVEL, CUP SPRING STEEL
SAE 1050 CROMIUM PLATE

WEIGHT AND EYE BOLT ASSEMBLY—STEEL—CROMIUM PLATE
SCREWS—ALUMINUM MACHINE THREADS
MACHINED DIA. 0.13 mm
SAE 1042 X 200 mm • HEADLAMP TEST FIXTURE

SECTION A-A

SECTION B-B

ALUMINUM SLEEVE TO LIMIT THUMB SCREW ADJUSTMENT TO 4 DEGREES DOWN

BRASS THUMB SCREW 64 THREADS PER 25.4 mm

EYE BOLT

LIGHTENING HOLES AS REQUIRED—PLATE HOLDING WEIGHT ASSEMBLY TO BE 0.67 kg

SPRING CLIP AND SCREW IN THUMB SCREW TO LIMIT ADJUSTMENT TO 4 DEGREES UP

TYPE B HEADLAMP AIM DEFLECTION TEST SETUP

FIGURE 17

457
§ 571.108

49 CFR Ch. V (10–1–16 Edition)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A DIM</th>
<th>B DIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE 5.75</td>
<td>144.63</td>
<td>154.42</td>
</tr>
<tr>
<td>SAE 7.00</td>
<td>178.51</td>
<td>188.46</td>
</tr>
</tbody>
</table>

Dimensions are in mm.

Machine Materials:

- Anodized aluminum, SAE AA6061-T6 or equiv.
- Coil spring and level, clip-spring steel SAE 5150/3/3.
- Weight and eye bolt assembly, steel/cadmium plate.
- Screws, anodized aluminum machine thread, 148 and 176-lead head test fixture.

Lightening holes as required.

Final weight of base and level assembly to be 176 units (0.373 kg).

Types C and D headlamp aim deflection test setup.

Figure 18.
§ 571.108

Test Plate for Vehicles other than Motorcycles and Motor Driven Cycles

Test Plate for Motorcycles and Motor Driven Cycles

LICENSE PLATE LAMP TARGET LOCATIONS

FIGURE 19
License Plate Lamp Measurement of Incident Light Angle

FIGURE 20
CAM PROFILE RADII*

<table>
<thead>
<tr>
<th>Point</th>
<th>Radius, in</th>
<th>Point</th>
<th>Radius, in</th>
<th>Point</th>
<th>Radius, in</th>
<th>Point</th>
<th>Radius, in</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5000</td>
<td>6</td>
<td>0.5504</td>
<td>11</td>
<td>0.6284</td>
<td>16</td>
<td>0.7064</td>
</tr>
<tr>
<td>2</td>
<td>0.5000</td>
<td>7</td>
<td>0.5660</td>
<td>12</td>
<td>0.6440</td>
<td>17</td>
<td>0.7220</td>
</tr>
<tr>
<td>3</td>
<td>0.5086</td>
<td>8</td>
<td>0.5816</td>
<td>13</td>
<td>0.6596</td>
<td>18</td>
<td>0.7376</td>
</tr>
<tr>
<td>4</td>
<td>0.5192</td>
<td>9</td>
<td>0.5972</td>
<td>14</td>
<td>0.6752</td>
<td>19</td>
<td>0.7466</td>
</tr>
<tr>
<td>5</td>
<td>0.5348</td>
<td>10</td>
<td>0.6128</td>
<td>15</td>
<td>0.6908</td>
<td>20</td>
<td>0.7500</td>
</tr>
</tbody>
</table>

* The cam width is between 1/2 and 1 in.

FIGURE 21 VIBRATION TEST MACHINE
§571.108 Standard No. 108; Lamps, reflective devices, and associated equipment.

Scope.

Figure 22

Removable shunts 0.005 ohm max.
§ 571.108

S2 Purpose.
S3 Application.
S4 Definitions.
S5 References to SAE publications.
S5.2 Incorporation by reference.
S6 Vehicle requirements.
S6.1 Required lamps, reflective devices, and associated equipment by vehicle type.
S6.1.1 Quantity.
S6.1.1.1 Conspicuity systems.
S6.1.1.2 High-mounted stop lamps.
S6.1.1.3 Truck tractor rear turn signal lamps.
S6.1.1.4 Daytime running lamps.
S6.1.2 Color.
S6.1.3 Mounting location.
S6.1.3.4 High-mounted stop lamp.
S6.1.3.4.1 Interior mounting.
S6.1.3.4.2 Accessibility.
S6.1.3.5 Headlamp beam mounting.
S6.1.3.6 Auxiliary lamps mounted near identification lamps.
S6.1.4 Mounting height.
S6.1.5 Activation.
S6.1.5.1 Hazard warning signal.
S6.1.5.2 Simultaneous beam activation.
S6.1.6 Effective projected luminous lens area requirements.
S6.1.7 Visibility.
S6.1.8 Indicator.
S6.1.9 Markings.
S6.1.10 Spacing to other lamps.
S6.1.10.2 Spacing measurement for non-reflector lamps.
S6.1.10.3 Spacing measurement for lamps with reflectors.
S6.1.11 Multiple compartments and multiple lamps.
S6.1.11.4 Lamps installed on vehicles 2032 mm or more in overall width.
S6.1.12 Ratio to parking lamps and clearance lamps.
S6.1.13 Photometry.
S6.1.14 Physical tests.
S6.1.15 Rear turn signal lamps.
S6.1.16 Number.
S6.1.17 Color of light.
S6.1.18 Mounting location.
S6.1.19 Mounting height.
S6.1.20 Activation.
S6.1.21 Effective projected luminous lens area.
S6.1.22 Visibility.
S6.1.23 Indicator.
S6.1.24 Markings.
S6.1.25 Spacing to other lamps.
S6.1.26 Multiple compartments and multiple lamps.
S6.1.27 Lamps installed on vehicles 2032 mm or more in overall width.
S6.1.28 Ratio to taillamps and clearance lamps.
S6.1.29 Photometry.
S6.1.30 Physical tests.
S6.1.31 Combined lamp bulb indexing.
S6.2 Taillamps.
S6.2.1 Number.
S6.2.2 Color of light.
S6.2.3 Mounting location.
S6.2.4 Mounting height.
S6.2.5 Activation.
S6.2.6 Effective projected luminous lens area.

S3 Application.
S4 Definitions.
S5 References to SAE publications.
S5.2 Incorporation by reference.
S6 Vehicle requirements.
S6.1 Required lamps, reflective devices, and associated equipment by vehicle type.
S6.1.1 Quantity.
S6.1.1.1 Conspicuity systems.
S6.1.1.2 High-mounted stop lamps.
S6.1.1.3 Truck tractor rear turn signal lamps.
S6.1.1.4 Daytime running lamps.
S6.1.2 Color.
S6.1.3 Mounting location.
S6.1.3.4 High-mounted stop lamp.
S6.1.3.4.1 Interior mounting.
S6.1.3.4.2 Accessibility.
S6.1.3.5 Headlamp beam mounting.
S6.1.3.6 Auxiliary lamps mounted near identification lamps.
S6.1.4 Mounting height.
S6.1.5 Activation.
S6.1.5.1 Hazard warning signal.
S6.1.5.2 Simultaneous beam activation.
S6.1.6 Effective projected luminous lens area requirements.
S6.1.7 Visibility.
S6.1.8 Indicator.
S6.1.9 Markings.
S6.1.10 Spacing to other lamps.
S6.1.10.2 Spacing measurement for non-reflector lamps.
S6.1.10.3 Spacing measurement for lamps with reflectors.
S6.1.11 Multiple compartments and multiple lamps.
S6.1.11.4 Lamps installed on vehicles 2032 mm or more in overall width.
S6.1.12 Ratio to parking lamps and clearance lamps.
S6.1.13 Photometry.
S6.1.14 Physical tests.
S6.1.15 Rear turn signal lamps.
S6.1.16 Number.
S6.1.17 Color of light.
S6.1.18 Mounting location.
S6.1.19 Mounting height.
S6.1.20 Activation.
S6.1.21 Effective projected luminous lens area.
S6.1.22 Visibility.
S6.1.23 Indicator.
S6.1.24 Markings.
S6.1.25 Spacing to other lamps.
S6.1.26 Multiple compartments and multiple lamps.
S6.1.27 Lamps installed on vehicles 2032 mm or more in overall width.
S6.1.28 Ratio to taillamps and clearance lamps.
S6.1.29 Photometry.
S6.1.30 Physical tests.
S6.1.31 Combined lamp bulb indexing.
S6.2 Taillamps.
S6.2.1 Number.
S6.2.2 Color of light.
S6.2.3 Mounting location.
S6.2.4 Mounting height.
S6.2.5 Activation.
S6.2.6 Effective projected luminous lens area.
§ 571.108

S7.2.7 Visibility.
S7.2.8 Indicator.
S7.2.9 Markings.
S7.2.10 Spacing to other lamps.
S7.2.11 Multiple compartments and multiple lamps.
S7.2.11.1 Taillamps installed on vehicles 2032 mm or more in overall width.
S7.2.12 Ratio.
S7.2.13 Photometry.
S7.2.14 Physical tests.
S7.3 Stop lamps.
S7.3.1 Number.
S7.3.2 Color of light.
S7.3.3 Mounting location.
S7.3.4 Mounting height.
S7.3.5 Activation.
S7.3.6 Effective projected luminous lens area.
S7.3.7 Visibility.
S7.3.8 Indicator.
S7.3.9 Markings.
S7.3.10 Spacing to other lamps.
S7.3.11 Multiple compartments and multiple lamps.
S7.3.11.1 Lamps installed on vehicles 2032 mm or more in overall width.
S7.3.12 Ratio to taillamps.
S7.3.13 Photometry.
S7.3.14 Physical tests.
S7.4 Side marker lamps.
S7.4.1 Number.
S7.4.2 Color of light.
S7.4.3 Mounting location.
S7.4.4 Mounting height.
S7.4.5 Activation.
S7.4.6 Effective projected luminous lens area.
S7.4.7 Visibility.
S7.4.8 Indicator.
S7.4.9 Markings.
S7.4.10 Spacing to other lamps.
S7.4.11 Multiple compartments and multiple lamps.
S7.4.12 Ratio.
S7.4.13 Photometry.
S7.4.13.2 Inboard photometry.
S7.4.14 Physical tests.
S7.5 Clearance and identification lamps.
S7.5.1 Number.
S7.5.2 Color of light.
S7.5.3 Mounting location.
S7.5.4 Mounting height.
S7.5.5 Activation.
S7.5.6 Effective projected luminous lens area.
S7.5.7 Visibility.
S7.5.8 Indicator.
S7.5.9 Markings.
S7.5.10 Spacing to other lamps.
S7.5.11 Multiple compartments and multiple lamps.
S7.5.12 Ratio.
S7.5.12.1 Clearance lamps.
S7.5.12.2 Identification lamps.
S7.5.13 Photometry.
S7.5.14 Physical tests.
S7.6 Backup lamps.
S7.6.1 Number.
S7.6.2 Color of light.
S7.6.3 Mounting location.
S7.6.4 Mounting height.
S7.6.5 Activation.
S7.6.6 Effective projected luminous lens area.
S7.6.7 Visibility.
S7.6.8 Indicator.
S7.6.9 Markings.
S7.6.10 Spacing to other lamps.
S7.6.11 Multiple compartments and multiple lamps.
S7.6.12 Ratio.
S7.6.13 Photometry.
S7.6.14 Physical tests.
S7.7 License plate lamps.
S7.7.1 Number.
S7.7.2 Color of light.
S7.7.3 Mounting location.
S7.7.4 Mounting height.
S7.7.5 Activation.
S7.7.6 Effective projected luminous lens area.
S7.7.7 Visibility.
S7.7.8 Indicator.
S7.7.9 Markings.
S7.7.10 Spacing to other lamps.
S7.7.11 Multiple compartments and multiple lamps.
S7.7.12 Ratio.
S7.7.13 Photometry.
S7.7.14 Physical tests.
S7.7.15 Installation.
S7.7.15.1 Incident light from single lamp.
S7.7.15.2 Incident light from multiple lamps.
S7.7.15.5 Incident light from multiple lamps.
S7.8 Parking lamps.
S7.8.1 Number.
S7.8.2 Color of light.
S7.8.3 Mounting location.
S7.8.4 Mounting height.
S7.8.5 Activation.
S7.8.6 Effective projected luminous lens area.
S7.8.7 Visibility.
S7.8.8 Indicator.
S7.8.9 Markings.
S7.8.10 Spacing to other lamps.
§ 571.108 Multiple compartments and multiple lamps.

7.8.11 Multiple compartments and multiple lamps.
7.8.12 Ratio.
7.8.13 Photometry.
7.8.14 Physical tests.
7.9 High-mounted stop lamps.
7.9.1 Number.
7.9.2 Color of light.
7.9.3 Mounting location.
7.9.4 Mounting height.
7.9.5 Activation.
7.9.6 Effective projected luminous lens area.
7.9.7 Visibility.
7.9.8 Indicator.
7.9.9 Markings.
7.9.10 Spacing to other lamps.
7.9.11 Multiple compartments and multiple lamps.
7.9.12 Ratio.
7.9.13 Photometry.
7.9.14 Physical tests.
7.10 Daytime running lights.
7.10.1 Number.
7.10.2 Color of light.
7.10.3 Mounting location.
7.10.4 Mounting height.
7.10.5 Activation.
7.10.6 Effective projected luminous lens area.
7.10.7 Visibility.
7.10.8 Indicator.
7.10.9 Markings.
7.10.10 Spacing to other lamps.
7.10.11 Multiple compartments and multiple lamps.
7.10.12 Ratio.
7.10.13 Photometry.
7.10.14 Physical tests.
7.11 School bus signal lamps.
7.11.1 Number.
7.11.2 Color of light.
7.11.3 Mounting location.
7.11.4 Mounting height.
7.11.5 Activation.
7.11.6 Effective projected luminous lens area.
7.11.7 Visibility.
7.11.8 Indicator.
7.11.9 Markings.
7.11.10 Spacing to other lamps.
7.11.11 Multiple compartments and multiple lamps.
7.11.12 Ratio.
7.11.13 Photometry.
7.11.14 Physical tests.
8.1 Reflex reflectors.
8.1.1 Number.
8.1.2 Color.
8.1.3 Mounting location.
8.1.4 Mounting height.
8.1.5 Activation.
8.1.6 Effective projected luminous lens area.
8.1.7 Visibility.
8.1.8 Indicator.
8.1.9 Markings.
8.1.10 Spacing to other lamps or reflective devices.
8.1.11 Photometry.
8.1.12 Physical tests.
8.1.13 Alternative side reflex reflector material.
8.2 Conspicuity systems.
8.2.1 Retroreflective sheeting.
8.2.1.2 Retroreflective sheeting material.
8.2.1.3 Certification marking.
8.2.1.4 Application pattern.
8.2.1.4.1 Alternating red and white materials.
8.2.1.5 Application location.
8.2.1.6 Application spacing.
8.2.1.7 Photometry.
8.2.2 Conspicuity reflex reflectors.
8.2.2.1 Certification marking.
8.2.2.2 Application pattern.
8.2.2.2.1 Alternating red and white materials.
8.2.2.2.2 White material.
8.2.2.2.3 Photometry.
8.2.3 Conspicuity system installation on trailers.
8.2.3.1 Trailer rear.
8.2.3.1.1 Element 1-alternating red and white materials.
8.2.3.1.2 Element 2-white.
8.2.3.1.3 Element 3-alternating red and white materials.
8.2.3.2 Trailer side-alternating red and white materials.
8.2.4 Conspicuity system installation on truck tractors.
8.2.4.1 Element 1-alternating red and white materials.
8.2.4.2 Element 2-white.
8.3 Associated equipment requirements.
8.3.1 Turn signal operating unit.
8.3.1.2 Physical tests.
8.3.2 Turn signal flasher.
8.3.2.1 Turn signal flasher.
8.3.2.2 Physical tests.
8.3.3 Turn signal pilot indicator.
8.3.4 Indicator size and color.
8.3.6 Turn signal lamp failure.
8.4 Headlamp beam switching device.
8.4.1 Semi-automatic headlamp beam switching device.
§ 571.108

S9.4.1.1 Operating instructions.
S9.4.1.2 Manual override.
S9.4.1.3 Fail safe operation.
S9.4.1.4 Automatic dimming indicator.
S9.4.1.5 Lens accessibility.
S9.4.1.6 Mounting height.
S9.4.1.7 Physical tests.
S9.5 Upper beam headlamp indicator.
S9.5.1 Indicator size and location.
S9.6 Vehicular hazard warning signal operating unit.
S9.6.2 Operating unit switch.
S9.6.3 Physical tests.
S9.7 Vehicular hazard warning signal flasher.
S9.7.2 Physical tests.
S9.8 Vehicular hazard warning signal pilot indicator.
S9.8.4 Indicator size and color.
S10 Headlighting system requirements.
S10.1 Vehicle headlighting systems.
S10.2 Aiming.
S10.3 Number.
S10.4 Color of light.
S10.5 Mounting location.
S10.6 Mounting height.
S10.7 Activation.
S10.8 Effective projected luminous lens area.
S10.9 Visibility.
S10.10 Indicator.
S10.11 Markings.
S10.12 Spacing to other lamps.
S10.13 Sealed beam headlighting systems.
S10.13.1 Installation.
S10.13.2 Simultaneous aim.
S10.13.3 Photometry.
S10.13.4 Physical tests.
S10.14 Integral beam headlighting systems.
S10.14.3 Simultaneous aim.
S10.14.4 Markings.
S10.14.5 Additional light sources.
S10.14.6 Photometry.
S10.14.7 Physical tests.
S10.15 Replaceable bulb headlighting systems.
S10.15.1 Installation.
S10.15.2 Aiming restrictions.
S10.15.3 Replacement lens reflector units.
S10.15.4 Markings.
S10.15.5 Additional light sources.
S10.15.6 Photometry.
S10.15.7 Physical tests.
S10.16 Combination headlighting systems.
S10.16.1 Installation.
S10.16.2 Photometry.
S10.16.3 Physical tests.
S10.17 Motorcycle headlighting systems.
S10.17.1 Installation.
S10.17.2 Motorcycle replaceable bulb headlamp marking.
S10.17.3 Photometry.
S10.17.4 Physical tests.
S10.17.5 Motorcycle headlamp modulation system.
S10.17.5.1 Modulation.
S10.17.5.2 Replacement modulators.
S10.17.5.2.1 Replacement performance.
S10.17.5.2.2 Replacement instructions.
S10.18 Headlamp aimability performance requirements.
S10.18.1 Headlamp mounting and aiming.
S10.18.2 Headlamp aiming systems.
S10.18.3 Aim adjustment interaction.
S10.18.4 Horizontal adjustment-visualy aimed headlamp.
S10.18.5 Optical axis marking.
S10.18.6 Moveable reflectors.
S10.18.7 External aiming.
S10.18.7.1 Headlamp aiming device locating plates.
S10.18.7.2 Nonadjustable headlamp aiming device locating plates.
S10.18.8 On-vehicle aiming.
S10.18.8.1 Aim.
S10.18.8.1.1 Vertical aim.
S10.18.8.1.2 Horizontal aim.
S10.18.8.2 Aiming instructions.
S10.18.8.3 Permanent calibration.
S10.18.8.4 Replacement units.
S10.18.8.5 Physical tests.
S10.18.9 Visual/optical aiming.
S10.18.9.1 Vertical aim, lower beam.
S10.18.9.1.1 Vertical position of the cutoff.
S10.18.9.1.2 Vertical gradient.
S10.18.9.1.3 Horizontal position of the cutoff.
S10.18.9.1.4 Maximum inclination of the cutoff.
S10.18.9.1.5 Measuring the cutoff parameter.
S10.18.9.2 Horizontal aim, lower beam.
§571.108

S10.18.9.3 Vertical aim, upper beam.
S10.18.9.4 Horizontal aim, upper beam.
S10.18.9.5 Photometry.
S10.18.9.6 Visual/optical identification marking.
S11 Replaceable light source requirements.
S11.1 Markings.
S11.2 Ballast markings.
S11.3 Gas discharge laboratory life.
S12 Headlamp concealment device requirements.
S12.7 Certification election.
S13 Replaceable headlamp lens requirements.
S14 Physical and photometry test procedures and performance requirements.
S14.1 General test procedures and performance requirements.
S14.1.2 Plastic optical materials.
S14.1.4 Samples.
S14.1.5 Laboratory facilities.
S14.2 Photometric test procedures.
S14.2.1 Photometry measurements for all lamps except license lamps, headlamps, and DRLs.
S14.2.1.1 Mounting.
S14.2.1.2 School bus signal lamp aiming.
S14.2.1.3 Measurement distance.
S14.2.1.4 Location of test points.
S14.2.1.5 Multiple compartment and multiple lamp photometry of turn signal lamps, stop lamps, and taillamps.
S14.2.1.6 Bulbs.
S14.2.2 License plate lamp photometry.
S14.2.2.1 Illumination surface.
S14.2.2.2 Test stations.
S14.2.3 Reflex reflector and retroreflective sheeting photometry.
S14.2.3.1 Mounting.
S14.2.3.2 Illumination source.
S14.2.3.3 Measurement distance.
S14.2.3.4 Test setup.
S14.2.3.5 Photodetector.
S14.2.3.6 Photometry surface.
S14.2.3.7 Procedure.
S14.2.3.8 Measurements.
S14.2.3.8.1 Reflex reflectors.
S14.2.3.8.2 Retroreflective sheeting.
S14.2.3.8.3 Reflex reflector photometry measurement adjustments.
S14.2.4 Daytime running lamp (DRL) photometry measurements.
S14.2.5 Headlamp photometry measurements.
S14.2.5.1 Mounting.
S14.2.5.2 Measurement distance.
S14.2.5.3 Seasoning and test voltage.
S14.2.5.4 Aiming.
S14.2.5.5 Aiming.
S14.2.5.5.1 Mechanically aimable headlamps using an external aimer.
S14.2.5.5.2 Mechanically aimable headlamps equipped with a VHAD.
S14.2.5.5.3 Visually aimable lower beam headlamps-vertical aim.
S14.2.5.5.4 Visually aimable lower beam headlamps-horizontal aim.
S14.2.5.5.5 Visually aimable upper beam headlamps-vertical aim.
S14.2.5.5.6 Visually aimable upper beam headlamps-horizontal aim.
S14.2.5.5.7 Simultaneous aim Type F sealed beam headlamps and beam contributor integral beam headlamps.
S14.2.5.5.8 Motorcycle headlamp-upper beam headlamps designed to comply with Table XX.
S14.2.5.5.9 Motorcycle headlamp-lower beam headlamps designed to comply with Table XX.
S14.2.5.6 Positioner.
S14.2.5.7 Photometer.
S14.2.5.8 Location of test points.
S14.2.5.9 Beam contributor photometry measurements.
S14.2.5.10 Moveable reflector aimed headlamp photometry measurements.
S14.3 Motorcycle headlamp out of focus test procedure and performance requirements.
S14.3.1 Procedure.
S14.3.2 Performance requirements.
S14.4 General test procedures and performance requirements.
S14.4.1 Color test.
S14.4.1.1 Samples.
S14.4.1.2 General procedure.
S14.4.1.3 Visual method.
S14.4.1.3.1 Visual method procedure.
S14.4.1.3.2 Visual method performance requirements.
S14.4.1.3.2.1 Red.
S14.4.1.3.2.2 Yellow (Amber).
S14.4.1.3.2.3 White.
S14.4.1.4 Tristimulus method.
S14.4.1.4.1 Tristimulus method procedure.
S14.4.1.4.2 Tristimulus method performance requirements.
S14.4.1.4.2.1 Red.
S14.4.1.4.2.2 Yellow (Amber).
S14.4.1.4.2.3 White (achromatic).
S14.4.2 Plastic optical materials tests.
S14.4.2.1 Samples.
S14.4.2.2 Outdoor exposure test.
S14.4.2.3 Procedure.
§ 571.108 49 CFR Ch. V (10–1–16 Edition)

S14.4.2.2.4 Performance requirements.
S14.4.2.3 Heat test.
S14.4.2.3.1 Procedure.
S14.4.2.3.2 Performance requirements.
S14.5 Signal lamp and reflective device physical test procedures and performance requirements.
S14.5.1 Vibration test.
S14.5.1.1 Procedure.
S14.5.1.2 Performance requirements.
S14.5.2 Moisture test.
S14.5.2.1 Procedure.
S14.5.2.2 Performance requirements.
S14.5.3 Dust test.
S14.5.3.1 Samples.
S14.5.3.2 Procedure.
S14.5.3.3 Performance requirements.
S14.5.4 Corrosion test.
S14.5.4.1 Procedure.
S14.5.4.2 Performance requirements.
S14.6 Headlamp physical test procedures and performance requirements.
S14.6.1 Abrasion test.
S14.6.1.1 Procedure.
S14.6.1.1.1 Abrading pad.
S14.6.1.1.2 Abrading pad alignment.
S14.6.1.1.3 Abrasion test procedure.
S14.6.1.2 Performance requirements.
S14.6.2 Chemical resistance test.
S14.6.2.1 Procedure.
S14.6.2.1.1 Test fluids.
S14.6.2.1.2 Fluid application.
S14.6.2.1.3 Test duration.
S14.6.2.2 Performance requirements.
S14.6.3 Corrosion test.
S14.6.3.1 Procedure.
S14.6.3.2 Performance requirements.
S14.6.4 Corrosion-connector test.
S14.6.4.1 Procedure.
S14.6.4.2 Performance requirements.
S14.6.5 Dust test.
S14.6.5.1 Procedure.
S14.6.5.2 Performance requirements.
S14.6.6 Temperature cycle test and internal heat test.
S14.6.6.1 Samples.
S14.6.6.2 General procedure.
S14.6.6.3 Temperature cycle test.
S14.6.6.3.1 Procedure.
S14.6.6.3.2 Performance requirements.
S14.6.6.4 Internal heat test.
S14.6.6.4.1 Procedure.
S14.6.6.4.2 Performance requirements.
S14.6.7 Humidity test.
S14.6.7.1 Procedure.
S14.6.7.2 Performance requirements.
S14.6.8 Vibration test.
S14.6.8.1 Samples.
S14.6.8.2 Procedure.
S14.6.8.3 Performance requirements.
S14.6.9 Sealing test.
S14.6.9.1 Procedure.
S14.6.9.2 Performance requirements.
S14.6.10 Chemical resistance test of reflectors of replaceable lens headlamps.
S14.6.10.1 Procedure.
S14.6.10.1.1 Test fluids.
S14.6.10.1.2 Fluid application.
S14.6.10.1.3 Test duration.
S14.6.10.2 Performance requirements.
S14.6.11 Corrosion resistance test of reflectors of replaceable lens headlamps.
S14.6.11.1 Procedure.
S14.6.11.2 Performance requirements.
S14.6.12 Inward force test.
S14.6.12.1 Procedure.
S14.6.12.2 Performance requirements.
S14.6.13 Torque deflection test.
S14.6.13.2 Performance requirements.
S14.6.14 Retaining ring test.
S14.6.14.2 Performance requirements.
S14.6.15 Headlamp connector test.
S14.6.15.1 Procedure.
S14.6.15.2 Performance requirements.
S14.6.16 Headlamp wattage test.
S14.6.16.1 Procedure.
S14.6.16.2 Performance requirements.
S14.6.17 Aiming adjustment test-laboratory.
S14.6.17.1 Procedure.
S14.6.17.2 Performance requirements.
S14.6.18 Aiming adjustment test-on vehicle.
S14.6.18.1 Procedure.
S14.6.18.2 Performance requirements.
S14.7 Replaceable light source physical test procedures and performance requirements.
S14.7.1 Deflection test for replaceable light sources.
S14.7.1.1 Procedure.
S14.7.1.2 Performance requirements.
S14.7.2 Pressure test for replaceable light sources.
S14.7.2.1 Procedure.
S14.7.2.2 Performance requirements.
S14.7.3 Replaceable light source power and flux measurement procedure.
S14.7.3.1 Seasoning.
S14.7.3.1.1 Resistive filament source.
S14.7.3.1.2 Discharge source.
S14.7.3.2 Test voltage.
S14.7.3.3 Luminous flux measurement.
S14.7.3.3.2 Discharge light source setup.
§ 571.108 Vehicle headlamp aiming devices (VHAD) physical test procedures and performance requirements.

S14.8.1 Samples.
S14.8.2 Scale graduation test.
S14.8.2.1 Procedure.
S14.8.2.2 Performance requirements.
S14.8.3 Cold scale graduation test.
S14.8.3.1 Procedure.
S14.8.3.2 Performance requirements.
S14.8.4 Hot scale graduation test.
S14.8.4.1 Procedure.
S14.8.4.2 Performance requirements.
S14.8.5 Thermal cycle test.
S14.8.5.1 Procedure.
S14.8.5.2 Performance requirements.
S14.8.6 Corrosion test.
S14.8.6.1 Procedure.
S14.8.6.2 Performance requirements.
S14.8.7 Photometry test.
S14.8.7.1 Procedure.
S14.8.7.2 Performance requirements.
S14.8.8 Vehicular hazard warning signal flasher starting time test.
S14.9.8.1 Samples.
S14.9.8.2 Procedure.
S14.9.8.3 Performance requirements.
S14.9.9 Vehicular hazard warning signal flasher voltage drop test.
S14.9.9.1 Samples.
S14.9.9.2 Procedure.
S14.9.9.3 Performance requirements.
S14.9.10 Vehicular hazard warning signal flasher flash rate and percent “on” time test.
S14.9.10.1 Samples.
S14.9.10.2 Procedure.
S14.9.10.3 Performance requirements.
S14.9.11 Semi-automated headlamp beam switching device tests.
S14.9.11.1 Test conditions.
S14.9.11.2 Sensitivity test.
S14.9.11.2.1 Samples.
S14.9.11.2.2 Procedure.
S14.9.11.2.3 Performance requirements.
S14.9.11.2.3.1 Operating limits.
S14.9.11.3 Voltage regulation test.
S14.9.11.3.1 Procedure.
S14.9.11.3.2 Performance requirements.
S14.9.11.4 Manual override test.
S14.9.11.4.1 Procedure.
S14.9.11.4.2 Performance requirements.
S14.9.11.5 Warmup test.
S14.9.11.5.1 Procedure.
S14.9.11.5.2 Performance requirements.
S14.9.11.5.3 Temperature test.
S14.9.11.5.4 Procedure.
S14.9.11.5.5 Performance requirements.
S14.9.11.5.6 Dust test.
S14.9.11.5.7 Procedure.
S14.9.11.5.8 Performance requirements.
S14.9.11.6 Corrosion test.
S14.9.11.6.1 Procedure.
S14.9.11.6.2 Performance requirements.
S14.9.11.7 Thermometer test.
S14.9.11.7.1 Procedure.
S14.9.11.7.2 Performance requirements.
S14.9.11.8 Sunlight test.
S14.9.11.8.1 Procedure.
S14.9.11.8.2 Performance requirements.
S14.9.11.9 Vibration test.
S14.9.11.9.1 Procedure.
S14.9.11.9.2 Performance requirements.
S14.9.11.10 Durability test.
S14.9.11.11 Procedure.
§ 571.108

S14.9.3.11.12 Performance requirements.
S14.9.3.11.12.1 Procedure.
S14.9.3.11.12.2 Performance requirements.
Table I-a Required lamps and reflective devices All passenger cars, multipurpose passenger vehicles (MPV), trucks, and buses
Table I-b Required lamps and reflective devices All trailers
Table I-c Required lamps and reflective devices All motorcycles
Table II-a Headlighting systems Sealed beams
Table II-b Headlighting systems Combination
Table II-c Headlighting systems Integral beams
Table II-d Headlighting systems Replaceable bulb
Table III Marking requirements location
Table IV-a Effective projected luminous lens area requirements
Table IV-b Effective projected luminous lens area requirements
Table IV-c Effective projected luminous lens area requirements
Table V-a Visibility requirements of installed lighting devices
Table V-b Visibility requirements of installed lighting devices Lens area visibility option
Table V-c Visibility requirements of installed lighting devices Luminous intensity visibility option
Table V-d Visibility requirements of installed lighting devices (Legacy visibility alternative)
Table VI-a Front turn signal lamp photometry requirements
Table VI-b Front turn signal lamp photometry requirements
Table VII Rear turn signal lamp photometry requirements
Table VIII Tail lamp photometry requirements
Table IX Stop lamp photometry requirements
Table X Side marker lamp photometry requirements
Table XI Clearance and identification lamps photometry requirements
Table XII Backup lamp photometry requirements
Table XIII-a Motorcycle turn signal lamp alternative photometry requirements
Table XIII-b Motor driven cycle stop lamp alternative photometry requirements
Table XIV Parking lamp photometry requirements
Table XV High-mounted stop lamp photometry requirements
Table XVI-a Reflex reflector photometry requirements
Table XVI-b Additional photometry requirements for conspicuity reflex reflectors
Table XVI-c Retroreflective sheeting photometry requirements
Table XVII School bus signal lamp photometry requirements
Table XVIII Headlamp upper beam photometry requirements
Table XIX-a Headlamp lower beam photometry requirements
Table XIX-b Headlamp lower beam photometry requirements
Table XIX-c Headlamp lower beam photometry requirements
Table XX Motorcycle and motor driven cycle headlamp photometry requirements
Figure 1 Chromaticity diagram
Figure 2 Flasher performance chart
Figure 3 Replaceable bulb headlamp aim pads
Figure 4 Headlamp connector test setup
Figure 5 Headlamp abrasion test fixture
Figure 6 Thermal cycle test profile
Figure 7 Dirt/Ambient test setup
Figure 8 Replaceable light source deflection test setup
Figure 9 Environmental test profile
Figure 10 Replaceable light source pressure test setup
Figure 11 Trailer conspicuity treatment examples
Figure 12-1 Trailer conspicuity detail I
Figure 12-2 Trailer conspicuity detail II
Figure 13 Tractor conspicuity treatment examples
Figure 14 92x150 Headlamp aim deflection test setup
Figure 15 Types G and H headlamp aim deflection test setup
Figure 16 Types A and E headlamp aim deflection test setup
Figure 17 Type B headlamp aim deflection test setup
Figure 18 Types C and D headlamp aim deflection test setup
Figure 19 License plate lamp target locations
Figure 20 License plate lamp measurement of incident light angle
§ 571.109 Standard No. 109; New pneumatic and certain specialty tires.

S1. Scope. This standard specifies tire dimensions and laboratory test requirements for bead unseating resistance, strength, endurance, and high speed performance; defines tire load ratings; and specifies labeling requirements for passenger car tires.

S2 Application. This standard applies to new pneumatic radial tires for use on passenger cars manufactured before 1975, new pneumatic bias ply tires, T-type spare tires, ST, FI, and 8–12 rim diameter and below tires for use on passenger cars manufactured after 1948. However, it does not apply to any tire that has been so altered so as to render impossible its use, or its repair for use, as motor vehicle equipment.

S3. Definitions.

Bead means that part of the tire made of steel wires, wrapped or reinforced by ply cords, that is shaped to fit the rim.

Bead separation means a breakdown of bond between components in the bead area.

Bias ply tire means a pneumatic tire in which the ply cords that extend to the beads are laid at alternate angles substantially less than 90° to the centerline of the tread.

Carcass means the tire structure, except tread and sidewall rubber.

Chunking means the breaking away of pieces of the tread or sidewall.

Cord means the strands forming the plies in the tire.

Cord separation means cords parting away from adjacent rubber compounds.

Cracking means any parting within the tread, sidewall, or innerliner of the tire extending to cord material.

Groove means the space between two adjacent tread ribs.

Innerliner means the layer(s) forming the inside surface of a tubeless tire that contains the inflating medium within the tire.

Innerliner separation means the parting of the innerliner from cord material in the carcass.

Load rating means the maximum load a tire is rated to carry for a given inflation pressure.

Maximum permissible inflation pressure means the maximum cold inflation pressure to which a tire may be inflated.

Maximum load rating means the load rating at the maximum permissible inflation pressure for that tire.

Open splice means any parting at any junction of tread, sidewall, or innerliner that extends to cord material.

Overall width means the linear distance between the exteriors of the sidewalls of an inflated tire, including elevations due to labeling, decorations, or protective bands or ribs.

Ply means a layer of rubber-coated parallel cords.

Ply separation means a parting of rubber compound between adjacent plies.

Pneumatic tire means a mechanical device made of rubber, chemicals, fabric and steel or other materials, which, when mounted on an automotive wheel, provides the traction and contains the gas or fluid that sustains the load.

Radial ply tire means a pneumatic tire in which the ply cords which extend to the beads are laid at substantially 90° to the centerline of the tread.

Rim means a metal support for a tire or a tire and tube assembly upon which the tire beads are seated.

Section width means the linear distance between the exteriors of the sidewalls of an inflated tire, excluding elevations due to labeling, decoration, or protective bands.

Sidewall means that portion of a tire between the tread and the bead.

Sidewall separation means the parting of the rubber compound between adjacent plies.

Test rim means, with reference to a tire to be tested, any rim that is listed as appropriate for use with that tire in accordance with §4.4. For purposes of this section and §571.110, each rim listing shall include dimensional specifications and a diagram of the rim.

Tread means that portion of a tire that comes into contact with the road.
§ 571.109

Tread rib means a tread section running circumferentially around a tire. Tread separation means pulling away of the tread from the tire carcass.

S4. Requirements.

S4.1 Size and construction. Each tire shall be designed to fit each rim specified for its size designation in each reference cited in the definition of test rim in S3.

S4.2 Performance requirements.

S4.2.1 General. Each tire shall conform to each of the following:

(a) It shall meet the requirements specified in S4.2.2 for its tire size designation, type, and maximum permissible inflation pressure.

(b) Its maximum permissible inflation pressure shall be either 32, 36, 40, or 60 psi, or 240, 280, 300, 340, or 350 kPa.

(c) Its load rating shall be that specified in a submission made by an individual manufacturer, pursuant to S4.4.1(a), or in one of the publications described in S4.4.1(b) for its size designation and type by more than:

(a) (For tires with a maximum permissible inflation pressure of 32, 36, or 40 psi) 7 percent, or

(b) (For tires with a maximum permissible inflation pressure of 240, 280, 300, 340 or 350 kPa, or 60 psi) 7 percent or 10 mm (0.4 inches), whichever is larger.

S4.2.2 Tubeless tire resistance to bead unseating.

S4.2.2.1 When a tubeless tire that has a maximum inflation pressure other than 420 kPa (60 psi) is tested in accordance with S5.2, the applied force required to unseat the tire bead at the point of contact shall be not less than:

(a) 6,670 N (1,500 pounds) for tires with a designated section width of less than 160 mm (6 inches);

(b) 8,890 N (2,000 pounds) for tires with a designated section width of 160 mm (6 inches) or more but less than 205 mm (8 inches);

(c) 11,120 N (2,500 pounds) for tires with a designated section width of 205 mm (8 inches) or more, using the section width specified in a submission made by an individual manufacturer, pursuant to S4.4.1(a), or in one of the publications described in S4.4.1(b) for the applicable tire size designation and type.

S4.2.2.3 When a tire that has a maximum inflation pressure of 420 kPa (60 psi) is tested in accordance with S5.2, the applied force required to unseat the bead at the point of contact shall be not less than:

(a) 6,670 N (1,500 pounds) for tires with a maximum load rating of less than 399 kg (880 pounds);

(b) 8,890 N (2,000 pounds) for tires with a maximum load rating of 399 kg
473

§ 571.109

Nat'l Highway Traffic Safety Admin., DOT

(880 pounds) or more but less than 635 kg (1,400 pounds);
(c) 11,120 N (2,500 pounds) for tires with a maximum load rating of 635 kg (1,400 pounds) or more, using the maximum load rating marked on the sidewall of the tire.

S4.2.2.4 Tire strength. Each tire shall meet the requirements for minimum breaking energy specified in Table 1 when tested in accordance with S5.3.

S4.2.2.5 Tire endurance. When the tire has been subjected to the laboratory endurance test specified in S5.4, using a test rim that undergoes no permanent deformation and allows no loss of air through the portion that it comprises of the tire-rim pressure chamber:
(a) There shall be no visual evidence of tread, sidewall, ply, cord, innerliner, or bead separation, chunking, broken cords, cracking, or open splices.
(b) The tire pressure at the end of the test shall be not less than the initial pressures specified in S5.4.1.1.

S4.2.2.6 High speed performance. When the tire has been subjected to the laboratory high speed performance test specified in S5.5, using a test rim that undergoes no permanent deformation and allows no loss of air through the portion that it comprises of the tire-rim pressure chamber, the tire shall meet the requirements set forth in S4.2.2.5 (a) and (b).

S4.3 Labeling Requirements. Except as provided in S4.3.1 and S4.3.2 of this standard, each tire, except for those certified to comply with S5.5 of §571.139, shall have permanently molded into or onto both sidewalls, in letters and numerals not less than 0.078 inches high, the information shown in paragraphs S4.3 (a) through (g) of this standard. On at least one sidewall, the information shall be positioned in an area between the maximum section width and bead of the tire, unless the maximum section width of the tire falls between the bead and one-fourth of the distance from the bead to the shoulder of the tire. For tires where the maximum section width falls in that area, locate all required labeling between the bead and a point one-half the distance from the bead to the shoulder of the tire. However, in no case shall the information be positioned on the tire so that it is obstructed by the flange or any rim designated for use with that tire in Standards Nos. 109 and 110 (Sec. 571.109 and Sec. 571.110 of this part).

(a) One size designation, except that equivalent inch and metric size designations may be used;
(b) Maximum permissible inflation pressure;
(c) Maximum load rating;
(d) The generic name of each cord material used in the plies (both sidewall and tread area) of the tire;
(e) Actual number of plies in the sidewall, and the actual number of plies in the tread area if different;
(f) The words “tubeless” or “tube type” as applicable; and
(g) The word “radial” if the tire is a radial ply tire.

S4.3.1 Each tire shall be labeled with the symbol DOT in the manner specified in part 574 of this chapter, which shall constitute a certification that the tire conforms to applicable Federal motor vehicle safety standards.

S4.3.2 Each tire shall be labeled with the name of the manufacturer, or brand name and number assigned to the manufacturer in the manner specified in part 574.

S4.3.3 [Reserved]

S4.3.4 If the maximum inflation pressure of a tire is 240, 280, 300, 340, or 350 kPa, then:
(a) Each marking of that inflation pressure pursuant to S4.3(b) shall be followed in parenthesis by the equivalent inflation pressure in psi, rounded to the next higher whole number; and
(b) Each marking of the tire’s maximum load rating pursuant to S4.3(c) in kilograms shall be followed in parenthesis by the equivalent load rating in pounds, rounded to the nearest whole number.

S4.3.5 If the maximum inflation pressure of a tire is 420 kPa (60 psi), the tire shall have permanently molded into or onto both sidewalls, in letters and numerals not less than 12.7 mm (1⁄2 inch), the words “Inflate to 420 kPa (60 psi)”.

VerDate Sep<11>2014 11:07 Jan 24, 2017 Jkt 238230 PO 00000 Frm 00483 Fmt 8010 Sfmt 8010 Q:

473

31lpowell on DSK54DXVN1OFR with $$_JOB
any rim designated for use with that tire in this standard or in Standard No. 110 (§ 571.110 of this part).

S4.4 Tire and rim matching information.

S4.4.1 Each manufacturer of tires not certified to comply with S4 of § 571.139 shall ensure that a listing of the rims that may be used with each tire that he produces is provided to the public. A listing compiled in accordance with paragraph (a) of S4.4.1 of this standard need not include dimensional specifications or diagram of a rim if the rim’s dimensional specifications and diagram are contained in each listing published in accordance with paragraph (b) of S4.4.1 of this standard. The listing shall be in one of the following forms:

(a) Listed by manufacturer name or brand name in a document furnished to dealers of the manufacturer’s tires, to any person upon request, and in duplicate to the Docket Section (No: NHTSA–2009–0117), National Highway Traffic Safety Administration, West Building, 1200 New Jersey Ave SE., Washington, DC 20590; or

(b) Contained in publications, current at the date of manufacture of the tire or any later date, of at least one of the following organizations:
- Tire and Rim Association
- The European Tyre and Rim Technical Organization
- Japan Automobile Tyre Manufacturers Association, Inc.
- Tyre and Rim Association of Australia
- Associacao Latino Americana de Pneus e Aros (Brazil)
- South African Bureau of Standards

S4.4.2 Information contained in any publication specified in S4.4.1(b) of this standard which lists general categories of tires and rims by size designation, type of construction and/or intended use, shall be considered to be manufacturer’s information pursuant to S4.4.1 of this standard for the listed tires and rims, unless the publication itself or specific information provided according to S4.4.1(a) of this standard indicates otherwise.

S5. Test procedures.

S5.1 Physical Dimensions. Determine tire physical dimensions under uniform ambient conditions as follows:

(a) Mount the tire on a test rim having the test rim width specified in a submission made by an individual manufacturer, pursuant to S4.4.1(a), or in one of the publications described in S4.4.1(b) for that tire size designation and inflate it to the applicable pressure specified in Table II.

(b) Condition it at ambient room temperature for at least 24 hours.

(c) Readjust pressure to that specified in (a).

(d) Caliper the section width and overall width at six points approximately equally spaced around the tire circumference.

(e) Record the average of these measurements as the section width and overall width, respectively.

(f) Determine tire outer diameter by measuring the maximum circumference of the tire and dividing this dimension by pi (3.14).

S5.2 Tubeless tire bead unseating resistance.

S5.2.1 Preparation of tire-wheel assembly.

S5.2.1.1 Wash the tire, dry it at the beads, and mount it without lubrication or adhesives on a clean, painted test rim.

S5.2.1.2 Inflate it to the applicable pressure specified in Table II at ambient room temperature.

S5.2.1.3 Mount the wheel and tire in a fixture shown in Figure 1, and force the bead unseating block shown in Figure 2 or Figure 2A against the tire sidewall as required by the geometry of the fixture. However, in testing a tire that has an inflation pressure of 60 psi, only use the bead unseating block described in Figure 2A.

S5.2.2 Test procedure.

S5.2.2.1 Apply a load through the block to the tire’s outer sidewall at the distance specified in Figure 1 for the applicable wheel size at a rate of 50 mm (2 inches) per minute, with the load arm substantially parallel to the tire and rim assembly at the time of engagement.

S5.2.2.2 Increase the load until the bead unseats or the applicable value specified in S4.2.2.3 is reached.

S5.2.2.3 Repeat the test at least four places equally spaced around the tire circumference.

S5.3 Tire strength.
§571.109

S5.3.1 Preparation of tire.
S5.3.1.1 Mount the tire on a test rim and inflate it to the applicable pressure specified in Table II.
S5.3.1.2 Condition it at room temperature for at least 3 hours; and
S5.3.1.3 Readjust its pressure to that specified in S5.3.1.1.

S5.3.2 Test procedure.
S5.3.2.1 Force a 19 mm (3⁄4 inch) diameter cylindrical steel plunger with a hemispherical end perpendicularly into the tread rib as near to the centerline as possible, avoiding penetration into the tread groove, at the rate of 50 mm (2 inches) per minute.
S5.3.2.2 Record the force and penetration at five test points equally spaced around the circumference of the tire. If the tire fails to break before the plunger is stopped by reaching the rim, record the force and penetration as the rim is reached and use these values in S5.3.2.3.

S5.3.2.3 Compute the breaking energy for each test point by means of one of the two following formulas:

\[W = \left(\frac{F \times P}{2} \right) \times 10^3 \text{ (joules)} \]

Where

\[W = \text{Energy, in joules;} \]
\[F = \text{Force, Newtons; and} \]
\[P = \text{Penetration, mm; or} \]

\[W = \left(\frac{F \times P}{2} \right) \times 10^3 \text{ (inch-pounds)} \]

Where

\[W = \text{Energy, inch-pounds;} \]
\[F = \text{Force, pounds; and} \]
\[P = \text{Penetration, inches.} \]

S5.3.2.4 Determine the breaking energy value for the tire by computing the average of the five values obtained in accordance with S5.3.2.3.

S5.4 Tire endurance.
S5.4.1 Preparation of tire.
S5.4.1.1 Mount a new tire on a test rim and inflate it to the applicable pressure specified in Table II.
S5.4.1.2 Condition the tire assembly to 38° ±3 °C (100° ±5 °F) for at least three hours.
S5.4.1.3 Readjust tire pressure to that specified in S5.4.1.1 immediately before testing.

S5.4.2 Test procedure.
S5.4.2.1 Mount the tire and wheel assembly on a test axle and press it against a flat-faced steel test wheel 1708 mm (67.23 inches) in diameter and at least as wide as the section width of the tire to be tested or an approved equivalent test wheel, with the applicable test load specified in the table in S5.4.2.3 for the tire’s size designation, type and maximum permissible inflation pressure.
S5.4.2.2 During the test, the air surrounding the test area shall be 38° ±3 °C (100° ±5 °F).
S5.4.2.3 Conduct the test at 80 kilometers per hour (km/h)(50 miles per hour) in accordance with the following schedule without pressure adjustment or other interruptions:

<table>
<thead>
<tr>
<th>Time</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 hours</td>
<td>85</td>
</tr>
<tr>
<td>6 hours</td>
<td>90</td>
</tr>
<tr>
<td>24 hours</td>
<td>100</td>
</tr>
</tbody>
</table>

S5.4.2.4 Immediately after running the tire the required time, measure its inflation pressure. Allow the tire to cool for one hour. Then deflate the tire, remove it from the test rim, and inspect it for the conditions specified in S4.2.2.5(a).

S5.5 High speed performance.
S5.5.1 After preparing the tire in accordance with S5.4.1, mount the tire and wheel assembly in accordance with S5.4.2.1, and press it against the test wheel with a load of 88 percent of the tire’s maximum load rating as marked on the tire sidewall.
S5.5.2 Break in the tire by running it for 2 hours at 80 km/h (50 mph).
S5.5.3 Allow to cool to 38° ±3 °C (100° ±5 °F) and readjust the inflation pressure to the applicable pressure specified in Table II.
S5.5.4 Without readjusting inflation pressure, test at 121 km/h (75 mph) for 30 minutes, 129 km/h (80 mph) for 30 minutes, and 137 km/h (85 mph) for 30 minutes.
S5.5.5 Immediately after running the tire the required time, measure its inflation pressure. Allow the tire to cool for one hour. Then deflate the tire, remove it from the test rim, and inspect it for the conditions specified in S4.2.2.5(a).

S6. Nonconforming tires. No tire that is designed for use on passenger cars
and manufactured on or after October 1, 1972, but does not conform to all the requirements of this standard, shall be sold, offered for sale, introduced or delivered for introduction into interstate commerce, or imported into the United States, for any purpose.

Figure 1.—Bead Unseating Fixture
All Dimensions in Millimeters (mm)

<table>
<thead>
<tr>
<th>Wheel size</th>
<th>Dimension “A” for tires with maximum inflation pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Other than 60 psi (in)</td>
</tr>
<tr>
<td>20</td>
<td>13.50</td>
</tr>
<tr>
<td>19</td>
<td>13.00</td>
</tr>
<tr>
<td>18</td>
<td>12.50</td>
</tr>
<tr>
<td>17</td>
<td>12.00</td>
</tr>
<tr>
<td>16</td>
<td>11.50</td>
</tr>
<tr>
<td>15</td>
<td>11.00</td>
</tr>
<tr>
<td>14</td>
<td>10.50</td>
</tr>
<tr>
<td>13</td>
<td>10.00</td>
</tr>
<tr>
<td>12</td>
<td>9.50</td>
</tr>
<tr>
<td>11</td>
<td>9.00</td>
</tr>
<tr>
<td>10</td>
<td>8.50</td>
</tr>
<tr>
<td>320</td>
<td>8.50</td>
</tr>
<tr>
<td>340</td>
<td>9.00</td>
</tr>
<tr>
<td>345</td>
<td>9.25</td>
</tr>
<tr>
<td>365</td>
<td>9.75</td>
</tr>
<tr>
<td>370</td>
<td>10.00</td>
</tr>
<tr>
<td>390</td>
<td>11.00</td>
</tr>
<tr>
<td>415</td>
<td>11.50</td>
</tr>
</tbody>
</table>
Figure 2. DIAGRAM OF BEAD UNSEATING BLOCK
All dimensions in millimeters (mm)

MATERIAL: Cast Aluminum 355
T-6 Condition
Finish-1.3 Micrometer (um)
APPENDIX A—FEDERAL MOTOR VEHICLE SAFETY STANDARD NO. 109

The following tables list tire sizes and tire constructions with proper load and inflation values. The tables group tires of related constructions and load/inflation values. Persons requesting the addition of new tire sizes to the tables or the addition of tables for new tire constructions may, when the additions requested are compatible with existent groupings, or when adequate justification for new tables exists, submit five (5) copies of information and data supporting the request to

Figure 2A. DIAGRAM OF BEAD UNSEATING BLOCK
All dimensions in millimeters (mm)

MATERIAL: Cast Aluminum 355
T-6 Condition
Finish-1.3 Micrometer (um)
The information should contain the following:

1. The tire size designation, and a statement either that the tire is an addition to a category of tires listed in the tables or that it is in a new category for which a table has not been developed.

2. The tire dimensions, including aspect ratio, size factor, section width, overall width, and test rim size.

3. The load-inflation schedule of the tire.

4. A statement as to whether the tire size designation and load inflation schedule has been coordinated with the Tire and Rim Association, the European Tyre and Rim Technical Organisation, the Japan Automobile Tire Manufacturers’ Association, Inc., the Deutsche Industrie Norm, the British Standards Institution, the Scandinavian Tire and Rim Organization, and the Tyre and Rim Association of Australia.

5. Copies of test data sheets showing test conditions, results and conclusions obtained for individual tests specified in §571.109.

6. Justification for the additional tire sizes.

TABLE I-A—FOR BIAS PLY TIRES WITH DESIGNATED SECTION WIDTH OF 152 MM (6 INCHES) AND ABOVE

<table>
<thead>
<tr>
<th>Cord material</th>
<th>32 psi</th>
<th>36 psi</th>
<th>40 psi</th>
<th>240 kPa</th>
<th>280 kPa</th>
<th>300 kPa</th>
<th>340 kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayon:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in-lbs)</td>
<td>1,650</td>
<td>2,574</td>
<td>3,300</td>
<td>1,650</td>
<td>3,300</td>
<td>1,650</td>
<td>3,300</td>
</tr>
<tr>
<td>(joules)</td>
<td>186</td>
<td>291</td>
<td>373</td>
<td>186</td>
<td>373</td>
<td>186</td>
<td>373</td>
</tr>
<tr>
<td>Nylon or polyester:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in-lbs)</td>
<td>2,600</td>
<td>3,900</td>
<td>5,200</td>
<td>2,600</td>
<td>5,200</td>
<td>2,600</td>
<td>5,200</td>
</tr>
<tr>
<td>(joules)</td>
<td>294</td>
<td>441</td>
<td>588</td>
<td>294</td>
<td>588</td>
<td>294</td>
<td>588</td>
</tr>
</tbody>
</table>

TABLE I-B—FOR BIAS PLY TIRES WITH DESIGNATED SECTION WIDTH BELOW 152 MM (6 INCHES)

<table>
<thead>
<tr>
<th>Cord material</th>
<th>32 psi</th>
<th>36 psi</th>
<th>40 psi</th>
<th>240 kPa</th>
<th>280 kPa</th>
<th>300 kPa</th>
<th>340 kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayon:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in-lbs)</td>
<td>1,000</td>
<td>1,875</td>
<td>2,500</td>
<td>1,000</td>
<td>2,500</td>
<td>1,000</td>
<td>2,500</td>
</tr>
<tr>
<td>(joules)</td>
<td>113</td>
<td>212</td>
<td>282</td>
<td>113</td>
<td>282</td>
<td>113</td>
<td>282</td>
</tr>
<tr>
<td>Nylon or polyester:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in-lbs)</td>
<td>1,950</td>
<td>2,925</td>
<td>3,900</td>
<td>1,950</td>
<td>3,900</td>
<td>1,950</td>
<td>3,900</td>
</tr>
<tr>
<td>(joules)</td>
<td>220</td>
<td>330</td>
<td>441</td>
<td>220</td>
<td>441</td>
<td>220</td>
<td>441</td>
</tr>
</tbody>
</table>

TABLE I-C—FOR RADIAL PLY TIRES

<table>
<thead>
<tr>
<th>Size designation</th>
<th>Maximum permissible inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSI 32</td>
</tr>
<tr>
<td>Below 160 mm:</td>
<td></td>
</tr>
<tr>
<td>(in-lbs)</td>
<td>1,950</td>
</tr>
<tr>
<td>(joules)</td>
<td>220</td>
</tr>
<tr>
<td>160 mm or above:</td>
<td></td>
</tr>
<tr>
<td>(in-lbs)</td>
<td>2,600</td>
</tr>
<tr>
<td>(joules)</td>
<td>294</td>
</tr>
</tbody>
</table>

TABLE I-D—FOR TIRES WITH 420 KPA (60 PSI) MAXIMUM PERMISSIBLE INFLATION PRESSURE AND MAXIMUM LOAD RATING 399 KG (880 LB) AND ABOVE

<table>
<thead>
<tr>
<th>Cord material</th>
<th>Inch-pounds joules (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayon</td>
<td>1,650 inch pounds 186 joules (J).</td>
</tr>
<tr>
<td>Nylon or Polyester</td>
<td>2,600 inch pounds 294 joules (J).</td>
</tr>
</tbody>
</table>

TABLE I-E—FOR TIRES WITH 420 KPA (60 PSI) MAXIMUM PERMISSIBLE INFLATION PRESSURE AND MAXIMUM LOAD RATING BELOW 399 KG (880 LB)

<table>
<thead>
<tr>
<th>Cord material</th>
<th>Inch-pounds joules (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayon</td>
<td>1,000 inch pounds 113 joules (J).</td>
</tr>
<tr>
<td>Nylon or Polyester</td>
<td>1,950 inch pounds 220 joules (J).</td>
</tr>
</tbody>
</table>
TABLE II—TEST INFLATION PRESSURES

<table>
<thead>
<tr>
<th>Test type</th>
<th>32</th>
<th>36</th>
<th>40</th>
<th>60</th>
<th>240</th>
<th>280</th>
<th>300</th>
<th>340</th>
<th>350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical dimensions</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>60</td>
<td>180</td>
<td>220</td>
<td>180</td>
<td>220</td>
<td>180</td>
</tr>
<tr>
<td>Bead unseating, tire strength, and tire</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>52</td>
<td>180</td>
<td>220</td>
<td>180</td>
<td>220</td>
<td>180</td>
</tr>
<tr>
<td>endurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High speed performance</td>
<td>30</td>
<td>34</td>
<td>38</td>
<td>58</td>
<td>220</td>
<td>260</td>
<td>220</td>
<td>260</td>
<td>220</td>
</tr>
</tbody>
</table>

APPENDIX TO § 571.109

Persons requesting the addition of new tire sizes not included in §4.4.1(b) organizations may, upon approval, submit five (5) copies of information and data supporting the request to the Vehicle Dynamics Division, Office of Crash Avoidance Standards, National Highway Traffic Safety Administration, West Building, 1200 New Jersey Ave. SE., Washington, DC 20590.

The information should contain the following:

1. The tire size designation, and a statement either that the tire is an addition to a category of tires listed in the tables or that it is in a new category for which a table has not been developed.
2. The tire dimensions, including aspect ratio, size factor, section width, overall width, and test rim size.
3. The load-inflation schedule of the tire.
4. A statement as to whether the tire size designation and load inflation schedule has been coordinated with the Tire and Rim Association, the European Tyre and Rim Technical Organization, the Japan Automobile Tyre Manufacturers Association, Inc., the Tyre and Rim Association of Australia, the Associacao Latino Americana de Pneus e Aros (Brazil), or the South African Bureau of Standards.
5. Copies of test data sheets showing test conditions, results and conclusions obtained for individual tests specified in §571.109.
6. Justification for the additional tire sizes.

[38 FR 30235, Nov. 1, 1973]

EDITORIAL NOTE: For Federal Register citations affecting §571.109, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.

§ 571.110 Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10,000 pounds) or less.

S1. Purpose and scope. This standard specifies requirements for tire selection to prevent tire overloading and for non-pneumatic tire and non-pneumatic tire assembly are used as defined in §571.129.
Normal occupant weight means 68 kilograms times the number of occupants specified in the second column of Table I.

Occupant distribution means distribution of occupants in a vehicle as specified in the third column of Table I.

Passenger car tire means a tire intended for use on passenger cars, multipurpose passenger vehicles, and trucks, that have a gross vehicle weight rating (GVWR) of 10,000 pounds or less.

Production options weight means the combined weight of those installed regular production options weighing over 2.3 kilograms in excess of those standard items which they replace, not previously considered in curb weight or accessory weight, including heavy duty brakes, ride levelers, roof rack, heavy duty battery, and special trim.

Rim is used as defined in §571.109.

Rim diameter means nominal diameter of the bead seat.

Rim size designation means rim diameter and width.

Rim type designation means the industry of manufacturer’s designation for a rim by style or code.

Rim width means nominal distance between rim flanges.

Vehicle capacity weight means the rated cargo and luggage load plus 68 kilograms times the vehicle’s designated seating capacity.

Vehicle maximum load on the tire means that load on an individual tire that is determined by distributing to each axle its share of the maximum loaded vehicle weight and dividing by two.

Vehicle normal load on the tire means that load on an individual tire that is determined by distributing to each axle its share of the curb weight, accessory weight, and normal occupant weight (distributed in accordance with Table I) and dividing by 2.

Wheel center member is used as defined in §571.129.

§571.110 Requirements.

S4.1 General. Vehicles shall be equipped with tires that meet the requirements of §571.139, New pneumatic tires for light vehicles, except that passenger cars may be equipped with a pneumatic T-type temporary spare tire assembly that meets the requirements of §571.109, or equipped with a non-pneumatic spare tire assembly that meets the requirements of §571.129. New non-pneumatic tires for passenger cars, and S6 and S8 of this standard. Passenger cars equipped with a non-pneumatic spare tire assembly shall meet the requirements of S4.3(e), and S5, and S7 of this standard.

S4.2 Tire load limits.

S4.2.1 Tire load limits for passenger cars.

S4.2.1.1 The vehicle maximum load on the tire shall not be greater than the applicable maximum load rating as marked on the sidewall of the tire.

S4.2.1.2 The vehicle normal load on the tire shall not be greater than 94 percent of the load rating at the vehicle manufacturer’s recommended cold inflation pressure for that tire.

S4.2.2 Tire load limits for multipurpose passenger vehicles, trucks, buses, and trailers.

S4.2.2.1 Except as provided in S4.2.2.2, the sum of the maximum load ratings of the tires fitted to an axle shall not be less than the GAWR of the axle system as specified on the vehicle’s certification label required by 49 CFR part 567. If the certification label shows more than one GAWR for the axle system, the sum shall be not less than the GAWR corresponding to the size designation of the tires fitted to the axle.

S4.2.2.2 When passenger car tires are installed on an MPV, truck, bus, or trailer, each tire’s load rating is reduced by dividing it by 1.10 before determining, under S4.2.2.1, the sum of the maximum load ratings of the tires fitted to an axle.

S4.2.2.3 (a) For vehicles, except trailers with no designated seating positions, equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent of the derated load rating at the vehicle manufacturer’s recommended cold inflation pressure for that tire.

(b) For vehicles, except trailers with no designated seating positions, equipped with LT tires, the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the vehicle manufacturer’s recommended cold inflation pressure for that tire.
§571.110

49 CFR Ch. V (10–1–16 Edition)

S4.3 Placard. Each vehicle, except for a trailer or incomplete vehicle, shall show the information specified in S4.3 (a) through (g), and may show, at the manufacturer's option, the information specified in S4.3 (h) and (i), on a placard permanently affixed to the driver's side B-pillar. In each vehicle without a driver's side B-pillar and with two doors on the driver's side of the vehicle opening in opposite directions, the placard shall be affixed on the forward edge of the rear side door. If the above locations do not permit the affixing of a placard that is legible, visible and prominent, the placard shall be permanently affixed to the rear edge of the driver's side door. If this location does not permit the affixing of a placard that is legible, visible and prominent, the placard shall be affixed to the inward facing surface of the vehicle next to the driver's seating position. This information shall be in the English language and conform in color and format, not including the border surrounding the entire placard, as shown in the example set forth in Figure 1 in this standard. At the manufacturer's option, the information specified in S4.3 (c), (d), and, as appropriate, (h) and (i) may be shown, alternatively to being shown on the placard, on a tire inflation pressure label which must conform in color and format, not including the border surrounding the entire label, as shown in the example set forth in Figure 2 in this standard. The label shall be permanently affixed and proximate to the placard required by this paragraph. The information specified in S4.3 (e) shall be shown on both the vehicle placard and on the tire inflation pressure label (if such a label is affixed to provide the information specified in S4.3 (c), (d), and, as appropriate, (h) and (i)) may be shown in the format and color scheme set forth in Figures 1 and 2. If the vehicle is a motor home and is equipped with a propane supply, the weight of full propane tanks must be included in the vehicle's unloaded vehicle weight. If the vehicle is a motor home and is equipped with an on-board potable water supply, the weight of such on-board water must be treated as cargo.

(a) Vehicle capacity weight expressed as "The combined weight of occupants and cargo should never exceed XXX kilograms or XXX pounds";
(b) Designated seated capacity (expressed in terms of total number of occupants and number of occupants for each front and rear seat location);
(c) Vehicle manufacturer's recommended cold tire inflation pressure for front, rear and spare tires, subject to the limitations of S4.3.4. For full size spare tires, the statement "see above" may, at the manufacturer's option replace manufacturer's recommended cold tire inflation pressure. If no spare tire is provided, the word "none" must replace the manufacturer's recommended cold tire inflation pressure.
(d) Tire size designation, indicated by the headings "size" or "original tire size" or "original size," and "spare tire" or "spare," for the tires installed at the time of the first purchase for purposes other than resale. For full size spare tires, the statement "see above" may, at the manufacturer's option replace the tire size designation. If no spare tire is provided, the word "none" must replace the tire size designation;
(e) On the vehicle placard, "Tire and Loading Information and, on the tire inflation pressure label, "Tire Information";
(f) "See Owner's Manual for Additional Information";
(g) For a vehicle equipped with a non-pneumatic spare tire assembly, the tire identification code with which that assembly is labeled pursuant to the requirements of S4.3(a) of 571.129, New Non-Pneumatic Tires for Passenger Cars; the tire inflation pressure label, and the tire identification code with which that assembly is labeled pursuant to the requirements of S4.3(a) of 571.129, New Non-Pneumatic Tires for Passenger Cars;
(h) At the manufacturer's option, identifying information provided in any alphanumeric and or barcode form, located vertically, along the right edge or the left edge of the placard or the label, or horizontally, along the bottom edge of the placard or the label; and
(i) At the manufacturer's option, the load range identification symbol, load index, and speed rating, located immediately to the right of the tire size designation listed in accordance with S4.3(d) above.
§571.110

S4.3.1 Requirements for vehicles manufactured in two or more stages. A placard or placard and label shall be affixed to the completed vehicle by the final-stage manufacturer in accordance with S4.3 and with the vehicle capacity weight and seating designations as finally manufactured.

S4.3.2 Requirements for altered vehicles. Except as provided in S10, a new placard or placard and label shall be affixed, so as to obscure the original placard, to an altered vehicle that has previously been certified in accordance with §567.4 or §567.5, other than by the addition, substitution, or removal of readily attachable components such as mirrors or tire and rim assemblies, or minor finishing operations such as painting, or who alters the vehicle in such a manner that its stated weight ratings are no longer valid, before the first purchase of the vehicle in good faith for purposes other than resale, containing accurate information for the altered vehicle, in accordance with S4.3.

S4.3.3 Additional labeling information for vehicles other than passenger cars. Each vehicle shall show the size designation and, if applicable, the type designation of rims (not necessarily those on the vehicle) appropriate for the tire appropriate for use on that vehicle, including the tire installed as original equipment on the vehicle by the vehicle manufacturer, after each GAWR listed on the certification label required by §567.4 or §567.5 of this chapter. This information shall be in the English language, lettered in block capitals and numerals not less than 2.4 millimeters high and in the following format:

Truck Example—Suitable Tire-Rim Choice

GVWR: 2,441 kilograms (5381 pounds).
GAWR: Front—1,299 kilograms (2,864 pounds) with P265/70R16 tires, 16 × 8.0 rims at 248 kPa (36 psi) cold single.
GAWR: Rear—1,299 kilograms (2,864 pounds) with P265/70R16 tires, 16 × 8.00 rims, at 248 kPa (36 psi) cold single.

S4.3.4 No inflation pressure other than the maximum permissible inflation pressure may be shown on the placard and, if any, tire inflation pressure label unless—

(a) It is less than the maximum permissible inflation pressure;
(b) It is appropriate for the load limits as calculated in accordance with S4.2; and
(c) The tire load rating specified in a submission by an individual manufacturer, pursuant to S4.1.1(a) of §571.139 or contained in one of the publications described in S4.1.1(b) of §571.139, for the tire size at that inflation pressure is not less than the vehicle maximum load and the vehicle normal load on the tire for those vehicle loading conditions.

S4.3.5 Requirements for trailers. Each trailer, except for an incomplete vehicle, must show the information specified in S4.3 (c) through (g), and may show the information specified in S4.3 (h) and (i), on a placard permanently affixed proximate to the certification label specified in 49 CFR part 567. Additionally, each trailer must on its placard contain a cargo capacity statement expressed as “The weight of cargo should never exceed XXX kilograms or XXX pounds” in the same location on the placard specified for the “vehicle capacity weight” statement required by this standard. At the manufacturer’s option, the information specified in S4.3 (c), (d), (h) and (i) may be shown, alternatively, on a tire inflation pressure label, and conform in color and format, not including the border surrounding the entire label, as specified in the example set forth in Figure 2 in this standard. The label shall be permanently affixed and proximate to the placard required by this paragraph. The information specified in S4.3 (e) shall be shown on both the vehicle placard and on the tire inflation pressure label (if such a label is affixed to provide the information specified in S4.3 (c), (d), (h) and (i)) in the format and color scheme set forth in Figures 1 and 2. If the vehicle is a recreation vehicle trailer and is equipped with a propane supply, the weight of full propane tanks must be included in the vehicle’s unloaded vehicle weight. If the vehicle is a recreation vehicle trailer and is equipped with an on-board potable water supply, the weight of such on-board water must be treated as cargo.

S4.4 Rims.
§571.110

49 CFR Ch. V (10–1–16 Edition)

S4.4.1 Requirements. Each rim shall:
(a) Be constructed to the dimensions of a rim that is listed by the manufacturer of the tires as suitable for use with those tires, in accordance with S4 of §571.139.
(b) In the event of rapid loss of inflation pressure with the vehicle traveling in a straight line at a speed of 97 kilometers per hour, retain the deflated tire until the vehicle can be stopped with a controlled braking application.

TABLE I—OCCUPANT LOADING AND DISTRIBUTION FOR VEHICLE NORMAL LOAD FOR VARIOUS DESIGNATED SEATING CAPACITIES

<table>
<thead>
<tr>
<th>Designated seating capacity, number of occupants</th>
<th>Vehicle normal load, number of occupants</th>
<th>Occupant distribution in a normally loaded vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 through 4</td>
<td>2</td>
<td>2 in front</td>
</tr>
<tr>
<td>5 through 10</td>
<td>3</td>
<td>2 in front, 1 in second seat</td>
</tr>
<tr>
<td>11 through 15</td>
<td>5</td>
<td>2 in front, 1 in second seat, 1 in third seat, 1 in fourth seat</td>
</tr>
<tr>
<td>16 through 22</td>
<td>7</td>
<td>2 in front, 2 in second seat, 2 in third seat, 1 in fourth seat</td>
</tr>
</tbody>
</table>

S4.4.2. Rim markings for vehicles other than passenger cars. Each rim or, at the option of the manufacturer in the case of a single-piece wheel, each wheel disc shall be marked with the information listed in S4.4.2 (a) through (e), in lettering not less than 3 millimeters in height, impressed to a depth or, at the option of the manufacturer, embossed to a height of not less than 0.125 millimeters. The information listed in S4.4.2 (a) through (c) shall appear on the outward side. In the case of rims of multi piece construction, the information listed in S4.4.2 (a) through (e) shall appear on the rim base and the information listed in S4.4.2 (b) and (d) shall also appear on each other part of the rim.

(a) A designation that indicates the source of the rim’s published nominal dimensions, as follows:
(1) “T” indicates The Tire and Rim Association.
(2) “E” indicates The European Tyre and Rim Technical Organization.
(3) “J” indicates Japan Automobile Tire Manufacturers’ Association, Inc.
(4) “L” indicates ABPA (Brazil), a.k.a. Associacao Latino Americana De Pneus E Aros.
(5) “F” indicates Tire and Rim Engineering Data Committee of South Africa (Tredco).
(6) “S” indicates Scandinavian Tire and Rim Organization (STRO).
(7) “A” indicates The Tyre and Rim Association of Australia.
(8) “I” indicates Indian Tyre Technical Advisory Committee (ITTAC).
(9) “R” indicates Argentine Institute of Rationalization of Materials, a.k.a. Instituto Argentino de Racionalización de Materiales, (ARAM).
(10) “N” indicates an independent listing pursuant to S4.1 of §571.139 or S5.1(a) of §571.119.

(b) The rim size designation, and in case of multipiece rims, the rim type designation. For example: 20 × 5.50, or 20 × 5.5.

(c) The symbol DOT, constituting a certification by the manufacturer of the rim that the rim complies with all applicable Federal motor vehicle safety standards.

(d) A designation that identifies the manufacturer of the rim by name, trademark, or symbol.

(e) The month, day and year or the month and year of manufacture, expressed either numerically or by use of a symbol, at the option of the manufacturer. For example: “September 4, 2001” may be expressed numerically as: “090401”, “904, 01” or “01, 904”; “September 2001” may be expressed as: “901”, “9, 01” or “01, 9”.

(1) Any manufacturer that elects to express the date of manufacture by means of a symbol shall notify NHTSA in writing of the full names and addresses of all manufacturers and brand name owners utilizing that symbol and the name and address of the trademark owner of that symbol, if any. The notification shall describe in narrative form and in detail how the month, day, and year or the month and year are depicted by the symbol. Such description shall include an actual size graphic depiction of the symbol, showing and/or explaining the interrelationship of the component parts of the symbol as they will appear on the rim or single piece wheel disc, including dimensional specifications, and where the symbol will be located on the rim or single piece wheel disc.
wheel disc. The notification shall be received by NHTSA not less than 60 calendar days before the first use of the symbol. The notification shall be mailed to the Office of Vehicle Safety Compliance (NVS–222), National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590. All information provided to NHTSA under this paragraph will be placed in the public docket.

(2) Each manufacturer of wheels shall provide an explanation of its date of manufacture symbol to any person upon request.

S5. Load Limits for Non-Pneumatic Spare Tires. The highest vehicle maximum load on the tire for the vehicle shall not be greater than the load rating for the non-pneumatic spare tire.

S6 Labeling Requirements for Non-Pneumatic Spare Tires or Tire Assemblies. Each non-pneumatic tire or, in the case of a non-pneumatic tire assembly in which the non-pneumatic tire is an integral part of the assembly, each non-pneumatic tire assembly shall include, in letters or numerals not less than 4 millimeters high, the information specified in paragraphs S6 (a) and (b). The information shall be permanently molded, stamped, or otherwise permanently marked into or onto the non-pneumatic tire or non-pneumatic tire assembly, or shall appear on a label that is permanently attached to the tire or tire assembly. If a label is used, it shall be subsurface printed, made of material that is resistant to fade, heat, moisture and abrasion, and attached in such a manner that it cannot be removed without destroying or defacing the label on the non-pneumatic tire or tire assembly. If a label is used, the label shall be located on the non-pneumatic tire or tire assembly such that it is not placed on the tread or the outermost edge of the tire and is not obstructed by any portion of any non-pneumatic rim or wheel center member designated for use with that tire in this standard or in Standard No. 129.

(a) FOR TEMPORARY USE ONLY; and

(b) MAXIMUM 80 KM/H (50 M.P.H.).

S7. Requirements for Passenger Cars Equipped with Non-Pneumatic Spare Tire Assemblies

S7.1 Vehicle Placarding Requirements. A placard, permanently affixed to the inside of the vehicle trunk or an equally accessible location adjacent to the non-pneumatic spare tire assembly, shall display the information set forth in S6 in block capitals and numerals not less than 6 millimeters high preceded by the words “IMPORTANT—USE OF SPARE TIRE” in letters not less than 9 millimeters high.

S7.2 Supplementary Information. The owner’s manual of the passenger car shall contain, in writing in the English language and in not less than 10 point type, the following information under the heading “IMPORTANT—USE OF SPARE TIRE”:

(a) A statement indicating the information related to appropriate use for the non-pneumatic spare tire including at a minimum the information set forth in S6 (a) and (b) and either the information set forth in S4.3(g) or a statement that the information set forth in S4.3(g) is located on the vehicle placard and on the non-pneumatic tire;

(b) An instruction to drive carefully when the non-pneumatic spare tire is in use, and to install the proper pneumatic tire and rim at the first reasonable opportunity; and

(c) A statement that operation of the passenger car is not recommended with more than one non-pneumatic spare tire in use at the same time.

S8. Non-Pneumatic Rims and Wheel Center Members

S8.1 Non-Pneumatic Rim Requirements. Each non-pneumatic rim that is part of a separable non-pneumatic spare tire assembly shall be constructed to the dimensions of a non-pneumatic rim that is listed pursuant to §4.4 of §571.129 for use with the non-pneumatic tire, designated by its non-pneumatic tire identification code, with which the vehicle is equipped.
§ 571.110

S8.2 Wheel Center Member Requirements. Each wheel center member that is part of a separable non-pneumatic spare tire assembly shall be constructed to the dimensions of a wheel center member that is listed pursuant to S4.4 of §571.129 for use with the non-pneumatic tire, designated by its non-pneumatic tire identification code, with which the vehicle is equipped.

Vehicle Placard

- Yellow Text on Black Background or Black Text on Yellow Background
- Optional Alphanumeric Identifier or Barcode
- 13mm x 14mm (.51” x .55”)
- Red Border
- Yellow Text on Black Background or Black Text on Yellow Background

* For trailers, this statement should read: The weight of cargo should not exceed XXX kg or XXX lbs.

Figure 1
S9. Each motor home and recreation vehicle (RV) trailer must meet the applicable requirements in S9.

S9.1 On motor homes, the sum of the gross axle weight ratings (GAWR) of all axles on the vehicle must not be less than the gross vehicle weight rating (GVWR).

S9.2 On RV trailers, the sum of the GAWRs of all axles on the vehicle plus the vehicle manufacturer’s recommended tongue weight must not be less than the GVWR. If tongue weight is specified as a range, the minimum value must be used.

S9.3 Each motor home and RV trailer single stage or final stage manufacturer must affix either a motor home occupant and cargo carrying capacity (OCCC) label (Figure 3) or a RV trailer cargo carrying capacity (CCC) label (Figure 4) to its vehicles that meets the following criteria:

S9.3.1 The RV load carrying capacity labels (Figures 3 and 4) and the RV supplemental labels (Figures 5 and 6) required by S9.3.3(b) must be legible, visible, moisture resistant, presented in the English language, have a minimum print size of 2.4 millimeters (3/32 inches) high and be printed in black print on a yellow background.

S9.3.2 The weight value for load carrying capacity on the RV load carrying capacity labels (Figures 3 and 4) must be displayed to the nearest kilogram with conversion to the nearest pound and must be such that the vehicle does not exceed its GVWR when loaded with the stated load carrying capacity. The UVW and the GVWR used to determine the RV’s load carrying capacity must reflect the weights and design of the motor home or RV trailer as configured for delivery to the dealer/service facility. If applicable, the weight of full propane tanks must be included in the RV’s UVW and the weight of on-board potable water must be treated as cargo.

S9.3.3 An RV load carrying capacity label (Figures 3 or 4) must be:

(a) Permanently affixed and must be visibly located on the interior of the forward-most exterior passenger door

Figure 2

Yellow Text on Black Background or
Black Text on Yellow Background

13mm x 14mm
(.51" x .55")

Optional
Alphanumeric
Identifier or
Barcode

TIRE INFORMATION

TIRE SIZE COLD TIRE PRESSURE
FRONT P195/70R14 200KPA, 29PSI
REAR P195/70R14 200KPA, 29PSI
SPARE SEE ABOVE

SEE OWNER’S MANUAL FOR ADDITIONAL INFORMATION

Yellow Text on Black Background or
Black Text on Yellow Background
on the right side of the vehicle or, at the option of the manufacturer.

(b) A temporary version of the RV load carrying capacity label (Figures 3 or 4) must be visibly located on the interior of the forward-most exterior passenger door on the right side of the vehicle. A permanent motor home or RV trailer supplemental label (Figures 5 or 6) must be permanently affixed within 25 millimeters of the placard specified in §4.3 for motor homes and §4.3.5 for RV trailers.

§S9.3.4 Permanent and temporary motor home OCCC labels must contain the following information in accordance with Figure 3:
(a) The statement: “MOTOR HOME OCCUPANT AND CARGO CARRYING CAPACITY” in block letters.
(b) The Vehicle Identification Number (VIN).
(c) The statement “THE COMBINED WEIGHT OF OCCUPANTS AND CARGO SHOULD NEVER EXCEED: XXX kg or XXX lbs” in block letters with appropriate values included.
(d) The statement “Safety belt equipped seating capacity: XXX” with the appropriate value included. This is the total number of safety belt equipped seating positions.
(e) The statement “CAUTION: A full load of water equals XXX kg or XXX lbs of cargo @ 1 kg/L (8.3 lb/gal) and the tongue weight of a towed trailer counts as cargo” with appropriate values included.

§S9.3.5 Permanent and temporary RV trailer CCC labels must contain the following information in accordance with Figure 4:
(a) The statement: “RECREATION VEHICLE TRAILER CARGO CARRYING CAPACITY” in block letters.
(b) The Vehicle Identification Number (VIN).
(c) The statement “THE WEIGHT OF CARGO SHOULD NEVER EXCEED: XXX kg or XXX lbs” in block letters with appropriate values included.
(d) The statement “CAUTION: A full load of water equals XXX kg or XXX lbs of cargo @ 1 kg/L (8.3 lb/gal)” with appropriate values included.

§S9.3.6 For RVs, the vehicle capacity weight values and the seating capacity values (motor homes only) on the placard required by §4.3 or §4.3.5 must agree with the load carrying capacity weight values and the safety belt equipped seating capacity (motor homes only) on the RV load carrying capacity labels (Figures 3 and 4).

§S9.3.7 The permanent motor home supplemental label must contain the following information in accordance with Figure 5:
(a) The statement “CAUTION: A full load of water equals XXX kg or XXX lbs of cargo @ 1 kg/L (8.3 lb/gal) and the tongue weight of a towed trailer counts as cargo” with appropriate values included.

§S9.3.8 The permanent RV trailer supplemental label must contain the following information in accordance with Figure 6:
(a) The statement “CAUTION: A full load of water equals XXX kg or XXX lbs of cargo @ 1 kg/L (8.3 lb/gal)” with appropriate values included.

§S10. Weight added to vehicles between final vehicle certification and first retail sale of the vehicle.

§S10.1 If weight exceeding the lesser of 1.5 percent of GVWR or 45.4 kg (100 pounds) is added to a vehicle between final vehicle certification and first retail sale of the vehicle, the vehicle capacity weight values on the placard required by §4.3 or §4.3.5 and the load carrying capacity weight values on the RV load carrying capacity labels (Figures 3 and 4) required by §S9.3 must be corrected using one or a combination of the following methods:
(a) Permanently affix load carrying capacity modification labels (Figure 7), which display the amount the load carrying capacity is reduced to the nearest kilogram with conversion to the nearest pound, within 25 millimeters of the original, permanent RV load carrying capacity label (Figure 3 or 4) and the original placard (Figure 1). The load carrying capacity modification labels must be legible, visible, permanent, moisture resistant, presented in the English language, have a minimum print size of 2.4 millimeters (3/32 inches) high and be printed in black print on a yellow background, or
(b) If the manufacturer selects §S9.3.3(b), apply a temporary version of the load carrying capacity modification label (Figure 7) within 25 millimeters of the original, temporary RV load
carrying capacity label (Figure 3 or 4) on the interior of the forward-most exterior passenger door on the right side of the vehicle, in addition to applying a permanent version of the same label within 25 mm of the placard required by §4.3 or §4.3.5. Both temporary and permanent versions of the load carrying capacity modification label (Figure 7) may be printed without values and values may be legibly applied to the label with a black, fine point, indelible marker. The label must contain the statements “CAUTION—LOAD CARRYING CAPACITY REDUCED” in block letters and “Modifications to this vehicle have reduced the original load carrying capacity by XXX kg or XXX lbs” in accordance with Figure 7. If two load carrying capacity modification labels are required (one permanent and one temporary), the weight values on each must agree, or

(c) Modify the original, permanent RV load carrying capacity labels (Figures 3 and 4) and the placard (Figure 1) with correct vehicle capacity weight values. If the manufacturer selects §9.3.3(b), the temporary RV load carrying capacity labels (Figures 3 and 4) must also be modified with correct vehicle capacity weight values. Modification of labels requires a machine printed overlay with printed corrected values or blanks for corrected values that may be entered with a black, fine-point, indelible marker. Crossing out old values and entering corrected values on the original label is not permissible, or

(d) Replace the original, permanent RV load carrying capacity labels (Figures 3 and 4) and the placard (Figure 1) with the same labels/placard containing correct vehicle capacity weight values. If the manufacturer selects §9.3.3(b), the temporary RV load carrying capacity labels (Figures 3 and 4) must also be replaced with the same labels containing correct vehicle capacity weight values.

S10.2 Corrected load carrying capacity weight values or the weight amount the load carrying capacity is reduced, must reflect the total weight added between final vehicle certification and first retail sale and must be accurate within one percent of the actual added weight. No action is required if the weight of the vehicle is reduced between final vehicle certification and first retail sale.
MOTOR HOME OCCUPANT AND CARGO CARRYING CAPACITY
VIN: ****************************
THE COMBINED WEIGHT OF OCCUPANTS AND CARGO SHOULD NEVER EXCEED:
XXX kg or XXX lbs
Safety belt equipped seating capacity: XXX
CAUTION:
A full load of water equals XXX kg or XXX lbs of cargo @ 1 kg/L (8.3 lb/gal) and the tongue
weight of a towed trailer counts as cargo

Figure 3 - Motor Home Occupant and Cargo Carrying Capacity Label

RECREATION VEHICLE TRAILER CARGO CARRYING CAPACITY
VIN: ****************************
THE WEIGHT OF CARGO SHOULD NEVER EXCEED:
XXX kg or XXX lbs
CAUTION:
A full load of water equals XXX kg or XXX lbs of cargo @ 1 kg/L (8.3 lb/gal)

Figure 4 - RV Trailer Cargo Carrying Capacity Label

CAUTION:
A full load of water equals XXX kg or XXX lbs of cargo @ 1 kg/L (8.3 lb/gal)
and the tongue weight of a towed trailer counts as cargo

Figure 5 - Motor Home Supplemental Label

CAUTION:
A full load of water equals XXX kg or XXX lbs of cargo @ 1 kg/L (8.3 lb/gal)

Figure 6 - RV Trailer Supplemental Label

CAUTION: LOAD CARRYING CAPACITY REDUCED
Modifications to this vehicle have reduced the original load carrying capacity by
_______ kg or _______ lbs

Figure 7 - Load Carrying Capacity Modification Label

[36 FR 22902, Dec. 2, 1971]
EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §571.111, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.
§571.111 Standard No. 111; Rear visibility.

S1. Scope. This standard specifies requirements for rear visibility devices and systems.

S2. Purpose. The purpose of this standard is to reduce the number of deaths and injuries that occur when the driver of a motor vehicle does not have a clear and reasonably unobstructed view to the rear.

S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, buses, school buses, motorcycles and low-speed vehicles.

S4. Definitions.

Backing event means an amount of time which starts when the vehicle’s direction selector is placed in reverse, and ends at the manufacturer’s choosing, when the vehicle forward motion reaches:
 (a) a speed of 10 mph,
 (b) a distance of 10 meters traveled, or
 (c) a continuous duration of 10 seconds.

Convex mirror means a mirror having a curved reflective surface whose shape is the same as that of the exterior surface of a section of a sphere.

Effective mirror surface means the portions of a mirror that reflect images, excluding the mirror rim or mounting brackets.

Environmental test fixture means a device designed to support the external components of the rear visibility system for testing purposes, using any factory seal which would be used during normal vehicle operation, in a manner that simulates the on-vehicle component orientation during normal vehicle operation, and prevents the exposure of any test conditions to portions of the external component which are not exposed to the outside of the motor vehicle.

External component means any part of the rear visibility system which is exposed to the outside of the motor vehicle.

Key means a physical device or an electronic code which, when inserted into the starting system (by physical or electronic means), enables the vehicle operator to activate the engine or motor.

Limited line manufacturer means a manufacturer that sells three or fewer carlines, as that term is defined in 49 CFR 583.4, in the United States during a production year, as that term is defined in §15.

Rearview image means a visual image, detected by means of a single source, of the area directly behind a vehicle that is provided in a single location to the vehicle operator and by means of indirect vision.

Rear visibility system means the set of devices or components which together perform the function of producing the rearview image as required under this standard.

Small manufacturer means an original vehicle manufacturer that produces or assembles fewer than 5,000 vehicles annually for sale in the United States.

Starting system means the vehicle system used in conjunction with the key to activate the engine or motor.

Unit magnification mirror means a plane or flat mirror with a reflective surface through which the angular height and width of the image of an object is equal to the angular height and width of the object when viewed directly at the same distance except for flaws that do not exceed normal manufacturing tolerances. For the purposes of this regulation a prismatic day-night adjustment rearview mirror one of whose positions provides unit magnification is considered a unit magnification mirror.

S5. Requirements for passenger cars.

S5.1 Inside rearview mirror. Each passenger car shall have an inside rearview mirror of unit magnification.

S5.1.1 Field of view. Except as provided in S5.3, the mirror shall provide a field of view with an included horizontal angle measured from the projected eye point of at least 20 degrees, and a sufficient vertical angle to provide a view of a level road surface extending to the horizon beginning at a point not greater than 61 m to the rear of the vehicle when the vehicle is occupied by the driver and four passengers or the designated occupant capacity, if less, based on an average occupant weight of 68 kg. The line of sight may be partially obscured by seated occupants or by head restraints. The location of the driver’s eye reference points...
shall be those established in Motor Vehicle Safety Standard No. 104 (§571.104) or a nominal location appropriate for any 95th percentile male driver.

§5.1.2 Mounting. The mirror mounting shall provide a stable support for the mirror, and shall provide for mirror adjustment by tilting in both the horizontal and vertical directions. If the mirror is in the head impact area, the mounting shall deflect, collapse or break away without leaving sharp edges when the reflective surface of the mirror is subjected to a force of 400 N in any forward direction that is not more than 45° from the forward longitudinal direction.

§5.2 Outside rearview mirror—driver’s side.

§5.2.1 Field of view. Each passenger car shall have an outside mirror of unit magnification. The mirror shall provide the driver a view of a level road surface extending to the horizon from a line, perpendicular to a longitudinal plane tangent to the driver’s side of the vehicle at the widest point, extending 2.4 m out from the tangent plane 10.7 m behind the driver’s eyes, with the seat in the rearmost position. The line of sight may be partially obscured by rear body or fender contours. The location of the driver’s eye reference points shall be those established in Motor Vehicle Safety Standard No. 104 (§571.104) or a nominal location appropriate for any 95th percentile male driver.

§5.2.2 Mounting. The mirror mounting shall provide a stable support for the mirror, and neither the mirror nor the mounting shall protrude farther than the widest part of the vehicle body except to the extent necessary to produce a field of view meeting or exceeding the requirements of §5.2.1. The mirror shall not be obscured by the unwiped portion of the windshield, and shall be adjustable by tilting in both horizontal and vertical directions from the driver’s seated position. The mirror and mounting shall be free of sharp points or edges that could contribute to pedestrian injury.

§5.3 Outside rearview mirror passenger’s side. Each passenger car whose inside rearview mirror does not meet the field of view requirements of §5.1.1 shall have an outside mirror of unit magnification or a convex mirror installed on the passenger’s side. The mirror mounting shall provide a stable support and be free of sharp points or edges that could contribute to pedestrian injury. The mirror need not be adjustable from the driver’s seat but shall be capable of adjustment by tilting in both horizontal and vertical directions.

§5.4 Convex mirror requirements. Each motor vehicle using a convex mirror to meet the requirements of §5.3 shall comply with the following requirements:

§5.4.1 When each convex mirror is tested in accordance with the procedures specified in S12. of this standard, none of the radii of curvature readings shall deviate from the average radius of curvature by more than plus or minus 12.5 percent.

§5.4.2 Each convex mirror shall have permanently and indelibly marked at the lower edge of the mirror’s reflective surface, in letters not less than 4.8 mm nor more than 6.4 mm high the words “Objects in Mirror Are Closer Than They Appear.”

§5.4.3 The average radius of curvature of each such mirror, as determined by using the procedure in S12., shall be not less than 889 mm and not more than 1,651 mm.

§5.5 Rear visibility.

(a) Phase-in period requirements. For passenger cars with a GVWR of 4,536 kg or less manufactured on or after May 1, 2016, but not later than April 30, 2018, a percentage of each manufacturer’s production, as specified in S15, shall display a rearview image meeting the requirements of §5.5.1.

(b) Final requirements. Each passenger car with a GVWR of 4,536 kg or less manufactured on or after May 1, 2018, shall display a rearview image meeting the requirements of §5.5.1 through §5.5.7.

§5.5.1 Field of view. When tested in accordance with the procedures in S14.1, the rearview image shall include:

(a) A minimum of a 150-mm wide portion along the circumference of each test object located at positions F and G specified in S14.1.4; and

(b) The full width and height of each test object located at positions A through E specified in S14.1.4.
S5.5.2 Size. When the rearview image is measured in accordance with the procedures in S14.1, the calculated visual angle subtended by the horizontal width of

(a) All three test objects located at positions A, B, and C specified in S14.1.4 shall average not less than 5 minutes of arc; and
(b) Each individual test object (A, B, and C) shall not be less than 3 minutes of arc.

S5.5.3 Response time. The rearview image meeting the requirements of S5.5.1 and S5.5.2, when tested in accordance with S14.2, shall be displayed within 2.0 seconds of the start of a backing event.

S5.5.4 Linger time. The rearview image meeting the requirements of S5.5.1 and S5.5.2 shall not be displayed after the backing event has ended.

S5.5.5 Deactivation. The rearview image meeting the requirements of S5.5.1 and S5.5.2 shall remain visible during the backing event until either, the driver modifies the view, or the vehicle direction selector is removed from the reverse position.

S5.5.6 Default view. The rear visibility system must default to the rearview image meeting the requirements of S5.5.1 and S5.5.2 at the beginning of each backing event regardless of any modifications to the field of view the driver has previously selected.

S5.5.7 Durability. The rear visibility system shall meet the field of view and image size requirements of S5.5.1 and S5.5.2 after each durability test specified in S14.3.1, S14.3.2, and S14.3.3.

S6. Requirements for multipurpose passenger vehicles, low-speed vehicles, trucks, buses, and school buses with GVWR of 4,536 kg or less.

S6.1 Each multipurpose passenger vehicle, truck and bus, other than a school bus, with a GVWR of 4,536 kg or less shall have either—

(a) Mirrors that conform to the requirements of S5.5; or
(b) Outside mirrors of unit magnification, each with not less than 126 cm² of reflective surface, installed with stable supports on both sides of the vehicle, located so as to provide the driver a view to the rear along both sides of the vehicle, and adjustable in both the horizontal and vertical directions to view the rearward scene.

S6.2 Rear visibility.

(a) Phase-in period requirements. For multipurpose passenger vehicles, low-speed vehicles, trucks, buses, and school buses with a GVWR of 4,536 kg or less manufactured on or after May 1, 2016, but not later than April 30, 2018, a percentage of each manufacturer’s production, as specified in S15, shall display a rearview image meeting the requirements of S6.2.1.

(b) Final requirements. Each multipurpose passenger vehicle, low-speed vehicle, truck, bus, and school bus with a GVWR of 4,536 kg or less manufactured on or after May 1, 2018, shall display a rearview image meeting the requirements of S6.2.1 through S6.2.7.

S6.2.1 Field of view. When tested in accordance with the procedures in S14.1, the rearview image shall include:

(a) A minimum of a 150-mm wide portion along the circumference of each test object located at positions F and G specified in S14.1.4; and
(b) The full width and height of each test object located at positions A through E specified in S14.1.4.

S6.2.2 Size. When the rearview image is measured in accordance with the procedures in S14.1, the calculated visual angle subtended by the horizontal width of

(a) All three test objects located at positions A, B, and C specified in S14.1.4 shall average not less than 5 minutes of arc; and
(b) Each individual test object (A, B, and C) shall not be less than 3 minutes of arc.

S6.2.3 Response time. The rearview image meeting the requirements of S6.2.1 and S6.2.2, when tested in accordance with S14.2, shall be displayed within 2.0 seconds of the start of a backing event.

S6.2.4 Linger time. The rearview image meeting the requirements of S6.2.1 and S6.2.2 shall not be displayed after the backing event has ended.

S6.2.5 Deactivation. The rearview image meeting the requirements of S6.2.1 and S6.2.2 shall remain visible during the backing event until either, the driver modifies the view, or the vehicle direction selector is removed from the reverse position.
§571.111

S6.2.6 Default view. The rear visibility system must default to the rearview image meeting the requirements of S6.2.1 and S6.2.2 at the beginning of each backing event regardless of any modifications to the field of view the driver has previously selected.

S6.2.7 Durability. The rear visibility system shall meet the field of view and image size requirements of S6.2.1 and S6.2.2 after each durability test specified in S14.3.1, S14.3.2, and S14.3.3.

S7. Requirements for multipurpose passenger vehicles and trucks with a GVWR of more than 4,536 kg and less than 11,340 kg and buses, other than school buses, with a GVWR of more than 4,536 kg.

S7.1 Each multipurpose passenger vehicle and truck with a GVWR of more than 4,536 kg and less than 11,340 kg and each bus, other than a school bus, with a GVWR of more than 4,536 kg shall have outside mirrors of unit magnification, each with not less than 323 cm² of reflective surface, installed with stable supports on both sides of the vehicle. The mirrors shall be located so as to provide the driver a view to the rear along both sides of the vehicle and shall be adjustable both in the horizontal and vertical directions to view the rearward scene.

S8. Requirements for multipurpose passenger vehicles and trucks with a GVWR of 11,340 kg or more.

S8.1 Each multipurpose passenger vehicle and truck with a GVWR of more than 4,536 kg and less than 11,340 kg and each bus, other than a school bus, with a GVWR of more than 4,536 kg shall have outside mirrors of unit magnification, each with not less than 323 cm² of reflective surface, installed with stable supports on both sides of the vehicle. The mirrors shall be located so as to provide the driver a view to the rear along both sides of the vehicle and shall be adjustable both in the horizontal and vertical directions to view the rearward scene.

S9. Requirements for School Buses.

When a school bus is tested in accordance with the procedures of S13, it shall meet the requirements of S9.1 through S9.4.

S9.1 Outside Rearview Mirrors. Each school bus shall have two outside rearview mirror systems: System A and System B.

S9.2. System A shall be located with stable supports so that the portion of the system on the bus’s left side, and the portion on its right side, each:

(a) Includes at least one mirror of unit magnification with not less than 323 cm² of reflective surface; and

(b) Includes one or more mirrors which together provide, at the driver’s eye location, a view of:

(1) For the mirror system on the right side of the bus, the entire top surface of cylinder N in Figure 2, and that area of the ground which extends rearward from cylinder N to a point not less than 61 meters from the mirror surface.

(2) For the mirror system on the left side of the bus, the entire top surface of cylinder M in Figure 2, and that area of the ground which extends rearward from cylinder M to a point not less than 61 meters from the mirror surface.

S9.3(a) For each of the cylinders A through P whose entire top surface is not directly visible from the driver’s eye location, System B shall provide, at that location:

(1) A view of the entire top surface of that cylinder.

(2) A view of the ground that overlaps with the view of the ground provided by System A.

(b) Each mirror installed in compliance with S9.3(a) shall meet the following requirements:

(1) Each mirror shall have a projected area of at least 258 cm², as measured on a plane at a right angle to the mirror’s axis.

(2) Each mirror shall be located such that the distance from the center point of the eye location of a 25th percentile adult female seated in the driver’s seat to the center of the mirror shall be at least 95 cm.

(3) Each mirror shall have no discontinuities in the slope of the surface of the mirror.

(4) Each mirror shall be installed with a stable support.

(c) Each school bus which has a mirror installed in compliance with S9.3(a) that has an average radius of curvature of less than 889 mm, as determined under S12, shall have a label visible to the seated driver. The label shall be printed in a type face and color that are clear and conspicuous. The label shall state the following:
§ 571.111

"USE CROSS VIEW MIRRORS TO VIEW PEDESTRIANS WHILE BUS IS STOPPED. DO NOT USE THESE MIRRORS TO VIEW TRAFFIC WHILE BUS IS MOVING. IMAGES IN SUCH MIRRORS DO NOT ACCURATELY SHOW ANOTHER VEHICLE'S LOCATION."

S9.3(a) Each image required by S9.3(a)(1) to be visible at the driver’s eye location shall be separated from the edge of the effective mirror surface of the mirror providing that image by a distance of not less than 3 minutes of arc.

(b) The image required by S9.3(a)(1) of cylinder P shall meet the following requirements:

(1) The angular size of the shortest dimension of that cylinder’s image shall be not less than 3 minutes of arc; and

(2) The angular size of the longest dimension of that cylinder’s image shall be not less than 9 minutes of arc.

S10. Requirements for motorcycles.

S10.1 Each motorcycle shall have either a mirror of unit magnification with not less than 8065 mm² of reflective surface, or a convex mirror with not less than 6450 mm² of reflective surface and an average radius of curvature not less than 508 mm and not greater than 1524 mm, installed with a stable support, and mounted so that the horizontal center of the reflective surface is at least 279 mm outward of the longitudinal centerline of the motorcycle. The mirror shall be adjustable by tilting in both the horizontal and vertical directions.

S11. Mirror Construction. The average reflectance of any mirror required by this standard shall be determined in accordance with SAE Standard J964 OCT84 (incorporated by reference, see § 571.5). All single reflectance mirrors shall have an average reflectance of at least 35 percent. If a mirror is capable of multiple reflectance levels, the minimum reflectance level in the day mode shall be at least 35 percent and the minimum reflectance level in the night mode shall be at least 4 percent. A multiple reflectance mirror shall either be equipped with a means for the driver to adjust the mirror to a reflectance level of at least 35 percent in the event of electrical failure, or achieve such reflectance level automatically in the event of electrical failure.

S12. Determination of radius of curvature.

S12.1 To determine the average radius of curvature of a convex mirror, use a 3-point linear spherometer, which meets the requirements of S12.2, at the 10 test positions shown in Figure 1 and record the readings for each position.

S12.2 The 3-point linear spherometer has two outer fixed legs 38 mm apart and one inner movable leg at the midpoint. The spherometer has a dial indicator with a scale that can be read accurately to .0025 mm, with the zero reading being a flat surface.

S12.3 The 10 test positions on the image display consist of two positions at right angles to each other at each of five locations as shown in Figure 1. The locations are at the center of the mirror, at the left and right ends of a horizontal line that bisects the mirror and at the top and bottom ends of a vertical line that bisects the mirror. None of the readings are within a 6.4 mm border on the edge of the image display.

S12.4 At each position, the spherometer is held perpendicular to the convex mirror-surface and a record is made of the reading on the dial indicator to the nearest .0025 mm.

S12.5 Convert the dial reading data for each of the 10 test positions to radius of curvature calculations using Table I. Consider the change as linear for dial readings that fall between two numbers in Table I.

S12.6 Calculate the average radius of curvature by adding all 10 radius of curvature calculations and dividing by ten.

S12.7 Determine the numerical difference between the average radius of curvature and each of the 10 individual radius of curvature calculations using S12.5.

S12.8 Calculate the greatest percentage deviation by dividing the greatest numerical difference determined in S12.7 by the average radius of curvature and multiply by 100.
TABLE I—CONVERSION TABLE FROM SPHEROMETER DIAL READING TO RADIUS OF CURVATURE

<table>
<thead>
<tr>
<th>Dial reading</th>
<th>Radius of curvature (Inches)</th>
<th>Radius of curvature (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00330</td>
<td>85.2</td>
<td>2164.1</td>
</tr>
<tr>
<td>00350</td>
<td>80.4</td>
<td>2042.9</td>
</tr>
<tr>
<td>00374</td>
<td>75.2</td>
<td>1910.1</td>
</tr>
<tr>
<td>00402</td>
<td>70.0</td>
<td>1778.0</td>
</tr>
<tr>
<td>00416</td>
<td>67.6</td>
<td>1717.0</td>
</tr>
<tr>
<td>00432</td>
<td>65.1</td>
<td>1653.5</td>
</tr>
<tr>
<td>00450</td>
<td>62.5</td>
<td>1587.5</td>
</tr>
<tr>
<td>00468</td>
<td>60.1</td>
<td>1526.5</td>
</tr>
<tr>
<td>00476</td>
<td>59.1</td>
<td>1501.1</td>
</tr>
<tr>
<td>00484</td>
<td>58.1</td>
<td>1475.7</td>
</tr>
<tr>
<td>00492</td>
<td>57.2</td>
<td>1452.9</td>
</tr>
<tr>
<td>00502</td>
<td>56.0</td>
<td>1422.4</td>
</tr>
<tr>
<td>00512</td>
<td>54.9</td>
<td>1394.5</td>
</tr>
<tr>
<td>00522</td>
<td>53.9</td>
<td>1369.1</td>
</tr>
<tr>
<td>00536</td>
<td>52.5</td>
<td>1333.5</td>
</tr>
<tr>
<td>00544</td>
<td>51.7</td>
<td>1313.2</td>
</tr>
<tr>
<td>00554</td>
<td>50.8</td>
<td>1290.3</td>
</tr>
<tr>
<td>00566</td>
<td>49.7</td>
<td>1262.4</td>
</tr>
<tr>
<td>00580</td>
<td>48.5</td>
<td>1231.9</td>
</tr>
<tr>
<td>00592</td>
<td>47.5</td>
<td>1206.5</td>
</tr>
<tr>
<td>00606</td>
<td>46.4</td>
<td>1178.6</td>
</tr>
<tr>
<td>00622</td>
<td>45.2</td>
<td>1148.1</td>
</tr>
<tr>
<td>00636</td>
<td>44.2</td>
<td>1122.7</td>
</tr>
<tr>
<td>00654</td>
<td>43.0</td>
<td>1092.2</td>
</tr>
<tr>
<td>00668</td>
<td>42.1</td>
<td>1069.3</td>
</tr>
<tr>
<td>00686</td>
<td>41.0</td>
<td>1041.4</td>
</tr>
<tr>
<td>00694</td>
<td>40.5</td>
<td>1028.7</td>
</tr>
<tr>
<td>00720</td>
<td>39.1</td>
<td>993.1</td>
</tr>
<tr>
<td>00740</td>
<td>38.0</td>
<td>965.2</td>
</tr>
<tr>
<td>00760</td>
<td>37.0</td>
<td>939.8</td>
</tr>
<tr>
<td>00780</td>
<td>36.1</td>
<td>916.9</td>
</tr>
<tr>
<td>00802</td>
<td>35.1</td>
<td>891.5</td>
</tr>
<tr>
<td>00822</td>
<td>34.2</td>
<td>868.7</td>
</tr>
<tr>
<td>00850</td>
<td>33.1</td>
<td>840.7</td>
</tr>
<tr>
<td>00878</td>
<td>32.0</td>
<td>812.8</td>
</tr>
<tr>
<td>00906</td>
<td>31.0</td>
<td>787.4</td>
</tr>
<tr>
<td>00938</td>
<td>30.0</td>
<td>762.0</td>
</tr>
<tr>
<td>00960</td>
<td>.01004</td>
<td>28.7</td>
</tr>
<tr>
<td>01022</td>
<td>27.0</td>
<td>685.8</td>
</tr>
<tr>
<td>01042</td>
<td>26.5</td>
<td>673.1</td>
</tr>
<tr>
<td>01060</td>
<td>26.0</td>
<td>660.4</td>
</tr>
<tr>
<td>01080</td>
<td>25.3</td>
<td>642.6</td>
</tr>
<tr>
<td>01110</td>
<td>24.9</td>
<td>632.5</td>
</tr>
<tr>
<td>01130</td>
<td>24.0</td>
<td>609.6</td>
</tr>
<tr>
<td>01170</td>
<td>23.4</td>
<td>594.4</td>
</tr>
<tr>
<td>01200</td>
<td>22.7</td>
<td>576.6</td>
</tr>
<tr>
<td>01240</td>
<td>22.0</td>
<td>558.8</td>
</tr>
<tr>
<td>01280</td>
<td>21.5</td>
<td>546.1</td>
</tr>
<tr>
<td>01310</td>
<td>20.7</td>
<td>525.8</td>
</tr>
<tr>
<td>01360</td>
<td>20.1</td>
<td>510.5</td>
</tr>
<tr>
<td>01400</td>
<td>19.7</td>
<td>500.4</td>
</tr>
<tr>
<td>01430</td>
<td>19.0</td>
<td>482.6</td>
</tr>
<tr>
<td>01480</td>
<td>18.3</td>
<td>464.8</td>
</tr>
<tr>
<td>01540</td>
<td>17.9</td>
<td>454.7</td>
</tr>
<tr>
<td>01610</td>
<td>17.5</td>
<td>444.5</td>
</tr>
<tr>
<td>01660</td>
<td>17.1</td>
<td>434.3</td>
</tr>
<tr>
<td>01700</td>
<td>16.6</td>
<td>421.6</td>
</tr>
<tr>
<td>01750</td>
<td>16.1</td>
<td>408.9</td>
</tr>
<tr>
<td>01800</td>
<td>15.6</td>
<td>396.2</td>
</tr>
<tr>
<td>01860</td>
<td>15.1</td>
<td>383.5</td>
</tr>
<tr>
<td>01910</td>
<td>14.7</td>
<td>373.4</td>
</tr>
<tr>
<td>01980</td>
<td>14.2</td>
<td>360.7</td>
</tr>
<tr>
<td>02040</td>
<td>13.8</td>
<td>350.5</td>
</tr>
<tr>
<td>02100</td>
<td>13.4</td>
<td>340.4</td>
</tr>
</tbody>
</table>
TABLE I—CONVERSION TABLE FROM SPHEROMETER DIAL READING TO RADIUS OF CURVATURE—Continued

<table>
<thead>
<tr>
<th>Dial reading</th>
<th>Radius of curvature (inches)</th>
<th>Radius of curvature (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02160</td>
<td>13.0</td>
<td>330.2</td>
</tr>
<tr>
<td>0.02250</td>
<td>12.5</td>
<td>317.5</td>
</tr>
<tr>
<td>0.02340</td>
<td>12.0</td>
<td>304.8</td>
</tr>
<tr>
<td>0.02450</td>
<td>11.5</td>
<td>292.1</td>
</tr>
<tr>
<td>0.02560</td>
<td>11.0</td>
<td>279.4</td>
</tr>
<tr>
<td>0.02680</td>
<td>10.5</td>
<td>266.7</td>
</tr>
<tr>
<td>0.02810</td>
<td>10.0</td>
<td>254.0</td>
</tr>
<tr>
<td>0.02960</td>
<td>9.5</td>
<td>241.3</td>
</tr>
<tr>
<td>0.03130</td>
<td>9.0</td>
<td>228.6</td>
</tr>
<tr>
<td>0.03310</td>
<td>8.5</td>
<td>215.9</td>
</tr>
</tbody>
</table>

S13. School bus mirror test procedures. The requirements of S9.1 through S9.4 shall be met when the vehicle is tested in accordance with the following conditions.

S13.1 The cylinders shall be a color which provides a high contrast with the surface on which the bus is parked.

S13.2 The cylinders are 0.3048 m high and 0.3048 m in diameter, except for cylinder P which is 0.9144 m high and 0.3048 m in diameter.

S13.3 Place cylinders at locations as specified in S13.3(a) through S13.3(g) and illustrated in Figure 2. Measure the distances shown in Figure 2 from a cylinder to another object from the center of the cylinder as viewed from above.

(a) Place cylinders G, H, and I so that they are tangent to a transverse vertical plane tangent to the forward-most surface of the bus’s front bumper. Place cylinders D, E, F so that their centers are located in a transverse vertical plane that is 1.8288 meters (6 feet) forward of a transverse vertical plane passing through the centers of cylinders G, H, and I. Place cylinders A, B, and C so that their centers are located in a transverse vertical plane that is 3.6576 meters (12 feet) forward of the transverse vertical plane passing through the centers of cylinders G, H, and I.

(b) Place cylinders B, E, and H so that their centers are in a longitudinal vertical plane that passes through the bus’s longitudinal centerline.

(c) Place cylinders A, D, and G so that their centers are in a longitudinal vertical plane that is tangent to the most outboard edge of the left side of the bus’s front bumper.

(d) Place cylinders C, F, and I so that their centers are in a longitudinal vertical plane that is tangent to the most outboard edge of the right side of the bus’s front bumper.

(e) Place cylinder J so that its center is in a longitudinal vertical plane 0.3048 meters (1 foot) to the left of the longitudinal vertical plane passing through the centers of cylinders C, F, and I, and is in the transverse vertical plane that passes through the centerline of the bus’s front axle.

(f) Place cylinder K so that its center is in a longitudinal vertical plane 0.3048 meters (1 foot) to the right of the longitudinal vertical plane passing through the centers of cylinders C, F, and I, and is in the transverse vertical plane that passes through the centerline of the bus’s front axle.

(g) Place cylinders L, M, N, O, and P so that their centers are in the transverse vertical plane that passes through the centerline of the bus’s rear axle. Place cylinder L so that its center is in a longitudinal vertical plane that is 1.8288 meters (6 feet) to the left of the longitudinal vertical plane tangent to the bus’s most outboard left surface (excluding the mirror system). Place cylinder M so that its center is in a longitudinal vertical plane that is 0.3048 meters (1 foot) to the left of the longitudinal vertical plane tangent to the left side of the bus. Place cylinder N so that its center is in a longitudinal vertical plane that is 0.3048 meters (1 foot) to the right of the longitudinal vertical plane tangent to the right side of the bus. Place cylinder O so that its center is in a longitudinal vertical plane that is 3.6576 meters (12 feet) to the right of the longitudinal vertical plane tangent to the right side of the bus.
Figure 2.—Location of Test Cylinders for School Bus Field-of-View Test
All Dimensions in Meters (m)
S13.4 The driver's eye location is the eye location of a 25th percentile adult female, when seated in the driver's seat as follows:

(a) The center point of the driver's eye location is the point located 68.58 centimeters (27 inches) vertically above the intersection of the seat cushion and the seat back at the longitudinal centerline of the seat.

(b) Adjust the driver's seat to the midway point between the forward-most and rear-most positions, and if separately adjustable in the vertical direction, adjust to the lowest position. If an adjustment position does not
§ 571.111

exist at the midway point, use the closest adjustment position to the rear of the midpoint. If a seat back is adjustable, adjust the seat back angle to the manufacturer’s nominal design riding position in accordance with the manufacturer’s recommendations.

S13.5 Adjustable mirrors are adjusted before the test in accordance with the manufacturer’s recommendations. Such mirrors are not moved or readjusted at any time during the test.

13.6 Place a 35 mm or larger format camera, or video camera, so that its image plane is located at the center point of the driver’s eye location or at any single point within a semicircular area established by a 15.24 centimeter (6 inch) radius parallel to and forward of the center point (see figure 3). With the camera at any single location on or within that semicircle look through the camera and the windows of the bus and determine whether the entire top surface of each cylinder is directly visible.

S13.7 For each cylinder whose entire top surface is determined under paragraph 13.4 of this section not to be directly visible at the driver’s eye location,

(a) Place a comparison chart (see figure 4) above the mirror that provides the fullest view of the cylinder in situations where a cylinder is partially visible through more than one mirror.

Figure 4.

Comparison Chart for Indirect Field-of-View Measurements

The width of the bars in Figure 4 indicating three minutes of arc and nine minutes of arc are derived from the following formula:

For 3 minutes of arc:
X = D × 0.000873,

Where:
X = the width of a line, in the unit of measurement D, representing 3 minutes of arc;
D = distance from center point of driver’s eye location to the center of the mirror’s surface; and
0.000873 = tangent of 3 minutes of arc.

For 9 minutes of arc:
X = D × 0.002618,

Where:
X = the width of a line, in the unit of measurement D, representing 9 minutes of arc;
D = distance from center point of driver’s eye location to the center of the mirror’s surface; and
0.002618 = tangent of 9 minutes of arc.

(b) Photograph each cylinder through the mirror(s) that provides a view of the cylinder. Photograph each cylinder with the camera located so that the view through its film or image plane is located at any single location within the semicircle established under 13.4, [POINT A, B, C, OR D] ensuring that the image of the mirror and comparison chart fill the camera’s view finder to the extent possible.

13.8 Make all observations and take all photographs with the service/entry door in the closed position and the stop signal arm(s) in the fully retracted position.

S14. Rear visibility test procedure.
S14.1 Field of view and image size test procedure.

S14.1.1 Lighting. The ambient illumination conditions in which testing is conducted consists of light that is evenly distributed from above and at an intensity of between 7,000 lux and 10,000 lux, as measured at the center of the exterior surface of the vehicle’s roof.

S14.1.2 Vehicle conditions.
S14.1.2.1 Tires. The vehicle’s tires are set to the vehicle manufacturer’s recommended cold inflation pressure.
S14.1.2.2 Fuel tank loading. The fuel tank is full.
S14.1.2.3 Vehicle load. The vehicle is loaded to simulate the weight of the driver and four passengers or the designated occupant capacity, if less. The weight of each occupant is represented by 45 kg resting on the seat pan and 23 kg resting on the vehicle floorboard placed in the driver’s designated seating position and any other available designated seating position.

S14.1.2.4 Rear hatch and trunk lids. If the vehicle is equipped with rear hatches or trunk lids, they are closed and latched in their normal vehicle operating condition.

S14.1.2.5 Driver’s seat positioning.
S14.1.2.5.1 Adjust the driver’s seat to the midpoint of the longitudinal adjustment range. If the seat cannot be adjusted to the midpoint of the longitudinal adjustment range, the closest adjustment position to the rear of the midpoint shall be used.
S14.1.2.5.2 Adjust the driver’s seat to the lowest point of all vertical adjustment ranges present.

S14.1.3 Test object. Each test object is a right circular cylinder that is 0.8 m high and 0.3 m in external diameter. There are seven test objects, designated A through G, and they are marked as follows.

(a) Test objects A, B, C, D, and E are marked with a horizontal band encompassing the uppermost 150 mm of the side of each cylinder.
(b) Test objects F and G are marked on the side with a solid vertical stripe of 150 mm width extending from the top to the bottom of each cylinder.
(c) Both the horizontal band and vertical stripe shall be of a color that contrasts with both the rest of the cylinder and the test surface.

S14.1.4 Test object locations and orientation. Place the test objects at locations specified in S14.1.4(a)-(f) and illustrated in Figure 5. Measure the distances shown in Figure 5 from a test object to another test object or other object from the cylindrical center (axis) of the test object as viewed from above. Each test object is oriented so that its axis is vertical.
§571.111

(a) Place test objects F and G so that their centers are in a transverse vertical plane that is 0.3 m to the rear of a transverse vertical plane tangent to the rearmost surface of the rear bumper.
(b) Place test objects D and E so that their centers are in a transverse vertical plane that is 3.05 m to the rear of a transverse vertical plane tangent to the rearmost surface of the rear bumper.
(c) Place test objects A, B and C so that their centers are in a transverse vertical plane that is 6.1 m to the rear of a transverse vertical plane tangent to the rearmost surface of the rear bumper.
(d) Place test object B so that its center is in a longitudinal vertical plane passing through the vehicle’s longitudinal centerline.
(e) Place test objects C, E, and G so that their centers are in a longitudinal vertical plane located 1.52 m, measured laterally and horizontally, to the right of the vehicle longitudinal center line.
(f) Place test objects A, D, and F so that their centers are in a longitudinal vertical plane located 1.52 m, measured laterally and horizontally, to the left of the vehicle longitudinal center line.

S14.1.5 Test reference point. Obtain the test reference point using the following procedure.

(a) Locate the center of the forward-looking eye midpoint (Mf) illustrated in Figure 6 so that it is 635 mm vertically above the H point (H) and 96 mm aft of the H point.
(b) Locate the head/neck joint center (J) illustrated in Figure 6 so that it is 100 mm rearward of Mf and 588 mm vertically above the H point.
(c) Draw an imaginary horizontal line between Mf and a point vertically above J, defined as J2.
(d) Rotate the imaginary line about J2 in the direction of the rearview image until the straight-line distance between Mf and the center of the display used to present the rearview image required in this standard reaches the shortest possible value.
(e) Define this new, rotated location of Mf to be Mr (eye midpoint rotated).

S14.1.6 Display adjustment. If the display is mounted with a rotational adjustment mechanism, adjust the display such that the surface of the display is normal to the imaginary line traveling through Mr and J2 or as near to normal as the display adjustment will allow.

S14.1.7 Steering wheel adjustment. The steering wheel is adjusted to the position where the longitudinal centerline of all vehicle tires are parallel to the longitudinal centerline of the vehicle. If no such position exists, adjust the steering wheel to the position where the longitudinal centerline of all vehicle tires are closest to parallel to the longitudinal centerline of the vehicle.

S14.1.8 Measurement procedure.

(a) Locate a 35 mm or larger format still camera, video camera, or digital equivalent such that the center of the camera’s image plane is located at Mr, and the camera lens is directed at the center of the display’s rearview image.
(b) Affix a ruler at the base of the rearview image in an orientation perpendicular with a test object cylinder centerline. If the vehicle head restraints obstruct the camera’s view of the display, they may be adjusted or removed.
(c) Photograph the image of the visual display with the ruler included in the frame and the rearview image displayed.

S14.1.8.1 Extract photographic data.

(a) Using the photograph, measure the apparent length, of a 50 mm delineated section of the in-photo ruler, along the ruler’s edge, closest to the rearview image and at a point near the horizontal center of the rearview image.
(b) Using the photograph, measure the horizontal width of the colored band at the upper portion of each of the three test objects located at positions A, B, and C in Figure 5.
(c) Define the measured horizontal widths of the colored bands of the three test objects as da, db, and dc.

S14.1.8.2 Obtain scaling factor. Using the apparent length of the 50 mm portion of the ruler as it appears in the photograph, divide this apparent length by 50 mm to obtain a scaling factor. Define this scaling factor as s_scale.

S14.1.8.3 Determine viewing distance. Determine the actual distance from the rotated eye midpoint location (Mr) to
the center of the rearview image. Define this viewing distance as a_{eye}.

S14.1.8.4 Calculate visual angle subtended by test objects. Use the following equation to calculate the subtended visual angles:

$$\theta_i = 60 \sin^{-1} \left(\frac{d_i}{a_{eye} \times scale} \right)$$

where i can take on the value of either test object A, B, or C, and arcsine is calculated in units of degrees.

S14.2 Image response time test procedure. The temperature inside the vehicle during this test is any temperature between 15 °C and 25 °C. Immediately prior to commencing the actions listed in subparagraphs (a)–(c) of this paragraph, all components of the rear visibility system are in a powered off state. Then:

(a) Open the driver’s door to any width,
(b) Close the driver’s door
(c) Activate the starting system using the key, and
(d) Select the vehicle’s reverse direction at any time not less than 4.0 seconds and not more than 6.0 seconds after the driver’s door is opened. The driver door is open when the edge of the driver’s door opposite of the door’s hinge is no longer flush with the exterior body panel.

S14.3 Durability test procedures. For the durability tests specified in S14.3.1, S14.3.2, and S14.3.3, the external components are mounted on an environmental test fixture.

S14.3.1 Corrosion test procedure. The external components are subjected to a salt spray (fog) test in accordance with ASTM B117-03 (incorporated by reference, see §571.5) for a period of 24 hours. Allow 1 hour to elapse without spray between the two test cycles.

S14.3.2 Humidity exposure test procedure. The external components are subjected to 24 consecutive 3-hour humidity test cycles. In each humidity test cycle, external components are subjected to a temperature of 100° + 7° – 0 °F (38° + 4° – 0 °C) with a relative humidity of not less than 90% for a period of 2 hours. After a period not to exceed 5 minutes, the external components are subjected to a temperature of 32° + 5° – 0 °F (0° + 3° – 0 °C) and a humidity of not more than 30% ±10% for 1 hour. Allow no more than 5 minutes to elapse between each test cycle.

S14.3.3 Temperature exposure test procedure. The external components are subjected to 4 consecutive 2-hour temperature test cycles. In each temperature test cycle, the external components are first subjected to a temperature of 176° ±5 °F (80° ±3 °C) for a period of one hour. After a period not to exceed 5 minutes, the external components are subjected to a temperature of 32° + 5° – 0 °F (0° + 3° – 0 °C) for 1 hour. Allow no more than 5 minutes to elapse between each test cycle.
FIGURE 5: TEST CYLINDER LOCATIONS
§571.111

Rear visibility phase-in schedule.

For the purposes of the requirements in §15.1 through §15.7, production year means the 12-month period between May 1 of one year and April 30 of the following year, inclusive.

§15.1 Vehicles manufactured on or after May 1, 2016 and before May 1, 2018. At any time during or after the production years ending April 30, 2017 and April 30, 2018, each manufacturer shall, upon request from the Office of Vehicle Safety Compliance, provide information identifying the vehicles (by make, model and vehicle identification number) that have been certified as complying with §5.5.1 or §6.2.1 of this
§ 571.112 49 CFR Ch. V (10–1–16 Edition)

standard. The manufacturer's designation of a vehicle as a certified vehicle is irrevocable.

S15.2 Vehicles manufactured on or after May 1, 2016 and before May 1, 2017. Except as provided in S15.4, for passenger cars, multipurpose passenger vehicles, trucks, buses, and low-speed vehicles with a GVWR of 4,536 kg or less, manufactured by a manufacturer on or after May 1, 2016, and before May 1, 2017, the number of such vehicles complying with S5.5.1 or S6.2.1 shall be not less than 10 percent of the manufacturer's—

(a) Production of such vehicles during that period; or

(b) Average annual production of such vehicles manufactured in the three previous production years.

S15.3 Vehicles manufactured on or after May 1, 2017 and before May 1, 2018. Except as provided in S15.4, for passenger cars, multipurpose passenger vehicles, trucks, buses, and low-speed vehicles with a GVWR of 4,536 kg or less, manufactured by a manufacturer on or after May 1, 2017, and before May 1, 2018, the number of such vehicles complying with S5.5.1 or S6.2.1 shall be not less than 40 percent of the manufacturer's—

(a) Production of such vehicles during that period; or

(b) Average annual production of such vehicles manufactured in the three previous production years.

S15.4 Exclusions from phase-in. The following vehicles shall not be subject to the requirements in S15.1 through S15.3 but shall achieve full compliance with this standard at the end of the phase-in period in accordance with S5.5(b) and S6.2(b):—

(a) Vehicles that are manufactured by small manufacturers or by limited line manufacturers.

(b) Vehicles that are altered (within the meaning of 49 CFR 567.7) before May 1, 2017, after having been previously certified in accordance with part 567 of this chapter, and vehicles manufactured in two or more stages before May 1, 2018.

S15.5 Vehicles produced by more than one manufacturer. For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S15.1 through S15.3, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S15.6—

(a) A vehicle that is imported shall be attributed to the importer.

(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.

S15.6 A vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle's manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S15.5.

S15.7 Calculation of complying vehicles.

(a) For the purposes of calculating the vehicles complying with S15.2, a manufacturer may count a vehicle if it is manufactured on or after May 1, 2016 but before May 1, 2017.

(b) For purposes of complying with S15.3, a manufacturer may count a vehicle if it is manufactured on or after May 1, 2017 but before May 1, 2018 and,

(c) For the purposes of calculating average annual production of vehicles for each manufacturer, each vehicle that is excluded from having to meet the applicable requirement is not counted.

§ 571.113 Standard No. 113; Hood latch system.

S1. Purpose and scope. This standard establishes the requirement for providing a hood latch system or hood latch systems.

S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses.

S3. Definitions. Hood means any exterior movable body panel forward of the
windshield that is used to cover an engine, luggage, storage, or battery compartment.

§ 571.114 Standard No. 114; Theft protection and rollaway prevention.

S1. Scope. This standard specifies vehicle performance requirements intended to reduce the incidence of crashes resulting from theft and accidental rollaway of motor vehicles.

S2. Purpose. The purpose of this standard is to decrease the likelihood that a vehicle is stolen, or accidentally set in motion.

S3. Application. This standard applies to all passenger cars, and to trucks and multipurpose passenger vehicles with a GVWR of 4,536 kilograms (10,000 pounds) or less. However, it does not apply to walk-in van-type vehicles. Additionally, paragraph S5.3 of this standard applies to all motor vehicles, except trailers and motorcycles, with a GVWR of 4,536 kilograms (10,000 pounds) or less.

S4. Definitions.

Combination means a variation of the key that permits the starting system of a particular vehicle to be operated.

Key means a physical device or an electronic code which, when inserted into the starting system (by physical or electronic means), enables the vehicle operator to activate the engine or motor.

Open-body type vehicle means a vehicle having no occupant compartment doors or vehicle having readily detachable occupant compartment doors.

Starting system means the vehicle system used in conjunction with the key to activate the engine or motor.

Vehicle type, as used in S5.1.2, refers to passenger car, truck, or multipurpose passenger vehicle, as those terms are defined in 49 CFR 571.3.

S5. Requirements. Each vehicle subject to this standard must meet the requirements of S5.1, S5.2, and S5.3. Open-body type vehicles are not required to comply with S5.1.3.

S5.1 Theft protection.

S5.1.1 Each vehicle must have a starting system which, whenever the key is removed from the starting system prevents:

(a) The normal activation of the vehicle's engine or motor; and

(b) Either steering, or forward self-mobility, of the vehicle, or both.

S5.1.2 For each vehicle type manufactured by a manufacturer, the manufacturer must provide at least 1,000 unique key combinations, or a number equal to the total number of the vehicles of that type manufactured by the manufacturer, whichever is less. The same combinations may be used for more than one vehicle type.

S5.1.3 Except as specified below, an audible warning to the vehicle operator must be activated whenever the key is in the starting system and the door located closest to the driver's designated seating position is opened. An audible warning to the vehicle operator need not activate:

(a) After the key has been inserted into the starting system, and before the driver takes further action; or

(b) If the key is in the starting system in a manner or position that allows the engine or motor to be started or to continue operating; or

(c) For mechanical keys and starting systems, after the key has been withdrawn to a position from which it may not be turned.

S5.1.4 If a vehicle is equipped with a transmission with a "park" position, the means for deactivating the vehicle's engine or motor must not activate any device installed pursuant to S5.1.1(b), unless the transmission is locked in the "park" position.

S5.2 Rollaway prevention in vehicles equipped with transmissions with a "park" position.

S5.2.1 Except as specified in S5.2.3, the starting system required by S5.1 must prevent key removal when tested according to the procedures in S6, unless the transmission or gear selection control is locked in "park" or becomes locked in "park" as a direct result of key removal.
S5.2.2 Except as specified in S5.2.4, the vehicle must be designed such that the transmission or gear selection control cannot move from the “park” position, unless the key is in the starting system.

S5.2.3 Key removal override option. At the option of the manufacturer, the key may be removed from the starting system without the transmission or gear selection control in the “park” position under one of the following conditions:

(a) In the event of electrical failure, including battery discharge, the vehicle may permit key removal from the starting system without the transmission or gear selection control locked in the “park” position; or

(b) Provided that steering or self-mobility is prevented, the vehicle may have a device by which the user can remove the key from the starting system without the transmission or gear selection control locked in “park.” This device must require:

(i) The use of a tool, and

(ii) Simultaneous activation of the device and removal of the key; or

(c) Provided that steering or self-mobility is prevented, the vehicle may have a device by which the user can remove the key from the starting system without the transmission or gear selection control locked in “park.” This device must be covered by an opaque surface which, when installed:

(i) Prevents sight of and use of the device, and

(ii) Can be removed only by using a screwdriver or other tool.

S5.2.4 Gear selection control override option. The vehicle may have a device by which the user can move the gear selection control from “park” after the key has been removed from the starting system. This device must be operable by one of the three options below:

(a) By use of the key; or

(b) By a means other than the key, provided steering or forward self-mobility is prevented when the key is removed from the starting system. Such a means must require:

(i) The use of a tool, and

(ii) Simultaneous activation of this means and movement of the gear selection control from “park,” or

(c) By a means other than the key, provided steering or forward self-mobility is prevented when the key is removed from the starting system. This device must be covered by an opaque surface which, when installed:

(i) Prevents sight of and use of the device, and

(ii) Can be removed only by using a screwdriver or other tool.

S5.2.5 When tested in accordance with S6.2.2, each vehicle must not move more than 150 mm on a 10 percent grade when the gear selection control is locked in “park.”

S5.3 Brake transmission shift interlock. Each motor vehicle manufactured on or after September 1, 2010 with a GVWR of 4,536 kilograms (10,000 pounds) or less with an automatic transmission that includes a “park” position shall be equipped with a system that requires the service brake to be depressed before the transmission can be shifted out of “park.” This system shall function in any starting system key position in which the transmission can be shifted out of “park.” This section does not apply to trailers or motorcycles.

S6. Compliance test procedure for vehicles with transmissions with a “park” position.

S6.1 Test conditions.

S6.1.1 The vehicle shall be tested at curb weight plus 91 kg (including the driver).

S6.1.2 Except where specified otherwise, the test surface shall be level.

S6.2 Test procedure.

S6.2.1 (a) Activate the starting system using the key.

(b) Move the gear selection control to any gear selection position or any other position where it will remain without assistance, including a position between any detent positions, except for the “park” position.

(c) Attempt to remove the key in each gear selection position.

S6.2.2 (a) Drive the vehicle forward up a 10 percent grade and stop it with the service brakes.

(b) Apply the parking brake (if present).

(c) Move the gear selection control to “park.”
Nat’l Highway Traffic Safety Admin., DOT § 571.116

(d) Note the vehicle position.
(e) Release the parking brake. Release the service brakes.
(f) Remove the key.
(g) Verify that the gear selection control or transmission is locked in "park."
(h) Verify that the vehicle, at rest, has moved no more than 150 mm from the position noted prior to release of the brakes.

§ 571.116 Standard No. 116; Motor vehicle brake fluids.

S1. Scope. This standard specifies requirements for fluids for use in hydraulic brake systems of motor vehicles, containers for these fluids, and labeling of the containers.

S2. Purpose. The purpose of this standard is to reduce failures in the hydraulic braking systems of motor vehicles which may occur because of the manufacture or use of improper or contaminated fluid.

S3. Application. This standard applies to all fluid for use in hydraulic brake systems of motor vehicles. In addition, S5.3 applies to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers, and motorcycles.

S4. Definitions.
Blister means a cavity or sac on the surface of a brake cup.
Brake fluid means a liquid designed for use in a motor vehicle hydraulic brake system in which it will contact elastomeric components made of styrene and butadiene rubber (SBR), ethylene and propylene rubber (EPR), polychloroprene (CR) brake hose inner tube stock or natural rubber (NR).
Chipping means a condition in which small pieces are missing from the outer surface of a brake cup.
Duplicate samples means two samples of brake fluid taken from a single packaged lot and tested simultaneously.
Hydraulic system mineral oil means a mineral-oil-based fluid designed for use in motor vehicle hydraulic brake systems in which the fluid is not in contact with components made of SBR, EPR or NR.
Packager means any person who fills containers with brake fluid that are subsequently distributed for retail sale.
Packaged lot is that quantity of brake fluid shipped by the manufacturer to the packager in a single container, or that quantity of brake fluid manufactured by a single plant run of 24 hours or less, through the same processing equipment and with no change in ingredients.
Scuffing means a visible erosion of a portion of the outer surface of a brake cup.
A silicone base brake fluid (SBBF) is a brake fluid which consists of not less than 70 percent by weight of a diorganopolysiloxane.
Sloughing means degradation of a brake cup as evidenced by the presence of carbon black loosely held on the brake cup surface, such that a visible black streak is produced when the cup, with a 500 ±10 gram deadweight on it, is drawn base down over a sheet of white bond paper placed on a firm flat surface.
Stickiness means a condition on the surface of a brake cup such that fibers will be pulled from a wad of U.S.P. absorbent cotton when it is drawn across the surface.
Sticky means a condition on the surface of a brake cup which will pull fibers from a wad of U.S.P. absorbent cotton when it is drawn across the surface.

§ 571.115 [Reserved]

§ 571.116 Standard No. 116; Motor vehicle brake fluids.

§ 571.115 [Reserved]

§ 571.116 Standard No. 116; Motor vehicle brake fluids.

§ 571.115 [Reserved]

§ 571.116 Standard No. 116; Motor vehicle brake fluids.

§ 571.115 [Reserved]

§ 571.116 Standard No. 116; Motor vehicle brake fluids.

§ 571.115 [Reserved]

§ 571.116 Standard No. 116; Motor vehicle brake fluids.

§ 571.115 [Reserved]

§ 571.116 Standard No. 116; Motor vehicle brake fluids.

§ 571.115 [Reserved]

§ 571.116 Standard No. 116; Motor vehicle brake fluids.
specified, the brake fluid shall meet the requirements at all points within the range.

§510 Brake fluid. When tested in accordance with §5, brake fluids shall meet the following requirements:

§5.1 Equilibrium reflux boiling point (ERBP). When brake fluid is tested according to §5.1, the ERBP shall not be less than the following value for the grade indicated:

(a) DOT 3: 205 °C (401 °F).
(b) DOT 4: 230 °C (446 °F).
(c) DOT 5: 260 °C (500 °F).

§5.2 Wet ERBP. When brake fluid is tested according to §5.2, the wet ERBP shall not be less than the following value for the grade indicated:

(a) DOT 3: 140 °C (284 °F).
(b) DOT 4: 155 °C (311 °F).
(c) DOT 5: 180 °C (356 °F).

§5.3 Kinematic viscosities. When brake fluid is tested according to §5.3, the kinematic viscosities in square millimeters per second at stated temperatures shall be neither less than 1.5 mm²/s at 100 °C (212 °F) nor more than the following maximum value for the grade indicated:

(a) DOT 3: 1,500 mm²/s at minus 40 °C (minus 40 °F).
(b) DOT 4: 1,800 mm²/s at minus 40 °C (minus 40 °F).
(c) DOT 5: 900 mm²/s at minus 40 °C (minus 40 °F).

§5.4 pH value. When brake fluid, except DOT 5 SBBF, is tested according to §5.4, the pH value shall not be less than 7.0 nor more than 11.5.

§5.5 Brake fluid stability.

§5.5.1 High-temperature stability. When brake fluid is tested according to §5.5.1, the ERBP shall not change by more than 3 °C (5.4 °F) plus 0.05 for each degree that the ERBP of the fluid exceeds 225 °C (437 °F).

§5.5.2 Chemical stability. When brake fluid, except DOT 5 SBBF, is tested according to §5.5.2, the change in temperature of the refluxing fluid mixture shall not exceed 3.8 °C (5.4 °F) plus 0.05 for each degree that the ERBP of the fluid exceeds 225 °C (437 °F).

§5.6 Corrosion. When brake fluid is tested according to §5.6—

(a) The metal test strips shall not show weight changes exceeding the limits stated in Table 1.

(b) Excluding the area of contact (13 ±1 mm; ½ ±1⁄32 inch) measured from the bolt hole end of the test strip, the metal test strips shall not show pitting or etching to an extent discernible without magnification;

(c) The water-wet brake fluid at the end of the test shall show no jelling at 23 ±5 °C (73.4 ±9 °F);

(d) No crystalline deposit shall form and adhere to either the glass jar walls or the surface of the metal strips;

(e) At the end of the test, sedimentation of the water-wet brake fluid shall not exceed 0.10 percent by volume;

(f) The pH value of water-wet brake fluid, except DOT 5 SBBF, at the end of the test shall not be less than 7.0 nor more than 11.5;

(g) The cups at the end of the test shall show no disintegration, as evidenced by blisters or sloughing;

(h) The hardness of the cup shall not decrease by more than 15 International Rubber Hardness Degrees (IRHD); and

(i) The base diameter of the cups shall not increase by more than 1.4 mm. (0.055 inch).

§5.7 Fluidity and appearance at low temperature. When brake fluid is tested according to §5.7, at the storage temperature and for the storage times given in Table II—

(a) The fluid shall show no sludging, sedimentation, crystallization, or stratification;

(b) Upon inversion of the sample bottle, the time required for the air bubble to travel to the top of the fluid shall not exceed the bubble flow times shown in Table II; and

(c) On warming to room temperature, the fluid shall resume the appearance and fluidity that it had before chilling.

Table 1

<table>
<thead>
<tr>
<th>Test strip material</th>
<th>Maximum permissible weight change, mg./sq. cm. of surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel, tinned iron, cast iron</td>
<td>0.2</td>
</tr>
<tr>
<td>Aluminum</td>
<td>.1</td>
</tr>
<tr>
<td>Brass, copper</td>
<td>.4</td>
</tr>
</tbody>
</table>
TABLE II—FLUIDITY AND APPEARANCE AT LOW TEMPERATURES

<table>
<thead>
<tr>
<th>Storage temperature</th>
<th>Storage time (hours)</th>
<th>Maximum bubble flow time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minus 40 ± 2 °C. (minus 40 ± 3.6 °F.)</td>
<td>144 ± 0.0</td>
<td>10</td>
</tr>
<tr>
<td>Minus 50 ± 2 °C. (minus 58 ± 3.6 °F.)</td>
<td>6 ± 0.2</td>
<td>35</td>
</tr>
</tbody>
</table>

§5.1.8 [Reserved]

§5.1.9 Water tolerance. (a) At low temperature. When brake fluid is tested according to §6.9.3(a)—

(1) The fluid shall show no sludging, sedimentation, crystallization, or stratification;
(2) Upon inversion of the centrifuge tube, the air bubble shall travel to the top of the fluid in not more than 10 seconds;
(3) If cloudiness has developed, the wet fluid shall regain its original clarity and fluidity when warmed to room temperature; and

(b) At 60 °C. (140 °F.). When brake fluid is tested according to §6.9.3(b)—

(1) The fluid shall show no stratification; and
(2) Sedimentation shall not exceed 0.15 percent by volume after centrifuging.

§5.1.10 Compatibility. (a) At low temperature. When brake fluid is tested according to §6.10.3(a), the test specimen shall show no sludging, sedimentation, or crystallization. In addition, fluids, except DOT 5 SBBF, shall show no stratification.

(b) At 60 °C. (140 °F.). When brake fluid is tested according to §6.10.3(b)—

(1) Sedimentation shall not exceed 0.05 percent by volume after centrifuging; and
(2) Fluids, except DOT 5 SBBF, shall show no stratification.

§5.1.11 Resistance to oxidation. When brake fluid is tested according to §6.11—

(a) The metal test strips outside the areas in contact with the tinfoil shall not show pitting or etching to an extent discernible without magnification;
(2) No more than a trace of gum shall be deposited on the test strips outside the areas in contact with the tinfoil;
(c) The aluminum strips shall not change in weight by more than 0.05 mg./sq. cm.; and
(d) The cast iron strips shall not change in weight by more than 0.3 mg./sq. cm.

§5.1.12 Effects on cups. When brake cups are subjected to brake fluid in accordance with §6.12—

(a) The increase in the diameter of the base of the cups shall be not less than 0.15 mm. (0.006 inch) or more than 1.40 mm. (0.055 inch); and
(b) The decrease in hardness of the cups shall be not more than 10 IRHD at 70 °C. (158 °F.) or more than 15 IRHD at 120 °C. (248 °F.), and there shall be no increase in hardness of the cups; and
(c) The cups shall show no disintegration as evidenced by stickiness, blisters, or sloughing.

§5.1.13 Stroking properties. When brake fluid is tested according to §6.13—

(a) Metal parts of the test system shall show no pitting or etching to an extent discernible without magnification;
(b) The change in diameter of any cylinder or piston shall not exceed 0.13 mm. (0.005 inch);
(c) The average decrease in hardness of seven of the eight cups tested (six wheel cylinder and one master cylinder primary) shall not exceed 15 IRHD. Not more than one of the seven cups shall have a decrease in hardness greater than 17 IRHD;
(d) None of the eight cups shall be in an unsatisfactory operating condition as evidenced by stickiness, scuffing, blisters, cracking, chipping, or other change in shape from its original appearance;
(e) None of the eight cups shall show an increase in base diameter greater than 0.90 mm (0.035 inch);
(f) The average lip diameter set of the eight cups shall not be greater than 65 percent.
(g) During any period of 24,000 strokes, the volume loss of fluid shall not exceed 36 milliliters;
(h) The cylinder pistons shall not freeze or function improperly throughout the test;
(i) The total loss of fluid during the 100 strokes at the end of the test shall not exceed 36 milliliters;
(j) The fluid at the end of the test shall show no formation of gels.
(k) At the end of the test the amount of sediment shall not exceed 1.5 percent by volume; and
(l) Brake cylinders shall be free of deposits that are abrasive or that cannot be removed when rubbed moderately with a nonabrasive cloth wetted with ethanol.

§ 571.116 Fluid color. Brake fluid and hydraulic system mineral oil shall be of the color indicated:

DOT 3, DOT 4, and DOT 5.1 non-SBBF—colorless to amber.
DOT 3 SBBF—purple.
Hydraulic system mineral oil—green.

§ 5.2 Packaging and labeling requirements for motor vehicle brake fluids.

§ 5.2.1 Container sealing. Each brake fluid or hydraulic system mineral oil container with a capacity of 177 mL or more shall be provided with a resealable closure that has an inner seal impervious to the packaged brake fluid. The container closure shall include a tamper-proof feature that will either be destroyed or substantially altered when the container closure is initially opened.

§ 5.2.2 Certification, marking, and labeling.

§ 5.2.2.1 Each manufacturer of a DOT grade brake fluid shall furnish to each packager, distributor, or dealer to whom he delivers brake fluid, the following information:

(a) A serial number identifying the production lot and the date of manufacture of the brake fluid.
(b) The grade (DOT 3, DOT 4, DOT 5) of the brake fluid. If DOT 5 grade brake fluid, it shall be further distinguished as “DOT 5 SILICONE BASE” or “DOT 5.1 NON-SILICONE BASE.”
(c) The minimum wet boiling point in Fahrenheit of the brake fluid.
(d) Certification that the brake fluid conforms to § 571.116.

§ 5.2.2.2 Each packager of brake fluid shall furnish the information specified in paragraphs (a) through (g) of this §5.2.2.2 by clearly marking it on each brake fluid container or on a label (labels) permanently affixed to the container, in any location except a removable part such as a lid. After being subjected to the operations and conditions specified in § 6.14, the information required by this section shall be legible to an observer having corrected visual acuity of 20/40 (Snellen ratio) at a distance of 305 mm, and any label affixed to the container in compliance with this section shall...
§571.116

not be removable without its being destroyed or defaced.

(a) The name of the packager of the hydraulic system mineral oil, which may be in code form.

(b) The name and complete mailing address of the distributor.

(c) A serial number identifying the packaged lot and date of packaging.

(d) Designation of the contents as “HYDRAULIC SYSTEM MINERAL OIL” in capital letters at least 3 mm high.

(e) The following safety warnings in capital and lower case letters as indicated:

1. FOLLOW VEHICLE MANUFACTURER’S RECOMMENDATIONS WHEN ADDING HYDRAULIC SYSTEM MINERAL OIL.

2. Hydraulic System Mineral Oil is NOT COMPATIBLE with the rubber components of brake systems designed for use with DOT brake fluids.

3. KEEP HYDRAULIC SYSTEM MINERAL OIL CLEAN. Contamination with dust or other materials may result in brake failure or costly repair.

4. CAUTION: STORE HYDRAULIC SYSTEM MINERAL OIL ONLY IN ITS ORIGINAL CONTAINER. KEEP CONTAINER CLEAN AND TIGHTLY CLOSED. DO NOT REFILL CONTAINER OR USE OTHER LIQUIDS.

S5.2.2.4 If a container for brake fluid or hydraulic system mineral oil is not normally visible but designed to be protected by an outer container or carton during use, the outer container or carton rather than the inner container shall meet the labeling requirements of S5.2.2.2 or S5.2.2.3, as appropriate.

S5.3 Motor vehicle requirement. Each passenger car, multipurpose passenger vehicle, truck, bus, trailer, and motorcycle that has a hydraulic brake system shall be equipped with fluid that has been manufactured and packaged in conformity with the requirements of this standard.

S6. Test procedures.

S6.1 Equilibrium reflux boiling point. Determine the ERBP of a brake fluid by running duplicate samples according to the following procedure and averaging the results.
§571.116

(b) Insert thermometer through the side tube until the tip of the bulb is 6.5 mm. (1⁄4 inch) from the bottom center of the flask. Seal with a short piece of natural rubber, EPDM, SBR, or butyl tubing.

(c) Place 60 ±1 ml. of brake fluid and the silicon carbide grains into the flask.

(d) Attach the flask to the condenser. When using a heating mantle, place the mantle under the flask and support it with a ring-clamp and laboratory-type stand, holding the entire assembly in place by a clamp. When using a rheostat-controlled heater, center a standard porcelain or hard asbestos refractory, having a diameter opening 32 to 38 mm., over the heating element and mount the flask so that direct heat is applied only through the opening in the refractory. Place the assembly in an area free from drafts or other types of sudden temperature changes. Connect the cooling water inlet and outlet tubes to the condenser. Turn on the cooling water. The water supply temperature shall not exceed 28 °C. (82.4 °F.) and the temperature rise through the condenser shall not exceed 2 °C. (3.6 °F.).

S6.1.3 Preparation of apparatus. (a) Thoroughly clean and dry all glassware.

S6.1.4 Procedure. Apply heat to the flask so that within 10 ±2 minutes the fluid is refluxing in excess of 1 drop per second. The reflux rate shall not exceed 5 drops per second at any time. Immediately adjust the heating rate to obtain an equilibrium reflux rate of 1 to 2 drops per second over the next 5 ±2 minutes. Maintain this rate for an additional 2 minutes, taking four temperature readings at 30-second intervals. Record the average of these as the observed ERBP. If no reflux is evident when the fluid temperature reaches 260 °C (500 °F), discontinue heating and report ERBP as in excess of 260 °C (500 °F).

S6.1.5 Calculation. (a) Thermometer inaccuracy. Correct the observed ERBP by applying any correction factor obtained in standardizing the thermometer.

(b) Variation from standard barometric pressure. Apply the factor shown in Table III to calculate the barometric pressure correction to the ERBP.
TABLE III—CORRECTION FOR BAROMETRIC PRESSURE

<table>
<thead>
<tr>
<th>Observed ERBP corrected for thermometer inaccuracy</th>
<th>Correction per 1 mm difference in pressure a</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 °C. (212 °F.) to 190 °C. (374 °F.)</td>
<td>0.039 (0.07)</td>
</tr>
<tr>
<td>Over 190 °C. (374 °F.)</td>
<td>0.04 (0.08)</td>
</tr>
</tbody>
</table>

a) To be added in case barometric pressure is below 760 mm.; to be subtracted in case barometric pressure is above 670 mm.

(c) If the two corrected observed ERBP’s agree within 2 °C. (4 °C. for brake fluids having an ERBP over 230 °C./446 °F.) average the duplicate runs as the ERBP; otherwise, repeat the entire test, averaging the four corrected observed values to determine the original ERBP.

§571.116 S6.2 Wet ERBP. Determine the wet ERBP of a brake fluid by running duplicate samples according to the following procedure.

S6.2.1 Summary of procedure. A 350 ml. sample of the brake fluid is humidified under controlled conditions; 350 ml. of SAE triethylene glycol monomethyl ether, brake fluid grade, referee material (TEGME) as described in appendix E of SAE Standard J1703 NOV83 (incorporated by reference, see §571.5), is used to establish the end point for humidification. After humidification, the water content and ERBP of the brake fluid are determined.

S6.2.2 Apparatus for humidification. (See Figure 3).

(a) Glass jars. Four SAE RM–49 corrosion test jars or equivalent screwtop, straight-sided, round glass jars each having a capacity of about 475 ml. and approximate inner dimensions of 100 mm. in height by 75 mm. in diameter, with matching lids having new, clean inserts providing water-vapor-proof seals;

(b) Desiccator and cover. Two bowl-form glass desiccators, 250-mm. inside diameter, having matching tubulated covers fitted with No. 8 rubber stoppers; and

(c) Desiccator plate. Two 230-mm. diameter, perforated porcelain desiccator plates, without feet, glazed on one side.

S6.2.3 Reagents and materials. (a) Distilled water, see S7.1.

(b) SAE TEGME referee material (see appendix E of SAE Standard J1703 NOV83 (incorporated by reference, see §571.5)).

S6.2.4 Preparation of apparatus. Lubricate the ground-glass joint of the desiccator. Pour 450 ±10 ml. of distilled water into each desiccator and insert perforated porcelain desiccator plates. Place the desiccators in an oven with temperature controlled at 50 ±1 °C. (122 ±1.8 °F.) throughout the humidification procedure.

S6.2.5 Procedure. Pour 350 ±5 ml. of brake fluid into an open corrosion test jar. Prepare in the same manner a duplicate test fluid sample and two duplicate specimens of the SAE TEGME referee material (350 ±5 ml. of TEGME in each jar). The water content of the SAE TEGME fluid is adjusted to 0.50 ±0.05 percent by weight at the start of the test in accordance with S7.2. Place one sample each of the test brake fluid and the prepared TEGME sample into the same desiccator. Repeat for the second sample of test brake fluid and TEGME in a second desiccator. Place the desiccators in the 50 °C. (122 °F.) controlled oven and replace desiccator covers. At intervals, during oven humidification, remove the rubber stoppers in the tops of desiccators. Using a long needled hypodermic syringe, take a sample of not more than 2 ml. from each TEGME sample and determine its water content. Remove no more than 10 ml. of fluid from each SAE TEGME sample during the humidification procedure. When the water content of the SAE fluid reaches 3.70 ±0.05 percent by weight (average of the duplicates), remove the two test fluid specimens from their desiccators and promptly cap each jar tightly. Allow the sealed jars to cool for 60 to 90 minutes at 23 ±5 °C. (73.4 ±9 °F.). Measure the water contents of the test fluid specimens in accordance with S7.2 and determine their ERBP’s in accordance with S6.1. If the two ERBP’s agree within 4 °C. (8 °F.), average them to determine the wet ERBP; otherwise repeat and average the four individual ERBP’s as the wet ERBP of the brake fluid.
S6.3 Kinematic viscosities. Determine the kinematic viscosity of a brake fluid in mm²/s by the following procedure. Run duplicate samples at each of the specified temperatures, making two timed runs on each sample.

S6.3.1 Summary of the procedure. The time is measured for a fixed volume of the brake fluid to flow through a calibrated glass capillary viscometer under an accurately reproducible head and at a closely controlled temperature. The kinematic viscosity is then calculated from the measured flow time and the calibration constant of the viscometer.

S6.3.2 Apparatus.

(a) Viscometers. Calibrated glass capillary-type viscometers, ASTM D2515-66 (incorporated by reference, see §571.5), measuring viscosity within the precision limits of S6.4.7. Use Cannon-Fenske Routine or other modified Ostwald viscometers at ambient temperatures and above.

(b) Viscometer holders and frames. Mount a viscometer in the constant-temperature bath so that the mounting tube is held within 1° of the vertical.

(c) Viscometer bath. A transparent liquid bath of sufficient depth such that at no time during the measurement will any portion of the sample in the
§ 571.116

viscometer be less than 2 cm. below the surface or less than 2 cm. above the bottom. The bath shall be cylindrical in shape, with turbulent agitation sufficient to meet the temperature control requirements. For measurements within 15° to 100° C. (60° to 212° F.), the temperature of the bath medium shall not vary by more than 0.01 °C. (0.02 °F.) over the length of the viscometers, or between the positions of the viscometers, or at the locations of the thermometers. Outside this range, the variation shall not exceed 0.03 °C. (0.05 °F.).

(d) Thermometers. Liquid-in-Glass Kinematic Viscosity Test Thermometers, covering the range of test temperatures indicated in Table IV and conforming to ASTM E1–68 (incorporated by reference, see §571.5), and in the IP requirements for IP Standard Thermometers. Use two standardized thermometers in the bath.

<table>
<thead>
<tr>
<th>Temperature range</th>
<th>For tests at</th>
<th>Subdivisions</th>
<th>Thermometer number</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C.</td>
<td>°F.</td>
<td>°C.</td>
<td>°F.</td>
</tr>
<tr>
<td>Minus 55.3 to minus 52.5</td>
<td>Minus 67.5 to minus 62.5</td>
<td>Minus 55</td>
<td>Minus 67</td>
</tr>
<tr>
<td>Minus 41.4 to minus 38.6</td>
<td>Minus 42.5 to minus 37.5</td>
<td>Minus 40</td>
<td>Minus 40</td>
</tr>
<tr>
<td>98.6 to 101.4</td>
<td>207.5 to 212.5</td>
<td>100</td>
<td>212</td>
</tr>
</tbody>
</table>

(e) Timing device. Stop watch or other timing device graduated in divisions representing not more than 0.2 second, with an accuracy of at least ±0.05 percent when tested over intervals of 15 minutes. Electrical timing devices may be used when the current frequency is controlled to an accuracy of 0.01 percent or better.

S6.3.3 Standardization.

(a) Viscometers. Use viscometers calibrated in accordance with appendix 1 of ASTM D445–65 (incorporated by reference, see §571.5). The calibration constant, C, is dependent upon the gravitational acceleration at the place of calibration. This must, therefore, be supplied by the standardization laboratory together with the instrument constant. Where the acceleration of gravity, g, in the two locations differs by more than 0.1 percent, correct the calibration constant as follows:

\[C_2 = (g_2/g_1) \times C_1 \]

where the subscripts 1 and 2 indicate respectively the standardization laboratory and the testing laboratory.

(b) Thermometers. Check liquid-in-glass thermometers to the nearest 0.01 °C. (0.02 °F.) by direct comparison with a standardized thermometer. Kinematic Viscosity Test Thermometers shall be standardized at “total immersion.” The ice point of standardized thermometers shall be determined before use and the official corrections shall be adjusted to conform to the changes in ice points. (See ASTM E77–66 (incorporated by reference, see §571.5)).

(c) Timers. Time signals are broadcast by the National Bureau of Standards, Station WWV, Washington, DC at 2.5, 5, 10, 15, 20, 25, 30, and 35 Mc/sec (MHz). Time signals are also broadcast by Station CHU from Ottawa, Canada, at 3.330, 7.335, and 14.670 Mc/sec, and Station MSF at Rugby, United Kingdom, at 2.5, 5, and 10 Mc/sec.

S6.3.4 Procedure.

(a) Set and maintain the bath at the appropriate test temperature (see S6.1.3) within the limits specified in S6.3.2(c). Apply the necessary corrections, if any, to all thermometer readings.

(b) Select a clean, dry, calibrated viscometer giving a flow time not less than its specified minimum, or 200 seconds, whichever is the greater.

(c) Charge the suspended level viscometers by tilting about 30° from the vertical and pouring sufficient brake fluid through the fill tube into the lower reservoir so that when the viscometer is returned to vertical position the meniscus is between the fill marks. For measurements below 0 °C.
(32 °F.), before placing the filled viscometer into the constant temperature bath, draw the sample into the working capillary and timing bulb and insert small rubber stoppers to suspend the fluid in this position, to prevent accumulation of water condensate on the walls of the critical portions of the viscometer. Alternatively, fit loosely packed drying tubes into the open ends of the viscometer to prevent water condensation, but do not restrict the flow of the sample under test by the pressures created in the instrument.

(2) If a Cannon-Fenske Routine viscometer is used, charge by inverting and immersing the smaller arm into the brake fluid and applying vacuum to the larger arm. Fill the tube to the upper timing mark, and return the viscometer to an upright position.

(d) Mount the viscometer in the bath in a true vertical position (see S6.3.2(b)).

(e) The viscometer shall remain in the bath until it reaches the test temperature.

(f) At temperatures below 0 °C. (32 °F.) conduct an untimed preliminary run by allowing the brake fluid to drain through the capillary into the lower reservoir after the test temperature has been established.

(g) Adjust the head level of the brake fluid to a position in the capillary arm about 5 mm. above the first timing mark.

(h) With brake fluid flowing freely measure to within 0.2 second the time required for the meniscus to pass from the first timing mark to the second. If this flow time is less than the minimum specified for the viscometer, or 200 seconds, whichever is greater, repeat using a viscometer with a capillary of smaller diameter.

(i) Repeat S6.3.4 (g) and (h). If the two timed runs do not agree within 0.2 percent, reject and repeat using a fresh sample of brake fluid.

§571.116

49 CFR Ch. V (10–1–16 Edition)

followed by an acetone or ether rinse. Pass a slow stream of filtered dry air through the viscometer until the last trace of solvent is removed.

S6.3.6 Calculation. (a) The following viscometers have a fixed volume charged at ambient temperature, and as a consequence C varies with test temperature: Cannon-Fenske Routine, Pinkevitch, Cannon-Manning Semi-Micro, and Cannon Fenske Opaque. To calculate C at test temperatures other than the calibration temperature for these viscometers, see ASTM D2515–66 (incorporated by reference, see §571.5) or follow instructions given on the manufacturer’s certificate of calibration.

(b) Average the four timed runs on the duplicate samples to determine the kinematic viscosities.

S6.3.7 Precision (at 95 percent confidence level).

(a) Repeatability. If results on duplicate samples by the same operator differ by more than 1 percent of their mean, repeat the tests.

S6.4 pH value. Determine the pH value of a brake fluid by running one sample according to the following procedure.

S6.4.1 Summary of the procedure. Brake fluid is diluted with an equal volume of an ethanol-water solution. The pH of the resultant mixture is measured with a prescribed pH meter assembly at 23 °C. (73.4 °F.).

S6.4.2 Apparatus. The pH assembly consists of the pH meter, glass electrode, and calomel electrode, as specified in Appendices A1.1, A1.2, and A1.3 of ASTM D1121–67 (incorporated by reference, see §571.5). The glass electrode is a full range type (pH 0–14), with low sodium error.

S6.4.3 Reagents. Reagent grade chemicals conforming to the specifications of the Committee on Analytical Reagents of the American Chemical Society.

(a) Distilled water. Distilled water (S7.1) shall be boiled for about 15 minutes to remove carbon dioxide, and protected with a soda-lime tube or its equivalent while cooling and in storage. (Take precautions to prevent contamination by the materials used for protection against carbon dioxide.) The
§571.116 Preparation of electrode system.

(a) Maintenance of electrodes. Clean the glass electrode before using by immersing in cold chromic-acid cleaning solution. Drain the calomel electrode and fill with KCl electrolyte, keeping level above that of the mixture at all times. When not in use, immerse the lower halves of the electrodes in distilled water, and do not immerse in the mixture for any appreciable period of time between determinations.

(b) Preparation of electrodes. Condition new glass electrodes and those that have been stored dry as recommended by the manufacturer. Before and after using, wipe the glass electrode thoroughly with a clean cloth, or a soft absorbent tissue, and rinse with distilled water. Before each pH determination, soak the prepared electrode in distilled water for at least 2 minutes. Immediately before use, remove any excess water from the tips of the electrode.

S6.4.5 Standardization of the pH assembly and testing of the electrodes. (a) Immediately before use, standardize the pH assembly with a standard buffer solution. Then use a second standard buffer solution to check the linearity of the response of the electrodes at different pH values, and to detect a faulty glass electrode or incorrect temperature compensation. The two buffer solutions bracket the anticipated pH value of the test brake fluid.

(b) Allow instrument to warm up, and adjust according to the manufacturer’s instructions. Immerse the tips of the electrodes in a standard buffer solution and allow the temperature of the buffer solution and the electrodes to equalize. Set the temperature knob at the temperature of the buffer solution. Adjust the standardization or asymmetry potential control until the meter registers a scale reading, in pH units, equal to the known pH of the standardizing buffer solution.

(c) Rinse the electrodes with distilled water and remove excess water from the tips. Immerse the electrodes in a second standard buffer solution. The reading of the meter shall agree with the known pH of the second standard buffer solution within ±0.05 unit without changing the setting of the standardization of asymmetry potential control.

(d) A faulty electrode is indicated by failure to obtain a correct value for the pH of the second standard buffer solution after the meter has been standardized with the first.
S6.5 Fluid stability. Evaluate the heat and chemical stability of a brake fluid by the following procedure, running duplicate samples for each test and averaging the results.

S6.5.1 Summary of the procedure. The degradation of the brake fluid at elevated temperature, alone or in a mixture with a reference fluid, is evaluated by determining the change in boiling point after a period of heating under reflux conditions.

S6.5.2 Apparatus. Use the apparatus and preparation specified in S6.1.2 and S6.1.3.

S6.5.3 High temperature stability.

S6.5.3.1 Procedure. (a) Heat a new 60 ±1 ml. sample of the brake fluid to 183 ±2 °C. (365 ±3.6 °F.). Hold at this temperature for 120 ±5 minutes. Bring to a reflux rate in excess of 1 drop per second within 5 minutes. The reflux rate should not exceed 5 drops per second at any time. Over the next 5 ±2 minutes adjust the heating rate to obtain an equilibrium reflux rate of 1 to 2 drops per second. Maintain this rate for an additional 2 minutes, taking four temperature readings taken at 30-second intervals as the final ERBP.

S6.6 Corrosion. Evaluate the corrosiveness of a brake fluid by running duplicate samples according to the following procedure.

S6.6.1 Summary of the procedure. Six specified metal corrosion test strips are polished, cleaned, and weighed, then assembled as described. Assembly is placed on a standard wheel cylinder cup in a corrosion test jar, immersed in the water-wet brake fluid, capped and placed in an oven at 100 °C. (212 °F.) for 120 hours. Upon removal and cooling, the strips, fluid, and cups are examined and tested.

S6.6.2 Equipment. (a) Balance. An analytical balance having a minimum capacity of 50 grams and capable of measuring the diameter of the SBR wheel cylinder (WC) cups to the nearest 0.02 mm. (0.001 inch).

(b) Desiccators. Desiccators containing silica gel or other suitable desiccant.

(c) Oven. Gravity convection oven capable of maintaining the desired set point within 2 °C. (3.6 °F.).

(d) Micrometer. A machinist’s micrometer 25 to 50 mm. (1 to 2 inches) capacity, or an optical comparator, capable of measuring the diameter of the SBR wheel cylinder (WC) cups to the nearest 0.02 mm. (0.001 inch).

S6.6.3 Materials. (a) Corrosion test strips. Two sets of strips from each of the metals listed in Appendix C of SAE Standard J1703b (1970) (incorporated by reference, see §571.5). Each strip shall
be approximately 8 cm. long, 1.3 cm. wide, not more than 0.6 cm. thick, and have a surface area of 25 ± 5 sq. cm. and a hole 4 to 5 mm. (0.16 to 0.20 inch) in diameter on the centerline about 6 mm. from one end. The hole shall be clean and free from burrs. Tinned iron strips shall be unused. Other strips, if used, shall not be employed if they cannot be polished to a high finish.

(b) SBR cups. Two unused standard SAE SBR wheel cylinder (WC) cups, as specified in S7.6.

corrosion test jars and lids. Two screw-top straight-sided round glass jars, each having a capacity of approximately 475 ml. and inner dimensions of approximately 100 mm. in height and 75 mm. in diameter, and a tinned steel lid (no insert or organic coating) vented with a hole 0.8 ± 0.1 mm. (0.031 ± 0.004 inch) in diameter (No. 68 drill).

(d) Machine screws and nuts. Clean, rust and oil-free, uncoated mild steel round or fillister head machine screws, size 6 or 8–32 UNC-Class 2A, five-eighths or three-fourths inch long (or equivalent metric sizes), and matching uncoated nuts.

(e) Supplies for polishing strips. Waterproof silicon carbide paper, grit No. 320A and grit 1200; lint-free polishing cloth.

(f) Distilled water as specified in S7.1.

(g) Ethanol as specified in S7.3.

(h) Isopropanol as specified in S7.7.

S6.6.4 Preparation.

(a) Corrosion test strips. Except for the tinned iron strips, abrade corrosion test strips on all surface areas with 320A silicon carbide paper wet with ethanol (isopropanol when testing DOT 5 SBBF fluids) until all surface scratches, cuts and pits visible to an observer having corrected visual acuity of 20/40 (Snellen ratio) at a distance of 300 mm (11.8 inches) are removed. Use a new piece of paper for each different type of metal. Except for the tinned iron strips, further abrade the test strips on all surface areas with 1200 silicon carbide paper wet with ethanol (isopropanol when testing DOT 5 SBBF fluids), again using a new piece of paper for each different type of metal. Handle the strips with forceps after polishing. Weigh and record the weight of each strip to the nearest 0.1 mg. Assemble the strips on a clean dry machine screw, with matching plain nut, in the order of tinned iron, steel, aluminum, cast iron, brass, and copper. Bend the strips, other than the cast iron, so that there is a separation of 3 ± 1/2 mm. (1/8 ± 1/64 inch) between adjacent strips for a distance of about 5 cm. (2 inches) from the free end of the strips. (See Figure 4.) Tighten the screw on each test strip assembly so that the strips are in electrolytic contact, and can be lifted by either of the outer strips (tinned iron or copper) without any of the strips moving relative to the others when held horizontally. Immerse the strip assemblies in 90 percent ethyl alcohol. Dry with dried filtered compressed air, then desiccate at least 1 hour before use.

(b) SBR WC cups. Measure the base diameters of the two standard SBR cups, using an optical comparator or micrometer, to the nearest 0.02 mm. (0.001 inch) along the centerline of the SAE and rubber-type identifications and at right angles to this centerline. Take the measurements at least 0.4 mm. (0.015 inch) above the bottom edge and parallel to the base of the cup. Discard any cup if the two measured diameters differ by more than 0.08 mm. (0.003 inch). Average the two readings on each cup. Determine the hardness of the cups according to S7.4.

S6.6.5 Procedure. Rinse the cups in ethanol (isopropanol when testing DOT 5 SBBF fluids) for not more than 30 seconds and wipe dry with a clean lint-free cloth. Place one cup with lip edge
facing up, in each jar. Insert a metal strip assembly inside each cup with the fastened end down and the free end extending upward. (See Figure 5.) When testing brake fluids, except DOT 5 SBBF, mix 760 ml. of brake fluid with 40 ml. of distilled water. When testing DOT 5 SBBF’s, humidify 800 ml. of brake fluid in accordance with S6.2, eliminating determination of the ERBP. Using this water-wet mixture, cover each strip assembly to a minimum depth of 10 mm. above the tops of the strips. Tighten the lids and place the jars for 120 ±2 hours in an oven maintained at 100 ±2 °C. (212 ±3.6 °F.). Allow the jars to cool at 23 ±5 °C. (73.4 ±9 °F.) for 60 to 90 minutes. Immediately remove the strips from the jars using forceps, agitating the strip assembly in the fluid to remove loose adhering sediment. Examine the test strips and jars for adhering crystalline deposits. Disassemble the metal strips, and remove adhering fluid by flushing with water; clean each strip by wiping with a clean cloth wetted with ethanol (isopropanol when testing DOT 5 fluids). Examine the strips for evidence of corrosion and pitting. Disregard staining or discoloration. Place the strips in a desiccator containing silica gel or other suitable desiccant, maintained at 23 ±5 °C. (73.4 ±9 °F.), for at least 1 hour. Weigh each strip to the nearest 0.1 mg. Determine the change in weight of each metal strip. Average the results for the two strips of each type of metal. Immediately following the cooling period, remove the cups from the jars with forceps. Remove loose adhering sediment by agitation of the cups in the mixture. Rinse the cups in ethanol (isopropanol when testing DOT 5 fluids) and air-dry. Examine the cups for evidence of sloughing, blisters, and other forms of disintegration. Measure the base diameter and hardness of each cup within 15 minutes after removal from the mixture. Examine the mixture for gelling. Agitate the mixture to suspend and uniformly disperse sediment. From each jar, transfer a 100 ml. portion of the mixture to an ASTM cone-shaped centrifuge tube. Determine the percent sediment after centrifuging as described in S7.5. Measure the pH value of the corrosion test fluid according to S6.4.6. Measure the pH value of the test mixture according to S6.4.6.

Figure 5—Corrosion Test Apparatus

S6.6.6 Calculation. (a) Measure the area of each type of test strip to the nearest square centimeter. Divide the average change in mass for each type by the area of that type.

(b) Note other data and evaluations indicating compliance with S5.1.6. In the event of a marginal pass on inspection by attributes, or of a failure in one of the duplicates, run another set of duplicate samples. Both repeat samples shall meet all requirements of S5.1.6.

S6.7 Fluidity and appearance at low temperatures. Determine the fluidity and appearance of a sample of brake fluid at each of two selected temperatures by the following procedure.

S6.7.1 Summary of procedure. Brake fluid is chilled to expected minimum exposure temperatures and observed for clarity, gellation, sediment, separation of components, excessive viscosity or thixotropy.

S6.7.2 Apparatus. (a) Oil sample bottle. Two clear flint glass 4-ounce bottles made especially for sampling oil and other liquids, with a capacity of approximately 125 ml., an outside diameter of 37 ±0.05 mm. and an overall height of 165 ±2.5 mm.

(b) Cold chamber. An air bath cold chamber capable of maintaining storage temperatures down to minus 55 °C. (minus 67 °F.) with an accuracy of ±2 °C. (3.6 °F.)
(c) Timing device. A timing device in accordance with S6.3.2(e).

S6.7.3 Procedure. (a) Place 100 ± 1 ml of brake fluid at room temperature in an oil sample bottle. Stopper the bottle with an unused cork and place in the cold chamber at the higher storage temperature specified in Table II (S6.1.7(c)). After 144 ± 4 hours remove the bottle from the chamber, quickly wipe it with a clean, lint-free cloth saturated with ethanol or acetone and examine the fluid for evidence of sludging, sedimentation, crystallization, or stratification. Invert the bottle and determine the number of seconds required for the air bubble to travel to the top of the fluid. Let sample warm to room temperature and examine.

(b) Repeat S6.7.3(a), substituting the lower cold chamber temperature specified in Table II, and a storage period of 6 hours ± 12 minutes.

NOTE: Test specimens from either storage temperature may be used for the other only after warming up to room temperature.

S6.8 [Reserved]

S6.9 Water tolerance. Evaluate the water tolerance characteristics of a brake fluid by running one test specimen according to the following procedure.

S6.9.1 Summary of the procedure.

Brake fluid, except DOT 5 SBBF, is diluted with 3.5 percent water (DOT 5 SBBF is humidified), then stored at minus 40 °C (minus 40 °F.) for 120 hours. The cold, water-wet fluid is first examined for clarity, stratification, and sedimentation, then placed in an oven at 60 °C (140 °F.) for 24 ± 2 hours. Remove the tube and immediately examine the contents for evidence of stratification. Determine the percent sediment by centrifuging as described in S7.5.

S6.10 Compatibility. The compatibility of a brake fluid with other brake fluids shall be evaluated by running one test sample according to the following procedure.

S6.10.1 Summary of the procedure.

Brake fluid is mixed with an equal volume of SAE RM–66–04 Compatibility Fluid, then tested in the same way as for water tolerance (S6.9) except that the bubble flow time is not measured. This test is an indication of the compatibility of the test fluid with other motor vehicle brake fluids at both high and low temperatures.

S6.10.2 Apparatus and materials.

(a) Centrifuge tube. See S7.5.1(a).

(b) Centrifuge. See S7.5.1(b).

(c) Cold Chamber. See S6.7.2(b).

(d) Oven. Gravity or forced convection oven.

(e) Timing device. See S6.3.2(e).

S6.9.3 Procedure.

(a) At low temperature. Humidify 100 ± 1 ml of DOT 5 SBBF brake fluid in accordance with S6.2 eliminating determination of the ERBP. When testing brake fluids except DOT 5 SBBF, mix 3.5 ± 0.1 ml of distilled water with 100 ± 1 ml of the brake fluid; pour into a centrifuge tube. Stopper the tube with a clean cork and place in the cold chamber maintained at minus 40 ± 2 °C. (minus 40 ± 3.6 °F.). After 120 hours ± 2 hours remove the tube, quickly wipe with clean lint-free cloth saturated with ethanol or acetone and examine the fluid for evidence of sludging, sedimentation, crystallization, or stratification. Invert the tube and determine the number of seconds required for the air bubble to travel to the top of the fluid. (The air bubble is considered to have reached the top of the fluid when the top of the bubble reaches the 2 ml. graduation of the centrifuge tube.) If the wet fluid has become cloudy, warm to 23 ± 5 °C (73.4 ± 9 °F.) and note appearance and fluidity.

(b) At 60 °C. (140 °F.). Place tube and brake fluid from S6.9.3(a) in an oven maintained at 60 ° ± 2 °C. (140 ± 3.6 °F.) for 24 ± 2 hours. Remove the tube and immediately examine the contents for evidence of stratification. Determine the percent sediment by centrifuging as described in S7.5.
§ 571.116 49 CFR Ch. V (10–1–16 Edition)

dry cork. Place tube in the cold chamber maintained at minus 40 ° ± 4 °C. (minus 40° ± 4 °F). After 24 ± 2 hours, remove tube, quickly wipe with a clean lint-free cloth saturated with ethanol (isopropanol when testing DOT 5 fluids) or acetone. Examine the test specimen for evidence of slugging, sedimentation, or crystallization. Test fluids, except DOT 5 SBBF, shall be examined for stratification.

S6.11 Resistance to oxidation. The stability of a brake fluid under oxidative conditions shall be evaluated by running duplicate samples according to the following procedure.

S6.11.1 Summary of procedure.

Brake fluids, except DOT 5 SBBF, are activated with a mixture of approximately 0.2 percent benzoyl peroxide and 5 percent water. DOT 5 SBBF is humidified in accordance with S6.2 eliminating determination of the ERBP, and then approximately 0.2 percent benzoyl peroxide is added. A corrosion test strip assembly consisting of cast iron and an aluminum strip separated by tinfoil squares at each end is then rested on a piece of SBR WC cup positioned so that the test strip is half immersed in the fluid and oven aged at 70 °C. (158 °F.) for 168 hours. At the end of this period, the metal strips are examined for pitting, etching, and loss of mass.

S6.11.2 Equipment.

(a) Balance. See S6.6.2(a).
(b) Desiccators. See S6.6.2(b).
(c) Oven. See S6.6.2(c).
(d) Three glass test tubes approximately 22 mm. outside diameter by 175 mm. in length.

S6.11.3 Reagents and materials.

(a) Benzoyl peroxide, reagent grade, 96 percent. (Benzoyl peroxide that is brownish, or dusty, or has less than 90 percent purity, must be discarded.) Reagent strength may be evaluated by ASTM E298–68 (incorporated by reference, see §571.5).

(b) Corrosion test strips. Two sets of aluminum and cast iron test strips according to S6.6.4(a) except for assembly. Weigh each strip to the nearest 0.1 mg. and assemble a strip of each metal on a machine screw, separating the strips at each end with a piece of tinfoil. Tighten the nut enough to hold both pieces of foil firmly in place.

(b) Test mixture. Place 30 ± 1 ml. of the brake fluid under test in a 22 by 175 mm. test tube. For all fluids except DOT 5 SBBF, add 0.060 ± 0.002 grams of benzoyl peroxide, and 1.50 ± 0.05 ml. of distilled water. For DOT 5 SBBF, use test fluid humidified in accordance with S6.2, and add only the benzoyl peroxide. Stopper the tube loosely with a clean dry cork, shake, and place in an oven for 2 hours at 70° ± 2 °C. (158° ± 3.6 °F.). Shake every 15 minutes to effect solution of the peroxide, but do not wet cork. Remove the tube from the oven and allow to cool to 23° ± 5 °C. (73.4° ± 9 °F.). Begin testing according to paragraph S6.11.5 not later than 24 hours after removal of tube from oven.

S6.11.5 Procedure. Place a one-eighth SBR cup section in the bottom of each tube. Add 10 ml. of prepared test mixture to each test tube. Place a metal strip assembly in each, the end of the strip without the screw resting on the rubber, and the solution covering about one-half the length of the strips. Stopper the tubes with clean dry corks and store upright for 70 ± 2 hours at 23° ± 5 °C. (73.4° ± 9 °F.). Loosen the corks and place the tubes for 188 ± 2 hours in an oven maintained at 70° ± 2 °C. (158° ± 3.6 °F.). Afterwards remove and disassemble strips. Examine the strips and note any gun deposits. Wipe the strips with a clean cloth wet with ethanol (isopropanol when testing DOT 5 fluids) and note any pitting, etching or
in an oven held at 70 °C (158 °F) for at least 1 hour. After cooling for 60 to 90 minutes at 23 °C (73.4 °F), remove cups, wash with ethanol (isopropanol when testing DOT 5 fluids) for not longer than 30 seconds, and quickly dry. Examine the cups for disintegration as evidenced by stickiness, blisters, or sloughing. Measure the base diameter and hardness of each cup within 15 minutes after removal from the fluid.

§571.116 Calculation. (a) Calculate the change in base diameter for each cup. If the two values, at each temperature, do not differ by more than 0.10 mm. (0.004 inch) average them to the nearest 0.02 mm. (0.001 inch). If the two values differ by more than 0.10 mm., repeat the test at the appropriate temperature and average the four values as the change in base diameter.

(b) Calculate the change in hardness for each cup. The average of the two values for each pair is the change in hardness.

(c) Note disintegration as evidenced by stickiness, blisters, or sloughing.

§571.13 Stroking properties. Evaluate the lubricating properties, component compatibility, resistance to leakage, and related qualities of a brake fluid by running one sample according to the following procedures.

§571.13.1 Summary of the procedure. Brake fluid is stroked under controlled conditions at an elevated temperature in a simulated motor vehicle hydraulic braking system consisting of three slave wheel cylinders and an actuating master cylinder connected by steel tubing. Referee standard parts are used. All parts are carefully cleaned, examined, and certain measurements made immediately prior to assembly for test. During the test, temperature, rate of pressure rise, maximum pressure, and rate of stroking are specified and controlled. The system is examined periodically during stroking to assure that excessive leakage of fluid is not occurring. Afterwards, the system is torn down. Metal parts and SBR WC cups are examined and remeasured. The brake fluid and any resultant sludge and debris are collected, examined, and tested.

§571.13.2 Apparatus and equipment.
Either the drum and shoe type of stroking apparatus (see Figure 1 of SAE Standard J1703b (1970) (incorporated by reference, see §571.5)), except using only three sets of drum and shoe assemblies, or the stroking fixture type apparatus as shown in Figure 2 of SAE Standard J1703 NOV83 (incorporated by reference, see §571.5) with the components arranged as shown in Figure 1 of SAE Standard J1703 NOV83. The following components are required.

(a) Brake assemblies. With the drum and shoe apparatus: three drum and shoe assembly units (SAE RM–29a) consisting of three forward brake shoes and three reverse brake shoes with linings and three front wheel brake drum assemblies with assembly component parts. With stroking fixture type apparatus: three fixture units including appropriate adapter mounting plates to hold brake wheel cylinder assemblies.

(b) Braking pressure actuation mechanism. An actuating mechanism for applying a force to the master cylinder pushrod without side thrust. The amount of force applied by the actuating mechanism shall be adjustable and capable of applying sufficient thrust to the master cylinder to create a pressure of at least 6895 kPa (1,000 p.s.i.) in the simulated brake system. A hydraulic gage or pressure recorder, having a range of at least 0 to 6895 kPa (0 to 1,000 p.s.i.), shall be installed between the master cylinder and the brake assemblies and shall be provided with a shutoff valve and with a bleeding valve for removing air from the connecting tubing. The actuating mechanism shall be designed to permit adjustable stroking rates of approximately 1,000 strokes per hour. Use a mechanical or electrical counter to record the total number of strokes.

(c) Heated air bath cabinet. An insulated cabinet or oven having sufficient capacity to house the three mounted brake assemblies or stroking fixture assemblies, master cylinder, and necessary connections. A thermostatically controlled heating system is required to maintain a temperature of 70° ± 5°C (158° ± 9°F) or 120° ± 5°C (248° ± 9°F). Heaters shall be shielded to prevent direct radiation to wheel or master cylinder.

(d) Master cylinder (MC) assembly (SAE RM–15a). One cast iron housing hydraulic brake system cylinder having a diameter of approximately 28 mm (1¼ inch) and fitted for a filler cap and standpipe (see §6.13.2(e)). The MC piston shall be made from SAE CA360 copperbase alloy (half hard). A new MC assembly is required for each test.

(e) Filler cap and standpipe. MC filler cap provided with a glass or uncoated steel standpipe. Standpipe must provide adequate volume for thermal expansion, yet permit measurement and adjustment of the fluid level in the system to ±3 ml. Cap and standpipe may be cleaned and reused.

(f) Wheel cylinder (WC) assemblies (SAE RM–14a). Three unused cast iron housing straight bore hydraulic brake WC assemblies having diameters of approximately 28 mm (1¼ inch) for each test. Pistons shall be made from unanodized SAE AA 2024 aluminum alloy.

(g) Micrometer. Same as §6.6.2(d).

§571.116 49 CFR Ch. V (10–1–16 Edition)

6.13.3 Materials.

(a) Standard SBR brake cups. Six standard SAE SBR wheel cylinder test cups, one primary MC test cup, and one secondary MC test cup, all as described in §7.6, for each test.

(b) Steel tubing. Double wall steel tubing meeting SAE Standard J527a (1967) (incorporated by reference, see §571.5). A complete replacement of tubing is essential when visual inspection indicates any corrosion or deposits on inner surface of tubing. Tubing from master cylinder to one wheel cylinder shall be replaced for each test (minimum length .9 m.) Uniformity in tubing size is required between master cylinder and wheel cylinder. The standard master cylinder has two outlets for tubing, both of which must be used.

S6.13.4 Preparation of test apparatus.

(a) Wheel cylinder assemblies. Use unused wheel cylinder assemblies. Disassemble cylinders and discard cups. Clean all metal parts with ethanol (isopropanol when testing DOT 5 fluids). Inspect the working surfaces of all metal parts for scoring, galling, or pitting and cylinder bore roughness, and discard all defective parts. Remove any stains on cylinder walls with crocus cloth and ethanol (isopropanol when testing DOT 5 fluids). If stains
cannot be removed, discard the cylinder. Measure the internal diameter of each cylinder at a location approximately 19 mm. (0.75 inch) from each end of the cylinder bore, taking measurements in line with the hydraulic inlet opening and at right angles to this centerline. Discard the cylinder if any of these four readings exceeds the maximum or minimum limits of 28.66 to 28.60 mm. (1.128 to 1.126 inch). Measure the outside diameter of each piston at two points approximately 90° apart. Discard any piston if either reading exceeds the maximum or minimum limits of 28.55 to 28.52 mm. (1.124 to 1.123 inch). Select parts to insure that the clearance between each piston and mating cylinder is within 0.08 to 0.13 mm. (0.003 to 0.005 inch). Use unused SBR cups. To remove dirt and debris, rinse the cups in 90 percent ethyl alcohol for not more than 30 seconds and wipe dry with a clean lint-free cloth. Discard any cups showing defects such as cuts, molding flaws, or blisters. Measure the lip and base diameters of all cups with an optical comparator or micrometer to the nearest 0.02 mm. (0.001 inch) along the centerline of the SAE and rubber-type identifications and at right angles to this centerline. Determine base diameter measurements at least 0.4 mm. (0.015 inch) above the bottom edge and parallel to the base of the cup. Discard any cup if the two measured lip or base diameters differ by more than 0.08 mm. (0.003 inch). Average the lip and base diameters of each cup. Determine the hardness of all cups according to S7.4. Dip the rubber and metal parts of wheel cylinders, except housing and rubber boots, in the brake fluid and install in accordance with manufacturer’s instructions. Manually stroke the cylinders to insure that they operate easily. Install the master cylinder in the simulated brake system.

(b) Master cylinder assembly. Use an unused master cylinder and unused standard SBR primary and secondary MC cups which have been inspected, measured and cleaned in the manner specified in S6.13.4(a), omitting hardness of the secondary MC cup. However, prior to determining the lip and base diameters of the secondary cup, dip the cup in test brake fluid, assemble on the MC piston, and maintain the assembly in a vertical position at 23° ± 5°C. (73.4° ± 9°F.) for at least 12 hours. Inspect the relief and supply ports of the master cylinder; discard the cylinder if ports have burrs or wire edges. Measure the internal diameter of the cylinder at two locations (approximately midway between the relief and supply ports and approximately 19 mm. (0.75 inch) beyond the relief port toward the bottom or discharge end of the bore), taking measurements at each location on the vertical and horizontal centerline of the bore. Discard the cylinder if any reading exceeds the maximum or minimum limits of 28.65 to 28.57 mm. (1.128 to 1.125 inch). Measure the outside diameter of each end of the master cylinder piston at two points approximately 90° apart. Discard the piston if any of these four readings exceed the maximum or minimum limits of 28.55 to 28.52 mm. (1.124 to 1.123 inch). Dip the rubber and metal parts of the master cylinder, except the housing and push rod-boot assembly, in the brake fluid and install in accordance with manufacturer’s instructions. Manually stroke the master cylinder to insure that it operates easily. Install the master cylinder in the simulated brake system.

(c) Assembly and adjustment of test apparatus.

(1) When using a shoe and drum type apparatus, adjust the brake shoe toe clearances to 1.0 ± 0.1 mm (0.040 ± 0.004 inch). Fill the system with brake fluid, bleeding all wheel cylinders and the pressure gage to remove entrapped air. Operate the actuator manually to apply a pressure greater than the required operating pressure and inspect the system for leaks. Adjust the actuator and/or pressure relief valve to obtain a pressure of 6895 kPa ± 345 kPa (1,000 ± 50 p.s.i.). A smooth pressure stroke pattern is required when using a shoe and drum type apparatus. The pressure is relatively low during the first part of the stroke and then builds up smoothly to the maximum stroking pressure at the end of the stroke, to permit the primary cup to pass the compensating hole at a relatively low pressure. Using stroking fixtures, adjust the actuator and/or pressure relief valve to obtain a pressure of 6895 kPa ± 345 kPa (1,000 ± 50 p.s.i.).
(2) Adjust the stroking rate to 1,000 ±100 strokes per hour. Record the fluid level in the master cylinder standpipe.

S6.13.5 Procedure. Operate the system for 16,000 ±1,000 cycles at 23° ± 5°C. (73.4° ± 9°F.). Repair any leakage, readjust the brake shoe clearances, and add fluid to the master cylinder standpipe to bring to the level originally recorded, if necessary. Start the test again and raise the temperature of the cabinet within 6 ± 2 hours to 120° ± 5°C. (248° ± 9°F.). During the test observe operation of wheel cylinders for improper functioning and record the amount of fluid required to replenish any loss, at intervals of 24,000 strokes. Stop the test at the end of 85,000 total recorded strokes. These totals shall include the number of strokes during operation at 23° ± 5°C. (73.4° ± 9°F.) and the number of strokes required to bring the system to the operating temperature. Allow equipment to cool to room temperature. Examine the wheel cylinders for leakage. Stroke the assembly an additional 100 strokes, examine wheel cylinders for leakage and record volume loss of fluid. Within 16 hours after stopping the test, remove the master and wheel cylinders from the system, re-rinsing and agitating such parts in the isopropanol (isopropanol when testing DOT 5 fluids) to determine abrasiveness and removability. Clean cylinder parts in ethanol (isopropanol when testing DOT 5 fluids) and dry. Measure and record diameters of pistons and cylinders according to S6.13.4(a) and (b). Repeat the test if mechanical failure occurs that may affect the evaluation of the brake fluid.

S6.13.6 Calculation. (a) Calculate the changes in diameters of cylinders and pistons (see S5.1.13(b)).

(b) Calculate the average decrease in hardness of the seven cups tested, as well as the individual values (see S5.1.13(c)).

(c) Calculate the increases in base diameters of the eight cups (see S5.1.13(e)).

(d) Calculate the lip diameter interference set for each of the eight cups by the following formula and average the eight values (see S5.1.13(f)).

\[\left(\frac{D_1 - D_2}{(D_3 - D_1)} \right) \times 100 = \text{percentage Lip Diameter Interference Set} \]

where:
- \(D_1 \) = Original lip diameter.
- \(D_2 \) = Final lip diameter.
- \(D_3 \) = Original cylinder bore diameter.

S6.14 Container information. Each container with information marked directly on the container surface or on a label (labels) affixed to the container pursuant to S5.2.2.2 or S5.2.2.3 is subjected to the following procedure:

(a) If the container has a label affixed to it, make a single vertical cut all the way through the label with the container in the vertical position.

(b) Immerse the container in the same brake fluid or hydraulic system mineral oil contained therein for 15 minutes at room temperature (23 ±5°C; 73.4 ± 9°F).
(c) Within 5 minutes after removing the container from the fluid or oil, remove excess liquid from the surface of the container by wiping with a clean dry cloth.

S7. Auxiliary test methods and reagent standards.

S7.1 Distilled water. Nonreferee reagent water as specified in ASTM D1193–70 (incorporated by reference, see §571.5) or water of equal purity.

S7.2 Water content of motor vehicle brake fluids. Use analytical methods based on ASTM D1123–59 (incorporated by reference, see §571.5) for determining the water content of brake fluids, or other methods of analysis yielding comparable results. To be acceptable for use, such other method must measure the weight of water added to samples of the SAE RM–66–04 (see Appendix A of SAE Standard J1703 NOV83 (incorporated by reference in §571.5)) and TEGME Compatibility Fluids (see Appendix B of SAE Standard J1703 JAN95 (incorporated by reference in §571.5)) within ±15 percent of the water added for additions up to 0.8 percent by weight, and within ±5 percent of the water added for additions greater than 0.8 percent by weight. The SAE RM–66–04 Compatibility Fluid used to prepare the samples must have an original ERBP of not less than 205 °C (401 °F) when tested in accordance with S6.1. The SAE TEGME fluid used to prepare the samples must have an original ERBP of not less than 240 °C (464 °F) when tested in accordance with S6.1.

S7.3 Ethanol. 95 percent (190 proof) ethyl alcohol, USP or ACS, or Formula 3-A Specially Denatured Alcohol of the same concentration (as specified at 27 CFR 21.35). For pretest washings of equipment, use approximately 90 percent ethyl alcohol, obtained by adding 5 parts of distilled water to 95 parts of ethanol.

S7.4 Measuring the hardness of SBR brake cups. Hardness measurements on SBR wheel cylinder cups and master cylinder primary cups shall be made by using the following apparatus and the following procedure.

S7.4.1 Apparatus.

(a) Anvil. A rubber anvil having a flat circular top 20 ±1 mm. (¾ ±⅛ inch) in diameter, a thickness of at least 9 mm, and a hardness within 5 IRHDs of the SBR test cup.

(b) Hardness tester. A hardness tester meeting the requirements for the standard instrument as described in ASTM D1415–68 (incorporated by reference, see §571.5) and graduated directly in IRHD units.

S7.4.2 Procedure. Make hardness measurements at 23±2 °C (73.4±4 °F.). Equilibrate the tester and anvils at this temperature prior to use. Center brake cups lip side down on an anvil of appropriate hardness. Following the manufacturer’s operating instructions for the hardness tester, make one measurement at each of four points 6 mm from the center of the cup and spaced 90° apart. Average the four values, and round off to the nearest IRHD.

S7.5 Sediment by centrifuging. The amount of sediment in the test fluid shall be determined by the following procedure.

S7.5.1 Apparatus.

(a) Centrifuge tube. Cone-shaped centrifuge tubes conforming to the dimensions given in Figure 6, and made of thoroughly annealed glass. The graduations shall be numbered as shown in Figure 6, and shall be clear and distinct. Scale-error tolerances and smallest graduations between various calibration marks are given in Table V and apply to calibrations made with air-free water at 20 °C (68 °F.).
§571.116

Table V—Calibration Tolerances for 8-Inch Centrifuge Tube

<table>
<thead>
<tr>
<th>Range, ml</th>
<th>Subdivision, ml</th>
<th>Volume tolerance, ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 0.1</td>
<td>0.05</td>
<td>±0.02</td>
</tr>
<tr>
<td>Above 0.1 to 0.3</td>
<td>0.05</td>
<td>±0.03</td>
</tr>
<tr>
<td>Above 0.3 to 0.5</td>
<td>0.05</td>
<td>±0.05</td>
</tr>
<tr>
<td>Above 0.5 to 1</td>
<td>0.10</td>
<td>±0.05</td>
</tr>
<tr>
<td>Above 1 to 2</td>
<td>0.10</td>
<td>±0.10</td>
</tr>
<tr>
<td>Above 2 to 3</td>
<td>0.20</td>
<td>±0.10</td>
</tr>
<tr>
<td>Above 3 to 5</td>
<td>0.5</td>
<td>±0.20</td>
</tr>
<tr>
<td>Above 5 to 10</td>
<td>1.0</td>
<td>±0.50</td>
</tr>
<tr>
<td>Above 10 to 25</td>
<td>5.0</td>
<td>±1.00</td>
</tr>
<tr>
<td>Above 25 to 100</td>
<td>25.0</td>
<td>±2.00</td>
</tr>
</tbody>
</table>

(b) Centrifuge. A centrifuge capable of whirling two or more filled centrifuge tubes at a speed which can be controlled to give a relative centrifugal force (r.c.f.) between 600 and 700 at the tip of the tubes. The revolving head, trunnion rings, and trunnion cups, including the rubber cushion, shall withstand the maximum centrifugal force capable of being delivered by the power source. The trunnion cups and cushions shall firmly support the tubes when the centrifuge is in motion. Calculate the speed of the rotating head using this equation:

\[r.p.m. = 265(\sqrt{25.4 \times r.c.f./d}) \]

Where:
- \(r.c.f. \) = Relative centrifugal force, and
- \(d \) = Diameter of swing, in millimeters, measured between tips of opposing tubes when in rotating position.

Table VI shows the relationship between diameter, swing, relative centrifugal force (r.c.f.), and revolutions per minute.

Table VI—Rotation Speeds for Centrifuges of Various Diameters

<table>
<thead>
<tr>
<th>Diameter of swing in millimeters</th>
<th>r.p.m. at 600 r.c.f</th>
<th>r.p.m. at 700 r.c.f</th>
</tr>
</thead>
<tbody>
<tr>
<td>463</td>
<td>1490</td>
<td>1610</td>
</tr>
<tr>
<td>508</td>
<td>1450</td>
<td>1570</td>
</tr>
<tr>
<td>533</td>
<td>1420</td>
<td>1500</td>
</tr>
<tr>
<td>559</td>
<td>1390</td>
<td>1500</td>
</tr>
</tbody>
</table>

*Measured in millimeters between tips of opposite tubes when in rotating position.

S7.5.2 Procedure. Balance the corked centrifuge tubes with their respective trunnion cups in pairs by weight on a scale, according to the centrifuge manufacturer’s instructions, and place them on opposite sides of the centrifuge head. Use a dummy assembly when one sample is tested. Then whirl them for 10 minutes, at a rate sufficient to produce a r.c.f. between 600 and 700 at the tips of the whirling tubes. Repeat until the volume of sediment in each tube remains constant for three consecutive readings.

S7.5.3 Calculation. Read the volume of the solid sediment at the bottom of the centrifuge tube and report the percent sediment by volume. Where replicate determinations are specified, report the average value.

S7.6 Standard styrene-butadiene rubber (SBR) brake cups. SBR brake cups for testing motor vehicle brake fluids shall be manufactured using the following formulation:

Formulation of Rubber Compound

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Parts by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBR type 1503</td>
<td>100</td>
</tr>
<tr>
<td>Oil furnace black (NBS 378)</td>
<td>40</td>
</tr>
<tr>
<td>Zinc oxide (NBS 370)</td>
<td>5</td>
</tr>
<tr>
<td>Sulfur (NBS 371)</td>
<td>0.25</td>
</tr>
<tr>
<td>Stearic Acid (NBS 372)</td>
<td>1</td>
</tr>
<tr>
<td>n-tertiary butyl-2-benzothiazole sulfenamide (NBS 364)</td>
<td>1</td>
</tr>
<tr>
<td>Dicumyl peroxide (40 percent on precipitated CaCO₃)</td>
<td>1.5</td>
</tr>
<tr>
<td>Symmetrical dibetanaphthyl-p-phenyleneediamine</td>
<td>4.5</td>
</tr>
</tbody>
</table>
FORMULATION OF RUBBER COMPOUND—Continued

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Parts by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>153.25</td>
</tr>
</tbody>
</table>

a Polypropylene 1503 has been found suitable.

b Use only within 90 days of manufacture and store at temperature below 27 °C (80 °F).

NOTE: The ingredients labeled (NBS) must have properties identical with those supplied by the National Bureau of Standards.

Compounding, vulcanization, physical properties, size of the finished cups, and other details shall be as specified in appendix B of SAE Standard J1703b (1970) (incorporated by reference, see §571.5). The cups shall be used in testing brake fluids either within 6 months from date of manufacture when stored at room temperature below 27 °C (80 °F.) or within 36 months from date of manufacture when stored at temperatures below minus 15 °C (+ 5 °F.). After removal of cups from refrigeration they shall be conditioned base down on a flat surface for at least 12 hours at room temperature in order to allow cups to reach their true configuration before measurement.

S7.7 Isopropanol. ACS or reagent grade.

[36 FR 22902, Dec. 2, 1971]

EDITORIAL NOTE: For Federal Register citations affecting §571.116, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.

§571.117 Standard No. 117; Retreaded pneumatic tires.

S1. Scope. This standard specifies performance, labeling, and certification requirements for retreaded pneumatic passenger car tires.

S2. Purpose. The purpose of this standard is to require retreaded pneumatic passenger car tires to meet safety criteria similar to those for new pneumatic passenger car tires.

S3. Application. This standard applies to retreaded pneumatic tires for use on passenger cars manufactured after 1948.

S4. Definitions.

S4.1 Casing means a used tire to which additional tread may be attached for the purpose of retreading.

Retreaded means manufactured by a process in which a tread is attached to a casing.

S4.2 All terms defined in §§571.109 and 571.110 are used as defined therein.

S5. Requirements.

S5.1 Retreaded tires.

S5.1.1 Except as specified in S5.1.3, each retreaded tire, when mounted on a test rim of the width specified for the tire’s size designation in appendix A of §571.109 shall comply with the following requirements of §571.109:

(a) S4.1 (Size and construction).

(b) S4.2.1 (General).

(c) S4.2.2.3 (Tubeless tire resistance to bead unseating).

(d) S4.2.2.4 (Tire strength).

S5.1.2 Except as specified in S5.1.3, each retreaded tire, when mounted on a test rim of the width specified for the tire’s size designation in appendix A of §571.109, shall comply with the requirements of S4.2.2.2 of §571.109, except that the tire’s section width shall not be more than 110 percent of the section width specified, and the tire’s size factor shall be at least 97 percent of the size factor specified, in appendix A of §571.109 for the tire’s size designation.

S5.1.3 Each retreaded tire shall be capable of meeting the requirements of S5.1.1 and S5.1.2 when mounted on any rim in accordance with those sections.

S5.1.4 No retreaded tire shall have a size designation, recommended maximum load rating, or maximum permissible inflation pressure that is greater than that originally specified on the casing pursuant to S4.3 of §571.109, or specified for the casing in Table I.

S5.2 Casings.

S5.2.1 No retreaded tire shall be manufactured with a casing—

(a) On which bead wire or cord fabric is exposed before processing.

(b) On which any cord fabric is exposed during processing, except that cord fabric that is located at a splice, i.e., where two or more segments of the same ply overlap, or cord fabric that is part of the belt material, may be exposed but shall not be penetrated or removed to any extent whatsoever.

S5.2.2 No retreaded tire shall be manufactured with a casing—

(a) From which a belt or ply, or part thereof, is removed during processing; or
§ 571.118

(b) On which a belt or ply, or part thereof, is added or replaced during processing.

S5.2.3 Each retreaded tire shall be manufactured with a casing that bears, permanently molded at the time of its original manufacture into or onto the tire sidewall, each of the following:
 (a) The symbol DOT;
 (b) The size of the tire; and
 (c) The actual number of plies or ply rating.

S5.2.4 [Reserved]

S6. Certification and labeling.

S6.1 Each manufacturer of a retreaded tire shall certify that its product complies with this standard pursuant to Section 30115 of Title 49, United States Code, by labeling the tire with the symbol DOT in the location specified in section 574.5 of this chapter.

S6.2 [Reserved]

S6.3. Labeling. Each retreaded tire shall comply, according to the phase-in schedule specified in S7 of this standard, with the requirements of S5.5 and S5.5.1 of §571.139.

S7. Phase-In Schedule for labeling

S7.1. Tires retreaded on or after September 1, 2005 and before September 1, 2006. For tires manufactured on or after September 1, 2005 and before September 1, 2006, the number of tires complying with S6.3 of this standard must be equal to not less than 40% of the retreader's production during that period.

S7.2. Tires retreaded on or after September 1, 2006 and before September 1, 2007. For tires manufactured on or after September 1, 2006 and before September 1, 2007, the number of tires complying with S6.3 of this standard must be equal to not less than 70% of the retreader's production during that period.

S7.3. Tires retreaded on or after September 1, 2007. Each tire must comply with S6.3 of this standard.

§ 571.118 Standard No. 118; Power-operated window, partition, and roof panel systems.

S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death or injury from their accidental operation.

S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, and trucks with a gross vehicle weight rating of 4,536 kilograms or less. This standard's inadvertent actuation performance requirements of S6(a) need not be met for vehicles manufactured before October 1, 2008. The standard's pull-to-close switch operability requirements of S6(c) need not be met for vehicles manufactured before October 1, 2010.

S3. Definitions.

Infrared reflectance means the ratio of the intensity of infrared light reflected and scattered by a flat sample of the test rod material to the intensity of infrared light reflected and scattered by a mirror that reflects 99.99 percent of the infrared radiation incident on its surface as measured by the apparatus shown in Figure 2.

Power operated roof panel systems mean moveable panels in the vehicle roof which close by vehicle supplied power either by a sliding or hinged motion, and do not include convertible top systems.

S4. Operating requirements. Except as provided in S5, power operated window, partition, or roof panel systems may be closed only in the following circumstances:
 (a) When the key that controls activation of the vehicle's engine is in the "ON", "START", or "ACCESSORY" position;
 (b) By muscular force unassisted by vehicle supplied power;
 (c) Upon continuous activation by a locking system on the exterior of the vehicle;
 (d) Upon continuous activation of a remote actuation device, provided that the remote actuation device shall be incapable of closing the power window, partition or roof panel from a distance of more than 6 meters from the vehicle;
(e) During the interval between the time the locking device which controls the activation of the vehicle’s engine is turned off and the opening of either of a two-door vehicle’s doors or, in the case of a vehicle with more than two doors, the opening of either of its front doors;

(f) If the window, partition, or roof panel is in a static position before starting to close and in that position creates an opening so small that a 4 mm diameter semi-rigid cylindrical rod cannot be placed through the opening at any location around its edge in the manner described in §5(b); or

(g) Upon continuous activation of a remote actuation device, provided that the remote actuation device shall be incapable of closing the power window, partition or roof panel if the device and the vehicle are separated by an opaque surface and provided that the remote actuation device shall be incapable of closing the power window, partition or roof panel from a distance of more than 11 meters from the vehicle.

S5. Automatic reversal systems. A power-operated window, partition, or roof panel system that is capable of closing or of being closed under any circumstances other than those specified in §4 shall meet the requirements of §5.1, §5.2, and, if applicable, §5.3.

S5.1. While closing, the power-operated window, partition, or roof panel shall stop and reverse direction either before contacting a test rod with properties described in §8.2 or §8.3, or before exerting a squeezing force of 100 newtons (N) or more on a semi-rigid cylindrical test rod with the properties described in §8.1, when such test rod is placed through the window, partition, or roof panel opening at any location in the manner described in the applicable test under §7.

S5.2. Upon reversal, the power-operated window, partition, or roof panel system must open to one of the following positions, at the manufacturer’s option:

(a) A position that is at least as open as the position at the time closing was initiated;

(b) A position that is not less than 125 millimeters (mm) more open than the position at the time the window reversed direction; or

(c) A position that permits a semi-rigid cylindrical rod that is 200 mm in diameter to be placed through the opening at the same location as the rod described in §7.1 or §7.2(b).

S5.3. If a vehicle uses proximity detection by infrared reflection to stop and reverse a power-operated window, partition, or roof panel, the infrared source shall project infrared light at a wavelength of not less than 850 nm and not more than 1050 nm. The system shall meet the requirements in §5.1 and §5.2 in all ambient light conditions from total darkness to 64,500 lux (6,000 foot candles) incandescent light intensity.

S6. Actuation Devices. Except as provided in paragraph S6(b), actuation devices in the occupant compartments of vehicles used to close power-operated windows, partitions, and roof panels must meet the following requirements:

(a) An actuation device must not cause a window, partition, or roof panel to begin to close from any open position when tested as follows:

(1) Using a stainless steel sphere having a surface finish between 8 and 4 micro inches and a radius of 20 mm ± 0.2 mm, place the surface of the sphere against any portion of the actuation device.

(2) Apply a force not to exceed 135 Newtons (30 pounds) through the geometric center of the sphere. This force may be applied at any angle with respect to the actuation device.

(3) For actuation devices that cannot be contacted by the sphere specified in S6(a)(1) prior to the application of force, apply a force up to the level specified in S6(a)(2) at any angle in an attempt to make contact with the actuation device. The sphere is directionally applied in such a manner that, if unimpeded, it would make contact with the actuation device.

(b) The requirement in S6(a) does not apply to either—

(1) actuation devices that are mounted in a vehicle’s roof, headliner, or overhead console that can close power-operated windows, partitions, or roof panels only by continuous rather than momentary switch actuation, or

(2) actuation devices for closing power-operated windows, partitions, or
roof panels which comply with paragraph S5.

(c) Any actuation device for closing a power-operated window must operate by pulling away from the surface in the vehicle on which the device is mounted. An actuation device for closing a power-operated window must operate only when pulled vertically up (if mounted on the top of a horizontal surface), or out (if mounted on a vertical surface), or down (if mounted on the underside of an overhead surface), or in a direction perpendicular to the surrounding surface if mounted in a sloped orientation, in order to cause the window to move in the closing direction.

S7. Test procedures.

S7.1. Test procedure for testing power-operated window, partition, or roof panel systems designed to detect obstructions by physical contact or by light beam interruption: Place the test rod of the type specified in S8.1 or S8.2, as appropriate, through the window, partition, or roof panel opening from the inside of the vehicle such that the cylindrical surface of the rod contacts any part of the structure with which the window, partition, or roof panel mates. Typical placements of test rods are illustrated in Figure 1. Attempt to close the power window, partition, or roof panel by operating the actuation device provided in the vehicle for that purpose.

S7.2. Test procedure for testing power-operated window, partition, or roof panel systems designed to detect the proximity of obstructions using infrared reflection: (a) Each test rod is of cylindrical shape with any diameter in the range from 4 mm to 200 mm and is of sufficient length that it can be hand-held during the test specified in S7 with only the test rod making any contact with any part of the window, partition, or roof panel or mating surfaces of the window, partition, or roof panel.

(b) Each test rod has a force-deflection ratio of not less than 65 N/mm for rods 25 mm or smaller in diameter, and not less than 20 N/mm for rods larger than 25 mm in diameter.

S8. Test rods.

S8.1. Rods for testing systems designed to detect obstructions by physical contact: (a) Each test rod is of cylindrical shape with any diameter in the range from 4 mm to 200 mm and is of sufficient length that it can be hand-held during the test specified in S7 with only the test rod making any contact with any part of the window, partition, or roof panel or mating surfaces of the window, partition, or roof panel.

(b) Each test rod has a force-deflection ratio of not less than 65 N/mm for rods 25 mm or smaller in diameter, and not less than 20 N/mm for rods larger than 25 mm in diameter.

S8.2. Rods for testing systems designed to detect obstructions by light beam interruption: Each test rod has the shape and dimensions specified in S8.1 and is, in addition, opaque to infrared, visible, and ultraviolet light.

S8.3. Rods for testing systems designed to detect the proximity of obstructions using infrared reflection: (a) Each rod is constructed so that its surface has an infrared reflectance of not more than 1.0 percent when measured by the apparatus in Figure 2, in accordance with the procedure in S9.

(b) Each rod has the shape and dimensions specified in Figure 3.

(a) The infrared reflectance of the rod surface material is measured using a flat sample and an infrared light source and sensor operating at a wavelength of 950 ±100 nm.
(b) The intensity of incident infrared light is determined using a reference mirror of nominally 100 percent reflectance mounted in place of the sample in the test apparatus in Figure 2.

(c) Infrared reflectance measurements of each sample of test rod surface material and of the reference mirror are corrected to remove the contribution of infrared light reflected and scattered by the sample holder and other parts of the apparatus before computation of the infrared reflectance ratio.

Figure 1 - Typical Cylindrical Test Rods Protruding through Sunroof and Window Daylight Openings
Figure 2
Reflectance Test Apparatus

Sample or Mirror

Sample Holder

150 mm. +/- 50 mm.

Infrared Source

\[\theta_i = 16 \pm 2 \text{ deg.} \]

Infrared Sensor

\[\theta_r = \theta_i \]

minimum of 300mm*

40mm

1% reflectance

*Excluding end portion used to hold and position rod during test

Figure 3
Cylindrical Rod
for Testing Non-Contact Infrared Reflection Systems
§ 571.119 Standard No. 119; New pneumatic tires for motor vehicles with a GVWR of more than 4,536 kilograms (10,000 pounds) and motorcycles.

S1. Scope. This standard establishes performance and marking requirements for tires for use on motor vehicles with a GVWR of more than 10,000 pounds and motorcycles.

S2. Purpose. The purpose of this standard is to provide safe operational performance levels for tires used on motor vehicles with a GVWR of more than 10,000 pounds, trailers, and motorcycles, and to place sufficient information on the tires to permit their proper selection and use.

S3. Application. This standard applies to:

(a) New pneumatic tires for use on motor vehicles with a GVWR of more than 4,536 kilograms (10,000 pounds) manufactured after 1948;

(b) New pneumatic light truck tires with a tread depth of 1/8 inch or greater, for use on motor vehicles with a GVWR of 4,536 kilograms (10,000 pounds) or less manufactured after 1948;

(c) Tires for use on special-use trailers (ST, F1 and 8–12 rim or lower diameter code); and

(d) Tires for use on motorcycles manufactured after 1948.

S4. Definitions. All terms defined in the Act and the rules and standards issued under its authority are used as defined therein.

Light truck tire means a tire designated by its manufacturer as primarily intended for use on lightweight trucks or multipurpose passenger vehicles.

Model rim assembly means a test device that (a) includes a rim which conforms to the published dimensions of a commercially available rim, (b) includes an air valve assembly when used for testing tubeless tires or an inner tube and flap (as required) when used for testing tube-type tires, and (c) undergoes no permanent rim deformation and allows no loss of air through the portion that it comprises of the tire-rim pressure chamber when a tire is properly mounted on the assembly and subjected to the requirements of this standard.

S5. Tire and rim matching information.

S5.1 Each manufacturer of tires shall ensure that a listing of the rims that may be used with each tire that he produces is provided to the public. For purposes of this section each rim listing shall include dimensional specifications and a diagram of the rim. However a listing compiled in accordance with paragraph (a) of this section need not include dimensional specifications or a diagram of a rim if the rim’s dimensional specifications and diagram are contained in each listing published in accordance with paragraph (b) of this standard. The listing shall be in one of the following forms:

(a) Listed by manufacturer name or brand name in a document furnished to dealers of the manufacturer’s tires, to any person upon request, and in duplicate to: Docket Section, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590; or

(b) Contained in publications, current at the date of manufacture of the tire or any later date, of at least one of the following organizations:

The Tire and Rim Association
The European Tyre and Rim Technical Organisation
Japan Automobile Tire Manufacturers’ Association, Inc.
Deutsche Industrie Norm
British Standards Institution
Scandinavian Tire and Rim Organization
The Tyre and Rim Association of Australia

S5.2 Information contained in a publication specified in S5.1(b) which lists general categories of tires and rims by size designation, type of construction, and/or intended use, shall be considered to be manufacturer’s information pursuant to S5.1 for the listed tires, unless the publication itself or specific information provided according to S5.1(a) indicates otherwise.

S6. Requirements. Each tire shall be capable of meeting any of the applicable requirements set forth below, when mounted on a model rim assembly corresponding to any rim designated by
§ 571.119 49 CFR Ch. V (10–1–16 Edition)

the tire manufacturer for use with the tire in accordance with §55. However, a particular tire need not meet further requirements after having been subjected to and met the endurance test (§6.1), strength test (§6.2), or high speed performance test (§6.3).

§6.1 Endurance.
S6.1.1 Prior to testing in accordance with the procedures of S7.2, a tire shall exhibit no visual evidence of tread, sidewall, ply, cord, innerliner, or bead separation, chunking, broken cords, cracking, or open splices.

S6.1.2 When tested in accordance with the procedures of S7.2:
(a) There shall be no visual evidence of tread, sidewall, ply, cord, innerliner, or bead separation, chunking, broken cords, cracking, or open splices.
(b) The tire pressure at the end of the test shall be not less than the initial pressure specified in S7.2(a).

§6.2 Strength. When tested in accordance with the procedures of S7.3 a tire's average breaking energy value shall be not less than the value specified in Table II for that tire's size and load range.

§6.3 High speed performance. When tested in accordance with the procedures of S7.3 a tire shall meet the requirements set forth in S6.1.1 and S6.1.2(a) and (b). However, this requirement applies only to motorcycle tires and to non-speed-restricted tires of nominal rim diameter code 14.5 or less marked load range A, B, C, or D.

§6.4 Treadwear indicators. Except as specified in this paragraph, each tire shall have at least six treadwear indicators spaced approximately equally around the circumference of the tire that enable a person inspecting the tire to determine visually whether the tire has worn to a tread depth of 1.6 mm (one-sixteenth of an inch). Tires with a rim diameter code of 12 or smaller shall have at least three such indicators. Motorcycle tires shall have at least three such indicators which permit visual determination that the tire has worn to a tread depth of 0.8 mm (one-thirty-second of an inch).

§6.5 Tire markings. Except as specified in this paragraph, each tire shall be marked on each sidewall with the information specified in paragraphs (a) through (j) of this section. The markings shall be placed between the maximum section width (exclusive of sidewall decorations or curb ribs) and the bead on at least one sidewall, unless the maximum section width of the tire is located in an area which is not more than one-fourth of the distance from the bead to the shoulder of the tire. If the maximum section width falls within that area, the markings shall appear between the bead and a point one-half the distance from the bead to the shoulder of the tire, on at least one sidewall. The markings shall be in letters and numerals not less than 2 mm (0.078 inch) high and raised above or sunk below the tire surface not less than 0.4 mm (0.015 inch), except that the marking depth shall be not less than 0.25mm (0.010 inch) in the case of motorcycle tires. The tire identification and the DOT symbol labeling shall comply with part 574 of this chapter. Markings may appear on only one sidewall and the entire sidewall area may be used in the case of motorcycle tires and recreational, boat, baggage, and special trailer tires.

(a) The symbol DOT, which shall constitute a certification that the tire conforms to applicable Federal motor vehicle safety standards. This symbol may be marked on only one sidewall.
(b) The tire identification number required by part 574 of this chapter. This number may be marked on only one sidewall.
(c) The tire size designation as listed in the documents and publications designated in S5.1.
(d) The maximum load rating and corresponding inflation pressure of the tire, shown as follows:

(Mark on tires rated for single and dual load): Max load single ___ kg (___ lb) at ___ kPa (___ psi) cold. Max load dual ___ kg (___ lb) at ___ kPa (___ psi) cold.
(Mark on tires rated only for single load): Max load ___ kg (___ lb) at ___ kPa (___ psi) cold.

(e) The speed restriction of the tire, if 90 km/h (55 mph) or less, shown as follows:
Max speed ___ km/h (___ mph).
(f) The actual number of plies and the composition of the ply cord material in the sidewall and, if different, in the tread area;
(g) The words “tubeless” or “tube type” as applicable.

(h) The word “regroovable” if the tire is designed for regrooving.

(i) The word “radial” if a radial tire.

(j) The letter designating the tire load range.

§571.119
Maximum load rating. If the maximum load rating for a particular tire size is shown in one or more of the publications described in §5.1(b), each tire of that size designation shall have a maximum load rating that is not less than the published maximum load rating, or if there are differing published ratings for the same tire size designation, not less than the lowest published maximum load rating for the size designation.

S7. Test procedures.
S7.1 General conditions.

S7.1.1 The tests are performed using an appropriate new tube, tube valve and flap assembly (as required) that allows no loss of air for testing of tube-type tires under S7.2, S7.3, and S7.4, and tubeless tires under S7.3.

S7.1.2 The tire must be capable of meeting the requirements of S7.2 and S7.4 when conditioned to a temperature of 35 °C (95 °F) for 3 hours before the test is conducted, and with an ambient temperature maintained at 35 °C (95 °F) during all phases of testing. The tire must be capable of meeting the requirements of S7.3 when conditioned at a temperature of 21 °C (70 °F) for 3 hours before the test is conducted.

S7.2 Endurance. (a) Mount the tire on a model rim assembly and inflate it to the inflation pressure corresponding to the maximum load rating marked on the tire. Use a single maximum load value when the tire is marked with both single and dual maximum load.

(b) After conditioning the tire-rim assembly in accordance with S7.1.2, adjust the tire pressure to that specified in (a) immediately before mounting the tire rim assembly.

(c) Mount the tire-rim assembly on an axle and press it against a flat-faced steel test wheel that is 1708 mm (67.23 inches) in diameter and at least as wide as the tread of the tire.

(d) Apply the test load and rotate the test wheel as indicated in Table III for the type of tire tested conducting each successive phase of the test without interruption.

(e) Immediately after running the tire the required time, measure the tire inflation pressure. Remove the tire from the model rim assembly, and inspect the tire.

S7.3 Strength. (a) Mount the tire on a model rim assembly and inflate it to the pressure corresponding to the maximum load, or maximum dual load where there is both a single and dual load marked on the tire. If the tire is tubeless, a tube may be inserted to prevent loss of air during the test in the event of puncture.

(b) After conditioning the tire-rim assembly in accordance with S7.1.2, adjust the tire pressure to that specified in (a).

(c) Force a cylindrical steel plunger, with a hemispherical end and of the diameter specified in Table I for the tire size, perpendicularly into a raised tread element as near as possible to the centerline of the tread, at a rate of 50 mm (2 inches) per minute, until the tire breaks or the plunger is stopped by the rim.

(d) Record the force and the distance of penetration just before the tire breaks, or if it fails to break, just before the plunger is stopped by the rim.

(e) Repeat the plunger application at 72° intervals around the circumference of the tire, until five measurements are made. However, in the case of tires of 12 inch rim diameter code or smaller, repeat the plunger application at 120° intervals around the circumference of the tire, until three measurements are made.

(f) Compute the breaking energy for each test point by one of the two following formulas:

\[W = \frac{F \times P}{2} \times 10^{-3} \] (joules)

Where:
W = Breaking energy (in joules) (kJ)
F = Force in newtons (N) and
P = Penetration in millimeters (mm), or;

\[W = (FP/2) \]

Where:
W = Breaking energy in inch-pounds,
F = Force in pounds,
P = Penetration in inches.

(g) Determine the average breaking energy value for the tire by computing.
§ 571.119 49 CFR Ch. V (10–1–16 Edition)

the average of the values obtained in accordance with paragraph (f).

S7.4 High speed performance. (a) Perform steps (a) through (c) of S7.2.

(b) Apply a force of 88 percent of the maximum load rating marked on the tire (use single maximum load value when the tire is marked with both single and dual maximum loads), and rotate the test wheel at 250 rpm for 2 hours.

(c) Remove the load, allow the tire to cool to 35 °C (95 °F), and then adjust the pressure to that marked on the tire for single tire use.

(d) Reapply the same load, and without interruption or readjustment of inflation pressure, rotate the test wheel at 375 rpm for 30 minutes, then at 400 rpm for 30 minutes, and then at 425 rpm for 30 minutes.

(e) Immediately after running the tire the required time, measure the tire inflation pressure. Remove the tire from the model rim assembly, and inspect the tire.

TABLE I—STRENGTH TEST PLUNGER DIAMETER

<table>
<thead>
<tr>
<th>Tire type</th>
<th>Plunger diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light truck</td>
<td>19.05 mm (3/4 in)</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>7.94 mm (5/16 in)</td>
</tr>
<tr>
<td>≤ 12 rim diameter code (except motorcycle)</td>
<td>19.05 mm (3/4 in)</td>
</tr>
<tr>
<td>Tubeless:</td>
<td></td>
</tr>
<tr>
<td>≤ 17.5 rim diameter code</td>
<td>19.05 mm (3/4 in)</td>
</tr>
<tr>
<td>> 17.5 rim diameter code, load range F or less</td>
<td>31.75 mm (1 1/4 in)</td>
</tr>
<tr>
<td>> 17.5 rim diameter code, load range over F</td>
<td>38.10 mm (1 1/2 in)</td>
</tr>
<tr>
<td>Tube-type:</td>
<td></td>
</tr>
<tr>
<td>Load range F or less</td>
<td>31.75 mm (1 1/4 in)</td>
</tr>
<tr>
<td>Load range over F</td>
<td>38.10 mm (1 1/2 in)</td>
</tr>
</tbody>
</table>
TABLE II—MINIMUM STATIC BREAKING ENERGY

<table>
<thead>
<tr>
<th>Tire characteristic</th>
<th>Motorcycle</th>
<th>All 12 rim diameter code or smaller except motorcycle</th>
<th>Light truck and 17.5 rim diameter code or smaller Tubeless</th>
<th>Tires other than Light Truck, Motorcycle, 12 rim diameter code or smaller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plunger diameter (mm and inches)</td>
<td>7.94 mm 5/16"</td>
<td>19.05 mm 5/8"</td>
<td>19.05 mm 3/4"</td>
<td>38.10 mm 1 1/2"</td>
</tr>
<tr>
<td>Breaking Energy</td>
<td>J In-lbs</td>
<td>J In-lbs</td>
<td>J In-lbs</td>
<td>J In-lbs</td>
</tr>
<tr>
<td>Load Range:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>16</td>
<td>150</td>
<td>67</td>
<td>600</td>
</tr>
<tr>
<td>B</td>
<td>33</td>
<td>300</td>
<td>135</td>
<td>1,200</td>
</tr>
<tr>
<td>C</td>
<td>45</td>
<td>400</td>
<td>203</td>
<td>1,800</td>
</tr>
<tr>
<td>D</td>
<td>65</td>
<td>500</td>
<td>271</td>
<td>2,400</td>
</tr>
<tr>
<td>E</td>
<td>85</td>
<td>600</td>
<td>338</td>
<td>3,000</td>
</tr>
<tr>
<td>F</td>
<td>105</td>
<td>700</td>
<td>406</td>
<td>3,600</td>
</tr>
<tr>
<td>G</td>
<td>125</td>
<td>800</td>
<td>474</td>
<td>3,800</td>
</tr>
<tr>
<td>H</td>
<td>145</td>
<td>900</td>
<td>542</td>
<td>4,000</td>
</tr>
<tr>
<td>J</td>
<td>165</td>
<td>1,000</td>
<td>611</td>
<td>4,200</td>
</tr>
<tr>
<td>L</td>
<td>185</td>
<td>1,100</td>
<td>680</td>
<td>4,400</td>
</tr>
<tr>
<td>M</td>
<td>205</td>
<td>1,200</td>
<td>749</td>
<td>4,600</td>
</tr>
<tr>
<td>N</td>
<td>225</td>
<td>1,300</td>
<td>818</td>
<td>4,800</td>
</tr>
</tbody>
</table>

Note: The table above provides the minimum static breaking energy for different tire characteristics and load ranges. The values are given in Joules (J) and Inch-Pounds (inch-lbs).
TABLE III—ENDURANCE TEST SCHEDULE

<table>
<thead>
<tr>
<th>Description</th>
<th>Load range</th>
<th>Test wheel speed</th>
<th>Test load: Percent of maximum load rating</th>
<th>Total test revolutions (thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>km/h</td>
<td>r/m I–7 hours II–16 hours III–24 hours</td>
<td></td>
</tr>
<tr>
<td>Speed restricted service:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 km/h (55 mph)</td>
<td>F, G, H, J, L, M, N</td>
<td>40</td>
<td>125 66 84 101</td>
<td>352.0</td>
</tr>
<tr>
<td>80 km/h (50 mph)</td>
<td>F, G, H, J, L</td>
<td>32</td>
<td>100 66 84 101</td>
<td>282.5</td>
</tr>
<tr>
<td>56 km/h (35 mph)</td>
<td>All</td>
<td>24</td>
<td>75 66 84 101</td>
<td>211.0</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>All</td>
<td>60</td>
<td>100 66 84 101</td>
<td>510.0</td>
</tr>
<tr>
<td>All other</td>
<td>F</td>
<td>64</td>
<td>66 84 101 101</td>
<td>564.0</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>56</td>
<td>175 84 101</td>
<td>493.5</td>
</tr>
<tr>
<td></td>
<td>H, J, L, N</td>
<td>48</td>
<td>150 84 101</td>
<td>423.5</td>
</tr>
</tbody>
</table>

[38 FR 31301, Nov. 13, 1973]

EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §571.119, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.

§571.120 Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity information for motor vehicles with a GVWR of more than 4,536 kilograms (10,000 pounds).

S1. Scope. This standard specifies tire and rim selection requirements, rim marking requirements and motor home/recreation vehicle trailer load carrying capacity information.

S2. Purpose. The purpose of this standard is to provide safe operational performance by ensuring that vehicles to which it applies are equipped with tires of adequate size and load rating and with rims of appropriate size and type designation, and by ensuring that consumers are informed of motor home/recreation vehicle trailer load carrying capacity.

S3. Application. This standard applies to motor vehicles with a gross vehicle weight rating (GVWR) of more than 4,536 kilograms (10,000 pounds and motorcycles, to rims for use on those vehicles, and to non-pneumatic spare tire assemblies for use on those vehicles.

S4. Definitions. All terms defined in the Act and the rules and standards issued under its authority are used as defined therein.

Rim base means the portion of a rim remaining after removal of all split or continuous rim flanges, side rings, and locking rings that can be detached from the rim.

Rim size designation means rim diameter and width.

Rim diameter means nominal diameter of the bead seat.

Rim width means nominal distance between rim flanges.

Rim type designation means the industry or manufacturer’s designation for a rim by style or code.

Weather side means the surface area of the rim not covered by the inflated tire.

S5. Requirements.

S5.1 Tire and rim selection.

S5.1.1 Except as specified in S5.1.3, each vehicle equipped with pneumatic tires for highway service shall be equipped with tires that meet the requirements of §571.109, §571.119 or §571.139, and rims that are listed by the manufacturer of the tires as suitable for use with those tires, in accordance with §4.4 of §571.109 or §5.1 of §571.119, as applicable, except that vehicles may be equipped with a non-pneumatic spare tire assembly that meets the requirements of §571.129, New non-pneumatic tires for passenger cars, and §8 of this standard. Vehicles equipped with such an assembly shall meet the requirements of S5.3.3, S7, and S9 of this standard.

S5.1.2 Except in the case of a vehicle which has a speed attainable in 3.2 kilometers of 80 kilometers per hour or less, the sum of the maximum load ratings of the tires fitted to an axle shall
be not less than the gross axle weight rating (GAWR) of the axle system as specified on the vehicle's certification label required by 49 CFR part 567. Except in the case of a vehicle which has a speed attainable in 2 miles of 50 mph or less, the sum of the maximum load ratings of the tires fitted to an axle shall be not less than the gross axle weight rating (GAWR) of the axle system as specified on the vehicle's certification label required by 49 CFR part 567. If the certification label shows more than one GAWR for the axle system, the sum shall be not less than the GAWR corresponding to the size designation of the tires fitted to the axle. If the size designation of the tires fitted to the axle does not appear on the certification label, the sum shall be not less than the lowest GAWR appearing on the label. When a passenger car tire is installed on a multipurpose passenger vehicle, truck, bus, or trailer, the tire's load rating shall be reduced by dividing by 1.10 before calculating the sum (i.e., the sum of the load ratings of the tires on each axle, when the tires' load carrying capacity at the recommended tire cold inflation pressure is reduced by dividing by 1.10, must be appropriate for the GAWR).

S5.1.3 In place of tires that meet the requirements of Standard No. 119, a truck, bus, or trailer may at the request of a purchaser be equipped at the place of manufacture of the vehicle with retreaded or used tires owned or leased by the purchaser, if the sum of the maximum load ratings meets the requirements of S5.1.2. Used tires employed under this provision must have been originally manufactured to comply with Standard No. 119, as evidenced by the DOT symbol.

S5.2 Rim marking. Each rim or, at the option of the manufacturer in the case of a single-piece wheel, wheel disc shall be marked with the information listed in paragraphs (a) through (e) of this paragraph, in lettering not less than 3 millimeters high, impressed to a depth or, at the option of the manufacturer, embossed to a height of not less than 0.125 millimeters. The information listed in paragraphs (a) through (c) of this paragraph shall appear on the weather side. In the case of rims of multi piece construction, the information listed in paragraphs (a) through (e) of this paragraph shall appear on the rim base and the information listed in paragraphs (b) and (d) of this paragraph shall also appear on each other part of the rim.

(a) A designation which indicates the source of the rim's published nominal dimensions, as follows:

2. “E” indicates The European Tyre and Rim Technical Organisation
3. “J” indicates Japan Automobile Tire Manufacturers' Association, Inc.
5. “B” indicates British Standards Institution.
6. “S” indicates Scandinavian Tire and Rim Organization.
7. “A” indicates The Tyre and Rim Association of Australia.
8. “N” indicates an independent listing pursuant to §4.4.1(a) of Standard No. 109 or §5.1(a) of Standard No. 119.

(b) The rim size designation, and in case of multipiece rims, the rim type designation. For example: 20 × 5.50, or 20 × 5.

(c) The symbol DOT, constituting a certification by the manufacturer of the rim that the rim complies with all applicable motor vehicle safety standards.

(d) A designation that identifies the manufacturer of the rim by name, trademark, or symbol.

(e) The month, day and year or the month and year of manufacture, expressed either numerically or by use of a symbol, at the option of the manufacturer. For example:

“September 4, 1976” may be expressed numerically as:
90476, 904, or '76
76 76

“September 1976” may be expressed as:
976, 9, or '76
76 9

(1) Any manufacturer that elects to express the date of manufacture by means of a symbol shall notify NHTSA in writing of the full names and addresses of all manufacturers and brand name owners utilizing that symbol and the name and address of the trademark.
§ 571.120

The notification shall describe in narrative form and in detail how the month, day, and year or the month and year are depicted by the symbol. Such description shall include an actual size graphic depiction of the symbol, showing and/or explaining the interrelationship of the component parts of the symbol as they will appear on the rim or single piece wheel disc, including dimensional specifications, and where the symbol will be located on the rim or single piece wheel disc. The notification shall be received by NHTSA at least 60 calendar days prior to first use of the symbol. The notification shall be mailed to the Office of Vehicle Safety Compliance, National Highway Traffic Safety Administration, 400 Seventh Street SW., Washington, DC 20590. All information provided to NHTSA under this paragraph will be placed in the public docket.

(2) Each manufacturer of wheels shall provide an explanation of its date of manufacture symbol to any person upon request.

§ 5.3 Each vehicle shall show the information specified in § 5.3.1 and § 5.3.2 and, in the case of a vehicle equipped with a non-pneumatic spare tire, the information specified in § 5.3.3, in the English language, lettered in block capitals and numerals not less than 2.4 millimeters high and in the format set forth following this paragraph. This information shall appear either—

(a) After each GVWR listed on the certification label required by § 567.4 or § 567.5 of this chapter; or at the option of the manufacturer,

(b) On the tire information label affixed to the vehicle in the manner, location, and form described in § 567.4 (b) through (f) of this chapter as appropriate of each GVWR–GAWR combination listed on the certification label.

§ 5.3.1 Tires. The size designation (not necessarily for the tires on the vehicle) and the recommended cold inflation pressure for those tires such that the sum of the load ratings of the tires on each axle (when the tires’ load carrying capacity at the specified pressure is reduced by dividing by 1.10, in the case of a tire subject to FMVSS No. 109) is appropriate for the GAWR as calculated in accordance with § 5.1.2.

§ 5.3.2. Rims. The size designation and, if applicable, the type designation of Rims (not necessarily those on the vehicle) appropriate for those tires.

TRUCK EXAMPLE—SUITE TIRE-RIM CHOICE

GVWR: 7,840 KG (17,289 LB)
GAWR: FRONT—2,850 KG (6,280 LB) WITH 7.50–20(D) TIRES 20 × 6.00 RIMS AT 520 KPA (75 PSI) COLD SINGLE
GAWR: REAR—4,990 KG (11,000 LB) WITH 7.50–20(D) TIRES 20 × 6.00 RIMS AT 450 KPA (65 PSI) COLD DUAL
GVWR: 13,280 KG (29,279 LB)
GAWR: FRONT—4,826 KG (10,640 LB) WITH 10.00–20(F) TIRES 20 × 7.50 RIMS AT 620 KPA (90 PSI) COLD SINGLE
GAWR: REAR—8,454 KG (18,639 LB) WITH 10.00–20(F) TIRES 20 × 2.70 RIMS AT 550 KPA (80 PSI) COLD DUAL

§ 5.3.3 The non-pneumatic tire identification code, with which that assembly is labeled pursuant to § 4.3(a) of § 571.129.

§ 6. Load Limits for Non-Pneumatic Spare Tires. The highest vehicle maximum load on the tire for the vehicle shall not be greater than the load rating for the non-pneumatic spare tire.

§ 7. Labeling Requirements for Non-Pneumatic Spare Tires or Tire Assemblies. Each non-pneumatic tire or, in the case of a non-pneumatic tire assembly in which the non-pneumatic tire is an integral part of the assembly, each non-pneumatic tire assembly shall include, in letters or numerals not less than 4 millimeters high, the information specified in paragraphs S7 (a) and (b). The information shall be permanently molded, stamped, or otherwise permanently marked into or onto the non-pneumatic tire or tire assembly, or shall appear on a label that is permanently attached to the tire or tire assembly. If a label is used, it shall be subsurface printed, made of material that is resistant to fade, heat, moisture and abrasion, and attached in such a manner that it cannot be removed without destroying or defacing the label on the non-pneumatic tire or tire assembly. The information specified in paragraphs S7 (a) and (b) shall appear on both sides of the non-pneumatic tire or tire assembly, except, in the case of a non-pneumatic tire assembly which has a particular side that must always face outward when

544
mounted on a vehicle, in which case
the information specified in paragraphs
S7 (a) and (b) shall only be required on
the outward facing side. The informa-
tion shall be positioned on the tire or
tire assembly such that it is not placed
on the tread or the outermost edge of
the tire and is not obstructed by any
portion of any non-pneumatic rim or
wheel center member designated for
use with that tire in this standard or in
Standard No. 129.

(a) FOR TEMPORARY USE ONLY;
and

(b) MAXIMUM 80 KM/H (50 M.P.H.).

S8. Requirements for Vehicles
Equipped with Non-Pneumatic Spare Tire
Assemblies

S8.1 Vehicle Placarding Requirements.
A placard, permanently affixed to the
inside of the spare tire stowage area or
equally accessible location adjacent to
the non-pneumatic spare tire assembly,
shall display the information set forth
in S7 in block capitals and numerals
not less than 6 millimeters high pre-
ceded by the words “IMPORTANT—
USE OF SPARE TIRE” in letters not
less than 9 millimeters high.

S8.2 Supplementary Information. The
owner’s manual of the vehicle shall
contain, in writing in the English lan-
guage and in not less than 10 point
size type, the following information under
the heading “IMPORTANT—USE OF
SPARE TIRE”:

(a) A statement indicating the infor-
mation related to appropriate use for
the non-pneumatic spare tire including
at a minimum the information set forth
in S8 (a) and (b) and either the infor-
mation set forth in S5.3.6 or a state-
ment that the information set forth in
S5.3.6 is located on the vehicle placard
and on the non-pneumatic tire;

(b) An instruction to drive carefully
when the non-pneumatic spare tire is
in use, and to install the proper pneu-
matic tire and rim at the first reason-
able opportunity; and

(c) A statement that operation of the
vehicle is not recommended with more
than one non-pneumatic spare tire in
use at the same time.

S9 Non-Pneumatic Rims and Wheel
Center Members

S9.1 Non-Pneumatic Rim Require-
ments. Each non-pneumatic rim that is
part of a separable non-pneumatic
spare tire assembly shall be con-
structed to the dimensions of a non-
pneumatic rim that is listed pursuant
to §4.4 of §571.129 for use with the non-
pneumatic tire, designated by its non-
pneumatic tire identification code,
with which the vehicle is equipped.

S9.2 Wheel Center Member Require-
ments. Each wheel center member that
is part of a separable non-pneumatic
spare tire assembly shall be con-
structed to the dimensions of a wheel
center member that is listed pursuant
to §4.4 of §571.129 for use with the non-
pneumatic tire, designated by its non-
pneumatic tire identification code,
with which the vehicle is equipped.

S10. Each motor home and recreation
vehicle (RV) trailer must meet the ap-
licable requirements in S10.

S10.1 On motor homes, the sum of
the gross axle weight ratings (GAWR)
of all axles on the vehicle must not be
less than the gross vehicle weight rat-
ing (GVWR).

S10.2 On RV trailers, the sum of the
GAWRs of all axles on the vehicle plus
the vehicle manufacturer’s rec-
ommended tongue weight must not be
less than the GVWR. If tongue weight
is specified as a range, the minimum
value must be used.

S10.3 The tires on each motor home
and RV trailer at first retail sale must
be the same size as the tire size on the
labeling required by S5.3.

S10.4 Each motor home and RV
trailer single stage or final stage man-
facturer must affix either a motor
home occupant and cargo carrying ca-
pacity (OCCC) label (Figure 1) or a RV
trailer cargo carrying capacity (CCC)
label (Figure 2) to its vehicles that
meets the following criteria:

S10.4.1 The RV load carrying capac-
ity labels (Figures 1 and 2) must be leg-
ible, visible, moisture resistant, pre-
sented in the English language, have a
minimum print size of 2.4 millimeters
(%34 inches) high and be printed in
black print on a yellow background.

S10.4.2 The weight value for load
carrying capacity on the RV load car-
rying capacity labels (Figures 1 and 2)
must be displayed to the nearest kilo-
gram with conversion to the nearest
pound and must be such that the vehi-
cle’s weight does not exceed its GVWR.
when loaded with the stated load carrying capacity. The UVW and the GVWR used to determine the RV’s load carrying capacity must reflect the weights and design of the motor home or RV trailer as configured for delivery to the dealer/service facility. If applicable, the weight of full propane tanks must be included in the RV’s UVW and the weight of on-board potable water must be treated as cargo.

S10.4.3 The RV load carrying capacity labels (Figures 1 and 2) must be:

(a) Permanently affixed and must be visibly located on the interior of the forward-most exterior passenger door on the right side of the vehicle; or

(b) If a permanent RV load carrying capacity label (Figure 1 or 2) is affixed in the location specified at S5.3(b), a temporary version of the RV load carrying capacity label (Figure 1 or 2) may be visibly located on the interior of the forward-most exterior passenger door on the right side of the vehicle.

S10.4.4 Permanent and temporary motor home OCCC labels must contain the following information in accordance with Figure 1:

(a) The statement: “MOTOR HOME OCCUPANT AND CARGO CARRYING CAPACITY” in block letters.

(b) The Vehicle Identification Number (VIN).

(c) The statement “THE COMBINED WEIGHT OF OCCUPANTS AND CARGO SHOULD NEVER EXCEED: XXX kg or XXX lbs” in block letters with appropriate values included.

(d) The statement “Safety belt equipped seating capacity: XXX” with the appropriate value included.

(e) The statement: “CAUTION: A full load of water equals XXX kg or XXX lbs of cargo @ 1 kg/L (8.3 lb/gal)” with appropriate values included.

S10.5 Weight added to motor homes and RV trailers between final vehicle certification and first retail sale of the vehicle.

S10.5.1 If weight exceeding 45.4 kg (100 pounds) is added to a motor home or RV trailer between final vehicle certification and first retail sale of the vehicle, the load carrying capacity values on the RV load carrying capacity labels (Figures 1 and 2) required by S10.4 must be corrected using one or a combination of the following methods:

(a) Permanently affix the load carrying capacity modification label (Figure 3) which displays the amount the load carrying capacity is reduced to the nearest kilogram with conversion to the nearest pound, within 25 millimeters of the original, permanent RV load carrying capacity label (Figure 1 or 2). The load carrying capacity modification label must be legible, visible, permanent, moisture resistant, presented in the English language, have a minimum print size of 2.4 millimeters (3/32 inches) high and be printed in black print on a yellow background. If the manufacturer selects S10.4.3(b), apply a temporary version of the load carrying capacity modification label (Figure 3) within 25 millimeters of the original, temporary RV load carrying capacity label (Figure 1 or 2) on the interior of the forward-most exterior passenger door on the right side of the vehicle. Both temporary and permanent versions of the load carrying capacity modification label (Figure 3) may be printed without values and values may be legibly applied to the label with a black, fine point, indelible marker. The label must contain the statements “CAUTION—LOAD CARRYING CAPACITY REDUCED” in block letters and “Modifications to this vehicle have reduced the original load carrying capacity by XXX kg or XXX lbs” in accordance with Figure 3 with appropriate values in place of XXX. If two
load carrying capacity modification labels are required (one permanent and one temporary), the weight values on each must agree, or

(b) Modify the original permanent RV load carrying capacity label (Figure 1 or 2) with correct load carrying capacity weight values. If the manufacturer selects S10.4.3(b), the temporary RV load carrying capacity label (Figure 1 or 2) must also be modified with correct load carrying capacity weight values. Modification of labels requires a machine printed overlay with printed corrected values or blanks for corrected values that may be entered with a black, fine-point, indelible marker. Crossing out old values and entering corrected values on the original label is not permissible, or

(c) Replace the original, permanent RV load carrying capacity label (Figure 1 or 2) with the same label containing correct load carrying capacity weight values. If the manufacturer selects S10.4.3(b), the temporary RV load carrying capacity label (Figure 1 or 2) must also be replaced with the same label containing correct load carrying capacity weight values.

S10.5.2 Corrected load carrying capacity weight values or the weight amount the load carrying capacity is reduced, must reflect the total weight added between final vehicle certification and first retail sale and must be accurate within one percent of the actual added weight. No re-labeling is required if the weight of the vehicle is reduced between final vehicle certification and the first retail sale.

Figure 1 - Motor Home Occupant and Cargo Carrying Capacity Label

Figure 2 - RV Trailer Cargo Carrying Capacity Label

Figure 3 - Load Carrying Capacity Modification Label
§ 571.121 Standard No. 121; Air brake systems.

S1. Scope. This standard establishes performance and equipment requirements for braking systems on vehicles equipped with air brake systems.

S2. Purpose. The purpose of this standard is to insure safe braking performance under normal and emergency conditions.

S3. Application. This standard applies to trucks, buses, and trailers equipped with air brake systems. However, it does not apply to:

(a) Any trailer that has a width of more than 102.36 inches with extendable equipment in the fully retracted position and is equipped with two short track axles in a line across the width of the trailer.

(b) Any vehicle equipped with an axle that has a gross axle weight rating (GAWR) of 29,000 pounds or more;

(c) Any truck or bus that has a speed attainable in 2 miles of not more than 33 mph;

(d) Any truck that has a speed attainable in 2 miles of not more than 45 mph, an unloaded vehicle weight that is not less than 95 percent of its gross vehicle weight rating (GVWR), and no capacity to carry occupants other than the driver and operating crew;

(e) Any trailer that has a GVWR of more than 120,000 pounds and whose body conforms to that described in the definition of heavy hauler trailer set forth in §4;

(f) Any trailer that has an unloaded vehicle weight which is not less than 95 percent of its GVWR; and

(g) Any load divider dolly.

S4. Definitions.

Agricultural commodity trailer means a trailer that is designed to transport bulk agricultural commodities in off-road harvesting sites and to a processing plant or storage location, as evidenced by skeletal construction that accommodates harvest containers, a maximum length of 28 feet, and an arrangement of air control lines and reservoirs that minimizes damage in field operations.

Air brake system means a system that uses air as a medium for transmitting pressure or force from the driver control to the service brake, including an air-over-hydraulic brake subsystem, but does not include a system that uses compressed air or vacuum only to assist the driver in applying muscular force to hydraulic or mechanical components.

Air-over-hydraulic brake subsystem means a subsystem of the air brake system that uses compressed air to transmit a force from the driver control to a hydraulic brake system to actuate the service brakes.

Anti-lock brake system or ABS means a portion of a service brake system that automatically controls the degree of rotational wheel slip during braking by:

(1) Sensing the rate of angular rotation of the wheels;

(2) Transmitting signals regarding the rate of wheel angular rotation to one or more controlling devices which interpret those signals and generate responsive controlling output signals; and

(3) Transmitting those controlling signals to one or more modulators which adjust brake actuating forces in response to those signals.

Auto transporter means a truck and a trailer designed for use in combination to transport motor vehicles, in that the towing vehicle is designed to carry cargo at a location other than the fifth wheel and to load this cargo only by means of the towed vehicle.

Common diaphragm means a single brake chamber diaphragm which is a component of the parking, emergency, and service brake systems.

Container chassis trailer means a semitrailer of skeleton construction limited to a bottom frame, one or more axles, specially built and fitted with locking devices for the transport of intermodal shipping containers, so that when the chassis and container are assembled, the units serve the same function as an over the road trailer.
Directly controlled wheel means a wheel for which the degree of rotational wheel slip is sensed, either at that wheel or on the axle shaft for that wheel and corresponding signals are transmitted to one or more modulators that adjust the brake actuating forces at that wheel. Each modulator may also adjust the brake actuating forces at other wheels that are on the same axle or in the same axle set in response to the same signal or signals.

Effective projected luminous lens area means that area of the projection on a plane perpendicular to the lamp axis of that portion of the light-emitting surface that directs light to the photometric test pattern, and does not include mounting hole bosses, reflex reflector area, beads or rims that may glow or produce small areas of increased intensity as a result of uncontrolled light from small areas (½ degree radius around the test point).

Full-treadle brake application means a brake application in which the treadle valve pressure in any of the valve's output circuits reaches 85 pounds per square inch (psi) within 0.2 seconds after the application is initiated, or in which maximum treadle travel is achieved within 0.2 seconds after the application is initiated.

Heavy hauler trailer means a trailer which has one or more of the following characteristics, but which is not a container chassis trailer:

(1) Its brake lines are designed to adapt to separation or extension of the vehicle frame; or
(2) Its body consists only of a platform whose primary cargo-carrying surface is not more than 40 inches above the ground in an unloaded condition, except that it may include sides that are designed to be easily removable and a permanent "front end structure" as that term is used in §393.106 of this title.

Independently controlled wheel means a directly controlled wheel for which the modulator does not adjust the brake actuating forces at any other wheel on the same axle.

Indirectly controlled wheel means a wheel at which the degree of rotational wheel slip is not sensed, but at which the modulator of an antilock braking system adjusts its brake actuating forces in response to signals from one or more sensed wheel(s).

Initial brake temperature means the average temperature of the service brakes on the hottest axle of the vehicle 0.2 mile before any brake application in the case of road tests, or 18 seconds before any brake application in the case of dynamometer testing.

Intermodal shipping container means a reusable, transportable enclosure that is especially designed with integral locking devices for securing the container to the trailer to facilitate the efficient and bulk shipping and transfer of goods by, or between various modes of transport, such as highway, rail, sea and air.

Load divider dolly means a trailer composed of a trailer chassis and one or more axles, with no solid bed, body, or container attached, and which is designed exclusively to support a portion of the load on a trailer or truck excluded from all the requirements of this standard.

Maximum drive-through speed means the highest possible constant speed at which the vehicle can be driven through 200 feet of a 500-foot radius curve arc without leaving the 12-foot lane.

Maximum treadle travel means the distance that the treadle moves from its position when no force is applied to its position when the treadle reaches a full stop.

Peak friction coefficient or PFC means the ratio of the maximum value of braking test wheel longitudinal force to the simultaneous vertical force occurring prior to wheel lockup, as the braking torque is progressively increased.

Pulpwood trailer means a trailer that is designed exclusively for harvesting logs or pulpwood and constructed with a skeletal frame with no means for attachment of a solid bed, body, or container, and with an arrangement of air control lines and reservoirs designed to minimize damage in off-road operations.

Tandem axle means a group or set of two or more axles placed in a close arrangement, one behind the other, with the centerlines of adjacent axles not more than 72 inches apart.
Straddle trailer means a trailer that is designed to transport bulk agricultural commodities from the harvesting location as evidenced by a framework that is driven over the cargo and lifting arms that suspend the cargo for transit.

Wheel lockup means 100 percent wheel slip.

§ 571.121 Requirements. Each vehicle shall meet the following requirements under the conditions specified in § 56. However, at the option of the manufacturer, the following vehicles may meet the stopping distance requirements specified in Table IIa instead of Table II: Three-axle tractors with a front axle that has a GAWR of 14,600 pounds or less, and with two rear drive axles that have a combined GAWR of 45,000 pounds or less, that are manufactured before August 1, 2011; and all other tractors that are manufactured before August 1, 2013.

§ 5.1 Required equipment for trucks and buses. Each truck and bus shall have the following equipment:

§ 5.1.1 Air compressor. An air compressor of sufficient capacity to increase air pressure in the supply and service reservoirs from 85 psi to 100 psi when the engine is operating at the vehicle manufacturer's maximum recommended r.p.m. within a time, in seconds, determined by the quotient (Actual reservoir capacity x 25)/Required reservoir capacity.

§ 5.1.2 Reservoirs. One or more service reservoir systems, from which air is delivered to the brake chambers, and either an automatic condensate drain valve for each service reservoir or a supply reservoir between the service reservoir system and the source of air pressure.

§ 5.1.2.1 The combined volume of all service reservoirs and supply reservoirs shall be at least 12 times the combined volume of all service brake chambers. For each brake chamber type having a full stroke at least as great as the first number in Column 1 of Table V, but no more than the second number in Column 1 of Table V, the volume of each brake chamber for purposes of calculating the required combined service and supply reservoir volume shall be either that specified in Column 2 of Table V or the actual volume of the brake chamber at maximum travel of the brake piston or pushrod, whichever is lower. The volume of a brake chamber not listed in Table V is the volume of the brake chamber at maximum travel of the brake piston or pushrod.

§ 5.1.2.2 Each reservoir shall be capable of withstanding an internal hydrostatic pressure of five times the compressor cutout pressure or 500 psi, whichever is greater, for 10 minutes.

§ 5.1.3 Towing vehicle protection system. If the vehicle is intended to tow another vehicle equipped with air brakes, a system to protect the air pressure in the towing vehicle from the effects of a loss of air pressure in the towed vehicle.

§ 5.1.4 Pressure gauge. A pressure gauge in each service brake system, readily visible to a person seated in the normal driving position, that indicates the service reservoir system air pressure. The accuracy of the gauge shall be within plus or minus 7 percent of the compressor cut-out pressure.

§ 5.1.5 Warning signal. A signal, other than a pressure gauge, that gives a continuous warning to a person in the normal driving position when the ignition is in the "on" ("run") position and the air pressure in the service reservoir system is below 60 psi. The signal shall be either visible within the driver's forward field of view, or both audible and visible.

§ 5.1.6 Antilock brake system.

§ 5.1.6.1(a) Each single-unit vehicle manufactured on or after March 1, 1998,
shall be equipped with an antilock brake system that directly controls the wheels of at least one front axle and the wheels of at least one rear axle of the vehicle. Wheels on other axles of the vehicle may be indirectly controlled by the antilock brake system.

(b) Each truck tractor manufactured on or after March 1, 1997, shall be equipped with an antilock brake system that directly controls the wheels of at least one front axle and the wheels of at least one rear axle of the vehicle, with the wheels of at least one axle being independently controlled. Wheels on other axles of the vehicle may be indirectly controlled by the antilock brake system. A truck tractor shall have no more than three wheels controlled by one modulator.

S5.1.6.2 Antilock malfunction signal and circuit.

(a) Each truck tractor manufactured on or after March 1, 1997, and each single unit vehicle manufactured on or after March 1, 1998, shall be equipped with an indicator lamp, mounted in front of and in clear view of the driver, which is activated whenever there is a malfunction that affects the generation or transmission of response or control signals in the vehicle’s antilock brake system. The indicator lamp shall remain activated as long as such a malfunction exists, whenever the ignition (start) switch is in the “on” (“run”) position, whether or not the engine is running. Each message about the existence of such a malfunction shall be stored in the antilock brake system after the ignition switch is turned to the “off” position and automatically reactivated when the ignition switch is again turned to the “on” (“run”) position. The indicator lamp shall also be activated as a check of lamp function whenever the ignition is turned to the “on” (“run”) position. The indicator lamp shall be deactivated at the end of the check of lamp function unless there is a malfunction or a message about a malfunction that existed when the key switch was last turned to the “off” position.

(b) Each truck tractor manufactured on or after March 1, 2001, and each single unit vehicle manufactured on or after March 1, 2001, that is equipped to tow another air-braked vehicle, shall be equipped with an electrical circuit that is capable of transmitting a malfunction signal from the antilock brake system(s) on one or more towed vehicle(s) (e.g., trailer(s) and dolly(ies)) to the trailer ABS malfunction lamp in the cab of the towing vehicle, and shall have the means for connection of this electrical circuit to the towed vehicle. Each such truck tractor and single unit vehicle shall also be equipped with an indicator lamp, separate from the lamp required in S5.1.6.2(a), mounted in front of and in clear view of the driver, which is activated whenever the malfunction signal circuit described above receives a signal indicating an ABS malfunction on one or more towed vehicle(s). The indicator lamp shall remain activated as long as an ABS malfunction signal from one or more towed vehicle(s) is present, whenever the ignition (start) switch is in the “on” (“run”) position, whether or not the engine is running. The indicator lamp shall also be activated as a check of lamp function whenever the ignition is turned to the “on” (“run”) position. The indicator lamp shall be deactivated at the end of the check of lamp function unless a trailer ABS malfunction signal is present.

(c) [Reserved]

S5.1.6.3 Antilock power circuit for towed vehicles. Each truck tractor manufactured on or after March 1, 1997, and each single unit vehicle manufactured on or after March 1, 1998, that is equipped to tow another air-braked vehicle shall be equipped with one or more electrical circuits that provide continuous power to the antilock system on the towed vehicle or vehicles whenever the ignition (start) switch is in the “on” (“run”) position. Such a circuit shall be adequate to enable the antilock system on each towed vehicle to be fully operable.

S5.1.7 Service brake stop lamp switch. A switch that lights the stop lamps when the service brake control is statically depressed to a point that produces a pressure of 6 psi or less in the service brake chambers.

S5.1.8 Brake distribution and automatic adjustment. Each vehicle shall be equipped with a service brake system acting on all wheels.
§ 571.121 49 CFR Ch. V (10–1–16 Edition)

(a) Brake adjuster. Wear of the service brakes shall be compensated for by means of a system of automatic adjustment. When inspected pursuant to §5.9, the adjustment of the service brakes shall be within the limits recommended by the vehicle manufacturer.

(b) Brake indicator. For each brake equipped with an external automatic adjustment mechanism and having an exposed pushrod, the condition of service brake under-adjustment shall be displayed by a brake adjustment indicator that is discernible when viewed with 20/40 vision from a location adjacent to or underneath the vehicle, when inspected pursuant to §5.9.

S5.2 Required equipment for trailers. Each trailer shall have the following equipment:

S5.2.1 Reservoirs. One or more reservoirs to which the air is delivered from the towing vehicle.

S5.2.1.1 The total volume of each service reservoir shall be at least eight times the combined volume of all service brake chambers serviced by that reservoir. For each brake chamber type having a full stroke at least as great as the first number in Column 1 of Table V, but no more than the second number in column 1, the volume of each brake chamber for purposes of calculating the required total service reservoir volume shall be either the number specified in Column 2 of Table V or the actual volume of the brake chamber at maximum travel of the brake piston or pushrod, whichever is lower. The volume of a brake chamber not listed in Table V is the volume of the brake chamber at maximum travel of the brake piston or pushrod. The reservoirs on a heavy hauler trailer and the trailer portion of an auto transporter need not meet this requirement for reservoir volume.

S5.2.1.2 Each reservoir shall be capable of withstanding an internal hydrostatic pressure of 500 psi for 10 minutes.

S5.2.1.3 Each reservoir shall have a condensate drain valve that can be manually operated.

S5.2.1.4 Each service reservoir shall be protected against loss of air pressure due to failure or leakage in the system between the service reservoir and its source of air pressure by check valves or equivalent devices.

S5.2.2 Brake distribution and automatic adjustment. Each vehicle shall be equipped with a service brake system acting on all wheels.

(a) Brake adjuster. Wear of the service brakes shall be compensated for by means of a system of automatic adjustment. When inspected pursuant to §5.9, the adjustment of the service brakes shall be within the limits recommended by the vehicle manufacturer.

(b) Brake indicator. For each brake equipped with an external automatic adjustment mechanism and having an exposed pushrod, the condition of service brake under-adjustment shall be displayed by a brake adjustment indicator in a manner that is discernible when viewed with 20/40 vision from a location adjacent to or underneath the vehicle, when inspected pursuant to §5.9.

S5.2.3 Antilock brake system.

S5.2.3.1(a) Each semitrailer (including a trailer converter dolly) manufactured on or after March 1, 1998, shall be equipped with an antilock brake system that directly controls the wheels of at least one axle of the vehicle. Wheels on other axles of the vehicle may be indirectly controlled by the antilock brake system.

(b) Each full trailer manufactured on or after March 1, 1998, shall be equipped with an antilock brake system that directly controls the wheels of at least one front axle of the vehicle and at least one rear axle of the vehicle. Wheels on other axles of the vehicle may be indirectly controlled by the antilock brake system.

S5.2.3.2 Antilock malfunction signal. Each trailer (including a trailer converter dolly) manufactured on or after March 1, 2001, that is equipped with an antilock brake system shall be equipped with an electrical circuit that is capable of signaling a malfunction in the trailer’s antilock brake system, and shall have the means for connection of this antilock brake system malfunction signal circuit to the towing vehicle. The electrical circuit need not be separate or dedicated exclusively to this malfunction signaling function. The signal shall be present whenever there is a malfunction that affects the generation or transmission of response
or control signals in the trailer's antilock brake system. The signal shall remain present as long as the malfunction exists, whenever power is supplied to the antilock brake system. Each message about the existence of such a malfunction shall be stored in the antilock brake system whenever power is no longer supplied to the system, and the malfunction signal shall be automatically reactivated whenever power is again supplied to the trailer's antilock brake system. In addition, each trailer manufactured on or after March 1, 2001, that is designed to tow other air-brake equipped trailers shall be capable of transmitting a malfunction signal from the antilock brake systems of additional trailers it tows to the vehicle towing it.

S5.2.3.3 Antilock malfunction indicator.

(a) In addition to the requirements of S5.2.3.2, each trailer and trailer converter dolly shall be equipped with an external antilock malfunction indicator lamp that meets the requirements of S5.2.3.3 (b) through (d).

(b)(1) The lamp shall be designed to conform to the performance requirements of SAE Recommended Practice J592 JUN92 (incorporated by reference, see §571.5), or SAE Recommended Practice J592e (1972) (incorporated by reference, see §571.5), for combination, clearance, and side marker lamps, which are marked with a “PC” or “P2” on the lens or housing, in accordance with SAE Recommended Practice J759 JAN95 (incorporated by reference, see §571.5).

(2) The color of the lamp shall be yellow.

(3) The letters “ABS” shall be permanently molded, stamped, or otherwise marked or labeled in letters not less than 10 mm (0.4 inches) high on the lamp lens or its housing to identify the function of the lamp. Alternatively, the letters “ABS” may be painted on the trailer body or dolly or a plaque with the letters “ABS” may be affixed to the trailer body or converter dolly; the letters “ABS” shall be not less than 25 mm (1 inch) high. A portion of one of the letters in the alternative identification shall be not more than 150 mm (5.9 inches) from the edge of the lamp lens.

(c) Location requirements. (1) Each trailer that is not a trailer converter dolly shall be equipped with a lamp mounted on a permanent structure on the left side of the trailer as viewed from the rear, no closer than 150 mm (5.9 inches), and no farther than 600 mm (23.6 inches) from the red rear side marker lamp, when measured between the closest edge of the effective projected luminous lens area of each lamp.

(2) Each trailer converter dolly shall be equipped with a lamp mounted on a permanent structure of the dolly so that the lamp is not less than 375 mm (14.8 inches) above the road surface when measured from the center of the lamp with the dolly at curb weight. When a person, standing 3 meters (9.8 feet) from the lamp, views the lamp from a perspective perpendicular to the vehicle’s centerline, no portion of the lamp shall be obscured by any structure on the dolly.

(3) Each trailer that is not a trailer converter dolly and on which the malfunction indicator lamp cannot be placed within the location specified in S5.2.3.3(c)(1) shall be equipped with a lamp mounted on a permanent structure on the left side of the trailer as viewed from the rear, near the red rear side marker lamp or on the front face of the left rear fender of a trailer equipped with fenders.

(d) The lamp shall be illuminated whenever power is supplied to the antilock brake system and there is a malfunction that affects the generation or transmission of response or control signals in the trailer’s antilock brake system. The lamp shall remain illuminated as long as such a malfunction exists and power is supplied to the antilock brake system. Each message about the existence of such a malfunction shall be stored in the antilock brake system. The lamp shall be automatically reactivated when power is again supplied to the trailer’s antilock brake system. The lamp shall also be activated as a check of lamp function whenever power is first supplied to the antilock brake system and the vehicle is stationary. The lamp shall be deactivated at the
end of the check of lamp function, unless there is a malfunction or a message about a malfunction that existed when power was last supplied to the antilock brake system.

§571.121

(a) At vehicle speeds above 20 mph, any wheel on a nonsteerable axle other than the two rearmost nonliftable, nonsteerable axles may lock up, for any duration. The wheels on the two rearmost nonliftable, nonsteerable axles may lock up according to S5.3.1(b).

(b) At vehicle speeds above 20 mph, one wheel on any axle or two wheels on any tandem may lock up for any duration.

(c) At vehicle speeds above 20 mph, any wheel not permitted to lock in S5.3.1(a) or (b) may lock up repeatedly, with each lockup occurring for a duration of one second or less.

(d) At vehicle speeds of 20 mph or less, any wheel may lock up for any duration.

S5.3.1 Stop the vehicle from 60 mph on a surface with a peak friction coefficient of 0.9 with the vehicle loaded as follows:

(a) Loaded to its GVWR so that the load on each axle, measured at the tire-ground interface, is most nearly proportional to the axles’ respective GAWRs, without exceeding the GAWR of any axle.

(b) In the truck tractor only configuration plus up to 500 lbs. or, at the manufacturer’s option, at its unloaded weight plus up to 500 lbs. (including driver and instrumentation) and plus not more than an additional 1,000 lbs. for a roll bar structure on the vehicle, and

(c) At its unloaded vehicle weight (except for truck tractors) plus up to 500 lbs. (including driver and instrumentation) or, at the manufacturer’s option, at its unloaded weight plus up to 500 lbs. (including driver and instrumentation) plus not more than an additional 1,000 lbs. for a roll bar structure on the vehicle. If the speed attainable in two miles is less than 60 mph, the vehicle shall stop from a speed in Table II that is four to eight mph less than the speed attainable in two miles.

S5.3.2 [Reserved]

S5.3.3 Brake actuation time. Each service brake system shall meet the requirements of S5.3.3.1(a) and (b).

S5.3.3.1(a) With an initial service reservoir system air pressure of 100 psi, the air pressure in each brake chamber shall, when measured from the first
movement of the service brake control, reach 60 psi in not more than 0.45 second in the case of trucks and buses, 0.50 second in the case of trailers, other than trailer converter dollies, designed to tow another vehicle equipped with air brakes, 0.55 second in the case of trailer converter dollies, and 0.60 second in the case of trailers other than trailers designed to tow another vehicle equipped with air brakes. A vehicle designed to tow another vehicle equipped with air brakes shall meet the above actuation time requirement with the pressure in the 50-cubic-inch test reservoir connected to the control line input coupling. A trailer, including a trailer converter dolly, shall meet the above actuation time requirement with the control line input coupling connected to the test rig shown in Figure 1.

(b) For vehicles designed to tow another vehicle equipped with air brakes, the pressure in the 50-cubic-inch test reservoir referred to in §5.3.4.1(a) shall, when measured from the first movement of the service brake control, reach 60 psi in not more than 0.45 seconds in the case of trucks and buses, 0.50 seconds in the case of trailer converter dollies, and 0.55 seconds in the case of trailers other than trailer converter dollies.

§5.3.5 Control signal pressure differential—converter dollies and trailers designed to tow another vehicle equipped with air brakes.

(a) For a trailer designed to tow another vehicle equipped with air brakes, the pressure differential between the control line input coupling and a 50-cubic-inch test reservoir attached to the control line output coupling shall not exceed the values specified in §5.3.5(a) (1), (2), and (3) under the conditions specified in §5.3.5(b) (1) through (4):

(1) 1 psi at all input pressures equal to or greater than 5 psi, but not greater than 20 psi;

(2) 2 psi at all input pressures equal to or greater than 20 psi but not greater than 40 psi; and

(3) Not more than a 5-percent differential at any input pressure equal to or greater than 40 psi.

(b) The requirements in §5.3.5(a) shall be met—

(1) When the pressure at the input coupling is steady, increasing or decreasing;

(2) When air is applied to or released from the control line input coupling using the trailer test rig shown in Figure 1;

(3) With a fixed orifice consisting of a 0.0180 inch diameter hole (no. 77 drill bit) in a 0.032 inch thick disc installed in the control line between the trailer test rig coupling and the vehicle’s control line input coupling; and

(4) Operating the trailer test rig in the same manner and under the same conditions specified in §5.3.5(b) (1) through (4).
§ 571.121 49 CFR Ch. V (10–1–16 Edition)

conditions as it is operated during testing to measure brake actuation and release times, as specified in S5.3.3 and S5.3.4, except for the installation of the orifice in the control line to restrict airflow rate.

S5.3.6 Stability and control during braking—trucks and buses. When stopped four consecutive times for each combination of weight, speed, and road conditions specified in S5.3.6.1 and S5.3.6.2, each truck tractor shall stop at least three times within the 12-foot lane, without any part of the vehicle leaving the roadway. When stopped four consecutive times for each combination of weight, speed, and road conditions specified in S5.3.6.1 and S5.3.6.2, each bus and truck (other than a truck tractor) manufactured on or after July 1, 2005, and each bus and truck (other than a truck tractor) manufactured in two or more stages on or after July 1, 2006, shall stop at least three times within the 12-foot lane, without any part of the vehicle leaving the roadway.

S5.3.6.1 Using a full-treadle brake application for the duration of the stop, stop the vehicle from 30 mph or 75 percent of the maximum drive-through speed, whichever is less, on a 500-foot radius curved roadway with a wet level surface having a peak friction coefficient of 0.5 when measured on a straight or curved section of the curved roadway using an ASTM E1136–93 (Reapproved 2003) (incorporated by reference, see §571.5) standard reference tire, in accordance with ASTM E1337–90 (Reapproved 2008) (incorporated by reference, see §571.5), at a speed of 40 mph, with water delivery.

S5.3.6.2 Stop the vehicle, with the vehicle:

(a) Loaded to its GVWR, for a truck tractor, and

(b) At its unloaded weight plus up to 500 pounds (including driver and instrumentation), or at the manufacturer’s option, at its unloaded weight plus up to 500 pounds (including driver and instrumentation) and plus not more than an additional 1000 pounds for a roll bar structure on the vehicle, for a truck, bus, or truck tractor.

S5.4 Service brake system—dynamometer tests. When tested without prior road testing, under the conditions of S6.2, each brake assembly shall meet the requirements of S5.4.1, S5.4.2, and S5.4.3 when tested in sequence and without adjustments other than those specified in the standard. For purposes of the requirements of S5.4.2 and S5.4.3, an average deceleration rate is the change in velocity divided by the deceleration time measured from the onset of deceleration.

S5.4.1 Brake retardation force. The sum of the retardation forces exerted by the brakes on each vehicle designed to be towed by another vehicle equipped with air brakes shall be such that the quotient of the brake retardation forces / sum of GAWR’s relative to brake chamber air pressure, and shall have values not less than those shown in Column 1 of Table III. Retardation force shall be determined as follows:

S5.4.1.1 After burnishing the brake pursuant to S6.2.6, retain the brake assembly on the inertia dynamometer. With an initial brake temperature between 125 °F. and 200 °F., conduct a stop from 50 m.p.h., maintaining brake chamber air pressure at a constant 20 psi. Measure the average torque exerted by the brake from the time the specified air pressure is reached until the brake stops and divide by the static loaded tire radius specified by the tire manufacturer to determine the retardation force. Repeat the procedure six times, increasing the brake chamber air pressure by 10 psi each time. After each stop, rotate the brake drum or disc until the temperature of the brake falls to between 125 °F. and 200 °F.

S5.4.2 Brake power. When mounted on an inertia dynamometer, each brake shall be capable of making 10 consecutive decelerations at an average rate of 9 f.p.s.p.s. from 50 m.p.h. to 15 m.p.h., at equal intervals of 72 seconds, and shall be capable of decelerating to a stop from 20 m.p.h. at an average deceleration rate of 14 f.p.s.p.s. 1 minute after the 10th deceleration. The series of decelerations shall be conducted as follows:

S5.4.2.1 With an initial brake temperature between 150 °F. and 200 °F. for the first brake application, and the drum or disc rotating at a speed equivalent to 50 m.p.h., apply the brake and decelerate at an average deceleration
rate of 9 f.p.s.p.s. to 15 m.p.h. Upon reaching 15 m.p.h., accelerate to 50 m.p.h. and apply the brake for a second time 72 seconds after the start of the first application. Repeat the cycle until 16 decelerations have been made. The service line air pressure shall not exceed 100 psi during any deceleration.

§5.4.2.2 One minute after the end of the last deceleration required by §5.4.2.1 and with the drum or disc rotating at a speed of 20 m.p.h., decelerate to a stop at an average deceleration rate of 14 f.p.s.p.s.

§5.4.3 Brake recovery. Except as provided in §5.4.3(a) and (b), starting two minutes after completing the tests required by §5.4.2, a vehicle’s brake shall be capable of making 20 consecutive stops from 30 mph at an average deceleration rate of 12 f.p.s.p.s., at equal intervals of one minute measured from the start of each brake application. The service line air pressure needed to attain a rate of 12 f.p.s.p.s. shall be not more than 85 lb/in², and not less than 20 lb/in² for a brake not subject to the control of an antilock system, or 12 lb/in² for a brake subject to the control of an antilock system.

(a) Notwithstanding §5.4.3, neither front axle brake of a truck-tractor is subject to the requirements set forth in §5.4.3.

(b) Notwithstanding §5.4.3, neither front axle brake of a bus or a truck other than a truck-tractor is subject to the requirement set forth in §5.4.3 prohibiting the service line air pressure from being less than 20 lb/in² for a brake not subject to the control of an antilock system, or 12 lb/in² for a brake subject to the control of an antilock system.

§5.5 Antilock system.

§5.5.1 Antilock system malfunction. On a truck tractor manufactured on or after March 1, 1997, that is equipped with an antilock brake system and a single unit vehicle manufactured on or after March 1, 1998, that is equipped with an antilock brake system, a malfunction that affects the generation or transmission of response or control signals of any part of the antilock system shall not increase the actuation and release times of the service brakes.

§5.5.2 Antilock system power—trailers. On a trailer (including a trailer converter dolly) manufactured on or after March 1, 1998, that is equipped with an antilock system that requires electrical power for operation, the power shall be obtained from the towing vehicle through one or more electrical circuits which provide continuous power whenever the powered vehicle’s ignition (start) switch is in the “on” (“run”) position. The antilock system shall automatically receive power from the stoplamp circuit, if the primary circuit or circuits are not functioning.

Each trailer (including a trailer converter dolly) manufactured on or after March 1, 1998, that is equipped to tow another air-braked vehicle shall be equipped with one or more circuits which provide continuous power to the antilock system on the vehicle(s) it tows. Such circuits shall be adequate to enable the antilock system on each towed vehicle to be fully operable.

§5.6 Parking brakes.

(a) Except as provided in §5.6(b) and §5.6(c), each vehicle other than a trailer converter dolly shall have a parking brake system that under the conditions of §5.6 meets the requirements of:

(1) §5.6.1 or §5.6.2, at the manufacturer’s option, and

(2) §5.6.3, §5.6.4, §5.6.5, and §5.6.6.

(b) At the option of the manufacturer, for vehicles equipped with brake systems which incorporate a common diaphragm, the performance requirements specified in §5.6(a) which must be met with any single leakage-type failure in a common diaphragm may instead be met with the level of leakage-type failure determined in §5.6.7. The election of this option does not affect the performance requirements specified in §5.6(a) which apply with single leakage-type failures other than failures in a common diaphragm.

(c) At the option of the manufacturer, the trailer portion of any agricultural commodity trailer, heavy hauler trailer, or pulpwood trailer may meet the requirements of §393.43 of this title instead of the requirements of §5.6(a).

§5.6.1 Static retardation force. With all other brakes made inoperative, during a static drawbar pull in a forward or rearward direction, the static retardation force produced by the application of the parking brakes shall be:
§ 571.121 (a) In the case of a vehicle other than a truck-tractor that is equipped with more than two axles, such that the quotient static retardation force/GAWR is not less than 0.28 for any axle other than a steerable front axle; and
(b) In the case of a truck-tractor that is equipped with more than two axles, such that the quotient static retardation force/GVWR is not less than 0.14.

S5.6.2 Grade holding. With all parking brakes applied, the vehicle shall remain stationary facing uphill and facing downhill on a smooth, dry portland cement concrete roadway with a 20-percent grade, both
(a) When loaded to its GVWR, and
(b) At its unloaded vehicle weight plus 1500 pounds (including driver and instrumentation and roll bar).

S5.6.3 Application and holding. Each parking brake system shall meet the requirements of S5.6.3.1 through S5.6.3.4.

S5.6.3.1 The parking brake system shall be capable of achieving the minimum performance specified either in S5.6.1 or S5.6.2 with any single leakage-type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (excluding failure of a component of a brake chamber housing but including failure of any brake chamber diaphragm that is part of any other brake system including a diaphragm which is common to the parking brake system and any other brake system), when the pressures in the vehicle’s parking brake chambers are at the levels determined in S5.6.3.4.

S5.6.3.2 A mechanical means shall be provided that, after a parking brake application is made with the pressures in the vehicle’s parking brake chambers at the levels determined in S5.6.3.4, and all air and fluid pressures in the vehicle’s braking systems are then bled down to zero, and without using electrical power, holds the parking brake application with sufficient parking retardation force to meet the minimum performance specified in S5.6.3.1 and in either S5.6.1 or S5.6.2.

S5.6.3.3 For trucks and buses, with an initial reservoir system pressure of 100 psi and, if designed to tow a vehicle equipped with air brakes, with a 50 cubic inch test reservoir connected to the supply line coupling, no later than three seconds from the time of actuation of the parking brake control, the mechanical means referred to in S5.6.3.2 shall be actuated. For trailers, with the supply line initially pressurized to 100 psi using the supply line portion of the trailer test rig (Figure 1) and, if designed to tow a vehicle equipped with air brakes, with a 50 cubic inch test reservoir connected to the rear supply line coupling, no later than three seconds from the time of actuation of the parking brake control, the mechanical means referred to in S5.6.3.2 shall be actuated. This requirement shall be met for trucks, buses and trailers both with and without any single leakage-type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in S5.6.3.1).

S5.6.3.4 The parking brake chamber pressures for S5.6.3.1 and S5.6.3.2 are determined as follows. For trucks and buses, with an initial reservoir system pressure of 100 psi and, if designed to tow a vehicle equipped with air brakes, with a 50 cubic inch test reservoir connected to the supply line coupling, any single leakage type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in S5.6.3.1), is introduced in the brake system. The parking brake control is actuated and the pressures in the vehicle’s parking brake chambers are measured three seconds after that actuation is initiated. For trailers, with the supply line initially pressurized to 100 psi using the supply line portion of the trailer test rig (Figure 1) and, if designed to tow a vehicle equipped with air brakes, with a 50 cubic inch test reservoir connected to the supply line coupling, any single leakage type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in S5.6.3.1), is introduced in the brake system. The supply line coupling is vented to the atmosphere and the pressures in the vehicle’s parking brake chambers are
measured three seconds after that venting is initiated.

§5.6.4 Parking brake control—trucks and buses. The parking brake control shall be separate from the service brake control. It shall be operable by a person seated in the normal driving position. The control shall be identified in a manner that specifies the method of control operation. The parking brake control shall control the parking brakes of the vehicle and of any air braked vehicle that it is designed to tow.

§5.6.5 Release Performance. Each parking brake system shall meet the requirements specified in §5.6.5.1 through §5.6.5.4.

§5.6.5.1 For trucks and buses, with initial conditions as specified in §5.6.5.2, at all times after an application actuation of the parking brake control, and with any subsequent level of pressure, or combination of levels of pressure, in the reservoirs of any of the vehicle’s brake systems, no reduction in parking brake retardation force shall result from a release actuation of the parking brake control unless the parking brakes are capable, after such release, of being reapplied at a level meeting the minimum performance specified either in §5.6.1 or §5.6.2. This requirement shall be met both with and without any single leakage-type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in §5.6.3.1).

§5.6.5.2 The initial conditions for §5.6.5.3 are as follows: The reservoir system and supply line are pressurized to 100 psi, using the supply line portion of the trailer test rig (Figure 1). If the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir is connected to the rear supply line coupling.

§5.6.6 Accumulation of actuation energy. Each parking brake system shall meet the requirements specified in §5.6.6.1 through §5.6.6.6.

§5.6.6.1 For trucks and buses, with initial conditions as specified in §5.6.6.2, the parking brake system shall be capable of meeting the minimum performance specified either in §5.6.1 or §5.6.2, with any single leakage-type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in §5.6.3.1) at the conclusion of the test sequence specified in §5.6.6.3.

§5.6.6.2 The initial conditions for §5.6.6.1 are as follows: The engine is on. The reservoir system pressure is 100 psi. If the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir is connected to the supply line coupling.

§5.6.6.3 The test sequence for §5.6.6.1 is as follows: The engine is turned off. Any single leakage type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in §5.6.3.1), is then introduced in the brake system. An application actuation of the parking brake control is then made. Thirty seconds after such actuation, a release actuation of the
parking brake control is made. Thirty seconds after the release actuation, a final application actuation of the parking brake control is made.

§5.6.6.4 For trailers, with initial conditions as specified in §5.6.6.5, the parking brake system shall be capable of meeting the minimum performance specified either in §5.6.1 or §5.6.2, with any single leakage-type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in §5.6.3.1), at the conclusion of the test sequence specified in §5.6.6.6.

§5.6.6.5 The initial conditions for §5.6.6.4 are as follows: The reservoir system and supply line are pressurized to 100 psi, using the supply line portion of the trailer test rig (Figure 1). If the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir is connected to the rear supply line coupling.

§5.6.6.6 The test sequence for §5.6.6.4 is as follows. Any single leakage-type failure, in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in §5.6.3.1), is introduced in the brake system. The front supply line coupling is vented to the atmosphere. Thirty seconds after the initiation of such venting, the supply line is repressurized with the trailer test rig (Figure 1). Thirty seconds after the initiation of such repressurization of the supply line, the front supply line coupling is vented to the atmosphere. This procedure is conducted either by connection and disconnection of the supply line coupling or by use of a valve installed in the supply line portion of the trailer test rig near the supply line coupling.

§5.6.7 Maximum level of common diaphragm leakage-type failure/Equivalent level of leakage from the air chamber containing that diaphragm. In the case of vehicles for which the option in §5.6(b) has been elected, determine the maximum level of common diaphragm leakage-type failure (or equivalent level of leakage from the air chamber containing that diaphragm) according to the procedures set forth in §5.6.7.1 through §5.6.7.23.

§5.6.7.1 Trucks and buses.
engine turned off, no application of any of the vehicle's brakes and, if the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir connected to the supply line coupling, make an application actuation of the parking brake control. Determine the maximum reservoir leakage rate (in psi per minute), which is the maximum rate of decrease in air pressure of any of the vehicle's reservoirs that results after that parking brake application.

S5.6.7.1.3 Using the following procedure, introduce a leakage-type failure of the common diaphragm (or equivalent leakage from the air chamber containing that diaphragm) that results in a maximum reservoir leakage rate that is three times the threshold maximum reservoir leakage rate determined in S5.6.7.1.2. With an initial reservoir system pressure of 100 psi, the engine turned off, no application of any of the vehicle's brakes and, if the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir connected to the supply line coupling, make an application actuation of the parking brake control. Determine the maximum reservoir leakage rate (in psi per minute), which is the maximum rate of decrease in air pressure of any of the vehicle's reservoirs that results after that parking brake application. The level of common diaphragm leakage-type failure (or equivalent leakage from the air chamber containing that diaphragm) associated with this reservoir leakage rate is the level that is to be used under the option set forth in S5.6(b).

S5.6.7.2 Trailers.
S5.6.7.2.1 According to the following procedure, determine the threshold level of common diaphragm leakage-type failure (or equivalent level of leakage from the air chamber containing that diaphragm) at which the vehicle's parking brakes become unreleasable. With an initial reservoir system and supply line pressure of 100 psi, no application of any of the vehicle's brakes and, if the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir connected to the supply line coupling, introduce a leakage-type failure of the common diaphragm (or equivalent leakage from the air chamber containing that diaphragm). Make a parking brake application by venting the front supply line coupling to the atmosphere, and reduce the pressures in all of the vehicle's reservoirs to zero. Pressurize the supply line by connecting the trailer's front supply line coupling to the supply line portion of the trailer test rig (Figure 1) with the regulator of the trailer test rig set at 100 psi, and determine whether all of the mechanical means referred to in S5.6.3.2 continue to be actuated and hold the parking brake applications with sufficient parking retardation forces to meet the minimum performance specified in either S5.6.1 or S5.6.2. Repeat this procedure with progressively decreasing or increasing levels (whichever is applicable) of leakage-type diaphragm failures or equivalent leakages, to determine the minimum level of common diaphragm leakage-type failure (or equivalent level of leakage from the air chamber containing that diaphragm) at which all of the mechanical means referred to in S5.6.3.2 continue to be actuated and hold the parking brake applications with sufficient parking retardation forces to meet the minimum performance specified in either S5.6.1 or S5.6.2.

S5.6.7.2.2 At the level of common diaphragm leakage-type failure (or equivalent level of leakage from the air chamber containing that diaphragm) determined in S5.6.7.2.1, and using the following procedure, determine the threshold maximum reservoir leakage rate (in psi per minute). With an initial reservoir system and supply line pressure of 100 psi, no application of any of the vehicle's brakes and, if the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir connected to the rear supply line coupling, make a parking brake application by venting the front supply line coupling to the atmosphere. Determine the maximum reservoir leakage rate (in psi per minute), which is the maximum rate of decrease in air pressure of any of the vehicle's reservoirs that results after that parking brake application.
§ 571.121 49 CFR Ch. V (10–1–16 Edition)

S5.6.7.2.3 Using the following procedure, a leakage-type failure of the common diaphragm (or equivalent leakage from the air chamber containing that diaphragm) that results in a maximum reservoir leakage rate that is three times the threshold maximum reservoir leakage rate determined in S5.6.7.2.2. With an initial reservoir system and supply line pressure of 100 psi, no application of any of the vehicle’s brakes and, if the vehicle is designed to tow a vehicle equipped with air brakes, a 50 cubic inch test reservoir connected to the rear supply line coupling, make a parking brake application by venting the front supply line coupling to the atmosphere. Determine the maximum reservoir leakage rate (in psi per minute), which is the maximum rate of decrease in air pressure of any of the vehicle’s reservoirs that results after that parking brake application. The level of common diaphragm leakage-type failure (or equivalent level of leakage from the air chamber containing that diaphragm) associated with this reservoir leakage rate is the level that is to be used under the option set forth in S5.6(b).

S5.7 Emergency brake system for trucks and buses. Each vehicle shall be equipped with an emergency brake system which, under the conditions of S6.1, conforms to the requirements of S5.7.1 through S5.7.3. However, the truck portion of an auto transporter need not meet the road test requirements of S5.7.1 and S5.7.3.

S5.7.1 Emergency brake system performance. When stopped six times for each combination of weight and speed specified in S5.3.1.1, except for a loaded truck tractor with an unbraked control trailer, on a road surface having a PFC of 0.9, with a single failure in the service brake system of a part designed to contain compressed air or brake fluid (except failure of a common valve, manifold, brake fluid housing, or brake chamber housing), the vehicle shall stop at least once in not more than the distance specified in Column 5 of Table II, measured from the point at which movement of the service brake control begins, except that a truck-tractor tested at its unloaded vehicle weight plus up to 1500 pounds shall stop at least once in not more than the distance specified in Column 6 of Table II. The stop shall be made without any part of the vehicle leaving the roadway, and with unlimited wheel lockup permitted at any speed.

S5.7.2 Emergency brake system operation. The emergency brake system shall be applied and released, and be capable of modulation, by means of the service brake control.

S5.7.3 Towing vehicle emergency brake requirements. In addition to meeting the other requirements of S5.7, a vehicle designed to tow another vehicle equipped with air brakes shall—

(a) In the case of a truck-tractor in the unloaded condition and a single unit truck which is capable of towing an airbrake equipped vehicle and is loaded to GVWR, be capable of meeting the requirements of S5.7.1 by operation of the service brake control only, with the trailer air supply line and air control line from the towing vehicle vented to the atmosphere in accordance with S6.1.14;

(b) Be capable of modulating the air in the supply or control line to the trailer by means of the service brake control with a single failure in the towing vehicle service brake system as specified in S5.7.1.

(c) [Reserved]

S5.8 Emergency brakes for trailers. Each trailer shall meet the requirements of S5.8.1 through S5.8.3.

S5.8.1 Emergency braking capability. Each trailer other than a trailer converter dolly shall have a parking brake system that conforms to S5.6 and that applies with the force specified in S5.6.1 or S5.6.2 when the air pressure in the supply line is at atmospheric pressure. A trailer converter dolly shall have, at the manufacturer’s option—

(a) A parking brake system that conforms to S5.6 and that applies with the force specified in S5.6.1 or S5.6.2 when the air pressure in the supply line is at atmospheric pressure, or

(b) An emergency system that automatically applies the service brakes when the service reservoir is at any pressure above 20 lb/in² and the supply line is at atmospheric pressure. However, any agricultural commodity trailer, heavy hauler trailer, or pulpwood trailer shall meet the requirements of S5.8.1 or, at the option of the
manufacturer, the requirements of §393.43 of this title.

§5.8.2 Supply line pressure retention. Any single leakage type failure in the service brake system (except for a failure of the supply line, a valve directly connected to the supply line or a component of a brake chamber housing) shall not result in the pressure in the supply line falling below 70 psi, measured at the forward trailer supply coupling. A trailer shall meet the above supply line pressure retention requirement with its brake system connected to the trailer test rig shown in Figure 1, with the reservoirs of the trailer and test rig initially pressurized to 100 psi and the regulator of the trailer test rig set at 100 psi; except that a trailer equipped with an air-applied, mechanically-held parking brake system and not designed to tow a vehicle equipped with air brakes, at the manufacturer’s option, may meet the requirements of §5.8.4 rather than those of §5.8.2 and §5.8.3.

§5.8.3 Automatic application of parking brakes. With an initial reservoir system pressure of 100 psi and initial supply line pressure of 100 psi, and if designed to tow a vehicle equipped with air brakes, with a 50 cubic inch test reservoir connected to the rear supply line coupling, and with any subsequent single leakage type failure in any other brake system, of a part designed to contain compressed air or brake fluid (consistent with the parenthetical phrase specified in §5.6.3.1), whenever the air pressure in the supply line is 70 psi or higher, the parking brakes shall not provide any brake retardation as a result of complete or partial automatic application of the parking brakes.

§5.8.4 Automatic application of air-applied, mechanically held parking brakes. With its brake system connected to the supply line portion of the trailer test rig (Figure 1) and the regulator of the trailer test rig set at 100 psi, and with any single leakage type failure in the service brake system (except for a failure of the supply line, a valve directly connected to the supply line or a component of a brake chamber, but including failure of any common diaphragm), the parking brakes shall not provide any brake retardation as a result of complete or partial automatic application of the parking brakes.

§5.9 Final inspection. Inspect the service brake system for the condition of adjustment and for the brake indicator display in accordance with §5.1.8 and §5.2.2.

§6. Conditions. The requirements of §5 shall be met by a vehicle when it is tested according to the conditions set in this §6, without replacing any brake system part or making any adjustments to the brake system except as specified. Unless otherwise specified, where a range of conditions is specified, the vehicle must be capable of meeting the requirements at all points within the range. On vehicles equipped with automatic brake adjusters, the automatic brake adjusters must remain activated at all times. Compliance of vehicles manufactured in two or more stages may, at the option of the final-stage manufacturer, be demonstrated to comply with this standard by adherence to the instructions of the incomplete vehicle manufacturer provided with the vehicle in accordance with §568.4(a)(7)(ii) and §568.5 of title 49 of the Code of Federal Regulations.

§6.1 Road test conditions.

§6.1.1 Except as otherwise specified, the vehicle is loaded to its GVWR, distributed proportionally to its GAWRs. During the burnish procedure specified in §6.1.8, truck tractors shall be loaded to their GVWR, by coupling them to an unbraked flatbed semitrailer, which semitrailer shall be loaded so that the weight of the tractor-trailer combination equals the GVWR of the truck tractor. The load on the unbraked flatbed semitrailer shall be located so that the truck tractor’s wheels do not lock during burnish.

§6.1.2 The inflation pressure is as specified by the vehicle manufacturer for the GVWR.

§6.1.3 Unless otherwise specified, the transmission selector control is in neutral or the clutch is disengaged during all decelerations and during static parking brake tests.

§6.1.4 All vehicle openings (doors, windows, hood, trunk, cargo doors, etc.) are in a closed position except as required for instrumentation purposes.

§6.1.5 The ambient temperature is between 32 °F. and 100 °F.
S6.1.6 The wind velocity is zero.

S6.1.7 Unless otherwise specified, stopping tests are conducted on a 12-foot wide level, straight roadway having a peak friction coefficient of 0.9. For road tests in S5.3, the vehicle is aligned in the center of the roadway at the beginning of a stop. Peak friction coefficient is measured using an ASTM E1136 standard reference test tire (see ASTM E1136–93 (Reapproved 2003) (incorporated by reference, see § 571.5)) in accordance with ASTM Method E1337–90 (Reapproved 2008) (incorporated by reference, see § 571.5), at a speed of 40 mph, without water delivery for the surface with PFC of 0.9, and with water delivery for the surface with PFC of 0.5.

S6.1.8 For vehicles with parking brake systems not utilizing the service brake friction elements, burnish the friction elements of such systems prior to the parking brake test according to the manufacturer’s recommendations. For vehicles with parking brake systems utilizing the service brake friction elements, burnish the brakes as follows: With the transmission in the highest gear appropriate for a speed of 40 mph, make 500 snubs between 40 mph and 20 mph at a deceleration rate of 10 f.p.s.p.s., or at the vehicle’s maximum deceleration rate if less than 10 f.p.s.p.s. Except where an adjustment is specified, after each brake application accelerate to 40 mph and maintain that speed until making the next brake application at a point 1 mile from the initial point of the previous brake application. If the vehicle cannot attain a speed of 40 mph in 1 mile, continue to accelerate until the vehicle reaches 40 mph or until the vehicle has traveled 1.5 miles from the initial point of the previous brake application, whichever occurs first. Any automatic pressure limiting valve is in use to limit pressure as designed. The brakes may be adjusted up to three times during the burnish procedure, at intervals specified by the vehicle manufacturer, and may be adjusted at the conclusion of the burnishing, in accordance with the vehicle manufacturer’s recommendation.

S6.1.9 Static parking brake tests for a semitrailer are conducted with the front-end supported by an unbraked dolly. The weight of the dolly is included as part of the trailer load.

S6.1.10 In a test other than a static parking test, a truck tractor is tested at its GVWR by coupling it to an unbraked flatbed semi-trailer (hereafter, control trailer) as specified in S6.1.10.2 to S6.1.10.4.

S6.1.10.1 [Reserved]

S6.1.10.2 The center of gravity height of the ballast on the loaded control trailer shall be less than 24 inches above the top of the tractor’s fifth wheel.

S6.1.10.3 The control trailer has a single axle with a GAWR of 18,000 pounds and a length, measured from the transverse centerline of the axle to the centerline of the kingpin, of 258 ±6 inches.

S6.1.10.4 The control trailer is loaded so that its axle is loaded at 4,500 pounds and the tractor is loaded to its GVWR, loaded above the kingpin only, with the tractor’s fifth wheel adjusted so that the load on each axle measured at the tire-ground interface is most nearly proportional to the axles’ respective GAWRs, without exceeding the GAWR of the tractor’s axle or axles or control trailer’s axle.

S6.1.11 Special drive conditions. A vehicle equipped with an interlocking axle system or a front wheel drive system that is engaged and disengaged by the driver is tested with the system disengaged.

S6.1.12 Liftable axles. A vehicle with a liftable axle is tested at GVWR with the liftable axle down and at unloaded vehicle weight with the liftable axle up.

S6.1.13 Trailer test rig.

The trailer test rig shown in Figure 1 is calibrated in accordance with the calibration curves shown in Figure 3. For the requirements of S5.3.3.1 and S5.3.4.1, the pressure in the trailer test rig reservoir is initially set at 100 psi for actuation tests and 95 psi for release tests.

S6.1.14 In testing the emergency braking system of towing vehicles under S5.7.3(a), the hose(s) is vented to the atmosphere at any time not less than 1 second and not more than 1 minute before the emergency stop begins, while the vehicle is moving at the speed from which the stop is to be
made and any manual control for the towing vehicle protection system is in the position to supply air and brake control signals to the vehicle being towed. No brake application is made from the time the line(s) is vented until the emergency stop begins and no manual operation of the parking brake system or towing vehicle protection system occurs from the time the line(s) is vented until the stop is completed.

§6.1.15 Initial brake temperature. Unless otherwise specified, the initial brake temperature is not less than 150 °F and not more than 200 °F.

§6.1.16 Thermocouples. The brake temperature is measured by plug-type thermocouples installed in the approximate center of the facing length and width of the most heavily loaded shoe or disc pad, one per brake, as shown in Figure 2. A second thermocouple may be installed at the beginning of the test sequence if the lining wear is expected to reach a point causing the first thermocouple to contact the rubbing surface of a drum or rotor. The second thermocouple shall be installed at a depth of .080 inch and located within 1 inch circumferentially of the thermocouple installed at .040 inch depth. For centergrooved shoes or pads, thermocouples are installed within one-eighth of an inch to one-quarter of an inch of the groove and as close to the center as possible.

§6.1.17 Selection of compliance options. Where manufacturer options are specified, the manufacturer shall select the option by the time it certifies the vehicle and may not thereafter select a different option for the vehicle. Each manufacturer shall, upon request from the National Highway Traffic Safety Administration, provide information regarding which of the compliance options it has selected for a particular vehicle or make/model.

§6.2 Dynamometer test conditions.

§6.2.1 The dynamometer inertia for each wheel is equivalent to the load on the wheel with the axle loaded to its GAWR. For a vehicle having additional GAWRs specified for operation at reduced speeds, the GAWR used is that specified for a speed of 50 mph, or, at the option of the manufacturer, any speed greater than 50 mph.

§6.2.2 The ambient temperature is between 75 °F. and 100 °F.

§6.2.3 Air at ambient temperature is directed uniformly and continuously over the brake drum or disc at a velocity of 2,200 feet per minute.

§6.2.4 The temperature of each brake is measured by a single plug-type thermocouple installed in the center of the lining surface of the most heavily loaded shoe or pad as shown in Figure 2. The thermocouple is outside any center groove.

§6.2.5 The rate of brake drum or disc rotation on a dynamometer corresponding to the rate of rotation on a vehicle at a given speed is calculated by assuming a tire radius equal to the static loaded radius specified by the tire manufacturer.

§6.2.6 Brakes are burnished before testing as follows: place the brake assembly on an inertia dynamometer and adjust the brake as recommended by the vehicle manufacturer. Make 200 stops from 40 mph at a deceleration of 10 f.p.s.p.s., with an initial brake temperature on each stop of not less than 315 °F and not more than 385 °F. Make 200 additional stops from 40 mph at a deceleration of 10 f.p.s.p.s. with an initial brake temperature on each stop of not less than 450 °F and not more than 550 °F. The brakes may be adjusted up to three times during the burnish procedure, at intervals specified by the vehicle manufacturer, and may be adjusted at the conclusion of the burnishing, in accordance with the vehicle manufacturer's recommendation.

§6.2.7 The brake temperature is increased to a specified level by conducting one or more stops from 40 m.p.h. at a deceleration of 10 f.p.s.p.s. The brake temperature is decreased to a specified level by rotating the drum or disc at a constant 30 m.p.h.
Figure 1. Trailer Test Rig.
FIGURE 2
THERMOCOUPLE INSTALLATION

Twist and silver solder

1/8 OD copper tube open ID with No. 46 drill (0.006 dia)

Grind to 1/8 max before placing in lining

0.040 recess under ground surface

CB drill No. 31
0.00 max depth before grind

0.040 recess under ground surface

20 gage 0.032
dia 1C Duplex wire (0.35/ft)

VerDate Sep<11>2014 11:07 Jan 24, 2017 Jkt 238230 PO 00000 Frm 00577 Fmt 8010 Sfmt 8006
Figure 3. Pressure vs. Time for 50 in³ Test Reservoir.
TABLE I—STOPPING SEQUENCE

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Trucktractors</th>
<th>Single unit trucks and buses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burnish</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stability and Control at GVWR (PFC 0.5)</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>Stability and Control at LLVW (PFC 0.5)</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Manual Adjustment of Brakes</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>60 mph Service Brake Stops at GVWR (PFC 0.9)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>60 mph Emergency Service Brake Stops at GVWR (PFC 0.9)</td>
<td>N/A</td>
<td>3</td>
</tr>
</tbody>
</table>

TABLE I—STOPPING SEQUENCE—Continued

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Trucktractors</th>
<th>Single unit trucks and buses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Brake Test at GVWR</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Manual Adjustment of Brakes</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>60 mph Service Brake Stops at LLVW (PFC 0.9)</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>60 mph Emergency Service Brake Stops at LLVW (PFC 0.9)</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Parking Brake Test at LLVW</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Final Inspection</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

TABLE II—STOPPING DISTANCE IN FEET

<table>
<thead>
<tr>
<th>Vehicle speed in miles per hour</th>
<th>Service brake</th>
<th>Emergency brake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PFC 0.9</td>
<td>PFC 0.9</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>78</td>
</tr>
<tr>
<td>35</td>
<td>96</td>
<td>106</td>
</tr>
<tr>
<td>40</td>
<td>125</td>
<td>138</td>
</tr>
<tr>
<td>45</td>
<td>158</td>
<td>175</td>
</tr>
<tr>
<td>50</td>
<td>195</td>
<td>216</td>
</tr>
<tr>
<td>55</td>
<td>236</td>
<td>261</td>
</tr>
<tr>
<td>60</td>
<td>280</td>
<td>310</td>
</tr>
</tbody>
</table>

Note:

1. Loaded and Unloaded Buses.
2. Loaded Single-Unit Trucks.
3. Loaded Tractors with Two Axles; or with Three Axles and a GVWR of 70,000 lbs. or less; or with Four or More Axles and a GVWR of 80,000 lbs. or less. Tested with an Unbraked Control Trailer.
4. Loaded Tractors with Three Axles and a GVWR greater than 70,000 lbs.; or with Four or More Axles and a GVWR greater than 80,000 lbs. Tested with an Unbraked Control Trailer.
5. Unloaded Single-Unit Trucks.
6. Unloaded Tractors (Bobtail).
7. All Vehicles except Tractors. Loaded and Unloaded.
8. Unloaded Tractors (Bobtail).

TABLE IIA—STOPPING DISTANCE IN FEET: OPTIONAL REQUIREMENTS FOR: (1) THREE-AXLE TRACTORS WITH A FRONT AXLE THAT HAS A GAWR OF 14,600 POUNDS OR LESS, AND WITH TWO REAR DRIVE AXLES THAT HAVE A COMBINED GAWR OF 45,000 POUNDS OR LESS, MANUFACTURED BEFORE AUGUST 1, 2011; AND (2) ALL OTHER TRACTORS MANUFACTURED BEFORE AUGUST 1, 2013

<table>
<thead>
<tr>
<th>Vehicle speed in miles per hour</th>
<th>Service Brake</th>
<th>Emergency Brake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PFC 0.9</td>
<td>PFC 0.9</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>78</td>
</tr>
<tr>
<td>35</td>
<td>96</td>
<td>106</td>
</tr>
<tr>
<td>40</td>
<td>125</td>
<td>138</td>
</tr>
<tr>
<td>45</td>
<td>158</td>
<td>175</td>
</tr>
<tr>
<td>50</td>
<td>195</td>
<td>216</td>
</tr>
<tr>
<td>55</td>
<td>236</td>
<td>261</td>
</tr>
<tr>
<td>60</td>
<td>280</td>
<td>310</td>
</tr>
</tbody>
</table>

Note:

1. Loaded and unloaded buses; 2. Loaded single unit trucks; 3. Unloaded truck tractors and single unit trucks; 4. Loaded truck tractors tested with an unbraked control trailer; 5. All vehicles except truck tractors; 6. Unloaded truck tractors.
§ 571.122 Standard No. 122; Motorcycle brake systems.

S1. Scope. This standard specifies requirements for motorcycle service brake systems and, where applicable, associated parking brake systems.

S2. Purpose. The purpose of the standard is to ensure safe motorcycle braking performance under normal and emergency riding conditions.

S3. Application. This standard applies to category 3–1 motorcycles, category 3–2 motorcycles, category 3–3 motorcycles, and category 3–4 motorcycles manufactured on and after September 1, 2014. This standard applies to category 3–5 motorcycles manufactured on and after September 1, 2015. At the manufacturer’s option, any motorcycle manufactured on or after October 25, 2012 may comply with this standard.

S4. Definitions.

Antilock brake system or ABS means a system which senses wheel slip and automatically modulates the pressure producing the braking forces at the wheel(s) to limit the degree of wheel slip.

Baseline test means a stop or a series of stops carried out in order to confirm the performance of the brake prior to subjecting it to a further test such as the heating procedure or wet brake stop.

Brake means those parts of the brake system where the forces opposing the movement of the motorcycle are developed.

Brake system means the combination of parts consisting of the control, the brake, and the components that provide the functional link between the control and the brake, but excluding the engine, whose function it is to progressively reduce the speed of a moving motorcycle, bring it to a halt, and keep it stationary when halted.

Category 3–1 motorcycle means a two-wheeled motorcycle with an engine cylinder capacity in the case of a thermic engine not exceeding 50 cubic centimeters (cm³) and whatever the means of propulsion a maximum design speed not exceeding 50 kilometers per hour (km/h).

Category 3–2 motorcycle means a three-wheeled motorcycle of any wheel arrangement with an engine cylinder capacity in the case of a thermic engine not exceeding 50 cm³ and whatever the means of propulsion a maximum design speed not exceeding 50 km/h.

Category 3–3 motorcycle means a two-wheeled motorcycle with an engine cylinder capacity in the case of a thermic engine exceeding 50 cm³ or whatever the means of propulsion a maximum design speed exceeding 50 km/h.

TABLE III—Brake Retardation Force

<table>
<thead>
<tr>
<th>Column 1 brake retardation force/GAWR</th>
<th>Column 2 brake chamber pressure, PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>20</td>
</tr>
<tr>
<td>0.12</td>
<td>30</td>
</tr>
<tr>
<td>0.18</td>
<td>40</td>
</tr>
<tr>
<td>0.25</td>
<td>50</td>
</tr>
<tr>
<td>0.31</td>
<td>60</td>
</tr>
</tbody>
</table>

TABLE III—Brake Retardation Force—Continued

<table>
<thead>
<tr>
<th>Column 1 brake retardation force/GAWR</th>
<th>Column 2 brake chamber pressure, PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37</td>
<td>70</td>
</tr>
<tr>
<td>0.41</td>
<td>80</td>
</tr>
</tbody>
</table>

TABLE IV [RESERVED]

TABLE V—Brake Chamber Rated Volumes

<table>
<thead>
<tr>
<th>Brake Chamber type (nominal area of piston or diaphragm in square inches)</th>
<th>Column 1 full stroke (inches)</th>
<th>Column 2 rated volume (cubic inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 9 1.75/2.10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Type 12 1.75/2.10</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Type 14 2.25/2.70</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Type 16 2.25/2.70</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Type 18 2.25/2.70</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Type 20 2.25/2.70</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Type 24 2.50/3.20</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Type 30 2.50/3.20</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Type 36 3.00/3.60</td>
<td>135</td>
<td></td>
</tr>
</tbody>
</table>

Category 3–4 motorcycle means a motorcycle manufactured with three wheels asymmetrically arranged in relation to the longitudinal median plane with an engine cylinder capacity in the case of a thermic engine exceeding 50 cm³ or whatever the means of propulsion a maximum design speed exceeding 50 km/h. (This category definition is intended to include motorcycles with sidecars.)

Category 3–5 motorcycle means a motorcycle manufactured with three wheels symmetrically arranged in relation to the longitudinal median plane with an engine cylinder capacity in the case of a thermic engine exceeding 50 cm³ or whatever the means of propulsion a maximum design speed exceeding 50 km/h.

Combined brake system or CBS means:
(a) For motorcycle categories 3–1 and 3–3: a service brake system where at least two brakes on different wheels are actuated by the operation of a single control.
(b) For motorcycle categories 3–2 and 3–5: a service brake system where the brakes on all wheels are actuated by the operation of a single control.
(c) For motorcycle category 3–4: a service brake system where the brakes on at least the front and rear wheels are actuated by the operation of a single control. (If the rear wheel and the asymmetrical wheel are braked by the same brake system, this is regarded as the rear brake.)

Control means the part actuated directly by the rider in order to supply and regulate the energy required for braking the motorcycle.

Driver mass means the nominal mass of a driver that equals 75 kg (68 kg occupant mass plus 7 kg of luggage mass).

Engine disconnected means when the engine is no longer internally connected to the driving wheel(s), i.e., the clutch is disengaged and/or the transmission is in neutral.

Gross vehicle mass means the maximum mass of the fully laden solo vehicle, based on its construction and design performances, as declared by the manufacturer.

Initial brake temperature means the temperature of the hottest brake before any brake application.

Laden means the gross vehicle mass.

Lightly loaded means mass in running order plus 15 kg for test equipment, or the laden condition, whichever is less. In the case of ABS tests on a low friction surface (paragraphs S6.9.4 to S6.9.7), the mass for test equipment is increased to 30 kg to account for outriggers.

Mass in running order means the sum of unladen vehicle mass and driver mass.

Peak braking coefficient or PBC means the measure of tire-to-road surface friction based on the maximum deceleration of a rolling tire.

Power-assisted braking system means a brake system in which the energy necessary to produce the braking force is supplied by the physical effort of the rider assisted by one or more energy supplying devices, for example vacuum assisted (with vacuum booster).

Secondary brake system means the second service brake system on a motorcycle equipped with a combined brake system.

Service brake system means a brake system which is used for slowing the motorcycle when in motion.

Sidecar means a one-wheeled vehicle that is attached to the side of a motorcycle.

Single brake system means a brake system which acts on only one axle.

Split service brake system or SSBS means a brake system that operates the brakes on all wheels, consisting of two or more subsystems actuated by a single control designed so that a single failure in any subsystem (such as a leakage type failure of a hydraulic subsystem) does not impair the operation of any other subsystem.

Stopping distance means the distance traveled by the motorcycle from the point the rider begins to actuate the brake control to the point at which the motorcycle reaches full stop. For tests where simultaneous actuation of two controls is specified, the distance traveled is taken from the point the first control is actuated.

Test speed means the motorcycle speed measured the moment the rider begins to actuate the brake control. For tests where simultaneous actuation of two controls is specified, the motorcycle speed is taken from the moment the first control is actuated.
Unladen vehicle mass means the nominal mass of a complete vehicle as determined by the following criteria:

(a) Mass of the vehicle with bodywork and all factory fitted equipment, electrical and auxiliary equipment for normal operation of vehicle, including liquids, tools, fire extinguisher, standard spare parts, chocks and spare wheel, if fitted.

(b) The fuel tanks filled to at least 90 percent of rated capacity and the other liquid containing systems (except those for used water) to 100 percent of the capacity specified by the manufacturer.

V\text{max}\) means either the speed attainable by accelerating at a maximum rate from a standing start for a distance of 1.6 km on a level surface, with the vehicle lightly loaded, or the speed measured in accordance with International Organization for Standardization (ISO) 7117:1995(E) (incorporated by reference; see §571.5).

Wheel lock means the condition that occurs when there is 100 percent wheel slip.

§571.122 49 CFR Ch. V (10–1–16 Edition)

S5. General requirements.

S5.1 Brake system requirements. Each motorcycle shall meet each of the test requirements specified for a motorcycle of its category and for those brake features on the motorcycle.

S5.1.1 Service brake system control operation. Each motorcycle shall have a configuration that enables a rider to actuate the service brake system control while seated in the normal driving position and with both hands on the steering control.

S5.1.2 Secondary brake system control operation. Each motorcycle shall have a configuration that enables a rider to actuate the secondary brake system control while seated in the normal driving position and with at least one hand on the steering control.

S5.1.3 Parking brake system. If a parking brake system is fitted, it shall hold the motorcycle stationary on the slope prescribed in S6.8.2. The parking brake system shall:

(1) have a control which is separate from the service brake system controls; and

(2) be held in the locked position by solely mechanical means.
(b) Have a minimum reservoir capacity equivalent to 1.5 times the total fluid displacement required to satisfy the new to fully worn lining condition with the worst case brake adjustment conditions; and
(c) Have a reservoir where the fluid level is visible for checking without removal of the cover.
(d) Have a brake fluid warning statement that reads as follows, in letters at least 3/32 of an inch high: Warning: Clean filler cap before removing. Use only fluid from a sealed container (inserting the recommended type of brake fluid as specified in accordance with 49 CFR 571.116, e.g., “DOT 3”). The lettering shall be:
(1) Permanently affixed, engraved, or embossed;
(2) Located so as to be visible by direct view, either on or within 4 inches of the brake-fluid reservoir filler plug or cap; and
(3) Of a color that contrasts with its background, if it is not engraved or embossed.
§5.1.10 Warning lamps. All warning lamps shall be mounted in the rider’s view.
§5.1.10.1 Split service brake system warning lamps.
(a) Each motorcycle that is equipped with a split service brake system shall be fitted with a red warning lamp, which shall be activated:
(1) When there is a hydraulic failure on the application of a force of ≤90 N on the control; or
(2) Without actuation of the brake control, when the brake fluid level in the master cylinder reservoir falls below the greater of:
(i) That which is specified by the manufacturer; or
(ii) That which is less than or equal to half of the fluid reservoir capacity.
(b) To permit function checking, the warning lamp shall be illuminated by the activation of the ignition switch and extinguished when the check has been completed. The warning lamp shall remain on while a failure condition exists whenever the ignition switch is in the “on” position.
(c) The indicator shall be labeled in letters at least 3/32 of an inch high with the words “Antilock” or “Anti-lock” or “ABS” in accordance with Table 1 of Standard No. 101 (49 CFR 571.101).
§5.2 Durability.
§5.2.1 Compensation for wear. Wear of the brakes shall be compensated for by means of a system of automatic or manual adjustment.
§5.2.2 Notice of wear. The friction material thickness shall either be visible without disassembly, or where the friction material is not visible, wear shall be assessed by means of a device designed for that purpose.
§5.2.3 Testing. During all the tests in this standard and on their completion, there shall be no friction material detachment and no leakage of brake fluid.
§5.3 Measurement of dynamic performance. There are two ways in which brake system performance is measured. The particular method to be used is specified in the respective tests in S6.
§5.3.1 Stopping distance.
(a) Based on the basic equations of motion:
S = 0.1 · V + (X) · V^2,
Where:
S = stopping distance in meters
V = initial vehicle speed in km/h
X = a variable based on the requirement for each test
(b) To calculate the corrected stopping distance using the actual vehicle test speed, the following formula is used:
§ 571.122

Ss = 0.1·Vs + (Sa − 0.1·Vs) · Vs²/Va²,

Where:
Ss = corrected stopping distance in meters
Vs = specified vehicle test speed in km/h
Sa = actual stopping distance in meters
Va = actual vehicle test speed in km/h

NOTE TO S5.3.1(b): This equation is only valid when the actual test speed (Va) is within ±5 km/h of the specified test speed (Vs).

S5.3.2 Continuous deceleration recording. The other method used to measure performance is the continuous recording of the vehicle instantaneous deceleration from the moment a force is applied to the brake control until the end of the stop.

S6. Test conditions, procedures and performance requirements.

S6.1 General.

S6.1.1 Test surfaces.

S6.1.1.1 High friction surface. A high friction surface is used for all dynamic brake tests excluding the ABS tests where a low-friction surface is specified. The high-friction surface test area is a clean, dry and level surface, with a gradient of ≤1 percent. The high-friction surface has a peak braking coefficient (PBC) of 0.9.

S6.1.1.2 Low-friction surface. A low-friction surface is used for ABS tests where a low-friction surface is specified. The low-friction surface test area is a clean and level surface, which may be wet or dry, with a gradient of ≤1 percent. The low-friction surface has a PBC of ≤0.45.

S6.1.1.3 Measurement of PBC. The PBC is measured using the American Society for Testing and Materials (ASTM) E1136–93 (Reapproved 2003) standard reference test tire, in accordance with ASTM Method E1337–90 (Reapproved 2008), at a speed of 64 km/h (both publications incorporated by reference; see §571.5).

S6.1.1.4 Parking brake system tests. The specified test slope has a clean and dry surface that does not deform under the weight of the motorcycle.

S6.1.1.5 Test lane width. For two-wheeled motorcycles (motorcycle categories 3-1 and 3-3) the test lane width is 2.5 meters. For three-wheeled motorcycles (motorcycle categories 3-2, 3-4 and 3-5) the test lane width is 2.5 meters plus the vehicle width.

S6.1.2 Ambient temperature. The ambient temperature is between 4 °C and 45 °C.

S6.1.3 Wind speed. The wind speed is not more than 5 meters per second (m/s).

S6.1.4 Test speed tolerance. The test speed tolerance is ±5 km/h. In the event of the actual test speed deviating from the specified test speed (but within the ±5 km/h tolerance), the actual stopping distance is corrected using the formula in S5.3.1(b).

S6.1.5 Automatic transmission. Motorcycles with automatic transmission shall meet all test requirements—whether they are for “engine connected” or “engine disconnected.” If an automatic transmission has a neutral position, the neutral position is selected for tests where “engine disconnected” is specified.

S6.1.6 Vehicle position and wheel lock. The vehicle is positioned in the center of the test lane for the beginning of each stop. Stops are made without the vehicle wheels passing outside the applicable test lane and without wheel lock.

S6.1.7 Test sequence. Test sequence is as specified in Table 1.

S6.2 Preparation.

S6.2.1 Engine idle speed. The engine idle speed is set to the manufacturer’s specification.

S6.2.2 Tire pressures. The tires are inflated to the manufacturer’s specification for the vehicle loading condition for the test.

S6.2.3 Control application points and direction. For a hand control lever, the input force (F) is applied on the control lever’s forward surface perpendicular to the axis of the lever fulcrum and its outermost point on the plane along which the control lever rotates (see Figure 1). The input force is applied to a point located 50 millimeters (mm) from the outermost point of the control lever, measured along the axis between the central axis of the fulcrum of the lever and its outermost point. For a foot control pedal, the input force is applied to the center of, and at right angles to, the control pedal.

S6.2.4 Brake temperature measurement. The brake temperature is measured on the approximate center of the facing length and width of the most
heavily loaded shoe or disc pad, one per brake, using a plug-type thermocouple that is embedded in the friction material, as shown in Figure 2.

S6.2.5 Burnishing procedure. The vehicle brakes are burnished prior to evaluating performance.

S6.2.5.1 Vehicle condition.
(a) Vehicle lightly loaded.
(b) Engine disconnected.

S6.2.5.2 Conditions and procedure.
(a) Initial brake temperature. Initial brake temperature before each brake application is ≤100 °C.
(b) Test speed.
(1) Initial speed: 50 km/h or 0.8 Vmax, whichever is lower.
(2) Final speed = 5 to 10 km/h.
(c) Brake application. Each service brake system control actuated separately.
(d) Vehicle deceleration.
(1) Single front brake system only:
 (i) 3.0–3.5 meters per second squared (m/s²) for motorcycle categories 3–3 and 3–4
 (ii) 1.5–2.0 m/s² for motorcycle categories 3–1 and 3–2
(2) Single rear brake system only: 1.5–2.0 m/s²
(3) CBS or split service brake system, and category 3–5: 3.5–4.0 m/s²
(e) Number of decelerations. There shall be 100 decelerations per brake system.
(f) For the first stop, accelerate the vehicle to the initial speed and then actuate the brake control under the conditions specified until the final speed is reached. Then reaccelerate to the initial speed and maintain that speed until the brake temperature falls to the specified initial value. When these conditions are met, reapply the brake as specified. Repeat this procedure for the number of specified decelerations. After burnishing, adjust the brakes in accordance with the manufacturer’s recommendations.

S6.3 Dry stop test—single brake control actuated.

S6.3.1 Vehicle condition.
(a) The test is applicable to all motorcycle categories.
(b) Laden. For vehicles fitted with CBS and split service brake system, the vehicle is tested in the lightly loaded condition in addition to the laden condition.

S6.3.2 Test conditions and procedure.
(a) Initial brake temperature. Initial brake temperature is ≥55 °C and ≤100 °C.
(b) Test speed.
(1) Motorcycle categories 3–1 and 3–2: 40 km/h or 0.9 Vmax, whichever is lower.
(2) Motorcycle categories 3–3, 3–4 and 3–5: 60 km/h or 0.9 Vmax, whichever is lower.
(c) Brake application. Each service brake system control actuated separately.
(d) Brake actuation force.
(1) Hand control: ≤200 N.
(2) Foot control:
 (i) ≤350 N for motorcycle categories 3–1, 3–2, 3–3 and 3–5.
 (ii) ≤500 N for motorcycle category 3–4.
(e) Number of stops: until the vehicle meets the performance requirements, with a maximum of 6 stops.
(f) For each stop, accelerate the vehicle to the test speed and then actuate the brake control under the conditions specified in this paragraph.

S6.3.3 Performance requirements. When the brakes are tested in accordance with the test procedure set out in paragraph S6.3.2., the stopping distance shall be as specified in column 2 of Table 2.

S6.4 Dry stop test—all service brake controls actuated.

S6.4.1 Vehicle condition.
(a) The test is applicable to motorcycle categories 3–3, 3–4 and 3–5.
(b) Lightly loaded.
(c) Engine disconnected.

S6.4.2 Test conditions and procedure.
(a) Initial brake temperature. Initial brake temperature is ≥55 °C and ≤100 °C.
(b) Test speed. Test speed is 100 km/h or 0.9 Vmax, whichever is lower.
(c) Brake application. Simultaneous actuation of both service brake system controls, if so equipped, or of the single service brake system control in the case of a service brake system that operates on all wheels.
(d) Brake actuation force.
(1) Hand control: ≤250 N.
(2) Foot control:
 (i) ≤400 N for motorcycle categories 3–3 and 3–4.
 (ii) ≤500 N for motorcycle category 3–5.
§571.122 49 CFR Ch. V (10–1–16 Edition)

(e) Number of stops: until the vehicle meets the performance requirements, with a maximum of 6 stops.

(f) For each stop, accelerate the vehicle to the test speed and then actuate the brake control under the conditions specified in this paragraph.

S6.4.3 Performance requirements. When the brakes are tested in accordance with the test procedure set out in paragraph S6.4.2., the stopping distance (S) shall be $S \leq 0.0060 V^2$ (where V is the specified test speed in km/h and S is the required stopping distance in meters).

S6.5 High speed test.

S6.5.1 Vehicle condition.

(a) The test is applicable to motorcycle categories 3–3, 3–4 and 3–5.

(b) Test is not required for vehicles with Vmax ≤ 125 km/h.

(c) Lightly loaded.

(d) Engine connected (clutch engaged) with the transmission in the highest gear.

S6.5.2 Test conditions and procedure.

(a) Initial brake temperature. Initial brake temperature is ≥ 55 °C and ≤ 100 °C.

(b) Test speed.

(1) Test speed is 0.8 Vmax for motorcycles with Vmax > 125 km/h and < 200 km/h.

(2) Test speed is 160 km/h for motorcycles with Vmax ≥ 200 km/h.

(c) Brake application. Simultaneous actuation of both service brake system controls, if so equipped, or of the single service brake system control in the case of a service brake system that operates on all wheels.

(d) Brake actuation force.

(1) Hand control: ≤ 200 N.

(2) Foot control:

(i) ≤ 350 N for motorcycle categories 3–3 and 3–4.

(ii) ≤ 500 N for motorcycle category 3–5.

(e) Number of stops: until the vehicle meets the performance requirements, with a maximum of 6 stops.

(f) For each stop, accelerate the vehicle to the test speed and then actuate the brake control(s) under the conditions specified in this paragraph.

S6.5.3 Performance requirements. When the brakes are tested in accordance with the test procedure set out in paragraph S6.5.2, the stopping distance (S) shall be $S \leq 0.1 V + 0.0067 V^2$ (where V is the specified test speed in km/h and S is the required stopping distance in meters).

S6.6 Wet brake test.

S6.6.1 General information.

(a) The test is comprised of two parts that are carried out consecutively for each brake system:

(1) A baseline test based on the dry stop test—single brake control actuated (S6.3).

(2) A single wet brake stop using the same test parameters as in (1), but with the brake(s) being continuously sprayed with water while the test is conducted in order to measure the brakes’ performance in wet conditions.

(b) The test is not applicable to parking brake systems unless it is the secondary brake.

(c) Drum brakes or fully enclosed disc brakes are excluded from this test unless ventilation or open inspection ports are present.

(d) This test requires the vehicle to be fitted with instrumentation that gives a continuous recording of brake control force and vehicle deceleration.

S6.6.2 Vehicle condition.

(a) The test is applicable to all motorcycle categories.

(b) Laden. For vehicles fitted with CBS and split service brake system, the vehicle is tested in the lightly loaded condition in addition to the laden condition.

(c) Engine disconnected.

(d) Each brake is fitted with water spray equipment as shown in Figure 3. (1) Disc brakes—sketch of water spray equipment.

(i) Water is sprayed onto each brake with a flow rate of 15 liters/hr. The water is equally distributed on each side of the rotor. (ii) If the surface of the rotor has any shielding, the spray is applied 45° prior to the shield.

(iii) If it is not possible to locate the spray in the position shown on the sketch, or if the spray coincides with a brake ventilation hole or similar, the spray nozzle may be advanced by an additional 90° maximum from the edge of the pad, using the same radius.

(2) Drum brakes with ventilation and open inspection ports. The water spray equipment is installed as follows:
(i) Water is sprayed equally onto both sides of the drum brake assembly (on the stationary back plate and on the rotating drum) with a flow rate of 15 liters/hr.

(ii) The spray nozzles are positioned two thirds of the distance from the outer circumference of the rotating drum to the wheel hub center.

(iii) The nozzle position is >15° from the edge of any opening in the drum back plate.

§571.122 Baseline test—test conditions and procedure.

(a) The test in paragraph S6.3 (dry stop test—single brake control actuated) is carried out for each brake system but with the brake control force that results in a vehicle deceleration of 2.5–3.0 m/s², and the following is determined:

(1) The average brake control force measured when the vehicle is traveling between 80 percent and 10 percent of the specified test speed.

(2) The average vehicle deceleration in the period 0.5 to 1.0 seconds after the point of actuation of the brake control.

(3) The maximum vehicle deceleration during the complete stop but excluding the final 0.5 seconds.

(b) Conduct 3 baseline stops and average the values obtained in (1), (2), and (3).

§571.122 Wet brake test—test conditions and procedure.

(a) The vehicle is ridden at the test speed used in the baseline test set out in §571.122 with the water spray equipment operating on the brake(s) to be tested and with no application of the brake system.

(b) After a distance of ≥500 m, apply the average brake control force determined in the baseline test for the brake system being tested.

(c) Measure the average vehicle deceleration in the period 0.5 to 1.0 seconds after the point of actuation of the brake control.

(d) Measure the maximum vehicle deceleration during the complete stop but excluding the final 0.5 seconds.

§571.122 Performance requirements. When the brakes are tested in accordance with the test procedure set out in paragraph §571.122, the wet brake deceleration performance shall be:

(a) The value measured in paragraph §571.122(c) shall be ≥60 percent of the average deceleration values recorded in the baseline test in paragraph §571.122(a)(2), i.e., in the period 0.5 to 1.0 seconds after the point of actuation of the brake control; and

(b) The value measured in §571.122(d) shall be ≤120 percent of the average deceleration values recorded in the baseline test §571.122(a)(3), i.e., during the complete stop but excluding the final 0.5 seconds.

§571.123 Heat fade test.

§571.123.1 General information.

(a) The test comprises three parts that are carried out consecutively for each brake system:

(1) A baseline test using the dry stop test—single brake control actuated (§571.122).

(2) A heating procedure which consists of a series of repeated stops in order to heat the brake(s).

(3) A hot brake stop using the dry stop test—single brake control actuated (§571.122), to measure the brake’s performance after the heating procedure.

(b) The test is applicable to motorcycle categories 3–3, 3–4 and 3–5.

(c) The test is not applicable to parking brake systems and secondary service brake systems.

(d) All stops are carried out with the motorcycle laden.

(e) The heating procedure requires the motorcycle to be fitted with instrumentation that gives a continuous recording of brake control force and vehicle deceleration.

§571.123 Baseline test.

§571.123.1 Vehicle condition—baseline test. Engine disconnected.

§571.123.2 Test conditions and procedure—baseline test.

(a) Initial brake temperature. Initial brake temperature is ≥55 °C and ≤100 °C.

(b) Test speed. Test speed is 60 km/h or 0.9 Vmax, whichever is the lower.

(c) Brake application. Each service brake system control is actuated separately.

(d) Brake actuation force.

(1) Hand control: ≤200 N.

(2) Foot control:

(i) ≤350 N for motorcycle categories 3–3 and 3–4.

(ii) ≤500 N for motorcycle category 3–5.
(e) Accelerate the vehicle to the test speed, actuate the brake control under the conditions specified and record the control force required to achieve the vehicle braking performance specified in the table to §6.3.3 (Table 2).

§6.7.3 Heating procedure.

§6.7.3.1 Vehicle condition—heating procedure. Engine transmission:

(a) From the specified test speed to 50 per cent specified test speed: connected, with the highest appropriate gear selected such that the engine speed remains above the manufacturer’s specified idle speed.

(b) From 50 per cent specified test speed to standstill: disconnected.

§6.7.3.2 Test conditions and procedure—heating procedure.

(a) Initial brake temperature. Initial brake temperature is (prior to first stop only) ≥55 °C and ≤100 °C.

(b) Test speed.

(1) Single brake system, front wheel braking only: 100 km/h or 0.7 Vmax, whichever is the lower.

(2) Single brake system, rear wheel braking only: 80 km/h or 0.7 Vmax, whichever is the lower.

(3) CBS or split service brake system: 100 km/h or 0.7 Vmax, whichever is the lower.

(c) Brake application. Each service brake system control actuated separately.

(d) Brake actuation force.

(1) For the first stop: The constant control force that achieves a vehicle deceleration rate of 3.0—3.5 m/s² while the vehicle is decelerating between 80 percent and 10 percent of the specified speed.

(2) For the remaining stops:

(i) The same constant brake control force as used for the first stop.

(ii) Number of stops: 10.

(iii) Interval between stops: 1000 m.

(e) Carry out a stop to the conditions specified in this paragraph and then immediately use maximum acceleration to reach the specified speed and maintain that speed until the next stop is made.

§6.7.4 Hot brake stop—test conditions and procedure. Perform a single stop under the conditions used in the baseline test (§6.7.2) for the brake system that has been heated during the procedure in accordance with §6.7.3. This stop is carried out within one minute of the completion of the procedure set out in §6.7.3 with a brake control application force less than or equal to the force used during the test set out in §6.7.2.

§6.7.5 Performance requirements. When the brakes are tested in accordance with the test procedure set out in §6.7.4, the stopping distance S_2 shall be ≤1.67 $S_1 - 0.67 \times 0.1V$.

Where:

S_1 = corrected stopping distance in meters achieved in the baseline test set out in §6.7.2.

S_2 = corrected stopping distance in meters achieved in the hot brake stop set out in §6.7.4.

V = specified test speed in km/h.

§6.8 Parking brake system test—for motorcycles with parking brakes.

§6.8.1 Vehicle condition.

(a) The test is applicable to motorcycle categories 3–2, 3–4 and 3–5.

(b) Laden.

(c) Engine disconnected.

§6.8.2 Test conditions and procedure.

(a) Initial brake temperature. Initial brake temperature is ≤100 °C.

(b) Test surface gradient. Test surface gradient is equal to 18 percent.

(c) Brake actuation force.

(1) Hand control: ≤400 N.

(2) Foot control: ≤500 N.

(d) For the first part of the test, park the vehicle on the test surface gradient facing up the slope by applying the parking brake system under the conditions specified in this paragraph. If the vehicle remains stationary, start the measurement of the test period.

(e) The vehicle must remain stationary to the limits of traction of the braked wheels.

(f) On completion of the test with vehicle facing up the gradient, repeat the same test procedure with the vehicle facing down the gradient.

§6.8.3 Performance requirements. When tested in accordance with the test procedure set out in §6.8.2, the parking brake system shall hold the vehicle stationary for 5 minutes when the vehicle is both facing up and facing down the gradient.

§6.9 ABS tests.

§6.9.1 General.
(a) The tests are only applicable to the ABS fitted on motorcycle categories 3-1 and 3-3.

(b) The tests are to confirm the performance of brake systems equipped with ABS and their performance in the event of ABS electrical failure.

(c) Fully cycling means that the anti-lock system is repeatedly modulating the brake force to prevent the directly controlled wheels from locking.

(d) Wheel-lock is allowed as long as the stability of the vehicle is not affected to the extent that it requires the operator to release the control or causes a vehicle wheel to pass outside the test lane.

(e) The test series comprises the individual tests in Table 3, which may be carried out in any order.

S6.9.2 Vehicle condition.

(a) Lightly loaded.

(b) Engine disconnected.

S6.9.3 Stops on a high friction surface.

S6.9.3.1 Test conditions and procedure.

(a) Initial brake temperature. Initial brake temperature is $\geq 55 \degree C$ and $\leq 100 \degree C$.

(b) Test speed. Test speed is 60 km/h or 0.9 Vmax, whichever is lower.

(c) Brake application. Simultaneous actuation of both service brake system controls, if so equipped, or of the single service brake control in the case of a service brake system that operates on all wheels.

(d) Brake actuation force. The force applied is that which is necessary to ensure that the ABS will cycle fully throughout each stop, down to 10 km/h.

(e) If one wheel is not equipped with ABS, the control for the service brake on that wheel is actuated with a force that is lower than the force that will cause the wheel to lock.

(f) Number of stops: until the vehicle meets the performance requirements, with a maximum of 6 stops.

(g) For each stop, accelerate the vehicle to the test speed and then actuate the brake control under the conditions specified in this paragraph.

S6.9.3.2 Performance requirements. When the brakes are tested in accordance with the test procedures referred to in S6.9.3.1:

(a) The stopping distance (S) shall be $\leq 0.0063 V^2$ (where V is the specified test speed in km/h and S is the required stopping distance in meters); and

(b) there shall be no wheel lock beyond that allowed for in paragraph S6.9.1(d), and the vehicle wheels shall stay within the test lane.

S6.9.4 Stops on a low friction surface.

S6.9.4.1 Test conditions and procedure. As set out in S6.9.3.1, but using the low friction surface instead of the high friction one.

S6.9.4.2 Performance requirements. When the brakes are tested in accordance with the test procedures set out in S6.9.4.1:

(a) the stopping distance (S) shall be $\leq 0.0056 V^2 P$ (where V is the specified test speed in km/h, P is the peak braking coefficient and S is the required stopping distance in meters); and

(b) there shall be no wheel lock beyond that allowed for in paragraph S6.9.1(d), and the vehicle wheels shall stay within the test lane.

S6.9.5 Wheel lock checks on high and low friction surfaces.

S6.9.5.1 Test conditions and procedure.

(a) Test surfaces. High friction or low friction surface, as applicable.

(b) Initial brake temperature. Initial brake temperature is $\geq 55 \degree C$ and $\leq 100 \degree C$.

(c) Test speed.

(1) On the high friction surface: 80 km/h or 0.8 Vmax, whichever is lower.

(2) On the low friction surface: 60 km/h or 0.8 Vmax, whichever is lower.

(d) Brake application.

(1) Each service brake system control actuated separately.

(2) Where ABS is fitted to both brake systems, simultaneous actuation of both brake controls in addition to (1).

(e) Brake actuation force. The force applied is that which is necessary to ensure that the ABS will cycle fully throughout each stop, down to 10 km/h.

(f) Brake application rate. The brake control actuation force is applied in 0.2-0.5 seconds.

(g) Number of stops: until the vehicle meets the performance requirements, with a maximum of 3 stops.

(h) For each stop, accelerate the vehicle to the test speed and then actuate the brake control under the conditions specified in this paragraph.

S6.9.5.2 Performance requirements. When the brakes are tested in accordance with the test procedures set out in S6.9.5.1, there shall be no wheel lock beyond that allowed for in paragraph
§ 571.122

S6.9.1(d), and the vehicle wheels shall stay within the test lane.

S6.9.6 Wheel lock check—high to low friction surface transition.

S6.9.6.1 Test conditions and procedure.

(a) Test surfaces. A high friction surface immediately followed by a low friction surface.

(b) Initial brake temperature. Initial brake temperature is ≥55 °C and ≤100 °C.

(c) Test speed. The speed that will result in 50 km/h or 0.5 Vmax, whichever is the lower, at the point where the vehicle passes from the high friction to the low friction surface.

(d) Brake application.

(1) Each service brake system control actuated separately.

(2) Where ABS is fitted to both brake systems, simultaneous actuation of both brake controls in addition to (1).

(e) Brake actuation force. The force applied is that which is necessary to ensure that the ABS will cycle fully throughout each stop, down to 10 km/h.

(f) Number of stops: until the vehicle meets the performance requirements, with a maximum of 3 stops.

(g) For each stop, accelerate the vehicle to the test speed and then actuate the brake control before the vehicle reaches the transition from one friction surface to the other.

(h) Record the vehicle’s continuous deceleration.

S6.9.7 Wheel lock check—low to high friction surface transition.

S6.9.7.1 Test conditions and procedure.

(a) Test surfaces. A low friction surface immediately followed by a high friction surface with a PBC ≥0.8.

(b) Initial brake temperature. Initial brake temperature is ≥55 °C and ≤100 °C.

(c) Test speed. The speed that will result in 50 km/h or 0.5 Vmax, whichever is the lower, at the point where the vehicle passes from the low friction to the high friction surface.

(d) Brake application.

(1) Each service brake system control applied separately.

(2) Where ABS is fitted to both brake systems, simultaneous application of both brake controls in addition to (1).

(e) Brake actuation force. The force applied is that which is necessary to ensure that the ABS will cycle fully throughout each stop, down to 10 km/h.

(f) Number of stops: until the vehicle meets the performance requirements, with a maximum of 3 stops.

(g) For each stop, accelerate the vehicle to the test speed and then actuate the brake control before the vehicle reaches the transition from one friction surface to the other.

(h) Record the vehicle’s continuous deceleration.

S6.9.8 Stops with an ABS electrical failure.

S6.9.8.1 Test conditions and procedure. With the ABS electrical system disabled, carry out the test set out in S6.3 (dry stop test—single brake control actuated) applying the conditions relevant to the brake system and vehicle being tested.

S6.9.8.2 Performance requirements. When the brakes are tested in accordance with the test procedure set out in S6.9.8.1:

(a) The system shall comply with the failure warning requirements of S5.1.10; and

(b) the minimum requirements for stopping distance shall be as specified in column 2 under the heading “Single brake system, rear wheel(s) braking only” in Table 2.

S6.10 Partial failure test—for split service brake systems.

S6.10.1 General information.

(a) The test is only applicable to vehicles that are equipped with split service brake systems.

(b) The test is to confirm the performance of the remaining subsystem in the event of a hydraulic system leakage failure.

S6.10.2 Vehicle condition.
§571.122

(a) The test is applicable to motorcycle categories 3–3, 3–4 and 3–5.
(b) Lightly loaded.
(c) Engine disconnected.

S6.10.3 Test conditions and procedure.
(a) Initial brake temperature. Initial brake temperature is ≥55 °C and ≤100 °C.
(b) Test speed. Test speed is 50 km/h and 100 km/h or 0.8 Vmax, whichever is lower.
(c) Brake actuation force.
(1) Hand control: ≤250 N.
(2) Foot control: ≤400 N.
(d) Number of stops: until the vehicle meets the performance requirements, with a maximum of 6 stops for each test speed.
(e) Alter the service brake system to induce a complete loss of braking in any one subsystem. Then, for each stop, accelerate the vehicle to the test speed and then actuate the brake control under the conditions specified in this paragraph.
(f) Repeat the test for each subsystem.

S6.10.4 Performance requirements. When the brakes are tested in accordance with the test procedure set out in S6.10.3:
(a) the system shall comply with the failure warning requirements set out in paragraph S6.1.10.1; and
(b) the stopping distance (S) shall be ≤0.1 V + 0.0117 V^2 (where V is the specified test speed in km/h and S is the required stopping distance in meters).

S6.11 Power-assisted braking system failure test.
S6.11.1 General information.
(a) The test is not conducted when the vehicle is equipped with another separate service brake system.
(b) The test is to confirm the performance of the service brake system in the event of failure of the power assistance.

S6.11.2 Test conditions and procedure. Carry out the test set out in S6.3.3 (dry stop test—single brake control actuated) for each service brake system with the power assistance disabled.

S6.11.3 Performance requirements. When the brakes are tested in accordance with the test procedure set out in S6.11.2, the stopping distance shall be as specified in column 2 of Table 4. Note that if the power assistance may be activated by more than one control, the above performance shall be achieved when each control is actuated separately.

Tables and Figures to §571.122

Table 1—Test Sequence

<table>
<thead>
<tr>
<th>Test order</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dry stop—all service brake controls actuated</td>
<td>S6.3</td>
</tr>
<tr>
<td>2. Dry stop—single service brake control actuated</td>
<td>S6.4</td>
</tr>
<tr>
<td>3. High speed</td>
<td>S6.5</td>
</tr>
<tr>
<td>4. Wet brake</td>
<td>S6.6</td>
</tr>
<tr>
<td>5. If fitted:</td>
<td></td>
</tr>
<tr>
<td>6.1. Parking brake system</td>
<td>S6.8</td>
</tr>
<tr>
<td>6.2. ABS</td>
<td>S6.9</td>
</tr>
<tr>
<td>6.3. Partial failure, for split service brake systems</td>
<td>S6.10</td>
</tr>
<tr>
<td>6.4. Power-assisted braking system failure</td>
<td>S6.11</td>
</tr>
<tr>
<td>6. Heat fade</td>
<td>S6.7</td>
</tr>
</tbody>
</table>

Table 2—Performance Requirements, Dry Stop Test—Single Brake Control Actuated

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorcycle category</td>
<td>Stopping Distance(s) (where V is the specified test speed in km/h and S is the required stopping distance in meters)</td>
</tr>
</tbody>
</table>

Single brake system, front wheel(s) braking only

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Stopping Distance(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–1</td>
<td>S ≤ 0.1 V + 0.0111 V^2.</td>
</tr>
<tr>
<td>3–2</td>
<td>S ≤ 0.1 V + 0.0143 V^2.</td>
</tr>
<tr>
<td>3–3</td>
<td>S ≤ 0.1 V + 0.0087 V^2.</td>
</tr>
<tr>
<td>3–4</td>
<td>S ≤ 0.1 V + 0.0105 V^2.</td>
</tr>
<tr>
<td>3–5</td>
<td>Not applicable.</td>
</tr>
</tbody>
</table>

Single brake system, rear wheel(s) braking only

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Stopping Distance(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–1</td>
<td>S ≤ 0.1 V + 0.0143 V^2.</td>
</tr>
<tr>
<td>3–2</td>
<td>S ≤ 0.1 V + 0.0143 V^2.</td>
</tr>
<tr>
<td>3–3</td>
<td>S ≤ 0.1 V + 0.0133 V^2.</td>
</tr>
<tr>
<td>3–4</td>
<td>S ≤ 0.1 V + 0.0105 V^2.</td>
</tr>
<tr>
<td>3–5</td>
<td>Not applicable.</td>
</tr>
</tbody>
</table>

Vehicles with CBS or split service brake systems: For laden and lightly loaded conditions

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Stopping Distance(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–1 and 3–2</td>
<td>S ≤ 0.1 V + 0.0087 V^2.</td>
</tr>
<tr>
<td>3–3</td>
<td>S ≤ 0.1 V + 0.0076 V^2.</td>
</tr>
<tr>
<td>3–4</td>
<td>S ≤ 0.1 V + 0.0071 V^2.</td>
</tr>
<tr>
<td>3–5</td>
<td>S ≤ 0.1 V + 0.0077 V^2.</td>
</tr>
</tbody>
</table>

Vehicles with CBS—secondary service brake system

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Stopping Distance(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>S ≤ 0.1 V + 0.0154 V^2.</td>
</tr>
</tbody>
</table>

Table 3—ABS Tests

<table>
<thead>
<tr>
<th>ABS Tests</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Stops on a high friction surface—as specified in S6.1.1.2</td>
<td>S6.9.3</td>
</tr>
<tr>
<td>b. Stops on a low friction surface—as specified in S6.1.1.2</td>
<td>S6.9.4</td>
</tr>
<tr>
<td>c. Wheel lock checks on high and low friction surfaces</td>
<td>S6.9.5</td>
</tr>
</tbody>
</table>
§ 571.122

TABLE 3—ABS TESTS—Continued

<table>
<thead>
<tr>
<th>ABS Tests</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. Wheel lock check—high to low friction surface transition</td>
<td>S6.9.6</td>
</tr>
<tr>
<td>e. Wheel lock check—low to high friction surface transition</td>
<td>S6.9.7</td>
</tr>
<tr>
<td>f. Stops with an ABS electrical failure</td>
<td>S6.9.8</td>
</tr>
</tbody>
</table>

TABLE 4—PERFORMANCE REQUIREMENTS, POWER-ASSISTED BRAKING SYSTEM FAILURE TEST

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle category</td>
<td>Stopping Distance(s) (where V is the specified test speed in km/h and S is the required stopping distance in meters)</td>
</tr>
<tr>
<td>Single brake system</td>
<td></td>
</tr>
<tr>
<td>3–1</td>
<td>(S \leq 0.1 V + 0.0143 V^2)</td>
</tr>
<tr>
<td>3–2</td>
<td>(S \leq 0.1 V + 0.0143 V^2)</td>
</tr>
<tr>
<td>3–3</td>
<td>(S \leq 0.1 V + 0.0133 V^2)</td>
</tr>
<tr>
<td>3–4</td>
<td>(S \leq 0.1 V + 0.0105 V^2)</td>
</tr>
<tr>
<td>Vehicles with CBS or split service brake systems</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>(S \leq 0.1 V + 0.0154 V^2)</td>
</tr>
</tbody>
</table>

Figure 1. Hand control lever force application points and direction.
Figure 2. Typical Plug Type Thermocouple Installations
§ 571.122a Standard No. 122; Motorcycle brake systems.

S1. Scope. This standard specifies performance requirements for motorcycle brake systems.

S2. Purpose. The purpose of the standard is to insure safe motorcycle braking performance under normal and emergency conditions.

S3. Application. This standard applies to motorcycles. However, this standard does not apply to motorcycles certified to comply with §571.122.

S4. Definitions.

Braking interval means the distance measured from the start of one brake application to the start of the next brake application.

Initial brake temperature means the temperature of the hottest service brake of the vehicle 0.2 mile before any brake application.

Skid number means the frictional resistance of a pavement measured in accordance with ASTM E274–70 (incorporated by reference, see §571.5) at 40 mph, omitting water delivery as specified in paragraphs 7.1 and 7.2 of that method.

Stopping distance means the distance traveled by a vehicle from the start of the brake application to the point where the vehicle stops.

Split service brake system means a brake system consisting of two or more subsystems actuated by a single control designed so that a leakage-type failure of a pressure component in a
§ 571.122a

National Highway Traffic Safety Admin., DOT

Single subsystem (except structural failure of a housing that is common to all subsystems) shall not impair the operation of the other subsystem(s).

S5. Requirements. Each motorcycle shall meet the following requirements under the conditions specified in S6, when tested according to the procedures and in the sequence specified in S7. Corresponding test procedures of S7 are indicated in parentheses. If a motorcycle is incapable of attaining a specified speed, its service brakes shall be capable of stopping the vehicle from the multiple of 5 m.p.h. that is 4 m.p.h. to 8 m.p.h. less than the speed attainable in 1 mile, within stopping distances that do not exceed the stopping distances specified in Table 1.

S5.1 Required equipment—split service brake system. Each motorcycle shall have either a split service brake system or two independently actuated service brake systems.

S5.1.1 Mechanical service brake system. Failure of any component in a mechanical service brake system shall not result in a loss of braking ability in the other service brake system on the vehicle.

S5.1.2 Hydraulic service brake system. A leakage failure in a hydraulic service brake system shall not result in a loss of braking ability in the other service brake system on the vehicle. Each motorcycle equipped with a hydraulic service brake system shall have the equipment specified in S5.1.2.1 and S5.1.2.2.

S5.1.2.1 Master cylinder reservoirs. Each master cylinder shall have a separate reservoir for each brake circuit, with each reservoir filler opening having its own cover, seal, and cover retention device. Each reservoir shall have a minimum capacity equivalent to one and one-half times the total fluid displacement resulting when all the wheel cylinders or caliper pistons serviced by the reservoir move from a new lining, fully retracted position to a fully worn, fully applied position. Where adjustment is a factor, the worst condition of adjustment shall be used for this measurement.

S5.1.2.2 Reservoir labeling. Each motorcycle shall have a brake fluid warning statement that reads as follows, in letters at least three thirty-seconds of an inch high:

Warning: Clean filler cap before removing. Use only fluid from a sealed container. (Inserting the recommended type of brake fluid as specified in 49 CFR 571.116, e.g., DOT 3.)

The lettering shall be:

(a) Permanently affixed, engraved, or embossed;
(b) Located so as to be visible by direct view, either on or within 4 inches of the brake-fluid reservoir filler plug or cap; and
(c) Of a color that contrasts with its background, if it is not engraved or embossed.

S5.1.3 Split service brake system. In addition to the equipment required by S5.1.2 each motorcycle equipped with a split service brake system shall have a failure indicator lamp as specified in S5.1.3.1.

S5.1.3.1 Failure indicator lamp.

(a) One or more electrically operated service brake system failure indicator lamps that is mounted in front of and in clear view of the driver, and that is activated—

(1) In the event of pressure failure in any part of the service brake system, other than a structural failure of either a brake master cylinder body in a split integral body type master cylinder system or a service brake system failure indicator body, before or upon application of not more than 20 pounds of pedal force upon the service brake.

(2) Without the application of pedal force, when the level of brake fluid in a master cylinder reservoir drops to less than the recommended safe level specified by the manufacturer or to less than one-half the fluid reservoir capacity, whichever is the greater.

(b) All failure indicator lamps shall be activated when the ignition switch is turned from the “off” to the “on” or to the “start” position.

(c) Except for the momentary activation required by S5.1.3.1(b), each indicator lamp, once activated, shall remain activated as long as the condition exists, whenever the ignition switch is in the “on” position. An indicator lamp activated when the ignition is turned to the “start” position shall be deactivated upon return of the switch to the “on” position unless a failure exists in the service brake system.
(d) Each indicator lamp shall have a red lens with the legend “Brake Failure” on or adjacent to it in letters not less than three thirty-seconds of an inch high that shall be legible to the driver in daylight when lighted.

§ 571.122a 49 CFR Ch. V (10–1–16 Edition)

S5.1.4 Parking brake. Each three-wheeled motorcycle shall be equipped with a parking brake of a friction type with a solely mechanical means to retain engagement.

S5.1.5 Other requirements. The brake system shall be installed so that the lining thickness of drum brake shoes may be visually inspected, either directly or by use of a mirror without removing the drums, and so that disc brake friction lining thickness may be visually inspected without removing the pads.

S5.2 Service brake system—first (preburnish) effectiveness.

S5.2.1 Service brake system. The service brakes shall be capable of stopping the motorcycle from 30 m.p.h. and 60 m.p.h. within stopping distances which do not exceed the stopping distances specified in Column I of Table I (S7.3.1).

S5.2.2 Partial service brake system. Each independently actuated service brake system on each motorcycle shall be capable of stopping the motorcycle from 30 m.p.h. and 60 m.p.h. within stopping distances which do not exceed the stopping distances specified in Column II of Table I (S7.3.2).

S5.3 Service brake system—second effectiveness. The service brakes shall be capable of stopping the motorcycle from 30 m.p.h., 60 m.p.h., 80 m.p.h., and the multiple of 5 m.p.h. that is 4 m.p.h. to 8 m.p.h. less than the speed attainable in 1 mile if this speed is 85 m.p.h. or greater, within stopping distances that do not exceed the stopping distances specified in Column III of Table I (S7.5).”

S5.4 Service brake system—fade and recovery. These requirements do not apply to a motor-driven cycle whose speed attainable in 1 mile is 30 m.p.h. or less.

S5.4.1 Baseline check—minimum and maximum pedal forces. The pedal and lever forces used in establishing the fade baseline check average shall be within the limits specified in S6.10 (S7.6.1).

S5.4.2 Fade. Each motorcycle shall be capable of making 10 fade stops from 60 m.p.h. at not less than 15 f.p.s.p.s. for each stop (S7.6.2).

S5.4.3 Fade recovery. Each motorcycle shall be capable of making five recovery stops with a pedal force that does not exceed 400 Newtons (90 pounds), and a hand lever force that does not exceed 245 Newtons (55 pounds) for any of the first four recovery stops and that for the fifth recovery stop, is within, plus 89 Newtons (20 pounds) and minus 44 Newtons (10 pounds) of the fade test baseline check average force (S7.6.3), but not less than 0 Newtons (0 pounds).

S5.5 Service brake system—final effectiveness. These requirements do not apply to a motor-driven cycle whose speed attainable in 1 mile is 30 mph or less.

S5.5.1 Service brake system. The service brakes shall be capable of stopping the motorcycle in a manner that complies with S5.3 (S7.8.1).

S5.5.2 Hydraulic service brake system—partial failure. In the event of a pressure component leakage failure, other than a structural failure of either a brake master cylinder body in a split integral body type master cylinder system or a service brake system failure indicator body, the remaining portion of the service brake system shall continue to operate and shall be capable of stopping the motorcycle from 30 m.p.h. and 60 m.p.h. within stopping distances that do not exceed the stopping distances specified in Column IV of Table I (S7.8.2).

S5.6 Parking brake system. The parking brake system shall be capable of holding the motorcycle stationary (to the limits of traction of the braked wheels), for 5 minutes, in both forward and reverse directions, on a 30 percent grade, with an applied force of not more than 90 pounds for a foot-operated system and 55 pounds for a hand-operated system (S7.9).

S5.7 Service brake system—water recovery.

S5.7.1 Baseline check. The pedal and lever forces used in establishing the water recovery baseline check average shall be within the limits specified in S6.10 (S7.10.1).
§ 571.122a

5.7.2 Water recovery test. Each motorcycle shall be capable of making five recovery stops with a pedal force that does not exceed 400 Newtons (90 pounds), and hand lever force that does not exceed 245 Newtons (55 pounds), for any of the first four recovery stops, and that for the fifth recovery stop, is within, plus 89 Newtons (20 pounds) and minus 44 Newtons (10 pounds) of the water recovery baseline check average force (S7.10.2), but not less than 0 Newtons (0 pounds).

5.8 Service brake system durability. Each motorcycle shall be capable of completing all braking requirements of S5 without detachment of brake linings from the shoes or pad, detachment or fracture of any brake system components, or leakage of fluid or lubricant at the wheel cylinder, and master cylinder reservoir cover, seal, or retention device (S7.11).

Test conditions. The requirements of S5 shall be met under the following conditions. Where a range of conditions is specified, the motorcycle shall be capable of meeting the requirements at all points within the range.

6.1 Vehicle weight. Motorcycle weight is unloaded vehicle weight plus 200 pounds (including driver and instrumentation), with the added weight distributed in the saddle or carrier if so equipped.

6.2 Tire inflation pressure. Tire inflation pressure is the pressure recommended by the manufacturer for the vehicle weight specified in paragraph 6.1.

6.3 Transmission. Unless otherwise specified, all stops are made with the clutch disengaged.

6.4 Engine. Engine idle speed and ignition timing settings are according to the manufacturer’s recommendations. If the vehicle is equipped with an adjustable engine speed governor, it is adjusted according to the manufacturer’s recommendation.

6.5 Ambient temperature. The ambient temperature is between 32 °F. and 100 °F.

6.6 Wind velocity. The wind velocity is zero.

6.7 Road surface. Road tests are conducted on level roadway having a skid number of 81. The roadway is 8 feet wide for two-wheeled motorcycles, and overall vehicle width plus 5 feet for three-wheeled motorcycles. The parking brake test surface is clean, dry, smooth portland cement concrete.

6.8 Vehicle position. The motorcycle is aligned in the center of the roadway at the start of each brake application. Stops are made without any part of the motorcycle leaving the roadway and without lockup of any wheel.

6.9 Thermocouples. The brake temperature is measured by plug-type thermocouples installed in the approximate center of the facing length and width of the most heavily loaded shoe or disc pad, one per brake, as shown in Figure 1.

6.10 Brake actuation forces. Except for the requirements of the fifth recovery stop in S5.4.3 and S5.7.2 (S7.6.3 and S7.10.2), the hand lever force is not less than 10 Newtons (2.3 pounds) and not more than 245 Newtons (55 pounds) and the foot pedal force is not less than 25 Newtons (5.6 pounds) and not more than 400 Newtons (90 pounds). The point of initial application of the lever forces is 1.2 inches from the end of the brake lever grip. The direction of the force is perpendicular to the handle grip on the plane along which the brake lever rotates, and the point of application of the pedal force is the center of the foot contact pad of the brake pedal. The direction of the force is perpendicular to the foot contact pad on the plane along which the brake pedal rotates, as shown in Figure 2.

Test procedures and sequence. Each motorcycle shall be capable of meeting all the requirements of this standard when tested according to the procedures and in the sequence set forth below without replacing any brake system part, or making any adjustments to the brake system other than as permitted in S7.4. A motorcycle shall be deemed to comply with S5.2, S5.3 and S5.5 if at least one of the stops specified in S7.3, S7.5 and S7.8 is made within the stopping distances specified in Table I.

7.1 Braking warming. If the initial brake temperature for the first stop in a test procedure (other than S7.10) has not been reached, heat the brakes to the initial brake temperature by making up to 10 stops from 30 m.p.h. at a deceleration of not more than 10
§ 571.122a 49 CFR Ch. V (10–1–16 Edition)

f.p.s.p.s. On independently operated brake systems, the coldest brake shall be within 10 °F of the hottest brake.

S7.2 Pretest instrumentation check. Conduct a general check of test instrumentation by making not more than 10 stops from a speed of not more than 30 m.p.h. at a deceleration of not more than 10 f.p.s.p.s. If test instrument repair, replacement, or adjustment is necessary, make not more than 10 additional stops after such repair, replacement or adjustment.

S7.3 Service brake system—first (preburnished) effectiveness test.

S7.3.1 Service brake system. Make six stops from 30 m.p.h. and then six stops from 60 m.p.h. with an initial brake temperature between 130 °F and 150 °F.

S7.3.2 Partial service brake system. For a motorcycle with two independently actuated service brake systems, repeat S7.3.1 using each service brake system individually.

S7.4 Service brake system—burnish procedure. Burnish the brakes by making 200 stops from 30 m.p.h. at 12 f.p.s.p.s. The braking interval shall be either the distance necessary to reduce the initial brake temperature to between 130 °F and 150 °F, or 1 mile, whichever occurs first. Accelerate at maximum rate to 30 m.p.h. immediately after each stop and maintain that speed until making the next stop. After burnishing adjust the brakes in accordance with the manufacturer's recommendation.

S7.5 Service brake system—second effectiveness test. Repeat S7.3.1. Then, make four stops from 80 m.p.h. and four stops from the multiple of 5 m.p.h. that is 4 m.p.h. to 8 m.p.h. less than the speed attainable in 1 mile if that speed is 95 m.p.h. or greater.

S7.6 Service brake system—fade and recovery test. These requirements do not apply to a motor-driven cycle whose speed attainable in 1 mile is 30 m.p.h. or less.

S7.6.1 Baseline check stops. Make three stops from 30 m.p.h. at 10 to 11 f.p.s.p.s. for each stop. Compute the average of the maximum brake pedal forces and the maximum brake lever forces required for the three stops.

S7.6.2 Fade stops. Make 10 stops from 60 m.p.h. at not less than 15 f.p.s.p.s. for each stop. The initial brake temperature before the first brake application shall be between 130 °F and 150 °F. Initial brake temperatures before brake applications for subsequent stops shall be those occurring at the distance intervals. Attain the required deceleration as quickly as possible and maintain at least this rate for not less than three-fourths of the total stopping distance for each stop. The interval between the starts of service brake applications shall be 0.4 mile. Drive 1 mile at 30 m.p.h. after the last fade stop and immediately conduct the recovery test specified in S7.6.3.

S7.6.3 Recovery test. Make five stops from 30 m.p.h. at 10 to 11 f.p.s.p.s. for each stop. The braking interval shall not be more than 1 mile. Immediately after each stop accelerate at maximum rate to 30 m.p.h. and maintain that speed until making the next stop.

S7.7 Service brake system—reburnish. Repeat S7.4 except make 35 burnish stops instead of 200 stops. Brakes may be adjusted after reburnish if no tools are used. These requirements do not apply to a motor-driven cycle whose speed attainable in 1 mile is 30 m.p.h. or less.

S7.8 Service brake system—final effectiveness test. These requirements do not apply to a motor-driven cycle whose speed attainable in 1 mile is 30 m.p.h. or less.

S7.8.1 Service brake system. Repeat S7.5 including S7.3.1.

S7.8.2 Partial service brake system test. Alter the service brake system on three-wheeled motorcycles to induce a complete loss of braking in any one subsystem. Determine the line pressure or pedal force necessary to cause the brake system failure indicator to operate. Make six stops from 30 m.p.h. and then six stops from 60 m.p.h. with an initial brake temperature between 130 °F and 150 °F. Repeat for each subsystem. Determine that the brake failure indicator is operating when the master cylinder fluid level is less than the level specified in S5.1.3.1(a)(2), and that it complies with S5.1.3.1(c). Check for proper operation with each reservoir in turn at a low level. Restore the service brake system to normal at completion of this test.

S7.9 Parking brake test. Starting with an initial brake temperature of
not more than 150 °F., drive the motorcycle downhill on the 30 percent grade with the longitudinal axis of the motorcycle in the direction of the grade. Apply the service brakes with a force not exceeding 90 pounds to stop the motorcycle and place the transmission in neutral. Apply the parking brake by exerting a force not exceeding those specified in S5.6. Release the service brake and allow the motorcycle to remain at rest (to the limit of traction of the braked wheels) for 5 minutes. Repeat the test with the motorcycle parked in the reversed (uphill) position on the grade.

§7.10 Service brake system—water recovery test.

§7.10.1 Baseline check stops. Make three stops from 30 m.p.h. at 10 to 11 f.p.s.p.s. for each stop. Compute the average of the maximum brake pedal forces and of the maximum brake lever forces required for the three stops.

§7.10.2 Wet brake recovery stops. Completely immerse the rear brake assembly of the motorcycle in water for 2 minutes with the brake fully released. Next completely immerse the front brake assembly of the motorcycle in water for 2 minutes with the brake fully released. Perform the entire wetting procedure in not more than 7 minutes. Immediately after removal of the front brake from water, accelerate at a maximum rate to 30 mi/h without a brake application. Immediately upon reaching that speed make five stops, each from 30 mi/h at 10 to 11 ft/s² for each stop. After each stop (except the last) accelerate the motorcycle immediately at a maximum rate to 30 mi/h and begin the next stop.

§7.11 Final inspection. Upon completion of all the tests inspect the brake system in an assembled condition, for compliance with the brake lining inspection requirements. Disassemble all brakes and inspect:

(a) The entire brake system for detachment or fracture of any component.

(b) Brake linings for detachment from the shoe or pad.

(c) Wheel cylinder, master cylinder, and axle seals for fluid or lubricant leakage.

(d) Master cylinder for reservoir capacity and retention device.

(e) Master cylinder label for compliance with S5.1.2.2.

Table I—Stopping Distances for Effectiveness, Fade and Partial System Tests

<table>
<thead>
<tr>
<th>Vehicle test speed, m.p.h.</th>
<th>Preburnish effectiveness total system (S5.2.1)—I</th>
<th>Preburnish effectiveness partial mechanical systems (S5.2.2)—II</th>
<th>Effectiveness total system (S5.4) (SS5.7.1)—III</th>
<th>Effectiveness partial hydraulic systems (S5.7.2)—IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>13</td>
<td>30</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>54</td>
<td>19</td>
<td>44</td>
</tr>
<tr>
<td>25</td>
<td>37</td>
<td>84</td>
<td>30</td>
<td>68</td>
</tr>
<tr>
<td>30</td>
<td>54</td>
<td>121</td>
<td>43</td>
<td>97</td>
</tr>
<tr>
<td>35</td>
<td>74</td>
<td>165</td>
<td>58</td>
<td>132</td>
</tr>
<tr>
<td>40</td>
<td>96</td>
<td>216</td>
<td>75</td>
<td>173</td>
</tr>
<tr>
<td>45</td>
<td>121</td>
<td>273</td>
<td>95</td>
<td>218</td>
</tr>
<tr>
<td>50</td>
<td>150</td>
<td>337</td>
<td>128</td>
<td>264</td>
</tr>
<tr>
<td>55</td>
<td>181</td>
<td>407</td>
<td>155</td>
<td>326</td>
</tr>
<tr>
<td>60</td>
<td>216</td>
<td>484</td>
<td>185</td>
<td>388</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td>217</td>
<td>455</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td>264</td>
<td>527</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td>303</td>
<td>606</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td>345</td>
<td>689</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td>389</td>
<td>778</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td>484</td>
<td>872</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td>540</td>
<td>971</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>598</td>
<td>1076</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td>655</td>
<td>1188</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td>723</td>
<td>1302</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td>791</td>
<td>1423</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td>861</td>
<td>1549</td>
</tr>
<tr>
<td>Sequence</td>
<td>Test Sequence and Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Instrumentation check</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>First (Preburnish) effectiveness test:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>Service brake system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Partial service brake system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Burnish procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Second effectiveness test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>First fade and recovery test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Reburnish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Final effectiveness test:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>Service brake system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Partial service brake system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Parking brake test (three-wheeled motorcycles only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Water recovery test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Design durability</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test procedure	Requirements
S7.2 | |
S7.3.1 | S5.2.1 |
S7.3.2 | S5.2.2 |
S7.4 | |
S7.5 | S5.3 |
S7.6 | S5.4 |
S7.7 | |
S7.8.1 | S5.5.1 |
S7.8.2 | S5.5.2 |
S7.9 | S5.6 |
S7.10 | S5.7 |
S7.11 | S5.8 |
FIGURE 1 - TYPICAL PLUG TYPE THERMOCouple INSTALLATIONS

FIG. 2 DIRECTION OF FORCE

§ 571.123 Standard No. 123; Motorcycle controls and displays.

S1. Scope. This standard specifies requirements for the location, operation, identification, and illumination of motorcycle controls and displays, and requirements for motorcycle stands and footrests.

S2. Purpose. The purpose of this standard is to minimize accidents caused by operator error in responding to the motoring environment, by standardizing certain motorcycle controls and displays.

S3. Application. This standard applies to motorcycles equipped with handlebars, except for motorcycles that are designed, and sold exclusively for use by law enforcement agencies.

S4. Definitions. Clockwise and counterclockwise mean opposing directions of rotation around the following axes, as applicable.

(a) The operational axis of the ignition control, viewed from in front of the ignition lock opening;

(b) The axis of the right handlebar on which the twist-grip throttle is located, viewed from the end of that handlebar;

(c) The axis perpendicular to the center of the speedometer, viewed from the operator’s normal eye position.

Scooter means a motorcycle that:

(1) Has a platform for the operator’s feet or has integrated footrests, and

(2) Has a step-through architecture, meaning that the part of the vehicle forward of the operator’s seat and between the legs of an operator seated in the riding position, is lower in height than the operator’s seat.

S5. Requirements.

S5.1. Each motorcycle shall be equipped with a supplemental engine stop control, located and operable as specified in Table 1.

S5.2. Each motorcycle to which this standard applies shall meet the following requirements:

S5.2.1 Control location and operation. If an item of equipment listed in Table 1, Column 1, is provided, the control for such item shall be located as specified in Column 2, and operable as specified in Column 3. Each control located on a right handlebar shall be operable by the operator’s right hand throughout its full range without removal of the operator’s right hand from the throttle. Each control located on a left handlebar shall be operable by the operator’s left hand throughout its full range without removal of the operator’s left hand from the handgrip. If a motorcycle with an automatic clutch other than a scooter is equipped with a supplemental rear brake control, the control shall be located on the left handlebar. If a scooter with an automatic clutch is equipped with a supplemental rear brake control, the control shall be on the right side and operable by the operator’s right foot. A supplemental control shall provide brake actuation identical to that provided by the required control of Table 1, Item 11, of this Standard. If a motorcycle is equipped with self-proportioning or antilock braking devices utilizing a single control for front and rear brakes, the control shall be located and operable in the same manner as a rear brake control, as specified in Table 1, Item 11, and in this paragraph.

S5.2.2 Display illumination and operation. If an item of equipment listed in Table 2, Column 1, is provided, the display for such item shall be visible to a seated operator under daylight conditions, shall illuminate as specified in Column 2, and shall operate as specified in Column 3.

S5.2.3 Control and display identification. If an item of equipment in Table 3, Column 1, is provided, the item and its operational function shall be identified by:

(a) A symbol substantially in the form shown in Column 3; or

(b) Wording shown in both Column 2 and Column 4; or

(c) A symbol substantially in the form shown in Column 3 and wording shown in both Column 2 and Column 4.

(d) The abbreviations “M.P.H.”, “km/h”, “r/min”, “Hi”, “Lo”, “L”, “R”, and “Res” appearing in Column 2 and Column 4 may be spelled in full. Symbols and words may be provided for equipment items where none are shown in Column 2, Column 3, and Column 4. Any identification provided shall be placed on or adjacent to the control or display position, and shall appear upright to the operator.

S5.2.4 Stands. A stand shall fold rearward and upward if it contacts the
§ 571.123

ground when the motorcycle is moving forward.

§ 5.2.5 Footrests. Footrests shall be provided for each designated seating position. Each footrests for a passenger other than an operator shall fold rearward and upward when not in use.

<table>
<thead>
<tr>
<th>Equipment Control - Column 1</th>
<th>Location -- Column 2</th>
<th>Operation -- Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Manual clutch or integrated clutch and gear change</td>
<td>Left handlebar</td>
<td>Squeeze to disengage clutch.</td>
</tr>
<tr>
<td>2 Foot-operated gear change</td>
<td>Left foot control</td>
<td>An upward motion of the operator's toe shifts transmission toward lower numerical gear ratios (commonly referred to as "higher gears"), and a downward motion toward higher numerical gear ratios (commonly referred to as lower gears”). If three or more gears are provided, it shall not be possible to shift from the highest gear directly to the lowest, or vice versa.</td>
</tr>
<tr>
<td>3 Headlamp upper-lower beam control</td>
<td>Left handlebar</td>
<td>Up for upper beam, down for lower beam. If combined with the headlight on-off switch, means shall be provided to prevent inadvertent actuation of the “off” function.</td>
</tr>
<tr>
<td>4 Horn</td>
<td>Left handlebar</td>
<td>Push to activate.</td>
</tr>
<tr>
<td>5 Turn signal lamps</td>
<td>Handlebars.</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2—MOTORCYCLE DISPLAY ILLUMINATION AND OPERATION REQUIREMENTS

<table>
<thead>
<tr>
<th>Display—Column 1</th>
<th>Illumination—Column 2</th>
<th>Operation—Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Speedometer</td>
<td>Yes</td>
<td>The display is illuminated whenever the headlamp is activated.</td>
</tr>
<tr>
<td>2. Neutral indication</td>
<td>Green display lamp</td>
<td>The display lamp illuminates when the gear selector is in neutral position.</td>
</tr>
</tbody>
</table>

1. See §5.2.1 for requirements for vehicles with a single control for front and rear brakes, and with a supplemental rear brake control.
Table 3
Motorcycle Control and Display Identification Requirements

<table>
<thead>
<tr>
<th>No.</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equipment</td>
<td>Control and Display Identification Word</td>
<td>Control and Display Identification Symbol</td>
<td>Identification at Appropriate Position of Control and Display</td>
</tr>
<tr>
<td>1</td>
<td>Ignition</td>
<td>Ignition</td>
<td></td>
<td>Off</td>
</tr>
<tr>
<td>2</td>
<td>Supplemental Engine Stop (Off, Run)</td>
<td>Engine Stop</td>
<td>![Image]</td>
<td>Off, Run</td>
</tr>
<tr>
<td>3</td>
<td>Manual Choke or Mixture Enrichment</td>
<td>Choke or Enricher</td>
<td>![Image]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Electric Starter</td>
<td></td>
<td>![Image]</td>
<td>Start¹</td>
</tr>
<tr>
<td>5</td>
<td>Headlamp Upper-Lower Beam Control</td>
<td>Lights</td>
<td>![Image]²</td>
<td>Hi, Lo</td>
</tr>
<tr>
<td>6</td>
<td>Horn</td>
<td>Horn</td>
<td>![Image]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Turn Signal</td>
<td>Turn</td>
<td>![Image]²</td>
<td>L, R</td>
</tr>
<tr>
<td>8</td>
<td>Speedometer</td>
<td>MPH OR MPH and km/h ⁵</td>
<td>![Image]</td>
<td>MPH ⁴</td>
</tr>
<tr>
<td>9</td>
<td>Neutral Indicator</td>
<td>Neutral</td>
<td>![Image]</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Upper Beam Indicator</td>
<td>High Beam</td>
<td>![Image]²</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Tachometer</td>
<td>R.P.M. or r/min.</td>
<td>![Image]</td>
<td></td>
</tr>
</tbody>
</table>

¹ Required only if electric starter is separate from ignition switch.
² Framed areas may be filled.
³ The pair of arrows is a single symbol. When the indicators for left and right turn operate independently, however, the two arrows will be considered separate symbols and may be spaced accordingly.
⁴ MPH increase in a clockwise direction. Major graduations and numerals appear at 10 mph intervals, minor graduations at 5 mph intervals. (37 FR 17474 – August 29, 1972. Effective: 9/1/74)
⁵ If the speedometer is graduated in miles per hour (MPH) and in kilometers per hour (km/h), the identifying words or abbreviation shall be "MPH" and "km/h" in any combination of upper or lower case letters.

§ 571.124 Standard No. 124; Accelerator control systems.

S1. Scope. This standard establishes requirements for the return of a vehicle’s throttle to the idle position when the driver removes the actuating force from the accelerator control, or in the event of a severance or disconnection in the accelerator control system.

S2. Purpose. The purpose of this standard is to reduce deaths and injuries resulting from engine overspeed caused by malfunctions in the accelerator control system.

S3. Application. This standard applies to passenger cars, multi-purpose passenger vehicles, trucks, and buses.

S4. Definitions.

S4.1 Driver-operated accelerator control system means all vehicle components, except the fuel metering device, that regulate engine speed in direct response to movement of the driver-operated control and that return the throttle to the idle position upon release of the actuating force.

Fuel metering device means the carburetor, or in the case of certain engines the fuel injector, fuel distributor or fuel injection pump.

Throttle means the component of the fuel metering device that connects to the driver-operated accelerator control system and that by input from the driver-operated accelerator control system controls the engine speed.

Idle position means the position of the throttle at which it first comes in contact with an engine idle speed control appropriate for existing conditions according to the manufacturers’ recommendations. These conditions include, but are not limited to, engine speed adjustments for cold engine, air conditioning, and emission control, and the use of throttle setting devices.

Ambient temperature means the surrounding air temperature, at a distance such that it is not significantly affected by heat from the vehicle under test.

S4.2 In the case of vehicles powered by electric motors, the words throttle and idle refer to the motor speed controller and motor shutdown, respectively.

S5. Requirements. The vehicle shall meet the following requirements when the engine is running under any load condition, and at any ambient temperature between −40 degrees Celsius and + 52 degrees Celsius after 12 hours of conditioning at any temperature within that range.

S5.1 There shall be at least two sources of energy capable of returning the throttle to the idle position within the time limit specified by S5.3 from any accelerator position or speed whenever the driver removes the opposing actuating force. In the event of failure of one source of energy by a single severance or disconnection, the throttle shall return to the idle position within the time limits specified by S5.3, from any accelerator position or speed whenever the driver removes the opposing actuating force.

S5.2 The throttle shall return to the idle position from any accelerator position or any speed of which the engine is capable whenever any one component of the accelerator control system is disconnected or severed at a single point. The return to idle shall occur within the time limit specified by S5.3, measured either from the time of severance or disconnection or from the first removal of the opposing actuating force by the driver.

S5.3 Except as provided below, maximum time to return to idle position shall be 1 second for vehicles of 4536 kilograms or less GVWR, and 2 seconds for vehicles of more than 4536 kilograms GVWR. Maximum time to return to idle position shall be 3 seconds for any vehicle that is exposed to ambient air at −18 degrees Celsius to −40 degrees Celsius during the test or for any portion of the 12-hour conditioning period.

§ 571.125 Standard No. 125; Warning devices.

S1. Scope. This standard establishes requirements for devices, without self-contained energy sources, that are designed to be carried in motor vehicles and used to warn approaching traffic of the presence of a stopped vehicle, except for devices designed to be permanently affixed to the vehicle.
S2. **Purpose.** The purpose of this standard is to reduce deaths and injuries due to rear end collisions between moving traffic and disabled vehicles.

S3. **Application.** This standard applies to devices, without self-contained energy sources, that are designed to be carried in buses and trucks that have a gross vehicle weight rating (GVWR) greater than 10,000 pounds. These devices are used to warn approaching traffic of the presence of a stopped vehicle, except for devices designed to be permanently affixed to the vehicle.

S4. **Definitions.**

- **Entrance angle** means the angle having as its sides the line through the center, and normal to the face, of the object to be tested, and the line from the center of the object to the center of the source of illumination (Figure 2).

- **Fluorescent** means the property of emitting visible light due to the absorption of radiation of a shorter wavelength which may be outside the visible spectrum.

- **Observation angle** means the angle having as its sides the line from the observation point to the center of the object to be tested and the line from the center of that object to the center of the source of illumination (Figure 2).

- **Reflex reflective** means reflective of light in directions close to the direction of incident light, over a wide range of variations in the direction of incident light.

S5. **Requirements.**

S5.1 **Equipment.**

S5.1.1 Reflex reflective material and fluorescent material that meet the requirements of this standard shall be affixed to both faces of the warning device. Alternatively, a dual purpose orange fluorescent and red reflective material that meets the requirements of this standard (hereafter referred to as “dual purpose material”) may be affixed to both faces in places of the reflective and fluorescent materials.

S5.1.2 Each warning device shall be protected from damage and deterioration—

(a) By enclosure in an opaque protective reusable container, except that two or three warning devices intended to be sold for use as a set with a single vehicle may be enclosed in a single container; or

(b) By secure attachment to any light-tight, enclosed, and easily accessible compartment of a new motor vehicle with which it is supplied by the vehicle manufacturer.

S5.1.3 The warning device shall be designed to be erected, and replaced in its container, without the use of tools.

S5.1.4 The warning device shall be permanently and legibly marked with:

(a) Name of manufacturer;

(b) Month and year of manufacture, which may be expressed numerically, as “6/72”; and

(c) The symbol DOT, or the statement that the warning device complies with all applicable Federal motor vehicle safety standards.

S5.1.5 Each warning device shall have instructions for its erection and display.

(a) The instructions shall be either indelibly printed on the warning device or attached in such a manner that they cannot be easily removed.

(b) Instructions for each warning device shall include a recommendation that the driver activate the vehicular hazard warning signal lamps before leaving the vehicle to erect the warning device.

(c) Instructions shall include the illustration depicted in Figure 3 indicating recommended positioning.

S5.2 **Configuration.**

S5.2.1 When the warning device is erected on level ground:

(a) Part of the warning device shall form an equilateral triangle that stands in a plane not more than 10° from the vertical, with the lower edge of the base of the triangle horizontal and not less than 1 inch above the ground.

(b) None of the required portion of the reflective material and fluorescent material shall be obscured by any other part of the warning device except for any portion of the material over which it is necessary to provide fasteners, pivoting beads or other means to allow collapsibility or support of the device. In any event, sufficient reflective and fluorescent material shall be used on the triangle to meet the requirements of S5.4 and S5.5.

S5.2.2 Each of the three sides of the triangular portion of the warning device shall not be less than 17 and not
§ 571.125

more than 22 inches long, and not less than 2 and not more than 3 inches wide (Figure 1).

S5.2.3 Each face of the triangular portion of the warning device shall have an outer border of red reflex reflective material of uniform width and not less than 0.75 and not more than 1.75 inches wide, and an inner border of orange fluorescent material of uniform width and not less than 1.25 and not more than 1.30 inches wide (Figure 1). However, this requirement shall not apply if the dual purpose material is used.

S5.2.4 Each vertex of the triangular portion of the warning device shall have a radius of not less than 0.25 inch and not more than 0.50 inch.

S5.2.5 All edges shall be rounded or chamfered, as necessary, to reduce the possibility of cutting or harm to the user.

S5.2.6 The device shall consist entirely of the triangular portion and attachments necessary for its support and enclosure, without additional visible shapes or attachments.

S5.3 Color.

S5.3.1 The color of the red reflex reflective material on the warning device shall have the following characteristics, both before and after the warning device has been conditioned in accordance with S6.1, when the source of illumination is a lamp with a tungsten filament operating at 2856° Kelvin color temperature. Expressed in terms of the International Commission on Illumination (CIE) 1931 standard colorimetric observer system, the chromaticity coordinates of the red reflex reflective material shall lie within the region bounded by the spectrum locus and the lines on the diagram defined by the following equations:

<table>
<thead>
<tr>
<th>Boundary</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>y = 0.33</td>
</tr>
<tr>
<td>White</td>
<td>x + y = 0.98</td>
</tr>
</tbody>
</table>

S5.3.2 The color of the orange fluorescent material on the warning device shall have the following characteristics, both before and after the warning device has been conditioned in accordance with S6.1, when the source of illumination is a 150-watt high pressure xenon compact arc lamp. Expressed in terms of the International Commission on Illumination (CIE) 1931 standard colorimetric observer system, the chromaticity coordinates of the orange fluorescent material shall lie within the region bounded by the spectrum locus and the lines on the diagram defined by the following equations:

<table>
<thead>
<tr>
<th>Boundary</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>y = 0.49x + 0.17</td>
</tr>
<tr>
<td>White</td>
<td>x + y = 0.93</td>
</tr>
<tr>
<td>Red</td>
<td>y = 0.35</td>
</tr>
</tbody>
</table>

The 150-watt high pressure xenon compact arc lamp shall illuminate the sample using the unmodified spectrum at an angle of incidence of 45° and an angle of observation of 90°. If dual purpose material is being tested, it shall be illuminated by a 150-watt high pressure xenon compact arc lamp, whose light is diffused by an integrating sphere.

S5.4 Reflectivity. When the red reflex reflective material on the warning device is tested in accordance with S6.2, both before and after the warning device has been conditioned in accordance with S6.1, its total candlepower per incident foot candle shall be not less than the values specified in Table I for each of the listed entrance angles.

S5.5 Luminance. When the orange fluorescent material on the warning device is tested in accordance with S6.3, both before and after the warning device has been conditioned in accordance with S6.1, it shall have a minimum relative luminance of 25 percent of a flat magnesium oxide surface and a minimum product of that relative luminance and width in inches of 44.

S5.6 Stability. When the warning device is erected on a horizontal brushed concrete surface both with and against the brush marks and subjected to a horizontal wind of 40 miles per hour in any direction for 3 minutes—

(a) No part of it shall slide more than 3 inches from its initial position;

(b) Its triangular portion shall not tilt to a position that is more than 10° from the vertical; and

(c) Its triangular position shall not turn through a horizontal angle of more than 10° in either direction from the initial position.
§571.125 Durability. When the warning device is conditioned in accordance with §6.1, no part of the warning device shall become warped or separated from the rest of the warning device.

§6. Test Procedures.

§6.1 Conditions.

§6.1.1 Submit the warning device to the following conditioning sequence, returning the device after each step in the sequence to ambient air at 68 °F. for at least 2 hours.

(a) Minus 40 °F. for 16 hours in a circulating air chamber using ambient air which would have not less than 30 percent and not more than 70 percent relative humidity at 70 °F.;

(b) 150 °F. for 16 hours in a circulating air oven using ambient air which would have not less than 30 percent and not more than 70 percent relative humidity at 70 °F.;

(c) 100 °F. and 90 percent relative humidity for 16 hours;

(d) Salt spray (fog) test in accordance with ASTM B117–64 (incorporated by reference, see §571.5), except that the test shall be for 4 hours rather than 40 hours; and

(e) Immersion for 2 hours in water at a temperature of 100 °F.

§6.2 Reflectivity Test. Test the red reflex reflective materials as follows:

(a) Unless dual purpose material is used, prevent the orange fluorescent material from affecting the photometric measurement of the reflectivity of the red reflex reflective material, either by separation or masking.

(b) Use a lamp with a tungsten filament operating at 2856° Kelvin color temperature as the source of illumination.

(c) Place the source of illumination 100 feet from the red reflex reflective material (Figure 2).

(d) Place the observation point directly above the source of illumination (Figure 2).

(e) Calculate the total candlepower per incident foot candle of the red reflex reflective material at each of the entrance and observation angles specified in Table 1.

§6.3 Luminance Test. Test the orange fluorescent material as follows:

(a) Unless dual purpose material is used, prevent the red reflex reflective material from affecting the photometric measurement of the luminance of the orange fluorescent material.

(b) Using a 150-watt high pressure xenon compact arc lamp as the light source, illuminate the test sample at an angle of incidence of 45° and an angle of observation of 90°. If dual purpose material is being tested, illuminate the sample diffusely through an integrating sphere.

(c) Measure the luminance of the material at a perpendicular viewing angle, with no ray of the viewing beam more than 5° from the perpendicular to the specimen.

(d) Repeat the procedure for a flat magnesium oxide surface, and compute the quotient (percentage) of the luminance of the material relative to that of the magnesium oxide surface.

FIG. 1—DIMENSIONS OF WARNING DEVICE (INCHES)
§ 571.125

49 CFR Ch. V (10–1–16 Edition)

Figure 2

Figure 3

Recommended Warning Device Positioning

Total Minimum Candlepower per Incident Foot Candle

<table>
<thead>
<tr>
<th>Observation Angles - Degrees</th>
<th>Entrance Angles - Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 up</td>
</tr>
<tr>
<td>0.2</td>
<td>80</td>
</tr>
<tr>
<td>1.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 1
§ 571.126 Standard No. 126; Electronic stability control systems for light vehicles.

S1. Scope. This standard establishes performance and equipment requirements for electronic stability control (ESC) systems.

S2. Purpose. The purpose of this standard is to reduce the number of deaths and injuries that result from crashes in which the driver loses directional control of the vehicle, including those resulting in vehicle rollover.
§ 571.126

Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses with a gross vehicle weight rating of 4,536 kilograms (10,000 pounds) or less, according to the phase-in schedule specified in §8 of this standard.

Definitions.

Ackerman Steer Angle means the angle whose tangent is the wheelbase divided by the radius of the turn at a very low speed.

Drive configuration means the driver-selected, or default, condition for distributing power from the engine to the drive wheels (examples include, but are not limited to, 2-wheel drive, front-wheel drive, rear-wheel drive, all-wheel drive, 4-wheel drive high gear with locked differential, and 4-wheel drive low gear).

Electronic stability control system or ESC system means a system that has all of the following attributes:

1. That augments vehicle directional stability by applying and adjusting the vehicle brake torques individually to induce a correcting yaw moment to a vehicle;

2. That is computer-controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;

3. That has a means to determine the vehicle’s yaw rate and to estimate its side slip or side slip derivative with respect to time;

4. That has a means to monitor driver steering inputs;

5. That has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle; and

6. That is operational over the full speed range of the vehicle (except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization).

Lateral acceleration means the component of the vector acceleration of a point in the vehicle perpendicular to the vehicle’s x-axis (longitudinal) and parallel to the road plane.

Low-range four-wheel drive configuration means a drive configuration that has the effect of locking the drive gears at the front and rear axles together and providing an additional gear reduction between the engine speed and vehicle speed of at least 2.0.

Mode means an ESC performance algorithm, whether driver-selected or not (examples include, but are not limited to, standard (default) mode, performance mode, snow or slippery road mode, or Off mode).

Oversteer means a condition in which the vehicle’s yaw rate is greater than the yaw rate that would occur at the vehicle’s speed as a result of the Ackerman Steer Angle.

Side slip or side slip angle means the arctangent of the lateral velocity of the center of gravity of the vehicle divided by the longitudinal velocity of the center of gravity.

Understeer means a condition in which the vehicle’s yaw rate is less than the yaw rate that would occur at the vehicle’s speed as a result of the Ackerman Steer Angle.

Yaw rate means the rate of change of the vehicle’s heading angle measured in degrees/second of rotation about a vertical axis through the vehicle’s center of gravity.

Requirements. Subject to the phase-in set forth in §8, each vehicle must be equipped with an ESC system that meets the requirements specified in §5 under the test conditions specified in §6 and the test procedures specified in §7 of this standard.

S5.1 Required Equipment. Vehicles to which this standard applies must be equipped with an electronic stability control system that:

1. Is capable of applying brake torques individually to all four wheels and has a control algorithm that utilizes this capability.

S5.1.2 Is operational during all phases of driving including acceleration, coasting, and deceleration (including braking), except when the driver has disabled ESC, the vehicle speed is below 20 km/h (12.4 mph), the vehicle is being driven in reverse, or during system initialization.

S5.1.3 Remains capable of activation even if the antilock brake system or traction control system is also activated.

S5.2 Performance Requirements. During each test performed under the test conditions of §6 and the test procedure of §7.9, the vehicle with the ESC system
engaged must satisfy the stability criteria of S5.2.1 and S5.2.2, and it must satisfy the responsiveness criterion of S5.2.3 during each of those tests conducted with a commanded steering wheel angle of 5° or greater, where \(\Delta \) is the steering wheel angle computed in S7.6.1.

S5.2.1 The yaw rate measured one second after completion of the sine with dwell steering input (time \(T_0 + 1 \) in Figure 1) must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks) \(\Delta \text{peak} \) in Figure 1) during the same test run, and

S5.2.2 The yaw rate measured 1.75 seconds after completion of the sine with dwell steering input must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks) during the same test run.

S5.2.3 The lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) for vehicles with a GVWR of 3,500 kg (7,716 lb) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 kg (7,716 lb) when computed 1.07 seconds after the Beginning of Steer (BOS). BOS is defined in S7.11.6.

S5.2.3.1 The computation of lateral displacement is performed using double integration with respect to time of the measurement of lateral acceleration at the vehicle center of gravity, as expressed by the formula:

\[
\text{Lateral Displacement} = \int\int A_y \, dt
\]

S5.2.3.2 Time \(t = 0 \) for the integration operation is the instant of steering initiation, known as the Beginning of Steer (BOS). BOS is defined in S7.11.6.

S5.3 ESC Malfunction. The vehicle must be equipped with a telltale that provides a warning to the driver of the occurrence of one or more malfunctions that affect the generation or transmission of control or response signals in the vehicle’s electronic stability control system. When tested according to S7.10, the ESC malfunction telltale:

S5.3.1 As of September 1, 2011, must be mounted inside the occupant compartment in front of and in clear view of the driver;

S5.3.2 As of September 1, 2011, must be identified by the symbol shown for “ESC Malfunction Telltale” or the specified words or abbreviations listed in Table 1 of Standard No. 101 (49 CFR 571.101);

S5.3.3 As of September 1, 2011, except as provided in paragraphs S5.3.4, S5.3.5, S5.3.8, and S5.3.10, the ESC malfunction telltale must illuminate only when a malfunction(s) of the ESC system exists and must remain continuously illuminated under the conditions specified in S5.3 for as long as the malfunction(s) exists (unless the “ESC malfunction” and “ESC Off” telltales are combined in a two-part telltale and the “ESC Off” telltale is illuminated), whenever the ignition locking system is in the “On” (“Run”) position; and

S5.3.4 As of September 1, 2011, except as provided in paragraph S5.3.5, each ESC malfunction telltale must be activated as a check of lamp function either when the ignition locking system is turned to the “On” (“Run”) position when the engine is not running, or when the ignition locking system is in a position between “On” (“Run”) and “Start” that is designated by the manufacturer as a check position.

S5.3.5 The ESC malfunction telltale need not be activated when a starter interlock is in operation.

S5.3.6 The requirement S5.3.4 does not apply to telltales shown in a common space.

S5.3.7 The ESC malfunction telltale must extinguish at the next ignition cycle after the malfunction has been corrected.

S5.3.8 The manufacturer may use the ESC malfunction telltale in a flashing mode to indicate ESC operation.

S5.3.9 Prior to September 1, 2011, a disconnection of the power to the ESC electronic control unit may be indicated by the ABS malfunction telltale instead of the ESC malfunction telltale.

S5.3.10 Manufacturers may use the ESC malfunction telltale in a steady-burning mode to indicate malfunctions of ESC-related systems and functions.
including traction control, trailer stability assist, corner brake control, and other similar functions that use throttle and/or individual wheel torque control to operate and share common components with the ESC system, and may use the ESC malfunction telltale in a flashing mode to indicate operation of these ESC-related systems.

§5.4 ESC Off and Other System Controls. The manufacturer may include an “ESC Off” control whose only purpose is to place the ESC system in a mode or modes in which it will no longer satisfy the performance requirements of §5.2.1, §5.2.2, and §5.2.3. An “ESC Off” control may be combined with other controls in a multi-function control. Manufacturers may also provide controls for other systems that have an ancillary effect upon ESC operation. Controls of either kind that place the ESC system in a mode in which it will no longer satisfy the performance requirements of §5.2.1, §5.2.2, and §5.2.3 are permitted, provided that:

§5.4.1 The vehicle’s ESC system must always return to the manufacturer’s original default ESC mode that satisfies the requirements of §5.1 and §5.2 at the initiation of each new ignition cycle, regardless of what ESC mode the driver had previously selected, unless (a) the vehicle is in a low-range four-wheel drive configuration selected by the driver on the previous ignition cycle that is designed for low-speed, off-road driving, or (b) the vehicle is in a four-wheel drive configuration selected by the driver on the previous ignition cycle that is designed for operation at higher speeds on snow-, sand-, or dirt-packed roads and that has the effect of locking the drive gears at the front and rear axles together, provided that the vehicle meets the stability performance criteria of §5.2.1 and §5.2.2.

§5.5 ESC Off Telltale

§5.5.1 Except as provided in §5.5.10, the vehicle manufacturer must provide a telltale indicating that the vehicle has been put into a mode that renders it unable to satisfy the requirements of §5.2.1, §5.2.2 and §5.2.3, if such a mode is provided.

§5.5.2 As of September 1, 2011, the “ESC Off” telltale must be identified by the symbol shown for “ESC Off” in Table 1 of Standard No. 101 (49 CFR 571.101) or the text, “ESC Off” as listed under “Word(s) or Abbreviations” in Table 1 of Standard No. 101 (49 CFR 571.101).

§5.5.3 As of September 1, 2011, the “ESC Off” telltale must be mounted inside the occupant compartment in front of and in clear view of the driver.

§5.5.4 Except as provided in paragraph §5.4.4, the “ESC Off” telltale must remain continuously illuminated for as long as the ESC is in a mode that renders it unable to satisfy the requirements of §5.2.1, §5.2.2, and §5.2.3, and notwithstanding §5.3.1(e) of 49 CFR 571.101, the vehicle manufacturer may use the “ESC Off” telltale to indicate an ESC level of function other than the fully functional default mode even if the vehicle would meet §5.2.1, §5.2.2 and §5.2.3 at that level of ESC function.
§ 571.126 NAT'L HIGHWAY TRAFFIC SAFETY ADMIN., DOT

S5.5.6 As of September 1, 2011, except as provided in paragraph S5.5.7 and S5.5.8, each “ESC Off” telltale must be activated as a check of lamp function either when the ignition locking system is turned to the “On” (“Run”) position when the engine is not running, or when the ignition locking system is in a position between “On” (“Run”) and “Start” that is designated by the manufacturer as a check position.

S5.5.7 The “ESC Off” telltale need not be activated when a starter interlock is in operation.

S5.5.8 The requirement S5.5.6 does not apply to telltales shown in a common space.

S5.5.9 The “ESC Off” telltale must extinguish after the ESC system has been returned to its fully functional default mode.

S5.5.10 The “ESC Off” telltale need not illuminate when the vehicle is in a 4-wheel drive high gear locked differential configuration that has the effect of locking the drive gears at the front and rear axles together provided the vehicle meets the stability performance requirements of S5.2.1 and S5.2.2.

S5.6 ESC System Technical Documentation. To ensure a vehicle is equipped with an ESC system that meets the definition of “ESC System” in S4, the vehicle manufacturer must make available to the agency, upon request, the following documentation:

S5.6.1 A system diagram that identifies all ESC system hardware. The diagram must identify what components are used to generate brake torques at each wheel, determine vehicle yaw rate, estimated side slip or the side slip derivative and driver steering inputs.

S5.6.2 A written explanation describing the ESC system basic operational characteristics. This explanation must include a discussion on the system’s capability to apply brake torques at each wheel and how the system modifies engine torque during ESC system activation. The explanation must also identify the vehicle speed range and the driving phases (acceleration, deceleration, coasting, during activation of the ABS or traction control) under which the ESC system can activate.

S5.6.3 A logic diagram that supports the explanation provided in S5.6.2.

S5.6.4 Specifically for mitigating vehicle understeer, a discussion of the pertinent inputs to the computer or calculations within the computer and how its algorithm uses that information and controls ESC system hardware to limit vehicle understeer.

S6. Test Conditions.

S6.1 Ambient conditions.

S6.1.1 The ambient temperature is between 7 °C (45 °F) and 40 °C (104 °F).

S6.1.2 The maximum wind speed is no greater than 10 m/s (22 mph) for passenger cars and 5 m/s (11 mph) for multipurpose passenger vehicles, trucks and buses.

S6.2 Road test surface.

S6.2.1 The tests are conducted on a dry, uniform, solid-paved surface. Surfaces with irregularities and undulations, such as dips and large cracks, are unsuitable.

S6.2.2 The road test surface must produce a peak friction coefficient (PFC) of 0.9 when measured using an ASTM E1136–93 (Reapproved 2003) (incorporated by reference, see §571.5) standard reference test tire, in accordance with ASTM E1337–90 (Reapproved 2008) (incorporated by reference, see §571.5) at a speed of 64.4 km/h (40 mph), without water delivery.

S6.2.3 The test surface has a consistent slope between level and 1%.

S6.3 Vehicle conditions.

S6.3.1 The ESC system is enabled for all testing, except when it is turned off directly or by simulating a malfunction in accordance with S7.3 and S7.10, respectively. The ESC system shall be initialized as follows: Place the vehicle in a forward gear and obtain a vehicle speed of 48 ± 8 km/h (30 ± 5 mph). Drive the vehicle for at least two minutes including at least one left and one right turning maneuver and at least one application of the service brake.

S6.3.2 Test Weight. The vehicle is loaded with the fuel tank filled to at least 75 percent of capacity, and total interior load of 168 kg (370 lbs) comprised of the test driver, approximately 59 kg (130 lbs) of test equipment (automated steering machine, data acquisition system and the power supply for the steering machine), and ballast as required by differences in the weight of
§ 571.126

test drivers and test equipment. Where required, ballast shall be placed on the floor behind the passenger front seat or if necessary in the front passenger foot well area. All ballast shall be secured in a way that prevents it from becoming dislodged during test conduct.

S6.3.3 Tires. The vehicle is tested with the tires installed on the vehicle at time of initial vehicle sale. The tires are inflated to the vehicle manufacturer's recommended cold tire inflation pressure(s) specified on the vehicle's placard or the tire inflation pressure label. All ballast shall be secured in a way that prevents it from becoming dislodged during test conduct.

S6.3.4 Outriggers. Outriggers are used for testing trucks, multipurpose passenger vehicles, and buses. Vehicles with a baseline weight less than 1,588 kg (3,500 lbs) are equipped with "light" outriggers. Vehicles with a baseline weight equal to or greater than 1,588 kg (3,500 lbs) and less than 2,722 kg (6,000 lbs) are equipped with "standard" outriggers. Vehicles with a baseline weight equal to or greater than 2,722 kg (6,000 lbs) are equipped with "heavy" outriggers. A vehicle's baseline weight is the weight of the vehicle delivered from the dealer, fully fueled, with a 73 kg (160 lb) driver. Light outriggers are designed with a maximum weight of 27 kg (59.5 lb) and a maximum roll moment of inertia of 27 kg-m² (19.9 ft-lb-sec²). Standard outriggers are designed with a maximum weight of 32 kg (70 lb) and a maximum roll moment of inertia of 35.9 kg-m² (26.5 ft-lb-sec²). Heavy outriggers are designed with a maximum weight of 39 kg (86 lb) and a maximum roll moment of inertia of 40.7 kg-m² (30.0 ft-lb-sec²).

S6.3.5 Automated steering machine. A steering machine programmed to execute the required steering pattern must be used in S7.5.2, S7.5.3, S7.6 and S7.9. The steering machine shall be capable of supplying steering torques between 40 to 60 Nm (29.5 to 44.3 lb-ft). The steering machine must be able to apply these torques when operating with steering wheel velocities up to 1200 degrees per second.

S7. Test Procedure.

S7.1 Inflate the vehicle's tires to the cold tire inflation pressure(s) provided on the vehicle's placard or the tire inflation pressure label.

S7.2 Telltale bulb check. With the vehicle stationary and the ignition locking system in the "Lock" or "Off" position, activate the ignition locking system to the "On" ("Run") position or, where applicable, the appropriate position for the lamp check. The ESC malfunction telltale must be activated as a check of lamp function, as specified in S5.3.4, and if equipped, the "ESC Off" telltale must also be activated as a check of lamp function, as specified in S5.5.6. The telltale bulb check is not required for a telltale shown in a common space as specified in S5.3.0 and S5.5.8.

S7.3 "ESC Off" control check. For vehicles equipped with an "ESC Off" control, with the vehicle stationary and the ignition locking system in the "Lock" or "Off" position, activate the ignition locking system to the "On" ("Run") position. Activate the "ESC Off" control and verify that the "ESC Off" telltale is illuminated, as specified in S5.5.4. Turn the ignition locking system to the "Lock" or "Off" position. Again, activate the ignition locking system to the "On" ("Run") position and verify that the "ESC Off" telltale has extinguished indicating that the ESC system has been reactivated as specified in S5.4.1.

S7.4 Brake Conditioning. Condition the vehicle brakes as follows:

S7.4.1 Ten stops are performed from a speed of 56 km/h (35 mph), with an average deceleration of approximately 0.5 g.

S7.4.2 Immediately following the series of 56 km/h (35 mph) stops, three additional stops are performed from 72 km/h (45 mph).

S7.4.3 When executing the stops in S7.4.2, the vehicle is driven at a speed of 72 km/h (45 mph) for five minutes to cool the brakes.

S7.5 Tire Conditioning. Condition the tires using the following procedure to wear away mold sheen and achieve operating temperature immediately before beginning the test runs of S7.6 and S7.9.
§ 571.126

S7.5.1 The test vehicle is driven around a circle 30 meters (100 feet) in diameter at a speed that produces a lateral acceleration of approximately 0.5 to 0.6 g for three clockwise laps followed by three counterclockwise laps.

S7.5.2 Using a sinusoidal steering pattern at a frequency of 1 Hz, a peak steering wheel angle amplitude corresponding to a peak lateral acceleration of 0.5–0.6 g, and a vehicle speed of 56 km/h (35 mph), the vehicle is driven through four passes performing 10 cycles of sinusoidal steering during each pass.

S7.5.3 The steering wheel angle amplitude of the final cycle of the final pass is twice that of the other cycles. The maximum time permitted between all laps and passes is five minutes.

S7.6 Slowly Increasing Steer Test. The vehicle is subjected to two series of runs of the Slowly Increasing Steer Test using a constant vehicle speed of 80 ± 2 km/h (50 ± 1 mph) and a steering pattern that increases by 13.5 degrees per second until a lateral acceleration of approximately 0.5 g is obtained. Three repetitions are performed for each test series. One series uses counterclockwise steering, and the other series uses clockwise steering. The maximum time permitted between each test run is five minutes.

S7.6.1 From the Slowly Increasing Steer tests, the quantity “A” is determined. “A” is the steering wheel angle in degrees that produces a steady state lateral acceleration (corrected using the methods specified in S7.11.3) of 0.3 g for the test vehicle. Utilizing linear regression, A is calculated, to the nearest 0.1 degrees, from each of the six Slowly Increasing Steer tests. The absolute value of the six A’s calculated is averaged and rounded to the nearest 0.1 degrees to produce the final quantity, A, used below.

S7.7 After the quantity A has been determined, without replacing the tires, the tire conditioning procedure described in S7.5 is performed immediately prior to conducting the Sine with Dwell Test of S7.9. Initiation of the first Sine with Dwell test series shall begin within two hours after completion of the Slowly Increasing Steer tests of S7.6.

S7.8 Check that the ESC system is enabled by ensuring that the ESC malfunction and “ESC Off” (if provided) telltale(s) are not illuminated.

S7.9 Sine with Dwell Test of Oversteer Intervention and Responsiveness. The vehicle is subjected to two series of test runs using a steering pattern of a sine wave at 0.7 Hz frequency with a 500 ms delay beginning at the second peak amplitude as shown in Figure 2 (the Sine with Dwell tests). One series uses counterclockwise steering for the first half cycle, and the other series uses clockwise steering for the first half cycle. The vehicle is provided a cool-down period between each test run of 90 seconds to five minutes, with the vehicle stationary.

S7.9.1 The steering motion is initiated with the vehicle coasting in high gear at 80 ± 2 km/h (50 ± 1 mph).

S7.9.2 In each series of test runs, the steering amplitude is increased from run to run, by 0.5A, provided that no such run will result in a steering amplitude greater than that of the final run specified in S7.9.4.

S7.9.3 The steering amplitude for the initial run of each series is 1.5A where A is the steering wheel angle determined in S7.6.1.

S7.9.4 The steering amplitude of the final run in each series is the greater of 6.5A or 270 degrees, provided the calculated magnitude of 6.5A is less than or equal to 300 degrees. If any 0.5A increment, up to 6.5A, is greater than 300 degrees, the steering amplitude of the final run shall be 300 degrees.

S7.9.5 Upon completion of the two series of test runs, post processing of yaw rate and lateral acceleration data is done as specified in S7.11.

S7.10 ESC Malfunction Detection.
S7.10.1 Simulate one or more ESC malfunction(s) by disconnecting the power source to any ESC component, or disconnecting any electrical connection between ESC components (with the vehicle power off). When simulating an ESC malfunction, the electrical connections for the telltale lamp(s) are not to be disconnected.

S7.10.2 With the vehicle initially stationary and the ignition locking system in the “Lock” or “Off” position, activate the ignition locking system to the “Start” position and start...
the engine. Place the vehicle in a forward gear and obtain a vehicle speed of 48 ± 8 km/h (30 ± 5 mph). Drive the vehicle for at least two minutes including at least one left and one right turning maneuver and at least one application of the service brake. Verify that within two minutes after obtaining this vehicle speed the ESC malfunction indicator illuminates in accordance with S5.3.

S7.10.3 As of September 1, 2011, stop the vehicle, deactivate the ignition locking system to the “Off” or “Lock” position. After a five-minute period, activate the vehicle’s ignition locking system to the “Start” position and start the engine. Verify that the ESC malfunction indicator again illuminates to signal a malfunction and remains illuminated as long as the engine is running or until the fault is corrected.

S7.10.4 Deactivate the ignition locking system to the “Off” or “Lock” position. Restore the ESC system to normal operation, activate the ignition system to the “Start” position and start the engine. Place the vehicle in a forward gear and obtain a vehicle speed of 48 ± 8 km/h (30 ± 5 mph). Drive the vehicle for at least two minutes including at least one left and one right turning maneuver and at least one application of the service brake. Verify that within two minutes after obtaining this vehicle speed that the ESC malfunction indicator has extinguished.

S7.11 Post Data Processing—Calculations for Performance Metrics. Yaw rate and lateral displacement measurements and calculations must be processed utilizing the following techniques:

S7.11.1 Raw steering wheel angle data is filtered with a 12-pole phaseless Butterworth filter and a cutoff frequency of 10Hz. The filtered data is then zeroed to remove sensor offset utilizing static pretest data.

S7.11.2 Raw yaw rate data is filtered with a 12-pole phaseless Butterworth filter and a cutoff frequency of 6Hz. The filtered data is then zeroed to remove sensor offset utilizing static pretest data.

S7.11.3 Raw lateral acceleration data is filtered with a 12-pole phaseless Butterworth filter and a cutoff frequency of 6Hz. The filtered data is then zeroed to remove sensor offset utilizing static pretest data. The lateral acceleration data at the vehicle center of gravity is determined by removing the effects caused by vehicle body roll and by correcting for sensor placement via use of coordinate transformation. For data collection, the lateral accelerometer shall be located as close as possible to the position of the vehicle’s longitudinal and lateral centers of gravity.

S7.11.4 Steering wheel velocity is determined by differentiating the filtered steering wheel angle data. The steering wheel velocity data is then filtered with a moving 0.1 second running average filter.

S7.11.5 Lateral acceleration, yaw rate and steering wheel angle data channels are zeroed utilizing a defined “zeroing range.” The methods used to establish the zeroing range are defined in S7.11.5.1 and S7.11.5.2.

S7.11.5.1 Using the steering wheel rate data calculated using the methods described in S7.11.4, the first instant steering wheel rate exceeds 75 deg/sec is identified. From this point, steering wheel rate must remain greater than 75 deg/sec for at least 200 ms. If the second condition is not met, the next instant steering wheel rate exceeds 75 deg/sec is identified and the 200 ms validity check applied. This iterative process continues until both conditions are ultimately satisfied.

S7.11.5.2 The “zeroing range” is defined as the 1.0 second time period prior to the instant the steering wheel rate exceeds 75 deg/sec (i.e., the instant the steering wheel velocity exceeds 75 deg/sec defines the end of the “zeroing range”).

S7.11.6 The Beginning of Steer (BOS) is defined as the first instance filtered and zeroed steering wheel angle data reaches −5 degrees (when the initial steering input is counterclockwise) or + 5 degrees (when the initial steering input is clockwise) after time defining the end of the “zeroing range.” The value for time at the BOS is interpolated.

S7.11.7 The Completion of Steer (COS) is defined as the time the steering wheel angle returns to zero at the completion of the Sine with Dwell
steering maneuver. The value for time at the zero degree steering wheel angle is interpolated.

S7.11.8 The second peak yaw rate is defined as the first local yaw rate peak produced by the reversal of the steering wheel. The yaw rates at 1.600 and 1.750 seconds after COS are determined by interpolation.

S7.11.9 Determine lateral velocity by integrating corrected, filtered and zeroed lateral acceleration data. Zero lateral velocity at BOS event. Determine lateral displacement by integrating zeroed lateral velocity. Zero lateral displacement at BOS event. Lateral displacement at 1.07 seconds from BOS event is determined by interpolation.

S8. Phase-in schedule.

S8.1 Vehicles manufactured on or after September 1, 2008, and before September 1, 2009. For vehicles manufactured on or after September 1, 2008, and before September 1, 2009, the number of vehicles complying with this standard must not be less than 55 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 2005, and before September 1, 2008; or
(b) The manufacturer’s production on or after September 1, 2008, and before September 1, 2009.

S8.2 Vehicles manufactured on or after September 1, 2009, and before September 1, 2010. For vehicles manufactured on or after September 1, 2009, and before September 1, 2010, the number of vehicles complying with this standard must not be less than 75 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 2006, and before September 1, 2009; or
(b) The manufacturer’s production on or after September 1, 2009, and before September 1, 2010.

S8.3 Vehicles manufactured on or after September 1, 2010, and before September 1, 2011. For vehicles manufactured on or after September 1, 2010, and before September 1, 2011, the number of vehicles complying with this standard must not be less than 95 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 2007, and before September 1, 2010; or
(b) The manufacturer’s production on or after September 1, 2010, and before September 1, 2011.

S8.4 Vehicles manufactured on or after September 1, 2011. All vehicles manufactured on or after September 1, 2011 must comply with this standard.

S8.5 Calculation of complying vehicles.

(a) For purposes of complying with S8.1, a manufacturer may count a vehicle if it is certified as complying with this standard and is manufactured on or after June 5, 2007, but before September 1, 2009.

(b) For purpose of complying with S8.2, a manufacturer may count a vehicle if it:

(1)(i) Is certified as complying with this standard and is manufactured on or after June 5, 2007, but before September 1, 2010; and
(ii) Is not counted toward compliance with S8.1; or
(2) Is manufactured on or after September 1, 2009, but before September 1, 2010.

(c) For purposes of complying with S8.3, a manufacturer may count a vehicle if it:

(1)(i) Is certified as complying with this standard and is manufactured on or after June 5, 2007, but before September 1, 2011; and
(ii) Is not counted toward compliance with S8.1 or S8.2; or
(2) Is manufactured on or after September 1, 2010, but before September 1, 2011.

S8.6 Vehicles produced by more than one manufacturer.

S8.6.1 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S8.1 through S8.4, a vehicle produced by more than one manufacturer must be attributed to a single manufacturer as follows, subject to S8.6.2:

(a) A vehicle that is imported must be attributed to the importer.
(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, must be attributed to the manufacturer that markets the vehicle.
§ 571.126

S8.6.2 A vehicle produced by more than one manufacturer must be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR Part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S8.6.1.

S8.7 Small volume manufacturers.

Vehicles manufactured during any of the three years of the September 1, 2008 through August 31, 2011 phase-in by a manufacturer that produces fewer than 5,000 vehicles for sale in the United States during that year are not subject to the requirements of S8.1, S8.2, S8.3, and S8.5.

S8.8 Final-stage manufacturers and alterers.

Vehicles that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having previously been certified in accordance with part 567 of this chapter are not subject to the requirements of S8.1 through S8.5. Instead, all vehicles produced by these manufacturers on or after September 1, 2012 must comply with this standard.
Figure 1. Steering wheel position and yaw velocity information used to assess lateral stability.

Figure 2. Sine with Dwell steering profile.

§§ 571.127–571.128 [Reserved]

§ 571.129 **Standard No. 129; New non-pneumatic tires for passenger cars.**

1 **Scope.** This standard specifies tire dimensions and laboratory test requirements for lateral strength, strength, endurance, and high speed performance; defines the tire load rating; and specifies labeling requirements for non-pneumatic spare tires.

2 **Application.** This standard applies to new temporary spare non-pneumatic tires for use on passenger cars.

3 **Definitions.**

 Carcass means the tire structure except for the tread which provides the major portion of the tire's capability to deflect in response to the vertical loads and tractive forces that the tire transmits from the roadway to the non-pneumatic rim, the wheel center member, or the vehicle and which attaches to the vehicle or attaches, either integrally or separably, to the wheel center member or non-pneumatic rim.

 Carcass separation means the pulling away of the carcass from the non-pneumatic rim or wheel center member.

 Chunking means the breaking away of pieces of the carcass or tread.

 Cracking means any parting within the carcass, tread, or any components that connect the tire to the non-pneumatic rim or wheel center member and, if the non-pneumatic tire is integral with the non-pneumatic rim or wheel center member, any parting within the non-pneumatic rim, or wheel center member.

 Load rating means the maximum load a tire is rated to carry.

 Maximum tire width means the greater of either the linear distance between the exterior edges of the carcass or the linear distance between the exterior edges of the tread, both being measured parallel to the rolling axis of the tire.

 Non-pneumatic rim means a mechanical device which, when a non-pneumatic tire assembly incorporates a wheel, supports the tire, and attaches, either integrally or separably, to the wheel center member and upon which the tire is attached.

 Non-pneumatic test rim means with reference to a tire to be tested, any non-pneumatic rim that is listed as appropriate for use with that tire in accordance with §4.4.

 Non-pneumatic tire means a mechanical device which transmits, either directly or through a wheel or wheel center member, the vertical load and tractive forces from the roadway to the vehicle, generates the tractive forces that provide the directional control of the vehicle and does not rely on the containment of any gas or fluid for providing those functions.

 Non-pneumatic tire assembly means a non-pneumatic tire, alone or in combination with a wheel or wheel center member, which can be mounted on a vehicle.

 Non-pneumatic tire identification code means an alphanumeric code that is assigned by the manufacturer to identify the tire with regard to its size, application to a specific non-pneumatic rim or wheel center member or application to a specific vehicle.

 Test wheel center member means with reference to a tire to be tested, any wheel center member that is listed as appropriate for use with that tire in accordance with §4.4.

 Tread means that portion of the tire that comes in contact with the road.

 Tread separation means pulling away of the tread from the carcass.

 Wheel means a mechanical device which consists of a non-pneumatic rim and wheel center member and which, in the case of a non-pneumatic tire assembly incorporating a wheel, provides the connection between the tire and the vehicle.

 Wheel center member means, in the case of a non-pneumatic tire assembly incorporating a wheel, a mechanical device which attaches, either integrally or separably, to the non-pneumatic rim and provides the connection between the tire and the vehicle; or in the case of a non-pneumatic tire assembly not incorporating a wheel, a mechanical device which attaches, either integrally or separably, to the non-pneumatic tire and provides the connection between the tire and the vehicle.

4 **Requirements.**

 §4.1 **Size and Construction.** Each tire shall be designed to fit each non-pneumatic rim or wheel center member specified for its non-pneumatic tire.
§ 571.129

Identification code designation in a listing in accordance with section S4.4.

S4.2 Performance Requirements
S4.2.1 General. Each tire shall conform to the following:

(a) Its load rating shall be that specified in a submission made by a manufacturer, pursuant to S4.4(a), or in one of the publications described in S4.4(b) for its non-pneumatic tire identification code designation.

(b) It shall incorporate a tread wear indicator that will provide a visual indication that the tire has worn to a tread depth of \(\frac{1}{16} \) inch.

(c) It shall, before being subjected to either the endurance test procedure specified in S5.4 or the high speed performance procedure specified in S5.5, exhibit no visual evidence of tread or carcass separation, chunking or cracking.

(d) It shall meet the requirements of S4.2.2.5 and S4.2.2.6 when tested on a test wheel described in S5.4.1 either alone or simultaneously with up to 5 tires.

S4.2.2 Test Requirements.
S4.2.2.1 Test Sample. For each test sample use:

(a) One tire for physical dimensions, lateral strength, and strength in sequence;

(b) A second tire for tire endurance; and

(c) A third tire for high speed performance.

S4.2.2.2 Physical Dimensions. For a non-pneumatic tire assembly in which the tire is separable from the non-pneumatic rim or wheel center member, the dimensions, measured in accordance with S5.1, for that portion of the tire that attaches to that non-pneumatic rim or wheel center member shall satisfy the dimensional specifications contained in the submission made by an individual manufacturer, pursuant to S4.4(a), or in one of the publications described in S4.4(b) for that tire’s non-pneumatic tire identification code designation.

S4.2.2.3 Lateral Strength. There shall be no visual evidence of tread or carcass separation, cracking or chunking, when a tire is tested in accordance with S5.2 to a load of:

(a) 1,500 pounds for tires with a load rating less than 880 pounds;

(b) 2,000 pounds for tires with a load rating of 880 pounds or more but less than 1,400 pounds.

(c) 2,500 pounds for tires with a load rating of 1,400 pounds or more, using the load rating marked on the tire or tire assembly.

S4.2.2.4 Tire Strength. There shall be no visual evidence of tread carcass separation, cracking or chunking, when a tire is tested in accordance with S5.3 to a minimum energy level of:

<table>
<thead>
<tr>
<th>Load rating</th>
<th>Minimum energy level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 880 pounds</td>
<td>1950 inch pounds</td>
</tr>
<tr>
<td>880 pounds and above</td>
<td>2600 inch pounds</td>
</tr>
</tbody>
</table>

S4.2.2.5 Tire Endurance. When the tire has been subjected to the laboratory endurance test specified in S5.4, using, if applicable, a non-pneumatic test rim or test wheel center member that undergoes no permanent deformation, there shall be no visual evidence of tread or carcass separation, cracking or chunking. In the case of a non-pneumatic tire assembly in which the non-pneumatic tire is an integral part of the assembly, the assembly shall undergo no permanent deformation with the exception of wear of the tread.

S4.2.2.6 High Speed Performance. When the tire has been subjected to the laboratory high speed performance test specified in S5.5, using if applicable, a non-pneumatic test rim or test wheel center member that undergoes no permanent deformation, there shall be no visual evidence of tread or carcass separation, cracking or chunking. In the case of a non-pneumatic tire assembly in which the non-pneumatic tire is an integral part of the assembly, the assembly shall undergo no permanent deformation with the exception of wear of the tread.

S4.3 Labeling requirements. Each new non-pneumatic tire shall comply, according to the phase-in schedule specified in S7 of this standard, with the requirements of S5.5 and S5.5.1 of § 571.139.

S4.4 Non-Pneumatic Tire Identification Code and Non-Pneumatic Rim/Wheel Center Member Matching Information. For purposes of this standard, § 8 of 49 CFR 571.110 and § 10 of 49 CFR 571.120, each manufacturer of a non-pneumatic tire that is not an integral part of a
non-pneumatic tire assembly shall ensure that it provides a listing to the public for each non-pneumatic tire that it produces. The listing shall include the non-pneumatic tire identification code, tire load rating, dimensional specifications and a diagram of the portion of the tire that attaches to the non-pneumatic rim or wheel center member, and a list of the non-pneumatic rims or wheel center members that may be used with that tire. For each non-pneumatic rim or wheel center member included in such a listing, the information provided shall include a size and type designation for the non-pneumatic rim or wheel center member, and dimensional specifications and a diagram of the portion of the wheel center member that attaches to the tire. A listing compiled in accordance with paragraph (a) of this section need not include dimensional specifications or a diagram of the non-pneumatic rim or portion of the wheel center member that attaches to the tire if the non-pneumatic rim’s or portion of the wheel center member’s dimensional specifications and diagram are contained in each listing published in accordance with paragraph (b) of this section. The listing shall be in one of the following forms:

(a) Listed by manufacturer name or brand name in a document furnished to dealers of the manufacturer’s tires or, in the case of non-pneumatic tires supplied only as a temporary spare tire on a vehicle, in a document furnished to dealers of vehicles equipped with the tires, to any person upon request, and in duplicate to the Office of Vehicle Safety Standards, Crash Avoidance Division, National Highway Traffic Safety Administration, U.S. Department of Transportation, Washington, DC 20590; or

(b) Contained in publications, current at the date of manufacture of the tire or any later date, of at least one of the following organizations:

The Tire and Rim Association
The European Tyre and Rim Technical Organization
Japan Automobile Tire Manufacturers’ Association, Inc.
Deutsche Industrie Norm
British Standards Institute
Scandinavian Tire and Rim Organization
Tyre and Rim Association of Australia

S5. Test Procedures.
S5.1 Physical Dimensions. After conditioning the tire at room temperature for at least 24 hours, using equipment with minimum measurement capabilities of one-half the smallest tolerance specified in the listing contained in the submission made by a manufacturer pursuant to S4.4(a), or in one of the publications described in S4.4(b) for that tire’s non-pneumatic tire identification code designation, measure the portion of the tire that attaches to the non-pneumatic rim or the wheel center member. For any inner diameter dimensional specifications, or other dimensional specifications that are uniform or uniformly spaced around some circumference of the tire, these measurements shall be taken at least six points around the tire, or, if specified, at the points specified in the listing contained in the submission made by an individual manufacturer, pursuant to S4.4(a), or in one of the publications described in S4.4(b) for that tire’s non-pneumatic tire identification code designation.

S5.2 Lateral Strength.
S5.2.1 Preparation of the tire.
S5.2.1.1 If applicable, mount a new tire on a non-pneumatic test rim or test wheel center member.
S5.2.1.2 Mount the tire assembly in a fixture as shown in Figure 1 with the surface of the tire assembly that would face outward when mounted on a vehicle facing toward the lateral strength test block shown in Figure 2 and force the lateral strength test block against the tire.
S5.2.2 Test Procedure.
S5.2.2.1 Apply a load through the block to the tire at a rate of 2 inches per minute, with the load arm parallel to the tire assembly at the time of engagement and the first point of contact with the test block being the test block centerline shown in Figure 2, at the following distances, B, in sequence, as shown in Figure 1:

\[
\begin{align*}
B &= A - 1 \text{ inch} \\
B &= A - 2 \text{ inches} \\
B &= A - 3 \text{ inches} \\
B &= A - 4 \text{ inches} \\
B &= A - 5 \text{ inches}, \text{ and} \\
B &= A - 6 \text{ inches.}
\end{align*}
\]

However, if at any time during the conduct of the test, the test block comes
in contact with the non-pneumatic test rim or test wheel center member, the test shall be suspended and no further testing at smaller values of the distance B shall be conducted. When tested to the above procedure, satisfying the requirements of §4.2.2.3 for all values of B greater than that for which contact between the non-pneumatic test rim or test wheel center member and the test block is made, shall constitute compliance to the requirements set forth in §4.2.2.3.

S5.3 Tire Strength.

S5.3.1 Preparation of the Tire.
S5.3.1.1 If applicable, mount the tire on a non-pneumatic test rim or test wheel center member.
S5.3.1.2 Condition the tire assembly at room temperature for at least three hours.

S5.3.2 Test Procedures.
S5.3.2.1 Force the test cleat, as defined in §5.3.2.2, with its length axis (see S5.3.2.2(a)) parallel to the rolling axis of the non-pneumatic tire assembly, and its height axis (see S5.3.2.2(c)), coinciding with a radius of the non-pneumatic tire assembly, into the tread of the tire at five test points equally spaced around the circumference of the tire. At each test point, the test cleat is forced into the tire at a rate of two inches per minute until the applicable minimum energy level, as shown in §4.2.2.4, calculated using the formula contained in §5.3.2.3, is reached.

S5.3.2.2 The test cleat is made of steel and has the following dimensions:
(a) Minimum length of one inch greater than the maximum tire width of the tire,
(b) Width of one-half inch with the surface which contacts the tire's tread having one-quarter inch radius, and
(c) Minimum height of one inch greater than the difference between the unloaded radius of the non-pneumatic tire assembly and the maximum radius of the non-pneumatic rim or wheel center member, if used with the non-pneumatic tire assembly being tested.

S5.3.2.3 The energy level is calculated by the following formula:

\[E = \frac{F \times P}{2} \]

where
E = Energy level, inch-pounds;
F = Force, pounds; and
P = Penetration, inches

S5.4 Tire Endurance.

S5.4.1 Preparation of the tire.
S5.4.1.1 If applicable, mount a new tire on a non-pneumatic test rim or test wheel center member.
S5.4.1.2 Condition the tire assembly to 100 ± 5 °F, for at least three hours.

S5.4.2 Test Procedure.
S5.4.2.1 Mount the tire assembly on a test axle and press it against a flat-faced steel test wheel 67.23 inches in diameter and at least as wide as the maximum tire width of the tire to be tested or an approved equivalent test wheel, with the applicable test load specified in the table in §5.4.2.3 for the tire's non-pneumatic tire identification code designation.
S5.4.2.2 During the test, the air surrounding the test area shall be 100 ± 5 °F.

S5.4.2.3 Conduct the test at 50 miles per hour (m.p.h.) in accordance with the following schedule without interruption: The loads for the following periods are the specified percentage of the load rating marked on the tire or tire assembly:

<table>
<thead>
<tr>
<th>Percent</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>4 hours</td>
</tr>
<tr>
<td>90</td>
<td>86 hours</td>
</tr>
<tr>
<td>100</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

S5.4.2.4 Immediately after running the tire the required time, allow the tire to cool for one hour, then, if applicable, detach it from the non-pneumatic test rim or test wheel center member, and inspect it for the conditions specified in §4.2.2.5.

S5.5 High Speed Endurance.

S5.5.1 After preparing the tire in accordance with §5.4.1, if applicable, mount the tire assembly in accordance with §5.4.2.1, and press it against the test wheel with a load of 88 percent of the tire's load rating marked on the tire or tire assembly.

S5.5.2 Break in the tire by running it for 2 hours at 50 m.p.h.
S5.5.3 Allow to cool to 100 ± 5 °F.
S5.5.4 Test at 75 m.p.h. for 30 minutes, 80 m.p.h. for 30 minutes and 85 m.p.h. for 30 minutes.
S5.5.5 Immediately after running the tire for the required time, allow
§ 571.129

the tire to cool for one hour, then, if applicable, detach it from the non-pneumatic test rim or test wheel center member, and inspect it for the conditions specified in §4.2.2.6.

S6. Nonconforming tires. Any non-pneumatic tire that is designed for use on passenger cars that does not conform to all the requirements of this standard, shall not be sold, offered for sale, introduced or delivered for introduction into interstate commerce, or imported into the United States, for any purpose.

S7 Phase-In Schedule for labeling requirements.

S7.1 Tires manufactured on or after September 1, 2005 and before September 1, 2006. For tires manufactured on or after September 1, 2005 and before September 1, 2006, the number of tires complying with §4.3 of this standard must be equal to not less than 40% of the manufacturer’s production during that period.

S7.2 Tires manufactured on or after September 1, 2006 and before September 1, 2007. For tires manufactured on or after September 1, 2006 and before September 1, 2007, the number of tires complying with §4.3 of this standard must be equal to not less than 70% of the manufacturer’s production during that period.

S7.3 Tires manufactured on or after September 1, 2007. Each tire must comply with §6.3 of this standard.
FIGURE 1 – LATERAL FORCE TEST FIXTURE (DIMENSIONS IN INCHES)
§ 571.129

49 CFR Ch. V (10–1–16 Edition)

§ 571.131 Standard No. 131; School bus pedestrian safety devices.

S1. Scope. This standard establishes requirements for devices that can be installed on school buses to improve the safety of pedestrians in the vicinity of stopped school buses.

S2. Purpose. The purpose of this standard is to reduce deaths and injuries by minimizing the likelihood of vehicles passing a stopped school bus and striking pedestrians in the vicinity of the bus.

S3. Application. This standard applies to school buses other than multi-function school activity buses.

S4. Definitions.

Stop signal arm means a device that can be extended outward from the side of a school bus to provide a signal to other motorists not to pass the bus because it has stopped to load or discharge passengers.

S5. Requirements. Each school bus shall be equipped with a stop signal arm meeting the requirements of S5.1 through S5.5 as depicted in Figure 1.

Figure 1. Characteristics of Stop Signal Device

S5.1 The stop signal arm shall be a regular octagon which is at least 450 mm × 450 mm (17.72 inches × 17.72 inches) in diameter.

S5.2 The stop signal arm shall be red on both sides, except as provided in S5.2.1 and S5.2.2, and S5.2.3.

S5.2.1 The stop signal arm shall have a white border at least 12 mm (0.47 inches) wide on both sides, except as provided in S5.2.3. Mounting brackets, clips, bolts, or other components necessary to the mechanical or electrical operation of the stop signal arm may not obscure more than 15 percent of the border on each side of the stop arm. The portion of the border that may be obscured is in addition to that portion which may be obscured by the two red lamps specified in S5.3.2.

S5.2.2 The stop signal arm shall have the word “STOP” displayed in white upper-case letters on both sides, except as provided in S5.2.3. The letters shall be at least 150 mm (5.9 inches) in height. The letters shall have a stroke width of at least 20 mm (0.79 inches), except as provided in S.5.3.1.1.
§ 571.131 49 CFR Ch. V (10–1–16 Edition)

S5.2.3 When two stop signal arms are installed on a school bus, the rearmost stop signal arm shall not contain any lettering, symbols, or markings on the forward side.

S5.3 Conspicuity. The stop signal arm shall comply with either S5.3.1 or S5.3.2, or both.

S5.3.1 Except as provided in S5.3.1.1, S5.3.1.2, or S5.3.1.3, the entire surface of both sides of each stop signal arm shall be reflectorized with Type III retroreflective material that meets the minimum specific intensity requirements of S6.1 and Table I.

S5.3.1.1 The legend of the retroreflective stop arm may be illuminated in a manner such that light is emitted from the surface of each letter or from the area immediately surrounding each letter. Only red lamps may be used. They shall form the complete shape of each letter of the legend, and shall be affixed to all letters (or to the areas immediately surrounding all letters) in the legend. The shape of each letter shall remain constant and, if the lamps are contained within each letter, the net stroke width (stroke width minus the width of the lamp(s)) of each letter of the legend, specified in S5.2.2, shall not be less than 15 mm (0.59 inch). When the stop arm is extended, the lamps shall flash at the rate specified in S6.2.2, with a current “on” time specified in S6.2.2.1. All lamps shall be positioned in one of the two following ways:

(1) centered within the stroke of each letter of the legend, or
(2) outlining each letter of the legend.

S5.3.1.2 Nonreflectorized mounting brackets, clips, bolts, or other components necessary to the mechanical or electrical operation of the stop signal arm shall not obscure more than 7.5 percent of the total surface area of either side of the stop signal arm.

S5.3.1.3 When two stop signal arms are installed on a school bus, the forward side of the rearmost stop signal arm shall not be reflectorized.

S5.3.2 Each side of the stop signal arm shall have at least two red lamps that meet the requirements of S6.2. The lamps shall be centered on the vertical centerline of the stop arm. One of the lamps shall be located at the extreme top of the stop arm and the other at its extreme bottom.

S5.4 The stop signal arm shall be installed on the left side of the bus.

S5.4.1 The stop signal arm shall be located such that, when in the extended position:

(a) The stop signal arm is perpendicular to the side of the bus, plus or minus five degrees;
(b) The top edge of the stop signal arm is parallel to and not more than 6 inches from a horizontal plane tangent to the lower edge of the frame of the passenger window immediately behind the driver’s window; and
(c) The vertical centerline of the stop signal arm is not less than 9 inches away from the side of the school bus.

S5.4.2 A second stop signal arm may be installed on a school bus. That stop signal arm shall comply with S5.4 and S5.4.1.

S5.5 The stop signal arm shall be automatically extended in such a manner that it complies with S5.4.1, at a minimum whenever the red signal lamps required by S5.1.4 of Standard No. 108 are activated; except that a device may be installed that prevents the automatic extension of a stop signal arm. The mechanism for activating the device shall be within the reach of the driver. While the device is activated, a continuous or intermittent signal audible to the driver shall sound. The audible signal may be equipped with a timing device requiring the signal to sound for at least 60 seconds. If a timing device is used, it shall automatically recycle every time the service entry door is opened while the engine is running and the manual override is engaged.

S6 Test Procedures.

S6.1 Reflectivity Test. When tested under the conditions specified in S6.2 (b), (c), and (d) of Federal motor vehicle safety standard 125, Warning Devices, (49 CFR 571.125), the retroreflective materials shall meet the criteria specified in table I.
TABLE 1—MINIMUM SPECIFIC INTENSITY PER UNIT AREA (SIA)
(Candela per Footcandle Per Square Foot)

<table>
<thead>
<tr>
<th>Observation Angle (°)</th>
<th>Entrance Angle (°)</th>
<th>Type III Retroreflective Element Material</th>
<th>White</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- 4</td>
<td>A—Glass Bead Retroreflective Element Material</td>
<td>250</td>
<td>45</td>
</tr>
<tr>
<td>0.2</td>
<td>+ 30</td>
<td></td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>0.5</td>
<td>- 4</td>
<td>B—Prismatic Retroreflective Element Material</td>
<td>95</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>+ 30</td>
<td></td>
<td>65</td>
<td>10</td>
</tr>
</tbody>
</table>

S6.2 Lighting Tests.

S6.2.1 Color. The procedure shall be done in accordance with SAE Recommended Practice J578–1988 (incorporated by reference, see §571.5). When visually compared to the light emitted from a filter/source with a combination of chromaticity coordinates as explained in SAE Recommended Practice J578–1988 within specific boundaries [y = 0.33 (yellow boundary) and y = 0.98—x (purple boundary)] the color of light emitted from the test object shall not be less saturated (paler), yellower, or purpler. The test object shall be placed perpendicular to the light source to simulate lamps on stop signal arms. In making visual comparisons, the light from the test object shall light one portion of a comparison field and the light from the filter/source standard shall light an adjacent area. To make a valid visual comparison, the two fields to be viewed shall be of near equal luminance.

S6.2.2 Flash rate. The lamps on each side of the stop signal arm, when operated at the manufacturer’s design load, shall flash alternately at a rate of 60 to 120 flashes per minute.

S6.2.2.1 Lamps, except those subject to S6.2.2.2, shall have a current “on” time of 30 to 75 percent of the total flash cycle. The total current “on” time for the two terminals shall be between 90 and 110 percent of the total flash cycle.

S6.2.2.2 Xenon short-arc gaseous discharge lamps shall have an “off” time before each flash of at least 50 percent of the total flash cycle.

S6.2.3 Vibration, Moisture, Dust, Corrosion, Photometry, and Warpage Tests.

The procedure shall be done in accordance with SAE Recommended Practice J575–1983 (incorporated by reference, see §571.5) and SAE Recommended Practice J1133 (1984) (incorporated by reference, see §571.5). Lamps and lighting components shall meet the criteria for vibration, moisture, dust, corrosion, photometry, and warpage in SAE Recommended Practice J575–1983 and SAE Recommended Practice J1133 (1984) under the test conditions specified herein.

§571.135 Standard No. 135; Light vehicle brake systems.

S1. Scope. This standard specifies requirements for service brake and associated parking brake systems.

S2. Purpose. The purpose of this standard is to ensure safe braking performance under normal and emergency driving conditions.

S3. Application. This standard applies to passenger cars manufactured on or after September 1, 2000 and to multi-purpose passenger vehicles, trucks and buses with a gross vehicle weight rating (GVWR) of 3,500 kilograms (7,716 pounds) or less, manufactured on or after September 1, 2002. In addition, at the option of the manufacturer, passenger cars manufactured before September 1, 2000, and multi-purpose passenger vehicles, trucks and buses with a GVWR of 3,500 kilograms (7,716 pounds) or less, manufactured before September 1, 2002, may meet the requirements of this standard instead of Federal Motor Vehicle No. 105, Hydraulic Brake Systems.

S4. Definitions.

Adhesion utilization curves means curves showing, for specified load conditions, the adhesion utilized by each axle of a vehicle plotted against the braking ratio of the vehicle.

Antilock brake system or ABS means a portion of a service brake system that automatically controls the degree of rotational wheel slip during braking by:
§ 571.135 Electrically-actuated service brakes

(1) Sensing the rate of angular rotation of the wheels;

(2) Transmitting signals regarding the rate of wheel angular rotation to one or more controlling devices which interpret those signals and generate responsive controlling output signals; and

(3) Transmitting those controlling signals to one or more modulator devices which adjust brake actuating forces in response to those signals.

Backup system means a portion of a service brake system, such as a pump, that automatically supplies energy in the event of a primary brake power source failure.

Brake factor means the slope of the linear least squares regression equation best representing the measured torque output of a brake as a function of the measured applied line pressure during a given brake application for which no wheel lockup occurs.

Brake hold-off pressure means the maximum applied line pressure for which no brake torque is developed, as predicted by the pressure axis intercept of the linear least squares regression equation best representing the measured torque output of a brake as a function of the measured applied line pressure during a given brake application.

Brake power assist unit means a device installed in a hydraulic brake system that reduces the amount of muscular force that a driver must apply to actuate the system, and that, if inoperative, does not prevent the driver from braking the vehicle by a continued application of muscular force on the service brake control.

Brake power unit means a device installed in a brake system that provides the energy required to actuate the brakes, either directly or indirectly through an auxiliary device, with driver action consisting only of modulating the energy application level.

Braking ratio means the deceleration of the vehicle divided by the gravitational acceleration constant.

Electric vehicle or EV means a motor vehicle that is powered by an electric motor drawing current from rechargeable storage batteries, fuel cells, or other portable sources of electrical current, and which may include a non-electrical source of power designed to charge batteries and components thereof.

Electrically-actuated service brakes means service brakes that utilize electrical energy to actuate the foundation brakes.

Functional failure means a failure of a component (either electrical or mechanical in nature) which renders the system totally or partially inoperative yet the structural integrity of the system is maintained.

Hydraulic brake system means a system that uses hydraulic fluid as a medium for transmitting force from a service brake control to the service brake and that may incorporate a brake power assist unit, or a brake power unit.

Initial brake temperature or IBT means the average temperature of the service brakes on the hottest axle of the vehicle 0.32 km (0.2 miles) before any brake application.

Lightly loaded vehicle weight or LLVW means unloaded vehicle weight plus the weight of a mass of 180 kg (396 pounds), including driver and instrumentation.

Maximum speed of a vehicle or VMax means the highest speed attainable by accelerating at a maximum rate from a standing start for a distance of 3.2 km (2 miles) on a level surface, with the vehicle at its lightly loaded vehicle weight, and, if an EV, with the propulsion batteries at a state of charge of not less than 95 percent at the beginning of the run.

Objective brake factor means the arithmetic average of all the brake factors measured over the twenty brake applications defined in §7.4, for all wheel positions having a given brake configuration.

Peak friction coefficient or PFC means the ratio of the maximum value of braking test wheel longitudinal force to the simultaneous vertical force occurring prior to wheel lockup, as the braking torque is progressively increased.

Pressure component means a brake system component that contains the brake system fluid and controls or senses the fluid pressure.

Regenerative braking system or RBS means an electrical energy system that is installed in an EV for recovering or
dissipating kinetic energy, and which uses the propulsion motor(s) as a retarder for partial braking of the EV while returning electrical energy to the propulsion battery(s) or dissipating electrical energy.

Snub means the braking deceleration of a vehicle from a higher reference speed to a lower reference speed that is greater than zero.

Split service brake system means a brake system consisting of two or more subsystems actuated by a single control, designed so that a single failure in any subsystem (such as a leakage-type failure of a pressure component of a hydraulic subsystem except structural failure of a housing that is common to two or more subsystems, or an electrical failure in an electric subsystem) does not impair the operation of any other subsystem.

Stopping distance means the distance traveled by a vehicle from the point of application of force to the brake control to the point at which the vehicle reaches a full stop.

Variable brake proportioning system means a system that has one or more proportioning devices which automatically change the brake pressure ratio between any two or more wheels to compensate for changes in wheel loading due to static load changes and/or dynamic weight transfer, or due to deceleration.

Wheel lockup means 100 percent wheel slip.

§571.135

S5. Equipment requirements.

S5.1. Service brake system. Each vehicle shall be equipped with a service brake system acting on all wheels.

S5.1.1. Wear adjustment. Wear of the service brakes shall be compensated for by means of a system of automatic adjustment.

S5.1.2. Wear status. The wear condition of all service brakes shall be indicated by either:

(a) Acoustic or optical devices warning the driver at his or her driving position when lining replacement is necessary, or

(b) A means of visually checking the degree of brake lining wear, from the outside or underside of the vehicle, utilizing only the tools or equipment normally supplied with the vehicle. The removal of wheels is permitted for this purpose.

S5.1.3 Regenerative braking system. (a) For an EV equipped with RBS, the RBS is considered to be part of the service brake system if it is automatically activated by an application of the service brake control, if there is no means provided for the driver to disconnect or otherwise deactivate it, and if it is activated in all transmission positions, including neutral.

(b) For an EV that is equipped with both ABS and RBS that is part of the service brake system, the ABS must control the RBS.

S5.2. Parking brake system. Each vehicle shall be equipped with a parking brake system of a friction type with solely mechanical means to retain engagement.

S5.3. Controls.

_S5.3.1. The service brakes shall be activated by means of a foot control. The control of the parking brake shall be independent of the service brake control, and may be either a hand or foot control.

S5.3.2. For vehicles equipped with ABS, a control to manually disable the ABS, either fully or partially, is prohibited.

S5.4. Reservoirs.

S5.4.1. Master cylinder reservoirs. A master cylinder shall have a reservoir compartment for each service brake subsystem serviced by the master cylinder. Loss of fluid from one compartment shall not result in a complete loss of brake fluid from another compartment.

S5.4.2. Reservoir capacity. Reservoirs, whether for master cylinders or other type systems, shall have a total minimum capacity equivalent to the fluid displacement resulting when all the wheel cylinders or caliper pistons serviced by the reservoirs move from a new lining, fully retracted position (as adjusted initially to the manufacturer’s recommended setting) to a fully worn, fully applied position, as determined in accordance with §7.17(c) of this standard. Reservoirs shall have completely separate compartments for each subsystem except that in reservoir systems utilizing a portion of the reservoir for a common supply to two or more subsystems, individual partial
§ 571.135 49 CFR Ch. V (10–1–16 Edition) compartments shall each have a minimum volume of fluid equal to at least the volume displaced by the master cylinder piston servicing the sub-system, during a full stroke of the piston. Each brake power unit reservoir servicing only the brake system shall have a minimum capacity equivalent to the fluid displacement required to charge the system piston(s) or accumulator(s) move from a new lining, fully retracted position (as adjusted initially to the manufacturer’s recommended setting) to a fully worn, fully applied position.

S5.4.3. Reservoir labeling. Each vehicle equipped with hydraulic brakes shall have a brake fluid warning statement that reads as follows, in letters at least 3.2 mm (¼ inch) high: “WARNING: Clean filler cap before removing. Use only fluid from a sealed container.” (Inserting the recommended type of brake fluid as specified in 49 CFR 571.116, e.g., “DOT 3.”) The lettering shall be:

(a) Permanently affixed, engraved or embossed;

(b) Located so as to be visible by direct view, either on or within 100 mm (3.94 inches) of the brake fluid reservoir filler plug or cap; and

(c) Of a color that contrasts with its background, if it is not engraved or embossed.

S5.4.4. Fluid level indication. Brake fluid reservoirs shall be so constructed that the level of fluid can be checked without need for the reservoir to be opened. This requirement is deemed to have been met if the vehicle is equipped with a transparent brake fluid reservoir or a brake fluid level indicator meeting the requirements of S5.5.1(a)(1).

S5.5. Brake system warning indicator. Each vehicle shall have one or more visual brake system warning indicators, mounted in front of and in clear view of the driver, which meet the requirements of S5.5.1 through S5.5.5. In addition, a vehicle manufactured without a split service brake system shall be equipped with an audible warning signal that activates under the conditions specified in S5.5.1(a).

S5.5.1. Activation. An indicator shall be activated when the ignition (start) switch is in the “on” (“run”) position and whenever any of conditions (a) through (g) occur:

(a) A gross loss of fluid or fluid pressure (such as caused by rupture of a brake line but not by a structural failure of a housing that is common to two or more subsystems) as indicated by one of the following conditions (chosen at the option of the manufacturer):

(1) A drop in the level of the brake fluid in any master cylinder reservoir compartment to less than the recommended safe level specified by the manufacturer or to one-fourth of the fluid capacity of that reservoir compartment, whichever is greater.

(2) For vehicles equipped with a split service brake system, a differential pressure of 1.5 MPa (218 psi) between the intact and failed brake subsystems measured at a master cylinder outlet or a slave cylinder outlet.

(3) A drop in the supply pressure in a brake power unit to one-half of the normal system pressure.

(b) Any electrical functional failure in an antilock or variable brake proportioning system.

(c) Application of the parking brake.

(d) Brake lining wear-out, if the manufacturer has elected to use an electrical device to provide an optical warning to meet the requirements of S5.1.2(a).

(e) For a vehicle with electrically-actuated service brakes, failure of the source of electric power to those brakes, or diminution of state of charge of the batteries to less than a level specified by the manufacturer for the purpose of warning a driver of degraded brake performance.

(f) For a vehicle with electric transmission of the service brake control signal, failure of a brake control circuit.

(g) For an EV with a regenerative braking system that is part of the service brake system, failure of the RBS.

S5.5.2. Function check. (a) All indicators shall be activated as a check function by either:

(1) Automatic activation when the ignition (start) switch is turned to the...
§ 571.135

“on” (“run”) position when the engine is not running, or when the ignition (“start”) switch is in a position between “on” (“run”) and “start” that is designated by the manufacturer as a check position, or

(2) A single manual action by the driver, such as momentary activation of a test button or switch mounted on the instrument panel in front of and in clear view of the driver, or, in the case of an indicator for application of the parking brake, by applying the parking brake when the ignition is in the “on” (“run”) position.

(b) In the case of a vehicle that has an interlock device that prevents the engine from being started under one or more conditions, check functions meeting the requirements of S5.5.2(a) need not be operational under any condition in which the engine cannot be started.

(c) The manufacturer shall explain the brake check function test procedure in the owner’s manual.

§ 5.5.3. Duration. Each indicator activated due to a condition specified in S5.5.1 shall remain activated as long as the condition exists, whenever the ignition (“start”) switch is in the “on” (“run”) position, whether or not the engine is running.

§ 5.5.4. Function. When a visual warning indicator is activated, it may be continuous or flashing, except that the visual warning indicator on a vehicle not equipped with a split service brake system shall be flashing. The audible warning required for a vehicle manufactured without a split service brake system may be continuous or intermittent.

§ 5.5.5. Labeling. (a) Each visual indicator shall display a word or words in accordance with the requirements of Standard No. 101 (49 CFR 571.101) and this section, which shall be legible to the driver under all daytime and nighttime conditions when activated. Unless otherwise specified, the words shall have letters not less than 3.2 mm (⅛ inch) high and the letters and background shall be of contrasting colors, one of which is red. Words or symbols in addition to those required by Standard No. 101 and this section may be provided for purposes of clarity.

(b) Vehicles manufactured with a split service brake system may use a common brake warning indicator to indicate two or more of the functions described in S5.5.1(a) through S5.5.1(g). If a common indicator is used, it shall display the word “Brake.”

(c) A vehicle manufactured without a split service brake system shall use a separate indicator to indicate the failure condition in S5.5.1(a). This indicator shall display the words “STOP— BRAKE FAILURE” in block capital letters not less than 6.4 mm (⅛ inch) in height.

(d) If separate indicators are used for one or more of the conditions described in S5.5.1(a) through S5.5.1(g), the indicators shall display the following wording:

(1) If a separate indicator is provided for the low brake fluid condition in S5.5.1(a)(1), the words “Brake Fluid” shall be used except for vehicles using hydraulic system mineral oil.

(2) If a separate indicator is provided for the gross loss of pressure condition in S5.5.1(a)(2), the words “Brake Pressure” shall be used.

(3) If a separate indicator is provided for the condition specified in S5.5.1(b), the letters and background shall be of contrasting colors, one of which is yellow. The indicator shall be labeled with the words “Antilock” or “Anti-lock” or “ABS”; or “Brake Proportioning,” in accordance with Table 2 of Standard No. 101.

(4) If a separate indicator is provided for application of the parking brake as specified for S5.5.1(c), the single word “Park” or the words “Parking Brake” may be used.

(5) If a separate indicator is provided to indicate brake lining wear-out as specified in S5.5.1(d), the words “Brake Wear” shall be used.

(6) If a separate indicator is provided for the condition specified in S5.5.1(g), the letters and background shall be of contrasting colors, one of which is yellow. The indicator shall be labeled with the symbol “RBS.” RBS failure in a system that is part of the service brake system may also be indicated by a yellow lamp that also indicates “ABS” failure and displays the symbol “ABS/ RBS.”

(7) If a separate indicator is provided for any other function, the display
§ 571.135

shall include the word “Brake” and the appropriate additional labeling.

S5.6. Brake system integrity. Each vehicle shall meet the complete performance requirements of this standard without:

(a) Detachment or fracture of any component of the braking system, such as brake springs and brake shoes or disc pad facings other than minor cracks that do not impair attachment of the friction facings. All mechanical components of the braking system shall be intact and functional. Friction facing tearout (complete detachment of lining) shall not exceed 10 percent of the lining on any single frictional element.

(b) Any visible brake fluid or lubricant on the friction surface of the brake, or leakage at the master cylinder or brake power unit reservoir cover, seal, and filler openings.

S6. General test conditions. Each vehicle must meet the performance requirements specified in S7 under the following test conditions and in accordance with the test procedures and test sequence specified. Where a range of conditions is specified, the vehicle must meet the requirements at all points within the range.

S6.1. Ambient conditions.

S6.1.1. Ambient temperature. The ambient temperature is any temperature between 0 °C (32 °F) and 40 °C (104 °F).

S6.1.2. Wind speed. The wind speed is not greater than 5 m/s (11.2 mph).

S6.2. Road test surface.

S6.2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction coefficient (PFC) of 0.9 when measured using an ASTM E1136-93 (Reapproved 2003) (incorporated by reference, see §571.5) standard reference test tire, in accordance with ASTM E1337-90 (Reapproved 2008) (incorporated by reference, see §571.5), at a speed of 64.4 km/h (40 mph), without water delivery.

S6.2.2. Gradient. Except for the parking brake gradient holding test, the test surface has no more than a 1% gradient in the direction of testing and no more than a 2% gradient perpendicular to the direction of testing.

S6.2.3. Lane width. Road tests are conducted on a test lane 3.5 m (11.5 ft) wide.

S6.3. Vehicle conditions.

S6.3.1. Vehicle weight.

S6.3.1.1. For the tests at GVWR, the vehicle is loaded to its GVWR such that the weight on each axle as measured at the tire-ground interface is in proportion to its GAWR, with the fuel tank filled to 100% of capacity. However, if the weight on any axle of a vehicle at LLVW exceeds the axle’s proportional share of the GVWR, the load required to reach GVWR is placed so that the weight on that axle remains the same as at LLVW.

S6.3.1.2. For the test at LLVW, the vehicle is loaded to its LLVW such that the added weight is distributed in the front passenger seat area.

S6.3.2. Fuel tank loading. The fuel tank is filled to 100% of capacity at the beginning of testing and may not be less than 75% of capacity during any part of the testing.

S6.3.3. Lining preparation. At the beginning of preparation for the road tests, the brakes of the vehicle are in the same condition as when the vehicle was manufactured. No burnishing or other special preparation is allowed, unless all vehicles sold to the public are similarly prepared as a part of the manufacturing process.

S6.3.4. Adjustments and repairs. These requirements must be met without replacing any brake system parts or making any adjustments to the brake system except as specified in this standard. Where brake adjustments are specified (S7.1.3), adjust the brakes, including the parking brakes, in accordance with the manufacturer’s recommendation. No brake adjustments are allowed during or between subsequent tests in the test sequence.

S6.3.5. Automatic brake adjusters. Automatic adjusters are operational throughout the entire test sequence. They may be adjusted either manually or by other means, as recommended by the manufacturer, only prior to the beginning of the road test sequence.

S6.3.6. Antilock brake system (ABS). If a car is equipped with an ABS, the ABS is fully operational for all tests, except where specified in the following sections.

S6.3.7. Variable brake proportioning valve. If a car is equipped with a variable brake proportioning system, the
proportioning valve is fully operational for all tests except the test for failed variable brake proportioning system.

S6.3.8. Tire inflation pressure. Tires are inflated to the pressure recommended by the vehicle manufacturer for the GVWR of the vehicle.

S6.3.9. Engine. Engine idle speed and ignition timing are set according to the manufacturer’s recommendations. If the vehicle is equipped with an adjustable engine speed governor, it is adjusted according to the manufacturer’s recommendations.

S6.3.10. Vehicle openings. All vehicle openings (doors, windows, hood, trunk, convertible top, cargo doors, etc.) are closed except as required for instrumentation purposes.

S6.3.11. State of charge of batteries for EVs.

S6.3.11.1 The state of charge of the propulsion batteries is determined in accordance with SAE Recommended Practice J227a (1976) (incorporated by reference, see §571.5). The applicable sections of J227a (1976) are 3.2.1 through 3.2.4, 3.3.1 through 3.3.2.2, 3.4.1 and 3.4.2, 4.2.1, 5.2, 5.2.1 and 5.3.

S6.3.11.2 At the beginning of the burnish procedure (§7.1 of this standard) in the test sequence, each propulsion battery is at the maximum state of charge recommended by the manufacturer, as stated in the vehicle operator’s manual or on a label that is permanently attached to the vehicle, of, if the manufacturer has made no recommendation, at a state of charge of not less than 95 percent. No further charging of any propulsion battery occurs during any of the performance tests in the test sequence of this standard. If the propulsion batteries are depleted during a test sequence such that the vehicle reaches automatic shut-down, will not accelerate, or the low state of charge brake warning lamp is illuminated, the vehicle is to be accelerated to brake test speed by auxiliary means. If a battery is replaced rather than recharged, the replacement battery shall be charged and measured for state of charge in accordance with these procedures.

S6.3.12. State of charge of batteries for electrically-actuated service brakes. A vehicle equipped with electrically-actuated service brakes also performs the following test series. Conduct 10 stopping tests from a speed of 100 kph or the maximum vehicle speed, whichever is less. At least two of the 10 stopping distances must be less than or equal to 70 meters. The vehicle is loaded to GVWR and the transmission is in the neutral position when the service brake control is actuated and throughout the remainder of the test. Each battery providing power to the electrically-actuated service brakes, shall be in a depleted state of charge for conditions (a), (b), or (c) of this paragraph as appropriate. An auxiliary means may be used to accelerate an EV to test speed.

(a) For an EV equipped with electrically-actuated service brakes deriving power from the propulsion batteries and with automatic shut-down capability of the propulsion motor(s), the propulsion batteries are at not more than five percent above the EV actual automatic shut-down critical value. The critical value is determined...
by measuring the state-of-charge of each propulsion battery at the instant that automatic shut-down occurs.

(b) For an EV equipped with electrically-actuated service brakes deriving power from the propulsion batteries and with no automatic shut-down capability of the propulsion motor(s), the propulsion batteries are at an average of not more than five percent above the actual state of charge at which the brake failure warning signal, required by S5.5.1(e) of this standard, is illuminated.

(c) For a vehicle which has one or more auxiliary batteries that provides electrical energy to operate the electrically-actuated service brakes, each auxiliary battery is at not more than five percent above the actual state of charge at which the brake failure warning signal, required by S5.5.1(e) of this standard, is illuminated.

S6.3.13 Electric vehicles.

S6.3.13.1 (a) For an EV equipped with an RBS that is part of the service brake system, the RBS is operational during the burnish and all tests, except for the test of a failed RBS.

(b) For an EV equipped with an RBS that is not part of the service brake system, the RBS is operational and set to produce the maximum regenerative braking effect during the burnish, and is disabled during the test procedures. If the vehicle is equipped with a neutral gear that automatically disables the RBS, the test procedures which are designated to be conducted in gear may be conducted in neutral.

S6.3.13.2 For tests conducted “in neutral”, the operator of an EV with no "neutral" position (or other means such as a clutch for disconnecting the drive train from the propulsion motor(s)) does not apply any electromotive force to the propulsion motor(s). Any electromotive force that is applied to the propulsion motor(s) automatically remains in effect unless otherwise specified by the test procedure.

S6.4. Instrumentation.

S6.4.1. Brake temperature measurement. The brake temperature is measured by plug-type thermocouples installed in the approximate center of the facing length and width of the most heavily loaded shoe or disc pad, one per brake, as shown in Figure 1. A second thermocouple may be installed at the beginning of the test sequence if the lining wear is expected to reach a point causing the first thermocouple to contact the metal rubbing surface of a drum or rotor. For center-grooved shoes or pads, thermocouples are installed within 3 mm (.12 in) to 6 mm (.24 in) of the groove and as close to the center as possible.

S6.4.2. Brake line pressure measurement for the torque wheel test. The vehicle shall be fitted with pressure transducers in each hydraulic circuit. On hydraulically proportioned circuits, the pressure transducer shall be downstream of the operative proportioning valve.

S6.4.3. Brake torque measurement for the torque wheel test. The vehicle shall be fitted with torque wheels at each wheel position, including slip ring assemblies and wheel speed indicators to permit wheel lock to be detected.
S6.5. **Procedural conditions.**

S6.5.1. **Brake control.** All service brake system performance requirements, including the partial system requirements of S7.7, S7.10 and S7.11, must be met solely by use of the service brake control.

S6.5.2. **Test speeds.** If a vehicle is incapable of attaining the specified normal test speed, it is tested at a speed that is a multiple of 5 km/h (3.1 mph) that is 4 to 8 km/h (2.5 to 5.0 mph) less than its maximum speed and its performance must be within a stopping distance given by the formula provided for the specific requirement.

S6.5.3. **Stopping distance.**

S6.5.3.1. The braking performance of a vehicle is determined by measuring the stopping distance from a given initial speed.

S6.5.3.2. Unless otherwise specified, the vehicle is stopped in the shortest distance achievable (best effort) on all stops. Where more than one stop is required for a given set of test conditions, a vehicle is deemed to comply with the corresponding stopping distance requirements if at least one of the stops is made within the prescribed distance.
S6.5.3.3. In the stopping distance formula given for each applicable test (such as $S \leq 0.10V + 0.0060V^2$), S is the maximum stopping distance in meters, and V is the test speed in km/h.

S6.5.4. Vehicle position and attitude.
S6.5.4.1. The vehicle is aligned in the center of the lane at the start of each brake application. Steering corrections are permitted during each stop.

S6.5.4.2. Stops are made without any part of the vehicle leaving the lane and without rotation of the vehicle about its vertical axis of more than $\pm 15^\circ$ from the center line of the test lane at any time during any stop.

S6.5.5. Transmission selector control.
S6.5.5.1. For tests in neutral, a stop or snub is made in accordance with the following procedures:
(a) Exceed the test speed by 6 to 12 km/h (3.7 to 7.5 mph);
(b) Close the throttle and coast in gear to approximately 3 km/h (1.9 mph) above the test speed;
(c) Shift to neutral; and
(d) When the test speed is reached, apply the brakes.

S6.5.5.2. For tests in gear, a stop or snub is made in accordance with the following procedures:
(a) With the transmission selector in the control position recommended by the manufacturer for driving on a level surface at the applicable test speed, exceed the test speed by 6 to 12 km/h (3.7 to 7.5 mph);
(b) Close the throttle and coast in gear; and
(c) When the test speed is reached, apply the brakes.
(d) To avoid engine stall, a manual transmission may be shifted to neutral (or the clutch disengaged) when the vehicle speed is below 30 km/h (18.6 mph).

S6.5.6. Initial brake temperature (IBT).
If the lower limit of the specified IBT for the first stop in a test sequence (other than a parking brake grade holding test) has not been reached, the brakes are heated to the IBT by making one or more brake applications from a speed of 50 km/h (31.1 mph), at a deceleration rate not greater than 3 m/s2 (9.8 fps2).

S7. Road test procedures and performance requirements. Each vehicle shall meet all the applicable requirements of this section, when tested according to the conditions and procedures set forth below and in S6, in the sequence specified in Table 1:

<table>
<thead>
<tr>
<th>Testing order</th>
<th>Section No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle loaded to GVWR:</td>
<td></td>
</tr>
<tr>
<td>1 Burnish</td>
<td>S7.1</td>
</tr>
<tr>
<td>2 Wheel lock sequence</td>
<td>S7.2</td>
</tr>
<tr>
<td>Vehicle loaded to LLVW:</td>
<td></td>
</tr>
<tr>
<td>3 Wheel lock sequence</td>
<td>S7.2</td>
</tr>
<tr>
<td>4 ABS performance</td>
<td>S7.3</td>
</tr>
<tr>
<td>5 Torque wheel</td>
<td>S7.4</td>
</tr>
<tr>
<td>Vehicle loaded to GVWR:</td>
<td></td>
</tr>
<tr>
<td>6 Torque wheel</td>
<td>S7.4</td>
</tr>
<tr>
<td>7 Cold effectiveness</td>
<td>S7.5</td>
</tr>
<tr>
<td>8 High speed effectiveness</td>
<td>S7.6</td>
</tr>
<tr>
<td>9 Stops with engine off</td>
<td>S7.7</td>
</tr>
<tr>
<td>Vehicle loaded to LLVW:</td>
<td></td>
</tr>
<tr>
<td>10 Cold effectiveness</td>
<td>S7.5</td>
</tr>
<tr>
<td>11 High speed effectiveness</td>
<td>S7.6</td>
</tr>
<tr>
<td>12 Failed antilock</td>
<td>S7.8</td>
</tr>
<tr>
<td>13 Failed proportioning valve</td>
<td>S7.9</td>
</tr>
<tr>
<td>14 Hydraulic circuit failure</td>
<td>S7.10</td>
</tr>
<tr>
<td>Vehicle loaded to GVWR:</td>
<td></td>
</tr>
<tr>
<td>15 Hydraulic circuit failure</td>
<td>S7.10</td>
</tr>
<tr>
<td>16 Failed antilock</td>
<td>S7.8</td>
</tr>
<tr>
<td>17 Failed proportioning valve</td>
<td>S7.9</td>
</tr>
<tr>
<td>18 Power brake unit failure</td>
<td>S7.11</td>
</tr>
<tr>
<td>19 Parking brake</td>
<td>S7.12</td>
</tr>
<tr>
<td>20 Heating Snubs</td>
<td>S7.13</td>
</tr>
<tr>
<td>21 Hot Performance</td>
<td>S7.14</td>
</tr>
<tr>
<td>22 Brake cooling</td>
<td>S7.15</td>
</tr>
<tr>
<td>23 Recovery Performance</td>
<td>S7.16</td>
</tr>
<tr>
<td>24 Final Inspection</td>
<td>S7.17</td>
</tr>
</tbody>
</table>

S7.1. Burnish.
S7.1.1. General information. Any pre-test instrumentation checks are conducted as part of the burnish procedure, including any necessary rechecks after instrumentation repair, replacement or adjustment. Instrumentation check test conditions must be in accordance with the burnish test procedure specified in S7.1.2 and S7.1.3.

S7.1.2. Vehicle conditions. (a) Vehicle load: GVWR only.
(b) Transmission position: In gear.

S7.1.3. Test conditions and procedures. The road test surface conditions specified in S6.2 do not apply to the burnish procedure.
(a) IBT: $\leq 100^\circ$C (212°F).
(b) Test speed: 80 km/h (49.7 mph).
(c) Pedal force: Adjust as necessary to maintain specified constant deceleration rate.
(d) Deceleration rate: Maintain a constant deceleration rate of 3.0 m/s2 (9.8 fps2).
§ 571.135 Wheel lockup sequence.

S7.2.1 General information. (a) The purpose of this test is to ensure that lockup of both front wheels occurs either simultaneously with, or at a lower deceleration rate than, the lockup of both rear wheels, when tested on road surfaces affording adhesion such that wheel lockup of the first axle occurs at a braking ratio of between 0.15 and 0.80, inclusive.

(b) This test is for vehicles without antilock brake systems.

(c) This wheel lock sequence test is to be used as a screening test to evaluate a vehicle's axle lockup sequence and to determine whether the torque wheel test in §7.4 must be conducted.

(d) For this test, a simultaneous lockup of the front and rear wheels refers to the conditions when the time interval between the first occurrence of lockup of the last (second) wheel on the rear axle and the first occurrence of lockup of the last (second) wheel on the front axle is ≤0.1 second for vehicle speeds >15 km/h (9.3 mph).

(e) A front or rear axle lockup is defined as the point in time when the last (second) wheel on an axle locks up.

(f) Vehicles that lock their front axle simultaneously or at lower deceleration rates than their rear axle need not be tested to the torque wheel procedure.

(g) Vehicles which lock their rear axle at deceleration rates lower than the front axle shall also be tested in accordance with the torque wheel procedure in §7.4.

(h) Any determination of noncompliance for failing adhesion utilization requirements shall be based on torque wheel test results.

S7.2.2 Vehicle conditions. (a) Vehicle load: GVWR and LLVW.

(b) Transmission position: In neutral.

S7.2.3 Test Conditions and Procedures. (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F).

(b) Test speed: 65 km/h (40.4 mph) for a braking ratio ≤0.50; 100 km/h (62.1 mph) for a braking ratio >0.50.

(c) Pedal force:

(1) Pedal force is applied and controlled by the vehicle driver or by a mechanical brake pedal actuator.

(2) Pedal force is increased at a linear rate such that the first axle lockup occurs no less than one-half (0.5) second and no more than one and one-half (1.5) seconds after the initial application of the pedal.

(3) The pedal is released when the second axle locks, or when the pedal force reaches 1kN (225 lbs), or 0.1 seconds after first axle lockup, whichever occurs first.

(d) Wheel lockup: Only wheel lockups above a vehicle speed of 15 km/h (9.3 mph) are considered in determining the results of this test.

(e) Test surfaces: This test is conducted, for each loading condition, on two different test surfaces that will result in a braking ratio of between 0.15 and 0.80, inclusive. NHTSA reserves the right to choose the test surfaces to be used based on adhesion utilization curves or any other method of determining “worst case” conditions.

(f) The data recording equipment shall have a minimum sampling rate of 40 Hz.

(g) Data to be recorded. The following information must be automatically recorded in phase continuously throughout each test run such that values of the variables can be cross referenced in real time.

(1) Vehicle speed.

(2) Brake pedal force.

(3) Angular velocity at each wheel.

(4) Actual instantaneous vehicle deceleration or the deceleration calculated by differentiation of the vehicle speed.

(h) Speed channel filtration. For analog instrumentation, the speed channel shall be filtered by using a low-pass filter having a cut-off frequency of less than one fourth the sampling rate.
§ 571.135 49 CFR Ch. V (10–1–16 Edition)

(i) Test procedure. For each test surface, three runs meeting the pedal force application and time for wheel lockup requirements shall be made. Up to a total of six runs will be allowed to obtain three valid runs. Only the first three valid runs obtained shall be used for data analysis purposes.

S7.2.4. Performance requirements. (a) In order to pass this test a vehicle shall be capable of meeting the test requirements on all test surfaces that will result in a braking ratio of between 0.15 and 0.80, inclusive.

(b) If all three valid runs on each surface result in the front axle locking before or simultaneously with the rear axle, or the front axle locks up with only one or no wheels locking on the rear axle, the torque wheel procedure need not be run, and the vehicle is considered to meet the adhesion utilization requirements of this Standard. This performance requirement shall be met for all vehicle braking ratios between 0.15 and 0.80.

(c) If any one of the three valid runs on any surface results in the rear axle locking before the front axle or the rear axle locks up with only one or no wheels locking on the rear axle, the torque wheel procedure shall be performed. This performance requirement shall be met for all vehicle braking ratios between 0.15 and 0.80.

(d) If any one of the three valid runs on any surface results in neither axle locking (i.e., only one or no wheels locked on each axle) before a pedal force of 1 kN (225 lbs) is reached, the vehicle shall be tested to the torque wheel procedure.

(e) If the conditions listed in paragraph (c) or (d) of this section occur, vehicle compliance shall be determined from the results of a torque test of a torque wheel test performed in accordance with S7.4.

(f) An EV with RBS that is part of the service brake system shall meet the performance requirements over the entire normal operating range of the RBS.

S7.3. ABS performance. [Reserved]

S7.4. Adhesion utilization (Torque Wheel Method).

S7.4.1. General information. This test is for vehicles without any ABS. The purpose of the test is to determine the adhesion utilization of a vehicle.

S7.4.2. Vehicle conditions. (a) Vehicle load: GVWR and LLVW.

(b) Transmission position: In neutral.

(c) Tires: For this test, a separate set of tires, identical to those used for all other tests under Section 7.0, may be used.

S7.4.3. Test conditions and procedures. (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F).

(b) Test speeds: 100 km/h (62.1 mph), and 50 km/h (31.1 mph).

(c) Pedal force: Pedal force is increased at a linear rate between 100 and 150 N/sec (22.5 and 33.7 lbs/sec) for the 100 km/h test speed, or between 100 and 200 N/sec (22.5 and 45.0 lbs/sec) for the 50 km/h test speed, until the first axle locks or until a pedal force of 1 kN (225 lbs) is reached, whichever occurs first.

(d) Cooling: Between brake applications, the vehicle is driven at speeds up to 100 km/h (62.1 mph) until the IBT specified in S7.4.3(a) is reached.

(e) Number of runs: With the vehicle at LLVW, run five stops from a speed of 100 km/h (62.1 mph) and five stops from a speed of 50 km/h (31.1 mph), while alternating between the two test speeds after each stop. With the vehicle at GVWR, repeat the five stops at each test speed while alternating between the two test speeds.

(f) Test surface: PFC of at least 0.9.

(g) Data to be recorded. The following information must be automatically recorded in phase continuously throughout each test run such that values of the variables can be cross referenced in real time:

(1) Vehicle speed.

(2) Brake pedal force.

(3) Angular velocity at each wheel.

(4) Brake torque at each wheel.

(5) Hydraulic brake line pressure in each brake circuit. Hydraulically proportioned circuits shall be fitted with transducers on at least one front wheel and one rear wheel downstream of the operative proportioning or pressure limiting valve(s).

(6) Vehicle deceleration.

(h) Sample rate: All data acquisition and recording equipment shall support a minimum sample rate of 40 Hz on all channels.

(1) Determination of front versus rear brake pressure. Determine the front
versus rear brake pressure relationship over the entire range of line pressures. Unless the vehicle has a variable brake proportioning system, this determination is made by static test. If the vehicle has a variable brake proportioning system, dynamic tests are run with the vehicle both empty and loaded. 15 snubs from 50 km/h (31.1 mph) are made for each of the two load conditions, using the same initial conditions specified in this section.

S7.4.4. Data reduction. (a) The data from each brake application under S7.4.3 is filtered using a five-point, on-center moving average for each data channel.

(b) For each brake application under S7.4.3 determine the slope (brake factor) and pressure axis intercept (brake hold-off pressure) of the linear least squares equation best describing the measured torque output at each braked wheel as a function of measured line pressure applied at the same wheel. Only torque output values obtained from data collected when the vehicle deceleration is within the range of 0.15g to 0.80g are used in the regression analysis.

(c) Average the results of paragraph (b) of this section to calculate the average brake factor and brake hold-off pressure for all brake applications for the front axle.

(d) Average the results of paragraph (b) of this section to calculate the average brake factor and brake hold-off pressure for all brake applications for the rear axle.

(e) Using the relationship between front and rear brake line pressure determined in S7.4.3(i) and the tire rolling radius, calculate the braking force at each axle as a function of front brake line pressure.

(f) Calculate the braking ratio of the vehicle as a function of the front brake line pressure using the following equation:

\[
z = \frac{T_1 + T_2}{P}
\]

where \(z\) = braking ratio at a given front line pressure;

\(T_1, T_2\) = Braking forces at the front and rear axles, respectively, corresponding to the same front brake line pressure, and

\(P\) = total vehicle weight.

(g) Calculate the adhesion utilized at each axle as a function of braking ratio using the following equations:

\[
f_1 = \frac{T_1}{P_1 + zhP/E}
\]

\[
f_2 = \frac{T_2}{P_2 - zhP/E}
\]

where \(f_i\) = adhesion utilized by axle \(i\);

\(T_i\) = braking force at axle \(i\) (from (e));

\(P_i\) = static weight on axle \(i\);

\(i = 1\) for the front axle, or 2 for the rear axle;

\(z\) = braking ratio (from (f));

\(h\) = height of center of gravity of the vehicle;

\(P\) = total vehicle weight;

\(E\) = wheelbase.

(h) Plot \(f_1\) and \(f_2\) obtained in (g) as a function of \(z\), for both GVWR and LLVW load conditions. These are the adhesion utilization curves for the vehicle, which are compared to the performance requirements in S7.4.5, shown graphically in Figure 2.
§ 571.135 49 CFR Ch. V (10–1–16 Edition)

S7.4.5. **Performance requirements.** For all braking ratios between 0.15 and 0.80, each adhesion utilization curve for a rear axle shall be situated below a line defined by \(z = 0.9k \) where \(z \) is the braking ratio and \(k \) is the PFC.

S7.4.5.1 An EV with RBS that is part of the service brake system shall meet the performance requirement over the entire normal operating range of the RBS.

S7.5. **Cold effectiveness.**

S7.5.1. **Vehicle conditions.** (a) Vehicle load: GVWR and LLVW.

(b) Transmission position: In neutral.

S7.5.2. **Test conditions and procedures.**

(a) IBT: ≤ 65 °C (149 °F), ≤ 100 °C (212 °F).

(b) Test speed: 100 km/h (62.1 mph).

(c) Pedal force: ≤ 65N (14.6 lbs), ≤ 500N (112.4 lbs).

(d) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph).

(e) Number of runs: 6 stops.

(f) Test surface: PFC of 0.9.

(g) For each stop, bring the vehicle to test speed and then stop the vehicle in the shortest possible distance under the specified conditions.

Figure 2—Adhesion Utilization Requirements

![Graph showing the relationship between adhesion utilization and braking ratio](image-url)
S7.5.3. Performance requirements. (a) Stopping distance for 100 km/h test speed: ≤70m (230 ft).
(b) Stopping distance for reduced test speed: S ≤0.10V + 0.0060V^2.

S7.6. High speed effectiveness. This test is not run if vehicle maximum speed is less than or equal to 125 km/h (77.7 mph).

S7.6.1. Vehicle conditions. (a) Vehicle load: GVWR and LLVW.
(b) Transmission position: In gear.

S7.6.2. Test conditions and procedures. (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F).
(b) Test speed: 80% of vehicle maximum speed <125 km/h (77.7 mph) or 160 km/h (99.4 mph) if vehicle maximum speed ≤200 km/h (124.3 mph).
(c) Pedal force: ≤65N (14.6 lbs), ≤500N (112.4 lbs).
(d) Wheel lockup: No lockup of any wheel allowed for longer than 0.1 seconds at speeds greater than 15 km/h (9.3 mph).
(e) Number of runs: 6 stops.
(f) Test surface: PFC of 0.9.

S7.6.3. Performance requirements.

S7.7. Stops with Engine Off.

S7.7.1. General information. This test is for vehicles equipped with one or more brake power units or brake power assist units. This test is also for EVs.

S7.7.2. Vehicle conditions. (a) Vehicle loading: LLVW and GVWR.
(b) Transmission position: In neutral.
(c) Vehicle engine: Off (not running).
(d) Ignition key position: May be returned to “on” position after turning engine off, or a device may be used to “kill” the engine while leaving the ignition key in the “on” position.

S7.7.3. Test conditions and procedures. (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F).
(b) Test speed: 100 km/h (62.1 mph).
(c) Pedal force: ≤65N (14.6 lbs), ≤500N (112.4 lbs).
(d) Wheel lockup: No lockup of any wheel allowed for longer than 0.1 seconds at speeds greater than 15 km/h (9.3 mph).
(e) Number of runs: 6 stops.
(f) Test surface: PFC of 0.9.
(g) Functional failure simulation: (1) Disconnect the functional power source, or any other electrical connector that creates a functional failure.
(2) Determine whether the brake system indicator is activated when any electrical functional failure of the antilock system is created.
(3) Restore the system to normal at the completion of this test.

S7.7.4. Performance requirements.

S7.8.1. Vehicle conditions. (a) Vehicle loading: LLVW and GVWR.
(b) Transmission position: In neutral.

S7.8.2. Test conditions and procedures. (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F).
(b) Test speed: 100 km/h (62.1 mph).
(c) Pedal force: ≤65N (14.6 lbs), ≤500N (112.4 lbs).
(d) Wheel lockup: No lockup of any wheel for more than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph).
(e) Number of runs: 6 stops.
(f) Test surface: PFC of 0.9.
(g) Functional failure simulation: (1) Disconnect the functional power source, or any other electrical connector that creates a functional failure.
(2) Determine whether the brake system indicator is activated when any electrical functional failure of the antilock system is created.
(3) Restore the system to normal at the completion of this test.
(h) If more than one antilock brake subsystem is provided, repeat test for each subsystem.

S7.8.3. Performance requirements. For service brakes on a vehicle equipped with one or more antilock systems, in the event of any single functional failure in any such system, the service brake system shall continue to operate and shall stop the vehicle as specified in S7.8.3(a) or S7.8.3(b).
(a) Stopping distance for 100 km/h test speed: ≤85 m (279 ft).
(b) Stopping distance for reduced test speed: S ≤0.10V + 0.0075V^2.

S7.9. Variable brake proportioning system functional failure.
§ 571.135 49 CFR Ch. V (10–1–16 Edition)

S7.9.1. Vehicle conditions. (a) Vehicle load: LLVW and GVWR.
(b) Transmission position: In neutral.

S7.9.2. Test conditions and procedures.
(a) IBT: ≤ 65 °C (149 °F), ≤ 100 °C (212 °F).
(b) Test speed: 100 km/h (62.1 mph).
(c) Pedal force: ≤ 65 N (14.6 lbs), ≤ 500 N (112.4 lbs).
(d) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph).
(e) Number of runs: 6 stops.
(f) Test surface: PFC of 0.9.

S7.9.3. Performance requirements. The service brakes on a vehicle equipped with one or more variable brake proportioning systems, in the event of any single functional failure in any such system, shall continue to operate and shall stop the vehicle as specified in S7.9.3(a) or S7.9.3(b).
(a) Stopping distance for 100 km/h test speed: ≤ 110 m (361 ft).
(b) Stopping distance for reduced test speed: S ≤ 0.10V + 0.0100V².

S7.10.1. General information. This test is for vehicles manufactured with or without a split service brake system.

S7.10.2. Vehicle conditions. (a) Vehicle load: LLVW and GVWR.
(b) Transmission position: In neutral.

S7.10.3. Test conditions and procedures.
(a) IBT: ≤ 65 °C (149 °F), ≤ 100 °C (212 °F).
(b) Test speed: 100 km/h (62.1 mph).
(c) Pedal force: ≤ 65 N (14.6 lbs), ≤ 500 N (112.4 lbs).
(d) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph).
(e) Test surface: PFC of 0.9.
(f) Alter the service brake system to produce any single failure. For a hydraulic circuit, this may be any single rupture or leakage type failure, other than a structural failure of a housing that is common to two or more subsystems. For a vehicle in which the brake signal is transmitted electrically between the brake pedal and some or all of the foundation brakes, regardless of the means of actuation of the foundation brakes, this may be any single failure in any circuit that electrically transmits the brake signal. For an EV with RBS that is part of the service brake system, this may be any single failure in the RBS.
(g) Determine the control force pressure level or fluid level (as appropriate for the indicator being tested) necessary to activate the brake warning indicator.
(h) Number of runs: After the brake warning indicator has been activated, make the following stops depending on the type of brake system:
(1) 4 stops for a split service brake system.
(2) 10 consecutive stops for a non-split service brake system.
(i) Each stop is made by a continuous application of the service brake control.
(j) Restore the service brake system to normal at the completion of this test.
(k) Repeat the entire sequence for each of the other subsystems.

S7.10.4 Performance requirements. For vehicles manufactured with a split service brake system, in the event of any failure in a single subsystem, as specified in S7.10.3(f) of this standard, and after activation of the brake system indicator as specified in S5.5.1 of this standard, the remaining portions of the service brake system shall continue to operate and shall stop the vehicle as specified in S7.10.4(a) or S7.10.4(b). For vehicles not manufactured with a split service brake system, in the event of any failure in any component of the service brake system, as specified in S7.10.3(f) and after activation of the brake system indicator as specified in S5.5.1 of this standard, the vehicle shall, by operation of the service brake control, stop 10 times consecutively as specified in S7.10.4(a) or S7.10.4(b).
(a) Stopping distance from 100 km/h test speed: ≤168 m (551 ft).
(b) Stopping distance for reduced test speed: S ≤0.10V + 0.0158V^2.

S7.11. Brake power unit or brake power assist unit inoperative (System depleted).
S7.11.1. General information. This test is for vehicles equipped with one or more brake power units or brake power assist units.
S7.11.2. Vehicle conditions. (a) Vehicle load: GVWR only.
(b) Transmission position: In neutral.
S7.11.3. Test conditions and procedures. (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F).
(b) Test speed: 100 km/h (62.1 mph).
(c) Pedal force: ≤65 N (14.6 lbs), ≤500 N (112.4 lbs).
(d) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph).
(e) Number of runs: 6 stops.
(f) Test surface: PFC of 0.9.
(g) Disconnect the primary source of power for one brake power assist unit or brake power unit, or one of the brake power unit or brake power assist unit subsystems if two or more subsystems are provided.
(h) If the brake power unit or power assist unit operates in conjunction with a backup system and the backup system is automatically activated in the event of a primary power service failure, the backup system is operative during this test.
(i) Exhaust any residual brake power reserve capability of the disconnected system.
(j) Make each of the 6 stops by a continuous application of the service brake control.
(k) Restore the system to normal at completion of this test.
(l) For vehicles equipped with more than one brake power unit or brake power assist unit, conduct tests for each in turn.
(m) For vehicles with electrically-actuated service brakes (brake power unit), this test is conducted with any single electrical failure in the electrically-actuated service brakes instead of a failure of any other brake power or brake power assist unit, and all other systems intact.
S7.11.4. Performance requirements. The service brakes on a vehicle equipped with one or more brake power assist units or brake power units, with one such unit inoperative and depleted of all reserve capability, shall stop the vehicle as specified in S7.11.4(a) or S7.11.4(b).
(a) Stopping distance from 100 km/h test speed: ≤168 m (551 ft).
(b) Stopping distance for reduced test speed: S ≤0.10V + 0.0158V^2.

(b) Transmission position: In neutral.
(c) Parking brake burnish:
(1) For vehicles with parking brake systems not utilizing the service friction elements, the friction elements of such a system are burnished prior to the parking brake test according to the published recommendations furnished to the purchaser by the manufacturer.
(2) If no recommendations are furnished, the vehicle’s parking brake system is tested in an unburnished condition.
(d) Parking brake applications: 1 application and up to 2 reapplications, if necessary.
S7.12.2. Test conditions and procedures. (a) IBT:
(1) Parking brake systems utilizing service brake friction materials shall be tested with the IBT ≤100 °C (212 °F) and shall have no additional burnishing or artificial heating prior to the start of the parking brake test.
(2) Parking brake systems utilizing non-service brake friction materials shall be tested with the friction materials at ambient temperature at the start of the test. The friction materials shall have no additional burnishing or artificial heating prior to or during the parking brake test.
(b) Parking brake control force: Hand control ≤400 N (89.9 lbs); foot control ≤500 N (112.4 lbs).
(c) Hand force measurement locations: The force required for actuation of a hand-operated brake system is measured at the center of the hand grip area or at a distance of 40 mm (1.57 in) from the end of the actuation lever as illustrated in Figure 3.
(d) Parking brake applications: 1 application and up to 2 reapplications, if necessary.
(e) Test surface gradient: 20% grade.
(f) Drive the vehicle onto the grade with the longitudinal axis of the vehicle in the direction of the slope of the grade.
(g) Stop the vehicle and hold it stationary by applying the service brake control and place the transmission in neutral.
(h) With the service brake applied sufficiently to just keep the vehicle from rolling, apply the parking brake as specified in S7.12.2(i) or S7.12.2(j).
(i) For a vehicle equipped with mechanically-applied parking brakes, make a single application of the parking brake control with a force not exceeding the limits specified in S7.12.2(b). For a vehicle using an electrically-activated parking brake, apply the parking brake by activating the parking brake control.
(j) In the case of a parking brake system that does not allow application of the specified force in a single application, a series of applications may be made to achieve the specified force.
(k) Following the application of the parking brakes, release all force on the service brake control and, if the vehicle remains stationary, start the measurement of time.
(l) If the vehicle does not remain stationary, reapplication of a force to the parking brake control at the level specified in S7.12.2(b) as appropriate for the vehicle being tested (without release of the ratcheting or other holding mechanism of the parking brake) is used up to two times to attain a stationary position.
(m) Verify the operation of the parking brake application indicator.
(n) Following observation of the vehicle in a stationary condition for the specified time in one direction, repeat
the same test procedure with the vehicle orientation in the opposite direction on the same grade.

S7.12.3. Performance requirement. The parking brake system shall hold the vehicle stationary for 5 minutes in both a forward and reverse direction on the grade.

S7.13.1. General information. The purpose of the snubs is to heat up the brakes in preparation for the hot performance test which follows immediately.

S7.13.2. Vehicle conditions. (a) Vehicle load: GVWR only.
(b) Transmission position: In gear.

S7.13.3. Test conditions and procedures. (a) IBT:
(1) Establish an IBT before the first brake application (snub) of \(\leq 55 \, ^\circ C \) (131 \(^\circ F \)), \(\leq 65 \, ^\circ C \) (149 \(^\circ F \)).
(2) IBT before subsequent snubs are those occurring at the distance intervals.
(b) Number of snubs: 15.
(c) Test speeds: The initial speed for each snub is 120 km/h (74.6 mph) or 80% of Vmax, whichever is slower. Each snub is terminated at one-half the initial speed.
(d) Deceleration rate:
(1) Maintain a constant deceleration rate of 3.0 m/s\(^2\) (9.8 fps\(^2\)).
(2) Attain the specified deceleration within one second and maintain it for the remainder of the snub.
(e) Pedal force: Adjust as necessary to maintain the specified constant deceleration rate.
(f) Time interval: Maintain an interval of 45 seconds between the start of brake applications (snubs).
(g) Accelerate as rapidly as possible to the initial test speed immediately after each snub.
(h) Immediately after the 15th snub, accelerate to 100 km/h (62.1 mph) and commence the hot performance test.

(b) Transmission position: In neutral.

S7.14.3. Test conditions and procedures. (a) IBT: Temperature achieved at completion of heating snubs.
(b) Test speed: 100 km/h (62.1 mph).
(c) Pedal force:
(1) The first stop is done with an average pedal force not greater than the average pedal force recorded during the shortest GVWR cold effectiveness stop.
(2) The second stop is done with a pedal force not greater than 500 N (112.4 lbs).
(d) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph).
(e) Number of runs: 2 stops.
(f) Immediately after the 15th heating snub, accelerate to 100 km/h (62.1 mph) and commence the first stop of the hot performance test.
(g) If the vehicle is incapable of attaining 100 km/h, it is tested at the same speed used for the GVWR cold effectiveness test.
(h) Immediately after completion of the first hot performance stop, accelerate as rapidly as possible to the specified test speed and conduct the second hot performance stop.
(i) Immediately after completion of the second hot performance stop, drive 1.5 km (0.93 mi) at 50 km/h (31.1 mph) before the first cooling stop.

S7.14.4. Performance requirements. (a) For the first hot stop, the stopping distance must be less than or equal to a calculated distance which is based on 60 percent of the deceleration actually achieved during the shortest cold effectiveness stop. The following equations shall be used in calculating the performance requirement:

\[
d_c = \frac{0.0386V^2}{S_c - 0.10V}
\]

\[
S = 0.10V + \frac{0.0386V^2}{0.60d_c}
\]

where \(d_c \) = the average deceleration actually achieved during the shortest cold effectiveness stop at GVWR (m/s\(^2\)), \(S_c \) = actual stopping distance measured on the shortest cold effectiveness stop at GVWR (m), and \(V \) = cold effectiveness test speed (km/h).
(b) In addition to the requirement in S7.14.4(a), the stopping distance for at least one of the two hot stops must be \(S \leq 89 \text{ m (292 ft)} \) from a test speed of 100 km/h (62.1 mph) or, for reduced test speed, \(S \leq 0.10V + 0.0079V^2 \). The results of the second stop may not be used to meet the requirements of S7.14.4(a).

S7.15. Brake cooling stops.

S7.15.1. General information. The cooling stops are conducted immediately after completion of the hot performance test.

S7.15.2. Vehicle conditions. (a) Vehicle load: GVWR only.
(b) Transmission position: In gear.

S7.15.3. Test conditions and procedures. (a) IBT: Temperature achieved at completion of hot performance.
(b) Test speed: 50 km/h (31.1 mph).
(c) Pedal force: Adjust as necessary to maintain specified constant deceleration rate.
(d) Deceleration rate: Maintain a constant deceleration rate of 3.0 m/s\(^2\) (9.8 fps\(^2\)).
(e) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph).
(f) Number of runs: 4 stops.
(g) Immediately after the hot performance stops drive 1.5 km (0.93 mi) at 50 km/h (31.1 mph) before the first cooling stop.
(h) For the first through the third cooling stops:
(1) After each stop, immediately accelerate at the maximum rate to 50 km/h (31.1 mph).
(2) Maintain that speed until beginning the next stop at a distance of 1.5 km (0.93 mi) from the beginning of the previous stop.
(i) For the fourth cooling stop:
(1) Immediately after the fourth stop, accelerate at the maximum rate to 100 km/h (62.1 mph).
(2) Maintain that speed until beginning the recovery performance stops at a distance of 1.5 km (0.93 mi) after the beginning of the fourth cooling stop.

S7.16.1. General information. The recovery performance test is conducted immediately after completion of the brake cooling stops.

S7.16.2. Vehicle conditions. (a) Vehicle load: GVWR only.
(b) Transmission position: In neutral.

S7.16.3. Test conditions and procedures.
(a) IBT: Temperature achieved at completion of cooling stops.
(b) Test speed: 100 km/h (62.1 mph).
(c) Pedal force: The average pedal force shall not be greater than the average pedal force recorded during the shortest GVWR cold effectiveness stop.
(d) Wheel lockup: No lockup of any wheel for longer than 0.1 seconds allowed at speeds greater than 15 km/h (9.3 mph).
(e) Number of runs: 2 stops.
(f) Immediately after the fourth cooling stop, accelerate at the maximum rate to 100 km/h (62.1 mph).
(g) Maintain that speed until beginning the first recovery performance stop at a distance of 1.5 km (0.93 mi) after the beginning of the fourth cooling stop.
(h) If the vehicle is incapable of attaining 100 km/h, it is tested at the same speed used for the GVWR cold effectiveness test.
(i) Immediately after completion of the first recovery performance stop accelerate as rapidly as possible to the specified test speed and conduct the second recovery performance stop.

S7.16.4. Performance requirements.
The stopping distance, \(S \), for at least one of the two stops must be within the following limits:
\[
\frac{0.0386V^2}{1.50d_c} \leq S - 0.10V \leq \frac{0.0386V^2}{0.70d_c}
\]
where \(d_c \) and \(V \) are defined in S7.14.4(a).

S7.17. Final Inspection. Inspect:
(a) The service brake system for detachment or fracture of any components, such as brake springs and brake shoes or disc pad facings.
(b) The friction surface of the brake, the master cylinder or brake power unit reservoir cover, and seal and filler openings, for leakage of brake fluid or lubricant.
(c) The master cylinder or brake power unit reservoir for compliance with the volume and labeling requirements of S5.4.2 and S5.4.3. In determining the fully applied worn condition, assume that the lining is worn to (1) rivet or bolt heads on riveted or bolted linings or (2) within 0.8 mm (1/32 in).
inch) of shoe or pad mounting surface on bonded linings or (3) the limit recommended by the manufacturer, whichever is larger relative to the total possible shoe or pad movement. Drums or rotors are assumed to be at nominal design drum diameter or rotor thickness. Linings are assumed adjusted for normal operating clearance in the released position.

(d) The brake system indicators, for compliance with operation in various key positions, lens color, labeling, and location, in accordance with S5.5.

§ 571.136 Standard No. 136; Electronic stability control systems for heavy vehicles.

S1 Scope. This standard establishes performance and equipment requirements for electronic stability control (ESC) systems on heavy vehicles.

S2 Purpose. The purpose of this standard is to reduce crashes caused by roll-over or by directional loss-of-control.

S3 Application. This standard applies to the following vehicles:

S3.1 Truck tractors with a gross vehicle weight rating of greater than 11,793 kilograms (26,000 pounds). However, it does not apply to:

(a) Any truck tractor equipped with an axle that has a gross axle weight rating of 13,154 kilograms (29,000 pounds) or more;

(b) Any truck tractor that has a speed attainable in 3.2 km (2 miles) of not more than 53 km/h (33 mph); and

(c) Any truck tractor that has a speed attainable in 3.2 km (2 miles) of not more than 72 km/h (45 mph), an unloaded vehicle weight that is not less than 95 percent of its gross vehicle weight rating, and no capacity to carry occupants other than the driver and operating crew.

S3.2 Buses with a gross vehicle weight rating of greater than 11,793 kilograms (26,000 pounds). However, it does not apply to:

(a) School buses;

(b) Perimeter-seating buses;

(c) Transit buses;

(d) Any bus equipped with an axle that has a gross axle weight rating of 13,154 kilograms (29,000 pounds) or more; and

(e) Any bus that has a speed attainable in 3.2 km (2 miles) of not more than 59 km/h (36 mph.)

S4 Definitions.

Ackerman Steer Angle means the angle whose tangent is the wheelbase divided by the radius of the turn at a very low speed.

Electronic stability control system or ESC system means a system that has all of the following attributes:

(1) It augments vehicle directional stability by having the means to apply and adjust the vehicle brake torques individually at each wheel position on at least one front and at least one rear axle of the truck tractor or bus to induce correcting yaw moment to limit vehicle oversteer and to limit vehicle understeer;

(2) It enhances rollover stability by having the means to apply and adjust the vehicle brake torques individually at each wheel position on at least one front and at least one rear axle of the truck tractor or bus to reduce lateral acceleration of a vehicle;

(3) It is computer-controlled with the computer using a closed-loop algorithm to induce correcting yaw moment and enhance rollover stability;

(4) It has a means to determine the vehicle’s lateral acceleration;

(5) It has a means to determine the vehicle’s yaw rate and to estimate its side slip or side slip derivative with respect to time;

(6) It has a means to estimate vehicle mass or, if applicable, combination vehicle mass;

(7) It has a means to monitor driver steering inputs;

(8) It has a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle and/or combination vehicle; and

(9) When installed on a truck tractor, it has the means to provide brake pressure to automatically apply and modulate the brake torques of a towed trailer.

ESC service brake application means the time when the ESC system applies a service brake pressure at any wheel for a continuous duration of at least 0.5
second of at least 34 kPa (5 psi) for air-braked systems and at least 172 kPa (25 psi) for hydraulic-braked systems.

Initial brake temperature means the average temperature of the service brakes on the hottest axle of the vehicle immediately before any stability control system test maneuver is executed.

Lateral acceleration means the component of the vector acceleration of a point in the vehicle perpendicular to the vehicle x-axis (longitudinal) and parallel to the road plane.

Oversteer means a condition in which the vehicle's yaw rate is greater than the yaw rate that would occur at the vehicle's speed as result of the Ackerman Steer Angle.

Over-the-road bus means a bus characterized by an elevated passenger deck located over a baggage compartment, except a school bus.

Peak friction coefficient or PFC means the ratio of the maximum value of braking test wheel longitudinal force to the simultaneous vertical force occurring prior to wheel lockup, as the braking torque is progressively increased.

Perimeter-seating bus means a bus with 7 or fewer designated seating positions rearward of the driver's seating position that are forward-facing or can convert to forward-facing without the use of tools and is not an over-the-road bus.

Side slip or side slip angle means the arctangent of the lateral velocity of the center of gravity of the vehicle divided by the longitudinal velocity of the center of gravity.

Snub means the braking deceleration of a vehicle from a higher speed to a lower speed that is greater than zero.

Stop-request system means a vehicle-integrated system for passenger use to signal to a vehicle operator that they are requesting a stop.

Transit bus means a bus that is equipped with a stop-request system sold for public transportation provided by, or on behalf of, a State or local government and that is not an over-the-road bus.

Understeer means a condition in which the vehicle's yaw rate is less than the yaw rate that would occur at the vehicle's speed as result of the Ackerman Steer Angle.

Yaw Rate means the rate of change of the vehicle's heading angle measure in degrees per second of rotation about a vertical axis through the vehicle's center of gravity.

S5 Requirements. Each vehicle must be equipped with an ESC system that meets the requirements specified in S5 under the test conditions specified in S6 and the test procedures specified in S7 of this standard.

S5.1 Required Equipment. Each vehicle to which this standard applies must be equipped with an electronic stability control system, as defined in S4.

S5.2 System Operational Capabilities.

S5.2.1 The ESC system must be operational over the full speed range of the vehicle except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization.

S5.2.2 The ESC must remain capable of activation even if the antilock brake system or traction control is also activated.

S5.3 Performance Requirements.

S5.3.1 Lane Keeping During Reference Speed Determination. During each series of four consecutive test runs conducted at the same entrance speed as part of the test procedure to determine the Preliminary Reference Speed and the Reference Speed (see S7.7.1), the wheels of the truck tractor or bus must remain within the lane between the start gate (0 degrees of radius arc angle) and the end gate (120 degrees of radius arc angle) during at least two of the four test runs.

S5.3.2 Engine Torque Reduction. During each series of four consecutive test runs for the determination of engine torque reduction (see S7.7.2), the vehicle must satisfy the criteria of S5.3.2.1 and S5.3.2.2 during at least two of the four test runs.

S5.3.2.1 The ESC system must reduce the driver-requested engine torque by at least 10 percent for a minimum continuous duration of 0.5 second during the time period from 1.5 seconds after the vehicle crosses the start gate (0 degrees of radius arc angle) to when it crosses the end gate (120 degrees of radius arc angle).
§ 571.136

S5.3.2.2 The wheels of the truck tractor or bus must remain within the lane between the start gate (0 degrees of radius arc angle) and the end gate (120 degrees of radius arc angle).

S5.3.3 Roll Stability Control Test. During each series of eight consecutive test runs for the determination of roll stability control (see § 7.7.3) conducted at the same entrance speed, the vehicle must satisfy the criteria of S5.3.3.1, S5.3.3.2, S5.3.3.3, and S5.3.3.4 during at least six of the eight consecutive test runs.

S5.3.3.1 The vehicle speed measured at 3.0 seconds after vehicle crosses the start gate (0 degrees of radius arc angle) must not exceed 47 km/h (29 mph).

S5.3.3.2 The vehicle speed measured at 4.0 seconds after vehicle crosses the start gate (0 degrees of radius arc angle) must not exceed 45 km/h (28 mph).

S5.3.3.3 The wheels of the truck tractor or bus must remain within the lane between the start gate (0 degrees of radius arc angle) and the end gate (120 degrees of radius arc angle).

S5.3.3.4 There must be ESC service brake activation.

S5.4 ESC Malfunction Detection. Each vehicle must be equipped with an indicator lamp, mounted in front of and in clear view of the driver, which is activated whenever there is a malfunction that affects the generation or transmission of control or response signals in the vehicle’s electronic stability control system.

S5.4.1 Except as provided in S5.4.3 and S5.4.6, the ESC malfunction telltale must illuminate only when a malfunction exists and must remain continuously illuminated for as long as the malfunction exists, whenever the ignition locking system is in the “On” (“Run”) position.

S5.4.2 The ESC malfunction telltale must be identified by the symbol shown for “Electronic Stability Control System Malfunction” or the specified words or abbreviations listed in Table 1 of Standard No. 101 (§ 571.101).

S5.4.3 The ESC malfunction telltale must be activated as a check-of-lamp function either when the ignition locking system is turned to the “On” (“Run”) position when the engine is not running, or when the ignition locking system is in a position between the “On” (“Run”) and “Start” that is designated by the manufacturer as a check-light position.

S5.4.4 The ESC malfunction telltale need not be activated when a starter interlock is in operation.

S5.4.5 The ESC malfunction telltale lamp must extinguish at the next ignition cycle after the malfunction has been corrected.

S5.4.6 The manufacturer may use the ESC malfunction telltale in a flashing mode to indicate ESC operation.

S6 Test Conditions. The requirements of S5 must be met by a vehicle when it is tested according to the conditions set forth in the S6, without replacing any brake system part or making any adjustments to the ESC system except as specified. On vehicles equipped with automatic brake adjusters, the automatic brake adjusters will remain activated at all times.

S6.1 Ambient Conditions.

S6.1.1 The ambient temperature is any temperature between 2 °C (35 °F) and 40 °C (104 °F).

S6.1.2 The maximum wind speed is no greater than 5 m/s (11 mph).

S6.2 Road Test Surface.

S6.2.1 The tests are conducted on a dry, uniform, solid-paved surface. Surfaces with irregularities and undulations, such as dips and large cracks, are unsuitable.

S6.2.2 The road test surface produces a peak friction coefficient (PFC) of 0.9 when measured using an American Society for Testing and Materials (ASTM) E1136–93 (Reapproved 2003) standard reference test tire, in accordance with ASTM Method E 1337–90 (Reapproved 2008), at a speed of 64.4 km/h (40 mph), without water delivery (both documents incorporated by reference, see § 571.5).

S6.2.3 The test surface has a consistent slope between 0% and 1%.

S6.2.4 J-Turn Test Maneuver Test Course. The test course for the J-Turn test maneuver is used for the Reference Speed Test in § 7.7.1, the Engine Torque Reduction Test in § 7.7.2, and the Roll Stability Control Test in § 7.7.3.

S6.2.4.1 The test course consists of a straight entrance lane with a length of
22.9 meters (75 feet) tangentially connected to a curved lane section with a radius of 45.7 meters (150 feet) measured from the center of the lane.

S6.2.4.2 For truck tractors, the lane width of the test course is 3.7 meters (12 feet). For buses, the lane width of the test course is 3.7 meters (12 feet) for the straight section and is 4.3 meters (14 feet) for the curved section.

S6.2.4.3 The start gate is the tangent point on the radius (the intersection of the straight lane and the curved lane sections) and is designated as zero degrees of radius of arc angle. The end gate is the point on the radius that is 120 degrees of radius arc angle measured from the tangent point.

S6.2.4.4 Figure 1 shows the test course with the curved lane section configured in the counter-clockwise steering direction relative to the entrance lane. The course is also arranged with the curved lane section configured in the clockwise steering direction relative to the entrance lane. The cones depicted in Figure 1 defining the lane width are positioned solely for illustrative purposes.

S6.3 Vehicle Conditions.

S6.3.1 The ESC system is enabled for all testing, except for the ESC malfunction test (see S7.8).

S6.3.2 All vehicle openings (doors, windows, hood, trunk, cargo doors, etc.) are in a closed position except as required for instrumentation purposes.

S6.3.3 Test Weight.

S6.3.3.1 Truck Tractors. A truck tractor is loaded to its GVWR by coupling it to a control trailer (see S6.3.5). The tractor is loaded with the test driver, test instrumentation, and an anti-jackknife system (see S6.3.8).

S6.3.3.2 Buses. A bus is loaded with ballast (weight) to its GVWR to simulate a multi-passenger and baggage
configuration. For this configuration the bus is loaded with test driver, test instrumentation, outriggers (see S6.3.6), ballast, and a simulated occupant in each of the vehicle’s designated seating positions. The simulated occupant loads are attained by securing 68 kilograms (150 pounds) of ballast in each of the test vehicle’s designated seating positions. If the simulated occupant loads result in the bus being loaded to less than its GVWR, additional ballast is added to the bus in the following manner until the bus is loaded to its GVWR without exceeding any axle’s GAWR: First, ballast is added to the lowest baggage compartment; second, ballast is added to the floor of the passenger compartment. If the simulated occupant loads result in the GAWR of any axle being exceeded or the GVWR of the bus being exceeded, simulated occupant loads are removed until the vehicle’s GVWR and all axles’ GAWR are no longer exceeded.

S6.3.4 Transmission and Brake Controls. The transmission selector control is in a forward gear during all maneuvers. A vehicle equipped with an engine braking system that is engaged and disengaged by the driver is tested with the system disengaged.

S6.3.5 Control Trailer.

S6.3.5.1 The control trailer is an unbraked, flatbed semi-trailer that has a single axle with a GAWR of 8,165 kg (18,000 lb.). The control trailer has a length of at least 6,400 mm (252 inches), but no more than 7,010 mm (276 inches), when measured from the transverse centerline of the axle to the centerline of the kingpin (the point where the trailer attaches to the truck tractor). At the manufacturer’s option, truck tractors with four or more axles may use a control trailer with a length of more than 7,010 mm (276 inches), but no more than 13,208 mm (520 inches) when measured from the transverse centerline of the axle to the centerline of the kingpin.

S6.3.5.2 The location of the center of gravity of the ballast on the control trailer is directly above the kingpin. The height of the center of gravity of the ballast on the control trailer is less than 610 mm (24 inches) above the top of the tractor’s fifth-wheel hitch (the area where the truck tractor attaches to the trailer).

S6.3.5.3 The control trailer is equipped with outriggers (see S6.3.6).

S6.3.5.4 A truck tractor is loaded to its GVWR by placing ballast (weight) on the control trailer which loads the tractor’s non-steer axles. The control trailer is loaded with ballast without exceeding the GAWR of the trailer axle. If the tractor’s fifth-wheel hitch position is adjustable, the fifth-wheel hitch is adjusted to proportionally distribute the load on each of the tractor’s axle(s), according to each axle’s GAWR, without exceeding the GAWR of any axle(s). If the fifth-wheel hitch position cannot be adjusted to prevent the load from exceeding the GAWR of the tractor’s axle(s), the ballast is reduced until the axle load is equal to or less than the GAWR of the tractor’s rear axle(s), maintaining load proportioning as close as possible to specified proportioning.

S6.3.6 Outriggers. Outriggers are used for testing each vehicle. The outriggers are designed with a maximum weight of 1,134 kg (2,500 lb.), excluding mounting fixtures.

S6.3.7 Tires. The tires are inflated to the vehicle manufacturer’s specified pressure for the GVWR of the vehicle.

S6.3.8 Truck Tractor Anti-Jackknife System. A truck tractor is equipped with an anti-jackknife system that allows a minimum articulation angle of 30 degrees between the tractor and the control trailer.

S6.3.9 Special Drive Conditions. A vehicle equipped with an interlocking axle system or a front wheel drive system that is engaged and disengaged by the driver is tested with the system disengaged.

S6.3.10 Liftable Axles. A vehicle with one or more liftable axles is tested with the liftable axles down.

S6.3.11 Initial Brake Temperature. The initial brake temperature of the hottest brake for any performance test is between 66 °C (150 °F) and 204 °C (400 °F).

S6.3.12 Thermocouples. The brake temperature is measured by plug-type thermocouples installed in the approximate center of the facing length and width of the most heavily loaded shoe or disc pad, one per brake. A second
thermocouple may be installed at the beginning of the test sequence if the lining wear is expected to reach a point causing the first thermocouple to contact the rubbing surface of a drum or rotor. The second thermocouple is installed at a depth of 0.040 inch and located within 1.0 inch circumferentially of the thermocouple installed at 0.040 inch depth. For center-grooved shoes or pads, thermocouples are installed within 0.125 inch to 0.250 inch of the groove and as close to the center as possible.

S6.4 Selection of Compliance Options. Where manufacturer options are specified, the manufacturer must select the option by the time it certifies the vehicle and may not thereafter select a different option for the vehicle. Each manufacturer shall, upon request from the National Highway Traffic Safety Administration, provide information regarding which of the compliance options it has selected for a particular vehicle or make/model.

S7 Test Procedure. S7.1 Tire Inflation. Inflate the vehicle’s tires as specified in S6.3.7.

S7.2 Telltale Lamp Check. With the vehicle stationary and the ignition locking system in the “Lock” or “Off” position, activate the ignition locking system to the “On” (“Run”) position or, where applicable, the appropriate position for the lamp check. The ESC system must perform a check-of-lamp function for the ESC malfunction telltale, as specified in S5.4.3.

S7.3 Tire Conditioning. Condition the tires to wear away mold sheen and achieve operating temperature immediately before beginning the J-Turn test runs. The test vehicle is driven around a circle 150 feet (46 meters) in radius at a speed that produces a lateral acceleration of approximately 0.1g for two clockwise laps followed by two counterclockwise laps.

S7.4 Brake Conditioning and Temperature. Conditioning and warm-up of the vehicle brakes are completed before and monitored during the execution of the J-Turn test maneuver.

S7.4.1 Brake Conditioning. Condition the brakes in accordance with S7.4.1.1 and S7.4.1.2.

S7.4.1.1 Prior to executing the J-Turn test maneuver, the vehicle’s brakes are burnished as follows: With the transmission in the highest gear appropriate for a speed of 64 km/h (40 mph), make 500 snubs between 64 km/h (40 mph) and 32 km/h (20 mph) at a deceleration rate of 0.3g, or at the vehicle’s maximum deceleration rate if less than 0.3g. After each brake application accelerate to 64 km/h (40 mph) and maintain that speed until making the next brake application at a point 1.6 km (1.0 mile) from the initial point of the previous brake application. If the vehicle cannot attain a speed of 64 km/h (40 mph) in 1.6 km (1.0 mile), continue to accelerate until the vehicle reaches 64 km/h (40 mph) or until the vehicle has traveled 2.4 km (1.5 miles) from the initial point of the previous brake application, whichever occurs first. The brakes may be adjusted up to three times during the burnish procedure, at intervals specified by the vehicle manufacturer, and may be adjusted at the conclusion of the burnishing, in accordance with the vehicle manufacturer’s recommendation.

S7.4.1.2 Prior to executing the performance tests in S7.7, the brakes are conditioned using 40 brake application snubs from a speed of 64 km/h (40 mph) to a speed of 32 km/h (20 mph), with a target deceleration of approximately 0.3g. After each brake application, accelerate to 64 km/h (40 mph) and maintain that speed until making the next brake application at a point 1.6 km (1.0 mile) from the initial point of the previous brake application.

S7.4.2 Brake Temperature. Prior to testing or any time during testing, if the hottest brake temperature is above 204 °C (400 °F) a cool down period is performed until the hottest brake temperature is measured within the range of 66 °C–204 °C (150 °F–400 °F). Prior to testing or any time during testing, if the hottest brake temperature is below 66 °C (150 °F) individual brake stops are repeated to increase any one brake temperature to within the target temperature range of 66 °C–204 °C (150 °F–400 °F) before a test maneuver is performed.

S7.5 Mass Estimation Cycle. Perform the mass estimation procedure for the ESC system according to the manufacturer’s instructions. This procedure
will be repeated if an ignition cycle occurs or is needed at any time between the initiation and completion of S7.7.

S7.6 ESC System Malfunction Check. Check that the ESC system is enabled by ensuring that the ESC malfunction telltale is not illuminated.

S7.7 J-Turn Test Maneuver. The truck tractor or bus is subjected to multiple series of test runs using the J-Turn test maneuver. The truck tractor or bus travels through the course by driving down the entrance lane, crossing the start gate at the designated entrance speed, turning through the curved lane section, and crossing the end gate, while the driver attempts to keep all of the wheels of the truck tractor or bus within the lane.

S7.7.1 Reference Speed Test. The vehicle is subjected to J-Turn test maneuvers to determine the Reference Speed for each steering direction. The Reference Speeds are used in S7.7.2 and S7.7.3.

S7.7.1.1 Preliminary Reference Speed Determination. The vehicle is subjected to two series of test runs using the J-Turn test maneuver at increasing entrance speeds. One series uses clockwise steering, and the other series uses counterclockwise steering. The entrance speed of a test run is the 0.5 second average of the raw speed data prior to any ESC system activation of the service brakes and rounded to the nearest 1.0 mph. During each test run, the driver attempts to maintain the selected entrance speed throughout the J-Turn test maneuver. For the first test run of each series, the entrance speed is 32 km/h ±1.6 km/h (20 mph ±1.0 mph) and is incremented 1.6 km/h (1.0 mph) for each subsequent test run until ESC service brake application occurs or any of the truck tractor’s or bus’s wheels departs the lane. The vehicle entrance speed at which ESC service brake application occurs is the Preliminary Reference Speed. The Preliminary Reference Speed is determined for each direction: Clockwise steering and counter-clockwise steering. During any test run, if any of the wheels of the truck tractor or bus depart the lane again, then four consecutive test runs are repeated at the same entrance speed (±1.6 km/h (±1.0 mph)).

S7.7.1.2 Reference Speed Determination. Using the Preliminary Reference Speed determined in S7.7.1.1, perform two series of test runs using the J-Turn test maneuver to determine the Reference Speed. The first series consists of four consecutive test runs performed using counter-clockwise steering. The second series consists of four consecutive test runs performed using clockwise steering. During each test run, the driver attempts to maintain a speed equal to the Preliminary Reference Speed throughout the J-Turn test maneuver. The Reference Speed is the minimum entrance speed at which ESC service brake application occurs for at least two of four consecutive test runs of each series conducted at the same entrance speed (within ±1.6 km/h (±1.0 mph)). The Reference Speed is determined for each direction: clockwise steering and counter-clockwise steering. If ESC service brake application does not occur during at least two test runs of either series, the Preliminary Reference Speed is increased by 1.6 km/h (1.0 mph), and the procedure in this section is repeated.

S7.7.2 Engine Torque Reduction Test. The vehicle is subjected to two series of test runs using the J-Turn test maneuver at an entrance speed equal to the Reference Speed determined in S7.7.1.2. One series uses clockwise steering, and the other series uses counter-clockwise steering. Each series consists of four test runs with the vehicle at an entrance speed equal to the Reference Speed and the driver fully depressing the accelerator pedal from the time when the vehicle crosses the start gate until the vehicle reaches the end gate. ESC engine torque reduction is confirmed by comparing the engine torque output and driver requested torque data collected from the vehicle communication network or CAN bus. During the initial stages of each maneuver the two torque signals will respect to time will parallel each other. Upon ESC engine torque reduction, the two signals will diverge when the ESC system causes a commanded engine
torque reduction and the driver depression the accelerator pedal attempting to accelerate the vehicle.

S7.7.2.1 Perform two series of test runs using the J-Turn test maneuver at the Reference Speed determined in S7.7.1.2 (±1.6 km/h (±1.0 mph)). The first series consists of four consecutive test runs performed using counter-clockwise steering. The second series consists of four consecutive test runs performed using clockwise steering. During each test run, the driver fully depresses the accelerator pedal from the time when the vehicle crosses the start gate until the vehicle reaches the end gate.

S7.7.2.2 During each of the engine torque reduction test runs, verify the commanded engine torque and the driver requested torque signals diverge according to the criteria specified in S5.3.2.1.

S7.7.3 Roll Stability Control Test. The vehicle is subjected to multiple series of test runs using the J-Turn test maneuver in both the clockwise and the counter-clockwise direction.

S7.7.3.1 Before each test run, the brake temperatures are monitored and the hottest brake is confirmed to be between 66 °C (150 °F) and 204 °C (400 °F). If the hottest brake temperature is not between 66 °C (150 °F) and 204 °C (400 °F), the brake temperature is adjusted in accordance with S7.4.2.

S7.7.3.2 During each test run, the driver will release the accelerator pedal after the ESC system has slowed vehicle by more than 4.8 km/h (3.0 mph) below the entrance speed.

S7.7.3.3 The maximum test speed is the greater of 130 percent of the Reference Speed (see S7.7.1.2) or 48 km/h (30 mph). The maximum test speed is determined for each direction: clockwise steering and counter-clockwise steering.

S7.7.3.4 For each series of Roll Stability Control test runs, the vehicle will perform eight consecutive test runs at the same entrance speed, which is any speed between 48 km/h (30 mph) and the maximum test speed determined according to S7.7.3.3.

S7.7.3.5 Upon completion of testing, post processing is done as specified in S7.9.

S7.8 ESC Malfunction Detection.

S7.8.1 Simulate one or more ESC malfunction(s) by disconnecting the power source to any ESC component, or disconnecting any electrical connection between ESC components (with the vehicle power off). When simulating an ESC malfunction, the electrical connections for the telltale lamp(s) are not disconnected.

S7.8.2 With the vehicle initially stationary and the ignition locking system in the “Lock” or “Off” position, activate the ignition locking system to the “Start” position and start the engine. Place the vehicle in a forward gear and accelerate to 48 ± 8 km/h (30 ± 5 mph). Drive the vehicle for at least two minutes including at least one left and one right turning maneuver and at least one service brake application. Verify that, within two minutes of attaining this speed, the ESC malfunction indicator illuminates in accordance with S5.4.

S7.8.3 Stop the vehicle, deactivate the ignition locking system to the “Off” or “Lock” position. After a five-minute period, activate the vehicle’s ignition locking system to the “Start” position and start the engine. Verify that the ESC malfunction indicator again illuminates to signal a malfunction and remains illuminated as long as the engine is running until the fault is corrected.

S7.8.4 Deactivate the ignition locking system to the “Off” or “Lock” position. Restore the ESC system to normal operation, activate the ignition system to the “Start” position and start the engine. Verify that the telltale has extinguished.

S7.9 Post Data Processing.

S7.9.1 Raw vehicle speed data is filtered with a 0.1 second running average filter.

S7.9.2 The torque data collected from the vehicle communication network or CAN bus as a digital signal does not get filtered. The torque data collected from the vehicle communication network or CAN bus as an analog signal is filtered with a 0.1-second running average.

S7.9.3 The activation point of the ESC engine torque reduction is the point where the measured driver demanded torque and the engine torque first begin to deviate from one another
§ 571.138 Standard No. 138; Tire pressure monitoring systems.

S1 Purpose and scope. This standard specifies performance requirements for tire pressure monitoring systems (TPMSs) to warn drivers of significant under-inflation of tires and the resulting safety problems.

S2 Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses that have a gross vehicle weight rating of 4,536 kilograms (10,000 pounds) or less, including test driver and instrumentation.

Tire pressure monitoring system means a system that detects when one or more of a vehicle’s tires is significantly under-inflated and illuminates a low tire pressure warning telltale.

Vehicle Placard and Tire inflation pressure label mean the sources of information for the vehicle manufacturer’s recommended cold tire inflation pressure pursuant to § 571.110 of this Part.

S3 Definitions. The following definitions apply to this standard:

Lightly loaded vehicle weight means unloaded vehicle weight plus the weight of a mass of 180 kg (396 pounds), including test driver and instrumentation.

Tire pressure monitoring system means a system that detects when one or more of a vehicle’s tires is significantly under-inflated and illuminates a low tire pressure warning telltale.

Vehicle Placard and Tire inflation pressure label mean the sources of information for the vehicle manufacturer’s recommended cold tire inflation pressure pursuant to § 571.110 of this Part.

S4 Requirements.

S4.1 General. To the extent provided in S7, each vehicle must be equipped with the requirements of this standard according to the implementation schedule set forth in S8.

S8 Compliance Dates. Vehicles that are subject to this standard must meet the requirements of this standard according to the implementation schedule specified in S7 of this standard.

S8.1 Buses.

S8.1.1 All buses with a gross vehicle weight rating of greater than 14,969 kilograms (33,000 pounds) manufactured on or after June 24, 2018 must comply with this standard.

S8.1.2 All buses manufactured on or after August 1, 2019 must comply with this standard.

S8.2 Trucks.

S8.2.1 All three-axle truck tractors with a front axle that has a GAWR of 6,622 kilograms (14,600 pounds) or less and with two rear drive axles that have a combined GAWR of 20,412 kilograms (45,000 pounds) or less manufactured on or after August 1, 2017 must comply with this standard.

S8.2.2 All truck tractors manufactured on or after August 1, 2019 must comply with this standard.

[80 FR 36105, June 23, 2015]
as the pressure in any of the vehicle’s tires is equal to or less than the pressure specified in S4.2(a), and the ignition locking system is in the “On” (“Run”) position, whether or not the engine is running, or until manually reset in accordance with the vehicle manufacturer’s instructions.

S4.3 **Low tire pressure warning telltale.**

S4.3.1 Each tire pressure monitoring system must include a low tire pressure warning telltale that:

(a) Is mounted inside the occupant compartment in front of and in clear view of the driver;
(b) Is identified by one of the symbols shown for the “Low Tire Pressure” Telltale in Table 1 of Standard No. 101 (49 CFR 571.101); and
(c) Is illuminated under the conditions specified in S4.2.

S4.3.2 In the case of a telltale that identifies which tire(s) is (are) under-inflated, each tire in the symbol for that telltale must illuminate when the tire it represents is under-inflated to the extent specified in S4.2.

S4.3.3 (a) Except as provided in paragraph (b) of this section, each low tire pressure warning telltale must illuminate as a check of lamp function either when the ignition locking system is activated to the “On” (“Run”) position when the engine is not running, or when the ignition locking system is in a position between “On” (“Run”) and “Start” that is designated by the manufacturer as a check position.

(b) The low tire pressure warning telltale need not illuminate when a starter interlock is in operation.

S4.4 **TPMS malfunction.**

(a) The vehicle shall be equipped with a tire pressure monitoring system that includes a telltale that provides a warning to the driver not more than 20 minutes after the occurrence of a malfunction that affects the generation or transmission of control or response signals in the vehicle’s tire pressure monitoring system. The vehicle’s TPMS malfunction indicator shall meet the requirements of either S4.4(b) or S4.4(c).

(b) **Dedicated TPMS malfunction telltale.** The vehicle meets the requirements of S4.4(a) when equipped with a dedicated TPMS malfunction telltale that:

(1) Is mounted inside the occupant compartment in front of and in clear view of the driver;
(2) Is identified by the word “TPMS” as described under the “Tire Pressure Monitoring System Malfunction” Telltale in Table 1 of Standard No. 101 (49 CFR 571.101);
(3) Continues to illuminate the TPMS malfunction telltale under the conditions specified in S4.4(a) for as long as the malfunction exists, whenever the ignition locking system is in the “On” (“Run”) position; and
(4) (i) Except as provided in paragraph (ii), each dedicated TPMS malfunction telltale must be activated as a check of lamp function either when the ignition locking system is activated to the “On” (“Run”) position when the engine is not running, or when the ignition locking system is in a position between “On” (“Run”) and “Start” that is designated by the manufacturer as a check position.

(ii) The dedicated TPMS malfunction telltale need not be activated when a starter interlock is in operation.

(c) **Combination low tire pressure/TPMS malfunction telltale.** The vehicle meets the requirements of S4.4(a) when equipped with a combined Low Tire Pressure/TPMS malfunction telltale that:

(1) Meets the requirements of S4.2 and S4.3; and
(2) Flashes for a period of at least 60 seconds but no longer than 90 seconds upon detection of any condition specified in S4.4(a) after the ignition locking system is activated to the “On” (“Run”) position. After each period of prescribed flashing, the telltale must remain continuously illuminated as long as a malfunction exists and the ignition locking system is in the “On” (“Run”) position. This flashing and illumination sequence must be repeated each time the ignition locking system is placed in the “On” (“Run”) position until the situation causing the malfunction has been corrected. Multiple malfunctions occurring during any ignition cycle may, but are not required to, reinitiate the prescribed flashing sequence.

S4.5 **Written instructions.**
(a) Beginning on September 1, 2006, the owner's manual in each vehicle certified as complying with S4 must provide an image of the Low Tire Pressure Telltale symbol (and an image of the TPMS Malfunction Telltale warning ("TPMS"), if a dedicated telltale is utilized for this function) with the following statement in English:

Each tire, including the spare (if provided), should be checked monthly when cold and inflated to the inflation pressure recommended by the vehicle manufacturer on the vehicle placard or tire inflation pressure label. (If your vehicle has tires of a different size than the size indicated on the vehicle placard or tire inflation pressure label, you should determine the proper tire inflation pressure for those tires.)

As an added safety feature, your vehicle has been equipped with a tire pressure monitoring system (TPMS) that illuminates a low tire pressure telltale when one or more of your tires is significantly under-inflated. Accordingly, when the low tire pressure telltale illuminates, you should stop and check your tires as soon as possible, and inflate them to the proper pressure. Driving on a significantly under-inflated tire causes the tire to overheat and can lead to tire failure. Under-inflation also reduces fuel efficiency and tire tread life, and may affect the vehicle's handling and stopping ability.

Please note that the TPMS is not a substitute for proper tire maintenance, and it is the driver's responsibility to maintain correct tire pressure, even if under-inflation has not reached the level to trigger illumination of the TPMS low tire pressure telltale.

[The following paragraph is required for all vehicles certified to the standard starting on September 1, 2007 and for vehicles voluntarily equipped with a compliant TPMS MIL before that time.] Your vehicle has also been equipped with a TPMS malfunction indicator to indicate when the system is not operating properly. [For vehicles with a dedicated MIL telltale, add the following statement: The TPMS malfunction indicator is provided by a separate telltale, which displays the symbol "TPMS" when illuminated.] [For vehicles with a combined low tire pressure-MIL telltale, add the following statement: The TPMS malfunction indicator is combined with the low tire pressure telltale. When the system detects a malfunction, the telltale will flash for approximately one minute and then remain continuously illuminated. This sequence will continue upon subsequent vehicle start-ups as long as the malfunction exists.] When the malfunction indicator is illuminated, the system may not be able to detect or signal low tire pressure as intended. TPMS malfunctions may occur for a variety of reasons, including the installation of replacement or alternate tires or wheels on the vehicle that prevent the TPMS from functioning properly. Always check the TPMS malfunction telltale after replacing one or more tires or wheels on your vehicle to ensure that the replacement or alternate tires and wheels allow the TPMS to continue to function properly.

(b) The owner's manual may include additional information about the time for the TPMS telltale(s) to extinguish once the low tire pressure condition or the malfunction is corrected. It may also include additional information about the significance of the low tire pressure warning telltale illuminating, a description of corrective action to be undertaken, whether the tire pressure monitoring system functions with the vehicle's spare tire (if provided), and how to use a reset button, if one is provided.

(c) If a vehicle does not come with an owner's manual, the required information shall be provided in writing to the first purchaser of the vehicle.

S5 Test conditions.

S5.1 Ambient temperature. The ambient temperature is between 0 °C (32 °F) and 40 °C (104 °F).

S5.2 Road test surface. Compliance testing is conducted on any portion of the Southern Loop of the Treadwear Test Course defined in appendix A and Figure 2 of section 575.104 of this chapter. The road surface is dry during testing.

S5.3 Vehicle conditions.

S5.3.1 Test weight. The vehicle may be tested at any weight between its lightly loaded vehicle weight and its gross vehicle weight rating (GVWR) without exceeding any of its gross axle weight ratings.

S5.3.2 Vehicle speed. The vehicle's TPMS is calibrated and tested at speeds between 50 km/h (31.1 mph) and 100 km/h (62.2 mph). For vehicles equipped with cruise control, cruise control is not to be engaged during testing.

S5.3.3 Rim position. The vehicle rims may be positioned at any wheel position, consistent with any related instructions or limitations in the vehicle owner's manual.

S5.3.4 Stationary location. The vehicle's tires are shaded from direct sun when the vehicle is parked.
§ 571.138

S5.3.5 Brake pedal application. Driving time shall not accumulate during service brake application.

S5.3.6 Range of conditions or test parameters. Whenever a range of conditions or test parameters is specified in this standard, the vehicle must meet applicable requirements when tested at any point within the range.

S5.3.7 Tires. The vehicle is tested with the tires installed on the vehicle at the time of initial vehicle sale, excluding the spare tire (if provided). However, the spare tire may be utilized for TPMS malfunction testing purposes.

S6 Test procedures.

(a) Inflate the vehicle’s tires to the cold tire inflation pressure(s) provided on the vehicle placard or the tire inflation pressure label.

(b) With the vehicle stationary and the ignition locking system in the “Lock” or “Off” position, activate the ignition locking system to the “On” (“Run”) position or, where applicable, the appropriate position for the lamp check. The tire pressure monitoring system must perform a check of lamp function for the low tire pressure telltale as specified in paragraph S4.3.3 of this standard. If the vehicle is equipped with a separate TPMS malfunction telltale, the tire pressure monitoring system also must perform a check of lamp function as specified in paragraph S4.4(a)(4) of this standard.

(c) If applicable, set or reset the tire pressure monitoring system in accordance with the instructions in the vehicle owner’s manual.

(d) System calibration/learning phase.

(1) Drive the vehicle for up to 15 minutes of cumulative time (not necessarily continuously) along any portion of the test course.

(2) Reverse direction on the course and drive the vehicle for an additional period of time for a total cumulative time of 20 minutes (including the time in S6(f)(1), and not necessarily continuously).

(3) The sum of the total cumulative drive time under paragraphs S6(f)(1) and (2) shall be the lesser of 20 minutes or the time at which the low tire pressure telltale illuminates.

(4) If the low tire pressure telltale did not illuminate, discontinue the test.

(g) If the low tire pressure telltale illuminated during the procedure in paragraph S6(f), deactivate the ignition locking system to the “Off” or “Lock” position. After a 5-minute period, activate the vehicle’s ignition locking system to the “On” (“Run”) position. The telltale must illuminate and remain illuminated as long as the ignition locking system is in the “On” (“Run”) position.

(h) Keep the vehicle stationary for a period of up to one hour with the engine off.

(i) Inflate all of the vehicle’s tires to the same inflation pressure used in paragraph S6(a). If the vehicle’s tire pressure monitoring system has a manual reset feature, reset the system in accordance with the instructions specified in the vehicle owner’s manual. Determine whether the telltale has extinguished. If necessary, drive the vehicle until the telltale has been extinguished.

(j) The test may be repeated, using the test procedures in paragraphs S6(a)–(b) and S6(d)–(i), with any one, two, three, or four of the tires on the vehicle under-inflated.

(k) Simulate one TPMS malfunction by disconnecting the power source to any TPMS component, disconnecting any electrical connection between TPMS components, or installing a tire
or wheel on the vehicle that is incompatible with the TPMS. When simulating a TPMS malfunction, the electrical connections for the telltale lamps are not to be disconnected.

1) **TPMS malfunction detection.**

1) Drive the vehicle for up to 15 minutes of cumulative time (not necessarily continuously) along any portion of the test course.

2) Reverse direction on the course and drive the vehicle for an additional period of time for a total cumulative time of 20 minutes (including the time in S6(l)(1), and not necessarily continuously).

3) The sum of the total cumulative drive time under paragraphs S6(l)(1) and (2) shall be the lesser of 20 minutes or the time at which the TPMS malfunction telltale illuminates.

4) If the TPMS malfunction indicator did not illuminate in accordance with paragraph S4.4, as required, discontinue the test.

m) If the TPMS malfunction indicator illuminated during the procedure in paragraph S6(l), deactivate the ignition locking system to the “Off” or “Lock” position. After a 5-minute period, activate the vehicle’s ignition locking system to the “On” (“Run”) position. The TPMS malfunction indicator must again signal a malfunction and remain illuminated as long as the ignition locking system is in the “On” (“Run”) position.

n) Restore the TPMS to normal operation. If necessary, drive the vehicle until the telltale has extinguished.

(o) The test may be repeated using the test procedures in paragraphs S6(k)–(n), with each such test limited to simulation of a single malfunction.

S7 Phase-in schedule

S7.1 Vehicles manufactured on or after October 5, 2005, and before September 1, 2006.

For vehicles manufactured on or after October 5, 2005, and before September 1, 2006, the number of vehicles complying with this standard (except for the provisions of §4.4 unless the manufacturer elects to also certify to those provisions) must not be less than 20 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 2002, and before October 5, 2005; or

(b) The manufacturer’s production on or after October 5, 2005, and before September 1, 2006.

S7.2 Vehicles manufactured on or after September 1, 2006, and before September 1, 2007.

For vehicles manufactured on or after September 1, 2006, and before September 1, 2007, the number of vehicles complying with this standard (except for the provisions of §4.4 unless the manufacturer elects to also certify to those provisions) must not be less than 70 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 2003, and before September 1, 2006; or

(b) The manufacturer’s production on or after September 1, 2006, and before September 1, 2007.

S7.3 Vehicles manufactured on or after September 1, 2007.

Except as provided in S7.7, all vehicles manufactured on or after September 1, 2007 must comply with all requirements of this standard.

S7.4 Calculation of complying vehicles.

(a) **Carry-Forward Credits.** For purposes of complying with S7.1, a manufacturer may count a vehicle if it is certified as complying with this standard and is manufactured on or after April 8, 2005, but before September 1, 2006.

(b) For purposes of complying with S7.2, a manufacturer may count a vehicle if it:

1) (i) Is certified as complying with this standard and is manufactured on or after April 8, 2005, but before September 1, 2007; and

(ii) Is not counted toward compliance with S7.1; or

2) Is manufactured on or after September 1, 2006, but before September 1, 2007.

(c) **Carry-Backward Credits.** At the vehicle manufacturer’s option, for purposes of complying with S7.1, a manufacturer may count a vehicle it plans to manufacture and to certify as complying with this standard that will be produced on or after September 1, 2006 but before September 1, 2007. However, a vehicle counted toward compliance with S7.1 may not be counted toward compliance with S7.2. If the vehicle manufacturer decides to exercise the option for carry-backward credits, the manufacturer must indicate this in its
§ 571.139

Standard No. 139; New pneumatic radial tires for light vehicles.

S1. Scope and purpose. This standard specifies tire dimensions, test requirements, labeling requirements, and defines tire load ratings.

S2. Application. This standard applies to new pneumatic radial tires for use on motor vehicles (other than motorcycles and low speed vehicles) that have a gross vehicle weight rating (GVWR) of 10,000 pounds or less and that were manufactured after 1975. This standard does not apply to special tires (ST) for trailers in highway service, tires for use on farm implements (FI) in agricultural service with intermittent highway use, tires with rim diameters of 8 inches and below, or T-type temporary use spare tires with radial construction.

S3. Definitions.
Bead means the part of the tire that is made of steel wires, wrapped or reinforced by ply cords and that is shaped to fit the rim.

Bead separation means a breakdown of the bond between components in the bead.

Bias ply tire means a pneumatic tire in which the ply cords that extend to the beads are laid at alternate angles substantially less than 90 degrees to the centerline of the tread.

Carcass means the tire structure, except tread and sidewall rubber which, when inflated, bears the load.

Chunking means the breaking away of pieces of the tread or sidewall.

Cord means the strands forming the plies in the tire.

Cord separation means the parting of cords from adjacent rubber compounds.

Cracking means any parting within the tread, sidewall, or inner liner of the tire extending to cord material.

Extra load tire means a tire designed to operate at higher loads and higher inflation pressure than the corresponding standard tire.

Groove means the space between two adjacent tread ribs.

Innerliner means the layer(s) forming the inside surface of a tubeless tire that contains the inflating medium within the tire.

Innerliner separation means the parting of the innerliner from cord material in the carcass.

Light truck (LT) tire means a tire designated by its manufacturer as primarily intended for use on lightweight trucks or multipurpose passenger vehicles.

Load rating means the maximum load that a tire is rated to carry for a given inflation pressure.

Maximum load rating means the load rating for a tire at the maximum permissible inflation pressure for that tire.

Maximum permissible inflation pressure means the maximum cold inflation pressure to which a tire may be inflated.

Measuring rim means the rim on which a tire is fitted for physical dimension requirements.

Open splice means any parting at any junction of tread, sidewall, or innerliner that extends to cord material.

Outer diameter means the overall diameter of an inflated new tire.

Overall width means the linear distance between the exteriors of the sidewalls of an inflated tire, including elevations due to labeling, decorations, or protective bands or ribs.

Passenger car tire means a tire intended for use on passenger cars, multipurpose passenger vehicles, and trucks, that have a gross vehicle weight rating (GVWR) of 10,000 pounds or less.

Ply means a layer of rubber-coated parallel cords.

Ply separation means a parting of rubber compound between adjacent plies.

Pneumatic tire means a mechanical device made of rubber, chemicals, fabric and steel or other materials, that, when mounted on an automotive wheel, provides the traction and contains the gas or fluid that sustains the load.

Radial ply tire means a pneumatic tire in which the ply cords that extend to the beads are laid at substantially 90 degrees to the centerline of the tread.

Reinforced tire means a tire designed to operate at higher loads and at higher inflation pressures than the corresponding standard tire.

Rim means a metal support for a tire or a tire and tube assembly upon which the tire beads are seated.

Section width means the linear distance between the exteriors of the sidewalls of an inflated tire, excluding elevations due to labeling, decoration, or protective bands.

Sidewall means that portion of a tire between the tread and bead.

Sidewall separation means the parting of the rubber compound from the cord material in the sidewall.

Snow tire means a tire that attains a traction index equal to or greater than 110, compared to the ASTM E1136-93 (Reapproved 2005) (incorporated by reference, see §571.5) Standard Reference Test Tire when using the snow traction test as described in ASTM F1805-00 (incorporated by reference, see §571.5), and that is marked with an Alpine Symbol specified in §5.5(i) on at least one sidewall.
§ 571.139

Test rim means the rim on which a tire is fitted for testing, and may be any rim listed as appropriate for use with that tire.

Tread means that portion of a tire that comes into contact with the road.

Tread rib means a tread section running circumferentially around a tire.

Tread separation means pulling away of the tread from the tire carcass.

Treadwear indicators (TWI) means the projections within the principal grooves designed to give a visual indication of the degrees of wear of the tread.

Wheel-holding fixture means the fixture used to hold the wheel and tire assembly securely during testing.

S4. Tire and rim matching information.

S4.1. Each manufacturer of tires must ensure that a listing of the rims that may be used with each tire that it produces is provided to the public in accordance with S4.1.1 and S4.1.2.

S4.1.1 Each rim listing for a tire must include dimensional specifications and a diagram of the rim and must be in one of the following forms:

(a) Listed by manufacturer name or brand name in a document furnished to dealers of the manufacturer’s tires, to any person upon request, and in duplicate to: Docket Section, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 20590; or

(b) Contained in publications, current at the date of manufacture of the tire or any later date, of at least one of the following organizations:

1. The Tire and Rim Association.
2. The European Tyre and Rim Technical Organization.
4. Tyre & Rim Association of Australia.
5. Associacao Latino Americana de Pneus e Aros (Brazil).

S4.1.2 A listing compiled in accordance with paragraph (a) of S4.1.1 need not include dimensional specifications or a diagram of a rim whose dimensional specifications and diagram are contained in a listing published in accordance with paragraph (b) of S4.1.1.

S4.2. Information contained in a publication specified in S4.1.1(b) that lists general categories of tires and rims by size designation, type of construction, and/or intended use, is considered to be manufacturer’s information required by S4.1 for the listed tires, unless the publication itself or specific information provided according to S4.1(a) indicates otherwise.

S5. General requirements

S5.1. Size and construction. Each tire shall fit each rim specified for its size designation in accordance with S4.

S5.2. Performance requirements. Each tire shall conform to each of the following:

(a) It shall meet the requirements specified in S6 for its tire size designation, type, and maximum permissible inflation pressure.

(b) It shall meet each of the applicable requirements set forth in paragraphs (c) and (d) of this S5.2, when mounted on a model rim assembly corresponding to any rim designated by the tire manufacturer for use with the tire in accordance with S4.

(c) Its maximum permissible inflation pressure shall be 240, 280, 300, 340, or 350 kPa.

(d) Its load rating shall be that specified either in a submission made by an individual manufacturer, pursuant to S4, or in one of the publications described in S4 for its size designation, type and each appropriate inflation pressure. If the maximum load rating for a particular tire size is shown in more than one of the publications described in S4, each tire of that size designation shall have a maximum load rating that is not less than the published maximum load rating, or if there are differing maximum load ratings for the same tire size designation, not less than the lowest published maximum load rating.

S5.3. Test sample. For the tests specified in S6, use:

(a) One tire for high speed;
(b) Another tire for endurance and low inflation pressure performance; and
(c) A third tire for physical dimensions, resistance to bead unseating, and strength, in sequence.
Treadwear indicators. Except in the case of tires with a 12-inch or smaller rim diameter, each tire shall have not less than six treadwear indicators spaced approximately equally around the circumference of the tire that enable a person inspecting the tire to determine visually whether the tire has worn to a tread depth of one sixteenth of an inch. Tires with 12-inch or smaller rim diameter shall have not less than three such treadwear indicators.

Tire markings. Except as specified in paragraphs (a) through (i) of §5.5, each tire must be marked on each sidewall with the information specified in §5.5(a) through (d) and on one sidewall with the information specified in §5.5(e) through (i) according to the phase-in schedule specified in §7 of this standard. The markings must be placed between the maximum section width and the bead on at least one sidewall, unless the maximum section width of the tire is located in an area that is not more than one-fourth of the distance from the bead to the shoulder of the tire. If the maximum section width falls within that area, those markings must appear between the bead and a point one-half the distance from the bead to the shoulder of the tire, on at least one sidewall. The markings must be in letters and numerals not less than 0.078 inches high and raised above or sunk below the tire surface not less than 0.015 inches.

(a) The symbol DOT, which constitutes a certification that the tire conforms to applicable Federal motor vehicle safety standards;
(b) The tire size designation as listed in the documents and publications specified in §4.1.1 of this standard;
(c) The maximum permissible inflation pressure, subject to the limitations of §5.5.4 through §5.5.6 of this standard;
(d) The maximum load rating and for LT tires, the letter designating the tire load range;
(e) The generic name of each cord material used in the plies (both sidewall and tread area) of the tire;
(f) The actual number of plies in the sidewall, and the actual number of plies in the tread area, if different;
(g) The term “tubeless” or “tube type,” as applicable;
(h) The word “radial,” if the tire is a radial ply tire; and
(i) Alpine Symbol. A tire meeting the definition of a snow tire as defined in paragraph S3 may, at the option of the manufacturer, show the pictograph of a mountain with a snowflake as shown below. If the manufacturer chooses to mark the snow tire with the alpine symbol, the mountain profile must have a minimum base of 15 mm and a minimum height of 15 mm, and must contain three peaks with the middle peak being the tallest. Inside the mountain, there must be a six-sided snowflake having a minimum height of one-half the tallest peak.

Tire identification number. (a) Tires manufactured before September 1, 2009. Each tire must be labeled with the tire identification number required by 49 CFR part 574 on a sidewall of the tire. Except for retreaded tires, either the tire identification number or a partial tire identification number, containing all characters in the tire identification number, except for the date code and, at the discretion of the manufacturer, any optional code, must be labeled on the other sidewall of the tire.
(b) Tires manufactured on or after September 1, 2009. Each tire must be labeled with the tire identification number required by 49 CFR part 574 on the intended outboard sidewall of the tire. Except for retreaded tires, either the tire identification number or a partial tire identification number, containing all characters in the tire identification number, except for the date code and, at the discretion of the manufacturer, any optional code, must be labeled on the other sidewall of the tire. Except
§ 571.139 49 CFR Ch. V (10–1–16 Edition)

for retreaded tires, if a tire does not have an intended outboard sidewall, the tire must be labeled with the tire identification number required by 49 CFR part 574 on one sidewall and with either the tire identification number or a partial tire identification number, containing all characters in the tire identification number except for the date code and, at the discretion of the manufacturer, any optional code, on the other sidewall.

S5.5.2 [Reserved]

S5.5.3 Each tire must be labeled with the name of the manufacturer, or brand name and number assigned to the manufacturer in the manner specified in 49 CFR part 574.

S5.5.4 For passenger car tires, if the maximum inflation pressure of a tire is 240, 280, 300, 340, or 350 kPa, then:

(a) Each marking of that inflation pressure pursuant to S5.5(c) must be followed in parenthesis by the equivalent psi, rounded to the next higher whole number; and

(b) Each marking of the tire's maximum load rating pursuant to S5.5(d) in kilograms must be followed in parenthesis by the equivalent load rating in pounds, rounded to the nearest whole number.

S5.5.5 If the maximum inflation pressure of a tire is 420 kPa (60 psi), the tire must have permanently molded into or onto both sidewalls, in letters and numerals not less than ½ inch high, the words “Inflate to 60 psi” or “Inflate to 420 kPa (60 psi).” On both sidewalls, the words must be positioned in an area between the tire shoulder and the bead of the tire. However, the words must be also positioned on the tire so that they are not obstructed by the flange of any rim designated for use with that tire in this standard or in Standard No. 110 (§571.110 of this part).

S5.5.6 For LT tires, the maximum permissible inflation pressure shown must be the inflation pressure that corresponds to the maximum load of the tire for the tire size as specified in one of the publications described in S4.1.1(b) of §571.139. At the manufacturer’s option, the shown inflation pressure may be as much as 10 psi (69 kPa) greater than the inflation pressure corresponding to the specified maximum load.

S6. Test procedures, conditions and performance requirements. Each tire shall meet all of the applicable requirements of this section when tested according to the conditions and procedures set forth in S5 and S6.1 through S6.7.

S6.1 Tire dimensions

S6.1.1 Test conditions and procedures.

S6.1.1.1 Tire Preparation.

S6.1.1.1.1 Mount the tire on the measuring rim specified by the tire manufacturer or in one of the publications listed in S4.1.1

S6.1.1.1.2 For passenger car tires, inflate to the pressure specified in the following table:

<table>
<thead>
<tr>
<th>Inflation pressure (kPa)</th>
<th>Standard</th>
<th>Reinforced</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S6.1.1.1.3 In the case of a LT tire, inflate it to the pressure at maximum load as labeled on sidewall.

S6.1.1.1.4 Condition the assembly at an ambient room temperature of 20 °C to 30 °C for not less than 24 hours.

S6.1.1.1.5 Readjust the tire pressure to that specified in S6.1.1.1.2.

S6.1.1.2 Test procedure.

S6.1.1.2.1 Measure the section width and overall width by caliper at six points approximately equally spaced around the circumference of the tire, avoiding measurement of the additional thickness of the special protective ribs or bands. The average of the measurements so obtained are taken as the section width and overall width, respectively.

S6.1.1.2.2 Determine the outer diameter by measuring the maximum circumference of the tire and dividing the figure so obtained by Pi (3.14).

S6.1.2 Performance Requirements. The actual section width and overall width for each tire measured in accordance with S6.1.1.2 shall not exceed the section width specified in a submission made by an individual manufacturer, pursuant to 4.1.1(a) or in one of the publications described in 4.1.1(b) for its size designation and type by more than:

(a) (For tires with a maximum permissible inflation pressure of 32, 36, or 40 psi) 7 percent, or
(b) (For tires with a maximum permissible inflation pressure of 240, 280, 300, 340 or 350 kPa) 7 percent or 10 mm (0.4 inches), whichever is larger.

S6.2 High Speed Performance
S6.2.1 Test conditions and procedures.
S6.2.1.1 Preparation of tire.
S6.2.1.1.1 Mount the tire on a test rim and inflate it to the pressure specified for the tire in the following table:

<table>
<thead>
<tr>
<th>Tire application</th>
<th>Test pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger car tires</td>
<td></td>
</tr>
<tr>
<td>Standard load</td>
<td>220</td>
</tr>
<tr>
<td>Extra load</td>
<td>260</td>
</tr>
<tr>
<td>Load Range C</td>
<td>320</td>
</tr>
<tr>
<td>Load Range D</td>
<td>410</td>
</tr>
<tr>
<td>Load Range E</td>
<td>500</td>
</tr>
<tr>
<td>Light truck tires</td>
<td></td>
</tr>
<tr>
<td>Load Range C</td>
<td>230</td>
</tr>
<tr>
<td>Load Range D</td>
<td>320</td>
</tr>
<tr>
<td>Load Range E</td>
<td>410</td>
</tr>
</tbody>
</table>

S6.2.1.1.2 Condition the assembly at 32 to 38 °C for not less than 3 hours.
S6.2.1.1.3 Before or after mounting the assembly on a test axle, readjust the tire pressure to that specified in S6.2.1.1.1.
S6.2.1.2 Test procedure.
S6.2.1.2.1 Press the assembly against the outer face of a test drum with a diameter of 1.70 m ±1%.
S6.2.1.2.2 Apply to the test axle a load equal to 85% of the tire's maximum load carrying capacity.
S6.2.1.2.3 Break-in the tire by running it for 2 hours at 80 km/h.
S6.2.1.2.4 Allow tire to cool to 38 °C and readjust inflation pressure to applicable pressure in 6.2.1.2.2 immediately before the test.
S6.2.1.2.5 Throughout the test, the inflation pressure is not corrected and the test load is maintained at the value applied in S6.2.1.2.2.
S6.2.1.2.6 During the test, the ambient temperature, measured at a distance of not less than 150 mm and not more than 1 m from the tire, is maintained at not less than 32 °C or more than 38 °C.
S6.2.1.2.7 The test is conducted, continuously and uninterrupted, for ninety minutes through three thirty-minute consecutive test stages at the following speeds: 140, 150, and 160 km/h.
S6.2.1.2.8 Allow the tire to cool for between 15 minutes and 25 minutes. Measure its inflation pressure. Then, deflate the tire, remove it from the test rim, and inspect it for the conditions specified in S6.2.2(a).
S6.2.2 Performance requirements.
S6.2.2.1 When the tire is tested in accordance with S6.2.1:
(a) There shall be no visual evidence of tread, sidewall, ply, cord, innerliner, belt or bead separation, chunking, open splices, cracking, or broken cords.
(b) The tire pressure, when measured at any time between 15 minutes and 25 minutes after the end of the test, shall not be less than 95% of the initial pressure specified in S6.2.1.1.

S6.3 Tire Endurance
S6.3.1 Test conditions and procedures.
S6.3.1.1 Preparation of tire.
S6.3.1.1.1 Mount the tire on a test rim and inflate it to the pressure specified for the tire in the following table:

<table>
<thead>
<tr>
<th>Tire application</th>
<th>Test pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger car tires</td>
<td></td>
</tr>
<tr>
<td>Standard load</td>
<td>180</td>
</tr>
<tr>
<td>Extra load</td>
<td>220</td>
</tr>
<tr>
<td>Load Range C</td>
<td>260</td>
</tr>
<tr>
<td>Load Range D</td>
<td>340</td>
</tr>
<tr>
<td>Load Range E</td>
<td>410</td>
</tr>
<tr>
<td>Light truck tires</td>
<td></td>
</tr>
<tr>
<td>Load Range C</td>
<td>190</td>
</tr>
<tr>
<td>Load Range D</td>
<td>260</td>
</tr>
<tr>
<td>Load Range E</td>
<td>340</td>
</tr>
</tbody>
</table>

S6.3.1.1.2 Condition the assembly at 32 to 38 °C for not less than 3 hours.
S6.3.1.1.3 Readjust the pressure to the value specified in S6.3.1.1.1 immediately before testing.
S6.3.1.2 Test Procedure.
S6.3.1.2.1 Mount the assembly on a test axle and press it against the outer face of a smooth wheel having a diameter of 1.70 m ±1%.
S6.3.1.2.2 During the test, the ambient temperature, at a distance of not less than 150 mm and not more than 1 m from the tire, is maintained at not less than 32 °C or more than 38 °C.
S6.3.1.2.3 Conduct the test, without interruptions, at the test speed of not...
§ 571.139

less than 120 km/h with loads and test periods not less than those shown in the following table. For snow tires, conduct the test at not less than 110 km/h.

<table>
<thead>
<tr>
<th>Test period</th>
<th>Duration (hours)</th>
<th>Load as a percentage of tire maximum load rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>100</td>
</tr>
</tbody>
</table>

S6.3.1.2.4 Throughout the test, the inflation pressure is not corrected and the test loads are maintained at the value corresponding to each test period, as shown in the table in S6.3.1.2.3.

S6.3.1.2.5 Allow the tire to cool for between 15 minutes and 25 minutes after running the tire for the time specified in the table in S6.3.1.2.3, measure its inflation pressure. Inspect the tire externally on the test rim for the conditions specified in S6.3.2(a).

S6.3.2 Performance requirements. When the tire is tested in accordance with S6.3.1:

(a) There shall be no visual evidence of tread, sidewall, ply, cord, belt or bead separation, chunking, open splices, cracking or broken cords.

(b) The tire pressure, when measured at any time between 15 minutes and 25 minutes after the end of the test, shall not be less than 95% of the initial pressure specified in S6.3.1.1.1.

S6.4 Low Inflation Pressure Performance

S6.4.1 Test conditions and procedures.
S6.4.1.1 Preparation of tire.
This test is conducted following completion of the tire endurance test using the same tire and rim assembly tested in accordance with S6.3 with the tire deflated to the following appropriate pressure:

<table>
<thead>
<tr>
<th>Tire application</th>
<th>Test pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger car tires</td>
<td></td>
</tr>
<tr>
<td>Standard load</td>
<td>140</td>
</tr>
<tr>
<td>Extra load</td>
<td>160</td>
</tr>
<tr>
<td>Load Range C</td>
<td>200</td>
</tr>
<tr>
<td>Load Range D</td>
<td>260</td>
</tr>
<tr>
<td>Load Range E</td>
<td>320</td>
</tr>
<tr>
<td>Light truck tires with a nominal cross section >295 mm (11.5 inches)</td>
<td></td>
</tr>
<tr>
<td>Load Range C</td>
<td>150</td>
</tr>
</tbody>
</table>

S6.4.1.2 After the tire is deflated to the appropriate test pressure in S6.4.1.1.1 at the completion of the endurance test, condition the assembly at 32 to 38 °C for not less than 2 hours.
S6.4.1.3 Before or after mounting the assembly on a test axle, readjust the tire pressure to that specified in S6.4.1.1.1.

S6.4.2 Test procedure.
S6.4.1.2.1 The test is conducted for ninety minutes at the end of the test specified in S6.4.1.1.1 at a speed of 120 km/h (75 mph). For snow tires, conduct the test at not less than 110 km/h.
S6.4.1.2.2 Press the assembly against the outer face of a test drum with a diameter of 1.70 m ± 1%.
S6.4.1.2.3 Apply to the test axle a load equal to 100% of the tire's maximum load carrying capacity.
S6.4.1.2.4 Throughout the test, the inflation pressure is not corrected and the test load is maintained at the initial level.
S6.4.1.2.5 During the test, the ambient temperature, at a distance of not less than 150 mm and not more than 1 m from the tire, is maintained at not less than 32 °C or more than 38 °C.
S6.4.1.2.6 Allow the tire to cool for between 15 minutes and 25 minutes. Measure its inflation pressure. Then, deflate the tire, remove it from the test rim, and inspect it for the conditions specified in S6.4.2(a).

S6.4.2 Performance requirements. When the tire is tested in accordance with S6.4.1:

(a) There shall be no visual evidence of tread, sidewall, ply, innerliner, belt or bead separation, chunking, open splices, cracking, or broken cords, and

(b) The tire pressure, when measured at any time between 15 minutes and 25 minutes after the end of the test, shall not be less than 95% of the initial pressure specified in S6.4.1.1.1.

S6.5 Tire strength.

S6.5.1 Tire strength for passenger car tires. Each tire shall comply with the requirements of S5.3 of §571.109.
S6.5.2 Tire strength for LT tires. Each tire shall comply with the requirements of S7.3 of §571.119.

S6.6 Tubeless tire bead unseating resistance. Each tire shall comply with the requirements of S8.2 of §571.109. For light truck tires, the maximum permissible inflation pressure to be used for the bead unseating test is as follows:

Load Range C 260 kPa.
Load Range D 340 kPa.
Load Range E 410 kPa.

For light truck tires with a nominal cross section greater than 295 mm (11.5 inches), the maximum permissible inflation pressure to be used for the bead unseating test is as follows:

Load Range C 190 kPa.
Load Range D 260 kPa.
Load Range E 340 kPa.

S7. Phase-in schedule for tire markings.

S7.1 Tires manufactured on or after September 1, 2005 and before September 1, 2006. For tires manufactured on or after September 1, 2005 and before September 1, 2006, the number of tires complying with S4, S5.5, S5.5.1, S5.5.2, S5.5.3, S5.5.4, S5.5.5, and S5.5.6 of this standard must be equal to not less than 40% of the manufacturer’s production during that period.

S7.2 Tires manufactured on or after September 1, 2006 and before September 1, 2007. For tires manufactured on or after September 1, 2006 and before September 1, 2007, the number of tires complying with S4, S5.5, S5.5.1, S5.5.2, S5.5.3, S5.5.4, S5.5.5, and S5.5.6 of this standard must be equal to not less than 70% of the manufacturer’s production during that period.

S7.3 Tires manufactured on or after September 1, 2007. Each tire must comply with S4, S5.5, S5.5.1, S5.5.2, S5.5.3, S5.5.4, S5.5.5, and S5.5.6 of this standard.

A-pillar means any pillar that is entirely forward of a transverse vertical plane passing through the seating reference point of the driver’s seat.

Ambulance means a motor vehicle designed exclusively for the purpose of emergency medical care, as evidenced by the presence of a passenger compartment to accommodate emergency medical personnel, one or more patients on litters or cots, and equipment and supplies for emergency care at a location or during transport.

B-pillar means the forwardmost pillar on each side of the vehicle that is, in whole or in part, rearward of a transverse vertical plane passing through the seating reference point of the driver’s seat, unless:

1. There is only one pillar rearward of that plane and it is also a rearmost pillar; or
2. There is a door frame rearward of the A-pillar and forward of any other pillar or rearmost pillar.

Brace means a fixed diagonal structural member in an open body vehicle that is used to brace the roll-bar and that connects the roll-bar to the main body of the vehicle structure.

Convertible means a vehicle whose A-pillars are not joined with the B-pillars (or rearmost pillars) by a fixed, rigid structural member.

Convertible roof frame means the frame of a convertible roof.

Convertible roof linkage mechanism means any anchorage, fastener, or device necessary to deploy a convertible roof frame.

Daylight opening means, for openings on the side of the vehicle, other than a door opening, the locus of all points where a horizontal line, perpendicular to the vehicle longitudinal centerline, is tangent to the periphery of the opening. For openings on the front and rear of the vehicle, other than a door opening, daylight opening means the locus of
§ 571.201 49 CFR Ch. V (10–1–16 Edition)

all points where a horizontal line, parallel to the vehicle longitudinal centerline, is tangent to the periphery of the opening. If the horizontal line is tangent to the periphery at more than one point at any location, the most inboard point is used to determine the daylight opening.

Door frame means the rearmost perimeter structure, including trim but excluding glass, of the forward door and the forwardmost perimeter structure, including trim but excluding glass, of the rear door of a pair of adjacent side doors that:

1. Have opposing hinges;
2. Latch together without engaging or contacting an intervening pillar; and
3. Are forward of any pillar other than the A-pillar on the same side of the vehicle; and

Door opening means, for door openings on the side of the vehicle, the locus of all points where a horizontal line, perpendicular to the vehicle longitudinal centerline, is tangent to the periphery of the side door opening. For door openings on the back end of the vehicle, *door opening* means the locus of all points where a horizontal line, parallel to the vehicle longitudinal centerline, is tangent to the periphery of the back door opening. If the horizontal line is tangent to the periphery at more than one point at any location, the most inboard point is the door opening.

Dynamically deployed upper interior head protection system means a protective device or devices which are integrated into a vehicle and which, when activated by an impact, provide, through means requiring no action from occupants, protection against head impacts with upper interior structures and components of the vehicle in crashes.

Forehead impact zone means the part of the free motion headform surface area that is determined in accordance with the procedure set forth in §8.10.

Free motion headform means a test device which conforms to the specifications of part 572, subpart L of this chapter.

Interior rear quarter panel means a vehicle interior component located between the rear edge of the side door frame, the front edge of the rearmost seat back, and the daylight opening.

Mid-sagittal plane of a dummy means a longitudinal vertical plane passing through the seating reference point of a designated seating position.

Other door frame means the rearmost perimeter structure, including trim but excluding glass, of the forward door and the forwardmost perimeter structure, including trim but excluding glass, of the rear door of a pair of adjacent side doors that:

1. Have opposing hinges;
2. Latch together without engaging or contacting an intervening pillar; and
3. Are rearward of the B-pillar.

Other pillar means any pillar which is not an A-pillar, a B-pillar, or a rearmost pillar.

Pillar means any structure, excluding glazing and the vertical portion of door window frames, but including accompanying moldings, attached components such as safety belt anchorages and coat hooks, which:

1. Supports either a roof or any other structure (such as a roll-bar) that is above the driver’s head, or
2. Is located along the side edge of a window.

Roll-bar means a fixed overhead structural member, including its vertical support structure, that extends from the left to the right side of the passenger compartment of any open body vehicles and convertibles. It does not include a header.

Seat belt anchorage means any component involved in transferring seat belt loads to the vehicle structure, including, but not limited to, the attachment hardware, but excluding webbing or straps, seat frames, seat pedestals, and the vehicle structure itself, whose failure causes separation of the belt from the vehicle structure.

Seat belt mounting structure means:

(a) A vehicle body or frame component, including trim, that incorporates an upper seat belt anchorage conforming to the requirements of §4.2.1 and §4.3.2 of 49 CFR 571.210, that is located rearward of the rearmost outboard designated seating position, and that extends above a horizontal plane 660 mm above the seating reference...
point (SgRP) of that seating position; and
(b) A vehicle body or frame component, including trim, that incorporates an upper seat belt anchorage conforming to the requirements of S4.2.1 and S4.3.2 of 49 CFR 571.210, that is located forward of the rearmost outboard designated seating position, and that extends above a horizontal plane 460 mm above the SgRP of that seating position located rearward of the anchorage.
(c) The seat belt mounting structure is not a pillar, roll bar, brace or stiffener, side rail, seat, interior rear quarter panel, or part of the roof.

Sliding door track means a track structure along the upper edge of a side door opening that secures the door in the closed position and guides the door when moving to and from the open position.

Stiffener means a fixed overhead structural member that connects one roll-bar to another roll-bar or to a header of any open body vehicle or convertible.

Upper roof means the area of the vehicle interior that is determined in accordance with the procedure set forth in S8.15.

Windshield trim means molding of any material between the windshield glazing and the exterior roof surface, including material that covers a part of either the windshield glazing or exterior roof surface.

S4 Requirements
S4.1 Except as provided in S4.2, each vehicle shall comply with either:
(a) The requirements specified in S5, or;
(b) The requirements specified in S5 and S6.

S4.2 Vehicles manufactured on or after September 1, 1998 shall comply with the requirements of S5 and S6.

S5 Requirements for instrument panels, seat backs, interior compartment doors, sun visors, and armrests. Each vehicle shall comply with the requirements specified in S5.1 through S5.5.2.

S5.1 Instrument panels. Except as provided in S5.1.1, when that area of the instrument panel that is within the head impact area is impacted in accordance with S5.1.2 by a 6.8 kilogram, 165 mm diameter head form at—
(a) A relative velocity of 24 kilometers per hour for all vehicles except those specified in paragraph (b) of this section,
(b) A relative velocity of 19 kilometers per hour for vehicles that meet the occupant crash protection requirements of §5.1 of 49 CFR 571.208 by means of inflatable restraint systems and meet the requirements of S4.1.5.1(a)(3) by means of a Type 2 seat belt assembly at the right front designated seating position, the deceleration of the head form shall not exceed 80 g continuously for more than 3 milliseconds.

S5.1.1 The requirements of S5.1 do not apply to:
(a) Console assemblies;
(b) Areas less than 125 mm inboard from the juncture of the instrument panel attachment to the body side inner structure;
(c) Areas closer to the windshield juncture than those statically contactable by the head form with the windshield in place;
(d) Areas outboard of any point of tangency on the instrument panel of a 165 mm diameter head form tangent to and inboard of a vertical longitudinal plane tangent to the inboard edge of the steering wheel; or
(e) Areas below any point at which a vertical line is tangent to the rearmost surface of the panel.

S5.2 Demonstration procedures. Tests shall be performed as described in SAE Recommended Practice J921 (1965) (incorporated by reference, see §571.5), using the specified instrumentation or instrumentation that meets the performance requirements specified in SAE Recommended Practice J977 (1966) (incorporated by reference, see §571.5), except that:
(a) The origin of the line tangent to the instrument panel surface shall be a point on a transverse horizontal line through a point 125 mm horizontally forward of the seating reference point of the front outboard passenger designated seating position, displaced vertically an amount equal to the rise which results from a 125 mm forward adjustment of the seat or 19 mm; and
(b) Direction of impact shall be either:
(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.

§ 571.201

(1) In a vertical plane parallel to the vehicle longitudinal axis; or
(2) In a plane normal to the surface at the point of contact.
§571.201 Requirements for upper interior components.

S5.5.1 General. Each installed armrest shall conform to at least one of the following:

(a) It shall be constructed with energy-absorbing material and shall deflect or collapse laterally at least 50 mm without permitting contact with any underlying rigid material.

(b) It shall be constructed with energy-absorbing material that deflects or collapses to within 32 mm of a rigid test panel surface without permitting contact with any rigid material. Any rigid material between 13 and 32 mm from the panel surface shall have a minimum vertical height of not less than 25 mm.

(c) Along not less than 50 continuous mm of its length, the armrest shall, when measured vertically in side elevation, provide at least 50 mm of coverage within the pelvic impact area.

S5.5.2 Folding armrests. Each armrest that folds into the seat back or between two seat backs shall either:

(a) Meet the requirements of S5.5.1; or

(b) Be constructed of or covered with energy-absorbing material.

S6 Requirements for upper interior components.

S6.1 Vehicles manufactured on or after September 1, 1998. Except as provided in S6.3 and S6.1.4, for vehicles manufactured on or after September 1, 1998 and before September 1, 2002, a percentage of the manufacturer’s production, as specified in S6.1.1, S6.1.2, or S6.1.3 shall conform, at the manufacturer’s option, to either S6.1(a) or S6.1(b). For vehicles manufactured by final stage manufacturers on or after September 1, 1998 and before September 1, 2006, a percentage of the manufacturer’s production as specified in S6.1.4 shall, except as provided in S6.3, conform, to either S6.1(a) or S6.1(b). The manufacturer shall select the option by the time it certifies the vehicle and may not thereafter select a different option for the vehicle.

(a) When tested under the conditions of S8, comply with the requirements specified in S7 at the target locations specified in S10 when impacted by the free motion headform specified in S8.9 at any speed up to and including 24 km/h (15 mph). The requirements do not apply to any target that cannot be located using the procedures of S10.

(b) When equipped with a dynamically deployed upper interior head protection system and tested under the conditions of S8, comply with the requirements specified in S7 at the target locations specified in S10 as follows:

(1) Targets that are not located over any point inside the area measured along the contour of the vehicle surface within 50 mm (2.0 inch) of the periphery of the stowed system projected perpendicularly onto the vehicle interior surface, including mounting and inflation components but exclusive of any cover or covers, shall be impacted by the free motion headform specified in S8.9 at any speed up to and including 24 km/h (15 mph). The requirements do not apply to any targets that can not be located by using the procedures of S10.

(2) Targets that are over any point inside the area measured along the contour of the vehicle interior within 50 mm (2.0 inch) of the periphery of the stowed system projected perpendicularly onto the vehicle interior surface, including mounting and inflation components but exclusive of any cover or covers, when the dynamically deployed upper interior head protection system is not deployed, shall be impacted by the free motion headform specified in S8.9 at any speed up to and including 19 km/h (12 mph) with the system undeployed. The requirements do not apply to any target that can not be located using the procedures of S10.

(3) Each vehicle shall, when equipped with a dummy test device specified in Part 572, subpart M, and tested as specified in S8.16 through S8.28, comply with the requirements specified in S7 when crashed into a fixed, rigid pole of 254 mm in diameter, at any velocity between 24 kilometers per hour (15 mph) and 29 kilometers per hour (18 mph).

S6.1.1 Phase-in Schedule #1

S6.1.1.1 Vehicles manufactured on or after September 1, 1998 and before September 1, 1999. Subject to S6.1.5(a), for vehicles manufactured by a manufacturer on or after September 1, 1998 and before September 1, 1999, the amount of vehicles complying with S7 shall be not less than 10 percent of:
§ 571.201

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 1996 and before September 1, 1999, or

(b) The manufacturer’s production on or after September 1, 1998 and before September 1, 1999.

S6.1.1.2 Vehicles manufactured on or after September 1, 1999 and before September 1, 2000. Subject to S6.1.5(b), for vehicles manufactured by a manufacturer on or after September 1, 1999 and before September 1, 2000, the amount of vehicles complying with S7 shall be not less than 25 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 1997 and before September 1, 2000, or

(b) The manufacturer’s production on or after September 1, 1999 and before September 1, 2000.

S6.1.1.3 Vehicles manufactured on or after September 1, 1999 and before September 1, 2000. Subject to S6.1.5(c), for vehicles manufactured by a manufacturer on or after September 1, 1999 and before September 1, 2000, the amount of vehicles complying with S7 shall be not less than 40 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 1998 and before September 1, 2001, or

(b) The manufacturer’s production on or after September 1, 2000 and before September 1, 2001.

S6.1.1.4 Vehicles manufactured on or after September 1, 2001 and before September 1, 2002. Subject to S6.1.5(d), for vehicles manufactured by a manufacturer on or after September 1, 2001 and before September 1, 2002, the amount of vehicles complying with S7 shall be not less than 70 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 1999 and before September 1, 2002, or

(b) The manufacturer’s production on or after September 1, 2001 and before September 1, 2002.

S6.1.2 Phase-in Schedule #2

S6.1.2.1 Vehicles manufactured on or after September 1, 1998 and before September 1, 1999. Subject to S6.1.5(a), for vehicles manufactured by a manufacturer on or after September 1, 1998 and before September 1, 1999, the amount of vehicles complying with S7 shall be not less than seven percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 1996 and before September 1, 1999, or

(b) The manufacturer’s production on or after September 1, 1998 and before September 1, 1999.

S6.1.2.2 Vehicles manufactured on or after September 1, 1999 and before September 1, 2000. Subject to S6.1.5(b), for vehicles manufactured by a manufacturer on or after September 1, 1999 and before September 1, 2000, the amount of vehicles complying with S7 shall be not less than 31 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 1997 and before September 1, 2000, or

(b) The manufacturer’s production on or after September 1, 1999 and before September 1, 2000.

S6.1.2.3 Vehicles manufactured on or after September 1, 2000 and before September 1, 2001. Subject to S6.1.5(c), for vehicles manufactured by a manufacturer on or after September 1, 2000 and before September 1, 2001, the amount of vehicles complying with S7 shall be not less than 40 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 1998 and before September 1, 2001, or

(b) The manufacturer’s production on or after September 1, 2000 and before September 1, 2001.

S6.1.2.4 Vehicles manufactured on or after September 1, 2001 and before September 1, 2002. Subject to S6.1.5(d), for vehicles manufactured by a manufacturer on or after September 1, 2001 and before September 1, 2002, the amount of vehicles complying with S7 shall be not less than 70 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 1999 and before September 1, 2002, or

(b) The manufacturer’s production on or after September 1, 2001 and before September 1, 2002.

S6.1.3 Phase-in Schedule #3
S6.1.3.1 Vehicles manufactured on or after September 1, 1998 and before September 1, 1999 are not required to comply with the requirements specified in S7.

S6.1.3.2 Vehicles manufactured on or after September 1, 1999 shall comply with the requirements specified in S7.

S6.1.4 Phase-in Schedule #4

S6.1.4.1 Vehicles manufactured on or after September 1, 1998 and before September 1, 1999 are not required to comply with the requirements specified in S7.

S6.1.4.2 Vehicles manufactured on or after September 1, 1999 shall comply with the requirements specified in S7.

S6.1.4.3 Phase-in Schedule #5

S6.1.5 Calculation of complying vehicles.

(a) For the purposes of complying with S6.1.1.1 or S6.1.2.1, a manufacturer may count a vehicle if it is manufactured on or after May 8, 1997, but before September 1, 1999.

(b) For the purposes of complying with S6.1.1.2 or S6.1.2.2, a manufacturer may count a vehicle if it:

(1) Is manufactured on or after May 8, 1997, but before September 1, 2000,

(2) Is not counted toward compliance with S6.1.1.1 or S6.1.2.1, as appropriate.

(c) For the purposes of complying with S6.1.1.3 or S6.1.2.3, a manufacturer may count a vehicle if it:

(1) Is manufactured on or after May 8, 1997, but before September 1, 2001, and

(2) Is not counted toward compliance with S6.1.1.1, S6.1.1.2, S6.1.2.1, or S6.1.2.2, as appropriate.

(d) For the purposes of complying with S6.1.1.4 or S6.1.2.4, a manufacturer may count a vehicle if it:

(1) Is manufactured on or after May 8, 1997, but before September 1, 2002, and

(2) Is not counted toward compliance with S6.1.1.1, S6.1.1.2, S6.1.1.3, S6.1.2.1, S6.1.2.2, or S6.1.2.3, as appropriate.

S6.1.6 Vehicles produced by more than one manufacturer.

S6.1.6.1 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S6.1.1 through S6.1.4, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S6.1.6.2.

(a) A vehicle which is imported shall be attributed to the importer.

(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer which markets the vehicle.

S6.1.6.2 A vehicle produced by more than one manufacturer must be attributed to any one of the vehicle's manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S6.1.6.1.

S6.2 Vehicles manufactured on or after September 1, 2002 and vehicles built in two or more stages manufactured after September 1, 2006.

Except as provided in S6.1.4 and S6.3, vehicles manufactured on or after September 1, 2002 shall, when tested under the conditions of S8, conform, at the manufacturer's option, to either S6.2(a) or S6.2(b). Vehicles manufactured by final stage manufacturers on or after September 1, 2006 shall, except as provided in S6.3, when tested under the conditions of S8, conform, at the manufacturer's option, to either S6.2(a) or S6.2(b). The manufacturer shall select the option by the time it certifies the vehicle and may not thereafter select a different option for the vehicle.

(a) When tested under the conditions of S8, comply with the requirements specified in S7 at the target locations specified in S10 when impacted by the free motion headform specified in S8.9 at any speed up to and including 24 km/h (15 mph). The requirements do not apply to any target that cannot be located using the procedures of S10.

(b) When equipped with a dynamically deployed upper interior head protection system and tested under the conditions of S8, comply with the requirements specified in S7 at the target locations specified in S10 as follows:

(1) Targets that are not located over any point inside the area measured...
along the contour of the vehicle surface within 50 mm (2.0 inch) of the periphery of the stowed system projected perpendicularly onto the vehicle interior surface, including mounting and inflation components but exclusive of any cover or covers, shall be impacted by the free motion headform specified in §8.9 at any speed up to and including 24 km/h (15 mph). The requirements do not apply to any targets that cannot be located by using the procedures of §10.

(2) Targets that are over any point inside the area measured along the contour of the vehicle interior within 50 mm (2.0 inch) of the periphery of the stowed system projected perpendicularly onto the vehicle interior surface, including mounting and inflation components but exclusive of any cover or covers, when the dynamically deployed upper interior head protection system is not deployed, shall be impacted by the free motion headform specified in §8.9 at any speed up to and including 19 km/h (12 mph) with the system undeployed. The requirements do not apply to any target that cannot be located using the procedures of §10.

(3) Except as provided in §6.2(b)(4), each vehicle shall, when equipped with a dummy test device specified in 49 CFR part 572, subpart M, and tested as specified in §8.16 through §8.28, comply with the requirements specified in §7 when crashed into a fixed, rigid pole of 254 mm in diameter, at any velocity between 24 kilometers per hour (15 mph) and 29 kilometers per hour (18 mph).

(4) Vehicles certified as complying with the vehicle-to-pole requirements of §9 of 49 CFR 571.214, Side Impact Protection, need not comply with the pole test requirements specified in §6.2(b)(3) of this section.

S6.3 A vehicle need not meet the requirements of §6.1 through §6.2 for:

(a) Any target located on a convertible roof frame or a convertible roof linkage mechanism.

(b) Any target located rearward of a vertical plane 600 mm behind the seating reference point of the rearmost designated seating position. For altered vehicles and vehicles built in two or more stages, including ambulances and motor homes, any target located rearward of a vertical plane 300 mm behind the seating reference point of the driver’s designated seating position (tests for altered vehicles and vehicles built in two or more stages do not include, within the time period for measuring HIC(d), any free motion headform contact with components rearward of this plane). If an altered vehicle or vehicle built in two or more stages is equipped with a transverse vertical partition positioned between the seating reference point of the driver’s designated seating position and a vertical plane 300 mm behind the seating reference point of the driver’s designated seating position, any target located rearward of the vertical partition is excluded.

(c) Any target in a vehicle manufactured in two or more stages that is delivered to a final stage manufacturer without an occupant compartment. Note: Motor homes, ambulances, and other vehicles manufactured using a chassis cab, a cut-away van, or any other incomplete vehicle delivered to a final stage manufacturer with a furnished front compartment are not excluded under this §6.3(c).

(d) Any target in a walk-in van-type vehicles.

(e) Any target located on the seat belt mounting structures, door frames and other door frames before December 1, 2005.

S7 Performance Criterion. The HIC(d) shall not exceed 1000 when calculated in accordance with the following formula:

\[
HIC = \left(-\frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} a dt \right)^{2.5} \left(t_2 - t_1 \right)
\]

Where the term \(a\) is the resultant head acceleration expressed as a multiple of \(g\) (the acceleration of gravity), and \(t_1\) and \(t_2\) are any two points in time during the impact which are separated by not more than a 36 millisecond time interval.

(a) For the free motion headform; \(HIC(d) = 0.75446 \times \text{free motion headform HIC} + 166.4\).

(b) For the part 572, subpart M, anthropomorphic test dummy; \(HIC(d) = \text{HIC}\).

S8 Target location and test conditions. The vehicle shall be tested and the targets specified in §10 located under the following conditions.

668
§ 571.201
Vehicle test attitude.
(a) The vehicle is supported off its suspension at an attitude determined in accordance with § 571.201(b).
(b) Directly above each wheel opening, determine the vertical distance between a level surface and a standard reference point on the test vehicle's body under the conditions of § 571.201(b) through § 571.201(b)(3).
(1) The vehicle is loaded to its unloaded vehicle weight, plus its rated cargo and luggage capacity or 136 kg, whichever is less, secured in the luggage area. The load placed in the cargo area is centered over the longitudinal centerline of the vehicle.
(2) The vehicle is filled to 100 percent of all fluid capacities.
(3) All tires are inflated to the manufacturer's specifications listed on the vehicle's tire placard.

§ 571.202
Windows and sunroofs.
(a) Movable vehicle windows are placed in the fully open position.
(b) For testing, any window on the opposite side of the longitudinal centerline of the vehicle from the target to be impacted may be removed.
(c) For testing, movable sunroofs are placed in the fully open position.

§ 571.203
Convertible tops.
The top, if any, of convertibles and open-body type vehicles is in the closed passenger compartment configuration.

§ 571.204
Doors.
(a) Except as provided in § 571.204(b) or § 571.204(c), doors, including any rear hatchback or tailgate, are fully closed and latched but not locked.
(b) During testing, any side door on the opposite side of the longitudinal centerline of the vehicle from the target to be impacted may be open or removed.
(c) During testing, any rear hatchback or tailgate may be open or removed for testing any target except targets on the rear header, rearmost pillars, or the rearmost other side rail on either side of the vehicle.

§ 571.205
Sun visors.
Each sun visor shall be placed in any position where one side of the visor is in contact with the vehicle interior surface (windshield, side rail, front header, roof, etc.).

§ 571.206
Steering wheel and seats.
(a) During targeting, the steering wheel and seats may be placed in any position intended for use while the vehicle is in motion.
(b) During testing, the steering wheel and seats may be removed from the vehicle.

§ 571.207
Seat belt anchorages.
If a target is on a seat belt anchorage, and if the seat belt anchorage is adjustable, tests are conducted with the anchorage adjusted to a point midway between the two extreme adjustment positions. If the anchorage has distinct adjustment positions, none of which is midway between the two extreme positions, tests are conducted with the anchorage adjusted to the nearest position above the midpoint of the two extreme positions.

§ 571.208
Temperature and humidity.
(a) The ambient temperature is between 19 degrees C. and 26 degrees C., at any relative humidity between 10 percent and 70 percent.
(b) Tests are not conducted unless the headform specified in § 571.210 is exposed to the conditions specified in § 571.208(a) for a period not less than four hours.

§ 571.209
Headform.
The headform used for testing conforms to the specifications of part 572, subpart L of this chapter.

§ 571.210
Forehead impact zone.
The forehead impact zone of the headform is determined according to the procedure specified in (a) through (f).
(a) Position the headform so that the baseplate of the skull is horizontal. The midsagittal plane of the headform is designated as Plane S.
(b) From the center of the threaded hole on top of the headform, draw a 69 mm line forward toward the forehead, coincident with Plane S, along the contour of the outer skin of the headform. The front end of the line is designated as Point P. From Point P, draw a 100 mm line forward toward the forehead, coincident with Plane S, along the contour of the outer skin of the headform. The front end of the line is designated as Point O.
(c) Draw a 125 mm line which is coincident with a horizontal plane along the contour of the outer skin of the forehead from left to right through Point O so that the line is bisected at Point O. The end of the line on the left side of the headform is designated as
§ 571.201

Point a and the end on the right as Point b.

(d) Draw another 125 mm line which is coincident with a vertical plane along the contour of the outer skin of the forehead through Point P so that the line is bisected at Point P. The end of the line on the left side of the headform is designated as Point c and the end on the right as Point d.

(e) Draw a line from Point a to Point c along the contour of the outer skin of the headform using a flexible steel tape. Using the same method, draw a line from Point b to Point d.

(f) The forehead impact zone is the surface area on the FMH forehead bounded by lines a-O-b and c-P-d, and a-c and b-d.

S8.11 Target circle. The area of the vehicle to be impacted by the headform is marked with a solid circle 12.7 mm in diameter, centered on the targets specified in S10, using any transferable opaque coloring medium.

S8.12 Location of head center of gravity.

(a) Location of head center of gravity for front outboard designated seating position (CG-F). For determination of head center of gravity, all directions are in reference to the seat orientation.

(1) Location of rearmost CG-F (CG-F2). For front outboard designated seating positions, the head center of gravity with the seat in its rearmost normal design driving or riding position (CG-F2) is located 160 mm rearward and 660 mm upward from the seating reference point.

(2) Location of forwardmost CG-F (CG-F1). For front outboard designated seating positions, the head center of gravity with the seat in its forwardmost adjustment position (CG-F1) is located horizontally forward of CG-F2 by the distance equal to the fore-aft distance of the seat track.

(b) Location of head center of gravity for rear outboard designated seating positions (CG-R). For rear outboard designated seating positions, the head center of gravity (CG-R) is located 160 mm rearward, relative to the seat orientation, and 660 mm upward from the seating reference point.

S8.13 Impact configuration.

S8.13.1 The headform is launched from any location inside the vehicle which meets the conditions of S8.13.4. At the time of launch, the midsagittal plane of the headform is vertical and the headform is upright.

S8.13.2 The headform travels freely through the air, along a velocity vector that is perpendicular to the headform’s skull cap plate, not less than 25 mm before making any contact with the vehicle.

S8.13.3 At the time of initial contact between the headform and the vehicle interior surface, some portion of the forehead impact zone of the headform must contact some portion of the target circle.

S8.13.4 Approach angles. The headform launching angle is as specified in Table 1. For components for which Table 1 specifies a range of angles, the headform launching angle is within the limits determined using the procedures specified in S8.13.4.1 and S8.13.4.2, and within the range specified in Table 1, using the orthogonal reference system specified in S9.

<table>
<thead>
<tr>
<th>TABLE 1—APPROACH ANGLE LIMITS (IN DEGREES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target component</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Front Header</td>
</tr>
<tr>
<td>Rear Header</td>
</tr>
<tr>
<td>Left Side Rail</td>
</tr>
<tr>
<td>Right Side Rail</td>
</tr>
<tr>
<td>Left Sliding Door Track</td>
</tr>
<tr>
<td>Right Sliding Door Track</td>
</tr>
<tr>
<td>Left A-Pilar</td>
</tr>
<tr>
<td>Right A-Pilar</td>
</tr>
<tr>
<td>Left B-Pilar</td>
</tr>
<tr>
<td>Right B-Pilar</td>
</tr>
<tr>
<td>Left Door Frame</td>
</tr>
<tr>
<td>Right Door Frame</td>
</tr>
<tr>
<td>Other Left Pillars</td>
</tr>
<tr>
<td>Other Right Pillars</td>
</tr>
<tr>
<td>Other Left Door Frame</td>
</tr>
<tr>
<td>Other Right Door Frame</td>
</tr>
</tbody>
</table>

670
S8.13.4.1 *Horizontal Approach Angles for Headform Impacts.*

(a) *Left A-Pillar Horizontal Approach Angles.*

(1) Locate a line formed by the shortest horizontal distance between CG-F1 for the left seat and the right A-pillar. The maximum horizontal approach angle for the left A-pillar equals 360 degrees minus the angle formed by that line and the X-axis of the vehicle, measured counterclockwise.

(2) Locate a line formed by the shortest horizontal distance between CG-F2 for the left seat and the left A-pillar. The minimum horizontal approach angle for the left A-pillar equals 270 degrees, whichever is greater.

(b) *Right A-Pillar Horizontal Approach Angles.*

(1) Locate a line formed by the shortest horizontal distance between CG-F1 for the right seat and the left A-pillar. The minimum horizontal approach angle for the right A-pillar equals 360 degrees minus the angle formed by that line and the X-axis of the vehicle, measured counterclockwise.

(2) Locate a line formed by the shortest horizontal distance between CG-F2 for the right seat and the right A-pillar. The maximum horizontal approach angle for the right A-pillar equals 270 degrees, whichever is greater.

(c) *Left B-Pillar Horizontal Approach Angles.*

(1) Locate a line formed by the shortest horizontal distance between CG-F2 for the left seat and the left B-pillar. The maximum horizontal approach angle for the left B-pillar equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise, or 270 degrees, whichever is greater.

(2) Locate a line formed by the shortest horizontal distance between CG-R for the left seat and the left B-pillar. The maximum horizontal approach angle for the left B-pillar equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise, or 90 degrees, whichever is less.

(d) *Right B-Pillar Horizontal Approach Angles.*

(1) Locate a line formed by the shortest horizontal distance between CG-F2 for the right seat and the right B-pillar. The maximum horizontal approach angle for the right B-pillar equals the angle between that line and the X-axis of the vehicle measured counterclockwise.

(e) *Left Door Frame Horizontal Approach Angles.*

(1) Locate a line formed by the shortest horizontal distance between CG-F2 for the left seat and the left door frame. The maximum horizontal approach angle for the left door frame equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise, or 270 degrees, whichever is greater.

(2) Locate a line formed by the shortest horizontal distance between CG-R for the left seat and the left door frame. The minimum horizontal approach angle for the left door frame equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise, or 0-50 degrees.
and the X-axis of the vehicle measured counterclockwise.

(f) Right door frame horizontal approach angles.

(1) Locate a line formed by the shortest horizontal distance between CG-F2 for the right seat and the right door frame. The minimum horizontal approach angle for the right door frame equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise, or 90 degrees, whichever is less.

(2) Locate a line formed by the shortest horizontal distance between CG-R for the right seat and the right door frame. The maximum horizontal approach angle for the right door frame equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise.

(g) Left seat belt mounting structure horizontal approach angles.

(1) Locate a line formed by the shortest horizontal distance between CG-R for the left seat and the left seat belt mounting structure. If the seat belt mounting structure is below a horizontal plane passing through CG-F2 for the left seat, locate the point 200 mm directly below CG-F2 and locate a line formed by the shortest horizontal distance between that point and the left seat belt mounting structure. The minimum horizontal approach angle for the left seat belt mounting structure equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise, or 270 degrees, whichever is greater.

(2) Locate a line formed by the shortest horizontal distance between CG-R for the left seat and the left seat belt mounting structure. If the seat belt mounting structure is below a horizontal plane passing through CG-F2 for the left seat, locate the point 200 mm directly below CG-F2 and locate a line formed by the shortest horizontal distance between that point and the left seat belt mounting structure. The minimum horizontal approach angle for the left seat belt mounting structure equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise, or 270 degrees, whichever is greater.

(h) Right seat belt mounting structure horizontal approach angles.

(1) Locate a line formed by the shortest horizontal distance between CG-F2 for the right seat and the right seat belt mounting structure. If the seat belt mounting structure is below a horizontal plane passing through CG-F2 for the right seat, locate the point 200 mm directly below that CG-F2 and locate a line formed by the shortest horizontal distance between that point and the right seat belt mounting structure. The minimum horizontal approach angle for the right seat belt mounting structure equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise, or 90 degrees, whichever is less.

(2) Locate a line formed by the shortest horizontal distance between CG-R for the right seat and the right seat belt mounting structure. If the seat belt mounting structure is below a horizontal plane passing through CG-R, locate the point 200 mm directly below CG-R and locate a line formed by the shortest horizontal distance between that point and the right seat belt mounting structure. The maximum horizontal approach angle for the right seat belt mounting structure equals the angle formed by that line and the X-axis of the vehicle measured counterclockwise. If the CG-R does not exist, or is forward of the seat belt mounting structure, the maximum horizontal approach angle is 90 degrees.

§571.201 49 CFR Ch. V (10–1–16 Edition)

S8.13.4.2 Vertical Approach Angles

(a) Position the forehead impact zone in contact with the selected target at the prescribed horizontal approach angle. If a range of horizontal approach angles is prescribed, position the forehead impact zone in contact with the selected target at any horizontal approach angle within the range which may be used for testing.

(b) Keeping the forehead impact zone in contact with the target, rotate the FMH upward until the lip, chin or other part of the FMH contacts the component or other portion of the vehicle interior.

(1) Except as provided in S8.13.4.2(b)(2), keeping the forehead impact zone in contact with the target, rotate the FMH downward by 5 degrees.
for each target to determine the maximum vertical angle.

(2) For all pillars, except A-pillars, and all door frames and seat belt mounting structures, keeping the forehead impact zone in contact with the target, rotate the FMH downward by 10 degrees for each target to determine the maximum vertical angle.

S8.14 Multiple impacts.

(a) A vehicle being tested may be impacted multiple times, subject to the limitations in S8.14(b), (c), (d) and (e).

(b) As measured as provided in S8.14(d), impacts within 300 mm of each other may not occur less than 30 minutes apart.

(c) As measured as provided in S8.14(d), no impact may occur within 150 mm of any other impact.

(d) For S8.14(b) and S8.14(c), the distance between impacts is the distance between the center of the target circle specified in S8.11 for each impact, measured along the vehicle interior.

(e) No impact may occur within the “exclusion zone” of any pillar target specified in S10.1 through S10.4, door frame target specified in S10.14, upper roof target specified in S10.9, or seat belt mounting structure target specified in S10.16. The “exclusion zone” is determined according to the procedure in S8.14(f) through S8.14(k).

(f) Locate the point, Point X, at the center of the target circle specified in S8.11 for the tested target.

(g) Determine two spheres centered on Point X. Radii of these spheres are 150 mm and 200 mm, respectively.

(h) Locate a horizontal plane passing through Point X. Determine the intersection points, if they exist, of the small sphere surface, the horizontal plane, and the vehicle interior surface. Relative to Point X, the point on the left is Point L and the point on the right is Point R.

(i) Locate a vertical plane, Plane Z, passing through Point X and coincident (within ±5°) with the horizontal approach angle used or intended for use in testing the target centered on Point X.

(j) If either Point L or Point R does not exist, extend Line LX and/or Line RX, as appropriate, perpendicular to Plane Z beyond Point X by 150 mm. The end of the line is designated as Point L or Point R, as appropriate.

(k) Locate a vertical plane, Plane ZL, passing through Point L and parallel to Plane Z. Locate another vertical plane, Plane ZR, passing through Point R and parallel to Plane Z. The “exclusion zone” is the vehicle interior surface area between Plane ZL and Plane ZR below the upper boundary of the smaller sphere and above the lower boundary of the larger sphere. Points on the intersection of the vehicle interior surface and the large sphere below the target, the small sphere above the target, Plane ZL and Plane ZR are not included in the “exclusion zone.”

S8.15 Upper Roof. The upper roof of a vehicle is determined according to the procedure specified in S8.15 (a) through (h).

(a) Locate the transverse vertical plane A at the forwardmost point where it contacts the interior roof (including trim) at the vehicle centerline.

(b) Locate the transverse vertical plane B at the rearmost point where it contacts the interior roof (including trim) at the vehicle centerline.

(c) Measure the horizontal distance (D1) between Plane A and Plane B.

(d) Locate the vertical longitudinal plane C at the leftmost point at which a vertical transverse plane, located 300 mm rearward of the A-pillar reference point described in S10.1(a), contacts the interior roof (including trim).

(e) Locate the vertical longitudinal plane D at the rightmost point at which a vertical transverse plane, located 300 mm rearward of the A-pillar reference point described in S10.1(a), contacts the interior roof (including trim).

(f) Measure the horizontal distance (D2) between Plane C and Plane D.

(g) Locate a point (Point M) on the interior roof surface, midway between Plane A and Plane B along the vehicle longitudinal centerline.

(h) The upper roof zone is the area of the vehicle upper interior surface bounded by the four planes described in S8.15(h)(1) and S8.15(h)(2):

(1) A transverse vertical plane E located at a distance of (.35 D1) forward of Point M and a transverse vertical plane F located at a distance of (.35 D1)
rearward of Point M, measured horizontally.

(2) A longitudinal vertical plane G located at a distance of (.35 D²) to the left of Point M and a longitudinal vertical plane H located at a distance of (.35 D²) to the right of Point M, measured horizontally.

§571.201 1993 [Corrected by 67 FR 57140, September 18, 2002] —§571.201 Test weight—vehicle to pole test. Each vehicle shall be loaded to its unloaded vehicle weight, plus 136 kilograms (300 pounds) or its rated cargo and luggage capacity (whichever is less), secured in the luggage or load-carrying area, plus the weight of the necessary anthropomorphic test dummy. Any added test equipment shall be located away from impact areas in secure places in the vehicle.

§571.17 Vehicle test attitude—vehicle to pole test. Determine the distance between a level surface and a standard reference point on the test vehicle’s body, directly above each wheel opening, when the vehicle is in its “as delivered” condition. The “as delivered” condition is the vehicle as received at the test site, filled to 100 percent of all fluid capacities and with all tires inflated to the manufacturer’s specifications listed on the vehicle’s tire placard. Determine the distance between the same level surface and the same standard reference points in the vehicle’s “fully loaded condition.” The “fully loaded condition” is the test vehicle loaded in accordance with §571.16. The load placed in the cargo area shall be centered over the longitudinal centerline of the vehicle. The pretest vehicle attitude shall be the same as either the “as delivered” or “fully loaded” attitude or is between the “as delivered” attitude and the “fully loaded” attitude. If the test configuration requires that the vehicle be elevated off the ground, the pretest vehicle attitude must be maintained.

§571.18 Adjustable seats—vehicle to pole test. Initially, adjustable seats shall be adjusted as specified in §571.14 (49 CFR 571.214).

§571.19 Adjustable seat back placement—vehicle to pole test. Initially, position adjustable seat backs in the manner specified in §571.2 (49 CFR 571.214).

§571.20 Adjustable steering wheels—vehicle to pole test. Adjustable steering controls shall be adjusted so that the steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions.

§571.21 Windows and sunroof—vehicle to pole test. Movable windows and vents shall be placed in the fully open position. Any sunroof shall be placed in the fully closed position.

§571.22 Convertible tops—vehicle to pole test. The top, if any, of convertibles and open-body type vehicles shall be in the closed passenger compartment configuration.

§571.23 Doors—vehicle to pole test. Doors, including any rear hatchback or tailgate, shall be fully closed and latched but not locked.

§571.24 Impact reference line—vehicle to pole test. On the striking side of the vehicle, place an impact reference line at the intersection of the vehicle exterior and a transverse vertical plane passing through the center of gravity of the head of the dummy seated in accordance with §571.28, in the front outboard designated seating position.

§571.25 Rigid Pole—vehicle to pole test. The rigid pole is a vertical metal structure beginning no more than 102 millimeters (4 inches) above the lowest point of the tires on the striking side of the test vehicle when the vehicle is loaded as specified in §571.16 and extending above the highest point of the roof of the test vehicle. The pole is 254 mm ±3 mm (10 inches) in diameter and set off from any mounting surface, such as a barrier or other structure, so that the test vehicle will not contact such a mount or support at any time within 100 milliseconds of the initiation of vehicle to pole contact.

§571.26 Impact configuration—vehicle to pole test. The rigid pole shall be stationary. The test vehicle shall be propelled sideways so that its line of forward motion forms an angle of 90 degrees (±3 degrees) with the vehicle’s longitudinal center line. The impact reference line shall be aligned with the center line of the rigid pole so that, when the vehicle-to-pole contact occurs, the center line of the pole contacts the vehicle area bounded by two transverse vertical planes 38 mm (1.5 inches) forward and aft of the impact reference line.
§571.201 Anthropomorphic test dummy—vehicle to pole test.

S8.27.1 The anthropomorphic test dummy used for evaluation of a vehicle’s head impact protection shall conform to the requirements of subpart M of part 572 of this chapter (49 CFR part 572, subpart M). In a test in which the test vehicle is striking its left side, the dummy is to be configured and instrumented to strike on its left side, in accordance with subpart M of part 572. In a test in which the test vehicle is striking its right side, the dummy is to be configured and instrumented to strike its right side, in accordance with subpart M of part 572.

S8.27.2 The part 572, subpart M, test dummy specified is clothed in form fitting cotton stretch garments with short sleeves and midcalf length pants. Each foot of the test dummy is equipped with a size 11EEE shoe, which meets the configuration size, sole, and heel thickness specifications of MIL-S-13192 (1976) and weighs 0.57 ± 0.09 kilograms (1.25 ± 0.2 pounds).

S8.27.3 Limb joints shall be set at between 1 and 2 g’s. Leg joints are adjusted with the torso in the supine position.

S8.27.4 The stabilized temperature of the test dummy at the time of the side impact test shall be at any temperature between 20.6 degrees C. and 22.2 degrees C.

S8.27.5 The acceleration data from the accelerometers installed inside the skull cavity of the test dummy are processed according to the practices set forth in SAE Recommended Practice J211, March 1995, “Instrumentation for Impact Tests,” Class 1000.

S8.28 Positioning procedure for the Part 572 Subpart M test dummy—vehicle to pole test. The part 572, subpart M, test dummy is initially positioned in the front outboard seating position on the struck side of the vehicle in accordance with the provisions of S12.1 of Standard 214 (49 CFR 571.214), and the vehicle seat is positioned as specified in S8.3.2.1 and S8.3.2.2 of that standard. The position of the dummy is then measured as follows. Locate the horizontal plane passing through the dummy head center of gravity. Identify the rearward point on the dummy head in that plane. Construct a line in the plane that contains the rearward point of the front door daylight opening and is perpendicular to the longitudinal vehicle centerline. Measure the longitudinal distance between the rearmost point on the dummy head and this line. If this distance is less than 50 mm (2 inches) or the point is not forward of the line, then the seat and/or dummy positions is adjusted as follows. First, the seat back angle is adjusted, a maximum of 5 degrees, until a 50 mm (2 inches) distance is achieved. If this is not sufficient to produce the 50 mm (2 inches) distance, the seat is moved forward until the 50 mm (2 inches) distance is achieved or until the knees of the dummy contact the dashboard or knee bolster, whichever comes first. If the required distance cannot be achieved through movement of the seat, the seat back angle is adjusted even further forward until the 50 mm (2 inches) distance is obtained or until the seat back is in its fully upright locking position.

S9.1 An orthogonal reference system consisting of a longitudinal X axis and a transverse Y axis in the same horizontal plane and a vertical Z axis through the intersection of X and Y is used to define the horizontal direction of approach of the headform. The X-Z plane is the vertical longitudinal zero plane and is parallel to the longitudinal centerline of the vehicle. The X-Y plane is the horizontal zero plane parallel to the ground. The Y-Z plane is the vertical transverse zero plane that is perpendicular to the X-Y and X-Z planes. The X coordinate is negative forward of the Y-Z plane and positive to the rear. The Y coordinate is negative to the left of the X-Z plane and positive to the right. The Z coordinate is negative below the X-Y plane and positive above it. (See Figure 1.)

S9.2 The origin of the reference system is the center of gravity of the headform at the time immediately prior to launch for each test.

S9.3 The horizontal approach angle is the angle between the X axis and the headform impact velocity vector projected onto the horizontal zero plane,
measured in the horizontal zero plane in the counter-clockwise direction. A 0 degree horizontal vector and a 360 degree horizontal vector point in the positive X direction; a 90 degree horizontal vector points in the positive Y direction; a 180 degree horizontal vector points in the negative X direction; and a 270 horizontal degree vector points in the negative Y direction. (See Figure 2.)

S9.4 The vertical approach angle is the angle between the horizontal plane and the velocity vector, measured in the midsagittal plane of the headform. A 0 degree vertical vector in Table I coincides with the horizontal plane and a vertical vector of greater than 0 degrees in Table I makes an upward angle of the same number of degrees with that plane.

S10 Target Locations.

(a) The target locations specified in S10.1 through S10.16 are located on both sides of the vehicle and, except as specified in S10(b), are determined using the procedures specified in those paragraphs.

(b) Except as specified in S10(c), if there is no combination of horizontal and vertical angles specified in S8.13.4 at which the forehead impact zone of the free motion headform can contact one of the targets located using the procedures in S10.1 through S10.16, the center of that target is moved to any location within a sphere with a radius of 25 mm, centered on the center of the original target, which the forehead impact zone can contact at one or more combination of angles.

(c) If there is no point within the sphere specified in S10(b) which the forehead impact zone of the free motion headform can contact at one or more combination of horizontal and vertical angles specified in S8.13.4, the radius of the sphere is increased by 25 mm increments until the sphere contains at least one point that can be contacted at one or more combination of angles.

S10.1 A-pillar targets

(a) A-pillar reference point and target AP1. On the vehicle exterior, locate a transverse vertical plane (Plane 1) which contacts the rearmost point of the windshield trim. The intersection of Plane 1 and the vehicle exterior surface is Line 1. Measuring along the vehicle exterior surface, locate a point (Point 1) on Line 1 that is 125 mm inboard of the intersection of Line 1 and a vertical plane tangent to the vehicle at the outboardmost point on Line 1 with the vehicle side door open. Measuring along the vehicle exterior surface in a longitudinal vertical plane (Plane 2) passing through Point 1, locate a point (Point 2) 50 mm rearward of Point 1. Locate the A-pillar reference point (Point APR) at the intersection of the interior roof surface and a line that is perpendicular to the vehicle exterior surface at Point 2. Target AP1 is located at point APR.

(b) Target AP2. Locate the horizontal plane (Plane 3) which intersects point APR. Locate the horizontal plane (Plane 4) which is 88 mm below Plane 3. Target AP2 is the point in Plane 4 and on the A-pillar which is closest to CG-F2 for the nearest seating position.

(c) Target AP3. Locate the horizontal plane (Plane 5) containing the highest point at the intersection of the dashboard and the A-pillar. Locate a horizontal plane (Plane 6) half-way between Plane 3 and Plane 5. Target AP3 is the point on Plane 6 and the A-pillar which is closest to CG-F1 for the nearest seating position.

S10.2 B-pillar targets.

(a) B-pillar reference point and target BP1. Locate the point (Point 3) on the vehicle interior at the intersection of the horizontal plane passing through the highest point of the forwardmost door opening and the centerline of the width of the B-pillar, as viewed laterally. Locate a transverse vertical plane (Plane 7) which passes through Point 3. Locate the point (Point 4) at the intersection of the interior roof surface, Plane 7, and a plane, described in S8.15(h), defining the nearest edge of the upper roof. The B-pillar reference point (Point BPR) is the point located at the middle of the line from Point 3 to Point 4 in Plane 7, measured along the vehicle interior surface. Target BP1 is located at Point BPR.

(b) Target BP2. If a seat belt anchorage is located on the B-pillar, Target BP2 is located at any point on the anchorage.
(c) **Target BP3.** Target BP3 is located in accordance with this paragraph. Locate a horizontal plane (Plane 8) which intersects Point BPR. Locate a horizontal plane (Plane 9) which passes through the lowest point of the daylight opening forward of the pillar. Locate a horizontal plane (Plane 10) half-way between Plane 8 and Plane 9. Target BP3 is the point located in Plane 10 and on the interior surface of the B-pillar, which is closest to CG-F(2) for the nearest seating position.

(d) **Target BP4.** Locate a horizontal plane (Plane 11) half-way between Plane 9 and Plane 10. Target BP4 is the point located in Plane 11 and on the interior surface of the B-pillar which is closest to CG-R for the nearest seating position.

§10.4 **Rearmost pillar targets**

(a) **Rearmost pillar reference point and target RP1.** Locate the point (Point 7) at the corner of the upper roof nearest to the pillar. The distance between Point M, as described in §8.15(g), and Point 7, as measured along the vehicle interior surface, is D. Extend the line from Point M to Point 7 along the vehicle interior surface in the same vertical plane by (3*D/7) beyond Point 7 or until the edge of a daylight opening, whichever comes first, to locate Point 8. The rearmost pillar reference point (Point RPR) is at the midpoint of the line between Point 7 and Point 8, measured along the vehicle interior. Target RP1 is located at Point RPR.

(b) **Target RP2.**

(1) Except as provided in §10.4(b)(2), target RP2 is located in accordance with this paragraph. Locate the horizontal plane (Plane 16) through Point RPR. Locate the horizontal plane (Plane 17) 150 mm below Plane 16. Target RP2 is located in Plane 17 and on the pillar at the location closest to CG-R for the nearest designated seating position.

(2) If a seat belt anchorage is located on the pillar, Target RP2 is any point on the anchorage.

§10.5 **Front header targets**

(a) **Target FH1.** Locate the contour line (Line 2) on the vehicle interior trim which passes through the APR and is parallel to the contour line (Line 3) at the upper edge of the windshield on the vehicle interior. Locate the point (Point 9) on Line 2 that is 125 mm inboard of the APR, measured along that line. Locate a longitudinal vertical plane (Plane 18) that passes through Point 9. Target FH1 is located at the intersection of Plane 18 and the upper vehicle interior, halfway between a transverse vertical plane (Plane 19) through Point 9 and a transverse vertical plane (Plane 20) through the intersection of Plane 18 and Line 3.

(b) **Target FH2.**

(1) Except as provided in §10.5(b)(2), target FH2 is located in accordance with this paragraph. Locate a point (Point 10) 275 mm inboard of Point APR, along Line 2. Locate a longitudinal vertical plane (Plane 21) that passes through Point 10. Target FH2 is located at the intersection of Plane 21 and Line 2.
§ 571.201 49 CFR Ch. V (10–1–16 Edition)

and the upper vehicle interior, halfway between a transverse vertical plane (Plane 22) through Point 10 and a transverse vertical plane (Plane 23) through the intersection of Plane 21 and Line 3.

(2) If a sun roof opening is located forward of the front edge of the upper roof and intersects the mid-sagittal plane of a dummy seated in either front outboard seating position, target FH2 is the nearest point that is forward of a transverse vertical plane (Plane 24) through CG-F(2) and on the intersection of the mid-sagittal plane and the interior sunroof opening.

S10.6 Targets on the side rail between the A-pillar and the B-pillar or rearmost pillar in vehicles with only two pillars on each side of the vehicle.

(a) Target SR1. Locate a transverse vertical plane (Plane 25) 150 mm rearward of Point APR. Locate the point (Point 11) at the intersection of Plane 25 and the upper edge of the forwardmost door opening. Locate the point (Point 12) at the intersection of the interior roof surface, Plane 25 and the plane, described in S8.15(h), defining the nearest edge of the upper roof. Target SR1 is located at the middle of the line between Point 11 and Point 12 in Plane 25, measured along the vehicle interior.

(b) Target SR2. Locate a transverse vertical plane (Plane 26) 300 mm rearward of the APR or 300 mm forward of the BPR (or the RPR in vehicles with no B-pillar). Locate the point (Point 13) at the intersection of Plane 26 and the upper edge of the forwardmost door opening. Locate the point (Point 14) at the intersection of the interior roof surface, Plane 26 and the plane, described in S8.15(h), defining the nearest edge of the upper roof. Target SR2 is located at the middle of the line between Point 13 and Point 14 in Plane 26, measured along the vehicle interior.

S10.7 Other side rail target (target SR3).

(a) Except as provided in S10.7(b), target SR3 is located in accordance with this paragraph. Locate a transverse vertical plane (Plane 27) 150 mm rearward of either Point BPR or Point OPR. Locate the point (Point 15) as provided in either S10.7(a)(1) or S10.7(a)(2), as appropriate. Locate the point (Point 16) at the intersection of the interior roof surface, Plane 27 and the plane, described in S8.15(h), defining the nearest edge of the upper roof. Target SR3 is located at the middle of the line between Point 15 and Point 16 in Plane 27, measured along the vehicle interior surface.

(1) If Plane 27 intersects a door or daylight opening, the Point 15 is located at the intersection of Plane 27 and the upper edge of the door opening or daylight opening.

(2) If Plane 27 does not intersect a door or daylight opening, the Point 15 is located on the vehicle interior at the intersection of Plane 27 and the horizontal plane through the highest point of each door or daylight opening nearest Plane 27. If the adjacent door(s) or daylight opening(s) are equidistant to Plane 27, Point 15 is located on the vehicle interior at the intersection of Plane 27 and either horizontal plane through the highest point of each door or daylight opening.

(b) Except as provided in S10.7(c), if a grab handle is located on the side rail, target SR3 is located at any point on the anchorage of the grab-handle. Folding grab-handles are in their stowed position for testing.

(c) If a seat belt anchorage is located on the side rail, target SR3 is located at any point on the anchorage.

S10.8 Rear header target (target RH).

Locate the point (Point 17) at the intersection of the surface of the upper vehicle interior, the mid-sagittal plane (Plane 28) of the rearmost dummy and the plane, described in S8.15(h), defining the rear edge of the upper roof. Locate the point (Point 18) as provided in S10.8(a) or S10.8(b), as appropriate. Except as provided in S10.8(c), Target RH is located at the mid-point of the line that is between Point 17 and Point 18 and is in Plane 28, measured along the surface of the vehicle interior.

(a) If Plane 28 intersects a rear door opening or daylight opening, then Point 18 is located at the intersection of Plane 28 and the upper edge of the door opening or the daylight opening (if no door opening).

(b) If Plane 28 does not intersect a rear door opening or daylight opening, then Point 18 is located on the vehicle interior at the intersection of Plane 28
and a horizontal plane through the highest point of the door or daylight opening nearest to Plane 28. If the adjacent door(s) or daylight opening(s) are equidistant to Plane 28, Point 18 is located on the vehicle interior at the intersection of Plane 28 and either horizontal plane through the highest point of each door or daylight opening.

(c) If Target RH is more than 112 mm from Point 18 on the line that is between Point 17 and Point 18 and is in Plane 28, as measured along the surface of the vehicle interior, then Target RH is the point on that line which is 112 mm from Point 18.

§10.9 Upper roof target (target UR). Target UR is any point on the upper roof.

§10.10 Sliding door track target (target SD). Locate the transverse vertical plane (Plane 29) passing through the middle of the widest opening of the sliding door, measured horizontally and parallel to the vehicle longitudinal centerline. Locate the point (Point 19) at the intersection of the surface of the upper vehicle interior, Plane 29 and the plane, described in §8.15(h), defining the nearest edge of the upper roof. Locate the point (Point 20) at the intersection of Plane 29 and the upper edge of the sliding door opening. Target SD is located at the middle of the line between Point 19 and Point 20 in Plane 29, measured along the vehicle interior.

§10.11 Roll-bar targets.
(a) Target RB1. Locate a longitudinal vertical plane (Plane 30) at the mid-sagittal plane of a dummy seated in any outboard designated seating position. Target RB1 is located on the roll-bar and in Plane 30 at the location closest to either CG-F2 or CG-R, as appropriate, for the same dummy.
(b) Target RB2. If a seat belt anchorage is located on the roll-bar, Target RB2 is any point on the anchorage.

§10.12 Stiffener targets.
(a) Target ST1. Locate a transverse vertical plane (Plane 31) containing either CG-F2 or CG-R, as appropriate, for any outboard designated seating position. Target ST1 is located on the stiffener and in Plane 31 at the location closest to either CG-F2 or CG-R, as appropriate.
(b) Target ST2. If a seat belt anchorage is located on the stiffener, Target ST2 is any point on the anchorage.

§10.13 Brace target (target BT). Target BT is any point on the width of the brace as viewed laterally from inside the passenger compartment.
FIGURE 1 - ORTHOGONAL REFERENCE SYSTEM
S10.14 Door frame targets.

(a) Target DF1. Locate the point (Point 21) on the vehicle interior at the intersection of the horizontal plane passing through the highest point of the forward door opening and a transverse vertical plane (Plane 32) tangent to the rearmost edge of the forward door, as viewed laterally with the adjacent door open. Locate the point (Point 22) at the intersection of the interior roof surface, Plane 32, and the plane, described in S8.15(h), defining the nearest edge of the upper roof. The door frame reference point (Point DFR) is the point located at the middle of the line from Point 21 to Point 22 in Plane 32, measured along the vehicle interior surface. Target DF1 is located at Point DFR.

(b) Target DF2. If a seat belt anchorage is located on the door frame, Target DF2 is located at any point on the anchorage.

(c) Target DF3. Locate a horizontal plane (Plane 33) which intersects Point
§ 571.202

DFR. Locate a horizontal plane (Plane 34) that passes through the lowest point of the adjacent daylight opening forward of the door frame. Locate a horizontal plane (Plane 35) half-way between Plane 33 and Plane 34. Target DF3 is the point located in Plane 35 and on the interior surface of the door frame, which is closest to CG-F2 for the nearest seating position.

(d) Target DF4. Locate a horizontal plane (Plane 36) half-way between Plane 34 and Plane 35. Target DF4 is the point located in Plane 36 and on the interior surface of the door frame that is closest to CG-R for the nearest seating position.

S10.15 Other door frame targets.

(a) Target OD1.

(1) Except as provided in S10.15(a)(2), target OD1 is located in accordance with this paragraph. Locate the point (Point 23) on the vehicle interior, at the intersection of the horizontal plane through the highest point of the highest adjacent door opening or daylight opening (if there is no adjacent door opening) and the center line of the width of the other door frame, as viewed laterally with the doors in the closed position. Locate a transverse vertical plane (Plane 37) passing through Point 23. Locate the point (Point 24) at the intersection of the interior roof surface, Plane 37 and the plane, described in S8.15(h), defining the nearest edge of the upper roof. The other door frame reference point (Point ODR) is the point located at the middle of the line between Point 23 and Point 24 in Plane 37, measured along the vehicle interior surface. Target OD1 is located at Point ODR.

(2) If a seat belt anchorage is located on the door frame, Target OD1 is any point on the anchorage.

(b) Target OD2. Locate the horizontal plane (Plane 38) intersecting Point ODR. Locate a horizontal plane (Plane 39) passing through the lowest point of the daylight opening forward of the door frame. Locate a horizontal plane (Plane 40) half-way between Plane 38 and Plane 39. Target OD2 is the point located on the interior surface of the door frame at the intersection of Plane 40 and the center line of the width of the door frames, as viewed laterally, with the doors in the closed position.

S10.16 Seat belt mounting structure targets.

(a) Target SB1. Target SB1 is located at any point on the seat belt anchorage mounted on the seat belt mounting structure.

(b) Target SB2. Locate a horizontal plane (Plane 41), containing either CG-F2 or CG-R, as appropriate, for any outboard designated seating position whose seating reference point, SgRP, is forward of and closest to, the vertical center line of the width of the seat belt mounting structure as viewed laterally. Target SB2 is located on the seat belt mounting structure and in Plane 41 at the location closest to either CG-F2 or CG-R, as appropriate.

(c) Target SB3. Locate a horizontal plane (Plane 42) 200 mm below Plane 41. Target SB3 is located on the seat belt mounting structure and in Plane 43 at the location closest to CG-R, as appropriate.

[62 FR 16725, Apr. 8, 1997]

EDITORIAL NOTE: For Federal Register citations affecting §571.201, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.

§ 571.202 Standard No. 202; Head restraints; Applicable at the manufacturers option until September 1, 2009.

S1. Purpose and scope. This standard specifies requirements for head restraints to reduce the frequency and severity of neck injury in rear-end and other collisions.

S2. Application. This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks and buses with a GVWR of 4,536 kg or less, manufactured before September 1, 2009. Until September 1, 2009, manufacturers may comply with the standard in this §571.202, with the European regulations referenced in S4.3 of this §571.202, or

with the standard in §571.202a. For vehicles manufactured on or after September 1, 2009 and before September 1, 2010, manufacturers may comply with the standard in this §571.202 or with the European regulations referenced in §4.3 of this §571.202, instead of the standard in §571.202a, only to the extent consistent with phase-in specified in §571.202a.

S3. Definitions.

Head restraint means a device that limits rearward displacement of a seated occupant’s head relative to the occupant’s torso.

Height means, when used in reference to a head restraint, the distance from the H-point, measured parallel to the torso reference line defined by the three dimensional SAE Standard J826 JUL95 (incorporated by reference, see §571.5) manikin, to a plane normal to the torso reference line.

Top of the head restraint means the point on the head restraint with the greatest height.

S4. Requirements.

S4.1 Each passenger car, and multipurpose passenger vehicle, truck and bus with a GVWR of 4,536 kg or less, must comply with, at the manufacturer’s option, §4.2, §4.4 or §4.5 of this section.

S4.2 Except for school buses, a head restraint that conforms to either §4.2 (a) or (b) of this section must be provided at each outboard front designated seating position. For school buses, a head restraint that conforms to either §4.2 (a) or (b) of this section must be provided at the driver’s seating position.

(a) When tested in accordance with S5.1 of this section, limit rearward angular displacement of the head reference line to 45 degrees from the torso reference line; or

(b) When adjusted to its fully extended design position, conform to each of the following:

(i) When measured parallel to the torso line, the top of the head restraint must not be less than 700 mm above the seating reference point;

(ii) When measured either 64 mm below the top of the head restraint or 635 mm above the seating reference point, the lateral width of the head restraint must be not less than:

(i) 254 mm for use with bench-type seats; and

(ii) 170 mm for use with individual seats;

(3) When tested in accordance with S5.2 of this section, any portion of the head form in contact with the head restraint must not be displaced to more than 102 mm perpendicularly rearward of the displaced extended torso reference line during the application of the load specified in S5.2 (c) of this section; and

(4) When tested in accordance with S5.2 of this section, the head restraint must withstand an increasing load until one of the following occurs:

(i) Failure of the seat or seat back; or,

(ii) Application of a load of 890N.

S4.3 [Reserved]

S4.4. Except for school buses, a head restraint that conforms to §4.4 (a) and (b) of this section must be provided at each outboard front designated seating position. For school buses, a head restraint that conforms to §4.4 (a) and (b) of this section must be provided at the driver’s seating position.

(a) The head restraint must comply with Paragraphs 5.1.1, 5.1.3, 5.3.1, 5.5 through 5.13, 6.1.1, 6.1.3, and 6.4 through 6.8 of the English language version of the UNECE Regulation 17 (incorporated by reference, see §571.5).

(b) The head restraint must meet the width requirements specified in §4.2(b)(2) of this section.

S4.5 Except for school buses, head restraints that conform to the requirements of §571.202a must be provided at each front outboard designated seating position. If a rear head restraint (as defined in §571.202a) is provided at a rear outboard designated seating position, it must conform to the requirements of §571.202a applicable to rear head restraints. For school buses, a head restraint that conforms to the requirements of §571.202a must be installed at the driver’s seating position.

S4.6 Where manufacturer options are specified in this section or §571.202a, the manufacturer must select an option by the time it certifies the vehicle and may not thereafter select a different option for that vehicle. The manufacturer may select different
§ 571.202a Standard No. 202a; Head restraints; Mandatory applicability begins on September 1, 2009.

S1. Purpose and scope. This standard specifies requirements for head restraints to reduce the frequency and severity of neck injury in rear-end and other collisions.

S2 Application. This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks and buses.

compliance options for different designated seating positions to which the requirements of this section are applicable. Each manufacturer must, upon request from the National Highway Traffic Safety Administration, provide information regarding which of the compliance options it has selected for a particular vehicle or make/model.

S5. Demonstration procedures.

S5.1 Compliance with S4.2(a) of this section is demonstrated in accordance with the following with the head restraint in its fully extended design position:

(a) On the exterior profile of the head and torso of a dummy having the weight and seated height of a 95th percentile adult male with an approved representation of a human, articulated neck structure, or an approved equivalent test device, establish reference lines by the following method:

(1) Position the dummy's back on a horizontal flat surface with the lumbar joints in a straight line.

(2) Rotate the head of the dummy rearward until the back of the head contacts the flat horizontal surface specified in S5.1(a)(1) of this section.

(3) Position the SAE Standard J826 JUL95 (incorporated by reference, see § 571.5) two-dimensional manikin's back against the flat surface specified in S5.1(a)(1) of this section, alongside the dummy with the H-point of the manikin aligned with the H-point of the dummy.

(4) Establish the torso line of the manikin as defined in SAE Aerospace-Automotive Drawing Standards (1963) (incorporated by reference, see § 571.5), sec. 2.3.6, P. E1.01.

(5) Establish the dummy torso reference line by superimposing the torso line of the manikin on the torso of the dummy.

(6) Establish the head reference line by extending the dummy torso reference line onto the head.

(b) At each designated seating position having a head restraint, place the dummy, snugly restrained by Type II seat belt, in the manufacturer's recommended design seating position.

(c) During forward acceleration applied to the structure supporting the seat as described in this paragraph, measure the maximum rearward angular displacement between the dummy torso reference line and head reference line. When graphically depicted, the magnitude of the acceleration curve shall not be less than that of a half-sine wave having the amplitude of 78 m/s² and a duration of 80 milliseconds and not more than that of a half-sine wave curve having an amplitude of 94 m/s² and a duration of 96 milliseconds.

S5.2 Compliance with S4.2(b) of this section is demonstrated in accordance with the following with the head restraint in its fully extended design position:

(a) Place a test device, having the back plan dimensions and torso line (centerline of the head room probe in full back position), of the three-dimensional SAE Standard J826 JUL95 (incorporated by reference, see § 571.5) manikin, at the manufacturer's recommended design seated position.

(b) Establish the displaced torso reference line by applying a rearward moment of 373 Nm about the seating reference point to the seat back through the test device back pan specified in S5.2(a) of this section.

(c) After removing the back pan, using a 165 mm diameter spherical head form or cylindrical head form having a 165 mm diameter in plan view and a 132 mm height in profile view, apply, perpendicular to the displaced torso reference line, a rearward initial load 64 mm below the top of the head restraint that will produce a 373 Nm moment about the seating reference point.

(d) Gradually increase this initial load to 890 N or until the seat or seat back fails, whichever occurs first.

with a GVWR of 4,536 kg or less, manufactured on or after September 1, 2009. However, the standard’s requirements for rear head restraints do not apply to vehicles manufactured before September 1, 2010, and, for vehicles manufactured between September 1, 2010 and August 31, 2011, the requirements for rear head restraints apply only to the extent provided in §7. Until September 1, 2009, manufacturers may comply with the standard in this §571.202a, with the standard in §571.202, or with the European regulations referenced in §4.3(a) of §571.202. For vehicles manufactured on or after September 1, 2009 and before September 1, 2010, manufacturers may comply with the standard in §571.202 or with the European regulations referenced in §4.3(a) of §571.202, instead of the standard in this §571.202a, only to the extent consistent with the phase-in specified in this §571.202a.

S3. Definitions.

Backset means the minimum horizontal distance between the rear of a representation of the head of a seated 50th percentile male occupant and the head restraint, as measured by the head restraint measurement device. Head restraint means a device that limits rearward displacement of a seated occupant’s head relative to the occupant’s torso.

Head restraint measurement device (HRMD) means the three dimensional SAE Standard J826 JUL95 (incorporated by reference, see §571.5) manikin with a head form attached, representing the head position of a seated 50th percentile male, with sliding scale at the back of the head for the purpose of measuring backset. The head form is designed by and available from the ICBC, 151 West Esplanade, North Vancouver, BC V7M 3H9, Canada (www.icbc.com).

Height means, when used in reference to a head restraint, the distance from the H-point, measured parallel to the torso reference line defined by the three dimensional SAE Standard J826 JUL95 (incorporated by reference, see §571.5) manikin, to a plane normal to the torso reference line.

Intended for occupant use means, when used in reference to the adjustment of a seat, positions other than that intended solely for the purpose of allowing ease of ingress and egress of occupants and access to cargo storage areas of a vehicle.

Rear head restraint means, at any rear outboard designated seating position, a rear seat back, or any independently adjustable seat component attached to or adjacent to a seat back, that has a height equal to or greater than 700 mm, in any position of backset and height adjustment, as measured in accordance with §5.1.1.

Top of the head restraint means the point on the head restraint with the greatest height.

S4. Requirements. Except as provided in §4.4, §4.2.1(a)(2) and §4.2.1(b)(2) of this section, each vehicle must comply with §4.1 of this section with the seat adjusted as intended for occupant use.

Whenever a range of measurements is specified, the head restraint must meet the requirement at any position of adjustment within the specified range.

S4.1 Performance levels. In each vehicle other than a school bus, a head restraint that conforms to either §4.2 or §4.3 of this section must be provided at each front outboard designated seating position. In each equipped with rear outboard head restraints, the rear head restraint must conform to either §4.2 or §4.3 of this section. In each school bus, a head restraint that conforms to either §4.2 or §4.3 of this section must be provided for the driver’s seating position. At each designated seating position incapable of seating a 50th percentile male Hybrid III test dummy specified in 49 CFR part 572, subpart E, the applicable head restraint must conform to §4.2 of this section.

S4.2 Dimensional and static performance. Each head restraint located in the front outboard designated seating position and each head restraint located in the rear outboard designated seating position must conform to paragraphs S4.2.1 through S4.2.7 of this section. Compliance is determined for the height requirements of §4.2.1 and the backset requirements of §4.2.3 of this section by taking the arithmetic average of three measurements.

S4.2.1 Minimum height. (a) Front outboard designated seating positions. (1) Except as provided in
§ 571.202a 49 CFR Ch. V (10–1–16 Edition)

S4.2.1(a)(2) of this section, when measured in accordance with S5.2.1(a)(1) of this section, the top of a head restraint located in a front outboard designated seating position must have a height not less than 800 mm in at least one position of adjustment. (2) Exception. The requirements of S4.2.1(a)(1) do not apply if the interior surface of the vehicle at the roofline physically prevents a head restraint, located in the front outboard designated seating position, from attaining the required height. In those instances in which this head restraint cannot attain the required height, when measured in accordance with S5.2.1(a)(2), the maximum vertical distance between the top of the head restraint and the interior surface of the vehicle at the roofline must not exceed 50 mm for convertibles and 25 mm for all other vehicles. Notwithstanding this exception, when measured in accordance with S5.2.1(a)(2), the top of a head restraint located in a front outboard designated seating position must have a height not less than 700 mm in the lowest position of adjustment.

(b) All outboard designated seating positions equipped with head restraints.

(1) Except as provided in S4.2.1(b)(2) of this section, when measured in accordance with S5.2.1(b)(1) of this section, the top of a head restraint located in an outboard designated seating position must have a height not less than 750 mm in any position of adjustment.

(2) Exception. The requirements of S4.2.1(b)(1) do not apply if the interior surface of the vehicle at the roofline or the interior surface of the backlight physically prevent a head restraint, located in the rear outboard designated seating position, from attaining the required height. In those instances in which this head restraint cannot attain the required height, when measured in accordance with S5.2.1(b)(2), the maximum vertical distance between the top of the head restraint and the interior surface of the vehicle at the roofline must not exceed 50 mm for convertibles and 25 mm for all other vehicles.

S4.2.2 Width. When measured in accordance with S5.2.2 of this section, 65 ±3 mm below the top of the head restraint, the lateral width of a head restraint must be not less than 170 mm, except the lateral width of the head restraint for front outboard designated seating positions in a vehicle with a front center designated seating position, must be not less than 254 mm. S4.2.3 Front Outboard Designated Seating Position Backset. When measured in accordance with S5.2.3 of this section, the backset must not be more than 55 mm, when the seat is adjusted in accordance with S5.1. For adjustable restraints, the requirements of this section must be met at the height of adjustment between 750 mm and 800 mm, inclusive. If the top of the head restraint, in its lowest position of adjustment, is above 800 mm, the requirements of this section must be met at that position. If the head restraint position is independent of the seat back inclination position, the head restraint must not be adjusted such that backset is more than 55 mm when the seat back inclination is positioned closer to vertical than the position specified in S5.1.

S4.2.4 Gaps. All head restraints must meet limits for gaps in the head restraint specified in S4.2.4.1. For gaps between the seat and head restraint, adjustable head restraints must meet either the limits specified in S4.2.4.1 or S4.2.4.2.

S4.2.4.1 Gaps within the head restraint and between the head restraint and seat using a 165 mm sphere. When measured in accordance with S5.2.4.1 of this section using the head form specified in that paragraph, there must not be any gap greater than 60 mm within or between the anterior surface of the head restraint and anterior surface of the seat, with the head restraint adjusted to its lowest height position and any backset position, except as allowed by S4.4.

S4.2.4.2 Gaps between the head restraint and seat using a 25 mm cylinder. The following option is only available to head restraints that can move with respect to the seat. When measured in accordance with S5.2.4.2 of this section using the 25 mm cylinder specified in that paragraph, there must not be any gap greater than 25 mm between the anterior surface of the head restraint and posterior surface of the seat.
§ 571.202a

and anterior surface of the seat, with the head restraint adjusted to its lowest height position and any backset position, except as allowed by S4.4.

S4.2.5 Energy absorption. When the anterior surface of the head restraint is impacted in accordance with S5.2.5 of this section by the head form specified in that paragraph at any velocity up to and including 24.1 km/h, the deceleration of the head form must not exceed 785 m/s² (80 g) continuously for more than 3 milliseconds.

S4.2.6 Height retention. When tested in accordance with S5.2.6 of this section, the cylindrical test device specified in S5.2.6(b) must return to within 13 mm of its initial reference position after application of at least a 500 N load and subsequent reduction of the load to 50 N ±1 N. During application of the initial 50 N reference load, as specified in S5.2.6(b)(2) of this section, the cylindrical test device must not move downward more than 25 mm.

S4.2.7 Backset retention, displacement, and strength.

(a) Backset retention and displacement. When tested in accordance with S5.2.7 of this section, the cylindrical test device specified in S5.2.7 must be capable of manually rotating forward or rearward by not less than 60 degrees from any position of adjustment.

(b) Strength. When the head restraint is tested in accordance with S5.2.7(b) of this section with the test device specified in that paragraph, the load applied to the head restraint must reach 890 N and remain at 890 N for a period of 5 seconds.

S4.3 Dynamic performance and width. At each forward-facing outboard designated seating position equipped with a head restraint, the head restraint adjusted midway between the lowest and the highest position of adjustment, and at any position of backset adjustment, must conform to the following:

S4.3.1 Injury criteria. When tested in accordance with S5.3 of this section, during a forward acceleration of the dynamic test platform described in S5.3.1, the head restraint must:

(a) Angular rotation. Limit posterior angular rotation between the head and torso of the 50th percentile male Hybrid III test dummy specified in 49 CFR part 572, subpart E, fitted with sensors to measure rotation between the head and torso, to 12 degrees for the dummy in all outboard designated seating positions;

(b) Head injury criteria. Limit the maximum HIC₁₅ value to 500. HIC₁₅ is calculated as follows—

For any two points in time, t₁ and t₂, during the event which are separated by not more than a 15 millisecond time interval and where t₁ is less than t₂, the head injury criterion (HIC₁₅) is determined using the resultant head acceleration at the center of gravity of the dummy head, aᵣ, expressed as a multiple of g (the acceleration of gravity) and is calculated using the expression:

\[
\text{HIC} = \left(\frac{1}{(t₂ - t₁)} \int_{t₁}^{t₂} aᵣ \, dt \right)^{1.5}
\]

4.3.2 Width. The head restraint must have the lateral width specified in S4.2.2 of this section.

S4.4 Folding or retracting rear head restraints non-use positions. A rear head restraint may be adjusted to a position at which its height does not comply with the requirements of S4.2.1 of this section. However, in any such position, the head restraint must meet either S4.4(a), (b) or (c) of this section.

(a) The head restraint must automatically return to a position in which its minimum height is not less than that specified in S4.2.1(b) of this section when a test dummy representing a 5th percentile female Hybrid III test dummy specified in 49 CFR part 572, subpart O is positioned according to S5.4(a); or

(b) The head restraint must, when tested in accordance with S5.4(b) of this section, be capable of manually rotating forward or rearward by not less than 60 degrees from any position of adjustment in which its minimum
(c) The head restraint must, when tested in accordance with S5.4(b) of this section, cause the torso reference line angle to be at least 10 degrees closer to vertical than when the head restraint is in any position of adjustment in which its height is not less than that specified in S4.2.1(b) of this section.

S4.5 Removability of head restraints. The head restraint must not be removable without a deliberate action distinct from any act necessary for upward adjustment.

S4.6 Compliance option selection. Where manufacturer options are specified in this section, the manufacturer must select an option by the time it certifies the vehicle and may not thereafter select a different option for that vehicle. The manufacturer may select different compliance options for different designated seating positions to which the requirements of this section are applicable. Each manufacturer must, upon request from the National Highway Traffic Safety Administration, provide information regarding which of the compliance options it has selected for a particular vehicle or make/model.

S4.7 Information in owner’s manual.

S4.7.1 The owner’s manual for each vehicle must emphasize that all occupants, including the driver, should not operate a vehicle or sit in a vehicle’s seat until the head restraints are placed in their proper positions in order to minimize the risk of neck injury in the event of a crash.

S4.7.2 The owner’s manual for each vehicle must—
(a) Include an accurate description of the vehicle’s head restraint system in an easily understandable format. The owner’s manual must clearly identify which seats are equipped with head restraints;
(b) If the head restraints are removable, the owner’s manual must provide instructions on how to remove the head restraint by a deliberate action distinct from any act necessary for upward adjustment, and how to reinstall head restraints;
(c) Warn that all head restraints must be reinstalled to properly protect vehicle occupants.

(d) Describe in an easily understandable format the adjustment of the head restraints and/or seat back to achieve appropriate head restraint position relative to the occupant’s head. This discussion must include, at a minimum, accurate information on the following topics:

1. A presentation and explanation of the main components of the vehicle’s head restraints.
2. The basic requirements for proper head restraint operation, including an explanation of the actions that may affect the proper functioning of the head restraints.
3. The basic requirements for proper positioning of a head restraint in relation to an occupant’s head position, including information regarding the proper positioning of the center of gravity of an occupant’s head or some other anatomical landmark in relation to the head restraint.

S5 Procedures. Demonstrate compliance with S4.2 through S4.4 of this section as follows. The positions of seat adjustment specified in S5 and S5.1 are conditions to be met concurrently and are not a sequential list of adjustments. Any adjustable lumbar support is adjusted to its most posterior nominal design position. If the seat cushion adjusts independently of the seat back, as measured by SAE Standard J826 JUL95 (incorporated by reference, see §571.5) manikin, with leg length specified in S10.4.2.1 of §571.208 of this Part. If the specified position of the H-point can be achieved with a range of seat cushion inclination angles, adjust the seat inclination such that the most forward part of the seat cushion is at its lowest position with respect to the most rearward part. All tests specified by this standard are conducted with the ambient temperature between 18 degrees C. and 28 degrees C.

S5.1 Except as specified in S5.2.3 and S5.3 of this section, if the seat back is adjustable, it is set at an initial inclination position closest to the manufacturer’s design seat back angle, as measured by SAE Standard J826 JUL95 (incorporated by reference, see §571.5)
manikin. If there is more than one inclination position closest to the design angle, set the seat back inclination to the position closest to and rearward of the design angle.

S5.1.1 Procedure for determining presence of head restraints in rear outboard seats. Measure the height of the top of a rear seat back or the top of any independently adjustable seat component attached to or adjacent to the rear seat back in its highest position of adjustment using the scale incorporated into the SAE Standard J826 JUL95 (incorporated by reference, see §571.5) manikin or an equivalent scale, which is positioned laterally within 15 mm of the centerline of the rear seat back or any independently adjustable seat component attached to or adjacent to the rear seat back.

S5.2 Dimensional and static performance procedures. Demonstrate compliance with S4.2 of this section in accordance with S5.2.1 through S5.2.7 of this section. Position the SAE Standard J826 JUL95 (incorporated by reference, see §571.5) manikin according to the seating procedure found in SAE Standard J826 JUL95.

S5.2.1 Procedure for height measurement. Demonstrate compliance with S4.2.1 of this section in accordance with S5.2.1 (a) and (b) of this section, using the headroom probe scale incorporated into the SAE Standard J826 JUL95 (incorporated by reference, see §571.5) manikin with the appropriate offset for the H-point position or an equivalent scale, which is positioned laterally within 15 mm of the head restraint centerline. If the head restraint position is independent of the seat back inclination position, compliance is determined at a seat back inclination position closest to the design seat back angle, and each seat back inclination position less than the design seat back angle.

(a)(1) For head restraints in front outboard designated seating positions, adjust the top of the head restraint to the highest position and measure the height.

(b)(1) For head restraints in all outboard designated seating positions that are prevented by the interior surface of the vehicle at the roofline or the interior surface of the rear backlight from meeting the required height as specified in S4.2.1(a)(1), measure the clearance between the top of the head restraint and the interior surface of the vehicle at the roofline, with the seat adjusted to its lowest vertical position intended for occupant use, by attempting to pass a 25 mm sphere between them. Adjust the top of the head restraint to the lowest position and measure the height.

(2) For head restraints located in rear outboard designated seating positions that are prevented by the interior surface of the vehicle at the roofline or the interior surface of the rear backlight from meeting the required height as specified in S4.2.1(b)(1), measure the clearance between the top of the head restraint or the seat back and the interior surface of the vehicle at the roofline or the interior surface of the rear backlight, with the seat adjusted to its lowest vertical position intended for occupant use, by attempting to pass a 25 mm sphere between them.

S5.2.2 Procedure for width measurement. Demonstrate compliance with S4.2.2 of this section using calipers to measure the maximum dimension perpendicular to the vehicle vertical longitudinal plane of the intersection of the head restraint with a plane that is normal to the torso reference line of SAE Standard J826 JUL95 (incorporated by reference, see §571.5) manikin and 65 ±3 mm below the top of the head restraint.

S5.2.3 Procedure for backset measurement. Demonstrate compliance with S4.2.3 of this section using the HRMD positioned laterally within 15 mm of the head restraint centerline. Adjust the front head restraint so that its top is at any height between and inclusive of 750 mm and 800 mm and its backset is in the maximum position other than allowed by S4.4. If the lowest position of adjustment is above 800 mm, adjust the head restraint to that position. If the head restraint position is independent of the seat back inclination position, compliance is determined at
§ 571.202a

Each seat back inclination position closest to and less than the design seat back angle.

S5.2.4 Procedures for gap measurement.

S5.2.4.1 Procedure using a 165 mm sphere.

Demonstrate compliance with S4.2.4.1 of this section in accordance with the procedures of S5.2.4.1 (a) through (c) of this section, with the head restraint adjusted to its lowest height position and any backset position, except as allowed by S4.4.

(a) The area of measurement is anywhere on the anterior surface of the head restraint or seat with a height greater than 540 mm and within the following distances from the centerline of the seat—

(1) 127 mm for seats required to have 254 mm minimum head restraint width; and

(2) 85 mm for seats required to have a 170 mm head restraint width.

(b) Applying a load of no more than 5 N against the area of measurement specified in subparagraph (a), place a 165 ±2 mm diameter spherical head form against any gap such that at least two points of contact are made within the area. The surface roughness of the head form is less than 1.6 μm, root mean square.

(c) Determine if at least 125 mm of the cylinder can completely pass through the gap. If 125 mm or more of the cylinder can completely pass through the gap, the gap is not in compliance.

S5.2.5 Procedures for energy absorption.

Demonstrate compliance with S4.2.5 of this section in accordance with S5.2.5 (a) through (e) of this section, with adjustable head restraints in any height and backset position of adjustment.

(a) Use an impactor with a semispherical head form with a 165 ±2 mm diameter and a surface roughness of less than 1.6 μm, root mean square. The head form and associated base have a combined mass of 6.8 ±0.05 kg.

(b) Instrument the impactor with an acceleration sensing device whose output is recorded in a data channel that conforms to the requirements for a 600 Hz channel class as specified in SAE Recommended Practice J211/1 MAR95 (incorporated by reference, see §571.5). The axis of the acceleration-sensing device coincides with the geometric center of the head form and the direction of impact.

(c) Propel the impactor toward the head restraint. At the time of launch, the longitudinal axis of the impactor is within 2 degrees of being horizontal and parallel to the vehicle longitudinal axis. The direction of travel is posteriorly.

(d) Constrain the movement of the head form so that it travels linearly along the path described in S5.2.5(c) of this section for not less than 25 mm before making contact with the head restraint.

(e) Impact the anterior surface of the seat or head restraint at any point with a height greater than 635 mm and within a distance of the head restraint vertical centerline of 70 mm.
§ 571.202a

Natl’l Highway Traffic Safety Admin., DOT

S5.2.6 Procedures for height retention. Demonstrate compliance with S4.2.6 of this section in accordance with S5.2.6(a) through (e) of this section. For head restraints that move with respect to the seat when occupant loading is applied to the seat back, S5.2.6(a) through (e) may be performed with the head restraint fixed in a position corresponding to the position when the seat is unoccupied.

(a) Adjust the adjustable head restraint so that its top is at any of the following height positions at any backset position—

(1) For front outboard designated seating positions—

(i) The highest position; and

(ii) Not less than, but closest to 800 mm; and

(2) For rear outboard designated seating positions equipped with head restraints—

(i) The highest position; and

(ii) Not less than, but closest to 750 mm.

(b)(1) Orient a cylindrical test device having a 165 ±2 mm diameter in plan view (perpendicular to the axis of revolution), and a 152 mm length in profile (through the axis of revolution) with a surface roughness of less than 1.6 μm, root mean square, such that the axis of the revolution is horizontal and in the longitudinal vertical plane through the longitudinal centerline of the head restraint. Position the midpoint of the bottom surface of the cylinder in contact with the head restraint.

(2) Establish initial reference position by applying a vertical downward load of 50 ±1 N at the rate of 250 ±50 N/minute. Determine the reference position after 5.5 ±0.5 seconds at this load.

(c) Increase the load at the rate of 250 ±50 N/minute to at least 500 N and maintain this load for 5.5 ±0.5 seconds.

(d) Reduce the load at the rate of 250 ±50 N/minute until the load is completely removed. Maintain this condition for two minutes ±5 seconds.

(e) Increase the load at the rate of 250 ±50 N/minute to 50 ±1 N and, after 5.5 ±0.5 seconds at this load, determine the position of the cylindrical device with respect to its initial reference position.

S5.2.7 Procedures for backset retention, displacement, and strength. Demonstrate compliance with S4.2.7 of this section in accordance with S5.2.7(a) and (b) of this section. The load vectors that generate moment on the head restraint are initially contained in a vertical plane parallel to the vehicle longitudinal centerline.

(a) Backset retention and displacement. For head restraints that move with respect to the seat when occupant loading is applied to the seat back, S5.2.7(a)(1) through (8) may be performed with the head restraint fixed in a position corresponding to the position when the seat is unoccupied. This fixation is applied to the member(s) that first transmit(s) the seat back loading from the occupant to the head restraint.

(1) Adjust the head restraint so that its top is at a height closest to and not less than:

(i) 800 mm for front outboard designated seating positions (or the highest position of adjustment for head restraints subject to S4.2.1(a)(2)); and

(ii) 750 mm for rear outboard designated seating positions equipped with head restraints (or the highest position of adjustment for rear head restraints subject to S4.2.1(b)(2)).

(b)(1) Orient a test device having the back pan dimensions and torso reference line (vertical center line), when viewed laterally, with the head room probe in the full back position, of the three dimensional SAE Standard J826 JUL95 (incorporated by reference, see § 571.5) manikin;

(2) Establish the displaced torso reference line by creating a posterior moment of 373 ±7.5 Nm about the H-point by applying a force to the seat back through the back pan at the rate of 187 ±37 Nm/minute. The initial location on the back pan of the moment generating force vector has a height of 290 mm ±13 mm. Apply the force vector normal to the torso reference line and maintain it within 2 degrees of a vertical plane parallel to the vehicle longitudinal centerline. Constrain the back pan to rotate about the H-point. Rotate the force vector direction with the back pan.

(3) In the seat, place a test device having the back pan dimensions and torso reference line (vertical center line), when viewed laterally, with the head room probe in the full back position, of the three dimensional SAE Standard J826 JUL95 (incorporated by reference, see § 571.5) manikin;

(4) Establish the displaced torso reference line by creating a posterior moment of 373 ±7.5 Nm about the H-point by applying a force to the seat back through the back pan at the rate of 187 ±37 Nm/minute. The initial location on the back pan of the moment generating force vector has a height of 290 mm ±13 mm. Apply the force vector normal to the torso reference line and maintain it within 2 degrees of a vertical plane parallel to the vehicle longitudinal centerline. Constrain the back pan to rotate about the H-point. Rotate the force vector direction with the back pan.

(5) Maintain the position of the back pan as established in S5.2.7(a)(4) of this section. Using a 165 ±2 mm diameter spherical head form with a surface
§ 571.202a 49 CFR Ch. V (10–1–16 Edition)

roughness of less than 1.6 μm, root mean square, establish the head form initial reference position by aligning the centerline of the head form perpendicular to the displaced torso reference line, on the seat centerline, and at a height 65 ±3 mm below the top of the head restraint. Apply a posterior initial load that will produce a 37 ±0.7 Nm moment about the H-point. After maintaining this moment for 5.5 ±0.5 seconds, measure the posterior displacement of the head form during the application of the load.

(6) Increase the initial load at the rate of 187 ±37 Nm/minute until a 373 ±7.5 Nm moment about the H-point is produced. Maintain the load level producing that moment for 5.5 ±0.5 seconds and then measure the posterior displacement of the head form relative to the displaced torso reference line.

(7) Reduce the load at the rate of 187 ±37 Nm/minute until it is completely removed. Maintain this condition for two minutes ±5 seconds.

(8) Increase the load at the rate of 187 ±37 Nm/minute until a 37 ±0.7 Nm moment about the H-point is produced. After maintaining the load level producing that moment for 5.5 ±0.5 seconds, measure the posterior displacement of the head form position with respect to its initial reference position; and

(b) Strength. Increase the load specified in S5.2.7(a)(7) of this section at the rate of 250 ±50 N/minute to at least 890 N and maintain this load level for 5.5 ±0.5 seconds.

S5.3 Procedures for dynamic performance. Demonstrate compliance with S4.3 of this section in accordance with S5.3.1 though S5.3.9 of this section with a 50th percentile male Hybrid III test dummy specified in 49 CFR part 572 subpart E, fitted with sensors to measure head to torso rotation. The dummy with all sensors is to continue to meet all specifications in 49 CFR part 572 subpart E. The restraint is positioned midway between the lowest and the highest position of adjustment, and at any position of backset.

S5.3.1 Mount the vehicle on a dynamic test platform at the vehicle altitude set forth in S13.3 of §571.208 of this part, so that the longitudinal centerline of the vehicle is parallel to the direction of the test platform travel and so that movement between the base of the vehicle and the test platform is prevented. Instrument the platform with an accelerometer and data processing system. Position the accelerometer sensitive axis parallel to the direction of test platform travel.

S5.3.2 Remove the tires, wheels, fluids, and all unsecured components. Remove or rigidly secure the engine, transmission, axles, exhaust, vehicle frame and any other vehicle component necessary to assure that all points on the acceleration vs. time plot measured by an accelerometer on the dynamic test platform fall within the corridor described in Figure 1 and Table 1.

S5.3.3 Place any moveable windows in the fully open position.

S5.3.4 Seat Adjustment. The following seat adjustments specify conditions to be met concurrently and are not a sequential list of adjustments. At each outboard designated seating position, using any control that primarily moves the entire seat vertically, place the seat in the lowest position. Using any control that primarily moves the seat in the fore and aft directions, place the seat midway between the forwardmost and rearmost position.

(b) Strength. Increase the load specified in S5.2.7(a)(7) of this section at the rate of 250 ±50 N/minute to at least 890 N and maintain this load level for 5.5 ±0.5 seconds.

S5.3 Procedures for dynamic performance. Demonstrate compliance with S4.3 of this section in accordance with S5.3.1 though S5.3.9 of this section with a 50th percentile male Hybrid III test dummy specified in 49 CFR part 572 subpart E, fitted with sensors to measure head to torso rotation. The dummy with all sensors is to continue to meet all specifications in 49 CFR part 572 subpart E. The restraint is positioned midway between the lowest and the highest position of adjustment, and at any position of backset.

S5.3.1 Mount the vehicle on a dynamic test platform at the vehicle altitude set forth in S13.3 of §571.208 of this part, so that the longitudinal centerline of the vehicle is parallel to the direction of the test platform travel and so that movement between the base of the vehicle and the test platform is prevented. Instrument the platform with an accelerometer and data processing system. Position the accelerometer sensitive axis parallel to the direction of test platform travel.

S5.3.2 Remove the tires, wheels, fluids, and all unsecured components. Remove or rigidly secure the engine, transmission, axles, exhaust, vehicle frame and any other vehicle component necessary to assure that all points on the acceleration vs. time plot measured by an accelerometer on the dynamic test platform fall within the corridor described in Figure 1 and Table 1.

S5.3.3 Place any moveable windows in the fully open position.

S5.3.4 Seat Adjustment. The following seat adjustments specify conditions to be met concurrently and are not a sequential list of adjustments. At each outboard designated seating position, using any control that primarily moves the entire seat vertically, place the seat in the lowest position. Using any control that primarily moves the seat in the fore and aft directions, place the seat midway between the forwardmost and rearmost position.

(b) Strength. Increase the load specified in S5.2.7(a)(7) of this section at the rate of 250 ±50 N/minute to at least 890 N and maintain this load level for 5.5 ±0.5 seconds.

S5.3 Procedures for dynamic performance. Demonstrate compliance with S4.3 of this section in accordance with S5.3.1 though S5.3.9 of this section with a 50th percentile male Hybrid III test dummy specified in 49 CFR part 572 subpart E, fitted with sensors to measure head to torso rotation. The dummy with all sensors is to continue to meet all specifications in 49 CFR part 572 subpart E. The restraint is positioned midway between the lowest and the highest position of adjustment, and at any position of backset.

S5.3.1 Mount the vehicle on a dynamic test platform at the vehicle altitude set forth in S13.3 of §571.208 of this part, so that the longitudinal centerline of the vehicle is parallel to the direction of the test platform travel and so that movement between the base of the vehicle and the test platform is prevented. Instrument the platform with an accelerometer and data processing system. Position the accelerometer sensitive axis parallel to the direction of test platform travel.

S5.3.2 Remove the tires, wheels, fluids, and all unsecured components. Remove or rigidly secure the engine, transmission, axles, exhaust, vehicle frame and any other vehicle component necessary to assure that all points on the acceleration vs. time plot measured by an accelerometer on the dynamic test platform fall within the corridor described in Figure 1 and Table 1.

S5.3.3 Place any moveable windows in the fully open position.

S5.3.4 Seat Adjustment. The following seat adjustments specify conditions to be met concurrently and are not a sequential list of adjustments. At each outboard designated seating position, using any control that primarily moves the entire seat vertically, place the seat in the lowest position. Using any control that primarily moves the seat in the fore and aft directions, place the seat midway between the forwardmost and rearmost position.

(b) Strength. Increase the load specified in S5.2.7(a)(7) of this section at the rate of 250 ±50 N/minute to at least 890 N and maintain this load level for 5.5 ±0.5 seconds.

S5.3 Procedures for dynamic performance. Demonstrate compliance with S4.3 of this section in accordance with S5.3.1 though S5.3.9 of this section with a 50th percentile male Hybrid III test dummy specified in 49 CFR part 572 subpart E, fitted with sensors to measure head to torso rotation. The dummy with all sensors is to continue to meet all specifications in 49 CFR part 572 subpart E. The restraint is positioned midway between the lowest and the highest position of adjustment, and at any position of backset.
S5.3.5 Seat Belt Adjustment. Prior to placing the Type 2 seat belt around the test dummy, fully extend the webbing from the seat belt retractor(s) and release it three times to remove slack. If an adjustable seat belt D-ring anchorage exists, place it in the adjustment position closest to the mid-position. If an adjustment position does not exist midway between the highest and lowest position, the closest adjustment position above the midpoint is used.

**S5.3.6 Dress and adjust each test dummy as specified in S8.1.8.2 through S8.1.8.3 of §571.208 of this part. The stabilized test temperature of the test dummy is at any temperature level between 69 degrees F and 72 degrees F, inclusive.

S5.3.7 Test dummy positioning procedure. Place a test dummy at each outboard designated seating position equipped with a head restraint.

S5.3.7.1 Head. The transverse instrumentation platform of the head is level within 1⁄2 degree. To level the head of the test dummy, the following sequence is followed. First, adjust the position of the H-point within the limits set forth in S10.4.2.1 of §571.208 to level the transverse instrumentation platform of the head of the test dummy. If the transverse instrumentation platform of the head is still not level, then adjust the pelvic angle of the test dummy. If the transverse instrumentation platform of the head is still not level, then adjust the neck bracket of the dummy the minimum amount necessary from the non-adjusted “0” setting to ensure that the transverse instrumentation platform of the head is horizontal within 1⁄2 degree. The test dummy remains within the limits specified in S10.4.2.1 of §571.208 after any adjustment of the neck bracket.

S5.3.7.2 Upper arms and hands. Position each test dummy as specified in S10.2 and S10.3 of §571.208 of this part.

S5.3.7.3 Torso. Position each test dummy as specified in S10.4.1.1, S10.4.1.2, and S10.4.2.1 of §571.208 of this Part, except that the midsagittal plane of the dummy is aligned within 15 mm of the head restraint centerline. If the midsagittal plane of the dummy cannot be aligned within 15 mm of the head restraint centerline then align the midsagittal plane of the dummy as close as possible to the head restraint centerline.

S5.3.7.4 Legs. Position each test dummy as specified in S10.5 of §571.208 of this part, except that final adjustment to accommodate placement of the feet in accordance with S5.3.7.5 of this section is permitted.

S5.3.7.5 Feet. Position each test dummy as specified in S10.6 of §571.208 of this part, except that for rear outboard designated seating positions the feet of the test dummy are placed flat on the floorpan and beneath the front seat as far forward as possible without front seat interference. For rear outboard designated seating positions, if necessary, the distance between the knees can be changed in order to place the feet beneath the seat.

S5.3.8 Accelerate the dynamic test platform to 17.3 ± 0.6 km/h. All of the points on the acceleration vs. time curve fall within the corridor described in Figure 1 and Table 1 when filtered to channel class 60, as specified in the SAE Recommended Practice J211/1 MAR95 (incorporated by reference, see §571.5). Measure the maximum posterior angular displacement.

S5.3.9 Calculate the angular displacement from the output of instrumentation placed in the torso and head of the test dummy and an algorithm capable of determining the relative angular displacement to within one degree and conforming to the requirements of a 600 Hz channel class, as specified in SAE Recommended Practice J211/1 MAR95 (incorporated by reference, see §571.5). No data generated after 200 ms from the beginning of the forward acceleration are used in determining angular displacement of the head with respect to the torso.

S5.3.10 Calculate the HIC from the output of instrumentation placed in the head of the test dummy, using the equation in S4.3.1(b) of this section and conforming to the requirements for a 1000 Hz channel class as specified in SAE Recommended Practice J211/1 MAR95 (incorporated by reference, see §571.5). No data generated after 200 ms from the beginning of the forward acceleration are used in determining HIC.
§ 571.202a rear outboard designated seating positions.

(a) Demonstrate compliance with §4.4(a) of this section, using a 5th percentile female Hybrid III test dummy specified in 49 CFR part 572, subpart O, in accordance with the following procedure—

(1) Position the test dummy in the seat such that the dummy’s midsagittal plane is aligned within the 15 mm of the head restraint centerline and is parallel to a vertical plane parallel to the vehicle longitudinal centerline.

(2) Hold the dummy’s thighs down and push rearward on the upper torso to maximize the dummy’s pelvic angle.

(3) Place the legs as close as possible to 90 degrees to the thighs. Push rearward on the dummy’s knees to force the pelvis into the seat so there is no gap between the pelvis and the seat back or until contact occurs between the back of the dummy’s calves and the front of the seat cushion such that the angle between the dummy’s thighs and legs begins to change.

(4) Note the position of the head restraint. Remove the dummy from the seat. If the head restraint returns to a retracted position upon removal of the dummy, manually place it in the noted position. Determine compliance with the height requirements of §4.2.1 of this section by using the test procedures of §5.2.1 of this section.

(b) Demonstrate compliance with §4.4(b) of this section in accordance with the following procedure:

(1) Place the rear head restraint in any position meeting the requirements of §4.2 of this section;

(2) Strike a line on the head restraint. Measure the angle or range of angles of the head restraint reference line as projected onto a vertical longitudinal vehicle plane. Alternatively, measure the torso reference line angle with the SAE Standard J826 JUL95 (incorporated by reference, see §571.5) manikin;

(3) Fold or retract the head restraint to a position in which its minimum height is less than that specified in §4.2.1(b) of this section;

(4) Determine the minimum change in the head restraint reference line angle as projected onto a vertical longitudinal vehicle plane from the angle or range of angles measured in 5.4(b)(2). Alternatively, determine the change in the torso reference line angle with the SAE Standard J826 JUL95 (incorporated by reference, see §571.5) manikin.

S6 Vehicles manufactured on or after September 1, 2009, and before September 1, 2010 (Phase-in of § 571.202a).

(a) For vehicles manufactured for sale in the United States on or after September 1, 2009, and before September 1, 2010, a percentage of the manufacturer’s production, as specified in S6.1, shall meet the requirements specified in this §571.202a without regard to any option to comply with the standard in §571.202 or with the European regulations referenced in §4.3(a) of §571.202. So long as this percentage requirement is met, a vehicle may comply with the standard in this §571.202a, with the standard in §571.202, or with the European regulations referenced in §4.3(a) of §571.202.

(b) Notwithstanding S6(a), vehicles that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having previously been certified in accordance with part 567 of this chapter may comply with the standard in this §571.202a, with the standard in §571.202, or with the European regulations referenced in §4.3(a) of §571.202.

S6.1 Phase-in percentage. For vehicles manufactured by a manufacturer on or after September 1, 2009, and before September 1, 2010, the amount of vehicles complying with S6(a) shall be not less than 80 percent of:

(a) If the manufacturer has manufactured vehicles for sale in the United States during both of the two production years prior to September 1, 2009, the manufacturer’s average annual production of vehicles manufactured on or after September 1, 2007, and before September 1, 2010, or

(b) The manufacturer’s production on or after September 1, 2009, and before September 1, 2010.

S6.2 Vehicles produced by more than one manufacturer.

S6.2.1 For the purpose of calculating average annual production of vehicles for each manufacturer and the number
of vehicles manufactured by each manufacturer under S6.1, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S6.2.2.

(a) A vehicle that is imported shall be attributed to the importer.

(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.

S6.2.2 A vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S6.2.1.

S7. Vehicles manufactured on or after September 1, 2010, and before September 1, 2011 (Phase-in of rear seat requirements of §571.202a).

(a) For vehicles manufactured for sale in the United States on or after September 1, 2010, and before September 1, 2011 a percentage of the manufacturer’s production of vehicles equipped with rear outboard head restraints, as specified in S7.1, shall meet the requirements specified in this §571.202a for rear head restraints.

(b) Vehicles that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having previously been certified in accordance with part 567 of this chapter are not subject to the requirement specified in S7(a).

S7.1 Phase-in percentage. For vehicles manufactured by a manufacturer on or after September 1, 2010, and before September 1, 2011, the amount of vehicles equipped with rear outboard head restraints complying with S7(a) shall be not less than 80 percent of:

(a) If the manufacturer has manufactured vehicles for sale in the United States during both of the two production years prior to September 1, 2010, the manufacturer’s average annual production of vehicles equipped with rear outboard head restraints manufactured on or after September 1, 2008, and before September 1, 2011, or

(b) The manufacturer’s production of vehicles equipped with rear outboard head restraints on or after September 1, 2010, and before September 1, 2011.

S7.2 Vehicles produced by more than one manufacturer.

S7.2.1 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S7.1, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S7.2.2.

S7.2.2 A vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S7.2.1.
Table 1 of 571.202a – Sled pulse corridor reference point locations.

<table>
<thead>
<tr>
<th>Reference Point</th>
<th>Time (ms)</th>
<th>Acceleration (m/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>28</td>
<td>94</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>94</td>
</tr>
<tr>
<td>D</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>38.5</td>
<td>80</td>
</tr>
<tr>
<td>G</td>
<td>49.5</td>
<td>80</td>
</tr>
<tr>
<td>H</td>
<td>84</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 1 of §571.202a - Sled pulse acceleration corridor. The target acceleration with time expressed in milliseconds is \(a = 86 \sin(\pi t/88) \) m/s², for \(V = 17.3 \pm 0.6 \) km/h. The time zero for the test is defined by the point when the sled acceleration achieves 2.5 m/s² (0.25 G's).

![Graph showing the acceleration corridor](image-url)
Figure 2 of §571.202a - Measurement of a vertical gap “a”.
Figure 3 of §571.202a - Measurement of a horizontal gap “a”.

165 mm dia. sphere

Section A-A
§ 571.203 Standard No. 203; Impact protection for the driver from the steering control system.

S1. Purpose and scope. This standard specifies requirements for steering control systems that will minimize chest, neck, and facial injuries to the driver as a result of impact.

S2. Application. This standard applies to passenger cars and to multipurpose passenger vehicles, trucks and buses with a gross vehicle weight rating of 4,536 kg or less. However, it does not apply to vehicles that conform to the frontal barrier crash requirements (S5.1) of Standard No. 208 (49 CFR 571.208) by means of other than seat belt assemblies. It also does not apply to walk-in vans.

S3. Definitions. Steering control system means the basic steering mechanism.
§ 571.204

49 CFR Ch. V (10–1–16 Edition)

and its associated trim hardware, including any portion of a steering column assembly that provides energy absorption upon impact.

S4. Requirements. Each passenger car and each multipurpose passenger vehicle, truck and bus with a gross vehicle weight rating of 4,536 kg or less manufactured on or after September 1, 1981 shall meet the requirements of S5.1 and S5.2.

S5. Impact protection requirements.

S5.1 Except as provided in this paragraph, the steering control system of any vehicle to which this standard applies shall be impacted in accordance with S5.1(a).

(a) When the steering control system is impacted by a body block in accordance with SAE Recommended Practice J944 JUN80 (incorporated by reference, see §571.5), at a relative velocity of 24 km/h, the impact force developed on the chest of the body block transmitted to the steering control system shall not exceed 11,120 N, except for intervals whose cumulative duration is not more than 3 milliseconds.

(b) [Reserved]

S5.2 The steering control system shall be so constructed that no components or attachments, including horn actuating mechanisms and trim hardware, can catch the driver's clothing or jewelry during normal driving maneuvers.

NOTE: The term jewelry refers to watches, rings, and bracelets without loosely attached or dangling members.

§ 571.204 Standard No. 204; Steering control rearward displacement.

S1. Purpose and scope. This standard specifies requirements limiting the rearward displacement of the steering control into the passenger compartment to reduce the likelihood of chest, neck, or head injury.

S2. Application. This standard applies to passenger cars and to multipurpose passenger vehicles, trucks, and buses. However, it does not apply to walk-in vans.

S3. Definitions.

Steering column means a structural housing that surrounds a steering shaft.

Steering shaft means a component that transmits steering torque from the steering wheel to the steering gear.

S4 Requirements.

S4.1 Vehicles manufactured before September 1, 1991. When a passenger car or a truck, bus, or multipurpose passenger vehicle with a gross vehicle weight rating of 10,000 pounds or less and an unloaded vehicle weight of 4,000 pounds or less is tested under the conditions of S5 in a 30 mile per hour perpendicular impact into a fixed collision barrier, the upper end of the steering column and shaft in the vehicle shall not be displaced more than 5 inches in a horizontal rearward direction parallel to the longitudinal axis of the vehicle. The amount of displacement shall be measured relative to an undisturbed point on the vehicle and shall represent the maximum dynamic movement of the upper end of the steering column and shaft during the crash test.

S4.2 Vehicles manufactured on or after September 1, 1991. When a passenger car or a truck, bus or multipurpose passenger vehicle with a gross vehicle weight rating of 4,536 kg or less and an unloaded vehicle weight of 2,495 kg or less is tested under the conditions of S5 in a 48 km/h perpendicular impact into a fixed collision barrier, the upper end of the steering column and shaft in the vehicle shall not be displaced more than 127 mm in a horizontal rearward direction parallel to the longitudinal axis of the vehicle. The amount of displacement shall be measured relative to an undisturbed point on the vehicle and shall represent the maximum dynamic movement of the upper end of the steering column and shaft during the crash test.

S5. Test conditions. The requirements of S4 shall be met when the vehicle is tested in accordance with the following conditions.

S5.1 The vehicle, including test devices and instrumentation, is loaded to its unloaded vehicle weight.

S5.2 Adjustable steering controls are adjusted so that a tilting steering wheel hub is at the geometric center of the locus it describes when it is moved
through its full range of driving positions. A telescoping steering control is set at the adjustment position midway between the forwardmost and rearwardmost position.

S5.3 Convertibles and open-body type vehicles have the top, if any, in place in the closed passenger compartment configuration.

S5.4 Doors are fully closed and latched but not locked.

S5.5 The fuel tank is filled to any level from 90 to 95 percent of capacity.

S5.6 The parking brake is disengaged and the transmission is in neutral.

S5.7 Tires are inflated to the vehicle manufacturer’s specifications.

§ 571.205 Standard No. 205, Glazing materials.

S1. Scope. This standard specifies requirements for glazing materials for use in motor vehicles and motor vehicle equipment.

S2. Purpose. The purpose of this standard is to reduce injuries resulting from impact to glazing surfaces, to ensure a necessary degree of transparency in motor vehicle windows for driver visibility, and to minimize the possibility of occupants being thrown through the vehicle windows in collisions.

S3. Application.

(a) This standard applies to passenger cars, multipurpose passenger vehicles, trucks, buses, motorcycles, slide-in campers, pickup covers designed to carry persons while in motion and low speed vehicles, and to glazing materials for use in those vehicles.

(b) For glazing materials manufactured before September 1, 2006, and for motor vehicles, slide-in campers and pickup covers designed to carry persons while in motion, manufactured before November 1, 2006, the manufacturer may, at its option, comply with 49 CFR 571.205(a) of this section.

S4. Definitions.

Bullet resistant shield means a shield or barrier that is installed completely inside a motor vehicle behind and separate from glazing materials that independently comply with the requirements of this standard.

Camper means a structure designed to be mounted in the cargo area of a truck, or attached to an incomplete vehicle with motive power, for the purpose of providing shelter for persons.

Glass-plastic glazing material means a laminate of one or more layers of glass and one or more layers of plastic in which a plastic surface of the glazing faces inward when the glazing is installed in a vehicle.

Pickup cover means a camper having a roof and sides but without a floor, designed to be mounted on and removable from the cargo area of a truck by the user.

Prime glazing manufacturer means a manufacturer that fabricates, laminates, or tempers glazing materials.

Slide-in camper means a camper having a roof, floor, and sides, designed to be mounted on and removable from the cargo area of a truck by the user.

§ 571.205 Standard No. 205, Glazing materials.

S1. Scope. This standard specifies requirements for glazing materials for use in motor vehicles and motor vehicle equipment.

S2. Purpose. The purpose of this standard is to reduce injuries resulting from impact to glazing surfaces, to ensure a necessary degree of transparency in motor vehicle windows for driver visibility, and to minimize the possibility of occupants being thrown through the vehicle windows in collisions.

S3. Application.

(a) This standard applies to passenger cars, multipurpose passenger vehicles, trucks, buses, motorcycles, slide-in campers, pickup covers designed to carry persons while in motion and low speed vehicles, and to glazing materials for use in those vehicles.

(b) For glazing materials manufactured before September 1, 2006, and for motor vehicles, slide-in campers and pickup covers designed to carry persons while in motion, manufactured before November 1, 2006, the manufacturer may, at its option, comply with 49 CFR 571.205(a) of this section.

S4. Definitions.

Bullet resistant shield means a shield or barrier that is installed completely inside a motor vehicle behind and separate from glazing materials that independently comply with
§571.205(a) Glazing equipment manufactured before September 1, 2006 and glazing materials used in vehicles manufactured before November 1, 2006.

S1. Scope. This standard specifies requirements for glazing equipment manufactured before September 1, 2006 for use in motor vehicles and motor vehicle equipment, and specifies requirements for motor vehicles manufactured before November 1, 2006 and for replacement glazing for those vehicles. A manufacturer may, at its option, comply with 49 CFR 571.205 instead of this standard.

S2. Purpose. The purpose of this standard is to reduce injuries resulting from impact to glazing surfaces, to ensure a necessary degree of transparency in motor vehicle windows for
§ 571.205(a)

Dr.驾驶可见性，并尽量减少在碰撞中使乘客被弹出车辆窗户的可能性。

§ 3. Application. This standard applies to glazing equipment manufactured before September 1, 2006 for use in motor vehicles and motor vehicle equipment. In addition, this standard applies to the following vehicles manufactured before November 1, 2006: passenger cars, low speed vehicles, multipurpose passenger vehicles, trucks, buses, and motorcycles. This standard also applies to slide-in campers, and pickup covers designed to carry persons while in motion, manufactured before November 1, 2006.

§ 4. Definitions

Bullet resistant shield means a shield or barrier that is installed completely inside a motor vehicle behind and separate from glazing materials that independently comply with the requirements of this standard.

Camper means a structure designed to be mounted in the cargo area of a truck, or attached to an incomplete vehicle with motive power, for the purpose of providing shelter for persons.

Glass-plastic glazing material means a laminate of one or more layers of glass and one or more layers of plastic in which a plastic surface of the glazing faces inward when the glazing is installed in a vehicle.

Motor home means a multipurpose passenger vehicle that provides living accommodations for persons.

Pickup cover means a camper having a roof and sides but without a floor, designed to be mounted on and removable from the cargo area of a truck by the user.

Slide-in camper means a camper having a roof, floor, and sides, designed to be mounted on and removable from the cargo area of a truck by the user.

§ 5. Requirements

§ 5.1. Materials

§ 5.1.1 Glazing materials for use in motor vehicles, except as otherwise provided in this standard shall conform to ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see § 571.5). However, Item 11B glazing as specified in that standard may not be used in motor vehicles at levels requisite for driving visibility, and Item 11B glazing is not required to pass Tests Nos. 17, 30, and 31.

§ 5.1.1.1 The chemicals specified for testing chemical resistance in Tests Nos. 19 and 20 of ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see § 571.5) shall be:

(a) One percent solution of nonabrasive soap.

(b) Kerosene.

(c) Undiluted denatured alcohol, Formula SD No. 30 (1 part 100-percent methyl alcohol in 10 parts 190-proof ethyl alcohol by volume).

(d) Gasoline, ASTM Reference Fuel C, which is composed of Isooctane 50 volume percentage and Toluene 50 volume percentage. Isooctane must conform to A2.7 in the ASTM Motor Fuels section (incorporated by reference, see § 571.5), and Toluene must conform to ASTM D362–84 (incorporated by reference, see § 571.5), Standard Specification for Industrial Grade Toluene. ASTM Reference Fuel C must be used as specified in:

(1) Paragraph A2.3.2 and A2.3.3 in the ASTM Motor Fuels section (incorporated by reference, see § 571.5); and

(2) OSHA Standard 29 CFR 1910.106—“Handling Storage and Use of Flammable Combustible Liquids.”

§ 5.1.1.2 The following locations are added to the lists specified in ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see § 571.5) in which Item 4, Item 5, Item 8, and Item 9 safety glazing may be used:

(a)–(i) [Reserved]

(j) Windows and doors in motor homes, except for the windshield and windows to the immediate right or left of the driver.

(k) Windows and doors in slide-in campers and pickup covers.

(l) Windows and doors in buses except for the windshield, windows to the immediate right or left of the driver, and rearmost windows if used for driving visibility.

(m) For Item 5 safety glazing only: Motorcycle windscreens below the intersection of a horizontal plane 380 millimeters vertically above the lowest seating position.

§ 5.1.1.3 The following locations are added to the lists specified in ANSI
§ 571.205(a) 49 CFR Ch. V (10–1–16 Edition)

Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see §571.5) in which item 6 and item 7 safety glazing may be used:

(a)–(i) [Reserved]

(j) Windows and doors in motor homes, except for the windshield, forward-facing windows, and windows to the immediate right or left of the driver.

(k) Windows, except forward-facing windows, and doors in slide-in campers and pickup covers.

(l) For item 7 safety glazing only:

(1) Standee windows in buses.

(2) Interior partitions.

(3) Openings in the roof.

S5.1.1.4 The following locations are added to the lists specified in ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see §571.5) in which item 8 and item 9 safety glazing may be used:

(a)–(e) [Reserved]

(f) Windows and doors in motor homes, except for the windshield and windows to the immediate right or left of the driver.

(g) Windows and doors in slide-in campers and pickup covers.

S5.1.1.5 The phrase “readily removable” windows as defined in ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see §571.5), for the purposes of this standard, in buses having a GVWR of more than 4,536 kilograms (10,000 pounds), shall include pushout windows and windows mounted in emergency exits that can be manually pushed out of their location in the vehicle without the use of tools, regardless of whether such windows remain hinged at one side to the vehicle.

S5.1.1.6 Multipurpose passenger vehicles. Except as otherwise specifically provided by this standard, glazing for use in multipurpose passenger vehicles shall conform to the requirements for glazing for use in trucks as specified in ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see §571.5).

S5.1.1.7 Test No. 17 is deleted from the list of tests specified in ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see §571.5). For Item 5 glazing material and Test No. 18 is deleted from the lists of tests specified in ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980, for Item 3 and Item 9 glazing material.

S5.1.2 In addition to the glazing materials specified in ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see §571.5), materials conforming to S5.1.2.1, S5.1.2.2, S5.1.2.3, S5.1.2.4, S5.1.2.5, S5.1.2.6, S5.1.2.7, S5.1.2.8, and S5.1.2.11 may be used in the locations of motor vehicles specified in those sections.

S5.1.2.1 Item 11C—Safety Glazing Material for Use in Bullet Resistant Shields. Bullet resistant glazing that complies with Tests Nos. 2, 17, 19, 20, 21, 24, 27, 28, 29, 30 and 32 of ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see §571.5) and the labeling requirements of S5.1.2.5 may be used only in bullet resistant shields that can be removed from the motor vehicle easily for cleaning and maintenance. A bullet resistant shield may be used in areas requisite for driving visibility only if the combined parallel luminous transmittance with perpendicular incidence through both the shield and the permanent vehicle glazing is at least 60 percent.

S5.1.2.2 Item 12—Rigid Plastics. Safety plastics materials that comply with Tests Nos. 10, 13, 16, 19, 20, 21, and 24 of ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see §571.5), with the exception of the test for resistance to undiluted denatured alcohol Formula SD No. 30, and that comply with the labeling requirements of S5.1.2.5, may be used in a motor vehicle only in the following specified locations at levels not requisite for driving visibility.

(a) Window and doors in slide-in campers and pickup covers.

(b) Motorcycle windscreens below the intersection of a horizontal plane 380 millimeters vertically above the lowest seating position.

(c) Standee windows in buses.

(d) Interior partitions.

(e) Openings in the roof.

(f) Flexible curtains or readily removable windows or in ventilators used in conjunction with readily removable windows.

(g) Windows and doors in motor homes, except for the windshield and...
windows to the immediate right or left of the driver.

(h) Windows and doors in buses, except for the windshield and window to the immediate right and left of the driver.

S5.1.2.3 Item 13—Flexible plastics. Safety plastic materials that comply with Tests Nos. 16, 19, 20, 22, and 23 or 24 of ANSI Z26.1-1977, as amended by ANSI Z26.1a-1980 (both incorporated by reference, see §571.5), with the exception of the test for resistance to undiluted denatured alcohol Formula SD No. 30, and that comply with the labeling requirements of S5.1.2.5 may be used in the following specific locations at levels not requisite for driving visibility.

(a) Windows, except forward-facing windows, and doors in slide-in campers and pickup covers.

(b) Motorcycle windscreens below the intersection of a horizontal plane 380 millimeters vertically above the lowest standing position.

(c) Standee windows in buses.

(d) Interior partitions.

(e) Openings in the roof.

(f) Flexible curtains or readily removable windows or in ventilators used in conjunction with readily removable windows.

(g) Windows and doors in motor homes, except for the windshield, forward-facing windows, and windows to the immediate right or left of the driver.

S5.1.2.4 Item 14—Glass Plastics. Glass-plastic glazing materials that comply with the labeling requirements of S5.1.2.10 and Tests Nos. 1, 2, 3, 4, 9, 12, 15, 16, 17, 18, 19, 24, 26, and 28, as those tests are modified in S5.1.2.9 Test Procedures for Glass-Plastics, may be used anywhere in a motor vehicle except the windshield.

S5.1.2.6 Item 15B—Tempered Glass-Plastic for Use in All Positions in a Vehicle Except the Windshield. Glass-plastic glazing materials that comply with Tests Nos. 1, 2, 3, 4, 6, 7, 8, 16, 17, 18, 19, 24, and 28, as those tests are modified in S5.1.2.9 Test Procedures for Glass-Plastics, may be used anywhere in a motor vehicle except the windshield.

S5.1.2.7 Item 16A—Annealed Glass-Plastic for Use in All Positions in a Vehicle Not Requisite for Driving Visibility. Glass-plastic glazing materials that comply with Tests Nos. 3, 4, 9, 12, 16, 19, 24, and 28, as those tests are modified in S5.1.2.9 Test Procedures for Glass-Plastics, may be used in a motor vehicle in all locations not requisite for driving visibility.

S5.1.2.8 Item 16B—Tempered Glass-Plastic for Use in All Positions in a Vehicle Not Requisite for Driving Visibility. Glass-plastic glazing materials that comply with Tests Nos. 3, 4, 6, 7, 8, 16, 19, 24, and 28, as those tests are modified in S5.1.2.9 Test Procedures for Glass-Plastics, may be used in a motor vehicle in all locations not requisite for driving visibility.

S5.1.2.9—Test Procedures for Glass-Plastics. (a) Tests Nos. 6, 7, 8, 9, 12, 16, and 18, shall be conducted on the glass side of the specimen, i.e., the surface which would face the exterior of the vehicle. Tests Nos. 17, 19, 24, and 26 shall be conducted on the plastic side of the specimen, i.e., the surface which would face the interior of the vehicle. Test No. 15 should be conducted with the glass side of the glazing facing the illuminated box and the screen, respectively. For Test No. 19, add the following to the specified list: an aqueous solution of isopropanol and glycol ether solvents in concentration no greater than ten percent or less than five percent by weight and ammonium hydroxide no greater than five percent or less than one percent by weight, simulating typical commercial windshield cleaner.

(b) Glass-plastic specimens shall be exposed to an ambient air temperature of –40 degrees Celsius (plus or minus 5 degrees Celsius), for a period of 6 hours at the commencement of Test No. 28,
rather than at the initial temperature specified in that test. After testing, the glass-plastic specimens shall show no evidence of cracking, clouding, delaminating, or other evidence of deterioration.

(c) Glass-plastic specimens tested in accordance with Test No. 17 shall be carefully rinsed with distilled water following the abrasion procedure and wiped dry with lens paper. After this procedure, the arithmetic means of the percentage of light scattered by the three specimens as a result of abrasion shall not exceed 4.0 percent.

(d) Data obtained from Test No. 1 should be used when conducting Test No. 2.

e)(1) Except as provided in S5.1.2.9(e)(2), glass-plastic glazing specimens tested in accordance with Tests Nos. 9, 12, and 26 shall be clamped in the test fixture in Figure 1 of this standard in the manner shown in that figure. The clamping gasket shall be made of rubber 3 millimeters (mm) thick of hardness 50 IRHD (International Rubber Hardness Degrees), plus or minus five degrees. Movement of the test specimen, measured after the test, shall not exceed 2 mm at any point along the inside periphery of the fixture. Movement of the test specimen beyond the 2 mm limit shall be considered an incomplete test, not a test failure. A specimen used in such an incomplete test shall not be retested.

(2) At the option of the manufacturer, glass-plastic glazing specimens tested in accordance with Tests Nos. 9 and 12 may be tested unclamped. Such specimens shall be tested using the fixture in Figure 1 of the standard, including the upper frame (unclamped) which holds the specimen in place.

S5.1.2.10 Cleaning Instructions. (a) Each manufacturer of glazing materials designed to meet the requirements of S5.1.2.1, S5.1.2.2, S5.1.2.3, S5.1.2.4, S5.1.2.5, S5.1.2.6, S5.1.2.7, S5.1.2.8, or S5.1.2.11 shall affix a label, removable by hand without tools, to each item of glazing materials. The label shall identify the product involved, specify instructions and agents for cleaning the material that will minimize the loss of transparency, and instructions for removing frost and ice, and, at the option of the manufacturer, refer owners to the vehicle’s Owners Manual for more specific cleaning and other instructions.

(b) Each manufacturer of glazing materials designed to meet the requirements of paragraphs S5.1.2.4, S5.1.2.5, S5.1.2.6, S5.1.2.7, or S5.1.2.8 may permanently and indelibly mark the lower center of each item of such glazing material, in letters not less than 4.5 millimeters nor more than 6 millimeters high, the following words: GLASS PLASTIC MATERIAL—SEE OWNER’S MANUAL FOR CARE INSTRUCTIONS.

S5.1.2.11 Test Procedures for Item 4A—Rigid Plastic for Use in Side Windows Rearward of the “C” Pillar. (a) Glazing materials that comply with Tests Nos. 2, 10, 13, 16, 17, as that test is modified in S5.1.2.9(c) (on the interior side only), 17, as that test is modified in paragraph (b) of this section (on the exterior side only), 17, as that test is modified in S5.1.2.11(a)2(i) and (ii):

(i) Is in a vehicle whose rearmost designated seating position is forward-facing and cannot be adjusted so that it is side or rear-facing; and

(ii) The forwardmost point on its visible interior surface is rearward of the vertical transverse plane that passes through the shoulder reference point (as described in Figure 1 of Section 571.210 Seat belt assembly anchorages) of that rearmost seating position.

(b)(1) The initial maximum haze level shall not exceed 1.0 percent. The specimens are subjected to abrasion for 100 cycles and then carefully wiped with dry lens paper (or its equivalent). The light scattered by the abraded track is measured in accordance with Test 17. The arithmetic mean of the percentages of light scattered by the three specimens shall not exceed 4.0 percent after being subjected to abrasion for 100 cycles.

(2) The specimen is remounted on the specimen holder so that it rotates substantially in a plane and subjected to abrasion for an additional 400 cycles on the same track already abraded for 100 cycles.
cycles. Specimens are carefully wiped after abrasion with dry lens paper (or its equivalent). The light scattered by the abraded track is then measured as specified in Test 17. The arithmetic mean of the percentages of light scattered by the three specimens shall not exceed 10.0 percent after being subjected to abrasion for 500 cycles.

S5.2 Edges. In vehicles except schoolbuses, exposed edges shall be treated in accordance with SAE Recommended Practice J673a (1967) (incorporated by reference, see §571.5). In schoolbuses, exposed edges shall be banded.

S6.1 Each prime glazing material manufacturer, except as specified below, shall mark the glazing materials it manufactures in accordance with section 6 of ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see §571.5). The materials specified in S5.1.2.1, S5.1.2.2, S5.1.2.3, S5.1.2.4, S5.1.2.5, S5.1.2.6, S5.1.2.7, S5.1.2.8, and S5.1.2.11 shall be identified by the marks “AS 11C”, “AS 12”, “AS 13”, “AS 14”, “AS 15A”, “AS 15B”, “AS 16A”, “AS 16B”, and “AS 4”, respectively. A prime glazing material manufacturer is one which fabricates, laminates, or tempers the glazing material.

S6.2 Each prime glazing material manufacturer shall certify each piece of glazing material to which this standard applies that is designed as a component of any specific motor vehicle or camper, pursuant to section 114 of the National Traffic and Motor Vehicle Safety Act of 1966 (49 U.S.C. § 30115), by adding to the mark required by S6.1 in letters and numerals of the size specified in section 6 of ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see §571.5), the symbol “DOT” and a manufacturer’s code mark, which will be assigned by NHTSA on the written request of the manufacturer.

S6.3 Each prime glazing material manufacturer shall certify each piece of glazing material to which this standard applies that is designed to be cut into components for use in motor vehicles or items of motor vehicle equipment, pursuant to section 114 of the National Traffic and Motor Vehicle Safety Act (49 U.S.C. § 30115).

S6.4 Each manufacturer or distributor who cuts a section of glazing material to which this standard applies, for use in a motor vehicle or camper, shall mark that material in accordance with section 6 of ANSI Z26.1–1977, as amended by ANSI Z26.1a–1980 (both incorporated by reference, see §571.5).

S6.5 Each manufacturer or distributor who cuts a section of glazing material to which this standard applies, for use in a motor vehicle or camper, shall certify that his product complies with this standard in accordance with section 114 of the National Traffic and Motor Vehicle Safety Act (49 U.S.C. 30115).
§ 571.206 Standard No. 206; Door locks and door retention components.

S1. Scope and Purpose. This standard specifies requirements for vehicle door locks and door retention components, including latches, hinges, and other supporting means, to minimize the likelihood of occupants being ejected from a vehicle as a result of impact.

S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, and trucks, and buses with a gross vehicle weight rating (GVWR) of 4,536 kg or less.

S3. Definitions.
Auxiliary Door Latch is a latch equipped with a fully latched position, with or without a secondary latched position, and fitted to a door or door system equipped with a primary door latch system.

Auxiliary Door Latch System consists of door latches and strikers other than those associated with the primary door latch system.

Back Door is a door or door system on the back end of a motor vehicle through which passengers can enter or depart the vehicle or cargo can be loaded or unloaded. It does not include:

(a) A trunk lid; or
(b) A door or window composed entirely of glazing material and whose latches and/or hinge systems are attached directly to the glazing material.

Body Member is that portion of the hinge normally affixed to the body structure.

Door Closure Warning System is a system that will activate a visual signal when a door latch system is not in its fully latched position and the vehicle ignition is activated.

Door Hinge System is one or more hinges used to support a door.

Door Latch System consists of latches and strikers installed on a door system.

Door Member is that portion of the hinge normally affixed to the door structure and constituting the swinging member.

Door System is the door, latch, striker, hinges, sliding track combinations and other door retention components on a door and its surrounding doorframe. The door system of a double door includes both doors.

Double Door is a system of two doors where the front door or wing door opens first and connects to the rear door or bolted door, which opens second.

Folding Door is a movable barrier, which will close off an entranceway to a bus, multipurpose passenger vehicle or truck, consisting of two or more hinge panels that swing, slide, or rotate; does not have a striker and latch assembly.

Fork-bolt is the part of the latch that engages and retains the striker when in a latched position.

Fork-bolt Opening Direction is the direction opposite to that in which the striker enters the latch to engage the fork-bolt.

Fully Latched Position is the coupling condition of the latch that retains the door in a completely closed position.

Hinge is a device system used to position the door relative to the body structure and control the path of the door swing for passenger ingress and egress.

Hinge Pin is that portion of the hinge normally interconnecting the body and door members and establishing the swing axis.

Latch is a device employed to maintain the door in a closed position relative to the vehicle body with provisions for deliberate release (or operation).

Primary Door Latch is a latch equipped with both a fully latched position and a secondary latched position and is designated as a “primary door latch” by the manufacturer.

Primary Door Latch System consists of a primary door latch(s) and a striker(s).

Secondary Latched Position refers to the coupling condition of the latch that retains the door in a partially closed position.

Side Front Door is a door that, in a side view, has 50 percent or more of its opening area forward of the rearmost point on the driver’s seat back, when the seat back is adjusted to its most vertical and rearward position.

Side Rear Door is a door that, in a side view, has 50 percent or more of its opening area to the rear of the rearmost point on the driver’s seat back, when the driver’s seat is adjusted to its most vertical and rearward position.

Striker is a device with which the latch engages to maintain the door in the fully latched or secondary latched position.

Trunk Lid is a movable body panel that provides access from outside the vehicle to a space wholly partitioned from the occupant compartment by a permanently attached partition or fixed or fold-down seat back.

S4. Requirements. The requirements apply to all side and back doors, that lead directly into a compartment that
§ 571.206 49 CFR Ch. V (10–1–16 Edition) contains one or more seating accommodations and the associated door components, except for those on folding doors, roll-up doors, detachable doors, bus doors used only for emergency egress purposes and labeled accordingly and on bus doors to accommodate a permanently attached wheelchair lift system that when the device is in the retracted position, the lift platform retracts to a vertical orientation parallel to and in close proximity with the interior surface of the lift door and in that position, the platform completely covers the doorway opening, has fixed attachments to the vehicle and provides a barricade to the doorway. The bus wheelchair lift door must be linked to an alarm system consisting of either a flashing visible signal located in the driver’s compartment or an alarm audible to the driver that is activated when the door is not fully closed and the vehicle ignition is activated.

S4.1 Hinged Doors
S4.1.1 Primary and Auxiliary Door Latch Systems. Each hinged door system shall be equipped with at least one primary door latch system. By the time a vehicle is certified a manufacturer shall designate the door latch system(s) that is the “primary door latch system(s).” Upon certification, a manufacturer may not thereafter alter the designation of a primary door latch system. Each manufacturer shall, upon request from the National Highway Traffic Safety Administration, provide information regarding such designation.

S4.1.1.1 Load Test One. (a) Each primary door latch system and auxiliary door latch system, when in the fully latched position, shall not separate when a load of 11,000 N is applied in the direction perpendicular to the face of the latch such that the latch and the striker anchorage are not compressed against each other, when tested in accordance with S5.1.1.1.

(b) When in the secondary latched position, the primary door latch system shall not separate when a load of 4,500 N is applied in the same direction specified in paragraph (a) of this section when tested in accordance with S5.1.1.2.

S4.1.1.2 Load Test Two. (a) Each primary door latch system and auxiliary door latch system, when in the fully latched position, shall not separate when a load of 9,000 N is applied in the fork-bolt opening direction and parallel to the face of the latch, when tested in accordance with S5.1.1.2.

(b) When in the secondary latched position, the primary door latch system shall not separate when a load of 4,500 N is applied in the same direction specified in paragraph (a) of this section when tested in accordance with S5.1.1.2.

S4.1.1.3 Load Test Three. (Applicable only to back doors that open in a vertical direction). Each primary door latch system on back doors, when in the fully latched position, shall not separate when a load of 9,000 N is applied in a direction orthogonal to the directions specified in S4.1.1.1 and S4.1.1.2 when tested in accordance with S5.1.1.3.

S4.1.1.4 Inertial Load. Each primary door latch system and auxiliary door latch system shall meet either the dynamic requirements specified in paragraphs (a) and (b) of S4.1.1.4 or the calculation of inertial load resistance specified in paragraph (c) of S4.1.1.4.

(a) Each primary door latch and auxiliary door latch on each hinged door shall not disengage from the fully latched position when an inertia load is applied to the door latch system, including the latch and its activation device, in the directions parallel to the vehicle’s longitudinal and transverse axes with the locking device disengaged, when tested as specified in S5.1.1.4(b).

(b) Each primary door latch and auxiliary door latch on each hinged back door shall also not disengage from the fully latched position when an inertia load is applied to the door latch system, including the latch and its activation device, in the direction parallel to the vehicle’s vertical axis with the locking device disengaged, when tested as specified in S5.1.1.4(b).

(c) Each component or subassembly is calculated for its minimum inertial load resistance in a particular direction. The combined resistance to the unlatching operation must assure that
the door latch system, when properly assembled in the vehicle door, will remain latched when subjected to an inertial load of 30 g in the vehicle directions specified in paragraph (a) of this section or paragraph (b) of this section, as applicable, when calculated in accordance with §5.1.1.4 (a).

S4.1.2 Door Hinges.

S4.1.2.1 When tested in accordance with §5.1.2, each door hinge system shall:

(a) Support the door,
(b) Not separate when a longitudinal load of 11,000 N is applied,
(c) Not separate when a transverse load of 9,000 N is applied, and
(d) For back doors,
 (1) Not separate when a load of 11,000 N is applied perpendicular to the hinge face plate (longitudinal load test) such that the hinge plates are not compressed against each other (Load Test One),
 (2) Not separate when a load of 9,000 N is applied perpendicular to the axis of the hinge pin and parallel to the hinge face plate (transverse load test) such that the hinge plates are not compressed against each other (Load Test Two), and
 (3) Not separate when a load of 9,000 N is applied in the direction of the axis of the hinge pin (Load Test Three—only for back doors that open in a vertical direction).

S4.1.2.2 If a single hinge within the hinge system is tested instead of the entire hinge system, the hinge must bear a load proportional to the total number of hinges in the hinge system. (For example, an individual hinge in a two-hinge system must be capable of withstanding 50% of the load requirements of the total system.)

S4.1.2.3 On side doors with rear mounted hinges that can be operated independently of other doors,

(a) The interior door handle shall be inoperative when the speed of the vehicle is greater than or equal to 4 km/h, and
(b) A door closure warning system shall be provided for those doors. The door closure warning system shall be located where it can be clearly seen by the driver.

S4.1.3.2 Side Rear Door Locks. In passenger cars and multipurpose passenger vehicles, when the locking mechanism is engaged both the outside and inside door handles or other latch release controls shall be inoperative.

S4.2 Sliding Side Doors.

S4.2.1 Latch System. Each sliding door system shall be equipped with either:

(a) At least one primary door latch system, or
(b) A door latch system with a fully latched position and a door closure warning system. The door closure warning system shall be located where it can be clearly seen by the driver. Upon certification a manufacturer may not thereafter alter the designation of a primary latch. Each manufacturer shall, upon request from the National Highway Traffic Safety Administration, provide information regarding such designation.

S4.2.1.1 Load Test One.

(a) At least one door latch system, when in the fully latched position, shall not separate when a load of 11,000 N is applied in the direction perpendicular to the hinge face plate (longitudinal load test) such that the latch and the striker anchor- age are not compressed against each other, when tested in accordance with §5.2.1.1.

(b) In the case of a primary door latch system, when in the secondary latched position, the door latch system shall not separate when a load of 4,500 N is applied in the same direction specified in paragraph (a) of this section when tested in accordance with §5.2.1.1.

S4.2.1.2 Load Test Two.

(a) At least one door latch system, when in the fully latched position, shall not separate when a load of 9,000 N is applied in the fork-bolt opening direction and parallel to the face of the latch when tested in accordance with §5.2.1.2.

(b) In the case of a primary door latch system, when in the secondary latched position, the door latch system shall not separate when a load of 4,500 N is applied in the same direction specified in paragraph (a) of this section when tested in accordance with §5.2.1.2.

S4.2.1.3 Inertial Load. Each door latch system certified as meeting the requirements of §4.2.1.1 and §4.2.1.2
§ 571.206

49 CFR Ch. V (10–1–16 Edition)

shall meet either the dynamic requirements specified in paragraph (a) of this section or the calculation of inertial load resistance specified in paragraph (b) of this section.

(a) The door latch system shall not disengage from the fully latched position when an inertial load is applied to the door latch system, including the latch and its activation mechanism, in the directions parallel to the vehicle’s longitudinal and transversal axes with the locking mechanism disengaged, and when tested in accordance with S5.1.1.4(b).

(b) The minimum inertial load resistance can be calculated for each component or subassembly. Their combined resistance to the unlatching operation must assure that the door latch system, when properly assembled in the vehicle door, will remain latched when subjected to an inertia load of 30 g in the vehicle directions specified in paragraph (a) of this section, when calculated in accordance with S5.1.1.4(a).

S4.2.2 Door System.

S4.2.2.1 The track and slide combination or other supporting means for each sliding door, while in the closed fully latched position, shall not separate from the door frame when a total force of 18,000 N along the vehicle transverse axis is applied to the door as specified in S5.2.2.

S4.3 Door Locks. Each door shall be equipped with at least one locking device which, when engaged, shall prevent operation of the exterior door handle or other exterior latch release control and which has an operating means and a lock release/engagement device located within the interior of the vehicle.

S4.3.1 Rear side doors. Each rear side door shall be equipped with at least one locking device which has a lock release/engagement mechanism located within the interior of the vehicle and readily accessible to the driver of the vehicle or an occupant seated adjacent to the door, and which, when engaged, prevents operation of the interior door handle or other interior latch release control and requires separate actions to unlock the door and operate the interior door handle or other interior latch release control.

S4.3.2 Back doors. Each back door equipped with an interior door handle or other interior latch release control, shall be equipped with at least one locking device that meets the requirements of S4.3.1.

S5 Test Procedures.

S5.1 Hinged Doors.

S5.1.1 Primary and Auxiliary Door Latches.

S5.1.1.1 Load Test One Force Application. The test procedures for S4.1.1.1 and S4.2.1.1 are as follows:

(a) Fully latched position.

(1) Attach the test fixture shown in Figure 2 to the mounting provisions of the latch and striker. Align the direction of engagement parallel to the linkage of the fixture. Mount the fixture with latch and striker in the fully latched position in the test machine so as to apply a load perpendicular to the face of the latch.

(2) Locate weights so as to apply a 900 N load tending to separate the latch and striker in the direction of the latch opening.

(3) Apply the test load, in the direction specified in S4.1.1.1 and Figure 5, at a rate not to exceed 5 mm/min until the required load has been achieved. Record the maximum load achieved.

(b) Secondary Latched Position.

(1) Attach the test fixture shown in Figure 2 to the mounting provisions of
the latch and striker. Align the direction of engagement parallel to the linkage of the fixture. Mount the fixture with latch and striker in the secondary position in the test machine so as to apply a load perpendicular to the face of the latch.

(2) Locate weights so as to apply a 900 N load tending to separate the latch and striker in the direction of the latch opening.

(3) Apply the test load, in the direction specified in S4.1.1.1 and Figure 5, at a rate not to exceed 5 mm/min until the required load has been achieved. Record maximum load achieved.

(4) The test plate to which the door latch is mounted will have a striker cut-out configuration similar to the environment in which the door latch will be mounted on normal vehicle doors.

S5.1.1.2 Load Test Two Force Application. The test procedures for S4.1.1.2 and S4.2.1.2 are as follows:

(a) Fully Latched Position.

(1) Adapt the test fixture shown in Figure 3 to the mounting provisions of the latch and striker. Mount the fixture with latch and striker in the fully latched position in the test machine so as to apply a load in the direction of latch opening.

(2) Apply the test load, in the direction specified in S4.1.1.2 and Figure 5, at a rate not to exceed 5 mm/min until the required load has been achieved. Record maximum load achieved.

(b) Secondary Latched Position.

(1) Adapt the test fixture shown in Figure 3 to the mounting provisions of the latch and striker. Mount the fixture with latch and striker in the secondary latched position in the test machine so as to apply a load in the direction of latch opening.

(2) Apply the test load, in the direction specified in S4.1.1.2 and Figure 5, at a rate not to exceed 5 mm/min until the required load has been achieved. Record maximum load achieved.

S5.1.1.3 Load Test Three Force Application. The test procedures for S4.1.1.3 are as follows:

(a) Adapt the test fixture shown in Figure 4 to the mounting provisions of the latch and striker. Mount the fixture with latch and striker in the fully latched position in the test machine so as to apply a load in the direction specified in S4.1.1.3 and Figure 5.

(b) Apply the test load, in the direction specified in S4.1.1.3 and Figure 5, at a rate not to exceed 5 mm/min until the required load has been achieved. Record the maximum load required.

S5.1.1.4 Inertial Force Application. The test procedures for S4.1.1.4 and S4.2.1.3 are as follows:

(a) Calculation. The calculation is performed in accordance with paragraph 6 of SAE Recommended Practice J839 (1991) (incorporated by reference, see §571.5).

(b) Dynamic Test. The dynamic inertial force application is tested according to the setup specified in paragraph (1) or (2) of this section.

(1) Test Setup and Directions for Full Vehicle Test.

(i) Test Setup. (A) Rigidly secure the full vehicle to an acceleration device that, when accelerated together, will assure that all points on the crash pulse curve are within the corridor defined in Table 1 and Figure 6.

(B) Install the equipment used to record door opening (doors may be tethered to avoid damaging the recording equipment).

(C) Close the door(s) to be tested and ensure that the door latch(es) is in the fully-latched position, that the door(s) is unlocked, and that all windows, if provided, on the door(s) are closed.

(ii) Test Directions. (See Figure 7)

(A) Longitudinal Setup 1. Orient the vehicle so that its longitudinal axis is aligned with the axis of the acceleration device, simulating a frontal impact.

(B) Longitudinal Setup 2. Orient the vehicle so that its longitudinal axis is aligned with the axis of the acceleration device, simulating a rear impact.

(C) Transverse Setup 1. Orient the vehicle so that its transverse axis is aligned with the axis of the acceleration device, simulating a driver-side impact.

(D) Transverse Setup 2. (Only for vehicles having different door arrangements on each side.) Orient the vehicle so that its transverse axis is aligned with the axis of the acceleration device, simulating a side impact in the
§ 571.206

49 CFR Ch. V (10–1–16 Edition)

direction opposite to that described in b(1)(i)(C) of this paragraph.

(2) Test Setup and Directions for Door Test.

(i) Test Setup.

(A) Mount the door assemblies, consisting of at least the door latch(es), exterior door handle(s) with mechanical latch operation, interior door opening lever(s), and locking device(s), either separately or combined to a test fixture. Each door and striker is mounted to the test fixture to correspond to its orientation on the vehicle and to the directions specified in b(1)(ii) of this paragraph.

(B) Mount the test fixture to the acceleration device, and install the equipment used to record door opening.

(C) Ensure that the door latch is in the fully-latched position, that the door is unlocked (doors may be tethered to avoid damaging the recording equipment), and that any windows, if provided, are closed.

(ii) Test Directions. (See Figure 7)

(A) Longitudinal Setup 1. Orient the door subsystem(s) on the acceleration device in the direction of a frontal impact.

(B) Longitudinal Setup 2. Orient the door subsystem(s) on the acceleration device in the direction of a rear impact.

(C) Transverse Setup 1. Orient the door subsystem(s) on the acceleration device in the direction of a driver-side impact.

(D) Transverse Setup 2. Orient the door subsystem(s) on the acceleration device in the direction opposite to that described in (b)(2)(ii)(C) of this paragraph.

(E) Vertical Setup 1 (applicable only to back doors that open in a vertical direction). Orient the door subsystem(s) on the acceleration device so that its vertical axis (when mounted in the vehicle) is aligned with the axis of the acceleration device, simulating a rollover impact where the force is applied in the direction opposite to that described in (b)(2)(ii)(E) of this paragraph.

(F) Vertical Setup 2 (applicable only to back doors that open in a vertical direction). Orient the door subsystem(s) on the acceleration device so that its vertical axis (when mounted in the vehicle) is aligned with the axis of the acceleration device, simulating a rollover impact where the force is applied in the direction opposite to that described in (b)(2)(ii)(E) of this paragraph.

(3) Test Operation.

(i) The acceleration device platform shall be instrumented with an accelerometer and data processing system that conforms to the requirements specified in SAE Recommended Practice J211–1 DEC2003 (incorporated by reference, see §571.5) Channel Class 60. The accelerometer sensitive axis is parallel to the direction of test platform travel.

(ii) Maintaining a minimum acceleration level of 30 g for a period of at least 30 ms, while keeping the recorded acceleration within the pulse corridor defined in Table 1 and Figure 6, accelerate the acceleration device in the following directions:

(B) For Door Tests, in the directions specified in S5.1.1.4(b)(2)(ii)(A) through S5.1.1.4(b)(2)(ii)(F).

(iii) Check recording device for door opening and/or closure during the test.

(iv) If at any point in time, the pulse exceeds 36 g and the test specifications are met, the test shall be considered valid.

S5.1.2 Door Hinges. The test procedures for S4.1.2 are as follows:

S5.1.2.1 Multiple Hinge Evaluation;
S5.1.2.1 Multiple Hinge Evaluation;
S5.1.2.1.1 Longitudinal Load Test.

(a) Attach the test fixture illustrated in Figure 8 to the mounting provisions of the hinge system. Hinge attitude is configured to simulate vehicle position (door fully closed) relative to the hinge centerline. For test purposes, the distance between the extreme end of one hinge in the system to the extreme end of another hinge in the system is to be set at 406 mm ± 4 mm. The load is to be applied equidistant between the linear center of the engaged portions of the hinge pins and through the centerline of the hinge pin in the longitudinal vehicle direction (see Figure 8).

(b) Apply the test load at a rate not to exceed 5 mm/min until the required
load has been achieved. Record maximum load achieved.

S5.1.2.1.2 Transverse Load Test
(a) Attach the test fixture shown in Figure 8 to the mounting provisions of the hinge system. Hinge attitude is configured to simulate vehicle position (door fully closed) relative to the hinge centerline. For test purposes, the distance between the extreme end of one hinge in the system to the extreme opposite end of another hinge in the system is to be set at 406 mm ±4 mm. The load is to be applied equidistant between the linear center of the engaged portions of the hinge pins and through the centerline of the hinge pin in the transverse vehicle direction (see Figure 8).

(b) Apply the test load at a rate not to exceed 5 mm/min until the required load has been achieved. Record maximum load achieved.

S5.1.2.2 Back Door Hinge Load Test
(a) Load Test One
(1) Attach the test fixture illustrated in Figure 8 to the mounting provisions of the hinge system. Hinge attitude is configured to simulate vehicle position (door fully closed) relative to the hinge centerline. For test purposes, the distance between the extreme end of one hinge system in the system to the extreme opposite end of another hinge system is to be set at 406 ±4 mm. The load is to be applied equidistant between the linear center of the engaged portions of the hinge pins and through the centerline of the hinge pin, and as specified in §4.1.2.1(d)(1). (See Figure 9).

(2) Apply the test load at a rate not to exceed 5 mm/min until the required load has been achieved. Failure consists of a separation of either hinge. Record the maximum load achieved.

(b) Load Test Two
(1) Attach the test fixture illustrated in Figure 8 to the mounting provisions of the hinge system. Hinge attitude is configured to simulate vehicle position (door fully closed) relative to the hinge centerline. For test purposes, the distance between the extreme end of one hinge system in the system to the extreme opposite end of another hinge system is to be set at 406 ±4 mm. The load is to be applied through the centerline of the hinge pin, and as specified in §4.1.2.1(d)(3). (See Figure 9).

(2) Apply the test load at a rate not to exceed 5 mm/min until the required load has been achieved. Failure consists of a separation of either hinge. Record the maximum load achieved.

S5.1.2.3 Single Hinge Evaluation. Individual hinges of a hinge system are tested in accordance with the procedures below:
(a) Longitudinal Load. Attach the test fixture illustrated in Figure 8 to the mounting provisions of the hinge. Hinge attitude is configured to simulate the vehicle position (door fully closed) relative to the hinge centerline. For test purposes, the load is to be applied equidistant between the linear center of the engaged portions of the hinge pins and through the centerline of the hinge pin in the longitudinal vehicle direction. Apply the test load at a rate not to exceed 5 mm/min until the required load has been achieved. Failure consists of a separation of either hinge. Record maximum load achieved.

(b) Transverse Load. Attach the test fixture illustrated in Figure 8 to the mounting provisions of the hinge. Hinge attitude is configured to simulate the vehicle position (door fully closed) relative to the hinge centerline. For test purposes, the load is to be applied equidistant between the linear center of the engaged portions of the hinge pin and through the centerline of the hinge pin in the transverse vehicle
direction. Apply the test load at a rate not to exceed 5 mm/min until the required load has been achieved. Failure consists of a separation of either hinge. Record maximum load achieved.

(c) Back Door Hinge Load Tests.

(1) Load Test One. Attach the test fixture illustrated in Figure 8 to the mounting provisions of the hinge. Hinge attitude is configured to simulate the vehicle position (door fully closed) relative to the hinge centerline. For test purposes, the load is to be applied equidistant between the linear center of the engaged portions of the hinge pin and through the centerline of the hinge pin, and as specified in S4.1.2.1(d)(1). (See Figure 9). Apply the test load at a rate not to exceed 5 mm/min until the required load has been achieved. Failure consists of a separation of either hinge. Record maximum load achieved.

(2) Load Test Two. Attach the test fixture illustrated in Figure 8 to the mounting provisions of the hinge. Hinge attitude is configured to simulate the vehicle position (door fully closed) relative to the hinge centerline. For test purposes, the load is to be applied equidistant between the linear center of the engaged portions of the hinge pin and through the centerline of the hinge pin, and as specified in S4.1.2.1(d)(2). (See Figure 9). Apply the test load at a rate not to exceed 5 mm/min until the required load has been achieved. Failure consists of a separation of either hinge. Record maximum load achieved.

(3) Load Test Three. Attach the test fixture illustrated in Figure 8 to the mounting provisions of the hinge. Hinge attitude is configured to simulate the vehicle position (door fully closed) relative to the hinge centerline. For test purposes, the load is to be applied through the centerline of the hinge pin, and as specified in S4.1.2.1(d)(3). (See Figure 9). Apply the test load at a rate not to exceed 5 mm/min until the required load has been achieved. Failure consists of a separation of either hinge. Record maximum load achieved.

S5.1.2.4 For piano-type hinges, the hinge spacing requirements are not applicable and arrangement of the test fixture is altered so that the test forces are applied to the complete hinge.

S5.2 Sliding Side Doors.

S5.2.1 Door Latches.

S5.2.1.1 Load Test One Force Application. The requirements of S4.2.1.1 are tested in accordance with the procedures specified in S5.1.1.1.

S5.2.1.2 Load Test Two Force Application. The requirements of S4.2.1.2 are tested in accordance with the procedures specified in S5.1.1.2.

S5.2.1.3 [Reserved]

S5.2.1.4 [Reserved]

S5.2.2 Door System. The test procedures for S4.2.2 are as follows:

S5.2.2.1 Tests are conducted using a full vehicle with the sliding door and its retention components.

S5.2.2.2 Tests are conducted using a full vehicle with the sliding door and its retention components.

S5.2.2.4 The test is conducted using two force application devices capable of applying the outward transverse forces specified in S5.2.2.4. The test setup is shown in Figure 10. The force application system shall include the following:

(a) Two force application plates,
(b) Two force application devices capable of applying the outward transverse load requirements for a minimum displacement of 300 mm.
(c) Two load cells of sufficient capacity to measure the applied loads specified in S5.2.2.4.
(d) Two linear displacement measurement devices required for measuring force application device displacement during the test.

S5.2.2.5 Equipment to measure for a 100 mm separation as specified in S4.2.2.2(a), while respecting all relevant safety and health requirements.

S5.2.2.3 Test Setup.

(a) Remove all interior trim and decorative components from the sliding door assembly.
(b) Remove seats and any interior components that may interfere with the mounting and operation of the test equipment and all pillar trim and any non-structural components that overlap the door and cause improper placement of the force application plates.
(c) Each force application device and associated support structure is rigidly
fixed on a horizontal surface on the vehicle floor, while applying the loads.
(d) Determine the forward and aft edge of the sliding door, or its adjoining vehicle structure, that contains a latch/striker.
(e) Close the sliding door, ensuring that all door retention components are fully engaged.
(f) For any tested door edge that contains one latch/striker, the following set-up procedures are used:
(1)(i) The force application plate is 150 mm in length, 50 mm in width, and at least 15 mm in thickness. The plate edges are rounded to a radius of 6 mm ±1 mm.
(1)(ii) The plates are fixed perpendicular to the force application devices and move in the transverse direction. For alignment purposes, each plate is attached to the application device in a manner that allows for rotation about the vehicle’s y-axis. In this manner, the face of each plate remains parallel to the vertical plane which passes through the vehicle’s longitudinal centerline.
(2) Place the force application device and force application plate against the door so that the applied force is perpendicular to the vertical longitudinal plane that passes through the vehicle’s longitudinal centerline, and vertically centered on the door-mounted portion of the latch/striker.
(3) The force application plate is positioned such that the long edge of the plate is as close to the interior edge of the door as possible, but not such that the forward edge of forward plate and the rear edge of the rear plate are more than 12.5 mm from the respective interior edges.
(g) For any tested door edge that contains more than one latch/striker, the following setup procedures are used:
(1)(i) The force application plate is 300 mm in length, 50 mm in width, and at least 15 mm in thickness. The plate edges are rounded to a radius of 6 mm ±1 mm.
(1)(ii) The plates are fixed perpendicular to the force application devices and move in the transverse direction. For alignment purposes, each plate is attached to the application device in a manner that allows for rotation about the vehicle’s y-axis. In this manner, the face of each plate remains parallel to the vertical plane which passes through the vehicle’s longitudinal centerline.
(2) Place the force application device and force application plate against the door so that the applied force is perpendicular to the vertical longitudinal plane that passes through the vehicle’s longitudinal centerline, and vertically centered on a point mid-way between the outermost edges of the latch/striker assemblies.
(3) The force application plate is positioned such that the long edge of the plate is as close to the interior edge of the door as possible, but not such that the forward edge of forward plate and the rear edge of the rear plate are more than 12.5 mm from the respective interior edges.
(h) For any tested door edge that does not contain at least one latch/striker, the following set-up procedures are used:
(1)(i) The force application plate is 300 mm in length, 50 mm in width, and at least 15 mm in thickness. The plate edges are rounded to a radius of 6 mm ±1 mm.
(1)(ii) The plates are fixed perpendicular to the force application devices and move in the transverse direction. For alignment purposes, each plate is attached to the application device in a manner that allows for rotation about the vehicle’s y-axis. In this manner, the face of each plate remains parallel to the vertical plane which passes through the vehicle’s longitudinal centerline.
(2) Place the force application device and force application plate against the door so that the applied force is perpendicular to the vertical longitudinal plane that passes through the vehicle’s longitudinal centerline, and vertically centered on a point mid-way along the length of the door edge ensuring that the loading device avoids contact with the window glazing.
(3) The force application plate is positioned such that the long edge of the plate is as close to the interior edge of the door as possible, but not such that the forward edge of forward plate and the rear edge of the rear plate are more
than 12.5 mm from the respective interior edges.

(i) The door is unlocked. No extra fixtures or components may be welded or affixed to the sliding door or any of its components.

(j) Place the load application structure so that the force application plates are in contact with the interior of the sliding door.

(k) Apply a preload of 500 N to each actuator and “zero” the displacement measuring device.

§ 571.206

S5.2.2.4 Test Procedure.

(a) Increase the force on each force application device as linearly as practicable until a force of 9,000 N is achieved on each force application device in not less than 90 seconds and not more than 120 seconds, or until either force application device reaches a total displacement of 300 mm.

(b) If one of the force application devices reaches the target force of 9,000 N prior to the other, maintain the 9,000 N force with that force application device until the second force application device reaches the 9,000 N force.

(c) Once both force application devices have achieved 9,000 N each hold the resulting load.

(d) Maintain each force application device load as specified in paragraph (c) and within 30 seconds measure the separation between the exterior edge of the doorframe and the interior of the door along the perimeter of the door.

S5.3 Sliding Side Doors. Compliance with S4.3 shall be demonstrated by applying an outward transverse load of 8,900 Newtons (2,000 pounds) to the load-bearing members at the opposite edges of the door (17,800 Newtons (4,000 pounds) total). The demonstration may be performed either in the vehicle or with the door retention components in a bench test fixture.
FIGURE 1. EVALUATION OF SLIDING DOOR GAP SEPARATION

Top View – Pre Test

Top View – During Force Application

Interior of Vehicle

Door Frame

Door

Exterior of Vehicle

100 mm

100 mm

100 mm

100 mm

Unobstructed passage from vehicle exterior to interior throughout at any point
FIGURE 3 – DOOR LATCH – TENSILE TESTING FIXTURE FOR LOAD TEST 2

PULL
APPLIED LOAD IN THE FORK-BOLT OPENING DIRECTION (LATCH OPENING). PULL TO BE IN-LINE WITH CONTACTING SURFACES OF THE LATCH AND STRIKER.

DOOR LATCH ASSEMBLY

ADAPT THE TEST FIXTURE TO THE MOUNTING PROVISIONS OF THE LATCH AND STRIKER.

PULL

STRIKER ASSY.
FIGURE 4 – DOOR LATCH – TENSILE TESTING FIXTURE FOR LOAD TEST 3 (BACK DOORS ONLY)

APPLIED LOAD TO BE ORTHOGONAL TO PREVIOUS TWO LOAD CASES

DOOR LATCH ASSEMBLY

STRIKER ASSY.

ADAPT THE TEST FIXTURE TO THE MOUNTING PROVISIONS OF THE LATCH AND STRIKER.

<table>
<thead>
<tr>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>Time (ms)</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
</tr>
<tr>
<td>D</td>
<td>100</td>
</tr>
</tbody>
</table>

ACCELERATION PULSE CORRIDOR TABLE 1
FIGURE 5 – DOOR LATCH STATIC LOAD TEST DIRECTIONS

LOAD TEST 2

LOAD TEST 1

LOAD TEST 3

LOAD TEST 3
FIGURE 6 – ACCELERATION PULSE
FIGURE 7 - VEHICLE COORDINATE REFERENCE SYSTEM FOR INERTIAL TESTING

X = longitudinal direction
Y = transverse direction
Z = vertical direction
FIGURE 8 – HINGE STATIC TEST FIXTURES

- Door Hinge
- Hinge Assembly
- Lower Hinge Assembly
- Upper Hinge Assembly
- Transverse Load
- Longitudinal Load
- Pull

200 mm
406 mm (16 in.)
FIGURE 9 – HINGE STATIC TEST LOAD DIRECTIONS FOR BACK DOORS

NOTE: LOAD TEST THREE
ONLY FOR BACK DOORS THAT
OPEN UPWARDS
§ 571.207 Standard No. 207; Seating systems.

S1. Purpose and scope. This standard establishes requirements for seats, their attachment assemblies, and their installation to minimize the possibility of their failure by forces acting on them as a result of vehicle impact.

S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks and busses.

S3. Definitions. Occupant seat means a seat that provides at least one designated seating position. Seat adjuster means the part of the seat that provides forward and rearward positioning of the seat bench and back, and/or rotation around a vertical
axis, including any fixed portion, such as a seat track. In the case of a seat equipped with seat adjusters at different levels, the term means the uppermost seat adjuster.

S4. Requirements.

S4.1 Driver’s seat. Each vehicle shall have an occupant seat for the driver.

S4.2. General performance requirements. When tested in accordance with S5, each occupant seat shall withstand the following forces, in newtons, except for: a side-facing seat; a passenger seat on a bus other than a school bus; a passenger seat on a school bus with a GVWR greater than 4,536 kilograms (10,000 pounds); and, a passenger seat on a school bus with a GVWR less than or equal to 4,536 kg manufactured before October 21, 2011.

(a) In any position to which it can be adjusted—20 times the mass of the seat in kilograms multiplied by 9.8 applied in a forward longitudinal direction;

(b) In any position to which it can be adjusted—20 times the mass of the seat in kilograms multiplied by 9.8 applied in a rearward longitudinal direction;

(c) For a seat belt assembly attached to the seat—the force specified in paragraph (a), if it is a forward facing seat, or paragraph (b), if it is a rearward facing seat, in each case applied simultaneously with the forces imposed on the seat by the seat belt assembly when it is loaded in accordance with S4.2 of §571.210; and

(d) In its rearmost position—a force that produces a 373 newton meters moment about the seating reference point for each designated seating position that the seat provides, applied to the upper cross-member of the seat back or the upper seat back, in a rearward longitudinal direction for forward-facing seats and in a forward longitudinal direction for rearward-facing seats.

S4.2.1 Seat adjustment. Except for vertical movement of nonlocking suspension type occupant seats in trucks or buses, each seat shall remain in its adjusted position when tested in accordance with the test procedures specified in S5.

S4.3. Restraining device for hinged or folding seats or seat backs. Except for a passenger seat in a bus or a seat having a back that is adjustable only for the comfort of its occupants, a hinged or folding occupant seat or occupant seat back shall—

(a) Be equipped with a self-locking device for restraining the hinged or folding seat or seat back, and

(b) If there are any designated seating positions or auxiliary seating accommodations behind the seat, either immediately to the rear or to the sides, be equipped with a control for releasing that restraining device.

S4.3.1 Accessibility of release control. If there is a designated seating position immediately behind a seat equipped with a restraining device, the control for releasing the device shall be readily accessible to the occupant of the seat equipped with the device and, if access to the control is required in order to exit from the vehicle, to the occupant of the designated seating position immediately behind the seat.

S4.3.2 Performance of restraining device.

S4.3.2.1 Static force. (a) Once engaged, the restraining device for a forward-facing seat shall not release or fail when a forward longitudinal force, in newtons, equal to 20 times the mass of the hinged or folding portion of the seat in kilograms multiplied by 9.8 is applied through the center of gravity of that portion of the seat.

(b) Once engaged, the restraining device for a rearward-facing seat shall not release or fail when a rearward longitudinal force, in newtons, equal to 8 times the mass of the hinged or folding portion of the seat in kilograms multiplied by 9.8 is applied through the center of gravity of that portion of the seat.

S4.3.2.2 Acceleration. Once engaged, the restraining device shall not release or fail when the device is subjected to an acceleration of 20 g., in the longitudinal direction opposite to that in which the seat folds.

S4.4 Labeling. Seats not designated for occupancy while the vehicle is in motion shall be conspicuously labeled to that effect.

S5. Test procedures.

S5.1 Apply the forces specified in S4.2(a) and S4.2(b) as follows:

S5.1.1 For a seat whose seat back and seat bench are attached to the vehicle by the same attachments. (a) For a seat
§ 571.207

whose seat back and seat bench are attached to the vehicle by the same attachments and whose height is adjustable, the loads are applied when the seat is in its highest adjustment position in accordance with the procedure or procedures specified in §5.1.1(a)(1), §5.1.1(a)(2), or §5.1.1(a)(3), as appropriate.

(1) For a seat whose center of gravity is in a horizontal plane that is above the seat adjuster or that passes through any part of the adjuster, use, at the manufacturer’s option, either §5.1.1(b) or, if physically possible, §5.1.1(c).

(2) For a seat specified in §5.1.1(a)(1) for which it is not physically possible to follow the procedure in §5.1.1(c), use §5.1.1(b).

(3) For a seat whose center of gravity is in a horizontal plane that is below the seat adjuster, use §5.1.1(c).

(4) For all other seats whose seat back and seat bench are attached to the vehicle by the same attachments, use §5.1.1(b).

(b) Secure a strut on each side of the seat from a point on the outside of the seat frame in the horizontal plane of the seat’s center of gravity to a point on the frame as far forward as possible of the seat anchorages. Between the upper ends of the struts attach a rigid cross-member, in front of the seat back frame for rearward loading and behind the seat back frame for forward loading. Find “cg₁,” the center of gravity of the portion of the seat that is below the seat adjuster. Apply a force horizontally through cg₁ equal to 20 times the weight of the portion of the seat represented by cg₁, and simultaneously apply a force horizontally through cg₂ equal to 20 times the weight of the portion of the seat represented by cg₂.

§5.1.2 If the seat back and the seat bench are attached to the vehicle by different attachments, attach to each component a fixture capable of transmitting a force to that component. Apply forces, in newtons, equal to 20 times the mass of the seat back in kilograms multiplied by 9.8 m/s² horizontally through the center of gravity of the seat back, as shown in Figure 2 and apply forces, in newtons, equal to 20 times the mass of the seat bench in kilograms multiplied by 9.8 m/s² horizontally through the center of gravity of the seat bench, as shown in Figure 3.

§5.2 Develop the moment specified in §4.2(d) as shown in Figure 4.

§5.3 Apply the forces specified in §4.3.2.1(a) and (b) to a hinged or folding seat as shown in Figure 1 and to a hinged or folding seat back as shown in Figure 5.

§5.4 Determine the center of gravity of a seat or seat component with all cushions and upholstery in place and with the head restraint in its fully extended design position.
§ 571.208 Standard No. 208; Occupant crash protection.

§571.208. This standard specifies performance requirements for the protection of vehicle occupants in crashes.

S1. Scope. This standard specifies performance requirements for the protection of vehicle occupants in crashes.

S2. Purpose. The purpose of this standard is to reduce the number of deaths of vehicle occupants, and the severity of injuries, by specifying vehicle crashworthiness requirements in terms of forces and accelerations measured on anthropomorphic dummies in test crashes, and by specifying equipment requirements for active and passive restraint systems.

S3. Application. (a) This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses. In addition, §9, Pressure vessels and explosive devices, applies to vessels designed to contain a pressurized fluid or gas, and to explosive devices, for use in the above types of motor vehicles as part of a system designed to provide protection to occupants in the event of a crash.

(b) Notwithstanding any language to the contrary, any vehicle manufactured after March 19, 1997, and before September 1, 2006, that is subject to a dynamic crash test requirement conducted with unbelted dummies may meet the requirements specified in §5.1.2(a)(1), §5.1.2(a)(2), or §13 instead of the applicable unbelted requirement, unless the vehicle is certified to meet the requirements specified in §14.5, §15, §17, §19, §21, §23, and §25.

S4. General requirements.

S4.1 Passenger cars.

S4.1.1 Passenger cars manufactured from January 1, 1972, to August 31, 1973. Each passenger car manufactured from January 1, 1972, to August 31, 1973, inclusive, shall meet the requirements of §4.1.1.1, §4.1.1.2, or §4.1.1.3. A protection system that meets the requirements of §4.1.1.1 or §4.1.1.2 may be installed at one or more designated seating positions of a vehicle that otherwise meets the requirements of §4.1.1.3.

S4.1.1.1 First option—complete passive protection system. The vehicle shall meet the crash protection requirements of §5.1, by means that require no action by vehicle occupants.

S4.1.1.2 Second option—lap belt protection system with belt warning. The vehicle shall—

(a) At each designated seating position have a Type 1 seatbelt assembly or a Type 2 seatbelt assembly with a detachable upper torso portion that conforms to §7.1 and §7.2 of this standard.

(b) At each front outboard designated seating position, have a seatbelt warning system that conforms to §7.3; and

(c) Meet the frontal crash protection requirements of §5.1, in a perpendicular impact, with respect to anthropomorphic test devices in each front outboard designated seating position restrained only by Type 1 seatbelt assemblies.

S4.1.1.3 Third option—lap and shoulder belt protection system with belt warning.

S4.1.1.3.1 Except for convertibles and open-body vehicles, the vehicle shall—

(a) At each front outboard designated seating position have a Type 2 seatbelt assembly that conforms to §571.209 and §7.1 and §7.2 of this standard, with either an integral or detachable upper torso portion, and a seatbelt warning system that conforms to §7.3.

(b) At each designated seating position other than the front outboard positions, have a Type 1 or Type 2 seatbelt assembly that conforms to §571.209 and to §7.1 and §7.2 of this standard; and

(c) When it perpendicularly impacts a fixed collision barrier, while moving longitudinally forward at any speed up to and including 30 m.p.h., under the test conditions of §8.1 with anthropomorphic test devices at each front outboard position restrained by Type 2 seatbelt assemblies, experience no complete separation of any load-bearing element of a seatbelt assembly or anchorage.

S4.1.1.3.2 Convertibles and open-body type vehicles shall at each designated seating position have a Type 1
or Type 2 seatbelt assembly that conforms to §571.209 and to S7.1 and S7.2 of this standard, and at each front outboard designated seating position have a seatbelt warning system that conforms to S7.3.

S4.1.2 Passenger cars manufactured on or after September 1, 1973, and before September 1, 1986. Each passenger car manufactured on or after September 1, 1973, and before September 1, 1986, shall meet the requirements of S4.1.2.1, S4.1.2.2 or S4.1.2.3. A protection system that meets the requirements of S4.1.2.1 or S4.1.2.2 may be installed at one or more designated seating positions of a vehicle that otherwise meets the requirements of S4.1.2.3.

S4.1.2.1 First option—frontal/angular automatic protection system. The vehicle shall:
(a) At each front outboard designated seating position meet the frontal crash protection requirements of S5.1 by means that require no action by vehicle occupants;
(b) At the front center designated seating position and at each rear designated seating position have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 and to S7.1 and S7.2; and
(c) Either. (1) Meet the lateral crash protection requirements of S5.2 and the rollover crash protection requirements of S5.3 by means that require no action by vehicle occupants; or
(2) At each front outboard designated seating position have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 and to S7.1 through S7.3, and that meets the requirements of S5.1 with front test dummies as required by S5.1, restrained by the Type 1 or Type 2 seat belt assembly (or the pelvic portion of any Type 2 seat belt assembly which has a detachable upper torso belt) in addition to the means that require no action by the vehicle occupant.

S4.1.2.2 Second option—head-on automatic protection system. The vehicle shall—
(a) At each designated seating position have a Type 1 seat belt assembly or Type 2 seat belt assembly with a detachable upper torso portion that conforms to S7.1 and S7.2 of this standard.
(b) At each front outboard designated seating position, meet the frontal crash protection requirements of S5.1, in a perpendicular impact, by means that require no action by vehicle occupants;
(c) At each front outboard designated seating position, meet the frontal crash protection requirements of S5.1, in a perpendicular impact, with a test device restrained by a Type 1 seat belt assembly; and
(d) At each front outboard designated seating position, have a seat belt warning system that conforms to S7.3.

S4.1.2.3 Third option—lap and shoulder belt protection system with belt warning.

S4.1.2.3.1 Except for convertibles and open-body vehicles, the vehicle shall—
(a) At each front outboard designated seating position have a seat belt assembly that conforms to S7.1 and S7.2 of this standard, and a seat belt warning system that conforms to S7.3. The belt assembly shall be either a Type 2 seat belt assembly with a nondetachable shoulder belt that conforms to Standard No. 209 (§571.209), or a Type 1 seat belt assembly such that with a test device restrained by the assembly the vehicle meets the frontal crash protection requirements of S5.1 in a perpendicular impact.
(b) At any center front designated seating position, have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 (§571.209) and to S7.1 and S7.2 of this standard, and a seat belt warning system that conforms to S7.3; and
(c) At each other designated seating position, have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 (§571.209) and to S7.1 and S7.2 of this standard.

S4.1.2.3.2 Convertibles and open-body type vehicles shall at each designated seating position have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 (§571.209) and to S7.1 and S7.2 of this standard, and at each front designated seating position have a seat belt warning system that conforms to S7.3.

S4.1.3 Passenger cars manufactured on or after September 1, 1986, and before September 1, 1989.
§ 571.208

S4.1.3.1 Passenger cars manufactured on or after September 1, 1986, and before September 1, 1987.

S4.1.3.1.1 Subject to S4.1.3.1.2 and S4.1.3.4, each passenger car manufactured on or after September 1, 1986, and before September 1, 1987, shall comply with the requirements of S4.1.2.1, S4.1.2.2 or S4.1.2.3. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard.

S4.1.3.1.2 Subject to S4.1.3.4 and S4.1.5, the amount of passenger cars, specified in S4.1.3.1.1 complying with the requirements of S4.1.2.1 shall be not less than 10 percent of:

(a) The average annual production of passenger cars manufactured on or after September 1, 1983, and before September 1, 1986, by each manufacturer, or

(b) The manufacturer’s annual production of passenger cars during the period specified in S4.1.3.1.1.

S4.1.3.1.3 A manufacturer may exclude convertibles which do not comply with the requirements of S4.1.2.1, when it is calculating its average annual production under S4.1.3.1.2(a) or its annual production under S4.1.3.1.2(b).

S4.1.3.2 Passenger cars manufactured on or after September 1, 1987, and before September 1, 1988.

S4.1.3.2.1 Subject to S4.1.3.2.2 and S4.1.3.4, each passenger car manufactured on or after September 1, 1987, and before September 1, 1988, shall comply with the requirements of S4.1.2.1, S4.1.2.2 or S4.1.2.3. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard.

S4.1.3.2.2 Subject to S4.1.3.4 and S4.1.5, the amount of passenger cars specified in S4.1.3.2.1 complying with the requirements of S4.1.2.1 shall be not less than 25 percent of:

(a) The average annual production of passenger cars manufactured on or after September 1, 1984, and before September 1, 1987, by each manufacturer, or

(b) The manufacturer’s annual production of passenger cars during the period specified in S4.1.3.2.1.

S4.1.3.2.3 A manufacturer may exclude convertibles which do not comply with the requirements of S4.1.2.1, when it is calculating its average annual production under S4.1.3.2.2(a) or its annual production under S4.1.3.2.2(b).

S4.1.3.3 Passenger cars manufactured on or after September 1, 1988, and before September 1, 1989.

S4.1.3.3.1 Subject to S4.1.3.3.2 and S4.1.3.4, each passenger car manufactured on or after September 1, 1988, and before September 1, 1989, shall comply with the requirements of S4.1.2.1, S4.1.2.2 or S4.1.2.3. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard.

S4.1.3.3.2 Subject to S4.1.3.4 and S4.1.5, the amount of passenger cars specified in S4.1.3.3.1 complying with the requirements of S4.1.2.1 shall be not less than 40 percent of:

(a) The average annual production of passenger cars manufactured on or after September 1, 1985, and before September 1, 1988, by each manufacturer, or

(b) The manufacturer’s annual production of passenger cars during the period specified in S4.1.3.3.1.

S4.1.3.3.3 A manufacturer may exclude convertibles which do not comply with the requirements of S4.1.2.1, when it is calculating its average annual production under S4.1.3.3.2(a) or its annual production under S4.1.3.3.2(b).

S4.1.3.4 Calculation of complying passenger cars. (a) For the purposes of calculating the numbers of cars manufactured under S4.1.3.1.2, S4.1.3.2.2, or S4.1.3.3.2 to comply with S4.1.2.1:

(1) Each car whose driver’s seating position complies with the requirements of S4.1.2.1(a) by means not including any type of seat belt and whose front right seating position will comply with the requirements of S4.1.2.1(a) by any means is counted as 1.5 vehicles, and

(2) Each car whose driver’s seating position complies with the requirements of S4.1.2.1(a) by means not including any type of seat belt and whose
right front seat seating position is equipped with a manual Type 2 seat belt is counted as one vehicle.

(b) For the purposes of complying with §4.1.3.1.2, a passenger car may be counted if it:

(1) Is manufactured on or after September 1, 1985, but before September 1, 1986, and
(2) Complies with §4.1.2.1.

(c) For the purposes of complying with §4.1.3.2.2, a passenger car may be counted if it:

(1) Is manufactured on or after September 1, 1985, but before September 1, 1987,
(2) Complies with §4.1.2.1, and
(3) Is not counted toward compliance with §4.1.3.1.2

(d) For the purposes of complying with §4.1.3.3.2, a passenger car may be counted if it:

(1) Is manufactured on or after September 1, 1985, but before September 1, 1988,
(2) Complies with §4.1.2.1, and
(3) Is not counted toward compliance with §4.1.3.1.2 or §4.1.3.2.2.

§4.1.3.5 Passenger cars produced by more than one manufacturer.

§4.1.3.5.1 For the purposes of calculating average annual production of passenger cars for each manufacturer and the amount of passenger cars manufactured by each manufacturer under §4.1.3.1.2, §4.1.3.2.2 or §4.1.3.3.2, a passenger car produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to §4.1.3.5.2:

(a) A passenger car which is imported shall be attributed to the importer.

(b) A passenger car manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer which markets the vehicle.

§4.1.3.5.2 A passenger car produced by more than one manufacturer shall be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under §4.1.3.5.1.

S4.1.4 Passenger cars manufactured on or after September 1, 1989, but before September 1, 1996.

S4.1.4.1 Except as provided in S4.1.4.2, each passenger car manufactured on or after September 1, 1989 shall comply with the requirements of S4.1.2.1. Any passenger car manufactured on or after September 1, 1989 and before September 1, 1993 whose driver’s designated seating position complies with the requirements of S4.1.2.1(a) by means not including any type of seat belt and whose right front designated seating position is equipped with a manual Type 2 seat belt so that the seating position complies with the occupant crash protection requirements of §5.1, with the Type 2 seat belt assembly adjusted in accordance with §7.4.2, shall be counted as a vehicle complying with S4.1.2.1. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not know in the exercise of due care that such vehicle is not in conformity with this standard.

S4.1.4.2 (a) Each passenger car, other than a convertible, manufactured before December 11, 1989 may be equipped with, and each passenger car, other than a convertible, manufactured on or after December 11, 1989 and before September 1, 1990 shall be equipped with a Type 2 seat belt assembly at every forward-facing rear outboard designated seating position. Type 2 seat belt assemblies installed pursuant to this provision shall comply with Standard No. 209 (49 CFR 571.209) and with §7.1.1 of this standard.

(b) Except as provided in S4.1.4.2.1 and S4.1.4.2.2, each passenger car, other than a convertible, manufactured on or after September 1, 1990 and each convertible passenger car manufactured on or after September 1, 1991 shall be equipped with an integral Type 2 seat belt assembly at every forward-facing rear outboard designated seating position. Type 2 seat belt assemblies installed in compliance with this requirement shall comply with Standard No. 209 (49 CFR 571.209) and with §7.2 of this standard. If a Type 2 seat belt assembly installed in compliance with this requirement incorporates any webbing tension-relieving device, the vehicle owner’s manual shall include
the information specified in §7.4.2(b) of this standard for the tension relieving device, and the vehicle shall comply with §7.4.2(c) of this standard.

(c) As used in this section, “rear outboard designated seating position” means any “outboard designated seating position” as that term is defined at 49 CFR 571.3 that is rearward of the front seat(s), except any designated seating position adjacent to a walkway that is located between the seat and the near side of the vehicle and is designed to allow access to more rearward seating positions.

§4.1.4.2.1 Any rear outboard designated seating position with a seat that can be adjusted to be forward-facing and to face some other direction shall either:

(i) Meet the requirements of §4.1.4.2 with the seat in any position in which it can be occupied while the vehicle is in motion; or

(ii) When the seat is in its forward-facing position, have a Type 2 seat belt assembly with an upper torso restraint that conforms to §7.1 and §7.2 of this standard and that adjusts by means of an emergency locking retractor that conforms with Standard No. 209 (49 CFR 571.209), which upper torso restraint may be detachable at the buckle, and, when the seat is in any position in which it can be occupied while the vehicle is in motion, have a Type 1 seat belt or the pelvic portion of a Type 2 seat belt assembly that conforms to §7.1 and §7.2 of this standard.

§4.1.4.2.2 Any rear outboard designated seating position on a readily removable seat (that is, a seat designed to be easily removed and replaced by means installed by the manufacturer for that purpose) in a vehicle manufactured on or after September 1, 1992 shall meet the requirements of §4.1.4.2 and may use an upper torso belt that detaches at either its upper or lower anchorage points, but not both anchorage points, to meet those requirements. The means for detaching the upper torso belt may use a pushbutton action.

§4.1.5 Passenger cars manufactured on or after September 1, 1996.

§4.1.5.1 Frontal/angular automatic protection system. (a) Each passenger car manufactured on or after September 1, 1996 shall:

(1) At each front outboard designated seating position meet the frontal crash protection requirements of §5.1 by means that require no action by vehicle occupants;

(2) At any front designated seating positions that are not “outboard designated seating positions,” as that term is defined at 49 CFR 571.3, and at any rear designated seating positions that are not “rear outboard designated seating positions,” as that term is defined at §4.1.4.2(c) of this standard, have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 and §7.1 and §7.2 of this standard; and

(3) At each front designated seating position that is an “outboard designated seating position,” as that term is defined at 49 CFR 571.3, and at each forward-facing rear designated seating position that is a “rear outboard designated seating positions,” as that term is defined at §4.1.4.2(c) of this standard, have a Type 2 seat belt assembly that conforms to Standard No. 209 and §7.1 through §7.3 of this standard, and, in the case of the Type 2 seat belt assemblies installed at the front outboard designated seating positions, meet the frontal crash protection requirements with the appropriate anthropomorphic test dummy restrained by the Type 2 seat belt assembly in addition to the means that requires no action by the vehicle occupant.

(b) For the purposes of sections §4.1.5 through §4.1.5.3 and §4.2.6 through §4.2.6.2 of this standard, an inflatable restraint system means an air bag that is activated in a crash.

§4.1.5.2 Passenger cars manufactured on or after September 1, 1996 and before September 1, 1997.

§4.1.5.2.1 The amount of passenger cars complying with the requirement of §4.1.5.1(a)(1) by means of an inflatable restraint system at the driver’s and right front passenger’s position shall be not less than 95 percent of the manufacturer’s total production of passenger cars manufactured on or after September 1, 1996, and before September 1, 1997. A vehicle shall not be deemed to be in noncompliance with
§ 571.208 49 CFR Ch. V (10–1–16 Edition)

this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard.

S4.1.5.2.2 Passengers cars produced by more than one manufacturer.

S4.1.5.2.2.1 For the purpose of calculating the production of passenger cars by each manufacturer during the period specified in S4.1.5.2, a passenger car produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S4.1.5.2.2.2:

(a) A passenger car that is imported into the United States shall be attributed to the importer.

(b) A passenger car manufactured within the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.

S4.1.5.2.2.2 A passenger car produced by more than one manufacturer shall be attributed to any one of the vehicle’s manufacturers, as specified in an express written contract, reported to the National Highway Traffic Safety Administration pursuant to part 585 of this chapter, between the manufacturer so specified and the manufacturer to which the vehicle otherwise would be attributed, pursuant to S4.1.5.2.2.1.

S4.1.5.3 Passenger cars manufactured on or after September 1, 1997. Each passenger car manufactured on or after September 1, 1997 shall comply with the requirement of S4.1.5.1(a)(1) by means of an inflatable restraint system at the driver’s and right front passenger’s position. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard.

S4.1.5.4 Passenger cars certified to SI4. Each passenger car certified to SI4 shall, at each front outboard designated seating position, meet the applicable frontal crash protection requirements of S5.1.2(b) by means of an inflatable restraint system that requires no action by vehicle occupants.

S4.1.5.5 Passenger cars manufactured on or after September 1, 2007.

S4.1.5.5.1 Except as provided in S4.1.5.5.2, each passenger car shall have a Type 2 seat belt assembly that conforms to Standard No. 209 and to S7.1 and S7.2 of this standard at each rear designated seating position, except that side-facing designated seating positions shall have a Type 1 or Type 2 seat belt assembly that conforms to Standard No. 209 and to S7.1 and S7.2 of this standard.

S4.1.5.5.2 Any inboard designated seating position on a seat for which the entire seat back can be folded (including the head restraints and any other part of the vehicle attached to the seat back) such that no part of the seat back extends above a horizontal plane located 250 mm above the highest SRP located on the seat may meet the requirements of S4.1.5.5.1 by use of a belt incorporating a release mechanism that detaches both the lap and shoulder portion at either the upper or lower anchorage point, but not both. The means of detachment shall be a key or key-like object.

S4.2 Trucks and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. As used in this section, vehicles manufactured for operation by persons with disabilities means vehicles that incorporate a level change device (e.g., a wheelchair lift or a ramp) for onloading or offloading an occupant in a wheelchair, an interior element of design intended to provide the vertical clearance necessary to permit a person in a wheelchair to move between the lift or ramp and the driver’s position or to occupy that position, and either an adaptive control or special driver seating accommodation to enable persons who have limited use of their arms or legs to operate a vehicle. For purposes of this definition, special driver seating accommodations include a driver’s seat easily removable with means installed for that purpose or with simple tools, or a driver’s seat with extended adjustment capability to allow a person to easily transfer from a wheelchair to the driver’s seat.

S4.2.1 Trucks and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less, manufactured on or after January 1, 1976 and before September 1, 1991. Each truck and multipurpose passenger vehicle, with a gross vehicle
weight rating of 10,000 pounds or less, manufactured before September 1, 1991, shall meet the requirements of §4.1.2.1, or at the option of the manufacturer, §4.1.2.2 or §4.1.2.3 (as specified for passenger cars), except that forward control vehicles manufactured prior to September 1, 1981, convertibles, open-body type vehicles, walk-in van-type trucks, motor homes, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles carrying chassis-mount campers may instead meet the requirements of §4.2.1.1 or §4.2.1.2.

§4.2.1.1 First option—complete automatic protection system. The vehicle shall meet the crash protection requirements of §5 by means that require no action by vehicle occupants.

§4.2.1.2 Second option—belt system. The vehicle shall have seat belt assemblies that conform to Standard 209 (49 CFR 571.209) installed as follows:

(a) A Type 1 or Type 2 seat belt assembly shall be installed for each designated seating position in convertibles, open-body type vehicles, and walk-in van-type trucks.

(b) In vehicles manufactured for operation by persons with disabilities, a Type 2 or Type 2A seat belt assembly shall be installed for the driver's seating position, a Type 2 seat belt assembly shall be installed for each other outboard designated seating position that includes the windshield header within the head impact area, and a Type 1 or Type 2 seat belt assembly shall be installed for each other designated seating position.

(c) In all vehicles except those for which requirements are specified in §4.2.1.2 (a) or (b), a Type 2 seat belt assembly shall be installed for each outboard designated seating position that includes the windshield header within the head impact area, and a Type 1 or Type 2 seat belt assembly shall be installed for each other designated seating position.

§4.2.2 Trucks and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less, manufactured on or after September 1, 1991 and before September 1, 1997, shall meet the requirements of §4.1.2.1, or at the option of the manufacturer, §4.1.2.2 or §4.1.2.3 (as specified for passenger cars), except that convertibles, open-body type vehicles, walk-in van-type trucks, motor homes, vehicles designed to be exclusively sold to the U.S. Postal Service, vehicles carrying chassis-mount campers, and vehicles manufactured for operation by persons with disabilities may instead meet the requirements of §4.2.1.1 or §4.2.1.2. Each Type 2 seat belt assembly installed in a front outboard designated seating position in accordance with §4.1.2.3 shall meet the requirements of §4.6.

§4.2.3 Trucks and multipurpose passenger vehicles manufactured on or after September 1, 1991 with either a GVWR or more than 8,500 pounds but not greater than 10,000 pounds or with an unloaded vehicle weight greater than 5,500 pounds and a GVWR of 10,000 pounds or less. Except as provided in §4.2.4, each truck and multipurpose passenger vehicle manufactured on or after September 1, 1991, that has either a gross vehicle weight rating which is greater than 8,500 pounds, but not greater than 10,000 pounds, or has an unloaded vehicle weight greater than 5,500 pounds and a GVWR of 10,000 pounds or less, shall meet the requirements of §4.1.2.1, or at the option of the manufacturer, §4.1.2.2 or §4.1.2.3 (as specified for passenger cars), except that convertibles, open-body type vehicles, walk-in van-type trucks, motor homes, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles carrying chassis-mount campers may instead meet the requirements of §4.2.1.1 or §4.2.1.2.

§4.2.4 Rear outboard seating positions in trucks and multipurpose passenger vehicles manufactured on or after September 1, 1991 with a GVWR of 10,000 pounds or less. Except as provided in §4.2.4.2 and §4.2.4.3, each truck and each multipurpose passenger vehicle, other than a motor home, manufactured on or after September 1, 1991 that has a gross vehicle weight rating of 10,000 pounds or less shall be equipped with an integral...
§ 571.208

Type 2 seat belt assembly at every forward-facing rear outboard designated seating position. Type 2 seat belt assemblies installed in compliance with this requirement shall comply with Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard. If a Type 2 seat belt assembly installed in compliance with this requirement incorporates any webbing tension-relieving device, the vehicle owner’s manual shall include the information specified in S7.4.2(b) of this standard for the tension relieving device, and the vehicle shall comply with S7.4.2(c) of this standard.

S4.2.4.1 As used in this section—
(a) [Reserved]
(b) Rear outboard designated seating position means any “outboard designated seating position” (as that term is defined at 49 CFR 571.3) that is rearward of the front seat(s), except any designated seating positions adjacent to a walkway located between the seat and the side of the vehicle, which walkway is designed to allow access to more rearward seating positions.

S4.2.4.2 Any rear outboard designated seating position with a seat that can be adjusted to be forward-facing and to face some other direction shall either:
(i) Meet the requirements of S4.2.4 with the seat in any position in which it can be occupied while the vehicle is in motion; or
(ii) When the seat is in its forward-facing position, have a Type 2 seat belt assembly with an upper torso restraint that conforms to S7.1 and S7.2 of this standard and that adjusts by means of an emergency locking retractor that conforms with Standard No. 209 (49 CFR 571.209), which upper torso restraint may be detachable at the buckle, and, when the seat is in any position in which it can be occupied while the vehicle is in motion, have a Type 1 seat belt or the pelvic portion of a Type 2 seat belt assembly that conforms to S7.1 and S7.2 of this standard.

S4.2.4.3 Any rear outboard designated seating position on a readily removable seat (that is, a seat designed to be easily removed and replaced by means installed by the manufacturer for that purpose) in a vehicle manufactured on or after September 1, 1992 shall meet the requirements of S4.2.4 and may use an upper torso belt that detaches at either its upper or lower anchorage point, but not both anchorage points, to meet those requirements. The means for detaching the upper torso belt may use a pushbutton action.

S4.2.5 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1994, and before September 1, 1997.

S4.2.5.1 Subject to S4.2.5.1.1 and S4.2.5.5 and except as provided in S4.2.4, each truck, bus and multipurpose passenger vehicle, other than walk-in van-type trucks, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles manufactured for operation by persons with disabilities, with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that is manufactured on or after September 1, 1994, and before September 1, 1995, shall comply with the requirements of S4.1.2.3 (as specified for passenger cars). A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirements of this standard.

S4.2.5.1.1 Subject to S4.2.5.5, the amount of trucks, buses, and multipurpose passenger vehicles specified in S4.2.5.1 complying with S4.1.2.1, S4.1.2.2, or S4.1.2.3 (as specified for passenger cars) shall be not less than 20 percent of:
(a) The average annual production of trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1991, and before September 1, 1994, by each manufacturer that produced such vehicles during each of those annual production periods; or
(b) The manufacturer’s total production of trucks, buses, and multipurpose...
passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less during the period specified in S4.2.5.1.1.

S4.2.5.2 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1995 and before September 1, 1996.

S4.2.5.2.1 Subject to S4.2.5.2.2 and S4.2.5.5 and except as provided in S4.2.4, each truck, bus, and multipurpose passenger vehicle, other than walk-in van-type trucks, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles manufactured for operation by persons with disabilities, with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that is manufactured on or after September 1, 1995 and before September 1, 1996, shall comply with the requirements of S4.1.2.1, S4.1.2.2, or S4.1.2.3 (as specified for passenger cars). A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard.

S4.2.5.2.2 Subject to S4.2.5.5, the amount of trucks, buses, and multipurpose passenger vehicles specified in S4.2.5.2.1 complying with S4.1.2.1 (as specified for passenger cars) shall be not less than 50 percent of:

(a) The average annual production of trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1992, and before September 1, 1995, by each manufacturer that produced such vehicles during each of those annual production periods, or
(b) The manufacturer’s total production of trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less during the period specified in S4.2.5.2.1.

S4.2.5.3 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1996 and before September 1, 1997.

S4.2.5.3.1 Subject to S4.2.5.3.2 and S4.2.5.5 and except as provided in S4.2.4, each truck, bus, and multipurpose passenger vehicle, other than walk-in van-type trucks, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles manufactured for operation by persons with disabilities, with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that is manufactured on or after September 1, 1996 and before September 1, 1997, shall comply with the requirements of S4.1.2.1, S4.1.2.2, or S4.1.2.3 (as specified for passenger cars). A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard.

S4.2.5.3.2 Subject to S4.2.5.5, the amount of trucks, buses, and multipurpose passenger vehicles specified in S4.2.5.3.1 complying with S4.1.2.1 (as specified for passenger cars) shall be not less than 90 percent of:

(a) The average annual production of trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1993, and before September 1, 1996, by each manufacturer that produced such vehicles during each of those annual production periods, or
(b) The manufacturer’s total production of trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less during the period specified in S4.2.5.3.1.

S4.2.5.4 Alternative phase-in schedule. A manufacturer may, at its option, comply with the requirements of this section instead of complying with the requirements set forth in S4.2.5.1, S4.2.5.2, and S4.2.5.3.

(a) Except as provided in S4.2.4, each truck, bus, and multipurpose passenger vehicle, other than walk-in van-type trucks, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles manufactured for operation by persons with disabilities, with...
§ 571.208

49 CFR Ch. V (10–1–16 Edition)

(a) For the purposes of the calculations required in §425.1.2, §425.2.2, and §425.3.2 of the number of trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that is manufactured on or after September 1, 1994 and before September 1, 1995 shall comply with the requirements of §41.2.1(a) by means not including any type of seat belt and whose driver’s seating position complies with the requirements of §41.2.1 (as specified for passenger cars).

(b) Except as provided in §42.4, each truck, bus, and multipurpose passenger vehicle, other than walk-in van-tape trucks, vehicles designed to be exclusively sold to the U.S. Postal Service, and vehicles manufactured for operation by persons with disabilities, with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that is manufactured on or after September 1, 1995 shall comply with the requirements of §41.2.1 (as specified for passenger cars) of this standard. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirements of this standard.

(c) Each truck, bus, and multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less whose driver’s seating position complies with the requirements of §41.2.1(a) by means not including any type of seat belt and whose right front passenger’s seating position is equipped with a manual Type 2 seat belt that complies with §5.1 of this standard, with the seat belt assembly adjusted in accordance with §7.4.2, is counted as one vehicle.

§571.208

49 CFR Ch. V (10–1–16 Edition)

(b) For the purposes of complying with §425.1.2, a truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less that is manufactured in two or more stages or that is altered (within the meaning of §567.7 of this chapter) after having previously been certified in accordance with part 567 of this chapter is not subject to the requirements of §425.1.2, §425.2.2, and §425.3.2. Such vehicles may be excluded from all calculations of compliance with §425.1.2, §425.2.2, and §425.3.2.

§571.208

49 CFR Ch. V (10–1–16 Edition)

(b) For the purposes of complying with §425.1.2, a truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less may be counted if it:

(1) Is manufactured on or after September 1, 1992, but before September 1, 1994, and

(2) Is certified as complying with §41.2.1 (as specified for passenger cars).

(c) For the purposes of complying with §425.2.2, a truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less may be counted if it:

(1) Is manufactured on or after September 1, 1992, but before September 1, 1995;
(2) Is certified as complying with §4.1.2.1 (as specified for passenger cars), and
(3) Is not counted toward compliance with §4.2.5.1.2.
(d) For the purposes of complying with §4.2.5.3.2, a truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less may be counted if it:
(1) Is manufactured on or after September 1, 1992, but before September 1, 1996,
(2) Is certified as complying with §4.1.2.1 (as specified for passenger cars), and
(3) Is not counted toward compliance with §4.2.5.1.2 or §4.2.5.2.2.

§4.2.5.6 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less produced by more than one manufacturer.

S4.2.5.6.1 For the purposes of calculating average annual production for each manufacturer and the amount of vehicles manufactured by each manufacturer under §4.2.5.1.2, §4.2.5.2.2, or §4.2.5.3.2, a truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to §4.2.5.6.2:

(a) A vehicle that is imported shall be attributed to the importer.
(b) A vehicle that is manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.

S4.2.5.6.2 A truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less produced by more than one manufacturer shall be attributed to any one of the vehicle’s manufacturers specified in an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under §4.2.5.6.1 of this standard.

§4.2.6 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1997. Each truck, bus, and multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less, which is manufactured on or after September 1, 1997, shall comply with the requirements of §4.1.5.1 of this standard (as specified for passenger cars), except that walk-in van-type trucks and vehicles designed to be sold exclusively to the U.S. Postal Service may meet the requirements of §4.2.1.1 or §4.2.1.2 of this standard instead of the requirements of §4.1.5.1.

§4.2.6.1 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1997 and before September 1, 1998.

S4.2.6.1.1 The amount of trucks, buses, and multipurpose passenger vehicles complying with the requirements of §4.1.5.1(a)(1) of this standard by means of an inflatable restraint system shall be not less than 80 percent of the manufacturer’s total combined production of subject vehicles manufactured on or after September 1, 1997 and before September 1, 1998. Each truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1997 and before September 1, 1998, whose driver’s seating position complies with §4.1.5.1(a)(1) by means of an inflatable restraint system and whose right front passenger’s seating position is equipped with a manual Type 2 seat belt assembly that complies with §5.1 of this standard, with the seat belt assembly adjusted in accordance with §7.4.2 of this standard, shall be counted as a vehicle complying with §4.1.5.1(a)(1) by means of an inflatable restraint system. A vehicle shall not be deemed to be in non-compliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard.
S4.2.6.1.2 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less produced by more than one manufacturer.

S4.2.6.1.2.1 For the purpose of calculating the production by each manufacturer during the period specified in S4.2.6.1.1, a truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S4.2.6.1.2.2:

(a) A vehicle that is imported into the United States shall be attributed to the importer.

(b) A vehicle manufactured within the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.

S4.2.6.1.2.2 A truck, bus, or multipurpose passenger vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle's manufacturers, as specified in an express written contract, reported to the National Highway Traffic Safety Administration pursuant to part 585 of this chapter, between the manufacturer so specified and the manufacturer to which the vehicle otherwise would be attributed, pursuant to S4.2.6.1.2.1.

S4.2.6.2 Trucks, buses, and multipurpose passenger vehicles with a GVWR of 8,500 pounds or less manufactured on or after September 1, 1998.

Each truck, bus, or multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1998 shall comply with the requirement of S4.1.5.1(a)(1) by means of an inflatable restraint system at the driver's and right front passenger's position. A vehicle shall not be deemed to be in noncompliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirements of this standard.

S4.2.6.3 Trucks, buses, and multipurpose passenger vehicles certified to S14. Each truck, bus, or multipurpose passenger vehicle with a GVWR of 3,855 kg (8,500 lb) or less and an unloaded vehicle weight of 2,495 kg (5,500 lb) or less certified to S14 shall, at each front outboard designated seating position, meet the applicable frontal crash protection requirements of S5.1.2(b) by means of an inflatable restraint system that requires no action by vehicle occupants.

S4.2.7 Rear seating positions in trucks, and multipurpose passenger vehicles manufactured on or after September 1, 2007 with a GVWR of 10,000 lbs. (4,536 kg) or less.

S4.2.7.1 Except as provided in S4.2.7.2, S4.2.7.3, S4.2.7.4, S4.2.7.5, and S4.2.7.6, each truck and each multipurpose passenger vehicle, other than a motor home, a walk-in van-type truck, or a vehicle designed to be sold exclusively to the U.S. Postal Service with a GVWR of 10,000 lbs. (4,536 kg) or less, or a vehicle carrying chassis-mount camper with a gross vehicle weight rating of 8,500–10,000 lbs. (3,855–4,536 kg), shall be equipped with a Type 2 seat belt assembly at every rear designated seating position other than a side-facing position, except that Type 2 seat belt assemblies installed in compliance with this requirement shall conform to Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard. If a Type 2 seat belt assembly installed in conformity to this requirement incorporates any webbing tension-relieving device, the vehicle owner's manual shall include the information specified in S7.4.2(b) of this standard for the tension relieving device, and the vehicle shall conform to S7.4.2(c) of this standard. Side-facing designated seating positions shall be equipped, at the manufacturer's option, with a Type 1 or Type 2 seat belt assembly that conforms with S7.1 and S7.2 of this standard.

S4.2.7.2 Any rear designated seating position with a seat that can be adjusted to be forward-or rear-facing and to face some other direction shall either:

(a) Meet the requirements of S4.2.7.1 with the seat in any position in which it can be occupied while the vehicle is in motion; or

(b) When the seat is in its forward-facing and/or rear-facing position or
within ±30 degrees of either position, have a Type 2 seat belt assembly with an upper torso restraint that conforms to S7.1 and S7.2 of this standard and that adjusts by means of an emergency locking retractor that conforms to Standard No. 209 (49 CFR 571.209), which upper torso restraint may be detachable at either the buckle or the upper anchorage, but not both, and, when the seat is in any other position in which it can be occupied while the vehicle is in motion, have a Type 1 seat belt or the pelvic portion of a Type 2 seat belt assembly that conforms to S7.1 and S7.2 of this standard.

S4.2.7.3 Any rear designated seating position on a readily removable seat (i.e., a seat designed to be easily removed and replaced by means installed by the manufacturer for that purpose) may meet the requirements of S4.2.7.1 by use of a belt incorporating a release mechanism that detaches both the lap and shoulder portion at either the upper or lower anchorage point, but not both. The means of detachment shall be a key or key-like object.

S4.2.7.4 Any inboard designated seating position on a seat for which the entire seat back can be folded such that no part of the seat back extends above a horizontal plane located 250 mm above the highest SRP located on the seat may meet the requirements of S4.2.7.1 by use of a belt incorporating a release mechanism that detaches both the lap and shoulder portion at either the upper or lower anchorage point, but not both. The means of detachment shall be a key or key-like object.

S4.2.7.5 Any rear designated seating position adjacent to a walkway located between the seat and the side of the vehicle, which walkway is designed to allow access to more rearward designated seating positions may meet the requirements of S4.2.7.1 by use of a belt incorporating a release mechanism that detaches both the lap and shoulder portion at either the upper or lower anchorage point, but not both. The means of detachment shall be a key or key-like object.

S4.2.7.6 Any rear side-facing designated seating position shall have a Type 1 or Type 2 seat belt assembly that conforms to S7.1 and S7.2 of this standard.

S4.3 Trucks and multipurpose passenger vehicles, with GVWR of more than 10,000 pounds.

S4.3.1 Trucks and multipurpose passenger vehicles with a GVWR of more than 10,000 pounds, manufactured in or after January 1, 1972 and before September 1, 1990. Each truck and multipurpose passenger vehicle with a gross vehicle weight rating of more than 10,000 pounds, manufactured on or after January 1, 1972 and before September 1, 1990, shall meet the requirements of S4.3.1.1 or S4.3.1.2. A protection system that meets the requirements of S4.3.1.1 may be installed at one or more designated seating positions of a vehicle that otherwise meets the requirements of S4.3.1.2.

S4.3.1.1 First option—complete passenger protection system. The vehicle shall meet the crash protection requirements of S5 by means that require no action by vehicle occupants.

S4.3.1.2 Second option—belt system. The vehicle shall, at each designated seating position, have either a Type 1 or a Type 2 seat belt assembly that conforms to §571.209.

S4.3.2 Trucks and multipurpose passenger vehicles with a GVWR of more than 10,000 pounds, manufactured on or after September 1, 1990. Each truck and multipurpose passenger vehicle with a gross vehicle weight rating of more than 10,000 pounds, manufactured on or after September 1, 1990, shall meet the requirements of S4.3.2.1 or S4.3.2.2. A protection system that meets the requirements of S4.3.2.1 may be installed at one or more designated seating positions of a vehicle that otherwise meets the requirements of S4.3.2.2.

S4.3.2.1 First option—complete passenger protection system. The vehicle shall meet the crash protection requirements of S5 by means that require no action by vehicle occupants.

S4.3.2.2 Second option—belt system. The vehicle shall, at each designated seating position, have either a Type 1 or a Type 2 seat belt assembly that conforms to §571.209 of this part and S7.2 of this Standard. A Type 1 belt assembly or the pelvic portion of a dual
Type 2 belt assembly installed at a front outboard seating position shall include either an emergency locking retractor or an automatic locking retractor. If a seat belt assembly installed at a front outboard seating position includes an automatic locking retractor for the lap belt or the lap belt portion, that seat belt assembly shall comply with the following:

(a) An automatic locking retractor used at a front outboard seating position that has some type of suspension system for the seat shall be attached to the seat structure that moves as the suspension system functions.

(b) The lap belt or lap belt portion of a seat belt assembly equipped with an automatic locking retractor that is installed at a front outboard seating position must allow at least \(\frac{3}{4} \) inch, but less than 3 inches, of webbing movement before retracting webbing to the next locking position.

(c) Compliance with S4.3.2.2(b) of this standard is determined as follows:

1. The seat belt assembly is buckled and the retractor end of the seat belt assembly is anchored to a horizontal surface. The webbing for the lap belt or lap belt portion of the seat belt assembly is extended to 75 percent of its length and the retractor is locked after the initial adjustment.

2. A load of 20 pounds is applied to the free end of the lap belt or the lap belt portion of the belt assembly (i.e., the end that is not anchored to the horizontal surface) in the direction away from the retractor. The position of the free end of the belt assembly is recorded.

3. Within a 30 second period, the 20 pound load is slowly decreased, until the retractor moves to the next locking position. The position of the free end of the belt assembly is recorded again.

4. The difference between the two positions recorded for the free end of the belt assembly shall be at least \(\frac{3}{4} \) inch but less than 3 inches.

§571.208

49 CFR Ch. V (10–1–16 Edition)

S4.4.1 First option—complete passenger protection system—driver only.

The vehicle shall meet the crash protection requirements of §5, with respect to an anthropomorphic test dummy in the driver’s designated seating position, by means that require no action by vehicle occupants.

S4.4.1.2 Second option—belt system—driver only. The vehicle shall, at the driver’s designated seating position, have either a Type 1 or a Type 2 seat belt assembly that conforms to §571.209.

S4.4.2 Buses manufactured on or after September 1, 1990. Each bus manufactured on or after September 1, 1990, shall meet the requirements of S4.4.2.1 or S4.4.2.2.

S4.4.2.1 First option—complete passenger protection system—driver only.

The vehicle shall meet the crash protection requirements of §5, with respect to an anthropomorphic test dummy in the driver’s designated seating position, by means that require no action by vehicle occupants.

S4.4.2.2 Second option—belt system—driver only. The vehicle shall, at the driver’s designated seating position, have either a Type 1 or a Type 2 seat belt assembly that conforms to §571.209 of this part and S7.2 of this Standard. A Type 1 belt assembly or the pelvic portion of a dual retractor Type 2 belt assembly installed at the driver’s seating position shall include either an emergency locking retractor or an automatic locking retractor. If a seat belt assembly installed at the driver’s seating position includes an automatic locking retractor for the lap belt or the lap belt portion, that seat belt assembly shall comply with the following:

(a) An automatic locking retractor used at a driver’s seating position that has some type of suspension system for the seat shall be attached to the seat structure that moves as the suspension system functions.

(b) The lap belt or lap belt portion of a seat belt assembly equipped with an automatic locking retractor that is installed at the driver’s seating position must allow at least \(\frac{3}{4} \) inch, but less than 3 inches, of webbing movement before retracting webbing to the next locking position.
(c) Compliance with S4.4.2.2(b) of this standard is determined as follows:

(1) The seat belt assembly is buckled and the retractor end of the seat belt assembly is anchored to a horizontal surface. The webbing for the lap belt or lap belt portion of the seat belt assembly is extended to 75 percent of its length and the retractor is locked after the initial adjustment.

(2) A load of 20 pounds is applied to the free end of the lap belt or the lap belt portion of the seat belt assembly (i.e., the end that is not anchored to the horizontal surface) in the direction away from the retractor. The position of the free end of the belt assembly is recorded.

(3) Within a 30 second period, the 20 pound load is slowly decreased, until the retractor moves to the next locking position. The position of the free end of the belt assembly is recorded again.

(4) The difference between the two positions recorded for the free end of the belt assembly shall be at least 3⁄4 inch but less than 3 inches.

§571.208 Buses manufactured on or after September 1, 1991.

S4.4.3.1 Each bus with a gross vehicle weight rating of more than 10,000 pounds shall comply with the requirements S4.4.2.1 or S4.4.2.2.

S4.4.3.2 Except as provided in S4.4.3.2.2 and S4.4.3.2.3, each bus with a gross vehicle weight rating of 10,000 pounds or less, except a school bus, shall be equipped with an integral Type 2 seat belt assembly at the driver’s designated seating position and at the front and every rear forward-facing outboard designated seating position, and with a Type 1 or Type 2 seat belt assembly at all other designated seating positions. Type 2 seat belt assemblies installed in compliance with this requirement shall comply with Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard and that conforms to S7.1 and S7.2 of this standard and that adjusts by means of an emergency locking retractor that conforms with Standard No. 209 (49 CFR 571.209), which upper torso restraint may be detachable at the buckle, and, when the seat is in any position in which it can be occupied while the vehicle is in motion, have a Type 1 seat belt or the pelvic portion of a Type 2 seat belt assembly that conforms to S7.1 and S7.2 of this standard.

S4.4.3.2.2 Any rear outboard designated seating position with a seat that can be adjusted to be forward-facing and to face some other direction shall either:

(i) Meet the requirements of S4.4.3.2 with the seat in any position in which it can be occupied while the vehicle is in motion; or

(ii) When the seat is in its forward-facing position, have a Type 2 seat belt assembly with an upper torso restraint that conforms to S7.1 and S7.2 of this standard and that adjusts by means of an emergency locking retractor that conforms with Standard No. 209 (49 CFR 571.209), which upper torso restraint may be detachable at the buckle, and, when the seat is in any position in which it can be occupied while the vehicle is in motion, have a Type 1 seat belt or the pelvic portion of a Type 2 seat belt assembly that conforms to S7.1 and S7.2 of this standard.

S4.4.3.2.3 Any rear outboard designated seating position on a readily removable seat (that is, a seat designed to be easily removed and replaced by means installed by the manufacturer for that purpose) in a vehicle manufactured on or after September 1, 1992 shall meet the requirements of S4.4.3.2 and may use an upper torso belt that detaches at either its upper or lower anchorage points, to meet those requirements. The means for detaching the upper torso belt may use a pushbutton action.

S4.4.3.3 School buses with a gross vehicle weight rating of 4,536 kg (10,000 pounds) or less.

(a) Each school bus with a gross vehicle weight rating of 4,536 kg (10,000 pounds) or less manufactured before October 21, 2011 must be equipped with an integral Type 2 seat belt assembly
§ 571.208

49 CFR Ch. V (10–1–16 Edition)

at the driver’s designated seating position and at the right front passenger’s designated seating position (if any), and with a Type 1 or Type 2 seat belt assembly at all other seating positions. Type 2 seat belt assemblies installed in compliance with this requirement must comply with Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard. The lap belt portion of a Type 2 seat belt assembly installed at the driver’s designated seating position and at the right front passenger’s designated seating position (if any) must meet the requirements specified in §4.4.3.3(c).

(b) Each school bus with a gross vehicle weight rating of 4,536 kg (10,000 pounds) or less manufactured on or after October 21, 2011 must be equipped with an integral Type 2 seat belt assembly at all seating positions. The seat belt assembly at the driver’s designated seating position and at the right front passenger’s designated seating position (if any) shall comply with Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard. Type 2 seat belt assemblies installed in compliance with this requirement shall conform to Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard. If a Type 2 seat belt assembly installed in compliance with this requirement incorporates a webbing tension relieving device, the vehicle owner’s manual shall include the information specified in §7.4.2(b) of this standard for the tension-relieving device, and the vehicle shall comply with §7.4.2(c) of this standard.

§4.4.4 Buses with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1994. Each bus with a GVWR of 8,500 pounds or less and an unloaded vehicle weight of 5,500 pounds or less manufactured on or after September 1, 1984 shall comply with the requirements of §4.2.5 and §4.2.6 of this standard, as applicable, for front seating positions, and with the requirements of §4.4.3.2 or §4.4.3.3 of this standard, as applicable, for all rear seating positions.

§4.4.5 Buses with a GVWR of 10,000 lb (4,536 kg) or less, except school buses, manufactured on or after September 1, 2007.

§4.4.5.1 Except as provided in §4.4.5.2, §4.4.5.3, §4.4.5.4, §4.4.5.5 and §4.4.5.6, each bus with a gross vehicle weight rating of 10,000 lb (4,536 kg) or less, except school buses, shall be equipped with a Type 2 seat belt assembly at every designated seating position other than a side-facing position. Type 2 seat belt assemblies installed in compliance with this requirement shall conform to Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard. If a Type 2 seat belt assembly installed in compliance with this requirement incorporates a webbing tension relieving device, the vehicle owner’s manual shall include the information specified in §7.4.2(b) of this standard for the tension-relieving device, and the vehicle shall conform to §7.4.2(c) of this standard. Side-facing designated seating positions shall be equipped, at the manufacturer’s option, with a Type 1 or Type 2 seat belt assembly.

§4.4.5.2 Any rear designated seating position with a seat that can be adjusted to be forward- or rear-facing and to face some other direction shall either:

(a) Meet the requirements of §4.4.5.1 with the seat in any position in which
It can be occupied while the vehicle is in motion; or

(b) (1) When the seat is in its forward-facing and/or rear-facing position, or within 30 degrees of either position, have a Type 2 seat belt assembly with an upper torso restraint that

(i) Conforms to S7.1 and S7.2 of this standard,

(ii) Adjusts by means of an emergency locking retractor conforming to Standard No. 209 (49 CFR 571.209), and

(iii) May be detachable at the buckle or upper anchorage, but not both, and

(2) When the seat is in any position in which it can be occupied while the vehicle is in motion, have a Type 1 seat belt or the pelvic portion of a Type 2 seat belt assembly that conforms to S7.1 and S7.2 of this standard.

S4.4.5.3 Any rear designated seating position on a readily removable seat (that is, a seat designed to be easily removed and replaced by means installed by the manufacturer for that purpose) may meet the requirements of S4.4.5.1 by use of a belt incorporating a release mechanism that detaches both the lap and shoulder portion at either the upper or lower anchorage point, but not both. The means of detachment shall be a key or key-like object.

S4.4.5.4 Any inboard designated seating position on a seat for which the entire seat back can be folded such that no part of the seat back extends above a horizontal plane located 250 mm above the highest SRP located on the seat may meet the requirements of S4.4.5.1 by use of a belt incorporating a release mechanism that detaches both the lap and shoulder portion at either the upper or lower anchorage point, but not both. The means of detachment shall be a key or key-like object.

S4.4.5.5 Any rear designated seating position adjacent to a walkway located between the seat, which walkway is designed to allow access to more rearward designated seating positions, and not adjacent to the side of the vehicle may meet the requirements of S4.4.5.1 by use of a belt incorporating a release mechanism that detaches both the lap and shoulder portion at either the upper or lower anchorage point, but not both. The means of detachment shall be a key or key-like object.

S4.4.5.6 Any rear side-facing designated seating position shall have a Type 1 or Type 2 seat belt assembly that conforms to S7.1 and S7.2 of this standard.

S4.5 Other general requirements.

S4.5.1 Labeling and owner’s manual information.

(a) Air bag maintenance or replacement information. If the vehicle manufacturer recommends periodic maintenance or replacement of an inflatable restraint system, as that term is defined in S4.1.5.1(b) of this standard, installed in a vehicle, that vehicle shall be labeled with the recommended schedule for maintenance or replacement. The schedule shall be specified by month and year, or in terms of vehicle mileage, or by intervals measured from the date appearing on the vehicle certification label provided pursuant to 49 CFR part 567. The label shall be permanently affixed to the vehicle within the passenger compartment and lettered in English in block capital and numerals not less than three thirtyseconds of an inch high. This label may be combined with the label required by S4.5.1(b) of this standard to appear on the sun visor. If some regular maintenance or replacement of the inflatable restraint system(s) in a vehicle is recommended by the vehicle manufacturer, the owner’s manual shall also set forth the recommended schedule for maintenance or replacement.

(b) Sun visor air bag warning label. (1) Except as provided in S4.5.1(b)(2), each vehicle shall have a label permanently affixed to either side of the sun visor, at the manufacturer’s option, at each front outboard seating position that is equipped with an inflatable restraint. The label shall conform in content to the label shown in either Figure 6a or 6b of this standard, as appropriate, and shall comply with the requirements of S4.5.1(b)(1)(i) through S4.5.1(b)(1)(iv).

(i) The heading area shall be yellow with the word “WARNING” and the alert symbol in black.

(ii) The message area shall be white with black text. The message area shall be no less than 30 cm² (4.7 in²).

(iii) The pictogram shall be black with a red circle and slash on a white background. The pictogram shall be no less than 30 mm (1.2 in) in diameter.
(iv) If the vehicle does not have a back seat, the label shown in Figure 6a or 6b may be modified by omitting the statements: “The BACK SEAT is the SAFEST place for children.”

(2) Vehicles certified to meet the requirements specified in S19, S21, or S23 before September 1, 2003 shall have a label permanently affixed to either side of the sun visor, at the manufacturer’s option, at each front outboard seating position that is equipped with an inflatable restraint. The label shall conform in content to the label shown either in Figure 8 or Figure 11 of this standard, at the manufacturer’s option, and shall comply with the requirements of §4.5.1(b)(2)(i) through §4.5.1(b)(2)(iv).
 (i) The heading area shall be yellow with the word “WARNING” and the alert symbol in black.
 (ii) The message area shall be white with black text. The message area shall be no less than 30 cm² (4.7 in²).
 (iii) The pictogram shall be black on a white background. The pictogram shall be no less than 30 mm (1.2 in) in length.
 (iv) If the vehicle does not have a back seat, the label shown in the figure may be modified by omitting the statement: “The BACK SEAT is the SAFEST place for CHILDREN.”
 (v) If the vehicle does not have a back seat or the back seat is too small to accommodate a rear-facing child restraint consistent with §4.5.4.1, the label shown in the figure may be modified by omitting the statement: “Never put a rear-facing child seat in the front.”

(3) Vehicles certified to meet the requirements specified in S19, S21, or S23 on or after September 1, 2003 shall have a label permanently affixed to either side of the sun visor, at the manufacturer’s option, at each front outboard seating position that is equipped with an inflatable restraint. The label shall conform in content to the label shown in Figure 11 of this standard and shall comply with the requirements of §4.5.1(b)(3)(i) through §4.5.1(b)(3)(iv).
 (i) The heading area shall be yellow with the word “WARNING” and the alert symbol in black.
 (ii) The message area shall be white with black text. The message area shall be no less than 30 cm² (4.7 in²).
 (iii) The pictogram shall be black on a white background. The pictogram shall be no less than 30 mm (1.2 in) in length.
 (iv) If the vehicle does not have a back seat, the label shown in the figure may be modified by omitting the statement: “The BACK SEAT is the SAFEST place for CHILDREN.”
 (v) If the vehicle does not have a back seat or the back seat is too small to accommodate a rear-facing child restraint consistent with §4.5.4.1, the label shown in the figure may be modified by omitting the statement: “Never put a rear-facing child seat in the front.”

(4) Design-specific information.
 (i) A manufacturer may request in writing that the Administrator authorize additional design-specific information to be placed on the air bag sun visor label for vehicles certified to meet the requirements specified in S19, S21, or S23. The label shall conform in content to the label shown in Figure 11 of this standard and shall comply with the requirements of §4.5.1(b)(3)(i) through §4.5.1(b)(3)(iv), except that the label may contain additional, design-specific information, if authorized by the Administrator.
 (ii) The request must meet the following criteria:
 (A) The request must provide a mock-up of the label with the specific language or pictogram the manufacturer requests permission to add to the label.
 (B) The additional information conveyed by the requested label must be specific to the design or technology of the air bag system in the vehicle and not applicable to all or most air bag systems.
 (C) The additional information conveyed by the requested label must address a situation in which foreseeable occupant behavior can affect air bag performance.
 (iii) The Administrator shall authorize or reject a request by a manufacturer submitted under §4.5.1(b)(4)(i) on the basis of whether the additional information could result in information overload or would otherwise make the
label confusing or misleading. No determination will be made as to whether, in light of the above criteria, the particular information best prevents information overload or whether the information best addresses a particular air bag risk. Moreover, the Administrator will not verify or vouch for the accuracy of the information.

(5) Limitations on additional labels.

(i) Except for the information on an air bag maintenance label placed on the sun visor pursuant to §4.5.1(a) of this standard, or on a utility vehicle warning label placed on the sun visor that conforms in content, form, and sequence to the label shown in Figure 1 of 49 CFR 575.105, no other information shall appear on the same side of the sun visor to which the sun visor air bag warning label is affixed.

(ii) Except for the information in an air bag alert label placed on the sun visor pursuant to §4.5.1(c) of this standard, or on a utility vehicle warning label placed on the sun visor that conforms in content, form, and sequence to the label shown in Figure 1 of 49 CFR 575.105, no other information about air bags or the need to wear seat belts shall appear anywhere on the sun visor.

(c) Air bag alert label. If the label required by §4.5.1(b) is not visible when the sun visor is in the stowed position, an air bag alert label shall be permanently affixed to that visor so that the label is visible when the visor is in that position. The label shall conform in content to the sun visor label shown in Figure 6(c) of this standard, and shall comply with the requirements of §4.5.1(c)(1) through §4.5.1(c)(3).

(1) The message area shall be black with yellow text. The message area shall be no less than 20 square cm.

(2) The pictogram shall be black with a red circle and slash on a white background. The pictogram shall be no less than 20 mm in diameter.

(3) If a vehicle does not have an inflatable restraint at any front seating position other than that for the driver, the pictogram may be omitted from the label shown in Figure 6c.

(d) At the option of the manufacturer, the requirements in §4.5.1(b) and §4.5.1(c) for labels that are permanently affixed to specified parts of the vehicle may instead be met by permanent marking or molding of the required information.

(e) Label on the dashboard. (1) Except as provided in §4.5.1(e)(2) or §4.5.1(e)(3), each vehicle that is equipped with an inflatable restraint for the passenger position shall have a label attached to a location on the dashboard or the steering wheel hub that is clearly visible from all front seating positions. The label need not be permanently affixed to the vehicle. This label shall conform in content to the label shown in Figure 7 of this standard, and shall comply with the requirements of §4.5.1(e)(1)(i) through §4.5.1(e)(1)(iii).

(i) The heading area shall be yellow with the word “WARNING” and the alert symbol in black.

(ii) The message area shall be white with black text. The message area shall be no less than 30 cm² (4.7 in²).

(iii) If the vehicle does not have a back seat, the label shown in Figure 7 may be modified by omitting the statement: “The back seat is the safest place for children 12 and under.”

(2) Vehicles certified to meet the requirements specified in S19, S21, and S23 before December 1, 2003, that are equipped with an inflatable restraint for the passenger position shall have a label attached to a location on the dashboard or the steering wheel hub that is clearly visible from all front seating positions. The label need not be permanently affixed to the vehicle. This label shall conform in content to the label shown in either Figure 9 or Figure 12 of this standard, at manufacturer’s option, and shall comply with the requirements of §4.5.1(e)(2)(i) through §4.5.1(e)(2)(iv).

(i) The heading area shall be yellow with black text.

(ii) The message area shall be white with black text. The message area shall be no less than 30 cm² (4.7 in²).

(iii) If the vehicle does not have a back seat, the labels shown in Figures 9 and 12 may be modified by omitting the statement: “The back seat is the safest place for children.”

(iv) If the vehicle does not have a back seat or the back seat is too small to accommodate a rear-facing child restraint consistent with §4.5.4.1, the...
label shown in Figure 12 may be modified by omitting the statement: “Never put a rear-facing child seat in the front.”

(3) Vehicles certified to meet the requirements specified in S19, S21, and S23 on or after December 1, 2003, that are equipped with an inflatable restraint for the passenger position shall have a label attached to a location on the dashboard or the steering wheel hub that is clearly visible from all front seating positions. The label need not be permanently affixed to the vehicle. This label shall conform in content to the label shown in Figure 12 of this standard and shall comply with the requirements of §4.5.1(e)(3)(i) through §4.5.1(e)(3)(iv).

(i) The heading area shall be yellow with black text.

(ii) The message area shall be white with black text. The message area shall be no less than 30 cm² (4.7 in²).

(iii) If the vehicle does not have a back seat, the label shown in Figure 12 may be modified by omitting the statement: “The back seat is the safest place for children.”

(iv) If the vehicle does not have a back seat or the back seat is too small to accommodate a rear-facing child restraint consistent with §4.5.4.1, the label shown in Figure 12 may be modified by omitting the statement: “Never put a rear-facing child seat in the front.”

(f) Information to appear in owner’s manual.

(1) The owner’s manual for any vehicle equipped with an inflatable restraint system shall include an accurate description of the vehicle’s air bag system in an easily understandable format. The owner’s manual shall include a statement to the effect that the vehicle is equipped with an air bag and lap/shoulder belt at both front outboard seating positions, and that the air bag is a supplemental restraint at those seating positions. The information shall emphasize that all occupants, including the driver, should always wear their seat belts whether or not an air bag is also provided at their seating position to minimize the risk of severe injury or death in the event of a crash. The owner’s manual shall also provide any necessary precautions regarding the proper positioning of occupants, including children, at seating positions equipped with air bags to ensure maximum safety protection for those occupants. The owner’s manual shall also explain that no objects should be placed over or near the air bag on the instrument panel, because any such objects could cause harm if the vehicle is in a crash severe enough to cause the air bag to inflate.

(2) For any vehicle certified to meet the requirements specified in S14.5, S15, S17, S19, S21, S23, and S25, the manufacturer shall also include in the vehicle owner’s manual a discussion of the advanced passenger air bag system installed in the vehicle. The discussion shall explain the proper functioning of the advanced air bag system and shall provide a summary of the actions that may affect the proper functioning of the system. The discussion shall include, at a minimum, accurate information on the following topics:

(i) A presentation and explanation of the main components of the advanced passenger air bag system.

(ii) An explanation of how the components function together as part of the advanced passenger air bag system.

(iii) The basic requirements for proper operation, including an explanation of the actions that may affect the proper functioning of the system.

(iv) For vehicles certified to meet the requirements of S19.2, S21.2 or S23.2, a complete description of the passenger air bag suppression system installed in the vehicle, including a discussion of any suppression zone.

(v) An explanation of the interaction of the advanced passenger air bag system with other vehicle components, such as seat belts, seats or other components.

(vi) A summary of the expected outcomes when child restraint systems, children and small teenagers or adults are both properly and improperly positioned in the passenger seat, including cautionary advice against improper placement of child restraint systems.

(vii) For vehicles certified to meet the requirements of S19.2, S21.2 or S23.2, a discussion of the telltale light, specifying its location in the vehicle and explaining when the light is illuminated.
(viii) Information on how to contact the vehicle manufacturer concerning modifications for persons with disabilities that may affect the advanced air bag system.

(g) Additional labels placed elsewhere in the vehicle interior. The language on additional air bag warning labels placed elsewhere in the vehicle interior shall not cause confusion or contradiction of any of the statements required in the air bag sun visor label, and shall be expressed in symbols, words and abbreviations required by this standard.

§4.5.2 Readiness indicator. An occupant protection system that deploys in the event of a crash shall have a monitoring system with a readiness indicator. The indicator shall monitor its own readiness and shall be clearly visible from the driver's designated seating position. If the vehicle is equipped with a single readiness indicator for both a driver and passenger air bag, and if the vehicle is equipped with an on-off switch permitted by §4.5.4 of this standard, the readiness indicator shall monitor the readiness of the driver air bag when the passenger air bag has been deactivated by means of the on-off switch, and shall not illuminate solely because the passenger air bag has been deactivated by the manual on-off switch. A list of the elements of the system being monitored by the indicator shall be included with the information furnished in accordance with §4.5.1 but need not be included on the label.

§4.5.3 Automatic belts. Except as provided in §4.5.3.1, a seat belt assembly that requires no action by vehicle occupants (hereinafter referred to as an “automatic belt”) may be used to meet the crash protection requirements of any option under §4, and in place of any seat belt assembly otherwise required by that option.

§4.5.3.1 An automatic belt that provides only pelvic restraint may not be used pursuant to §4.5.3 to meet the requirements of an option that requires a Type 2 seat belt assembly. An automatic belt may not be used pursuant to §4.5.3 to meet the requirements of §4.1.5.1(a)(3) for a Type 2 seat belt assembly at any seating position equipped with an inflatable restraint system pursuant to §4.1.5.2, §4.1.5.3, §4.2.6.1, or §4.2.6.2 of this standard.

§4.5.3.2 An automatic belt, furnished pursuant to §4.5.3, that provides both pelvic and upper torso restraint may have either a detachable or non-detachable upper torso portion, notwithstanding provisions of the option under which it is furnished.

§4.5.3.3 An automatic belt furnished pursuant to §4.5.3 shall:

(a) Conform to §7.1 and have a single emergency release mechanism whose components are readily accessible to a seated occupant.

(b) In place of a warning system that conforms to §7.3 of this standard, be equipped with the following warning system: At the left front designated seating position (driver’s position), a warning system that activates a continuous or intermittent audible signal for a period of not less than 4 seconds and not more than 8 seconds and that activates a continuous or flashing warning light visible to the driver for condition (A) exists simultaneously with condition (B), and that activates a continuous or flashing warning light, visible to the driver, displaying the identifying symbol for the seat belt telltale shown in Table 2 of Standard No. 101 (49 CFR 571.101), or, at the option of the manufacturer if permitted by Standard No. 101, the words “Fasten Seat Belts” or “Fasten Belts,” for as long as condition (A) exists simultaneously with condition (C).

(A) The vehicle’s ignition switch is moved to the “on” position or to the “start” position.

(B) The driver’s automatic belt is not in use, as determined by the belt latch mechanism not being fastened, or, if the automatic belt is non-detachable, by the emergency release mechanism being in the released position. In the case of motorized automatic belts, the determination of use shall be made once the belt webbing is in its locked protective mode at the anchorage point.

(C) The belt webbing of a motorized automatic belt system is not in its
locked, protective mode at the anchorage point.

S4.5.3.4 An automatic belt furnished pursuant to S4.5.3 that is not required to meet the perpendicular frontal crash protection requirements of S5.1 shall conform to the webbing, attachment hardware, and assembly performance requirements of Standard No. 209.

S4.5.3.5 A replacement automatic belt shall meet the requirements of S4.1(k) of Standard No. 209.

S4.5.4 Passenger air bag manual cut-off device. Passenger cars, trucks, buses, and multipurpose passenger vehicles manufactured before September 1, 2012 may be equipped with a device that deactivates the air bag installed at the right front outboard seating position in the vehicle, if all the conditions in S4.5.4.1 through S4.5.4.4 are satisfied.

S4.5.4.1 The vehicle complies with either S4.5.4.1(a) or S4.5.4.1(b).

(a) The vehicle has no forward-facing designated seating positions to the rear of the front seating positions.

(b) With the seats and seat backs adjusted as specified in S8.1.2 and S8.1.3, the distance, measured along a longitudinal horizontal line tangent to the highest point of the rear seat bottom in the longitudinal vertical plane described in either S4.5.4.1(b)(1) or S4.5.4.1(b)(2), between the rearward surface of the front seat back and the forward surface of the rear seat back is less than 720 millimeters.

(1) In a vehicle equipped with front bucket seats, the vertical plane at the centerline of the driver’s seat cushion.

(2) In a vehicle equipped with front bench seating, the vertical plane which passes through the center of the steering wheel rim.

S4.5.4.2 The device is operable by means of the ignition key for the vehicle. The device shall be separate from the ignition switch for the vehicle, so that the driver must take some action with the ignition key other than inserting it or turning it in the ignition switch to deactivate the passenger air bag. Once deactivated, the passenger air bag shall remain deactivated until it is reactivated by means of the device.

S4.5.4.3 A telltale light in the interior of the vehicle shall be illuminated whenever the passenger air bag is turned off by means of the on-off switch. The telltale shall be clearly visible to occupants of all front seating positions. "Clearly visible" means within the normal range of vision throughout normal driving operations. The telltale:

(a) Shall be yellow;

(b) Shall have the identifying words "PASSenger AIR BAG OFF" or "PASS AIR BAG OFF" on the telltale or within 25 millimeters of the telltale;

(c) Shall remain illuminated for the entire time that the air bag is "off";

(d) Shall not be illuminated at any time when the air bag is "on"; and,

(e) Shall not be combined with the readiness indicator required by S4.5.2 of this standard.

S4.5.4.4 The vehicle owner’s manual shall provide, in a readily understandable format:

(a) Complete instructions on the operation of the on-off switch;

(b) A statement that the on-off switch should only be used when a member of a passenger risk group identified in the request form in appendix B to part 595 of this chapter is occupying the right front passenger seating position; and,

(c) A warning about the safety consequences of using the on-off switch at other times.

S4.5.5 Rear seat belt requirements for passenger cars and for trucks, buses, and multipurpose passenger vehicles with a GVWR of 4,536 kg (10,000 lbs.) or less.

S4.5.5.1 Vehicles manufactured on or after September 1, 2005 and before September 1, 2007.

(a) For vehicles manufactured for sale in the United States on or after September 1, 2005, and before September 1, 2007, a percentage of the manufacturer’s production as specified in S4.5.5.2, shall meet the requirements specified in either S4.1.5.5 for complying passenger cars, S4.2.7 for complying trucks and multipurpose passenger vehicles, or S4.4.5 for complying buses.

(b) A manufacturer that sells two or fewer carlines, as that term is defined at 49 CFR 583.4, in the United States may, at the option of the manufacturer, meet the requirements of this paragraph, instead of paragraph (a) of
this section. Each vehicle manufactured on or after September 1, 2006, and before September 1, 2007, shall meet the requirements specified in §4.1.5.5 for complying passenger cars, §4.2.7 for complying trucks & multipurpose passenger vehicles, and §4.4.5 for complying buses. Credits for vehicles manufactured before September 1, 2006 are not to be applied to the requirements of this paragraph.

(c) Vehicles that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having previously been certified in accordance with part 567 of this chapter are not subject to the requirements of §4.5.5.1.

(d) Vehicles that are manufactured by a manufacturer that produces fewer than 5,000 vehicles annually for sale in the United States are not subject to the requirements of §4.5.5.1.

§4.5.5.2 Phase-in schedule.

(a) Vehicles manufactured on or after September 1, 2005, and before September 1, 2006. Subject to §4.5.5.3(a), for vehicles manufactured on or after September 1, 2005, and before September 1, 2006, the amount of vehicles complying with §4.1.5.5 for complying passenger cars, §4.2.7 for complying trucks and multipurpose passenger vehicles, or §4.4.5 for complying buses shall be not less than 50 percent of:

(1) If the manufacturer has manufactured vehicles for sale in the United States during both of the two production years immediately prior to September 1, 2005, the manufacturer’s average annual production of vehicles manufactured on or after September 1, 2003, and before September 1, 2006, or

(2) The manufacturer’s production on or after September 1, 2005, and before September 1, 2006.

(b) Vehicles manufactured on or after September 1, 2006, and before September 1, 2007. Subject to §4.5.5.3(b), for vehicles manufactured on or after September 1, 2006, and before September 1, 2007, the amount of vehicles complying with §4.1.5.5 for complying passenger cars, §4.2.7 for complying trucks and multipurpose passenger vehicles, or §4.4.5 for complying buses shall be not less than 80 percent of:

(1) If the manufacturer has manufactured vehicles for sale in the United States during both of the two production years immediately prior to September 1, 2006, the manufacturer’s average annual production of vehicles manufactured on or after September 1, 2004, and before September 1, 2007, or

(2) The manufacturer’s production on or after September 1, 2006, and before September 1, 2007.

§4.5.5.3 Calculation of complying vehicles.

(a) For the purposes of complying with §4.5.5.2(a), a manufacturer may count a vehicle if it is manufactured on or before February 7, 2005, but before September 1, 2006.

(b) For the purposes of complying with §4.5.5.2(b), a manufacturer may count a vehicle if it:

(1) Is manufactured on or after February 7, 2005, but before September 1, 2007, and

(2) Is not counted toward compliance with §4.5.5.2(a).

§4.5.5.4 Vehicles produced by more than one manufacturer.

(a) For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under §4.5.5.2, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to paragraph (b) of this section.

(1) A vehicle that is imported shall be attributed to the importer.

(2) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.

(b) A vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under paragraph (a) of this section.

§4.6 Dynamic testing of manual belt systems.

§4.6.1 Each truck and multipurpose passenger vehicle with a GVWR of 8,500 pounds or less and an unloaded weight
§ 571.208 49 CFR Ch. V (10–1–16 Edition)

of less than 5,500 pounds that is manufactured on or after September 1, 1991, and is equipped with a Type 2 seat belt assembly at a front outboard designated seating position pursuant to §4.1.2.3 shall meet the frontal crash protection requirements of §5.1 at those designated seating positions with a test dummy restrained by a Type 2 seat belt assembly that has been adjusted in accordance with §7.4.2. A vehicle shall not be deemed to be in non-compliance with this standard if its manufacturer establishes that it did not have reason to know in the exercise of due care that such vehicle is not in conformity with the requirement of this standard.

S4.6.2 Any manual seat belt assembly subject to the requirements of §5.1 of this standard by virtue of any provision of this standard other than §4.1.2.1(c)(2) does not have to meet the requirements of §4.2(a)–(f) and §4.4 of Standard No. 209 (§571.209).

S4.6.3 Any manual seat belt assembly subject to the requirements of §5.1 of this standard by virtue of §4.1.2.1(c)(2) does not have to meet the elongation requirements of §4.2(c), §4.4(a)(2), §4.4(b)(4), and §4.4(b)(5) of Standard No. 209 (§571.209).

S4.7 [Reserved]

S4.8 Selection of compliance options. Where manufacturer options are specified, the manufacturer shall select the option by the time it certifies the vehicle and may not thereafter select a different option for the vehicle. Each manufacturer shall, upon request from the National Highway Traffic Safety Administration, provide information regarding which of the compliance options it has selected for a particular vehicle or make/model.

S4.9 Values and tolerances. Wherever a range of values or tolerances are specified, requirements shall be met at all values within the range of values or tolerances. With respect to the positioning of anthropomorphic dummies, torso and spine angle tolerances shall be ±2 degrees unless otherwise stated, and leg, thigh, foot, and arm angle tolerances shall be ±5 degrees unless otherwise stated.

S4.10 Metric values. Specifications and requirements are given in metric units with English units provided for reference. The metric values are controlling.

S4.11 Test duration for purpose of measuring injury criteria.

(a) For all barrier crashes, the injury criteria specified in this standard shall be met when calculated based on data recorded for 300 milliseconds after the vehicle strikes the barrier.

(b) For the 3-year-old and 6-year-old child dummy low risk deployment tests, the injury criteria specified in this standard shall be met when calculated on data recorded for 100 milliseconds after the initial deployment of the air bag.

(c) For 12-month-old infant dummy low risk deployment tests, the injury criteria specified in the standard shall be met when calculated on data recorded for 125 milliseconds after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 64 km/h (40 mph).

(d) For driver-side low risk deployment tests, the injury criteria shall be met when calculated based on data recorded for 125 milliseconds after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 26 km/h (16 mph).

(e) The requirements for dummy containment shall continue until both the vehicle and the dummies have ceased moving.

S4.12 Suppression systems that do not detect dummies. For vehicles with occupant sensing systems that recognize humans and not dummies, such that the air bag or bags would not function in crash tests, the manufacturer shall provide NHTSA with information and equipment necessary to circumvent the suppression system for the crash test such that the restraint system operates as if 5th percentile adult female humans and 50th percentile adult male humans are seated in the vehicle.

S4.13 Data channels. For vehicles manufactured on or after September 1, 2001, all data channels used in injury criteria calculations shall be filtered using a phaseless digital filter, such as the Butterworth four-pole phaseless digital filter specified in appendix C of SAE Recommended Practice J211/1.
§ 571.208

Occupant crash protection requirements for the 50th percentile adult male dummy.

S5.1 Frontal barrier crash test.

S5.1.1 Belted test. (a) Vehicles not certified to S14. Impact a vehicle traveling longitudinally forward at any speed, up to and including 48 km/h (30 mph), into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(a), S6.3, S6.4(a), and S6.5 of this standard.

(b) Vehicles certified to S14—(1) Vehicles certified to S14.1 or S14.2. Impact a vehicle traveling longitudinally forward at any speed, up to and including 48 km/h (30 mph), into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle under the applicable conditions of S8 and S10. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(a), S6.3, S6.4(a), and S6.5 of this standard.

(2) Vehicles certified to S14.3 or S14.4. Impact a vehicle traveling longitudinally forward at any speed between 32 km/h (20 mph) and 40 km/h (25 mph), inclusive, into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10, excluding S10.7, S10.8, and S10.9. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 of this standard.

(b) Vehicles certified to the requirements of S14. Impact a vehicle traveling longitudinally forward at any speed between 32 km/h (20 mph) and 40 km/h (25 mph), inclusive, into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10, excluding S10.7, S10.8, and S10.9. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 of this standard.

S5.2 Lateral moving barrier crash test. Impact a vehicle laterally on either side by a barrier moving at 20 mph under the applicable conditions of S8. The test dummy specified in S8.1.8 placed in each front outboard designated seating position adjacent to the impacted side shall meet the injury criteria of S6.2 and S6.3 of this standard.

S5.1.2 Unbelted test. (a) Vehicles not certified to the requirements of S13 or S14. At the manufacturer's option, either one of the following unbelted tests shall be met:

(1) Impact a vehicle traveling longitudinally forward at any speed up to and including 48 km/h (30 mph), into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10, excluding S10.7, S10.8, and S10.9. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(a), S6.3, S6.4(a), and S6.5 of this standard.

(a) Vehicles not certified to S14. Impact a vehicle traveling longitudinally forward at any speed, up to and including 48 km/h (30 mph), into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(a), S6.3, S6.4(a), and S6.5 of this standard.

(b) Vehicles certified to S14. Impact a vehicle traveling longitudinally forward at any speed, up to and including 48 km/h (30 mph), into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(a), S6.3, S6.4(a), and S6.5 of this standard.

(b) Vehicles certified to the requirements of S14. Impact a vehicle traveling longitudinally forward at any speed between 32 km/h (20 mph) and 40 km/h (25 mph), inclusive, into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10, excluding S10.7, S10.8, and S10.9. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 of this standard.

(b) Vehicles certified to the requirements of S14. Impact a vehicle traveling longitudinally forward at any speed between 32 km/h (20 mph) and 40 km/h (25 mph), inclusive, into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10, excluding S10.7, S10.8, and S10.9. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 of this standard.

(b) Vehicles certified to S14. Impact a vehicle traveling longitudinally forward at any speed between 32 km/h (20 mph) and 40 km/h (25 mph), inclusive, into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10, excluding S10.7, S10.8, and S10.9. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 of this standard.

(b) Vehicles certified to S14. Impact a vehicle traveling longitudinally forward at any speed between 32 km/h (20 mph) and 40 km/h (25 mph), inclusive, into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10, excluding S10.7, S10.8, and S10.9. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 of this standard.

(b) Vehicles certified to S14. Impact a vehicle traveling longitudinally forward at any speed between 32 km/h (20 mph) and 40 km/h (25 mph), inclusive, into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10, excluding S10.7, S10.8, and S10.9. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 of this standard.

(b) Vehicles certified to S14. Impact a vehicle traveling longitudinally forward at any speed between 32 km/h (20 mph) and 40 km/h (25 mph), inclusive, into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10, excluding S10.7, S10.8, and S10.9. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 of this standard.

(b) Vehicles certified to S14. Impact a vehicle traveling longitudinally forward at any speed between 32 km/h (20 mph) and 40 km/h (25 mph), inclusive, into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10, excluding S10.7, S10.8, and S10.9. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 of this standard.

(b) Vehicles certified to S14. Impact a vehicle traveling longitudinally forward at any speed between 32 km/h (20 mph) and 40 km/h (25 mph), inclusive, into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10, excluding S10.7, S10.8, and S10.9. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 of this standard.

(b) Vehicles certified to S14. Impact a vehicle traveling longitudinally forward at any speed between 32 km/h (20 mph) and 40 km/h (25 mph), inclusive, into a fixed rigid barrier that is perpendicular to the line of travel of the vehicle, and at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, under the applicable conditions of S8 and S10, excluding S10.7, S10.8, and S10.9. The test dummy specified in S8.1.8 placed in each front outboard designated seating position shall meet the injury criteria of S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 of this standard.
dummy shall meet the injury criteria of S6.1 of this standard.
S6 Injury criteria for the part 572, subpart E, Hybrid III test dummy.
S6.1 All portions of the test dummy shall be contained within the outer surfaces of the vehicle passenger compartment.
S6.2 Head injury criteria. (a)(1) For any two points in time, \(t_1 \) and \(t_2 \), during the event which are separated by not more than a 36 millisecond time interval and where \(t_1 \) is less than \(t_2 \), the head injury criterion (HIC\(_{36}\)) shall be determined using the resultant head acceleration at the center of gravity of the dummy head, \(a_r \), expressed as a multiple of g (the acceleration of gravity) and shall be calculated using the expression:

\[
\left(\frac{1}{(t_2 - t_1)^2} \int_{t_1}^{t_2} a_r \, dt \right)^{2.5}
\]

(2) The maximum calculated HIC\(_{36}\) value shall not exceed 1,000.

(b)(1) For any two points in time, \(t_1 \) and \(t_2 \), during the event which are separated by not more than a 15 millisecond time interval and where \(t_1 \) is less than \(t_2 \), the head injury criterion (HIC\(_{15}\)) shall be determined using the resultant head acceleration at the center of gravity of the dummy head, \(a_r \), expressed as a multiple of g (the acceleration of gravity) and shall be calculated using the expression:

\[
\left(\frac{1}{(t_2 - t_1)^2} \int_{t_1}^{t_2} a_r \, dt \right)^{2.5}
\]

(2) The maximum calculated HIC\(_{15}\) value shall not exceed 700.
S6.3 The resultant acceleration calculated from the output of the thoracic instrumentation shown in drawing 78051.218, revision R incorporated by reference in part 572, subpart E of this chapter shall not exceed 60 g's, except for intervals whose cumulative duration is not more than 3 milliseconds.
S6.4 Chest deflection. (a) Compressive deflection of the sternum relative to the spine shall not exceed 76 mm (3.0 in).

(b) Compressive deflection of the sternum relative to the spine shall not exceed 63 mm (2.5 in).
S6.5 The force transmitted axially through each upper leg shall not exceed 2250 pounds.
S6.6 Neck injury. When measuring neck injury, each of the following injury criteria shall be met.

(a) \(Nij \).

(1) The shear force (\(F_x \)), axial force (\(F_z \)), and bending moment (\(M_y \)) shall be measured by the dummy upper neck load cell for the duration of the crash event as specified in S4.11. Shear force, axial force, and bending moment shall be filtered for \(Nij \) purposes at SAE Recommended Practice J211/1 MAR95 (incorporated by reference, see §571.5) Channel Frequency Class 600.

(2) During the event, the axial force (\(F_z \)) can be either in tension or compression while the occipital condyle bending moment (\(M_y \)) can be in either flexion or extension. This results in four possible loading conditions for \(Nij \): tension-extension (\(Nte \)), tension-flexion (\(Ntf \)), compression-extension (\(Nce \)), or compression-flexion (\(Ncf \)).

(3) When calculating \(Nij \) using equation S6.6(a)(4), the critical values, \(F_{zc} \) and \(M_{yc} \), are:

(i) \(F_{zc} = 6806 \) N (1530 lbf) when \(F_z \) is in tension

(ii) \(F_{zc} = 6160 \) N (1385 lbf) when \(F_z \) is in compression

(iii) \(M_{yc} = 310 \) Nm (229 lbf-ft) when a flexion moment exists at the occipital condyle

(iv) \(M_{yc} = 135 \) Nm (100 lbf-ft) when an extension moment exists at the occipital condyle.

(4) At each point in time, only one of the four loading conditions occurs and the \(Nij \) value corresponding to that loading condition is computed and the three remaining loading modes shall be considered a value of zero. The expression for calculating each \(Nij \) loading condition is given by:

\[
Nij = \frac{F_x}{F_{zc}} + \frac{M_y}{M_{yc}}
\]

(5) None of the four \(Nij \) values shall exceed 1.0 at any time during the event.

(b) Peak tension. Tension force (\(F_z \)), measured at the upper neck load cell, shall not exceed 4170 N (937 lbf) at any time.

(c) Peak compression. Compression force (\(F_z \)), measured at the upper neck
load cell, shall not exceed 4000 N (899 lb) at any time.

S6.7 Unless otherwise indicated, instrumentation for data acquisition, data channel frequency class, and moment calculations are the same as given for the 49 CFR Part 572, Subpart E Hybrid III test dummy.

S7. Seat belt assembly requirements. As used in this section, a law enforcement vehicle means any vehicle manufactured primarily for use by the United States or by a State or local government for police or other law enforcement purposes.

S7.1 Adjustment.

S7.1.1 Except as specified in S7.1.1.1 and S7.1.1.2, the lap belt of any seat belt assembly furnished in accordance with §571.209 to fit persons whose dimensions range from those of a 50th percentile 6-year-old child to those of a 95th percentile adult male and the upper torso restraint shall adjust by means of an emergency-locking retractor or a manual adjusting device that conforms to §571.209 to fit persons whose dimensions range from those of a 5th percentile adult female to those of a 95th percentile adult male, with the seat in any position, the seat back in the manufacturer’s nominal design riding position, and any adjustable anchorages adjusted to the manufacturer’s nominal design position for a 50th percentile adult male occupant. However, an upper torso restraint furnished in accordance with §571.209 to fit persons whose dimensions range from those of a 5th percentile adult female to those of a 95th percentile adult male, with the seat in any position, the seat back in the manufacturer’s nominal design riding position, and any adjustable anchorages adjusted to the manufacturer’s nominal design position for a 50th percentile adult male occupant. However, an upper torso restraint furnished in accordance with §571.209 to fit persons whose dimensions range from those of a 5th percentile adult female to those of a 95th percentile adult male, with the seat in any position, the seat back in the manufacturer’s nominal design riding position, and any adjustable anchorages adjusted to the manufacturer’s nominal design position for a 50th percentile adult male occupant.

S7.1.1.5 Passenger cars, and trucks, buses, and multipurpose passenger vehicles with a GVWR of 4,536 kg (10,000 lb) or less manufactured on or after September 1, 1995 shall meet the requirements of S7.1.1.5(a), S7.1.1.5(b) and S7.1.1.5(c).

(a) Each designated seating position, except the driver’s position, and except any right front seating position that is equipped with an automatic belt, that is in any motor vehicle, except walk-in van-type vehicles and vehicles manufactured to be sold exclusively to the U.S. Postal Service, and that is forward-facing or can be adjusted to be forward-facing, shall have a seat belt assembly whose lap belt portion is lockable so that the seat belt assembly can be used to tightly secure a child restraint system. The means provided to

(b) A seat belt assembly installed in a forward control vehicle at any designated seating position other than the front outboard seating positions shall adjust either by a retractor as specified in §571.209 or by a manual adjusting device that conforms to §571.209.

(c) A seat belt assembly installed in a forward-facing rear outboard seating position in a law enforcement vehicle shall adjust either by a retractor as specified in §571.209 or by a manual adjusting device that conforms to §571.209.
lock the lap belt or lap belt portion of the seat belt assembly shall not consist of any device that must be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. Additionally, the means provided to lock the lap belt or lap belt portion of the seat belt assembly shall not require any inverting, twisting or otherwise deforming of the belt webbing.

(b) If the means provided pursuant to S7.1.1.5(a) to lock the lap belt or lap belt portion of any seat belt assembly makes it necessary for the vehicle user to take some action to activate the locking feature, the vehicle owner’s manual shall include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system.

(c) Except for seat belt assemblies that have no retractor or that are equipped with an automatic locking retractor, compliance with S7.1.1.5(a) is demonstrated by the following procedure:

1. With the seat in any adjustment position, buckle the seat belt assembly. Complete any procedures recommended in the vehicle owner’s manual, pursuant to S7.1.1.5(b), to activate any locking feature for the seat belt assembly.

2. Locate a reference point A on the safety belt buckle. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. Adjust the lap belt or lap belt portion of the seat belt assembly pursuant to S7.1.1.5(c)(1) as necessary so that the webbing between points A and B is at the maximum length allowed by the belt system. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly.

3. Readjust the belt system so that the webbing between points A and B is at any length that is 5 inches or more shorter than the maximum length of the webbing.

4. Apply a pre-load of 10 pounds, using the webbing tension pull device described in Figure 5 of this standard, to the lap belt or lap belt portion of the seat belt assembly in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position whose belt system is being tested. Apply the pre-load in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. Measure and record the length of belt between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly while the pre-load is being applied.

5. Apply a load of 50 pounds, using the webbing tension pull device described in Figure 5 of this standard, to the lap belt or lap belt portion of the seat belt assembly in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position whose belt system is being tested. The load is applied in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal at an onset rate of not more than 50 pounds per second. Attain the 50 pound load in not more than 5 seconds. If webbing sensitive emergency locking retroactive are installed as part of the lap belt assembly or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer. Maintain the 50 pound load for at least 5 seconds before the measurements specified in S7.1.1.5(c)(6) are obtained and recorded.

6. Measure and record the length of belt between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly.

7. The difference between the measurements recorded under S7.1.1.5(c) (6) and (4) shall not exceed 2 inches.

8. The difference between the measurements recorded under S7.1.1.5(c) (6) and (2) shall be 3 inches or more.

S7.1.2 Except as provided in S7.1.2.1, S7.1.2.2, and S7.1.2.3, for each Type 2 seat belt assembly which is required by
§ 571.208

Standard No. 208 (49 CFR 571.208), the upper anchorage, or the lower anchorage nearest the intersection of the torso belt and the lap belt, shall include a movable component which has a minimum of two adjustment positions. The distance between the geometric center of the movable component at the two extreme adjustment positions shall be not less than five centimeters, measured linearly. If the component required by this paragraph must be manually moved between adjustment positions, information shall be provided in the owner’s manual to explain how to adjust the seat belt and warn that misadjustment could reduce the effectiveness of the safety belt in a crash.

S7.1.2.1 As an alternative to meeting the requirement of S7.1.2, a Type 2 seat belt assembly shall provide a means of automatically moving the webbing in relation to either the upper anchorage, or the lower anchorage nearest the intersection of the torso belt and the lap belt. The distance between the midpoint of the webbing at the contact point of the webbing and the anchorage at the extreme adjustment positions shall be not less than five centimeters, measured linearly.

S7.1.2.2 The requirements of S7.1.2 do not apply the anchorages of a Type 2 seat belt assembly installed:

- At a seat which is adjustable fore and aft while the vehicle is in motion and whose seat frame above the fore-and-aft adjuster is part of each of the assembly’s seat belt anchorages, as defined in S3 of Standard No. 210 (49 CFR 571.210).
- At a seat that is not adjustable fore and aft while the vehicle is in motion.

S7.1.2.3 The requirements of S7.1.2 do not apply to any truck with a gross vehicle weight rating of more than 8,500 pounds manufactured before January 1, 1998.

S7.1.3 The intersection of the upper torso belt with the lap belt in any Type 2 seat belt assembly furnished in accordance with S4.1.1 or S4.1.2, with the upper torso manual adjusting device, if provided, adjusted in accordance with the manufacturer’s instructions, shall be at least 6 inches from the front vertical centerline of a 50th-percentile adult male occupant, measured along the centerline of the lap belt, with the seat in its rearmost and lowest adjustable position and with the seat back in the manufacturer’s nominal design riding position.

S7.1.4 The weights and dimensions of the vehicle occupants referred to in this standard are as follows:

<table>
<thead>
<tr>
<th></th>
<th>50th-percentile 6-year-old child</th>
<th>50th-percentile 10-year-old child</th>
<th>5th-percentile adult female</th>
<th>50th-percentile adult male</th>
<th>95th-percentile adult male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>47.3 pounds</td>
<td>62.1 pounds</td>
<td>102 pounds</td>
<td>164 pounds ±3</td>
<td>215 pounds</td>
</tr>
<tr>
<td>Erect sitting height</td>
<td>25.4 inches</td>
<td>28.9 inches</td>
<td>30.9 inches</td>
<td>35.7 inches ±1</td>
<td>38 inches</td>
</tr>
<tr>
<td>Hip breadth (sitting)</td>
<td>8.4 inches</td>
<td>10.1 inches</td>
<td>12.8 inches</td>
<td>14.7 inches ±1</td>
<td>16.5 inches</td>
</tr>
<tr>
<td>Hip circumference (sitting)</td>
<td>23.9 inches</td>
<td>27.4 inches (standing)</td>
<td>23.6 inches</td>
<td>32 inches ±6</td>
<td>42.5 inches</td>
</tr>
<tr>
<td>Waist circumference (sitting)</td>
<td>20.8 inches</td>
<td>25.7 inches (standing)</td>
<td>9.3 inches ±2</td>
<td>10.5 inches</td>
<td></td>
</tr>
<tr>
<td>Chest depth</td>
<td>6.0 inches</td>
<td>7.5 inches</td>
<td>37.4 inches ±6</td>
<td>44.5 inches</td>
<td></td>
</tr>
<tr>
<td>Chest circumference:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(nipple)</td>
<td>30.5 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(upper)</td>
<td>26.3 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(lower)</td>
<td>26.6 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S7.1.5 School bus bench seats. The seat belt assemblies on school bus bench seats will operate by means of any emergency-locking retractor that conforms to 49 CFR 571.209 to restrain persons whose dimensions range from those of a 50th percentile 6-year-old child to those of a 50th percentile 10-year-old, for small occupant seating positions, as defined in 49 CFR 571.222, and to those of a 50th percentile adult male for all other seating positions. The seat back may be in any position.

S7.2 Latch mechanism. Except as provided in S7.2(e), each seat belt assembly installed in any vehicle shall have
§ 571.208 49 CFR Ch. V (10–1–16 Edition)

a latch mechanism that complies with the requirements specified in S7.2(a) through (d).

(a) The components of the latch mechanism shall be accessible to a seated occupant in both the stowed and operational positions;

(b) The latch mechanism shall release both the upper torso restraint and the lap belt simultaneously, if the assembly has a lap belt and an upper torso restraint that require unlatching for release of the occupant;

(c) The latch mechanism shall release at a single point; and;

(d) The latch mechanism shall release by a pushbutton action.

(e) The requirements of S7.2 do not apply to any automatic belt assembly. The requirements specified in S7.2(a) through (c) do not apply to any safety belt assembly installed at a forward-facing rear outboard seating position in a law enforcement vehicle.

S7.3 (a) A seat belt assembly provided at the driver’s seating position shall be equipped with a warning system that, at the option of the manufacturer, either—

(1) Activates a continuous or intermittent audible signal for a period of not less than 4 seconds and not more than 8 seconds and that activates a continuous or flashing warning light visible to the driver displaying the identifying symbol for the seat belt telltale shown in Table 2 of FMVSS 101, or, at the option of the manufacturer if permitted by FMVSS 101, displaying the words “Fasten Seat Belts” or “Fasten Belts”, for not less than 60 seconds (beginning when the vehicle ignition switch is moved to the “on” or the “start” position) when condition (b) exists simultaneously with condition (c).

(2) Activates, for a period of not less than 4 seconds and not more than 8 seconds (beginning when the vehicle ignition switch is moved to the “on” or the “start” position) when condition (b) exists simultaneously with condition (c), or that

(b) The vehicle’s ignition switch is moved to the “on” position or to the “start” position.

(c) The driver’s lap belt is not in use, as determined, at the option of the manufacturer, either by the belt latch mechanism not being fastened, or by the belt not being extended at least 4 inches from its stowed position.

S7.4 Seat belt comfort and convenience.

(a) Automatic seat belts. Automatic seat belts installed in any vehicle, other than walk-in van-type vehicles, which has a gross vehicle weight rating of 10,000 pounds or less, and which is manufactured on or after September 1, 1986, shall meet the requirements of S7.4.1, S7.4.2, and S7.4.3.

(b) Manual seat belts.

(1) Vehicles manufactured after September 1, 1986. Manual seat belts installed in any vehicle, other than manual Type 2 belt systems installed in the front outboard seating positions in passenger cars or manual belts in walk-in van-type vehicles, which have a gross vehicle weight rating of 10,000 pounds or less, shall meet the requirements of S7.4.3, S7.4.4, S7.4.5, and S7.4.6.

(2) Vehicles manufactured after September 1, 1989.

(i) If the automatic restraint requirement of S4.1.4 is rescinded pursuant to S4.1.5, then manual seat belts installed in a passenger car shall meet the requirements of S7.1.1.3(a), S7.4.2, S7.4.3, S7.4.4, S7.4.5, and S7.4.6.

(ii) Manual seat belts installed in a bus, multipurpose passenger vehicle and truck with a gross vehicle weight rating of 10,000 pounds or less, except for walk-in van-type vehicles, shall meet the requirements of S7.4.3, S7.4.4, S7.4.5, and S7.4.6.

S7.4.1 Convenience hooks. Any manual convenience hook or other device that is provided to stow seat belt webbing to facilitate entering or exiting the vehicle shall automatically release the webbing when the automatic belt system is otherwise operational and shall remain in the released mode for as long as (a) exists simultaneously.
with (b), or, at the manufacturer’s option, for as long as (a) exists simultaneously with (c)—
(a) The vehicle ignition switch is moved to the “on” or “start” position;
(b) The vehicle’s drive train is engaged;
(c) The vehicle’s parking brake is in the released mode (nonengaged).

S7.4.2 Webbing tension-relieving device. Each vehicle with an automatic seat belt assembly or with a Type 2 manual seat belt assembly that must meet the occupant crash protection requirements of §5.1 of this standard installed at a front outboard designated seating position, and each vehicle with a Type 2 manual seat belt assembly installed at a rear outboard designated seating position in compliance with a requirement of this standard, that has either automatic or manual tension-relieving devices permitting the introduction of slack in the webbing of the shoulder belt (e.g., “comfort clips” or “window-shade” devices) shall:

(a) Comply with the requirements of §5.1 with the shoulder belt webbing adjusted to introduce the maximum amount of slack recommended by the vehicle manufacturer pursuant to S7.4.2(b);
(b) Have a section in the vehicle owner’s manual that explains how the tension-relieving device works and specifies the maximum amount of slack (in inches) recommended by the vehicle manufacturer to be introduced into the shoulder belt under normal use conditions. The explanation shall also warn that introducing slack beyond the amount specified by the manufacturer could significantly reduce the effectiveness of the shoulder belt in a crash; and
(c) Have, except for open-body vehicles with no doors, an automatic means to cancel any shoulder belt slack introduced into the belt system by a tension-relieving device. In the case of a Type 2 manual seat belt assembly installed at a rear outboard designated seating position, cancellation of the tension-relieving device shall occur, at the manufacturer’s option either each time the door designed to allow the occupant of that seating position entry and egress of the vehicle is opened or each time the latchplate is released from the buckle. In the case of open-body vehicles with no doors, cancellation of the tension-relieving device may be done by a manual means.

S7.4.3 Belt contact force. Except for manual or automatic seat belt assemblies that incorporate a webbing tension-relieving device, the upper torso webbing of any seat belt assembly shall not exert more than 0.7 pounds of contact force when measured normal to and one inch from the chest of an anthropomorphic test dummy, positioned in accordance with §10 of this standard in the seating position for which that seat belt assembly is provided, at the point where the centerline of the torso belt crosses the midsagittal line on the dummy’s chest.

S7.4.4 Latchplate access. Any seat belt assembly latchplate that is located outboard of a front outboard seating position in accordance with §4.1.2 shall also be located within the outboard reach envelope of either the outboard arm or the inboard arm described in §10.7 and Figure 3 of this standard, when the latchplate is in its normal stowed position and any adjustable anchorages are adjusted to the manufacturer’s nominal design position for a 50th percentile adult male occupant. There shall be sufficient clearance between the vehicle seat and the side of the vehicle interior to allow the test block defined in Figure 4 of this standard unhindered transit to the latchplate or buckle.

S7.4.5 Retraction. When tested under the conditions of §8.1.2 and §8.1.3, with anthropomorphic dummies whose arms have been removed and which are positioned in accordance with §10 of this standard in the front outboard seating positions and restrained by the belt systems for those positions, the torso and lap belt webbing of any of those seat belt systems shall automatically
§ 571.208
49 CFR Ch. V (10–1–16 Edition)

retract to a stowed position either when the adjacent vehicle door is in the open position and the seat belt latchplate is released, or, at the option of the manufacturer, when the latchplate is released. That stowed position shall prevent any part of the webbing or hardware from being pinched when the adjacent vehicle door is closed. A belt system with a tension-relieving device in an open-bodied vehicle with no doors shall fully retract when the tension-relieving device is deactivated. For the purposes of these retraction requirements, outboard armrests, which are capable of being stowed, on vehicle seats shall be placed in their stowed position.

S7.4.6 Seat belt guides and hardware.
S7.4.6.1 (a) Any manual seat belt assembly whose webbing is designed to pass through the seat cushion or between the seat cushion and seat back shall be designed to maintain one of the following three seat belt parts (the seat belt latchplate, the buckle, or the seat belt webbing) on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant). In addition, the remaining two seat belt parts must be accessible under normal conditions.

(b) The requirements of S7.4.6.1(a) do not apply to: (1) seats whose seat cushions are movable so that the seat back serves a function other than seating; (2) seats which are removable, or (3) seats which are movable so that the space formerly occupied by the seat can be used for a secondary function.

S7.4.6.2 The buckle and latchplate of a manual seat belt assembly subject to S7.4.6.1 shall not pass through the guides or conduits provided for in S7.4.6.1 and fall behind the seat when the events listed below occur in the order specified: (a) The belt is completely retracted or, if the belt is non-retractable, the belt is unlatched; (b) the seat is moved to any position to which it is designed to be adjusted; and (c) the seat back, if foldable, is folded forward as far as possible and then moved backward into position. The inboard receptacle end of a seat belt assembly installed at a front outboard designated seating position shall be accessible with the center arm rest in any position to which it can be adjusted (without having to move the armrest).

S8. Test conditions.

S8.1 General conditions. The following conditions apply to the frontal, lateral, and rollover tests. Except for S8.1.1(d), the following conditions apply to the alternative unbelted sled test set forth in S13 from March 19, 1997 until September 1, 2001.

S8.1.1 Except as provided in paragraph (c) of S8.1.1, the vehicle, including test devices and instrumentation, is loaded as follows:

(a) Passenger cars. A passenger car is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus the weight of the necessary anthropomorphic test devices.

(b) Multipurpose passenger vehicles, trucks, and buses. A multipurpose passenger vehicle, truck, or bus is loaded to its unloaded vehicle weight plus 300 pounds or its rated cargo and luggage capacity weight, whichever is less, secured in the load carrying area and distributed as nearly as possible in proportion to its gross axle weight ratings, plus the weight of the necessary anthropomorphic test devices. For the purposes of §8.1.1, unloaded vehicle weight does not include the weight of work-performing accessories. Vehicles are tested to a maximum unloaded vehicle weight of 5,500 pounds.

(c) Fuel system capacity. With the test vehicle on a level surface, pump the fuel from the vehicle’s fuel tank and then operate the engine until it stops. Then, add Stoddard solvent to the test vehicle’s fuel tank in an amount which is equal to not less than 92 and not more than 94 percent of the fuel tank’s usable capacity stated by the vehicle’s manufacturer. In addition, add the amount of Stoddard solvent needed to fill the entire fuel system from the fuel tank through the engine’s induction system.

(d) Vehicle test attitude. Determine the distance between a level surface and a standard reference point on the test vehicle’s body, directly above each wheel opening, when the vehicle is in its “as
delivered" condition. The "as delivered" condition is the vehicle as received at the test site, with 100 percent of all fluid capacities and all tires inflated to the manufacturer’s specifications as listed on the vehicle’s tire placard. Determine the distance between the same level surface and the same standard reference points in the vehicle’s “fully loaded condition.” The “fully loaded condition” is the test vehicle loaded in accordance with S8.1.1 (a) or (b), as applicable. The load placed in the cargo area shall be center over the longitudinal centerline of the vehicle. The pretest vehicle attitude shall be equal to either the as delivered or fully loaded attitude.

S8.1.2 Adjustable seats are in the adjustment position midway between the forwardmost and rearmost positions, and if separately adjustable in a vertical direction, are at the lowest position. If an adjustment position does not exist midway between the forwardmost and rearmost positions, the closest adjustment position to the rear of the midpoint is used.

S8.1.3 Place adjustable seat backs in the manufacturer’s nominal design riding position in the manner specified by the manufacturer. Place any adjustable anchorages at the manufacturer’s nominal design position for a 50th percentile adult male occupant. Place each adjustable head restraint in its highest adjustment position. Adjustable lumbar supports are positioned so that the lumbar support is in its lowest adjustment position.

S8.1.4 Adjustable steering controls are adjusted so that the steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions.

S8.1.5 Movable vehicle windows and vents are placed in the fully closed position, unless the vehicle manufacturer chooses to specify a different adjustment position prior to the time it certifies the vehicle.

S8.1.6 Convertibles and open-body type vehicles have the top, if any, in place in the closed passenger compartment configuration.

S8.1.7 Doors are fully closed and latched but not locked.

S8.1.8 Anthropomorphic test dummies.

S8.1.8.1 The anthropomorphic test dummies used for evaluation of occupant protection systems manufactured pursuant to applicable portions of S4.1.2, S4.1.3, and S4.1.4 of this standard shall conform to the requirements of subpart E of part 572 of this chapter.

S8.1.8.2 Each test dummy is clothed in a form fitting cotton stretch short sleeve shirt with above-the-elbow sleeves and above-the-knee length pants. The weight of the shirt or pants shall not exceed 0.25 pounds each. Each foot of the test dummy is equipped with a size 11XW shoe which meets the configuration size, sole, and heel thickness specifications of MIL–S–13192P (incorporated by reference, see §571.5) change “P” and whose weight is 1.25 ±0.2 pounds.

S8.1.8.3 Limb joints are set at 1g, barely restraining the weight of the limb when extended horizontally. Leg joints are adjusted with the torso in the supine position.

S8.1.8.4 Instrumentation does not affect the motion of the dummies during impact or rollover.

S8.1.8.5 The stabilized test temperature of the test dummy is at any temperature level between 69 degrees F and 72 degrees F, inclusive.

S8.2 Lateral moving barrier crash test conditions.

S8.2.1 The moving barrier, including the impact surface, supporting structure, and carriage, weighs 4,000 pounds.

S8.2.2 The impact surface of the barrier is a vertical, rigid, flat rectangle, 78 inches wide and 60 inches high, perpendicular to its direction of movement, with its lower edge horizontal and 5 inches above the ground surface.

S8.2.3 During the entire impact sequence the barrier undergoes no significant amount of dynamic or static deformation, and absorbs no significant portion of the energy resulting from the impact, except for energy that results in translational rebound movement of the barrier.

S8.2.4 During the entire impact sequence the barrier is guided so that it
travels in a straight line, with no significant lateral, vertical or rotational movement.

S8.2.5 The concrete surface upon which the vehicle is tested is level, rigid and of uniform construction, with a skid number of 75 when measured in accordance with ASTM E274-65T (incorporated by reference, see §571.5) at 40 m.p.h., omitting water delivery as specified in paragraph 7.1 of that method.

S8.2.6 The tested vehicle’s brakes are disengaged and the transmission is in neutral.

S8.2.7 The barrier and the test vehicle are positioned so that at impact—
(a) The vehicle is at rest in its normal attitude;
(b) The barrier is traveling in a direction perpendicular to the longitudinal axis of the vehicle at 20 m.p.h.; and
(c) A vertical plane through the geometric center of the barrier impact surface and perpendicular to that surface passes through the driver’s seating reference point in the tested vehicle.

S8.3 Rollover test conditions. The following conditions apply to the rollover test.

S8.3.1 The tested vehicle’s brakes are disengaged and the transmission is in neutral.

S8.3.2 The concrete surface on which the test is conducted is level, rigid, of uniform construction, and of a sufficient size that the vehicle remains on it throughout the entire rollover cycle. It has a skid number of 75 when measured in accordance with ASTM E274-65T (incorporated by reference, see §571.5) at 40 m.p.h. omitting water delivery as specified in paragraph 7.1 of that method.

S8.3.3 The vehicle is placed on a device, similar to that illustrated in Figure 2, having a platform in the form of a flat, rigid plane at an angle of 23° from the horizontal. At the lower edge of the platform is an unyielding flange, perpendicular to the platform with a height of 4 inches and a length sufficient to hold in place the tires that rest against it. The intersection of the inner face of the flange with the upper face of the platform is 9 inches above the rollover surface. No other restraints are used to hold the vehicle in position during the deceleration of the platform and the departure of the vehicle.

S8.3.4 With the vehicle on the test platform, the test devices remain as nearly as possible in the posture specified in S8.1.

S8.3.5 Before the deceleration pulse, the platform is moving horizontally, and perpendicularly to the longitudinal axis of the vehicle, at a constant speed of 30 m.p.h. for a sufficient period of time for the vehicle to become motionless relative to the platform.

S8.3.6 The platform is decelerated from 30 to 0 m.p.h. in a distance of not more than 3 feet, without change of direction and without transverse or rotational movement during the deceleration of the platform and the departure of the vehicle. The deceleration rate is at least 20g for a minimum of 0.04 seconds.

S8.4 Frontal test condition. If the vehicle is equipped with a cutoff device permitted by §4.5.4 of this standard, the device is deactivated.

S9. Pressure vessels and explosive devices.

S9.1 Pressure vessels. A pressure vessel that is continuously pressurized shall conform to the requirements of §§178.65(a), 178.65(c)(2), 178.65(d), 178.65(e)(1), and 178.65(e)(2) of this title; and to the pressure relief device requirements of §§173.301(a)(2), 173.301(a)(3) and 173.301(f) of this title. It shall not leak or evidence visible distortion when tested in accordance with §178.65(f)(1) of this title and shall not fail in any of the ways enumerated in §178.65(f)(2) of this title when hydrostatically tested to destruction. It shall not crack when flattened in accordance with §178.65(g) of this title to the limit specified in §178.65(g)(4) of this title.

S9.2 Explosive devices. An explosive device shall not exhibit any of the characteristics prohibited by §173.54 of this title. All explosive material shall be enclosed in a structure that is capable of containing the explosive energy without sudden release of pressure except through overpressure relief devices or parts designed to release the pressure during actuation.

S10. Test dummy positioning procedures.
§ 571.208

S10.1 Head. The transverse instrumentation platform of the head shall be level within 1/2 degree. To level the head of the test dummy, the following sequences must be followed. First, adjust the position of the H point within the limits set forth in S10.4.2.1 to level the transverse instrumentation platform of the head of the test dummy. If the transverse instrumentation platform of the head is still not level, then adjust the pelvic angle of the test dummy within the limits specified in S10.4.2.2 of this standard. If the transverse instrumentation platform of the head is still not level, then adjust the neck bracket of the dummy the minimum amount necessary from the non-adjusted “0” setting to ensure that the transverse instrumentation platform of the head is horizontal within 1/2 degree. The test dummy shall remain within the limits specified in S10.4.2.1 and S10.4.2.2, after any adjustment of the neck bracket.

S10.2 Upper Arms.

S10.2.1 The driver’s upper arms shall be adjacent to the torso with the centerlines as close to a vertical plane as possible.

S10.2.2 The passenger’s upper arms shall be in contact with the seat back and the sides of the torso.

S10.3 Hands.

S10.3.1 The palms of the driver’s test dummy shall be in contact with the outer part of the steering wheel rim at the rim’s horizontal centerline. The thumbs shall be over the steering wheel rim and shall be lightly taped to the steering wheel rim so that if the hand of the test dummy is pushed upward by a force of not less than 2 pounds and not more than 5 pounds, the tape shall release the hand from the steering wheel rim.

S10.3.2 The palms of the passenger test dummy shall be in contact with the outside of the thigh. The little finger shall be in contact with the seat cushion.

S10.4 Torso.

S10.4.1 Upper Torso.

S10.4.1.1 In vehicles equipped with bench seats, the upper torso of the driver and passenger test dummies shall rest against the seat back. The mid sagittal plane of the driver dummy shall be vertical and parallel to the vehicle’s longitudinal centerline, and pass through the center of the steering wheel rim. The mid sagittal plane of the passenger dummy shall be vertical and parallel to the vehicle’s longitudinal centerline and the same distance from the vehicle’s longitudinal centerline as the mid sagittal plane of the driver dummy.

S10.4.2 Lower Torso.

S10.4.2.1 H-point. The H-points of the driver and passenger test dummies shall coincide within 1/2 inch in the vertical dimension and 1/2 inch in the horizontal dimension of a point 1/4 inch below the position of the H-point determined by using the equipment and procedures specified in SAE Standard J826–1980 (incorporated by reference, see §571.5), except that the length of the lower leg and thigh segments of the H-point machine shall be adjusted to 16.3 and 15.8 inches, respectively, instead of the 50th percentile values specified in Table 1 of SAE Standard J826–1980.

S10.4.2.2 Pelvic angle. As determined using the pelvic angle gage (GM drawing 78651–532, incorporated by reference in part 572, subpart E of this chapter) which is inserted into the H-point gaging hole of the dummy, the angle measured from the horizontal on the three inch flat surface of the gage shall be 22 1/2 degrees plus or minus 2 1/2 degrees.

S10.5 Legs. The upper legs of the driver and passenger test dummies shall rest against the seat cushion to the extent permitted by placement of the feet. The initial distance between the outboard knee clevis flange surfaces shall be 10.6 inches. To the extent practicable, the left leg of the driver dummy and both legs of the passenger dummy shall be in a vertical plane. Final adjustment to accommodate the placement...
§ 571.208 49 CFR Ch. V (10–1–16 Edition)

of feet in accordance with S10.6 for various passenger compartment configurations is permitted.
S10.6 Feet.
S10.6.1 Driver’s position.
S10.6.1.1 If the vehicle has an adjustable accelerator pedal, adjust it to the full forward position. Rest the right foot of the test dummy on the undepressed accelerator pedal with the rearmost point of the heel on the floor pan in the plane of the pedal. If the foot cannot be placed on the accelerator pedal, set it initially perpendicular to the lower leg and then place it as far forward as possible in the direction of the pedal centerline with the rearmost point of the heel resting on the floor pan. If the vehicle has an adjustable accelerator pedal and the right foot is not touching the accelerator pedal when positioned as above, move the pedal rearward until it touches the right foot. If the accelerator pedal still does not touch the foot in the full rearward position, leave the pedal in that position.
S10.6.1.2 Place the left foot on the toeboard with the rearmost point of the heel resting on the floor pan as close as possible to the intersection of the planes described by the toeboard and the floor pan and not on the wheelhouse projection. If the foot cannot be positioned on the toeboard, set it initially perpendicular to the lower leg and place it as far forward as possible with the heel resting on the floor pan.
S10.6.2 Passenger’s position.
S10.6.2.1 Vehicles with a flat floor pan/toeboard. Place the right and left feet on the vehicle’s toeboard with the heels resting on the floor pan as close as possible to the intersection point with the toeboard. If the feet cannot be placed flat on the toeboard, set them perpendicular to the lower leg centerlines and place them as far forward as possible with the heels resting on the floor pan.
S10.6.2.2 Vehicles with wheelhouse projections in passenger compartment. Place the right and left feet in the well of the floor pan/toeboard and not on the wheelhouse projection. If the feet cannot be placed flat on the toeboard, initially set them perpendicular to the lower leg centerlines and then place them as far forward as possible with the heels resting on the floor pan.
S10.7 Test dummy positioning for latch plate access. The reach envelopes specified in S7.4.4 of this standard are obtained by positioning a test dummy in the driver’s or passenger’s seating position and adjusting that seating position to its forwardmost adjustment position. Attach the lines for the inboard and outboard arms to the test dummy as described in Figure 3 of this standard. Extend each line backward and outboard to generate the compliance arcs of the outboard reach envelope of the test dummy’s arms.
S10.8 Test dummy positioning for belt contact force. To determine compliance with S7.4.3 of this standard, position the test dummy in the vehicle in accordance with S10.1 through S10.6 of this standard and adjust the seating position in accordance with S8.1.2 and S8.1.3 of this standard. Pull the belt webbing three inches from the test dummy’s chest and release until the webbing is within one inch of the test dummy’s chest and measure the belt contact force.
S10.9 Manual belt adjustment for dynamic testing. With the test dummy positioned in accordance with S10.1 through S10.6 of this standard and the seating position adjusted in accordance with S8.1.2 and S8.1.3 of this standard, place the Type 2 manual belt around the test dummy and fasten the latch. Remove all slack from the lap belt portion. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. Apply a 2 to 4 pound tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended.
by the vehicle manufacturer in the vehicle’s owner’s manual. If the belt system is not equipped with a tension-relieving device, allow the excess webbing in the upper torso belt to be retracted by the retractive force of the retractor.

S11. [Reserved]

S12.1 Scope. This section establishes procedures for filing and processing applications for temporary exemption from the requirements in this standard that vehicles be equipped with inflatable restraint systems.

S12.2 Definitions.

Line means a name that a manufacturer applies to a group of motor vehicles of the same make which have the same body or chassis, or otherwise are similar in construction or design. A line may, for example, include 2-door, 4-door, station wagon, and hatchback vehicles of the same make.

S12.3 Standard of review. In order to receive a temporary exemption from the inflatable restraint requirement, a vehicle manufacturer must demonstrate in its application that there has been a disruption in the supply of one or more inflatable restraint system components, or a disruption in the use and installation by the manufacturer of any such component due to unavoidable events not under the control of the manufacturer, which will prevent a manufacturer from meeting its anticipated production volume of vehicles with inflatable restraint systems.

S12.4 Exemption applications—General requirements. Each application for a temporary exemption from the inflatable restraint requirement must—

(a) Be written in the English language;

(b) Be submitted in three copies to: Administrator, National Highway Traffic Safety Administration, 400 Seventh Street, SW., Washington, DC 20590;

(c) State the full name and address of the manufacturer, the nature of its organization (individual, partnership, corporation, etc.), and the name of the State or country under the laws of which it is organized;

(d) Identify the motor vehicle line or lines for which the temporary exemption is being sought;

(e) Set forth in full the data, views, and arguments of the manufacturer that would support granting the temporary exemption, including the specific information required by S12.5; and

(f) Specify and segregate any part of the information and data submitted in the application that should be withheld from public disclosure in accordance with part 512 of this chapter.

S12.5 Exemption applications—Specific content requirements. Each application for a temporary exemption from the inflatable restraint requirement must include:

(a) A clear and specific identification of any component in the inflatable restraint system that has become unavailable due to circumstances beyond the manufacturer’s control, and a diagram showing the location of such component within the restraint system and within the vehicle;

(b) A clear and specific explanation of the cause or causes of the disruption in the supply of the component, and a showing that such disruption is beyond the control of the manufacturer;

(c) An estimate of the length of time that will be needed to correct the disruption and again incorporate the subject components into current production, or an explanation of why it is not possible to provide such an estimate;

(d) A complete statement of the bases for the manufacturer’s belief that NHTSA should grant a temporary exemption in response to this application;

(e) An unconditional statement by the manufacturer that it will recall every vehicle for which a temporary exemption is requested in the application, to install all missing inflatable restraint systems;

(f) A plan setting forth steps the manufacturer will take to ensure that as many exempted vehicles as possible will be returned for installation of missing inflatable restraint systems;

(g) A proposed reasonable period of time after the disruption in the supply of inflatable restraint system components is corrected that the manufacturer estimates will ensure a sufficient quantity of components for both anticipated production and retrofit of those vehicles for which a temporary
exemption is requested in the application, so that the vehicle manufacturer can recall those vehicles for which a temporary exemption is requested and install inflatable restraint systems in them, together with a demonstration of why the manufacturer believes this proposed period of time is reasonable for completing this recall, or an explanation of why it is not possible to provide such an estimate;

(h) A proposed date for termination of the exemption;
(i) A proposed date by which all exempted vehicles will have been recalled and had inflatable restraints installed (assuming owners returned their vehicles in a timely matter in response to a first notice by the manufacturer), or an explanation of why it is not possible to provide such an estimate.

S12.6 Processing an application for a temporary exemption. (a) NHTSA will process any application for temporary exemption that contains the information specified in S12.4 and S12.5. If an application fails to provide the information specified in S12.4 and S12.5, NHTSA will not process the application, but will advise the manufacturer of the information that must be provided if the agency is to process the application.

(b) Notice of each application for temporary exemption shall be published in the FEDERAL REGISTER.

(c) NHTSA will issue its decision to grant or deny the requested temporary exemption not later than 15 days after the agency receives a complete petition, as defined in paragraph (a). However, a failure to issue a decision within this time does not result in a grant of the petition.

(d) Notice of each decision to grant or deny a temporary exemption, and the reasons for granting or denying it, will be published in the FEDERAL REGISTER.

(e) The Administrator may attach such conditions as he or she deems appropriate to a temporary exemption, including but not limited to requiring manufacturers to provide progress reports at specified times (including, as appropriate and to the extent possible, estimate of dates and times concerning when a supply disruption will be corrected and when recall will take place) and requiring manufacturers to take specific steps to ensure that as many exempted vehicles as possible will be returned for installation of missing inflatable restraint systems.

(f) Unless a later effective date is specified in a notice announcing an agency decision to grant a temporary exemption, a temporary exemption from the inflatable restraint requirement will become effective upon the date the decision is issued.

S12.7 Labels and written notice announcing temporary exemption.

S12.7.1 It shall be a condition of every temporary exemption from the inflatable restraint requirement that the manufacturer of exempted vehicles comply with the provisions of S12.7.2 and S12.7.3.

S12.7.2 (a) The manufacturer of any vehicle granted a temporary exemption from the inflatable restraint requirement shall affix a label within the passenger compartment of such vehicle. The label shall set forth the following information in block capital letters and numerals not less than three thirty-seconds of an inch high:

THIS VEHICLE DOES NOT CONTAIN AN AIR BAG IN CONFORMANCE WITH THE FEDERAL MOTOR VEHICLE SAFETY STANDARD FOR OCCUPANT CRASH PROTECTION. IT WAS EXEMPTED PURSUANT TO NHTSA EXEMPTION NO. (insert number assigned by NHTSA).

(b) This label shall not be removed until after the vehicle manufacturer has recalled the vehicle and installed an inflatable restraint system at those seating positions for which it was granted an exemption.

S12.7.3 The manufacturer of any vehicle that is delivered without an inflatable restraint system, pursuant to a temporary exemption granted under this section, shall, at the time of delivery of the vehicle, provide a written notice to the dealer to whom the vehicle is delivered. The manufacturer shall also provide a written notice by registered mail to the first purchaser of the vehicle for purposes other than resale, within two weeks after purchase. Unless otherwise provided for by the Administrator in the exemption, such notice shall provide the following information:
(a) This vehicle does not conform to Federal Motor Vehicle Safety Standard No. 208, because it is not equipped with an inflatable restraint at (insert the affected seating positions).

(b) The vehicle was allowed to be sold pursuant to NHTSA Exemption No. (insert appropriate exemption number).

(c) The reason this vehicle was exempted from the requirement for an inflatable restraint was because of factors beyond the manufacturer's control.

(d) The manufacturer will recall this vehicle not later than (insert the time set forth in the exemption) and install the missing inflatable restraint at no charge.

(e) If the reader has any questions or would like some further information, he or she may contact the manufacturer at (insert an address and telephone number).

S13 Alternative unbelted test available, under S3(b) of this standard, for certain vehicles manufactured before September 1, 2006.

S13.1 Instrumentation for Impact Test—Part 1—Electronic Instrumentation. Under the applicable conditions of S8, mount the vehicle on a dynamic test platform at the vehicle attitude set forth in S13.3, so that the longitudinal center line of the vehicle is parallel to the direction of the test platform travel and so that movement between the base of the vehicle and the test platform is prevented. The test platform is instrumented with an accelerometer and data processing system having a frequency response of 60 channel class as specified in SAE Recommended Practice J211/1 MAR95 (incorporated by reference, see §571.5). The accelerometer sensitive axis is parallel to the direction of test platform travel. The test is conducted at a velocity change approximating 48 km/h (30 mph) with acceleration of the test platform such that all points on the crash pulse curve within the corridor identified in Figure 6 are covered. An inflatable restraint is to be activated at 20 ms ± 2 ms from the time that 0.5 g is measured on the dynamic test platform. The test dummy specified in S8.1.8, placed in each front outboard designated seating position as specified in S10, excluding S10.7, S10.8, and S10.9, shall meet the injury criteria of S6.1, S6.2(a), S6.3, S6.4(a), S6.5, and S13.2 of this standard.

S13.2 Neck injury criteria. A vehicle certified to this alternative test requirement shall, in addition to meeting the criteria specified in S13.1, meet the following injury criteria for the neck, measured with the six axis load cell (ref. Denton drawing C–1709) that is mounted between the bottom of the skull and the top of the neck as shown in Drawing 78051–218, in the unbelted sled test:

(a) Flexion Bending Moment (calculated at the occipital condyle)—190 Nm. SAE Class 600.

(b) Extension Bending Moment (calculated at the occipital condyle)—57 Nm. SAE Class 600.

(c) Axial Tension—3300 peak N. SAE Class 1000.

(d) Axial Compression—4000 peak N. SAE Class 1000.

(e) Fore-and-Aft Shear—3100 peak N. SAE Class 1000.

S13.3 Vehicle test attitude. When the vehicle is in its “as delivered” condition, measure the angle between the driver’s door sill and the horizontal. Mark where the angle is taken on the door sill. The “as delivered” condition is the vehicle as received at the test site, with 100 percent of all fluid capacities and all tires inflated to the manufacturer’s specifications as listed on the vehicle’s tire placard. When the vehicle is in its “fully loaded” condition, measure the angle between the driver’s door sill and the horizontal, at the same place the “as delivered” angle was measured. The “fully loaded” condition is the test vehicle loaded in accordance with S8.1.1(a) or (b) of Standard No. 208, as applicable. The load placed in the cargo area shall be centered over the longitudinal centerline of the vehicle. The pretest door sill angle, when the vehicle is on the sled, (measured at the same location as the as delivered and fully loaded door sill angle measurements.

S13.4 Tires and wheels. Remove the tires and wheels.

S13.5 Vehicle Securing. The engine, transmissions, axles, exhaust, vehicle frame, and vehicle body may be rigidly secured to the vehicle and/or the sled,
§ 571.208

and fluids, batteries and unsecured components may be removed, in order to assure that all points on the crash pulse curve are within the corridor defined in Figure 6.

S14 Advanced air bag requirements for passenger cars and for trucks, buses, and multipurpose passenger vehicles with a GVWR of 3,855 kg (8500 pounds) or less and an unloaded vehicle weight of 2,495 kg (5500 pounds) or less, except for walk-in van-type trucks or vehicles designed to be sold exclusively to the U.S. Postal Service.

S14.1 Vehicles manufactured on or after September 1, 2003, and before September 1, 2006. (a) For vehicles manufactured for sale in the United States on or after September 1, 2003, and before September 1, 2006, a percentage of the manufacturer’s production, as specified in S14.1.1, shall meet the requirements specified in S14.5.1(a), S14.5.2, S15.1, S15.2, S17, S19, S21, S23, and S25 (in addition to the other requirements specified in this standard).

(b) Manufacturers that sell three or fewer carlines, as that term is defined at 49 CFR 585.4, in the United States may, at the option of the manufacturer, meet the requirements of this paragraph instead of paragraph (a) of this section. At least 95 percent of the vehicles manufactured by the manufacturer on or after September 1, 2005 and before September 1, 2006 shall meet the requirements specified in S14.5.1(a), S14.5.2, S15.1, S15.2, S17, S19, S21, S23, and S25 (in addition to the other requirements specified in this standard).

(c) Vehicles that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having previously been certified in accordance with part 567 of this chapter are not subject to the requirements of S14.1.

(d) Vehicles that are manufactured by an original vehicle manufacturer that produces or assembles fewer than 5,000 vehicles annually for sale in the United States are not subject to the requirements of S14.1.

S14.1.1 Phase-in schedule.

S14.1.1.1 Vehicles manufactured on or after September 1, 2003, and before September 1, 2004, the amount of vehicles complying with S14.5.1(a), S14.5.2, S15.1, S15.2, S17, S19, S21, S23, and S25, shall be not less than 20 percent of:

(a) If the manufacturer has manufactured vehicles for sale in the United States during both of the two production years prior to September 1, 2003, the manufacturer’s average annual production of vehicles manufactured on or after September 1, 2001, and before September 1, 2004, or

(b) The manufacturer’s production on or after September 1, 2003, and before September 1, 2004.

S14.1.1.2 Vehicles manufactured on or after September 1, 2004, and before September 1, 2005. Subject to S14.1.2(b), for vehicles manufactured by a manufacturer on or after September 1, 2004, and before September 1, 2005, the amount of vehicles complying with S14.5.1(a), S14.5.2, S15.1, S15.2, S17, S19, S21, S23, and S25 shall be not less than 65 percent of:

(a) If the manufacturer has manufactured vehicles for sale in the United States during both of the two production years prior to September 1, 2004, the manufacturer’s average annual production of vehicles manufactured on or after September 1, 2002, and before September 1, 2005, or

(b) The manufacturer’s production on or after September 1, 2004, and before September 1, 2005.

S14.1.1.3 Vehicles manufactured on or after September 1, 2005, and before September 1, 2006. Subject to S14.1.2(c), for vehicles manufactured by a manufacturer on or after September 1, 2005, and before September 1, 2006, the amount of vehicles complying with S14.5.1(a), S14.5.2, S15.1, S15.2, S17, S19, S21, S23, and S25 shall be 100 percent of the manufacturer’s production during that period.

S14.1.2 Calculation of complying vehicles.

(a) For the purposes of complying with S14.1.1, a manufacturer may count a vehicle if it is manufactured on or after June 12, 2000, but before September 1, 2004.

(b) For purposes of complying with S14.1.2, a manufacturer may count a vehicle if it:
(1) Is manufactured on or after June 12, 2000, but before September 1, 2005, and
(2) Is not counted toward compliance with S14.1.1.1.

(c) For purposes of complying with S14.1.1.3, a manufacturer may count a vehicle if it:
(1) Is manufactured on or after June 12, 2000, but before September 1, 2006, and
(2) Is not counted toward compliance with S14.1.1.1 or S14.1.1.2.

§14.1.3 Vehicles produced by more than one manufacturer.
§14.1.3.1 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under §14.1.1, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to §14.1.3.2.

(a) A vehicle that is imported shall be attributed to the importer.

(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.

§14.1.3.2 A vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under §14.1.3.1.

§14.2 Vehicles manufactured on or after September 1, 2006.

Each vehicle shall meet the requirements specified in §14.5.1(a), §14.5.2, §15.1, §15.2, §17, §19, §21, §23, and §25 (in addition to the other requirements of this standard).

§14.3 Vehicles manufactured on or after September 1, 2007, and before September 1, 2010.

(a) For vehicles manufactured for sale in the United States on or after September 1, 2007, and before September 1, 2010, a percentage of the manufacturer’s production, as specified in §14.3.1, shall meet the requirements specified in §14.5.1(b) (in addition to the other requirements of this standard).

(b) Manufacturers that sell two or fewer carlines, as that term is defined at 49 CFR 583.4, in the United States may, at the option of the manufacturer, meet the requirements of this paragraph instead of paragraph (a) of this section. Each vehicle manufactured on or after September 1, 2008, and before September 1, 2010, shall meet the requirements specified in §14.5.1(b) (in addition to the other requirements specified in this standard).

(c) Vehicles that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having been previously certified in accordance with part 567 of this chapter are not subject to the requirements of §14.3.

(d) Vehicles that are manufactured by an original vehicle manufacturer that produces or assembles fewer than 5,000 vehicles annually for sale in the United States are not subject to the requirements of §14.3.

§14.3.1 Phase-in schedule.

§14.3.1.1 Vehicles manufactured on or after September 1, 2007, and before September 1, 2008. Subject to §14.3.2(a), for vehicles manufactured by a manufacturer on or after September 1, 2007, and before September 1, 2008, the amount of vehicles complying with §14.5.1(b), §14.5.2, §15.1, §15.2, §17, §19, §21, §23, and §25 shall be not less than 35 percent of:

(a) If the manufacturer has manufactured vehicles for sale in the United States during both of the two production years prior to September 1, 2007, the manufacturer’s average annual production of vehicles manufactured on or after September 1, 2005, and before September 1, 2008, or

(b) The manufacturer’s production on or after September 1, 2007, and before September 1, 2008.

§14.3.1.2 Vehicles manufactured on or after September 1, 2008, and before September 1, 2009. Subject to §14.3.2(b), for vehicles manufactured by a manufacturer on or after September 1, 2008, and before September 1, 2009, the amount of vehicles complying with §14.5.1(b), §14.5.2, §15.1, §15.2, §17, §19, §21, §23, and §25 shall be not less than 65 percent of:

(a) If the manufacturer has manufactured vehicles for sale in the United States during both of the two production years prior to September 1, 2007, the manufacturer’s average annual production of vehicles manufactured on or after September 1, 2005, and before September 1, 2008, or

(b) The manufacturer’s production on or after September 1, 2008, and before September 1, 2009.
§ 571.208
49 CFR Ch. V (10–1–16 Edition)

States during both of the two production years prior to September 1, 2008, the manufacturer’s average annual production of vehicles manufactured on or after September 1, 2006 and before September 1, 2009, or
(b) The manufacturer’s production on or after September 1, 2008, and before September 1, 2009.

S14.3.1.3 Vehicles manufactured on or after September 1, 2009, and before September 1, 2010. Subject to S14.3.2(c), for vehicles manufactured by a manufacturer on or after September 1, 2009, and before September 1, 2010, the amount of vehicles complying with S14.5.1(b), S14.5.2, S15.1, S15.2, S17, S19, S21, S23, and S25 shall be 100 percent of the manufacturer’s production during that period.

S14.3.2 Calculation of complying vehicles.
(a) For the purposes of complying with S14.3.1.1, a manufacturer may count a vehicle if it is manufactured on or after September 1, 2006, but before September 1, 2008.
(b) For purposes of complying with S14.3.1.2, a manufacturer may count a vehicle if it:
 (1) Is manufactured on or after September 1, 2006, but before September 1, 2009, and
 (2) Is not counted toward compliance with S14.3.1.1.
(c) For purposes of complying with S14.3.1.3, a manufacturer may count a vehicle if it:
 (1) Is manufactured on or after September 1, 2006, but before September 1, 2010, and
 (2) Is not counted toward compliance with S14.3.1.1 or S14.3.1.2.

S14.3.3 Vehicles produced by more than one manufacturer.
S14.3.3.1 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S14.3.1, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S14.3.3.2.
(a) A vehicle that is imported shall be attributed to the importer.
(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.
S14.3.3.2 A vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S14.3.3.1.

S14.4 Vehicles manufactured on or after September 1, 2010. Each vehicle shall meet the requirements specified in S14.5.1(b), S14.5.2, S15.1, S15.2, S17, S19, S21, S23, and S25 (in addition to the other requirements specified in this standard).

S14.5 Barrier test requirements using 50th percentile adult male dummies.
S14.5.1 Rigid barrier belted test. (a) Each vehicle that is certified as complying with S14.1 or S14.2 shall, at each front outboard designated seating position, meet the injury criteria specified in S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 when tested under S5.1.1(b)(1).
(b) Each vehicle that is certified as complying with S14.3 or S14.4 shall, at each front outboard designated seating position, meet the injury criteria specified in S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 when tested under S5.1.1(b)(2).

S14.5.2 Rigid barrier unbelted test. Each vehicle that is certified as complying with S14.4 shall, at each front outboard designated seating position, meet the injury criteria specified in S6.1, S6.2(b), S6.3, S6.4(b), S6.5, and S6.6 when tested under S5.1.2(b).

S14.6 Vehicles manufactured on or after September 1, 2009, and before September 1, 2012 (Phase-in of higher maximum speed (56 km/h (35 mph)) belted test requirement using 5th percentile adult female dummies).
(a) For vehicles manufactured for sale in the United States on or after September 1, 2009, and before September 1, 2012, a percentage of the manufacturer’s production, as specified in S14.6.1, shall meet the requirements specified in S15.1(b) (in addition to the other requirements specified in this standard).
(b) Manufacturers that sell two or fewer carlines, as that term is defined at 49 CFR 583.4, in the United States.
may, at the option of the manufacturer, meet the requirements of this paragraph instead of paragraph (a) of this section. Each vehicle manufactured on or after September 1, 2010, and before September 1, 2012, shall meet the requirements specified in §15.1(b) (in addition to the other requirements specified in this standard).

(c) Vehicles that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having previously been certified in accordance with part 567 of this chapter are not subject to the requirements of §14.6.

(d) Vehicles that are manufactured by an original vehicle manufacturer that produces or assembles fewer than 5,000 vehicles annually for sale in the United States are not subject to the requirements of §14.6.

§14.6.1 Phase-in schedule.

§14.6.1.1 Vehicles manufactured on or after September 1, 2009, and before September 1, 2010. Subject to §14.6.2(a), for vehicles manufactured by a manufacturer on or after September 1, 2009, and before September 1, 2010, the amount of vehicles complying with §15.1(b) shall be not less than 35 percent of:

(a) If the manufacturer has manufactured vehicles for sale in the United States during both of the two production years prior to September 1, 2009, the manufacturer’s average annual production of vehicles manufactured on or after September 1, 2007, and before September 1, 2010, or

(b) The manufacturer’s production on or after September 1, 2009, and before September 1, 2010.

§14.6.1.2 Vehicles manufactured on or after September 1, 2010, and before September 1, 2011. Subject to §14.6.2(b), for vehicles manufactured by a manufacturer on or after September 1, 2010, and before September 1, 2011, the amount of vehicles complying with §15.1(b) shall be not less than 65 percent of:

(a) If the manufacturer has manufactured vehicles for sale in the United States during both of the two production years prior to September 1, 2010, the manufacturer’s average annual production of vehicles manufactured on or after September 1, 2008, and before September 1, 2011, or

(b) The manufacturer’s production on or after September 1, 2010, and before September 1, 2011.

§14.6.1.3 Vehicles manufactured on or after September 1, 2011, and before September 1, 2012. Subject to §14.6.3(c), for vehicles manufactured by a manufacturer on or after September 1, 2011, and before September 1, 2012, the amount of vehicles complying with §15.1(b) shall be 100 percent of the manufacturer’s production during that period.

§14.6.2 Calculation of complying vehicles.

(a) For the purposes of complying with §14.6.1.1, a manufacturer may count a vehicle if it was manufactured on or after September 1, 2008, but before September 1, 2010.

(b) For purposes of complying with §14.6.1.2, a manufacturer may count a vehicle if it:

1. Is manufactured on or after September 1, 2008, but before September 1, 2011, and

2. Is not counted toward compliance with §14.6.1.1.

(c) For purposes of complying with §14.6.1.3, a manufacturer may count a vehicle if it:

1. Is manufactured on or after September 1, 2008, but before September 1, 2012, and

2. Is not counted toward compliance with §14.6.1.1 or §14.6.1.2.

§14.6.3 Vehicles produced by more than one manufacturer.

§14.6.3.1 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under §14.6.1, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to §14.6.3.2.

(a) A vehicle that is imported shall be attributed to the importer.

(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.

§14.6.3.2 A vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration.
under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under §14.6.3.1.

S14.7 Vehicles manufactured on or after September 1, 2012. (Higher maximum speed (56km/h (35 mph)) belted test requirement using 5th percentile adult female dummies). Each vehicle shall meet the requirements specified in §15.1(b) (in addition to the other requirements specified in this standard). However, vehicles that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having been previously certified in accordance with part 567 of this chapter may comply with the requirements specified in §15.1(b) if they are manufactured before September 1, 2013.

S14.8 Vehicles manufactured on or after September 1, 2009 and before September 1, 2010. Vehicles manufactured on or after September 1, 2009 and before September 1, 2010, shall comply with S14.8.1 through S14.8.4. At any time during the production year ending August 31, 2010, each manufacturer shall, upon request from the Office of Vehicle Safety Compliance, provide information identifying the vehicles by make, model and vehicle identification number that have been certified as complying with S19, S21, and S23 (in addition to the other requirements specified in this standard) when using the child restraint systems specified in appendix A–1 of this standard. The manufacturer’s designation of a vehicle as meeting the requirements when using the child restraint systems in appendix A–1 of this standard is irrevocable.

S14.8.1 Subject to S14.8.2, for vehicles manufactured on or after September 1, 2009, the number of vehicles certified as complying with S19, S21, and S23 when using the child restraint systems specified in appendix A–1 of this standard shall be not less than 50 percent of:

(a) The manufacturer’s average annual production of vehicles subject to S19, S21, and S23 of this standard manufactured on or after September 1, 2006 and before September 1, 2009; or

(b) The manufacturer’s production of vehicles subject to S19, S21, and S23 manufactured on or after September 1, 2009 and before September 1, 2010.

S14.8.2 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under §14.8.1, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as provided in §14.8.2(a) through (c), subject to §14.8.3.

(a) A vehicle which is imported shall be attributed to the importer.

(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer which markets the vehicle.

(c) A vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under §14.8.2(a) or (b).

S14.8.3 For the purposes of calculating average annual production of vehicle for each manufacturer and the number of vehicles by each manufacturer under §14.8.1, each vehicle that is excluded from the requirement to test with child restraints listed in appendix A or A–1 of this standard is not counted.

S14.8.4 Until September 1, 2011, vehicles manufactured by a final-stage manufacturer or alterer could be certified as complying with S19, S21, and S23 when using the child restraint systems specified in appendix A–1. Vehicles manufactured on or after September 1, 2011 by these manufacturers must be certified as complying with S19, S21, and S23 when using the child restraint systems specified in appendix A–1.

S14.8.5 Until September 1, 2011, manufacturers selling fewer than 5,000 vehicles per year in the U.S. may certify their vehicles as complying with S19, S21, and S23 when using the child restraint systems specified in Appendix A. Vehicles manufactured on or after September 1, 2011 by these manufacturers must be certified as complying with S19, S21, and S23 when using the child restraint systems specified in Appendix A–1.
restraint systems specified in Appendix A-1.

§571.208 Rigid barrier test requirements using 5th percentile adult female dummies.

S15.1 Belted Test. (a) Each vehicle that is certified as complying with S14.1 or S14.2 shall, at each front outboard designated seating position, meet the injury criteria specified in S15.3 when tested under S16.1(a)(1).

(b) Each vehicle that is certified as complying with S14.6 or S14.7 shall, at each front outboard designated seating position, meet the injury criteria specified in S15.3 when tested under S16.1(a)(2).

S15.2 Unbelted test. Each vehicle that is certified as complying with S14 shall, at each front outboard designated seating position, meet the injury criteria specified in S15.3 when tested under S16.1(a)(2).

S15.3 Injury criteria for the 49 CFR part 572, subpart O Hybrid III 5th percentile female test dummy.

S15.3.1 All portions of the test dummy shall be contained within the outer surfaces of the vehicle passenger compartment.

S15.3.2 Head injury criteria. (a) For any two points in time, \(t_1 \) and \(t_2 \), during the event which are separated by not more than a 15 millisecond time interval and where \(t_1 \) is less than \(t_2 \), the head injury criterion (HIC\(_{15}\)) shall be determined using the resultant head acceleration at the center of gravity of the dummy head, \(a_g \), expressed as a multiple of \(g \) (the acceleration of gravity) and shall be calculated using the expression:

\[
\frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} a_g \, dt \geq 2.5 \quad (t_2 - t_1)
\]

(b) The maximum calculated HIC\(_{15}\) value shall not exceed 700.

S15.3.3 The resultant acceleration calculated from the output of the thoracic instrumentation shall not exceed 60 \(g \)'s, except for intervals whose cumulative duration is not more than 3 milliseconds.

S15.3.4 Compression deflection of the sternum relative to the spine, as determined by instrumentation, shown shall not exceed 52 mm (2.0 in).

S15.3.5 The force transmitted axially through each femur shall not exceed 6805 N (1530 lb).

S15.3.6 Neck injury. When measuring neck injury, each of the following injury criteria shall be met.

(a) \(Nij \).

(1) The shear force (\(F_x \)), axial force (\(F_z \)), and bending moment (\(M_y \)) shall be measured by the dummy upper neck load cell for the duration of the crash event as specified in §4.11. Shear force, axial force, and bending moment shall be filtered for \(Nij \) purposes at SAE Recommended Practice J211/1 MAR95 (incorporated by reference, see §571.5) Channel Frequency Class 600.

(2) During the event, the axial force (\(F_z \)) can be either in tension or compression while the occipital condyle bending moment (\(M_{oc} \)) can be in either flexion or extension. This results in four possible loading conditions for \(Nij \): tension-extension (\(N_{te} \)), tension-flexion (\(N_{tf} \)), compression-extension (\(N_{ce} \)), or compression-flexion (\(N_{cf} \)).

(3) When calculating \(Nij \) using equation S15.3.6(a)(4), the critical values, \(F_{zc} \) and \(M_{yc} \), are:

(i) \(F_{zc} = 4287 \) N (964 lbf) when \(F_z \) is in tension

(ii) \(F_{zc} = 3880 \) N (872 lbf) when \(F_z \) is in compression

(iii) \(M_{yc} = 155 \) Nm (114 lbf-ft) when \(F_z \) is in tension

(iv) \(M_{yc} = 67 \) Nm (49 lbf-ft) when \(F_z \) is in compression

(4) At each point in time, only one of the four loading conditions occurs and the \(Nij \) value corresponding to that loading condition is computed and the three remaining loading modes shall be considered a value of zero. The expression for calculating each \(Nij \) loading condition is given by:

\[
Nij = (F_x/F_{zc}) + (M_{oc}/M_{yc})
\]

(5) None of the four \(Nij \) values shall exceed 1.0 at any time during the event.

(b) Peak tension. Tension force (\(F_z \)) measured at the upper neck load cell,
§ 571.208 49 CFR Ch. V (10–1–16 Edition)

shall not exceed 2620 N (589 lbf) at any time.

(c) Peak compression. Compression force (Fz), measured at the upper neck load cell, shall not exceed 2520 N (566 lbf) at any time.

S15.3.7 Unless otherwise indicated, instrumentation for data acquisition, data channel frequency class, and moment calculations are the same as given for the 49 CFR part 572, subpart O Hybrid III 5th percentile female test dummy.

S16. Test procedures for rigid barrier test requirements using 5th percentile adult female dummies.

S16.1 General provisions. Crash testing to determine compliance with the requirements of S15 of this standard is conducted as specified in the following paragraphs (a) and (b).

(a) Belted test—(1) Vehicles certified to S14.1 or S14.2. Place a 49 CFR Part 572 Subpart O 5th percentile adult female test dummy at each front outboard seating position of a vehicle, in accordance with the procedures specified in S16.3 of this standard. Impact the vehicle traveling longitudinally forward at any speed, up to and including 48 km/h (30 mph), into a fixed rigid barrier that is perpendicular within a tolerance of ±5 degrees to the line of travel of the vehicle under the applicable conditions of S16.2 of this standard.

(2) Vehicles certified to S14.6 or S14.7. Place a 49 CFR Part 572 Subpart O 5th percentile adult female test dummy at each front outboard seating position of a vehicle, in accordance with the procedures specified in S16.3 of this standard. Impact the vehicle traveling longitudinally forward at any speed, up to and including 56 km/h (35 mph), into a fixed rigid barrier that is perpendicular within a tolerance of ±5 degrees to the line of travel of the vehicle under the applicable conditions of S16.2 of this standard.

(b) Unbelted test. Place a 49 CFR Part 572 Subpart O 5th percentile adult female test dummy at each front outboard seating position of a vehicle, in accordance with the procedures specified in S16.3 of this standard, except S16.3.5. Impact the vehicle traveling longitudinally forward at any speed, from 32 km/h (20 mph) to 40 km/h (25 mph), inclusive, into a fixed rigid barrier that is perpendicular within a tolerance of ±5 degrees to the line of travel of the vehicle under the applicable conditions of S16.2 of this standard.

S16.2 Test conditions.

S16.2.1 The vehicle, including test devices and instrumentation, is loaded as in S8.1.1.

S16.2.2 Movable vehicle windows and vents are placed in the fully closed position, unless the vehicle manufacturer chooses to specify a different adjustment position prior to the time the vehicle is certified.

S16.2.3 Convertibles and open-body type vehicles have the top, if any, in place in the closed passenger compartment configuration.

S16.2.4 Doors are fully closed and latched but not locked.

S16.2.5 The dummy is clothed in form fitting cotton stretch garments with short sleeves and above the knee length pants. A size 7 1/2 W shoe which meets the configuration and size specifications of MIL–S–21711E (incorporated by reference, see §571.5) or its equivalent is placed on each foot of the test dummy.

S16.2.6 Limb joints are set at one g, barely restraining the weight of the limb when extended horizontally. Leg joints are adjusted with the torso in the supine position.

S16.2.7 Instrumentation shall not affect the motion of dummies during impact.

S16.2.8 The stabilized temperature of the dummy is at any level between 20.6 °C and 22.2 °C (69 °F to 72 °F).

S16.2.9 Steering wheel adjustment.

S16.2.9.1 Adjust a tiltable steering wheel, if possible, so that the steering wheel hub is at the geometric center of its full range of driving positions.

S16.2.9.2 If there is no setting detent at the mid-position, lower the steering wheel to the detent just below the mid-position.

S16.2.10 Driver and passenger seat setup.

S16.2.10.1 Lumbar support adjustment. Position adjustable lumbar supports so
that the lumbar support is in its lowest, retracted or deflated adjustment position.

S16.2.10.2 Other seat adjustments. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. Position any adjustable head restraint in the lowest and most forward position.

S16.2.10.3 Seat position adjustment. If the passenger seat does not adjust independently of the driver seat, the driver seat shall control the final position of the passenger seat.

S16.2.10.3.1 Using only the controls that primarily move the seat and seat cushion independent of the seat back in the fore and aft directions, move the seat cushion reference point (SCRP) to the rearmost position. Using any part of any control, other than those just used, determine the full range of angles of the seat cushion reference line and set the seat cushion reference line to the middle of the range. Using any part of any control other than those that primarily move the seat or seat cushion fore and aft, while maintaining the seat cushion reference line angle, place the SCRP to its lowest position.

S16.2.10.3.2 Using only the control that primarily moves the seat fore and aft, move the SCRP to the full forward position.

S16.2.10.3.3 If the seat or seat cushion height is adjustable, other than by the controls that primarily move the seat or seat cushion fore and aft, while maintaining the seat cushion reference line angle set as closely as possible to the angle determined in S16.2.10.3.1. Mark location of the seat for future reference.

S16.3 Dummy seating positioning procedures. The 49 CFR Part 572 Subpart O 5th percentile adult female test dummy is positioned as follows:

S16.3.1 General provisions and definitions.

S16.3.1.1 Thigh—a straight line on the thigh skin between the center of the 1/2–13 UNC–2B tapped hole in the upper leg femur clamp (see drawings 880105–504 (left thigh) and 880105–505 (right thigh), upper leg femur clamp) and the knee pivot shoulder bolt (part 880105–527 in drawing 880105–528R & 528L, sliding knee assembly without potentiometer).

S16.3.1.11 Leg—a straight line on the leg skin between the center of the ankle shell (parts 880105–609 & 633 in drawing 880105–660, ankle assembly) and the knee pivot shoulder bolt (part 880105–527 in drawing 880105–528R & 528L, sliding knee assembly without potentiometer).

S16.3.1.12 The dummy’s neck bracket is adjusted to align the zero degree index marks.

S16.3.1.3 The term “mid sagittal plane” refers to the vertical plane that separates the dummy into equal left and right halves.

S16.3.1.4 The term “vertical longitudinal plane” refers to a vertical plane parallel to the vehicle’s longitudinal centerline.

S16.3.1.5 The term “vertical plane” refers to a vertical plane, not necessarily parallel to the vehicle’s longitudinal centerline.

S16.3.1.6 The term “transverse instrumentation platform” refers to the transverse instrumentation surface inside the dummy’s skull casting to which the neck load cell mounts. This surface is perpendicular to the skull cap’s machined inferior-superior mounting surface.

S16.3.1.7 The term “thigh” refers to the femur between, but not including, the knee and the pelvis.

S16.3.1.8 The term “leg” refers to the lower part of the entire leg, including the knee.

S16.3.1.9 The term “foot” refers to the foot, including the ankle.

S16.3.1.10 The longitudinal centerline of a bucket seat cushion is defined by a vertical plane that passes through the SgRP and is parallel to the longitudinal centerline of the vehicle.

S16.3.1.11 For leg and thigh angles, use the following references:

S16.3.11.1 Thigh—a straight line on the thigh skin between the center of the 1/2–13 UNC–2B tapped hole in the upper leg femur clamp (see drawings 880105–504 (left thigh) and 880105–505 (right thigh), upper leg femur clamp) and the knee pivot shoulder bolt (part 880105–527 in drawing 880105–528R & 528L, sliding knee assembly without potentiometer).

S16.3.11.2 Leg—a straight line on the leg skin between the center of the ankle shell (parts 880105–609 & 633 in drawing 880105–660, ankle assembly) and the knee pivot shoulder bolt (part 880105–527 in drawing 880105–528R & 528L, sliding knee assembly without potentiometer).

S16.3.1.12 The term “seat cushion reference point” (SCRP) means a point placed on the outboard side of the seat
§ 571.208

The term “seat cushion reference line” means a line on the side of the seat cushion, passing through the seat cushion reference point, whose projection in the vehicle vertical longitudinal plane is straight and has a known angle with respect to the horizontal.

S16.3.2 Driver dummy positioning.
S16.3.2.1 Driver torso/head/seat back angle positioning.

S16.3.2.1.1 With the seat in the position determined in S16.2.10.3.3, use only the control that primarily moves the seat fore and aft to place the seat in the rearmost position. If the seat cushion reference line angle automatically changes as the seat is moved from the full forward position, maintain, as closely as possible, the seat cushion reference line angle determined in S16.2.10.3.1, for the final forward position when measuring the pelvic angle as specified in S16.3.2.1.11. The seat cushion reference angle position may be achieved through the use of any seat or seat cushion adjustments other than that which primarily moves the seat or seat cushion fore-aft.

S16.3.2.1.2 Fully recline the seat back, if adjustable. Install the dummy into the driver’s seat, such that when the legs are positioned 120 degrees to the thighs, the calves of the legs are not touching the seat cushion.

S16.3.2.1.3 Bucket seats. Place the dummy on the seat cushion so that its midsagittal plane is vertical and coincides with the vertical longitudinal plane through the center of the seat cushion, within ±10 mm (±0.4 in).

S16.3.2.1.4 Bench seats. Position the midsagittal plane of the dummy vertical and parallel to the vehicle’s longitudinal centerline and aligned within ±10 mm (±0.4 in) of the center of the steering wheel rim.

S16.3.2.1.5 Hold the dummy’s thighs down and push rearward on the upper torso to maximize the dummy’s pelvic angle.

S16.3.2.1.6 Place the legs at 120 degrees to the thighs. Set the initial transverse distance between the longitudinal centerlines at the front of the dummy’s knees at 160 to 170 mm (6.3 to 6.7 in), with the thighs and legs of the dummy in vertical planes. Push rearward on the dummy’s knees to force the pelvis into the seat so there is no gap between the pelvis and the seat back or until contact occurs between the back of the dummy’s calves and the front of the seat cushion.

S16.3.2.1.7 Gently rock the upper torso laterally in a side to side motion three times through a ±5 degree arc (approximately 51 mm (2 in) side to side).

S16.3.2.1.8 If needed, extend the legs slightly so that the feet are not in contact with the floor pan. Let the thighs rest on the seat cushion to the extent permitted by the foot movement. Keeping the leg and the thigh in a vertical plane, place the foot in the vertical longitudinal plane that passes through the centerline of the accelerator pedal. Rotate the left thigh outboard about the hip until the center of the knee is the same distance from the midsagittal plane of the dummy as the right knee ±5 mm (±0.2 in). Using only the control that primarily moves the seat fore and aft, attempt to return the seat to the full forward position. If either of the dummy’s legs first contacts the steering wheel, then adjust the steering wheel, if adjustable, upward until contact with the steering wheel is avoided. If the steering wheel is not adjustable, separate the knees enough to avoid steering wheel contact. Proceed with moving the seat forward until either the leg contacts the vehicle interior or the seat reaches the full forward position. (The right foot may contact and depress the accelerator and/or change the angle of the foot with respect to the leg during seat movement.) If necessary to avoid contact with the vehicle’s brake or clutch pedal, rotate the test dummy’s left foot about the leg. If there is still interference, rotate the left thigh outboard about the hip the minimum distance necessary to avoid pedal interference. If a dummy leg contacts the vehicle interior before the full forward position is attained, position the seat at the next detent where there is no contact. If the seat is a power seat, move the seat fore and aft to avoid contact while assuring that there is a maximum of 5 mm (0.2 in)
distance between the vehicle interior and the point on the dummy that would first contact the vehicle interior. If the steering wheel was moved, return it to the position described in S16.2.9. If the steering wheel contacts the dummy’s leg(s) prior to attaining this position, adjust it to the next higher detent, or if infinitely adjustable, until there is 5 mm (0.2 in) clearance between the wheel and the dummy’s leg(s).

S16.3.2.1.9 For vehicles without adjustable seat backs, adjust the lower neck bracket to level the head as much as possible. For vehicles with adjustable seat backs, while holding the thighs in place, rotate the seat back forward until the transverse instrumentation platform of the head is level to within ±0.5 degree, making sure that the pelvis does not interfere with the seat bight. Inspect the abdomen to ensure that it is properly installed. If the torso contacts the steering wheel, adjust the steering wheel in the following order until there is no contact: telescoping adjustment, lowering adjustment, raising adjustment. If the vehicle has no adjustments, or contact with the steering wheel cannot be eliminated by adjustment, position the seat at the next detent where there is no contact with the steering wheel as adjusted in S16.2.9. If the seat is a power seat, position the seat to avoid contact while assuring that there is a maximum of 5 mm (0.2 in) distance between the steering wheel as adjusted in S16.2.9 and the point of contact on the dummy.

S16.3.2.1.10 If it is not possible to achieve the head level within ±0.5 degrees, minimize the angle.

S16.3.2.1.11 Measure and set the dummy’s pelvic angle using the pelvic angle gauge (drawing TE-2504, incorporated by reference in 49 CFR part 572, subpart O of this chapter). The angle shall be set to 20.0 degrees ±2.5 degrees. If this is not possible, adjust the pelvic angle as close to 20.0 degrees as possible while keeping the transverse instrumentation platform of the head as level as possible by adjustments specified in S16.3.2.1.9 and S16.3.2.1.10.

S16.3.2.1.12 If the dummy is contacting the vehicle interior after these adjustments, using only the control that primarily moves the seat fore and aft, move the seat rearward until there is a maximum of 5 mm (0.2 in) between the contact point of the dummy and the interior of the vehicle or if it has a manual seat adjustment, to the next rearward detent position. If after these adjustments, the dummy contact point is more than 5 mm (0.2 in) from the vehicle interior and the seat is still not in its forwardmost position, move the seat forward until the contact point is a maximum of 5 mm (0.2 in) from the vehicle interior, or if it has a manual seat adjustment, move the seat to the closest detent position that causes no contact, or until the seat reaches its forwardmost position, whichever occurs first.

S16.3.2.2 Driver foot positioning.

S16.3.2.2.1 If the vehicle has an adjustable accelerator pedal, adjust it to the full forward position. If the heel of the right foot can contact the floor pan, follow the positioning procedure in (a). If not, follow the positioning procedure in (b).

(a) Rest the right foot of the test dummy on the undepressed accelerator pedal with the rearmost point of the heel on the floor pan in the plane of the pedal. If the foot cannot be placed on the accelerator pedal, set it initially perpendicular to the leg and then place it as far forward as possible in the direction of the pedal centerline with the rearmost point of the heel resting on the floor pan. If the vehicle has an adjustable accelerator pedal and the right foot is not touching the accelerator pedal when positioned as above, move the pedal rearward until it touches the right foot. If the accelerator pedal in the full rearward position still does not touch the foot, leave the pedal in that position. Extend the foot and lower leg by decreasing the knee flexion angle until any part of the foot contacts the undepressed accelerator pedal. If the foot does not contact the pedal, place the highest part of the foot at the same height as the highest part of the pedal. If this is not possible, adjust the pelvic angle as close to 20.0 degrees as possible while keeping the transverse instrumentation platform of the head as level as possible by adjustments specified in S16.3.2.1.9 and S16.3.2.1.10.

(b) Extend the foot and lower leg by decreasing the knee flexion angle until any part of the foot contacts the undepressed accelerator pedal or the highest part of the foot is at the same height as the highest part of the pedal.
If the vehicle has an adjustable accelerator pedal and the right foot is not touching the accelerator pedal when positioned as above, move the pedal rearward until it touches the right foot.

S16.3.2.2 If the ball of the right foot does not contact the pedal, increase the ankle plantar flexion angle such that the toe of the foot contacts or is as close as possible to contact with the unpressed accelerator pedal.

S16.3.2.3 If, in its final position, the heel is off of the vehicle floor, a spacer block must be used under the heel to support the final foot position (see figure 13). The surface of the block in contact with the heel must have an inclination of 30 degrees, measured from the horizontal, with the highest surface towards the rear of the vehicle.

S16.3.2.4 Place the left foot on the toe-board with the rearmost point of the heel resting on the floor pan as close as possible to the point of intersection of the planes described by the toe-board and floor pan.

S16.3.2.5 If the left foot cannot be positioned on the toe board, place the foot perpendicular to the lower leg centerline as far forward as possible with the heel resting on the floor pan.

S16.3.2.6 If the left foot does not contact the floor pan, place the foot parallel to the floor and place the lower leg as perpendicular to the thigh as possible.

S16.3.2.7 When positioning the test dummy under S16.3.2.2.4, S16.3.2.2.5, and S16.3.2.2.6, avoid contact between the left foot of the test dummy and the vehicle’s brake pedal, clutch pedal, wheel well projection, and foot rest. To avoid this contact, use the three foot position adjustments listed in paragraphs (a) through (c). The adjustment options are listed in priority order, with each subsequent option incorporating the previous. In making each adjustment, move the foot the minimum distance necessary to avoid contact. If it is not possible to avoid all prohibited foot contact, give priority to avoiding brake or clutch pedal contact.

(a) Rotate (abduction/adduction) the test dummy’s left foot about the lower leg.

(b) Plantar flex the foot.

(c) Rotate the left leg about the hip in either an outboard or inboard direction.

S16.3.2.3 Driver arm/hand positioning.

S16.3.2.3.1 Place the dummy’s upper arms adjacent to the torso with the arm centerlines as close to a vertical longitudinal plane as possible.

S16.3.2.3.2 Place the palms of the dummy in contact with the outer part of the steering wheel rim at its horizontal centerline with the thumbs over the steering wheel rim.

S16.3.2.3.3 If it is not possible to position the thumbs inside the steering wheel rim at its horizontal centerline, then position them above and as close to the horizontal centerline of the steering wheel rim as possible.

S16.3.2.3.4 Lightly tape the hands to the steering wheel rim so that if the hand of the test dummy is pushed upward by a force of not less than 9 N (2 lb) and not more than 22 N (5 lb), the tape releases the hand from the steering wheel rim.

S16.3.3 Passenger dummy positioning.

S16.3.3.1 Passenger torso/head/seat back angle positioning.

S16.3.3.1.1 With the seat at the mid-height in the full forward position determined in S16.2.10.3.3, use only the control that primarily moves the seat fore and aft to place the seat in the rearmost position, without adjusting independent height controls. If the seat cushion reference line angle automatically changes as the seat is moved from the full forward position, maintain as closely as possible the seat cushion reference line angle position in S16.2.10.3.1, for the final forward position when measuring the pelvic angle as specified in S16.3.3.1.11. The seat cushion reference line angle position may be achieved through the use of any seat or seat cushion adjustments other than that which primarily moves the seat or seat cushion fore-aft.

S16.3.3.1.2 Fully recline the seat back, if adjustable. Install the dummy into the passenger seat, such that when the legs are 120 degrees to the thighs, the calves of the legs are not touching the seat cushion.

S16.3.3.1.3 Bucket seats. Place the dummy on the seat cushion so that its midsagittal plane is vertical and coincides with the vertical longitudinal
plane through the center of the seat cushion, within ±10 mm (±0.4 mm).

S16.3.3.1.4 Bench seats. Position the midsagittal plane of the dummy vertical and parallel to the vehicle’s longitudinal centerline and the same distance from the vehicle’s longitudinal centerline, within ±10 mm (±0.4 in), as the midsagittal plane of the driver dummy.

S16.3.3.1.5 Hold the dummy’s thighs down and push rearward on the upper torso to maximize the dummy’s pelvic angle.

S16.3.3.1.6 Place the legs at 120 degrees to the thighs. Set the initial transverse distance between the longitudinal centerlines of the dummy’s knees at 160 to 170 mm (6.3 to 6.7 in), with the thighs and legs of the dummy in vertical planes. Push rearward on the dummy’s knees to force the pelvis into the seat so there is no gap between the pelvis and the seat back or until contact occurs between the back of the dummy’s calves and the front of the seat cushion.

S16.3.3.1.7 Gently rock the upper torso laterally side to side three times through a ±5 degree arc (approximately 51 mm (2 in) side to side).

S16.3.3.1.8 If needed, extend the legs slightly so that the feet are not in contact with the floor pan. Let the thighs rest on the seat cushion to the extent permitted by the foot movement. With the feet perpendicular to the legs, place the heels on the floor pan. If a heel will not contact the floor pan, place it as close to the floor pan as possible. Using only the control that primarily moves the seat fore and aft, attempt to return the seat to the full forward position. If a dummy leg contacts the vehicle interior before the full forward position is attained, position the seat at the next detent where there is no contact. If the seats are power seats, position the seat to avoid contact while assuring that there is a maximum of 5 mm (0.2 in) distance between the vehicle interior and the point on the dummy that would first contact the vehicle interior.

S16.3.3.1.9 For vehicles without adjustable seat backs, adjust the lower neck bracket to level the head as much as possible. For vehicles with adjustable seat backs, while holding the thighs in place, rotate the seat back forward until the transverse instrumentation platform of the head is level to within ±0.5 degrees, making sure that the pelvis does not interfere with the seat bight. Inspect the abdomen to insure that it is properly installed.

S16.3.3.1.10 If it is not possible to orient the head level within ±0.5 degrees, minimize the angle.

S16.3.3.1.11 Measure and set the dummy’s pelvic angle using the pelvic angle gauge (drawing TE-2504, incorporated by reference in 49 CFR Part 572, Subpart O, of this chapter). The angle shall be set to 20.0 degrees ±2.5 degrees. If this is not possible, adjust the pelvic angle as close to 20.0 degrees as possible while keeping the transverse instrumentation platform of the head as level as possible, as specified in S16.3.3.1.9 and S16.3.3.1.10.

S16.3.3.1.12 If the dummy is contacting the vehicle interior after these adjustments, using only the control that primarily moves the seat fore and aft, move the seat rearward until there is a maximum of 5 mm (0.2 in) between the contact point of the dummy and the interior of the vehicle or if it has a manual seat adjustment, to the next rearward detent position. If after these adjustments, the dummy contact point is more than 5 mm (0.2 in) from the vehicle interior and the seat is still not in its forwardmost position, move the seat forward until the contact point is a maximum of 5 mm (0.2 in) from the vehicle interior, or if it has a manual seat adjustment, move the seat to the closest detent position that causes no contact, or until the seat reaches its forwardmost position, whichever occurs first.

S16.3.3.2 Passenger foot positioning.

S16.3.3.2.1 Place the passenger’s feet flat on the toe board.

S16.3.3.2.2 If the feet cannot be placed flat on the toe board, set them perpendicular to the leg centerlines and place them as far forward as possible with the heels resting on the floor pan. If either foot does not contact the floor pan, place the foot parallel to the floor pan and place the lower leg as perpendicular to the thigh as possible.

S16.3.3.3 Passenger arm/hand positioning.
§ 571.208

S16.3.3.3.1 Place the dummy’s upper arms in contact with the seat back and the torso.
S16.3.3.3.2 Place the palms of the dummy in contact with the outside of the thighs.
S16.3.3.3.3 Place the little fingers in contact with the seat cushion.
S16.3.4 Driver and passenger adjustable head restraints.
S16.3.4.1 If the head restraint has an automatic adjustment, leave it where the system positions the restraint after the dummy is placed in the seat.
S16.3.4.2 Adjust each head restraint to its lowest position.
S16.3.4.3 Measure the vertical distance from the top most point of the head restraint to the bottom most point. Locate a horizontal plane through the midpoint of this distance. Adjust each head restraint vertically so that this horizontal plane is aligned with the center of gravity (CG) of the dummy head.
S16.3.4.3 If the above position is not attainable, move the vertical center of the head restraint to the closest detent below the center of the head CG.
S16.3.4.4 If the head restraint has a fore and aft adjustment, place the restraint in the forwardmost position or until contact with the head is made, whichever occurs first.
S16.3.5 Driver and passenger manual belt adjustment (for tests conducted with a belted dummy)
S16.3.5.1 If an adjustable seat belt D-ring anchorage exists, place it in the manufacturer’s design position for a 5th percentile adult female with the seat in the position specified in S16.2.10.3.
S16.3.5.2 Place the Type 2 manual belt around the test dummy and fasten the latch.
S16.3.5.3 Ensure that the dummy’s head remains as level as possible, as specified in S16.3.2.1.9 and S16.3.2.1.10 and S16.3.3.1.9 and S16.3.3.1.10.
S16.3.5.4 Remove all slack from the lap belt. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this operation four times. Apply a 9 N (2 lbf) to 18 N (4 lbf) tension load to the lap belt. If the belt system is equipped with a tension-relieving device, allow the excess webbing in the shoulder belt to be retracted by the retractive force of the retractor.
S17 Offset frontal deformable barrier requirements using 5th percentile adult female test dummies. Each vehicle that is certified as complying with S14 shall, at each front outboard designated seating position, meet the injury criteria specified in S15.3 of this standard when the vehicle is crash tested in accordance with the procedures specified in S18 of this standard with the anthropomorphic test devices restrained by a Type 2 seat belt assembly.
S18 Test procedure for offset frontal deformable barrier requirements using 5th percentile adult female dummies.
S18.1 General provisions. Place a 49 CFR Part 572 Subpart O 5th percentile adult female test dummy at each front outboard seating position of a vehicle, in accordance with the procedures specified in S16.3 of this standard. Impact the vehicle traveling longitudinally forward at any speed, up to and including 40 km/h (25 mph), into a fixed offset deformable barrier under the conditions and procedures specified in S18.2 of this standard, impacting only the left side of the vehicle.
S18.2 Test conditions.
S18.2.1 Offset frontal deformable barrier. The offset frontal deformable barrier shall conform to the specifications set forth in Subpart C of part 587 of this chapter.
S18.2.2 General test conditions. All of the test conditions specified in S16.2 of this standard apply.
S18.2.3 Dummy seating procedures. Position the anthropomorphic test dummies as specified in S16.3 of this standard.
S18.2.4 Impact configuration. The test vehicle shall impact the barrier with the longitudinal centerline of the vehicle parallel to the line of travel and perpendicular to the barrier face within a tolerance of ±5 degrees. The test vehicle shall be aligned so that the vehicle strikes the barrier with 40 percent overlap on the left side of the vehicle, with the vehicle's front engaging the barrier face such that the vehicle's
longitudinal centerline is offset outboard of the edge of the barrier face by 10 percent of the vehicle’s width ±50 mm (2.0 in) as illustrated in Figure 10. The vehicle width is defined as the maximum dimension measured across the widest part of the vehicle, including bumpers and molding but excluding such components as exterior mirrors, flexible mud flaps, marker lamps, and dual rear wheel configurations.

S19 Requirements to provide protection for infants in rear facing and convertible child restraints and car beds.

S19.1 Each vehicle certified as complying with S14 shall, at the option of the manufacturer, meet the requirements specified in S19.2 or S19.3, under the test procedures specified in S20.

S19.2 Option 1—Automatic suppression feature. Each vehicle shall meet the requirements specified in S19.2.1 through S19.2.3.

S19.2.1 The vehicle shall be equipped with an automatic suppression feature for the passenger air bag which results in deactivation of the air bag during each of the static tests specified in S20.2 (using the 49 CFR part 572 Subpart R 12-month-old CRABI child dummy in any of the child restraints identified in sections B and C of appendix A or A–1 of this standard, as appropriate, and the 49 CFR part 572 subpart K Newborn Infant dummy in any of the car beds identified in section A of appendix A or A–1, as appropriate), and activation of the air bag system during each of the static tests specified in S20.3 (using the 49 CFR part 572 Subpart O 5th percentile adult female dummy).

S19.2.2 The vehicle shall be equipped with at least one telltale which emits light whenever the passenger air bag system is deactivated and does not emit light whenever the passenger air bag system is activated, except that the telltale(s) need not illuminate when the passenger seat is unoccupied. Each telltale:

(a) Shall emit yellow light;

(b) Shall have the identifying words “PASSENGER AIR BAG OFF” or “PASS AIR BAG OFF” on the telltale or within 25 mm (1.0 in) of the telltale; and

(c) Shall not be combined with the readiness indicator required by S4.5.2 of this standard.

(d) Shall be located within the interior of the vehicle and forward of and above the design H-point of both the driver’s and the right front passenger’s seat in their forwardmost seating positions and shall not be located on or adjacent to a surface that can be used for temporary or permanent storage of objects that could obscure the telltale from either the driver’s or right front passenger’s view, or located where the telltale would be obscured from the driver’s view if a rear-facing child restraint listed in appendix A or A–1, as appropriate, is installed in the right front passenger’s seat.

(e) Shall be visible and recognizable to a driver and right front passenger during night and day when the occupants have adapted to the ambient light roadway conditions.

(f) Telltale(s) need not be visible or recognizable when not activated.

(g) Means shall be provided for making telltale(s) visible and recognizable to the driver and right front passenger under all driving conditions. The means for providing the required visibility may be adjustable manually or automatically, except that the telltale(s) may not be adjustable under any driving conditions to a level that would be invisible or not recognizable to the driver and right front passenger.

(h) The telltale must not emit light except when the passenger air bag is turned off or during a bulb check upon vehicle starting.

S19.2.3 The vehicle shall be equipped with a mechanism that indicates whether the air bag system is suppressed, regardless of whether the passenger seat is occupied. The mechanism need not be located in the occupant compartment unless it is the telltale described in S19.2.2.

S19.3 Option 2—Low risk deployment. Each vehicle shall meet the injury criteria specified in S19.4 of this standard when the passenger air bag is deployed in accordance with the procedures specified in S20.4.

§ 571.208 49 CFR Ch. V (10–1–16 Edition)

S19.4.1 All portions of the test dummy and child restraint shall be contained within the outer surfaces of the vehicle passenger compartment.

S19.4.2 Head injury criteria.
(a) For any two points in time, \(t_1 \) and \(t_2 \), during the event which are separated by not more than a 15 millisecond time interval and where \(t_1 \) is less than \(t_2 \), the head injury criterion (HIC\(_{15}\)) shall be determined using the resultant head acceleration at the center of gravity of the dummy head, \(a_r \), expressed as a multiple of g (the acceleration of gravity) and shall be calculated using the expression:

\[
\left[\int_{t_1}^{t_2} a_r dt \right]^{2.5} \left(t_2 - t_1 \right)
\]

(b) The maximum calculated HIC\(_{15}\) value shall not exceed 390.

S19.4.3 The resultant acceleration calculated from the output of the thoracic instrumentation shall not exceed 50 g’s, except for intervals whose cumulative duration is not more than 3 milliseconds.

S19.4.4 Neck injury. When measuring neck injury, each of the following injury criteria shall be met.
(a) \(N_{ij} \).
(1) The shear force (\(F_x \)), axial force (\(F_z \)), and bending moment (\(M_y \)) shall be measured by the dummy upper neck load cell for the duration of the crash event as specified in S4.11. Shear force, axial force, and bending moment shall be filtered for \(N_{ij} \) purposes at SAE Recommended Practice J211/1 MAR95 (incorporated by reference, see § 571.5) Channel Frequency Class 600.

(2) During the event, the axial force (\(F_z \)) can be either in tension or compression while the occipital condyle bending moment (\(M_{oc} \)) can be in either flexion or extension. This results in four possible loading conditions for \(N_{ij} \): tension-extension (\(N_{te} \)), tension-flexion (\(N_{tf} \)), compression-extension (\(N_{ce} \)), or compression-flexion (\(N_{cf} \)).

(3) When calculating \(N_{ij} \) using equation S19.4.4(a)(4), the critical values, \(F_{zc} \) and \(M_{yc} \), are:
 (i) \(F_{zc} = 1460 \) N (328 lbf) when \(F_z \) is in tension
 (ii) \(F_{zc} = 1460 \) N (328 lbf) when \(F_z \) is in compression
 (iii) \(M_{yc} = 43 \) Nm (32 lbf-ft) when a flexion moment exists at the occipital condyle
 (iv) \(M_{yc} = 17 \) Nm (13 lbf-ft) when an extension moment exists at the occipital condyle.

(4) At each point in time, only one of the four loading conditions occurs and the \(N_{ij} \) value corresponding to that loading condition is computed and the three remaining loading modes shall be considered a value of zero. The expression for calculating each \(N_{ij} \) loading condition is given by:

\[
N_{ij} = (F_z / F_{zc}) + (M_{oc} / M_{yc})
\]

(5) None of the four \(N_{ij} \) values shall exceed 1.0 at any time during the event.

(b) Peak tension. Tension force (\(F_z \)), measured at the upper neck load cell, shall not exceed 780 N (175 lbf) at any time.

(c) Peak compression. Compression force (\(F_z \)), measured at the upper neck load cell, shall not exceed 960 N (216 lbf) at any time.

S19.4.5 Unless otherwise indicated, instrumentation for data acquisition, data channel frequency class, and moment calculations are the same as given for the 49 CFR part 572 Subpart R 12-month-old CRABI test dummy.

S20 Test procedure for S19.

S20.1 General provisions.

S20.1.1 Tests specifying the use of a car bed, a rear facing child restraint, or a convertible child restraint may be conducted using any such restraint listed in sections A, B, and C, respectively, of appendix A or A–1 of this standard, as appropriate. The car bed, rear facing child restraint, or convertible child restraint may be unused or have been previously used only for automatic suppression tests. If it has been used, there shall not be any visible damage prior to the test.

S20.1.2 Unless otherwise specified, each vehicle certified to this option shall comply in tests conducted with the front outboard passenger seating position, if adjustable fore and aft, at full rearward, middle, and full forward positions. If the child restraint or dummy contacts the vehicle interior, move the seat rearward to the next detent that provides clearance, or if the seat is a power seat, using only the
control that primarily moves the seat fore and aft, move the seat rearward while assuring that there is a maximum of 5 mm (0.2 in) clearance between the dummy or child restraint and the vehicle interior.

S20.1.3 If the car bed, rear facing child restraint, or convertible child restraint is equipped with a handle, the vehicle shall comply in tests conducted with the handle at both the child restraint manufacturer’s recommended position for use in vehicles and in the upright position.

S20.1.4 If the car bed, rear facing child restraint, or convertible child restraint is equipped with a sunshield, the vehicle shall comply in tests conducted with the sunshield both fully open and fully closed.

S20.1.5 The vehicle shall comply in tests with the car bed, rear facing child restraint, or convertible child restraint uncovered and in tests with a towel or blanket weighing up to 1.0 kg (2.2 lb) placed on or over the restraint in any of the following positions:

(a) with the blanket covering the top and sides of the restraint, and

(b) with the blanket placed from the top of the vehicle’s seat back to the forwardmost edge of the restraint.

S20.1.6 Except as otherwise specified, if the car bed, rear facing child restraint, or convertible child restraint has an anchorage system as specified in S5.9 of FMVSS No. 213 and is tested in a vehicle with a front outboard passenger vehicle seat that has an anchorage system as specified in FMVSS No. 225, the vehicle shall comply in the belted tests with the restraint anchorage system attached to the vehicle seat anchorage system and the vehicle seat belt unattached. It shall also comply in the belted test requirements with the restraint anchorage system unattached to the vehicle seat anchorage system.

S20.1.7 If the car bed, rear facing child restraint, or convertible child restraint comes equipped with a detachable base, the vehicle shall comply in tests conducted with the detachable base attached to the child restraint and with the detachable base unattached to the child restraint.

S20.1.8 Do not attach any tethers.

S20.1.9 Seat set-up. Unless otherwise stated.

S20.1.9.1 Lumbar support adjustment. Position adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position.

S20.1.9.2 Other seat adjustments. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position.

S20.1.9.3 Set the seat and seat cushion in the position determined in S16.2.10.3.1.

S20.1.9.4 Using only the control that primarily moves the seat in the fore and aft direction, determine the full rearward, middle, and full forward positions of the SCRP. Using any part of any seat or seat cushion adjustments, other than that which primarily moves the seat or seat cushion fore-aft, determine the SCRP mid-point height for each of the three fore-aft test positions, while maintaining, as closely as possible, the seat cushion reference line middle angle determined in S16.2.10.3.1.

S20.1.9.5 The seat back angle, if adjustable, is set at the manufacturer’s nominal design seat back angle for a 50th percentile adult male as specified in S8.1.3.

S20.1.9.6 If adjustable, set the head restraint at the full down and full forward position.

S20.1.10 The longitudinal centerline of a bucket seat cushion is defined by a vertical plane that passes through the SgRP and is parallel to the longitudinal centerline of the vehicle.

S20.2 Static tests of automatic suppression feature which shall result in deactivation of the passenger air bag. Each vehicle that is certified as complying with S19.2 shall meet the following test requirements.

S20.2.1 Belted rear facing and convertible child restraints.

S20.2.1.1 The vehicle shall comply in tests using any child restraint specified in section B and section C of appendix A or A-1 of this standard, as appropriate, installed in the front outboard
passenger vehicle seat in the following orientations:

(a) With the section B and section C child restraints facing rearward as appropriate; and

(b) With the section C child restraints facing forward.

S20.2.1.2 The vehicle shall comply with the child restraint attached to the vehicle in the following manner:

(a) Using the vehicle safety belts as specified in S20.2.1.5; and

(b) If the child restraint is certified to the S5.9 of §571.213, and the vehicle seat has an anchorage system as specified in §571.225, using only the mechanism provided by the child restraint manufacturer for attachment to the lower anchorages as specified in S20.2.1.6.

S20.2.1.3 Locate a vertical plane through the longitudinal centerline of the child restraint. This will be referred to as “Plane A.”

S20.2.1.4 For bucket seats, “Plane B” refers to a vertical plane parallel to the vehicle longitudinal centerline through the longitudinal centerline of the front outboard passenger vehicle seat cushion. For bench seats, “Plane B” refers to a vertical plane through the front outboard passenger vehicle seat parallel to the vehicle longitudinal centerline the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel.

S20.2.1.5 Installation with vehicle safety belts.

(a) Place any adjustable seat belt anchorages at the vehicle manufacturer’s nominal design position for a 50th percentile adult male occupant.

(b) Without attaching the child restraint anchorage system components specified in §5.9 of §571.213 to a vehicle child restraint anchorage system specified in §571.225, align the child restraint system facing rearward or forward, depending on the orientation being tested, such that Plane A is aligned with Plane B.

(c) While maintaining the child restraint positions achieved in S20.2.1.5(b), secure the child restraint by following, to the extent possible, the child restraint manufacturer’s directions regarding proper installation of the restraint for the orientation being tested. Cinch the vehicle belts to any tension from zero up to 134 N to secure the child restraint. Measure belt tension in a flat, straight section of the lap belt between the child restraint belt path and the contact point with the belt anchor or vehicle seat, on the side away from the buckle (to avoid interference from the shoulder portion of the belt).

(d) Position the 49 CFR part 572 subpart R 12-month-old CRABI dummy in the child restraint by following, to the extent possible, the manufacturer’s instructions provided with the child restraint for seating infants.

(e) Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and close all vehicle doors. Wait 10 seconds, then check whether the air bag is deactivated.

S20.2.1.6 Installation using the lower anchor bars and the child restraint manufacturer provided attachment mechanism.

S20.2.1.6.1 If the attachment mechanism provided by the manufacturer incorporates a strap(s), use the following procedure:

(a) Place the child restraint on the vehicle seat facing rearward or forward, depending on the orientation being tested, with Plane A of the child restraint aligned within ±10 mm with a longitudinal vertical plane passing through a point midway between the centers of the two lower anchor bars.

(b) Position any adjustments on the child restraint, to the extent possible according to the child restraint manufacturer’s instructions.

(c) Connect the lower anchor straps of the restraint to the lower anchor bars of the seat and remove the slack, but do not apply any load using these straps.

(d) Move the child restraint rearward until it contacts the seat back.

(e) Use the loading device equipped with the loading foot shown in Figure A1 and position it as shown in Figure A2 of appendix A and appendix A–1 of this section. The 15±3 degree angle of the loading device illustrated in Figure A2 is determined with an initial preload of 75±25N.

(f) Over a period of 90±30 seconds, increase the load to 875±25 N.

(g) After achieving the 875 N load in step (f) of this section, hold the bar

788
length at present position and allow the load to settle for 60 seconds.

(h) Following the one-minute settling period specified in step (g) of this section, increase the load to 875 ± 25 N such that the 875 ± 25 N load is achieved within 10 seconds of the settling period.

(i) Hold the bar length at present position and allow the load to settle for 120 seconds after achieving the load in step (f) of this section.

(j) Following the settling period specified in step (i) of this section, increase the load to 875 ± 25 N such that the 875 ± 25 N load is achieved within 10 seconds of the settling period.

(k) Observe the settling of the load and tighten the lower anchor straps when the load is 850 ± 5 N or 180 seconds has elapsed since achieving the 875 ± 25 N load in step (f) of this section, whichever comes first. Tighten the lower anchor straps at the same time such that the load is reduced 15 ± 10 N and the change occurs within 2 seconds.

(l) Remove the loading device and position the 49 CFR part 572 subpart R 12-month-old CRABI dummy in the child restraint by following, to the extent possible, the manufacturer’s instructions provided with the child restraint for seating infants.

(m) Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and close all vehicle doors. Wait 10 seconds, then check whether the air bag is deactivated.

S20.2.1.6.2 If the mechanism provided by the manufacturer does not incorporate a strap(s), use the following procedure:

(a) Place the vehicle seat in the rearmost and mid-height position.

(b) Place the child restraint on the vehicle seat facing rearward or forward, depending on the orientation being tested, with Plane A of the child restraint aligned within ±10 mm with a longitudinal vertical plane passing through a point midway between the centers of the two lower anchor bars.

(c) Position any adjustments on the child restraint, to the extent possible, according to the child restraint manufacturer’s instructions.

(d) Connect the lower anchor attachments to the lower anchor bars following, to the extent possible, the child restraint manufacturer’s instructions.

(e) Move the child restraint rearward until it contacts the seat back.

(f) If the child restraint does not use a linear sliding or ratcheting mechanism that requires the application of force to securely install the child restraint, follow, to the extent possible, the CRS manufacturer’s instructions for installing the child restraint onto the seat. Do not load the seat as provided in S20.2.1.6.2(g).

(g) If the child restraint uses a linear sliding or ratcheting mechanism that requires the application of force to securely install the child restraint, within 25 ± 5 seconds, apply a 475 ± 25 N force, that has no lateral component, aligned angularly ± 10 degrees with a parallel plane located within ± 100 mm of the plane formed by the linear mechanism. Release the force.

(h) Position the 49 CFR part 572 subpart R 12-month-old CRABI dummy in the child restraint by following, to the extent possible, the manufacturer’s instructions provided with the child restraint for seating infants.

(i) Move the vehicle seat to the seat position being tested (full rear, mid, full forward).

(j) Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and close all vehicle doors. Wait 10 seconds, then check whether the air bag is deactivated.

S20.2.2 Unbelted rear facing and convertible child restraints.

S20.2.2.1 The vehicle shall comply in tests using any child restraint specified in section B and section C of appendix A or A–1 of this standard, as appropriate.

S20.2.2.2 Locate a vertical plane through the longitudinal centerline of the child restraint. This will be referred to as “Plane A”.

S20.2.2.3 For bucket seats, “Plane B” refers to a vertical plane parallel to the vehicle longitudinal centerline through the longitudinal centerline of the front outboard passenger vehicle seat cushion. For bench seats, “Plane B” refers to a vertical plane through
the front outboard passenger seat parallel to the vehicle longitudinal centerline the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel.

S20.2.2.4 Facing rear.
(a) Align the child restraint system facing rearward such that Plane A is aligned with Plane B and the child restraint is in contact with the seat back.
(b) Position the 49 CFR part 572 subpart R 12-month-old CRABI dummy in the child restraint by following, to the extent possible, the manufacturer’s instructions provided with the child restraint for seating infants.
(c) Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and close all vehicle doors. Wait 10 seconds, then check whether the air bag is deactivated.

S20.2.2.5 Facing forward.
(a) Align the child restraint system facing forward such that Plane A is aligned with Plane B and the child restraint is in contact with the seat back.
(b) Position the 49 CFR part 572 subpart R 12-month-old CRABI dummy in the child restraint by following, to the extent possible, the manufacturer’s instructions provided with the child restraint for seating infants.
(c) Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and close all vehicle doors. Wait 10 seconds, then check whether the air bag is deactivated.

S20.3 Static tests of automatic suppression feature which shall result in activation of the passenger air bag system.
S20.3.1 Each vehicle certified to this option shall comply in tests conducted with the front outboard passenger seating position, if adjustable fore and aft, at the mid-height, in the full rearward and middle positions determined in S20.1.9.4, and the forward position determined in S16.3.3.1.8.
S20.3.2 Place a 49 CFR part 572 subpart O 5th percentile adult female test dummy at the front outboard passenger seating position of the vehicle, in accordance with procedures specified in S16.3.3 of this standard, except as specified in S20.3.1, subject to the fore-aft seat positions in S20.3.1. Do not fasten the seat belt.
S20.3.3 Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and then close all vehicle doors.
S20.3.4 Wait 10 seconds, then check whether the air bag system is activated.

S20.4 Low risk deployment test. Each vehicle that is certified as complying with S19.3 shall meet the following test requirements.
S20.4.1 Position the front outboard passenger vehicle seat at the mid-height in the full forward position determined in S20.1.9.4, and adjust the seat back (if adjustable independent of the seat) to the nominal design position for a 50th percentile adult male as specified in S8.1.3. Position adjustable
lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. If adjustable, set the head restraint at the full down and most forward position. If the child restraint or dummy contacts the vehicle interior, do the following: using only the control that primarily moves the seat in the fore and aft direction, move the seat rearward to the next detent that provides clearance; or if the seat is a power seat, move the seat rearward while assuring that there is a maximum of 5 mm (0.2 in) clearance.

S20.4.2 The vehicle shall comply in tests using any child restraint specified in section B and section C of appendix A or A–1 of this standard, as appropriate.

S20.4.3 Locate a vertical plane through the longitudinal centerline of the child restraint. This will be referred to as “Plane A”.

S20.4.4 For bucket seats, “Plane B” refers to a vertical plane parallel to the vehicle longitudinal centerline through the longitudinal centerline of the front outboard passenger seat cushion. For bench seats, “Plane B” refers to a vertical plane through the front outboard passenger seat parallel to the vehicle longitudinal centerline that is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel.

S20.4.5 Align the child restraint system facing rearward such that Plane A is aligned with Plane B.

S20.4.6 If the child restraint is certified to § 571.213, and the vehicle seat has an anchorage system as specified in § 571.225, attach the child restraint to the vehicle seat anchorage as specified in § 20.2.1.6. Do not attach the top tether of the child restraint system. Do not attach the vehicle safety belt.

S20.4.7 While maintaining the child restraint position achieved in S20.4.5, secure the child restraint by following, to the extent possible, the child restraint manufacturer’s directions regarding proper installation of the restraint in the rear facing mode. Place any adjustable seat belt anchorages at the manufacturer’s nominal design position for a 50th percentile adult male occupant. Cinch the vehicle belts to any tension from zero up to 134 N (30 lb) to secure the child restraint. Measure belt tension in a flat, straight section of the lap belt between the child restraint belt path and the contact point with the belt anchor or vehicle seat, on the side away from the buckle (to avoid interference from the shoulder portion of the belt).

S20.4.8 Position the 49 CFR part 572 subpart R 12-month-old CRAB1 dummy in the child restraint by following, to the extent possible, the manufacturer’s instructions provided with the child restraint for seating infants.

S20.4.9 Deploy the front outboard passenger frontal air bag system. If the air bag system contains a multistage inflator, the vehicle shall be able to comply at any stage or combination of stages or time delay between successive stages that could occur in the presence of an infant in a rear facing child restraint and a 49 CFR part 572, subpart R 12-month-old CRAB1 dummy positioned according to S20.4, and also with the seat at the mid-height, in the middle and full rearward positions determined in S20.1.9.4, in a rigid barrier crash test at speeds up to 64 km/h (40 mph).

S21 Requirements using 3-year-old child dummies.

S21.1 Each vehicle that is certified as complying with S14 shall, at the option of the manufacturer, meet the requirements specified in S21.2, S21.3, S21.4 or S21.5, under the test procedures specified in S22 or S28, as applicable.

S21.2 Option 1—Automatic suppression feature. Each vehicle shall meet the requirements specified in S21.2.1 through S21.2.3.

S21.2.1 The vehicle shall be equipped with an automatic suppression feature for the passenger air bag which results in deactivation of the air bag during each of the static tests specified in S22.2 (using the 49 CFR part 572 subpart P 3-year-old child dummy and, as applicable, any child restraint specified in section C and section D of appendix A or A–1 of this standard, as appropriate), and activation of the air bag system during each of the static tests specified
in S22.3 (using the 49 CFR part 572 subpart O 5th percentile adult female dummy).

S21.2.2 The vehicle shall be equipped with a telltale light meeting the requirements specified in S19.2.2.

S21.2.3 The vehicle shall be equipped with a mechanism that indicates whether the air bag is suppressed, regardless of whether the passenger seat is occupied. The mechanism need not be located in the occupant compartment unless it is the telltale described in S21.2.2.

S21.3 Option 2—Dynamic automatic suppression system that suppresses the air bag when an occupant is out of position. (This option is available under the conditions set forth in S27.1.) The vehicle shall be equipped with a dynamic automatic suppression system for the passenger air bag system which meets the requirements specified in S27.

S21.4 Option 3—Low risk deployment. Each vehicle shall meet the injury criteria specified in S21.5 of this standard when the passenger air bag is deployed in accordance with both of the low risk deployment test procedures specified in S22.4.

S21.5 Injury criteria for the 49 CFR part 572, subpart P 3-year-old child test dummy.

S21.5.1 All portions of the test dummy shall be contained within the outer surfaces of the vehicle passenger compartment.

S21.5.2 Head injury criteria.

(a) For any two points in time, \(t_1 \) and \(t_2 \), during the event which are separated by not more than a 15 millisecond time interval and where \(t_1 \) is less than \(t_2 \), the head injury criterion (HIC\(_{15}\)) shall be determined using the resultant head acceleration at the center of gravity of the dummy head, \(a_c \), expressed as a multiple of \(g \) (the acceleration of gravity) and shall be calculated using the expression:

\[
\frac{1}{(t_2-t_1)^2} \int_{t_1}^{t_2} a_c dt \left(t_2-t_1 \right)^{2.5}
\]

(b) The maximum calculated HIC\(_{15}\) value shall not exceed 570.

S21.5.3 The resultant acceleration calculated from the output of the thoracic instrumentation shall not exceed 55 g’s, except for intervals whose cumulative duration is not more than 3 milliseconds.

S21.5.4 Compression deflection of the sternum relative to the spine, as determined by instrumentation, shall not exceed 34 millimeters (1.3 in).

S21.5.5 Neck injury. When measuring neck injury, each of the following injury criteria shall be met.

(a) Nij.

(1) The shear force (\(F_x \)), axial force (\(F_z \)), and bending moment (\(M_y \)) shall be measured by the dummy upper neck load cell for the duration of the crash event as specified in S4.11. Shear force, axial force, and bending moment shall be filtered for Nij purposes at SAE Recommended Practice J211/1 MAR95 (incorporated by reference, see §571.5) Channel Frequency Class 600.

(2) During the event, the axial force (\(F_z \)) can be either in tension or compression while the occipital condyle bending moment (\(M_{oc} \)) can be in either flexion or extension. This results in four possible loading conditions for Nij: Tension-extension (Nte), tension-flexion (Ntf), compression-extension (Ncf), or compression-flexion (Nce).

(3) When calculating Nij using equation S21.5.5(a)(4), the critical values, \(F_{zc} \) and \(M_{yc} \), are:

(i) \(F_{zc} = 2120 \) N (477 lbf) when \(F_z \) is in tension

(ii) \(F_{zc} = 2120 \) N (477 lbf) when \(F_z \) is in compression

(iii) \(M_{yc} = 68 \) Nm (50 lbf-ft) when a flexion moment exists at the occipital condyle

(iv) \(M_{yc} = 27 \) Nm (20 lbf-ft) when an extension moment exists at the occipital condyle.

(4) At each point in time, only one of the four loading conditions occurs and the Nij value corresponding to that loading condition is computed and the three remaining loading modes shall be considered a value of zero. The expression for calculating each Nij loading condition is given by:

\[
Nij = \left(\frac{F_z}{F_{zc}} \right) + \left(\frac{M_{yc}}{M_{yc}} \right)
\]

(5) None of the four Nij values shall exceed 1.0 at any time during the event.

(b) Peak tension. Tension force (\(F_z \)), measured at the upper neck load cell,
shall not exceed 1130 N (254 lbf) at any time.

(c) Peak compression. Compression force (Fz), measured at the upper neck load cell, shall not exceed 1380 N (310 lbf) at any time.

S21.5.6 Unless otherwise indicated, instrumentation for data acquisition, data channel frequency class, and moment calculations are the same as given in 49 CFR part 572 subpart P 3-year-old child test dummy.

S22 Test procedure for S21.
S22.1 General provisions and definitions.
S22.1.1 Tests specifying the use of a forward facing child restraint, including a booster seat where applicable, may be conducted using any such restraint listed in section C and section D of appendix A or A–1 of this standard, as appropriate. Child restraint may be unused or have been previously used only for automatic suppression tests. If it has been used, there shall not be any visible damage prior to the test. Booster seats are to be used in the manner appropriate for a 3-year-old child of the same height and weight as the 3-year-old child dummy.

S22.1.2 Unless otherwise specified, each vehicle certified to this option shall comply in tests conducted with the front outboard passenger seating position at the mid-height, in the full rearward, middle, and full forward positions determined in S22.1.7.4. If the dummy contacts the vehicle interior, using only the control that primarily moves the seat fore and aft, move the seat rearward to the next detent that provides clearance. If the seat is a power seat, move the seat rearward while assuring that there is a maximum of 5 mm (0.2 in) clearance.

S22.1.3 Except as otherwise specified, if the child restraint has an anchorage system as specified in S5.9 of FMVSS No. 213 and is tested in a vehicle with a front outboard passenger vehicle seat that has an anchorage system as specified in FMVSS No. 225, the vehicle shall comply with the belted test conditions with the restraint anchorage system attached to the vehicle seat anchorage system and the vehicle seat belt unattached. It shall also comply with the belted test conditions with the restraint anchorage system unattached to the vehicle seat anchorage system and the vehicle seat belt attached.

S22.1.4 Do not attach any tethers.

S22.1.5 The definitions provided in S16.3.1 through S16.3.10 apply to the tests specified in S22.

S22.1.6 For leg and thigh angles use the following references:
(a) Thigh—a straight line on the thigh skin between the center of the 5/16 x 1/2 in. screw (part 9001024, item 10 in drawing 210–0000 sheet 2 of 7, complete assembly (HYB III 3 YR OLD)) and the knee bolt (part 210–5301 in drawing 210–5000–1 & –1, leg assembly).
(b) Leg—a straight line on the leg skin between the center of the ankle bolt (part 210–5701 in drawing 210–5000–1 & –2, leg assembly) and the knee bolt (part 210–5301 in drawing 210–5000–1 & –2, leg assembly).

S22.1.7 Seat set-up. Unless otherwise stated.
S22.1.7.1 Lumbar support adjustment. Position adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position.

S22.1.7.2 Other seat adjustments. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position.

S22.1.7.3 Set the seat and seat cushion in the position determined in S16.2.10.3.1.

S22.1.7.4 Using only the control that primarily moves the seat in the fore and aft direction, determine the full rearward, middle, and full forward positions of the SCRP. Using any part of any seat or seat cushion adjustments other than that which primarily moves the seat or seat cushion fore-aft, determine the SCRP mid-point height for each of the three fore-aft test positions, while maintaining, as closely as possible, the seat cushion reference line angle determined in S16.2.10.3.1.

S22.1.7.5 The seat back angle, if adjustable, is set at the manufacturer’s nominal design seat back angle for a 50th percentile adult male as specified in S8.1.3.

S22.1.7.6 If adjustable, set the head restraint at the full down and full forward position.
§ 571.208 49 CFR Ch. V (10–1–16 Edition)

S22.2 Static tests of automatic suppression feature which shall result in deactivation of the passenger air bag. Each vehicle that is certified as complying with S21.2 shall meet the following test requirements:

S22.2.1 Belted test with forward facing or booster seat child restraint

S22.2.1.1 Install the restraint in the front outboard passenger vehicle seat in accordance, to the extent possible, with the child restraint manufacturer’s instructions provided with the seat for use by children with the same height and weight as the 3-year-old child dummy.

S22.2.1.2 Locate a vertical plane through the longitudinal centerline of the child restraint. This will be referred to as “Plane A”.

S22.2.1.3 For bucket seats, “Plane B” refers to a vertical longitudinal plane through the longitudinal centerline of the seat cushion of the front outboard passenger vehicle seat. For bench seats, “Plane B” refers to a vertical plane through the front outboard passenger vehicle seat parallel to the vehicle longitudinal centerline the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel.

S22.2.1.4 The vehicle shall comply with the child restraint belted to the vehicle in the following manner:

(a) Using the vehicle safety belts as specified in S22.2.1.5 with section C and section D child restraints of appendix A or A–1, as appropriate, of this section designed to be secured to the vehicle seat even when empty; and

(b) If the child restraint is certified to S5.9 of §571.213, and the vehicle seat has an anchorage system as specified in §571.225, using only the mechanism provided by the child restraint manufacturer for attachment to the lower anchorage as specified in S22.2.1.6.

S22.2.1.5 Installation with vehicle safety belts.

(a) Place any adjustable safety belt anchorages at the vehicle manufacturer’s nominal design position for a 50th percentile adult male occupant.

(b) Without attaching the child restraint anchorage system components specified in S5.9 of §571.213 to a vehicle child restraint anchorage system specified in §571.225, align the child restraint system facing forward, such that Plane A is aligned with Plane B.

(c) While maintaining the child restraint positions achieved in S22.2.1.5(b), secure the child restraint by following, to the extent possible, the child restraint manufacturer’s directions regarding proper installation of the restraint. Cinch the vehicle belts to any tension from zero up to 134 N to secure the child restraint. Measure belt tension in a flat, straight section of the lap belt between the child restraint belt path and the contact point with the belt anchor or vehicle seat, on the side away from the buckle (to avoid interference from the shoulder portion of the belt).

S22.2.1.6 Installation using the lower anchor bars and the attachment mechanism provided by the child restraint manufacturer.

S22.2.1.6.1 If the mechanism provided by the manufacturer incorporates a strap(s), use the following procedure.

(a) Place the child restraint on the vehicle seat facing forward, with Plane A of the child restraint aligned within ±10 mm with a longitudinal vertical plane passing through a point midway between the centers of the two lower anchor bars.

(b) Position any adjustments on the child restraint, to the extent possible, according to the child restraint manufacturer’s instructions.

(c) Connect the lower anchor straps to the lower anchor bars and remove most of the slack, but do not apply any load using these straps.

(d) Move the child restraint rearward until it contacts the seat back.

(e) Do not attach any top tethers.

(f) Use the loading device equipped with the loading foot shown in Figure A1 and position it as shown in Figure A2 of appendix A and appendix A–1 of this standard. The 15±3 degree angle of the loading device is determined with an initial preload of 75±25 N.

(g) Over a period of 90±30 seconds, increase the load to 875±25 N.

(h) After achieving the 875 N load in step (g) of this section, hold the bar length at the present position and allow the load to settle for 60 seconds.
(i) Following the one-minute settling period specified in step (h) of this section, increase the load to 875±25 N such that the 875±25 N load is achieved within 10 seconds of the settling period.

(j) Hold the bar length at present position and allow the load to settle for 120 seconds after achieving the load in step (g) of this section.

(k) Following the settling period specified in step (j) of this section, increase the load to 875±25 N such that the 875±25 N load is achieved within 10 seconds of the settling period.

(l) Observe the settling of the load and tighten the lower anchor straps when the load is 850±5 N or 180 seconds has elapsed since achieving the 875±25 N load in step (g) of this section, whichever comes first. Tighten the lower anchor straps at the same time such that the load is reduced 15±10 N and the change occurs within 2 seconds.

(m) Remove the loading device.

S22.2.1.6.2 If the mechanism provided by the manufacturer does not incorporate a strap(s), use the following procedure.

(a) Place the vehicle seat in the rearmost and mid-height position.

(b) Place the child restraint on the vehicle seat facing forward with Plane A of the child restraint aligned within ±10 mm with a longitudinal vertical plane passing through a point midway between the centers of the two lower anchor bars.

(c) Position any adjustments on the child restraint, to the extent possible, according to the child restraint manufacturer’s instructions.

(d) Connect the lower anchor attachments to the lower anchor bars following, to the extent possible, the child restraint manufacturer’s instructions.

(e) Move the child restraint rearward until it contacts the seat back.

(f) Do not attach any top tethers.

(g) If the child restraint does not use a linear sliding or ratcheting mechanism that requires the application of force to securely install the child restraint, within 25±5 seconds, apply a 475±25N force, that has no lateral component, aligned angularly ±10 degrees with a parallel plane located within ±100 mm of the plane formed by the linear mechanism. Release the force.

(i) Move the vehicle seat to the seat position being tested (full rear, mid, full forward).

S22.2.1.7 Forward facing child restraint.

S22.2.1.7.1 After installation of a forward facing child restraint, position the 49 CFR part 572 subpart P 3-year-old child dummy in the child restraint such that the dummy’s lower torso is centered on the child restraint and the dummy’s spine is against the seat back of the child restraint. Place the arms at the dummy’s sides.

S22.2.1.7.2 Attach all belts that come with the child restraint that are appropriate for a child of the same height and weight as the 3-year-old child dummy, if any, by following, to the extent possible, the manufacturer’s instructions provided with the child restraint for seating children.

S22.2.1.8 Booster seat child restraint.

S22.2.1.8.1 After installation of a booster seat child restraint, position the 49 CFR part 572 subpart P 3-year-old child dummy in the booster seat such that the dummy’s lower torso is centered on the booster seat cushion and the dummy’s back is parallel to and in contact with the booster seat back or, if there is no booster seat back, the vehicle seat back. Place the arms at the dummy’s sides.

S22.2.1.8.2 If applicable, attach all belts that come with the child restraint that are appropriate for a child of the same height and weight as the 3-year-old child dummy, if any, by following, to the extent possible, the manufacturer’s instructions provided with the child restraint for seating children.
S22.2.1.8.3 If applicable, place the Type 2 manual belt around the test dummy and fasten the latch. Remove all slack from the lap belt portion. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. Apply a 9 to 18 N (2 to 4 lb) tension load to the lap belt. Allow the excess webbing in the upper torso belt to be retracted by the retractive force of the retractor.

S22.2.1.8.4 Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and then close all vehicle doors. Wait 10 seconds, then check whether the air bag is deactivated.

S22.2.2 Unbelted tests with dummies. Place the 49 CFR part 572 subpart P 3-year-old child dummy on the front outboard passenger vehicle seat in any of the following positions (without using a child restraint or booster seat or the vehicle’s seat belts):

S22.2.2.1 Sitting on seat with back against seat back.
 (a) Place the dummy on the front outboard passenger seat.
 (b) In the case of vehicles equipped with bench seats, position the midsagittal plane of the dummy vertically and parallel to the vehicle’s longitudinal centerline and the same distance from the vehicle’s longitudinal centerline, within ±10 mm (±0.4 in), as the center of the steering wheel. In the case of vehicles equipped with bucket seats, position the midsagittal plane of the dummy vertically such that it coincides with the longitudinal centerline of the seat cushion, within ±10 mm (±0.4 in). Position the torso of the dummy against the seat back. Position the dummy’s thighs against the seat cushion.
 (c) Position the dummy’s thighs against the seat cushion.
 (d) Allow the legs of the dummy to extend off the surface of the seat.
 (e) Rotate the dummy’s upper arms parallel to the spine and rotate the dummy’s lower arms until the dummy’s hands contact the seat cushion.
 (f) Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and then close all vehicle doors.
 (g) Wait 10 seconds, then check whether the air bag is deactivated.

S22.2.2.2 Sitting on seat with back against reclined seat back. Repeat the test sequence in S22.2.2.1 with the seat back angle 25 degrees rearward of the manufacturer’s nominal design position for the 50th percentile adult male. If the seat will not recline 25 degrees rearward of the nominal design position, use the closest position that does not exceed 25 degrees.

S22.2.2.3 Sitting on seat with back not against seat back.
 (a) Place the dummy on the front outboard passenger seat.
 (b) In the case of vehicles equipped with bench seats, position the midsagittal plane of the dummy vertically and parallel to the vehicle’s longitudinal centerline and the same distance from the vehicle’s longitudinal centerline, within ±10 mm (±0.4 in), as the center of the steering wheel. In the case of vehicles equipped with bucket seats, position the midsagittal plane of the dummy vertically such that it coincides with the longitudinal centerline of the seat cushion, within ±10 mm (±0.4 in). Position the dummy with the spine vertical so that the horizontal distance from the dummy’s back to the seat back is no less than 25 mm (1.0 in) and no more than 150 mm (6.0 in), as measured along the dummy’s midsagittal plane at the mid- sternum level. To keep the dummy in position, a material with a maximum breaking strength of 311 N (70 lb) may be used to hold the dummy.
 (c) Position the dummy’s thighs against the seat cushion.
 (d) Allow the legs of the dummy to extend off the surface of the seat.
 (e) Position the upper arms parallel to the spine and rotate the dummy’s lower arms until the dummy’s hands contact the seat cushion.
 (f) Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and then close all vehicle doors.
 (g) Wait 10 seconds, then check whether the air bag is deactivated.

S22.2.2.4 Sitting on seat edge, spine vertical, hands by the dummy’s sides.
 (a) In the case of vehicles equipped with bench seats, position the
midsagittal plane of the dummy vertically and parallel to the vehicle's longitudinal centerline and the same distance from the vehicle's longitudinal centerline, within ±10 mm (±0.4 in), as the center of the steering wheel. In the case of vehicles equipped with bucket seats, position the midsagittal plane of the dummy vertically such that it coincides with the longitudinal centerline of the seat cushion, within ±10 mm (±0.4 in).

(b) Position the dummy in the seated position forward in the seat such that the legs are vertical and the back of the legs rest against the front of the seat with the spine vertical. If the dummy's feet contact the floor pan, rotate the legs forward until the dummy is resting on the seat with the feet positioned flat on the floor pan and the dummy spine vertical. To keep the dummy in position, a material with a maximum breaking strength of 311 N (70 lb) may be used to hold the dummy.

c) Place the upper arms parallel to the spine.

d) Lower the dummy's lower arms such that they contact the seat cushion.

e) Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and then close all vehicle doors.

(f) Wait 10 seconds, then check whether the air bag is deactivated.

S22.2.2.5 Standing on seat, facing forward.

(a) In the case of vehicles equipped with bench seats, position the midsagittal plane of the dummy vertically and parallel to the vehicle's longitudinal centerline and the same distance from the vehicle's longitudinal centerline, within ±10 mm (±0.4 in), as the center of the steering wheel. In the case of vehicles equipped with bucket seats, position the midsagittal plane of the dummy vertically such that it coincides with the longitudinal centerline of the seat cushion, within ±10 mm (±0.4 in). Position the dummy in a standing position on the front outboard passenger seat cushion facing the front of the vehicle while placing the heels of the dummy's feet in contact with the seat back.

(b) Rest the dummy against the seat back, with the arms parallel to the spine.

(c) If the head contacts the vehicle roof, recline the seat so that the head is no longer in contact with the vehicle roof, but allow no more than 5 mm (0.2 in) distance between the head and the roof. If the seat does not sufficiently recline to allow clearance, omit the test.

d) If necessary use a material with a maximum breaking strength of 311 N (70 lb) or spacer blocks to keep the dummy in position.

(e) Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and then close all vehicle doors.

(f) Wait 10 seconds, then check whether the air bag is deactivated.

S22.2.2.6 Kneeling on seat, facing forward.

(a) In the case of vehicles equipped with bench seats, position the midsagittal plane of the dummy vertically and parallel to the vehicle's longitudinal centerline and the same distance from the vehicle's longitudinal centerline, within ±10 mm (±0.4 in), as the center of the steering wheel. In the case of vehicles equipped with bucket seats, position the midsagittal plane of the dummy vertically such that it coincides with the longitudinal centerline of the seat cushion, within ±10 mm (±0.4 in).

(b) Position the dummy in a kneeling position in the front outboard passenger vehicle seat with the dummy facing the front of the vehicle with its toes at the intersection of the seat back and seat cushion. Position the dummy so that the spine is vertical. Push down on the legs so that they contact the seat as much as possible and then release. Place the arms parallel to the spine.

(c) If necessary use a material with a maximum breaking strength of 311 N (70 lb) or spacer blocks to keep the dummy in position.

(d) Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and then close all vehicle doors.
(e) Wait 10 seconds, then check whether the air bag is deactivated.

S22.2.2.7 Kneeling on seat, facing rearward.

(a) In the case of vehicles equipped with bench seats, position the midsagittal plane of the dummy vertically and parallel to the vehicle’s longitudinal centerline and the same distance from the vehicle’s longitudinal centerline, within ±10 mm (±0.4 in), as the center of the steering wheel. In the case of vehicles equipped with bucket seats, position the midsagittal plane of the dummy vertically such that it coincides with the longitudinal centerline of the seat cushion, within ±10 mm (±0.4 in).

(b) Position the dummy in a kneeling position in the front outboard passenger vehicle seat with the dummy facing the rear of the vehicle. Position the dummy such that the dummy’s head and torso are in contact with the seat back. Push down on the legs so that they contact the seat as much as possible and then release. Place the arms parallel to the spine.

(c) Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and then close all vehicle doors.

(d) Wait 10 seconds, then check whether the air bag is deactivated.

S22.2.2.8 Lying on seat. This test is performed only in vehicles with 3 designated front seating positions.

(a) Lay the dummy on the front outboard passenger vehicle seat such that the following criteria are met:

1. The midsagittal plane of the dummy is horizontal,
2. The dummy’s spine is perpendicular to the vehicle’s longitudinal axis,
3. The dummy’s arms are parallel to its spine,
4. A plane passing through the two shoulder joints of the dummy is vertical,
5. The anterior of the dummy is facing the vehicle front,
6. The head of the dummy is positioned towards the passenger door, and
7. The horizontal distance from the topmost point of the dummy’s head to the vehicle door is 50 to 100 mm (2–4 in).

(b) Rotate the thighs as much as possible toward the chest of the dummy and rotate the legs as much as possible against the thighs.

(c) Move the dummy’s upper left arm parallel to the vehicle’s transverse plane and the lower left arm 90 degrees to the upper arm. Rotate the lower left arm about the elbow joint and toward the dummy’s head until movement is obstructed.

(d) Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and then close all vehicle doors.

(e) Wait 10 seconds, then check whether the air bag is deactivated.

S22.3 Static tests of automatic suppression feature which shall result in activation of the passenger air bag system.

S22.3.1 Each vehicle certified to this option shall comply in tests conducted with the front outboard passenger seating position at the mid-height, in the full rearward, and middle positions determined in S22.1.7.4, and the forward position determined in S16.3.3.1.8.

S22.3.2 Place a 49 CFR part 572 subpart O 5th percentile adult female test dummy at the front outboard passenger seating position of the vehicle, in accordance with procedures specified in S16.3.3 of this standard, except as specified in S22.3.1. Do not fasten the seat belt.

S22.3.3 Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and then close all vehicle doors.

S22.3.4 Wait 10 seconds, then check whether the air bag system is activated.

S22.4 Low risk deployment tests.

S22.4.1 Each vehicle that is certified as complying with S21.4 shall meet the following test requirements with the 49 CFR part 572, subpart P 3-year-old child dummy in both of the following positions: Position 1 (S22.4.2) and Position 2 (S22.4.3).

S22.4.1.1 Locate and mark a point on the front of the dummy’s chest jacket on the midsagittal plane that is 114 mm (4.5 in) ±3 mm (±0.1 in) along the surface of the skin from the top of the
799

§ 571.208

skin at the neck line. This is referred to as “Point 1.”

S22.4.1.2 Mark a point on the instrument panel that is longitudinally and transversely, as measured along the surface of the instrument panel, within ±6 mm (±0.2 in) of the point that is defined by the intersection of the instrument panel and a line between the volumetric center of the smallest volume that can encompass the folded undeployed air bag and the volumetric center of the static fully inflated air bag.

S22.4.1.3 Locate the vertical plane parallel to the vehicle longitudinal centerline through the point located in S22.4.1.2. This is referred to as “Plane D.”

S22.4.1.4 Locate the horizontal plane through the point located in S22.4.1.2. This is referred to as “Plane C.”

S22.4.2 Position 1 (chest on instrument panel).

S22.4.2.1 Set the seat and seat cushion in the positions determined in S16.2.10.3.1. If the seat back is adjustable independent of the seat, place the seat back at the manufacturer’s nominal design seat back angle for a 50th percentile adult male as specified in S8.1.3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. If adjustable, set the head restraint in the lowest and most forward position.

S22.4.2.2 Place the dummy in the front outboard passenger seat such that:

S22.4.2.2.1 The midsagittal plane is coincident with Plane D within ±10 mm (±0.4 in).

S22.4.2.2.2 The legs are initially vertical to the floor pan. The legs and thighs shall be adjusted to the extent necessary for the head/torso to contact the instrument panel as specified in S22.4.2.3.

S22.4.2.2.3 The upper arms are parallel to the torso and the hands are in contact with the thighs.

S22.4.2.3 Without changing the seat position and with the dummy’s thorax instrument cavity rear face vertical, move the dummy forward until the dummy head/torso contacts the instrument panel. If the dummy loses contact with the seat cushion because of the forward movement, maintain the height of the dummy and the angle of the thigh with respect to the torso. Once contact is made, raise the dummy vertically until Point 1 lies in Plane C within ±10 mm (±0.4 in). If the dummy’s head contacts the windshield and keeps Point 1 from reaching Plane C, lower the dummy until there is no more than 5 mm (0.2 in) clearance between the head and the windshield. (The dummy shall remain in contact with the instrument panel while being raised or lowered, which may change the dummy’s fore-aft position.)

S22.4.2.4 If possible, position the legs of the dummy so that the legs are vertical and the feet rest flat on the floor pan of the vehicle. If the positioning against the instrument panel does not allow the feet to be on the floor pan, the feet shall be parallel to the floor pan.

S22.4.2.5 If necessary, material with a maximum breaking strength of 311 N (70 lb) and spacer blocks may be used to support the dummy in position. The material should support the torso rather than the head. Support the dummy so that there is minimum interference with the full rotational and translational freedom for the upper torso of the dummy and the material does not interfere with the air bag.

S22.4.3 Position 2 (head on instrument panel).

S22.4.3.1 Place the front outboard passenger seat at the mid-height, in full rearward seating position determined in S22.1.7.4. Place the seat back, if adjustable independent of the seat, at the manufacturer’s nominal design seat back angle for a 50th percentile adult male as specified in S8.1.3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. If adjustable, set the head restraint in the lowest and most forward position.

S22.4.3.2 Place the dummy in the front outboard passenger seat such that:

S22.4.3.2.1 The midsagittal plane is coincident with Plane D within ±10 mm (±0.4 in).

S22.4.3.2.2 The legs are vertical to the floor pan, the back of the legs are in contact with the seat cushion, and the
dummy’s thorax instrument cavity rear face is vertical. If it is not possible to position the dummy with the legs in the prescribed position, rotate the legs forward until the dummy is resting on the seat with the feet positioned flat on the floor pan, and the back of the legs are in contact with the front of the seat cushion. Set the transverse distance between the longitudinal centerlines at the front of the dummy’s knees at 86 to 91 mm (3.4 to 3.6 in), with the thighs and the legs of the dummy in vertical planes.

S22.4.3.2.3 The upper arms are parallel to the torso and the hands are in contact with the thighs.

S22.4.3.3 Using only the control that primarily moves the seat in the fore and aft direction, move the seat forward, while maintaining the thorax instrument cavity rear face orientation until any part of the dummy contacts the vehicle’s instrument panel.

S22.4.3.4 If dummy contact has not been made with the vehicle’s instrument panel at the full forward seating position of the seat, slide the dummy forward until contact is made. Maintain the thorax instrument cavity rear face vertical orientation. If the dummy loses contact with the seat, from that point forward, maintain the height of the dummy. Except as provided in S22.4.3.5, maintain the angle of the thigh with respect to the horizontal.

S22.4.3.5 If head/torso contact with the instrument panel has not been made, maintain the angle of the thighs with respect to the horizontal while applying a force towards the front of the vehicle on the spine of the dummy between the shoulder joints, perpendicular to the thorax instrument cavity rear face, until the head or torso comes into contact with the vehicle’s instrument panel or until a maximum force of 222 N (50 lb) is achieved. If the head/torso is still not in contact with the instrument panel, hold the femurs and release the 222 N (50 lb) force. While maintaining the relative angle between the torso and the femurs, roll the dummy forward on the seat cushion, without sliding, until head/torso contact with the instrument panel is achieved. If seat contact is lost prior to or during femur rotation out of the horizontal plane, constrain the dummy to rotate about the dummy H-point. If the dummy cannot be rolled forward on the seat due to contact of the dummy feet with the floor pan, extend the lower legs forward, at the knees, until floor pan contact is avoided.

S22.4.3.6 If necessary, material with a maximum breaking strength of 311 N (70 lb) and spacer blocks may be used to support the dummy in position. The material should support the torso rather than the head. Support the dummy so that there is minimum interference with the full rotational and translational freedom for the upper torso of the dummy and the material does not interfere with the air bag.

S22.4.4 Deploy the front outboard passenger frontal air bag system. If the frontal air bag system contains a multistage inflator, the vehicle shall be able to comply with the injury criteria at any stage or combination of stages or time delay between successive stages that could occur in a rigid barrier crash test at or below 26 km/h (16 mph), under the test procedure specified in S22.5.

S22.5 Test procedure for determining stages of air bag systems subject to low risk deployment (low speed crashes) test requirement.

S22.5.1 The test described in S22.5.2 shall be conducted with an unbelted 50th percentile adult male test dummy in the driver seating position according to S8 as it applies to that seating position and an unbelted 5th percentile adult female test dummy either in the front outboard passenger vehicle seating position according to S16 as it applies to that seating position or at any fore-aft seat position on the passenger side.

S22.5.2 Impact the vehicle traveling longitudinally forward at any speed, up to and including 26 km/h (16 mph) into a fixed rigid barrier that is perpendicular ±5 degrees to the line of travel of the vehicle under the applicable conditions of S8, S10, and S16 excluding S10.7, S10.8, S10.9, and S16.3.5.

S22.5.3 Determine which inflation stage or combination of stages are fired and determine the time delay between successive stages. That stage or combination of stages, with time delay between successive stages, shall be used
in deploying the air bag when conducting the low risk deployment tests described in S22.4, S24.4, and S26.

S22.5.4 If the air bag does not deploy in the impact described in S22.5.2, the low risk deployment tests described in S22.4, S24.4, and S26 shall be conducted with all stages using the maximum time delay between stages.

S23 Requirements using 6-year-old child dummies.

S23.1 Each vehicle that is certified as complying with S14 shall, at the option of the manufacturer, meet the requirements specified in S23.2, S23.3, or S23.4, under the test procedures specified in S24 or S28, as applicable.

S23.2 Option 1—Automatic suppression feature. Each vehicle shall meet the requirements specified in S23.2.1 through S23.2.3.

S23.2.1 The vehicle shall be equipped with an automatic suppression feature for the passenger frontal air bag system which results in deactivation of the air bag during each of the static tests specified in S24.2 (using the 49 CFR part 572 subpart N 6-year-old child dummy in any of the child restraints specified in section D of appendix A or A–1 of this standard, as appropriate), and activation of the air bag system during each of the static tests specified in S24.3 (using the 49 CFR part 572 subpart O 5th percentile adult female dummy).

S23.2.2 The vehicle shall be equipped with a telltale light meeting the requirements specified in S19.2.2.

S23.2.3 The vehicle shall be equipped with a mechanism that indicates whether the air bag is suppressed, regardless of whether the passenger seat is occupied. The mechanism need not be located in the occupant compartment unless it is the telltale described in S23.2.2.

S23.3 Option 2—Dynamic automatic suppression system that supresses the air bag when an occupant is out of position. (This option is available under the conditions set forth in S27.1.) The vehicle shall be equipped with a dynamic automatic suppression system for the passenger frontal air bag system which meets the requirements specified in S27.

S23.4 Option 3—Low risk deployment. Each vehicle shall meet the injury criteria specified in S23.5 of this standard when the passenger air bag is statically deployed in accordance with both of the low risk deployment test procedures specified in S24.4.

S23.5 Injury criteria for the 49 CFR part 572 subpart N 6-year-old child dummy.

S23.5.1 All portions of the test dummy shall be contained within the outer surfaces of the vehicle passenger compartment.

S23.5.2 Head injury criteria.

(a) For any two points in time, \(t_1 \) and \(t_2 \), where \(t_1 < t_2 \), during the event which are separated by not more than a 15 millisecond time interval and where \(t_1 \) is less than \(t_2 \), the head injury criterion \((HIC_{15}) \) shall be determined using the resultant head acceleration at the center of gravity of the dummy head, \(a_r \), expressed as a multiple of \(g \) (the acceleration of gravity) and shall be calculated using the expression:

\[
HIC_{15} = \left(\frac{1}{(t_2-t_1)} \int_{t_1}^{t_2} a_r \, dt \right)^{2.5}
\]

(b) The maximum calculated \(HIC_{15} \) value shall not exceed 700.

S23.5.3 The resultant acceleration calculated from the output of the thoracic instrumentation shall not exceed 60 g’s, except for intervals whose cumulative duration is not more than 3 milliseconds.

S23.5.4 Compression deflection of the sternum relative to the spine, as determined by instrumentation, shall not exceed 40 mm (1.6 in).

S23.5.5 Neck injury. When measuring neck injury, each of the following injury criteria shall be met.

(a) \(N_j \).

(1) The shear force \((F_x) \), axial force \((F_z) \), and bending moment \((M_y) \) shall be measured by the dummy upper neck load cell for the duration of the crash event as specified in §4.11. Shear force, axial force, and bending moment shall be filtered for \(N_j \) purposes at SAE Recommended Practice J211/1 MAR95 (incorporated by reference, see §571.5) Channel Frequency Class 600.

(2) During the event, the axial force \((F_z) \) can be either in tension or compression while the occipital condyle bending moment \((M_{ocy}) \) can be in either flexion or extension. This results
in four possible loading conditions for Ni;j: tension-extension (Nte), tension-flexion (Ntf), compression-extension (Nce), or compression-flexion (Ncf).

(3) When calculating Ni;j using equation S23.5.5(a)(4), the critical values, Fzc and Myc, are:
 (i) Fzc = 2800 N (629 lbf) when Fz is in tension
 (ii) Fzc = 2800 N (629 lbf) when Fz is in compression
 (iii) Myc = 93 Nm (69 lbf-ft) when a flexion moment exists at the occipital condyle
 (iv) Myc = 37 Nm (27 lbf-ft) when an extension moment exists at the occipital condyle.

(4) At each point in time, only one of the four loading conditions occurs and the Ni;j value corresponding to that loading condition is computed and the three remaining loading modes shall be considered a value of zero. The expression for calculating each Ni;j loading condition is given by:

\[Ni;j = \left(\frac{Fz}{Fzc} \right) + \left(\frac{Mocy}{Myc} \right) \]

(5) None of the four Ni;j values shall exceed 1.0 at any time during the event.

(b) Peak tension. Tension force (Fz), measured at the upper neck load cell, shall not exceed 1490 N (335 lbf) at any time.

(c) Peak compression. Compression force (Fz), measured at the upper neck load cell, shall not exceed 1820 N (409 lbf) at any time.

S23.5.6 Unless otherwise indicated, instrumentation for data acquisition, data channel frequency class, and moment calculations are the same as given for the 49 CFR part 572 subpart N 6-year-old child test dummy.

S24 Test procedure for S23.

S24.1 General provisions and definitions.

S24.1.1 Tests specifying the use of a booster seat may be conducted using any such restraint listed in section D of appendix A or A–1 of this standard, as appropriate. The booster seat may be unused or have been previously used only for automatic suppression tests. If it has been used, there shall not be any visible damage prior to the test. Booster seats are to be used in the manner appropriate for a 6-year-old child of the same height and weight as the 6-year-old child dummy.

S24.1.2 Unless otherwise specified, each vehicle certified to this option shall comply in tests conducted with the front outboard passenger seating position at the mid-height, in the full rearward seat track position, the middle seat track position, and the full forward seat track position as determined in this section. Using only the control that primarily moves the seat in the fore and aft direction, determine the full rearward, middle, and full forward positions of the SCRP. Using any seat or seat cushion adjustments other than that which primarily moves the seat fore-aft, determine the SCRP mid-point height for each of the three fore-aft test positions, while maintaining as closely as possible, the seat cushion angle determined in S16.2.10.3.1. Set the seat back angle, if adjustable independent of the seat, at the manufacturer’s nominal design seat back angle for a 50th percentile adult male as specified in S8.1.3. If the dummy contacts the vehicle interior, move the seat rearward to the next detent that provides clearance. If the seat is a power seat, move the seat rearward while assuring that there is a maximum of 5 mm (0.2 in) distance between the vehicle interior and the point on the dummy that would first contact the vehicle interior.

S24.1.3 Except as otherwise specified, if the booster seat has an anchorage system as specified in S5.9 of FMVSS No. 213 and is used under this standard in testing a vehicle with a front outboard passenger vehicle seat that has an anchorage system as specified in S5.9 of FMVSS No. 225 and is used under this standard in testing a vehicle with a front outboard passenger vehicle seat that has an anchorage system as specified in S5.9 of FMVSS No. 225, the vehicle shall comply with the belted test conditions with the restraint anchorage system attached to the FMVSS No. 225 vehicle seat anchorage system and the vehicle seat belt unattached. The vehicle shall comply with the unbelted test conditions with the restraint anchorage system unattached to the FMVSS No. 225 vehicle seat anchorage system and the vehicle seat belt attached. The vehicle shall comply with the unbelted test conditions with the restraint anchorage system unattached to the FMVSS No. 225 vehicle seat anchorage system. S24.1.4 Do not attach any tethers.
S24.1.5 The definitions provided in S16.3.1 through S16.3.10 apply to the tests specified in S24.

S24.1.6 For leg and thigh angles, use the following references:

S24.1.6.1 Thigh—a straight line on the thigh skin between the center of the 5/16-18 UNC-2B threaded access hole in the upper leg clamp (drawing 127-4004, 6 YR H3—upper leg clamp) and the knee screw (part 9000248 in drawing 127-4000-1 & -2, leg assembly).

S24.1.6.2 Leg—a straight line on the leg skin between the center of the lower leg screw (part 9001170 in drawing 127-4000-1 & -2, leg assembly) and the knee screw (part 9000248 in drawing 127-4000-1 & -2, leg assembly).

S24.2 Static tests of automatic suppression feature which shall result in deactivation of the passenger air bag.

Each vehicle that is certified as complying with S23.2 of FMVSS No. 208 shall meet the following test requirements with the child restraint in the front outboard passenger vehicle seat under the following conditions:

(a) Using the vehicle safety belts as specified in S22.2.1.5 with section D child restraints designed to be secured to the vehicle seat even when empty;

(b) If the child restraint is certified to S5.9 of §571.213, and the vehicle seat has an anchorage system as specified in §571.225, using only the mechanism provided by the child restraint manufacturer for attachment to the lower anchorages as specified in S22.2.1.6; and

(c) Without securing the child restraint with either the vehicle safety belts or any mechanism provided with a child restraint certified to S5.9 of §571.213.

S24.2.1 Except as provided in S24.2.2, conduct all tests as specified in S24.2; except that the 49 CFR part 572 subpart N 6-year-old child dummy shall be used.

S24.2.2 Exceptions. The tests specified in the following paragraphs of S22.2 may not be conducted: S22.2.1.7, S22.2.2.3, S22.2.2.5, S22.2.2.6, S22.2.2.7, and S22.2.2.8.

S24.2.3 Sitting back in the seat and leaning on the front outboard passenger door.

(a) Place the dummy in the seated position in the front outboard passenger vehicle seat. For bucket seats, position the midsagittal plane of the dummy vertically such that it coincides with the longitudinal centerline of the seat cushion, within ±10 mm (±0.4 in). For bench seats, position the midsagittal plane of the dummy vertically and parallel to the vehicle’s longitudinal centerline and the same distance from the longitudinal centerline of the vehicle, within ±10 mm (±0.4 in), as the center of the steering wheel.

(b) Place the dummy’s back against the seat back and rest the dummy’s thighs on the seat cushion.

(c) Allow the legs and feet of the dummy to extend off the surface of the seat. If this positioning of the dummy’s legs is prevented by contact with the instrument panel, using only the control that primarily moves the seat fore and aft, move the seat rearward to the next detent that provides clearance. If the seat is a power seat, move the seat rearward, while assuring that there is a maximum of 5 mm (0.2 in) distance between the vehicle interior and the part of the dummy that was in contact with the vehicle interior.

(d) Rotate the dummy’s upper arms toward the seat back until they make contact.

(e) Rotate the dummy’s lower arms down until they contact the seat.

(f) Close the vehicle’s passenger-side door and then start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system.

(g) Push against the dummy’s left shoulder to lean the dummy against the door; close all remaining doors.

(h) Wait ten seconds, then check whether the air bag is deactivated.

S24.3 Static tests of automatic suppression feature which shall result in activation of the passenger air bag system.

S24.3.1 Each vehicle certified to this option shall comply in tests conducted with the front outboard passenger seating position at the mid-height, in the full rearward and middle positions determined in S24.1.2, and the forward position determined in S16.3.3.1.8.

S24.3.2 Place a 49 CFR part 572 subpart O 5th percentile adult female test dummy at the front outboard passenger seating position of the vehicle, in accordance with procedures specified in S16.3.3 of this standard, except as
specified in S24.3.1. Do not fasten the seat belt.

S24.3.3 Start the vehicle engine or place the ignition in the “on” position, whichever will turn on the suppression system, and then close all vehicle doors.

S24.3.4 Wait 10 seconds, then check whether the air bag system is activated.

S24.4 Low risk deployment tests.

S24.4.1 Each vehicle that is certified as complying with S23.4 shall meet the following test requirements with the 49 CFR part 572, subpart N 6-year-old child dummy in both of the following positions: Position 1 (S24.4.2) or Position 2 (S24.4.3).

S24.4.1.1 Locate and mark a point on the front of the dummy’s chest jacket on the midsagittal plane that is 139 mm (5.5 in) ± 3 mm (0.1 in) along the surface of the skin from the top of the skin at the neckline. This is referred to as “Point 1.”

S24.4.1.2 Mark a point on the instrument panel that is longitudinally and transversely, as measured along the surface of the instrument panel, within ±6 mm (±0.2 in) of the point that is defined by the intersection of the instrument panel and a line between the volumetric center of the smallest volume that can encompass the folded undeployed air bag and the volumetric center of the static fully inflated air bag.

S24.4.1.3 Locate the vertical plane parallel to the vehicle longitudinal centerline through the point located in S24.4.1.2. This is referred to as “Plane D.”

S24.4.1.4 Locate the horizontal plane through the point located in S24.4.1.2. This is referred to as “Plane C.”

S24.4.2 Position 1 (chest on instrument panel).

S24.4.2.1 Set the seat and seat cushion in the positions determined in S16.2.10.3.1. If the seat back is adjustable independent of the seat, place the seat back at the manufacturer’s nominal design seat back angle for a 50th percentile adult male as specified in S8.1.3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. If adjustable, set the head restraint in the lowest and most forward position.

S24.4.2.2 Remove the legs of the dummy at the pelvic interface.

S24.4.2.3 Place the dummy in the front outboard passenger seat such that:

(a) The midsagittal plane is coincident with Plane D within ±10 mm (±0.4 in).

(b) The upper arms are parallel to the torso and the hands are next to where the thighs would be.

(c) Without changing the seat position and with the dummy’s thorax instrument cavity rear face 6 degrees forward of the vertical, move the dummy forward until the dummy head/torso contacts the instrument panel. If the dummy loses contact with the seat cushion because of the forward movement, maintain the height of the dummy while moving the dummy forward. If the head contacts the windshield before head/torso contact with the instrument panel, maintain the thorax instrument cavity angle and move the dummy forward such that the head is following the angle of the windshield until there is head/torso contact with the instrument panel. Once contact is made, raise or lower the dummy vertically until Point 1 lies in Plane C within ±10 mm (±0.4 in). If the dummy’s head contacts the windshield and keeps Point 1 from reaching Plane C, lower the dummy until there is no more than 5 mm (0.2 in) clearance between the head and the windshield. The dummy shall remain in contact with the instrument panel while being raised or lowered which may change the dummy’s fore-aft position.

S24.4.2.4 If necessary, material with a maximum breaking strength of 311 N (70 lb) and spacer blocks may be used to support the dummy in position. The material should support the torso rather than the head. Support the dummy so that there is minimum interference with the full rotational and translational freedom for the upper torso of the dummy and the material does not interfere with the air bag.

S24.4.3 Position 2 (head on instrument panel).

S24.4.3.1 Place the front outboard passenger seat at the mid-height full rearward seating position determined
§ 571.208

in S24.1.2. Place the seat back, if adjustable independent of the seat, at the manufacturer’s nominal design seat back angle for a 50th percentile adult male as specified in S8.1.3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. Position an adjustable head restraint in the lowest and most forward position.

S24.4.3.2 Place the dummy in the front outboard passenger seat such that:

(a) The midsagittal plane is coincident with Plane D within ±10 mm (±0.4 in).

(b) The legs are perpendicular to the floor pan, the back of the legs are in contact with the seat cushion, and the dummy’s thorax instrument cavity rear face is 6 degrees forward of vertical. If it is not possible to position the dummy with the legs in the prescribed position, rotate the legs forward until the dummy is resting on the seat with the feet positioned flat on the floor pan and the back of the legs are in contact with the front of the seat cushion. Set the transverse distance between the longitudinal centerlines at the front of the dummy’s knees at 112 to 117 mm (4.4 to 4.6 in), with the thighs and the legs of the dummy in vertical planes.

(c) The upper arms are parallel to the torso and the hands are in contact with the thighs.

S24.4.3.3 Using only the control that primarily moves the seat in the fore and aft direction, move the seat forward, while maintaining the thorax instrument cavity rear face orientation until any part of the dummy contacts the vehicle’s instrument panel.

S24.4.3.4 If dummy contact has not been made with the vehicle’s instrument panel at the full forward seating position of the seat, slide the dummy forward on the seat until contact is made. Maintain the thorax instrument cavity rear face orientation. If the dummy loses contact with the seat, from that point forward maintain the height of the dummy. Except as provided in S24.4.3.5, maintain the angle of the thighs with respect to the horizontal.

S24.4.3.5 If head/torso contact with the instrument panel has not been made, maintain the angle of the thighs with respect to the horizontal while applying a force towards the front of the vehicle on the spine of the dummy between the shoulder joints, perpendicular to the thorax instrument cavity rear face, until the head or torso comes into contact with the vehicle’s instrument panel or until a maximum force of 222 N (50 lb) is achieved. If the head/torso is still not in contact with the instrument panel, hold the femurs and release the 222 N (50 lb) force. While maintaining the relative angle between the torso and the femurs, roll the dummy forward on the seat cushion, without sliding, until head/torso contact with the instrument panel is achieved. If seat contact is lost prior to or during femur rotation out of the horizontal plane, constrain the dummy to rotate about the dummy H-point. If the dummy cannot be rolled forward on the seat due to contact of the dummy feet with the floor pan, extend the lower legs forward, at the knees, until floor pan contact is avoided.

S24.4.3.6 If necessary, material with a maximum breaking strength of 311 N (70 lb) and spacer blocks may be used to support the dummy in position. The material should support the torso rather than the head. Support the dummy so that there is minimum interference with the full rotational and translational freedom for the upper torso of the dummy and the material does not interfere with the air bag.

S24.4.4 Deploy the front outboard passenger frontal air bag system. If the frontal air bag system contains a multistage inflator, the vehicle shall be able to comply with the injury criteria at any stage or combination of stages or time delay between successive stages that could occur in a rigid barrier crash test at or below 26 km/h (16 mph), under the test procedure specified in S22.5.

S25 Requirements using an out-of-position 5th percentile adult female dummy at the driver position.

S25.1 Each vehicle certified as complying with S14 shall, at the option of the manufacturer, meet the requirements specified in S25.2 or S25.3 under
§ 571.208

the test procedures specified in S26 or S28, as appropriate.

S25.2 Option 1—Dynamic automatic suppression system that suppresses the air bag when the driver is out of position. (This option is available under the conditions set forth in S27.1.) The vehicle shall be equipped with a dynamic automatic suppression system for the driver air bag which meets the requirements specified in S27.

S25.3 Option 2—Low risk deployment. Each vehicle shall meet the injury criteria specified by S15.3 of this standard, except as modified in S25.4, when the driver air bag is statically deployed in accordance with both of the low risk deployment test procedures specified in S26.

S25.4 Neck injury criteria driver low risk deployment tests. When measuring neck injury in low risk deployment tests for the driver position, each of the following neck injury criteria shall be met.

(a) N_{ij}.

(1) The shear force (F_x), axial force (F_z), and bending moment (M_y) shall be measured by the dummy upper neck load cell for the duration of the crash event as specified in S4.11. Shear force, axial force, and bending moment shall be filtered for N_{ij} purposes at SAE Recommended Practice J211/1 MAR95 (incorporated by reference, see § 571.5) Channel Frequency Class 600.

(2) During the event, the axial force (F_z) can be either in tension or compression while the occipital condyle bending moment (M_{ocy}) can be in either flexion or extension. This results in four possible loading conditions for N_{ij}: tension-extension (N_{te}), tension-flexion (N_{tf}), compression-extension (N_{ce}), or compression-flexion (N_{cf}).

(3) When calculating N_{ij} using equation S25.4(a)(4), the critical values, F_{zc} and M_{yc}, are:

- (i) $F_{zc} = 3880 \text{ N (872 lbf)}$ when F_z is in tension
- (ii) $F_{zc} = 3880 \text{ N (872 lbf)}$ when F_z is in compression
- (iii) $M_{yc} = 155 \text{ Nm (114 lbf-ft)}$ when a flexion moment exists at the occipital condyle
- (iv) $M_{yc} = 61 \text{ Nm (45 lbf-ft)}$ when an extension moment exists at the occipital condyle.

(4) At each point in time, only one of the four loading conditions occurs and the N_{ij} value corresponding to that loading condition is computed and the three remaining loading modes shall be considered a value of zero. The expression for calculating each N_{ij} loading condition is given by:

$$N_{ij} = \frac{F_z}{F_{zc}} + \frac{M_{ocy}}{M_{yc}}$$

(5) None of the four N_{ij} values shall exceed 1.0 at any time during the event.

(b) Peak tension. Tension force (F_z), measured at the upper neck load cell, shall not exceed 2070 N (465 lbf) at any time.

(c) Peak compression. Compression force (F_z), measured at the upper neck load cell, shall not exceed 2520 N (566 lbf) at any time.

(d) Unless otherwise indicated, instrumentation for data acquisition, data channel frequency class, and moment calculations are the same as given in 49 CFR part 572 subpart O 5th percentile female test dummy.

S26 Procedure for low risk deployment tests of driver air bag.

S26.1 Each vehicle that is certified as complying with S25.3 shall meet the requirements of S25.3 and S25.4 with the 49 CFR part 572 subpart O 5th percentile adult female dummy in both of the following positions: Driver position 1 (S26.2) and Driver position 2 (S26.3).

S26.2 Driver position 1 (chin on module).

S26.2.1 Adjust the steering controls so that the steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions. If there is no setting at the geometric center, position it one setting lower than the geometric center. Set the rotation of the steering wheel so that the vehicle wheels are pointed straight ahead.

S26.2.2 Mark a point on the steering wheel cover that is longitudinally and transversely, as measured along the surface of the steering wheel cover, within ±6 mm (±0.2 in) of the point that is defined by the intersection of the steering wheel cover and a line between the volumetric center of the smallest volume that can encompass the folded undeployed air bag and the volumetric center of the static fully inflated air
bag. Locate the vertical plane parallel to the vehicle longitudinal centerline through the point located on the steering wheel cover. This is referred to as “Plane E.”

S26.2.3 Place the seat and seat cushion in the position achieved in S16.2.10.3.1. If the seat or seat cushion is adjustable in the vertical direction by adjustments other than that which primarily moves the seat or seat cushion fore-aft, determine the maximum and minimum heights of the SCRP at this position, while maintaining the seat cushion reference line angle as closely as possible. Place the SCRP in the mid-height position. If the seat back is adjustable independent of the seat, place the seat back at the manufacturer’s nominal design seat back angle for a 50th percentile adult male as specified in S8.1.3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. Position an adjustable head restraint in the lowest and most forward position.

S26.2.4 Place the dummy in the driver’s seat such that:

S26.2.4.1 The midsagittal plane is coincident with Plane E within ±10 mm (±0.4 in).

S26.2.4.2 The legs are perpendicular to the floor pan and the back of the legs are in contact with the seat cushion. The legs may be adjusted if necessary to achieve the final head position.

S26.2.4.3 The dummy’s thorax instrument cavity rear face is 6 degrees forward (toward the front of the vehicle) of the steering wheel angle (i.e., if the steering wheel angle is 25 degrees from vertical, the thorax instrument cavity rear face angle is 31 degrees).

S26.2.4.4 The initial transverse distance between the longitudinal centerlines at the front of the dummy’s knees is 160 to 170 mm (6.3 to 6.7 in.), with the thighs and legs of the dummy in vertical planes.

S26.2.4.5 The upper arms are parallel to the torso and the hands are in contact with the thighs.

S26.2.5 Maintaining the spine angle, slide the dummy forward until the head/torso contacts the steering wheel.

S26.2.6 While maintaining the spine angle, adjust the height of the dummy so that the bottom of the chin is in the same horizontal plane as the highest point of the air bag module cover (dummy height can be adjusted using the seat height adjustments and/or spacer blocks). If the seat prevents the bottom of the chin from being in the same horizontal plane as the module cover, adjust the dummy height to as close to the prescribed position as possible.

S26.2.7 If necessary, material with a maximum breaking strength of 311 N (70 lb) and spacer blocks may be used to support the dummy in position. The material should support the torso rather than the head. Support the dummy so that there is minimum interference with the full rotational and translational freedom for the upper torso of the dummy and the material does not interfere with the air bag.

S26.3 Driver position 2 (chin on rim).

S26.3.1 Place the seat and seat cushion in the position achieved in S16.2.10.3.1. If the seat or seat cushion is adjustable in the vertical direction by adjustments other than that which primarily moves the seat or seat cushion fore-aft, determine the maximum and minimum heights of the SCRP at this position, while maintaining the seat cushion reference line angle as closely as possible. Place the SCRP in the mid-height position. If the seat back is adjustable independent of the seat, place the seat back at the manufacturer’s nominal design seat back angle for a 50th percentile adult male as specified in S8.1.3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. Position an adjustable head restraint in the lowest position.

S26.3.2 Adjust the steering controls so that the steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions. If there is no setting at the geometric center, position it one setting lower than the geometric center. Set the rotation of the steering wheel so that the vehicle wheels are pointed straight ahead.

S26.3.3 Mark a point on the steering wheel cover that is longitudinally and
transversely, as measured along the surface of the steering wheel cover, within ±6 mm (±0.2 in) of the point that is defined by the intersection of the steering wheel cover and a line between the volumetric center of the smallest volume that can encompass the folded undeployed air bag and the volumetric center of the static fully inflated air bag. Locate the vertical plane parallel to the vehicle longitudinal centerline through the point located on the steering wheel cover. This is referred to as “Plane E.”

S26.3.4 Place the dummy in the driver’s seat position such that:

S26.3.4.1 The midsagittal plane is co-incident with Plane E within ±10 mm (±0.4 in).

S26.3.4.2 The legs are perpendicular to the floor pan and the back of the legs are in contact with the seat cushion. The legs may be adjusted if necessary to achieve the final head position.

S26.3.4.3 The dummy’s thorax instrument cavity rear face is 6 degrees forward (toward the front of the vehicle) of the steering wheel angle (i.e., if the steering wheel angle is 25 degrees from vertical, the thorax instrument cavity rear face angle is 31 degrees).

S26.3.4.4 The initial transverse distance between the longitudinal centerlines at the front of the dummy’s knees is 160 to 170 mm (6.3 to 6.7 in), with the thighs and legs of the dummy in vertical planes.

S26.3.4.5 The upper arms are parallel to the torso and the hands are in contact with the thighs.

S26.3.5 Maintaining the spine angle, slide the dummy forward until the head/torso contacts the steering wheel.

S26.3.6 While maintaining the spine angle, position the dummy so that a point on the chin 40 mm (1.6 in) ±3 mm (±0.1 in) below the center of the mouth (chin point) is, within ±10 mm (±0.4 in), in contact with a point on the steering wheel rim surface closest to the dummy that is 10 mm (0.4 in) vertically below the highest point on the rim in Plane E. If the dummy’s head contacts the vehicle windshield or upper interior before the prescribed position can be obtained, lower the dummy until there is no more than 5 mm (0.2 in) clearance between the vehicle’s windshield or upper interior, as applicable.

S26.3.7 If the steering wheel can be adjusted so that the chin point can be in contact with the rim of the uppermost portion of the steering wheel, adjust the steering wheel to that position. If the steering wheel contacts the dummy’s leg(s) prior to attaining this position, adjust it to the next highest detent, or if infinitely adjustable, until there is a maximum of 5 mm (0.2 in) clearance between the wheel and the dummy’s leg(s). Readjust the dummy’s torso such that the thorax instrument cavity rear face is 6 degrees forward of the steering wheel angle. Position the dummy so that the chin point is in contact, or if contact is not achieved, as close as possible to contact with the rim of the uppermost portion of the steering wheel.

S26.3.8 If necessary, material with a maximum breaking strength of 311 N (70 lb) and spacer blocks may be used to support the dummy in position. The material should support the torso rather than the head. Support the dummy so that there is minimum interference with the full rotational and translational freedom for the upper torso of the dummy and the material does not interfere with the air bag.

S26.4 Deploy the driver frontal air bag system. If the frontal air bag system contains a multistage inflator, the vehicle shall be able to comply with the injury criteria at any stage or combination of stages or time delay between successive stages that could occur in a rigid barrier crash test at or below 26 km/h (16 mph), under the test procedure specified in S22.5.

S27 Option for dynamic automatic suppression system that suppresses the air bag when an occupant is out-of-position.

S27.1 Availability of option. This option is available for either air bag, singly or in conjunction, subject to the requirements of S27, if:

(a) A petition for rulemaking to establish dynamic automatic suppression system test procedures is submitted pursuant to subpart B of part 552 and a test procedure applicable to the vehicle is added to S28 pursuant to the procedures specified by that subpart, or

(b) A test procedure applicable to the vehicle is otherwise added to S28.
S27.2 Definitions. For purposes of S27 and S28, the following definitions apply:

Automatic suppression zone or ASZ means a three-dimensional zone adjacent to the air bag cover, specified by the vehicle manufacturer, where the deployment of the air bag will be suppressed by the DASS if a vehicle occupant enters the zone under specified conditions.

Dynamic automatic suppression system or DASS means a portion of an air bag system that automatically controls whether or not the air bag deploys during a crash by:

1. Sensing the location of an occupant, moving or still, in relation to the air bag;
2. Interpreting the occupant characteristics and location information to determine whether or not the air bag should deploy; and
3. Activating or suppressing the air bag system based on the interpretation of occupant characteristics and location information.

S27.3 Requirements. Each vehicle shall, at each applicable front outboard designated seating position, when tested under the conditions of S28 of this standard, comply with the requirements specified in S27.4 through S27.6.

S27.4 Each vehicle shall be equipped with a DASS.

S27.5 Static test requirement (low risk deployment for occupants outside the ASZ).

S27.5.1 Driver (49 CFR part 572 Subpart O 5th percentile female dummy). Each vehicle shall meet the injury criteria specified in S15.3 of this standard when the driver air bag is deployed in accordance with the procedures specified in S28.1.

S27.5.2 Passenger (49 CFR part 572 Subpart P 3-year-old child dummy and 49 CFR part 572 Subpart N 6-year-old child dummies). Each vehicle shall meet the injury criteria specified in S21.5 and S23.5, as appropriate, when the passenger air bag is deployed in accordance with the procedures specified in S28.2.

S27.6 Dynamic test requirement (suppression of air bag for occupants inside the ASZ).

S27.6.1 Driver. The DASS shall suppress the driver air bag before the head, neck, or torso of the specified test device enters the ASZ when the vehicle is tested under the procedures specified in S28.3.

S27.6.2 Passenger. The DASS shall suppress the passenger air bag before head, neck, or torso of the specified test device enters the ASZ when the vehicle is tested under the procedures specified in S28.4.

S28 Test procedure for S27 of this standard. [Reserved]

S28.1 Driver suppression zone verification test (49 CFR part 572 Subpart O 5th percentile female dummy). [Reserved]

S28.2 Passenger suppression zone verification test (49 CFR part 572 Subpart P 3-year-old child dummy and 49 CFR part 572 Subpart N 6-year-old child dummies). [Reserved]

S28.3 Driver dynamic test procedure for DASS requirements. [Reserved]

S28.4 Passenger dynamic test procedure for DASS requirements. [Reserved]

S29 Manufacturer option to certify vehicles to certain static suppression test requirements using human beings rather than test dummies.

S29.1 At the option of the manufacturer, instead of using test dummies in conducting the tests for the following automatic suppression and occupant recognition parts of the low risk deployment test requirements, human beings may be used as specified. If human beings are used, they shall assume, to the extent possible, the final physical position specified for the corresponding dummies for each test.

(a) If a manufacturer decides to certify a vehicle using a human being for a test of the passenger automatic suppression, it shall use humans for the entire series of tests, e.g., 3-year-old children for each test of the system involving 3-year-old test dummies. If a manufacturer decides to certify a vehicle using a test dummy for a test of the system, it shall use test dummies for the entire series of tests, e.g., a Hybrid III 3-year-old child dummy for each test of the system involving 3-year-old child test dummies.

(b) For S19.2, instead of using the 49 CFR part 572 Subpart R 12-month-old child dummy, a human child who weighs between 8.2 and 9.1 kg (18 and 20...
§ 571.208

1 lb, and who is between 61 and 66 cm (24 and 26 in) tall may be used.

(c) For S19.2, instead of using the 49 CFR part 572 subpart K newborn infant dummy, a human child who weighs between 8.2 and 9.1 kg (18 and 20 lb), and who is between 61 and 66 cm (24 and 26 in) tall may be used.

(d) For S21.2 and S21.5.1, instead of using the 49 CFR part 572 subpart P 3-year-old child dummy, a human child who weighs between 13.4 and 18 kg (29.5 and 39.5 lb), and who is between 89 and 99 cm (35 and 39 in) tall may be used.

(e) For S23.2 and S23.5.1, instead of using the 49 CFR part 572 subpart N 6-year-old child dummy, a human child who weighs between 21 and 25.6 kg (46.5 and 56.5 lb), and who is between 114 and 124.5 cm (45 and 49 in) tall may be used.

(f) For S19.2, S21.2, and S23.2, instead of using the 49 CFR part 572 subpart O 5th percentile adult female test dummy, a female who weighs between 46.7 and 51.25 kg (103 and 113 lb), and who is between 139.7 and 150 cm (55 and 59 in) tall may be used.

§ 571.208

49 CFR Ch. V (10–1–16 Edition)

S29.2

Human beings shall be dressed in a cotton T-shirt, full length cotton trousers, and sneakers. Specified weights and heights include clothing.

S29.3 A manufacturer exercising this option shall upon request:

(a) Provide NHTSA with a method to deactivate the air bag during compliance testing under S20.2, S20.3, S22.2, S22.3, S24.2, and S24.3, and identify any parts or equipment necessary for deactivation; such assurance may be made by removing the air bag; and

(b) Provide NHTSA with a method to assure that the same test results would be obtained if the air bag were not deactivated.

Figures to § 571.208

Figure 1. [Reserve]
Figure 3. Location of Anchoring Points for Latchplate Reach Limiting Chains or Strings to Test for Latchplate Accessibility Using Subpart E Test Device
Figure 4—USE OF CLEARANCE TEST BLOCK TO DETERMINE HAND/ARM ACCESS
Figure 5. - Webbing Tension Pull Device

- **Dimension A** - Width of Webbing Plus 1/2 Inch
- **Dimension B** - 1/2 of Dimension A

Notes:
- Insert Webbing to Rest Against This Surface
- 1/4 Inch Diameter (Steel)
- Direction of Pull
SLED PULSE WITH MAXIMUM AND MINIMUM CORRIDORS

Sled pulse for delta V = 30(+0,-2) mph. The Time Zero for the test is defined by the point when the sled acceleration achieves -0.5 G's.

<table>
<thead>
<tr>
<th>REFERENCE POINT</th>
<th>t (ms)</th>
<th>ACCELERATION (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>B</td>
<td>40</td>
<td>-18.2</td>
</tr>
<tr>
<td>C</td>
<td>85</td>
<td>-18.2</td>
</tr>
<tr>
<td>D</td>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>55</td>
<td>-16</td>
</tr>
<tr>
<td>G</td>
<td>70</td>
<td>-16</td>
</tr>
<tr>
<td>H</td>
<td>120</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Figure 6 - Sled Pulse and Coordinates
WARNING

DEATH or SERIOUS INJURY can occur

Children 12 and under can be killed by the air bag
The BACK SEAT is the SAFEST place for children
NEVER put a rear-facing child seat in the front
Sit as far back as possible from the air bag
ALWAYS use SEAT BELTS and CHILD RESTRAINTS

Figure 6a. Sun Visor Label Visible when Visor is in Down Position.

WARNING

DEATH or SERIOUS INJURY can occur

Children 12 and under can be killed by the air bag
The BACK SEAT is the SAFEST place for children
NEVER put a rear-facing child seat in the front unless air bag is off
Sit as far back as possible from the air bag
ALWAYS use SEAT BELTS and CHILD RESTRAINTS

Figure 6b. Sun Visor Label Visible when Visor is in Down Position.
Figure 6c. Sun Visor Label Visible When Visor is in Up Position.
Figure 7. Removable Label on Dash.

Figure 8. Sun Visor Label Visible when Visor is in Down Position.

Warning:

Children Can Be KILLED or INJURED by Passenger Air Bag

The back seat is the safest place for children 12 and under. Make sure all children use seat belts or child seats.

Warning:

Even with Advanced Air Bags

- Children can be seriously injured by the air bag
- The back seat is the safest place for children
- Always use seat belts and child restraints
- See owner's manual for more information about air bags
This Vehicle is Equipped with Advanced Air Bags

Even with Advanced Air Bags
Children can be killed or seriously injured by the air bag.
The back seat is the safest place for children.
Always use seat belts and child restraints.
See owner's manual for more information about air bags.

Figure 9. Removable Label on Dash.
Figure 10 Configuration for Frontal Offset Deformable Barrier Test

Legend

---- Longitudinal Centerline of Vehicle
W Vehicle Width
T Tolerance
Figure 11. Sun Visor Label Visible when Visor is in Down Position.
APPENDIX A TO § 571.208—SELECTION OF CHILD RESTRAINT SYSTEMS

This appendix A applies to vehicles manufactured before September 1, 2009 and to not more than 50 percent of a manufacturer's vehicles manufactured on or after September 1, 2009 and before September 1, 2010, as specified in §14.8 of this standard. This appendix does not apply to vehicles manufactured on or after September 1, 2010.

A. The following car bed, manufactured on or after December 1, 1999, may be used by the National Highway Traffic Safety Administration to test the suppression system of a vehicle that has been certified as being in compliance with 49 CFR 571.208 S19:
§ 571.208

49 CFR Ch. V (10–1–16 Edition)

SUBPART A—CAR BED CHILD RESTRAINTS OF APPENDIX A

Cosco Dream Ride 02–719.

B. Any of the following rear-facing child restraint systems specified in the table below, manufactured on or after December 1, 1999, may be used by the National Highway Traffic Safety Administration to test the suppression or low risk deployment (LRD) system of a vehicle that has been certified as being in compliance with 49 CFR 571.208 S19.

When the restraint system comes equipped with a removable base, the test may be run either with the base attached or without the base.

SUBPART B—REAR-FACING CHILD RESTRAINTS OF APPENDIX A

Britax Handle with Care 191.
Century Assura 4553.
Century Smart Fit 4543.
Cosco Arriva 02727.
Evenflo Discovery Adjust Right 212.
Evenflo First Choice 204.
Graco Infant 8457.

C. Any of the following forward-facing child restraint systems, and forward-facing child restraint systems that also convert to rear-facing, manufactured on or after December 1, 1999, may be used by the National Highway Traffic Safety Administration to test the suppression or LRD system of a vehicle that has been certified as being in compliance with 49 CFR 571.208 S19, or S21. (Note: Any child restraint listed in this subpart that does not have manufacturer instructions for using it in a rear-facing position is excluded from use in testing in a belted rear-facing configuration under §20.2.1(a) and §20.4.2):

SUBPART C—FORWARD-FACING AND CONVERTIBLE CHILD RESTRAINTS OF APPENDIX A

Century Encore 4612.
Cosco Olympian 02803.
Britax Roundabout 161.
Century STE 1000 4416.
Cosco Toula 02519.
Evenflo Horizon V 425.
Evenflo Medallion 254.
Safety 1st Comfort Ride 22–400.

D. Any of the following forward-facing child restraint systems and belt-positioning seats, manufactured on or after December 1, 1999, may be used by the National Highway Traffic Safety Administration as test devices to test the suppression system of a vehicle that has been certified as being in compliance with 49 CFR 571.208 S21 or S23:

SUBPART D—FORWARD-FACING CHILD RESTRAINTS AND BELT POSITIONING SEATS OF APPENDIX A

Britax Roadster 9004.
Century Next Step 4920.
Cosco High Back Booster 02–442.
Evenflo Right Fit 245.

APPENDIX A–1 TO § 571.208—SELECTION OF CHILD RESTRAINT SYSTEMS

This Appendix A–1 applies to not less than 50 percent of a manufacturer’s vehicles manufactured on or after September 1, 2009 and before September 1, 2010, as specified in §14.8 of this standard. This appendix applies to all vehicles manufactured on or after September 1, 2010.

A. The following car bed, manufactured on or after the date listed, may be used by the National Highway Traffic Safety Administration to test the suppression system of a vehicle that has been certified as being in compliance with 49 CFR 571.208 S19:

SUBPART A—CAR BED CHILD RESTRAINTS OF APPENDIX A–1

<table>
<thead>
<tr>
<th>Car Bed Name</th>
<th>Manufactured on or after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angel Guard Angel Ride</td>
<td>September 25, 2007</td>
</tr>
</tbody>
</table>

B. Any of the following rear-facing child restraint systems specified in the table below, manufactured on or after the date listed, may be used by the National Highway Traffic Safety Administration to test the suppression or low risk deployment (LRD) system of a vehicle that has been certified as being in compliance with 49 CFR 571.208 S19.

When the restraint system comes equipped with a removable base, the test may be run either with the base attached or without the base.

SUBPART B—REAR-FACING CHILD RESTRAINTS OF APPENDIX A–1

<table>
<thead>
<tr>
<th>Car Bed Name</th>
<th>Manufactured on or after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angel Guard Angel Ride</td>
<td>September 25, 2007</td>
</tr>
</tbody>
</table>

C. Any of the following forward-facing child restraint systems, and forward-facing child restraint systems that also convert to rear-facing, manufactured on or after the date listed, may be used by the National Highway Traffic Safety Administration as test devices to test the suppression system of a vehicle that has been certified as being in compliance with 49 CFR 571.208 S21:

SUBPART C—FORWARD-FACING AND CONVERTIBLE CHILD RESTRAINTS OF APPENDIX A–1

<table>
<thead>
<tr>
<th>Car Bed Name</th>
<th>Manufactured on or after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angel Guard Angel Ride</td>
<td>September 25, 2007</td>
</tr>
</tbody>
</table>

D. Any of the following forward-facing child restraint systems and belt-positioning seats, manufactured on or after the date listed, may be used by the National Highway Traffic Safety Administration as test devices to test the suppression system of a vehicle that has been certified as being in compliance with 49 CFR 571.208 S23:

SUBPART D—FORWARD-FACING CHILD RESTRAINTS AND BELT POSITIONING SEATS OF APPENDIX A–1

<table>
<thead>
<tr>
<th>Car Bed Name</th>
<th>Manufactured on or after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angel Guard Angel Ride</td>
<td>September 25, 2007</td>
</tr>
</tbody>
</table>

822
D. Any of the following forward-facing child restraint systems and belt positioning seats, manufactured on or after the date listed, may be used by the National Highway Traffic Safety Administration as test devices to test the suppression system of a vehicle that has been certified as being in compliance with 49 CFR 571.208 S21 or S23:

<table>
<thead>
<tr>
<th>Manufacturer and Model</th>
<th>Manufactured on or after</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roadster 9004</td>
<td>December 1, 1999.</td>
</tr>
<tr>
<td>Evenflo Right Fit 245</td>
<td>December 1, 1999.</td>
</tr>
</tbody>
</table>
§ 571.208, Nt.

Standard No. 208; Occupant crash protection.

* * * * *

S4.4 Buses manufactured on or after November 28, 2016.

S4.4.1 Definitions. For purposes of S4.4, the following definitions apply:

Over-the-road bus means a bus characterized by an elevated passenger deck located over a baggage compartment, except a school bus.

Perimeter-seating bus means a bus with 7 or fewer designated seating positions rearward of the driver’s seating position that are forward-facing or can convert to forward-facing without the use of tools and is not an over-the-road bus.

Prison bus means a bus manufactured for the purpose of transporting persons subject to involuntary restraint or confinement and has design features consistent with that purpose.

Stop-request system means a vehicle-integrated system for passenger use to signal to a vehicle operator that they are requesting a stop.

Transit bus means a bus that is equipped with a stop-request system sold for public transportation provided by, or on behalf of, a State or local government and that is not an over-the-road bus.

S4.4.2 Buses with a GVWR of 3,855 kg (8,500 lb) or less and an unloaded vehicle weight of 2,495 kg (5,500 lb) or less.

S4.4.2.1 Each bus with a GVWR of 3,855 kg (8,500 lb) or less and an unloaded vehicle weight of 2,495 kg (5,500 lb) or less, except a school bus, shall comply with the requirements of S4.2.6 of this standard for front seating positions and with the requirements of S4.4.3.1 of this standard for all rear seating positions.

S4.4.2.2 Each school bus with a GVWR of 3,855 kg (8,500 lb) or less and an unloaded vehicle weight of 2,495 kg (5,500 lb) or less shall comply with the requirements of S4.2.6 of this standard for front seating positions and with the requirements of S4.4.3.2 of this standard for all rear seating positions.
§ 571.208, N.I.

S4.4.3 Buses with a GVWR of 4,536 kg (10,000 lb) or less.

S4.4.3.1 Except as provided in S4.4.3.1.1, S4.4.3.1.2, S4.4.3.1.3, S4.4.3.1.4 and S4.4.3.1.5, each vehicle shall be equipped with a Type 2 seat belt assembly at every designated seating position other than a side-facing position. Type 2 seat belt assemblies installed in compliance with this requirement shall conform to Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard. If a Type 2 seat belt assembly installed in compliance with this requirement incorporates a webbing tension relieving device, the vehicle owner’s manual shall include the information specified in S7.4.2(b) of this standard for the tension relieving device, and the vehicle shall conform to S7.4.2(c) of this standard. Side-facing designated seating positions shall be equipped, at the manufacturer’s option, with a Type 1 or Type 2 seat belt assembly.

S4.4.3.1.1 Any rear designated seating position with a seat that can be adjusted to be forward- or rear-facing and to face some other direction shall either:

(a) Meet the requirements of S4.4.3.1 with the seat in any position in which it can be occupied while the vehicle is in motion, or meet S4.4.3.1.1(b)(1) and S4.4.3.1.1(b)(2).

(b)(1) When the seat is in its forward-facing and/or rear-facing position, or within ±30 degrees of either position, have a Type 2 seat belt assembly with an upper torso restraint that:

(i) Conforms to S7.1 and S7.2 of this standard.

(ii) Adjusts by means of an emergency locking retractor conforming to Standard No. 209 (49 CFR 571.209), and

(iii) May be detachable at the buckle or upper anchorage, but not both.

(2) When the seat is in any position in which it can be occupied while the vehicle is in motion, have a Type 1 such belt or the pelvic portion of a Type 2 seat belt assembly that conforms to S7.1 and S7.2 of this standard.

S4.4.3.1.2 Any rear designated seating position on a readily removable seat (that is, a seat designed to be easily removed and replaced by means installed by the manufacturer for that purpose) may meet the requirements of S4.4.3.1 by use of a belt incorporating a release mechanism that detaches both the lap and shoulder portion at either the upper or lower anchorage point, but not both. The means of detachment shall be a key or key-like object.

S4.4.3.1.3 Any inboard designated seating position on a seat for which the entire seat back can be folded such that no part of the seat back extends above a horizontal plane located 250 mm above the highest SRF located on the seat may meet the requirements of S4.4.3.1 by use of a belt incorporating a release mechanism that detaches both the lap and shoulder portion at either the upper or lower anchorage point, but not both. The means of detachment shall be a key or key-like object.

S4.4.3.1.4 Any rear designated seating position adjacent to a walkway located between the seat, which walkway is designated to allow access to more rearward designated seating positions, and not adjacent to the side of the vehicle may meet the requirements of S4.4.3.1 by use of a belt incorporating a release mechanism that detaches both the lap and shoulder portion at either the upper or lower anchorage point, but not both. The means of detachment shall be a key or key-like object.

S4.4.3.1.5 Any rear side-facing designated seating position shall be equipped with a Type 1 or Type 2 seat belt assembly that conforms to S7.1 and S7.2 of this standard.

S4.4.3.2 Each school bus with a gross vehicle weight rating of 4,536 kg (10,000 pounds) or less shall comply with the requirements of S4.3.1.21 and S4.4.3.22.

S4.4.3.21 The driver’s designated seating position and any outboard designated seating position not rearward of the driver’s seating position shall be equipped with a Type 2 seat belt assembly. The seat belt assembly shall comply with Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard. The lap belt portion of the seat belt assembly shall include either an emergency locking retractor or an automatic locking retractor. An automatic locking retractor shall not retract webbing to the next locking position until at least 3/4 inch of webbing has moved into the retractor. In determining whether an automatic locking retractor complies with this requirement, the webbing is extended to 75 percent of its length and the retractor is locked after the initial adjustment. If the seat belt assembly installed in compliance with this requirement incorporates any webbing tension-relieving device, the vehicle owner’s manual shall include the information specified in S7.4.2(b) of this standard for the tension-relieving device, and the vehicle shall comply with S7.4.2(c) of this standard.

S4.4.3.22 Passenger seating positions, other than any outboard designated seating position not rearward of the driver’s seating position, shall be equipped with Type 2 seat belt assemblies that comply with the requirements of S7.1.1.5, S7.1.5 and S7.2 of this standard.

S4.4.3.3 Each over-the-road bus with a GVWR of 4,536 kg (10,000 lb) or less shall meet the requirements of S4.4.5.1 (as specified for buses with a GVWR of more than 11,793 kg (26,000 lb)).

S4.4.4 Buses with a GVWR of more than 4,536 kg (10,000 lb) but not greater than 11,793 kg (26,000 lb)
§ 571.208, NI.

49 CFR Ch. V (10–1–16 Edition)

S4.4.4.1 Each bus with a GVWR of more than 4,536 kg (10,000 lb) but not greater than 11,793 kg (26,000 lb), except a school bus or an over-the-road bus, shall meet the requirements of S4.4.4.1.1. First option—complete passenger protection system—driver only. The vehicle shall meet the crash protection requirements of S8, with respect to an anthropomorphic test dummy in the driver’s designated seating position, by means that require no action by vehicle occupants.

S4.4.4.1.1. First option—complete passenger protection system—driver only. The vehicle shall meet the crash protection requirements of S8, with respect to an anthropomorphic test dummy in the driver’s designated seating position, by means that require no action by vehicle occupants.

S4.4.4.4.2 Each over-the-road bus with a GVWR of more than 4,536 kg (10,000 lb) but not greater than 11,793 kg (26,000 lb) shall meet the requirements of S4.4.5.1 (as specified for buses with a GVWR or more than 11,793 kg (26,000 lb)).

S4.4.5 Buses with a GVWR of more than 11,793 kg (26,000 lb).

S4.4.5.1 Each bus with a GVWR of more than 11,793 kg (26,000 lb), except a perimeter-seating bus, transit bus, or school bus, shall comply with the requirements of S4.4.5.1.1 and S4.4.5.1.2.

S4.4.5.1.1 The driver’s designated seating position and any outboard designated seating position not rearward of the driver’s seating position shall be equipped with a Type 2 seat belt assembly. The seat belt assembly shall comply with Standard No. 209 (49 CFR 571.209) and with S7.1 and S7.2 of this standard. If a seat belt assembly installed in compliance with this requirement incorporates any webbing tension-relieving device, the vehicle owner’s manual shall include the information specified in S7.4.2(b) of this standard for the tension-relieving device, and the vehicle shall comply with S7.4.2(c) of this standard.

S4.4.5.2 Passenger seating positions, other than any outboard designated seating position not rearward of the driver’s seating position and seating positions on prison buses rearward of the driver’s seating position, shall:

(a) Other than for over-the-road buses:

(i) Be equipped with a Type 2 seat belt assembly at any seating position that is not a side-facing position;

(ii) Be equipped with a Type 1 or Type 2 seat belt assembly at any seating position that is a side-facing position;

(c) For over-the-road buses, be equipped with a Type 2 seat belt assembly;
(d) Have the seat belt assembly attached to the seat structure at any seating position that has another seating position, wheelchair position, or side emergency door behind it; and
(e) Comply with the requirements of S7.1.1.5, S7.1.3, S7.1.6 and S7.2 of this standard.

§ 571.208, NI.

(a) Vehicles manufactured on or after September 1, 2005, and before September 1, 2006, subject to S4.5.5.3(a), for vehicles manufactured on or after September 1, 2005, and before September 1, 2006, the amount of vehicles complying with S4.1.5.5 for complying passenger cars, S4.2.7 for complying trucks and multipurpose passenger vehicles, or S4.4.3.1 for complying buses shall be not less than 50 percent of:

* * *

(b) Vehicles manufactured on or after September 1, 2006, and before September 1, 2007, subject to S4.5.5.3(b), for vehicles manufactured on or after September 1, 2006, and before September 1, 2007, the amount of vehicles complying with S4.1.5.5 for complying passenger cars, S4.2.7 for complying trucks and multipurpose passenger vehicles, or S4.4.3.1 for complying buses shall be not less than 80 percent of:

* * * * *

§ 571.209, VI.

(a) Vehicles manufactured on or after September 1, 2006, and before September 1, 2007, subject to S4.5.5.3(a), for vehicles manufactured on or after September 1, 2005, and before September 1, 2006, the amount of vehicles complying with S4.1.5.5 for complying passenger cars, S4.2.7 for complying trucks & multipurpose passenger vehicles, or S4.4.3.1 for complying buses shall be not less than 50 percent of:

* * *

(b) Vehicles manufactured on or after September 1, 2006, and before September 1, 2007, subject to S4.5.5.3(b), for vehicles manufactured on or after September 1, 2006, and before September 1, 2007, the amount of vehicles complying with S4.1.5.5 for complying passenger cars, S4.2.7 for complying trucks and multipurpose passenger vehicles, or S4.4.3.1 for complying buses shall be not less than 80 percent of:

* * * * *

§ 571.210, NI.

§ 571.209, VI.

(a) Vehicles manufactured on or after September 1, 2005, and before September 1, 2006, subject to S4.5.5.3(a), for vehicles manufactured on or after September 1, 2005, and before September 1, 2006, the amount of vehicles complying with S4.1.5.5 for complying passenger cars, S4.2.7 for complying trucks and multipurpose passenger vehicles, or S4.4.3.1 for complying buses shall be not less than 50 percent of:

* * *
§ 571.209 Standard No. 209; Seat belt assemblies.

S1. Purpose and scope. This standard specifies requirements for seat belt assemblies.

S2. Application. This standard applies to seat belt assemblies for use in passenger cars, multipurpose passenger vehicles, trucks, and buses.

S3. Definitions. Adjustment hardware means any or all hardware designed for adjusting the size of a seat belt assembly to fit the user, including such hardware that may be integral with a buckle, attachment hardware, or retractor. Attachment hardware means any or all hardware designed for securing the webbing of a seat belt assembly to a motor vehicle. Automatic-locking retractor means a retractor incorporating adjustment hardware by means of a positive self-locking mechanism which is capable when locked of withstanding restraint forces. Buckle means a quick release connector which fastens a person in a seat belt assembly. Emergency-locking retractor means a retractor incorporating adjustment hardware by means of a locking mechanism that is activated by vehicle acceleration, webbing movement relative to the vehicle, or other automatic action during an emergency and is capable when locked of withstanding restraint forces. Hardware means any metal or rigid plastic part of a seat belt assembly. Load-limiter means a seat belt assembly component or feature that controls tension on the seat belt to modulate the forces that are imparted to occupants restrained by the belt assembly during a crash. Nonlocking retractor means a retractor from which the webbing is extended to essentially its full length by a small external force, which provides no adjustment for assembly length, and which may or may not be capable of sustaining restraint forces at maximum webbing extension. Pelvic restraint means a seat belt assembly or portion thereof intended to restrain movement of the pelvis. Retractor means a device for storing part or all of the webbing in a seat belt assembly.

S4. Requirements.

S4.1(a) [Reserved]

(b) Single occupancy. A seat belt assembly shall be designed for use by one, and only one, person at any one time.

(c) Upper torso restraint. A Type 2 seat belt assembly shall provide upper torso restraint without shifting the pelvic restraint into the abdominal region. An upper torso restraint shall be designed to minimize vertical forces on the shoulders and spine. Hardware for upper torso restraint shall be so designed and located in the seat belt assembly that the possibility of injury to the occupant is minimized.

(d) Hardware. All hardware parts which contact under normal usage a person, clothing, or webbing shall be free from burrs and sharp edges.

(e) Release. A Type 1 or Type 2 seat belt assembly shall be provided with a buckle or buckles readily accessible to

Seat back retainer means the portion of some seat belt assemblies designed to restrict forward movement of a seat back.

Seat belt assembly means any strap, webbing, or similar device designed to secure a person in a motor vehicle in order to mitigate the results of any accident, including all necessary buckles and other fasteners, and all hardware designed for installing such seat belt assembly in a motor vehicle.

Strap means a narrow nonwoven material used in a seat belt assembly in place of webbing.

Type 1 seat belt assembly is a lap belt for pelvic restraint.

Type 2 seat belt assembly is a combination of pelvic and upper torso restraints.

Type 2a shoulder belt is an upper torso restraint for use only in conjunction with a lap belt as a Type 2 seat belt assembly.

Upper torso restraint means a portion of a seat belt assembly intended to restrain movement of the chest and shoulder regions.

Webbing means a narrow fabric woven with continuous filling yarns and finished selvages.

§ 571.210

49 CFR Ch. V (10–1–16 Edition)
the occupant to permit his easy and rapid removal from the assembly. Buckle release mechanism shall be designed to minimize the possibility of accidental release. A buckle with release mechanism in the latched position shall have only one opening in which the tongue can be inserted on the end of the buckle designed to receive and latch the tongue.

(f) Attachment hardware. A seat belt assembly shall include all hardware necessary for installation in a motor vehicle in accordance with SAE Recommended Practice J800c (1973) (incorporated by reference, see §571.5). However, seat belt assemblies designed for installation in motor vehicles equipped with seat belt assembly anchorages that do not require anchor age nuts, plates, or washers, need not have such hardware, but shall have 7/16-20 UNF-2A or 1/2-13 UNC-2A attachment bolts or equivalent metric hardware. The hardware shall be designed to prevent attachment bolts and other parts from becoming disengaged from the vehicle while in service. Reinforcing plates or washers furnished for universal floor, installations shall be of steel, free from burrs and sharp edges on the peripheral edges adjacent to the vehicle, at least 1.5 mm in thickness and at least 2500 mm² in projected area. The distance between any edge of the plate and the edge of the bolt hole shall be at least 15 mm. Any corner shall be rounded to a radius of not less than 6 mm or cut so that no corner angle is less than 135° and no side is less than 6 mm in length.

(g) Adjustment. (1) A Type 1 or Type 2 seat belt assembly shall be capable of adjustment to fit occupants whose dimensions and weight range from those of a 5th-percentile adult female to those of a 95th-percentile adult male. The seat belt assembly shall have either an automatic-locking retractor, an emergency-locking retractor, or an adjusting device that is within the reach of the occupant.

(2) A Type 1 or Type 2 seat belt assembly for use in a vehicle having seats that are adjustable shall conform to the requirements of §4.1(g)(1) regardless of seat position. However, if a seat has a back that is separately adjustable, the requirements of §4.1(g)(1) need be met only with the seat back in the manufacturer’s nominal design riding position.

(3) The adult occupants referred to in §4.1(g)(1) shall have the following measurements:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>5th percentile (adult female)</th>
<th>95th percentile (adult male)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>46.3 kg</td>
<td>97.5 kg</td>
</tr>
<tr>
<td>Erect sitting height</td>
<td>785 mm</td>
<td>965 mm</td>
</tr>
<tr>
<td>Hip breadth (sitting)</td>
<td>325 mm</td>
<td>419 mm</td>
</tr>
<tr>
<td>Hip circumference (sitting)</td>
<td>925 mm</td>
<td>1199 mm</td>
</tr>
<tr>
<td>Waist circumference (sitting)</td>
<td>599 mm</td>
<td>1080 mm</td>
</tr>
<tr>
<td>Chest depth</td>
<td>190 mm</td>
<td>267 mm</td>
</tr>
<tr>
<td>Chest circumference:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nipple</td>
<td>775 mm</td>
<td>1130 mm</td>
</tr>
<tr>
<td>Upper</td>
<td>757 mm</td>
<td>1130 mm</td>
</tr>
<tr>
<td>Lower</td>
<td>676 mm</td>
<td>1130 mm</td>
</tr>
</tbody>
</table>

(h) Webbing. The ends of webbing in a seat belt assembly shall be protected or treated to prevent raveling. The end of webbing in a seat belt assembly having a metal-to-metal buckle that is used by the occupant to adjust the size of the assembly shall not pull out of the adjustment hardware at maximum size adjustment. Provision shall be made for essentially unimpeded movement of webbing routed between a seat back and seat cushion and attached to a retractor located behind the seat.

(i) Strap. A strap used in a seat belt assembly to sustain restraint forces shall comply with the requirements for webbing in §4.2, and if the strap is made from a rigid material, it shall comply with applicable requirements in §4.2, §4.3, and §4.4.

(j) Marking. Each seat belt assembly shall be permanently and legibly marked or labeled with year of manufacture, model, and name or trademark of manufacturer or distributor, or of importer if manufactured outside the United States. A model shall consist of a single combination of webbing having a specific type of fiber weave and construction, and hardware having a specific design. Webbings of various colors may be included under the same model, but webbing of each color shall comply with the requirements for webbing in §4.2.

(k) Installation instructions. A seat belt assembly, other than a seat belt assembly installed in a motor vehicle by an automobile manufacturer, shall be accompanied by an instruction sheet.
providing sufficient information for installing the assembly in a motor vehicle. The installation instructions shall state whether the assembly is for universal installation or for installation only in specifically stated motor vehicles, and shall include at least those items specified in SAE Recommended Practice J800c (1973) (incorporated by reference, see §571.5). If the assembly is for use only in specifically stated motor vehicles, the assembly shall either be permanently and legibly marked or labeled with the following statement, or the instruction sheet shall include the following statement:

This seat belt assembly is for use only in [insert specific seating position(s), e.g., ‘front right’] in [insert specific vehicle make(s) and model(s)].

(1) Usage and maintenance instructions. A seat belt assembly or retractor shall be accompanied by written instructions for the proper use of the assembly, stressing particularly the importance of wearing the assembly snugly and properly located on the body, and on the maintenance of the assembly and periodic inspection of all components. The instructions shall show the proper manner of threading webbing in the hardware of seat belt assemblies in which the webbing is not permanently fastened. Instructions for a nonlocking retractor shall include a caution that the webbing must be fully extended from the retractor during use of the seat belt assembly unless the retractor is attached to the free end of webbing which is not subjected to any tension during restraint of an occupant by the assembly. Instructions for Type 2a shoulder belt shall include a warning that the shoulder belt is not to be used without a lap belt.

(m) Workmanship. Seat belt assemblies shall have good workmanship in accordance with good commercial practice.

S4.2 Requirements for webbing. (a) Width. The width of the webbing in a seat belt assembly shall not be less than 46 mm, except for portions that do not touch a 95th percentile adult male with the seat in any adjustment position and the seat back in the manufacturer’s nominal design riding position when measured under the conditions prescribed in S5.1(a).

(b) Breaking strength. The webbing in a seat belt assembly shall have not less than the following breaking strength when tested by the procedures specified in S5.1(b): Type 1 seat belt assembly—26,689 N; Type 2 seat belt assembly—22,241 N for webbing in pelvic restraint and 17,793 N for webbing in upper torso restraint.

(c) Elongation. Except as provided in S4.5, the webbing in a seat belt assembly shall not extend to more than the following elongation when subjected to the specified forces in accordance with the procedure specified in S5.1(c): Type 1 seat belt assembly—20 percent at 11,120 N; Type 2 seat belt assembly 30 percent at 11,120 N for webbing in pelvic restraint and 40 percent at 11,120 N for webbing in upper torso restraint.

(d) Resistance to abrasion. The webbing of a seat belt assembly, after being subjected to abrasion as specified in S5.1(d) or S5.3(c), shall have a breaking strength of not less than 75 percent of the breaking strength listed in S4.2(b) for that type of belt assembly.

(e) Resistance to light. The webbing in a seat belt assembly after exposure to the light of a carbon arc and tested by the procedure specified in S5.1(e) shall have a breaking strength not less than 60 percent of the strength before exposure to the carbon arc and shall have a color retention not less than No. 2 on the AATCC Gray Scale for Evaluating Change in Color (incorporated by reference, see §571.5).

(f) Resistance to micro-organisms. The webbing in a seat belt assembly after being subjected to micro-organisms and tested by the procedures specified in S5.1(f) shall have a breaking strength not less than 85 percent of the strength before subjection to micro-organisms.

S4.3 Requirements for hardware. (a) Corrosion resistance. (1) Attachment hardware of a seat belt assembly after being subjected to the conditions specified in S5.2(a) shall be free of ferrous corrosion on significant surfaces except for permissible ferrous corrosion at peripheral edges or edges of holes on underfloor reinforcing plates and washers. Alternatively, such hardware at or near the floor shall be protected against corrosion by at least an electroplated coating of nickel, or
copper and nickel with at least a service condition number of SC2, and other attachment hardware shall be protected by an electrodeposited coating of nickel, or copper and nickel with a service condition number of SC1, in accordance with ASTM B456–79 (incorporated by reference, see §571.5), but such hardware shall not be racked for electroplating in locations subjected to maximum stress.

(2) Surfaces of buckles, retractors and metallic parts, other than attachment hardware, of a seat belt assembly after subjection to the conditions specified in S5.2(a) shall be free of ferrous or nonferrous corrosion which may be transferred, either directly or by means of the webbing, to the occupant or his clothing when the assembly is worn. After test, buckles shall conform to applicable requirements in paragraphs (d) to (g) of this section.

(b) Temperature resistance. Plastic or other nonmetallic hardware parts of a seat belt assembly when subjected to the conditions specified in S5.2(b) shall not warp or otherwise deteriorate to cause the assembly to operate improperly or fail to comply with applicable requirements in this section and S4.4.

(c) Attachment hardware. (1) Eye bolts, shoulder bolts, or other bolt used to secure the pelvic restraint of seat belt assembly to a motor vehicle shall withstand a force of 40,034 N when tested by the procedure specified in S5.2(c)(1), except that attachment bolts of a seat belt assembly designed for installation in specific models of motor vehicles in which the ends of two or more seat belt assemblies cannot be attached to the vehicle by a single bolt shall have breaking strength of not less than 22,241 N.

(2) Other attachment hardware designed to receive the ends of two seat belt assemblies shall withstand a tensile force of at least 26,689 N without fracture of a section when tested by the procedure specified in S5.2(c)(2).

(3) A seat belt assembly having single attachment hooks of the quick-disconnect type for connecting webbing to an eye bolt shall be provided with a retaining latch or keeper which shall not move more than 2 mm in either the vertical or horizontal direction when tested by the procedure specified in S5.2(c)(3).

(d) Buckle release. (1) The buckle of a Type 1 or Type 2 seat belt assembly shall release when a force of not more than 133 N is applied.

(2) A buckle designed for pushbutton application of buckle release force shall have a minimum area of 452 mm² with a minimum linear dimension of 10 mm for applying the release force, or a buckle designed for lever application of buckle release force shall permit the insertion of a cylinder 10 mm in diameter and 38 mm in length to at least the midpoint of the cylinder along the cylinder’s entire length in the actuation portion of the buckle release. A buckle having other design for release shall have adequate access for two or more fingers to actuate release.

(3) The buckle of a Type 1 or Type 2 seat belt assembly shall not release under a compressive force of 1779 N applied as prescribed in paragraph S5.2(d)(3). The buckle shall be operable and shall meet the applicable requirement of paragraph S4.4 after the compressive force has been removed.

(e) Adjustment force. The force required to decrease the size of a seat belt assembly shall not exceed 49 N when measured by the procedure specified in S5.2(e).

(f) Tilt-lock adjustment. The buckle of a seat belt assembly having tilt-lock adjustment shall lock the webbing when tested by the procedure specified in S5.2(f) at an angle of not less than 30 degrees between the base of the buckle and the anchor webbing.

(g) Buckle latch. The buckle latch of a seat belt assembly when tested by the procedure specified in S5.2(g) shall not fail, nor gall or wear to an extent that normal latching and unlatching is impaired, and a metal-to-metal buckle shall separate when in any position of partial engagement by a force of not more than 22 N.

(h) Nonlocking retractor. The webbing of a seat belt assembly when tested by the procedure specified in S5.2(h) at an angle of not less than 30 degrees between the base of the buckle and the anchor webbing. A nonlocking retractor on upper torso restraint shall be attached to the non-adjustable end of the assembly, the reel of the retractor shall be easily visible
§ 571.209

to an occupant while wearing the assembly, and the maximum retraction force shall not exceed 5 N in any strap or webbing that contacts the shoulder when measured by the procedure specified in S5.2(h), unless the retractor is attached to the free end of webbing which is not subjected to any tension during restraint of an occupant by the assembly.

(i) Automatic-locking retractor. The webbing of a seat belt assembly equipped with an automatic locking retractor, when tested by the procedure specified in S5.2(i), shall not move more than 25 mm between locking positions of the retractor, and shall be retracted with a force under zero acceleration of not less than 3 N when attached to pelvic restraint, and not less that 2 N nor more than 5 N in any strap or webbing that contacts the shoulders of an occupant when the retractor is attached to upper torso restraint. An automatic locking retractor attached to upper torso restraint shall not increase the restraint on the occupant of the seat belt assembly during use in a vehicle traveling over rough roads as prescribed in S5.2(i).

(j) Emergency-locking retractor.

(1) For seat belt assemblies manufactured before February 22, 2007. Except for manufacturers that, at the manufacturer’s option, voluntarily choose to comply with S4.3(j)(2) during this period (with said option irrevocably selected prior to, or at the time of, certification of the seat belt assembly), an emergency-locking retractor of a Type 1 or Type 2 seat belt assembly, when tested in accordance with the procedures specified in paragraph S5.2(j)(1)—

(i) Shall lock before the webbing extends 25 mm when the retractor is subjected to an acceleration of 7 m/s² (0.7 g);

(ii) Shall not lock, if the retractor is sensitive to webbing withdrawal, before the webbing extends 51 mm when the retractor is subjected to an acceleration of 3 m/s² (0.3 g) or less;

(iii) Shall not lock, if the retractor is sensitive to vehicle acceleration, when the retractor is rotated in any direction to any angle of 15° or less from its orientation in the vehicle;

(iv) Shall exert a retractive force of at least 3 N under zero acceleration when attached only to the pelvic restraint;

(v) Shall exert a retractive force of not less than 1 N and not more than 5 N under zero acceleration when attached only to an upper torso restraint;

(vi) Shall exert a retractive force not less than 1 N and not more than 7 N under zero acceleration when attached to a strap or webbing that restrains both the upper torso and the pelvis.

(2) For seat belt assemblies manufactured on or after February 22, 2007 and for manufacturers opting for early compliance. An emergency-locking retractor of a Type 1 or Type 2 seat belt assembly, when tested in accordance with the procedures specified in paragraph S5.2(j)(2)—

(i) Shall under zero acceleration loading—

(A) Exert a retractive force of not less than 1 N and not more than 7 N when attached to a strap or webbing that restrains both the upper torso and the pelvis;

(B) Exert a retractive force not less than 3 N when attached only to the pelvic restraint; and

(C) Exert a retractive force of not less than 1 N and not more than 5 N when attached only to an upper torso restraint.

(D) For a retractor sensitive to vehicle acceleration, lock when tilted at any angle greater than 45 degrees from the angle at which it is installed in the vehicle or meet the requirements of S4.3(j)(2)(ii).

(E) For a retractor sensitive to vehicle acceleration, not lock when the retractor is rotated in any direction to any angle of 15 degrees or less from its orientation in the vehicle.

(ii) Shall lock before the webbing payout exceeds the maximum limit of 25 mm when the retractor is subjected to an acceleration of 0.7 g under the applicable test conditions of S5.2(j)(2)(ii)(A) or (B). The retractor is determined to be locked when the webbing belt load tension is at least 35 N.

(iii) For a retractor sensitive to webbing withdrawal, shall not lock before the webbing payout extends to the minimum limit of 51 mm when the retractor is subjected to an acceleration...
(k) **Performance of retractor.** A retractor used on a seat belt assembly after subjection to the tests specified in §5.2(k) shall comply with applicable requirements in paragraphs (b) to (j) of this section and §4.4, except that the retraction force shall be not less than 50 percent of its original retraction force.

§4.4 **Requirements for assembly performance.**

(a) **Type I seat belt assembly.** Except as provided in §4.5, the complete seat belt assembly including webbing, straps, buckles, adjustment and attachment hardware, and retractors shall comply with the following requirements when tested by the procedures specified in §5.3(a):

1. The assembly loop shall withstand a force of not less than 22,241 N; that is, each structural component of the assembly shall withstand a force of not less than 11,120 N.

2. The assembly loop shall extend not more than 7 inches or 178 mm when subjected to a force of 22,241 N; that is, the length of the assembly between anchorages shall not increase more than 356 mm.

3. Any webbing cut by the hardware during test shall have a breaking strength at the cut of not less than 18,683 N.

4. Complete fracture through any solid section of metal attachment hardware shall not occur during test.

(b) **Type 2 seat belt assembly.** Except as provided in §4.5, the components of a Type 2 seat belt assembly including webbing, straps, buckles, adjustment and attachment hardware, and retractors shall comply with the following requirements when tested by the procedure specified in §5.3(b):

1. The structural components in the pelvic restraint shall withstand a force of not less than 11,120 N.

2. The structural components in the upper torso restraint shall withstand a force of not less than 6,672 N.

3. The structural components in the assembly that are common to pelvic and upper torso restraints shall withstand a force of not less than 13,345 N.

4. The length of the pelvic restraint between anchorages shall not increase more than 508 mm when subjected to a force of 11,120 N.

5. The length of the upper torso restraint between anchorages shall not increase more than 508 mm when subjected to a force of 6,672 N.

6. Any webbing cut by the hardware during test shall have a breaking strength of not less than 15,569 N at a cut in webbing of the pelvic restraint, or not less than 12,455 N at a cut in webbing of the upper torso restraint.

7. Complete fracture through any solid section of metal attachment hardware shall not occur during test.

§4.5 **Load-limiter.** (a) A Type 1 or Type 2 seat belt assembly that includes a load-limiter is not required to comply with the elongation requirements of §4.2(c), §4.4(a)(2), §4.4(b)(4) or §4.4(b)(5).

(b) A seat belt assembly that includes a load limiter and that does not comply with the elongation requirements of this standard may be installed in motor vehicles at any designated seating position that is subject to the requirements of §5.1 of Standard No. 208 (571.208).

§4.6 **Manual belts subject to crash protection requirements of Standard No. 208.**

(a)(1) A manual seat belt assembly, which is subject to the requirements of §5.1 of Standard No. 208 (49 CFR 571.208) by virtue of any provision of Standard No. 208 other than §4.1.2.1(c)(2) of that standard, does not have to meet the requirements of §4.2(a)–(f) and §4.4 of this standard.

(b) (1) A manual seat belt assembly subject to the requirements of §5.1 of Standard No. 208 (49 CFR 571.208) by virtue of §4.1.2.1(c)(2) of Standard No. 208 does not have to meet the elongation requirements of §4.2(c), §4.4(a)(2), §4.4(b)(4), and §4.4(b)(5) of this standard.

§5. **Demonstration procedures.**

§5.1 **Webbing—(a) Width.** The width of webbing from three seat belt assemblies shall be measured after conditioning for at least 24 hours in an atmosphere having relative humidity between 48 and 67 percent and a temperature of 23 ±2 °C. The tension during measurement of width shall be not more than 22 N on webbing from a Type 1 seat belt assembly, and 9786 N ±450 N.
§ 571.209 49 CFR Ch. V (10–1–16 Edition)

on webbing from a Type 2 seat belt assembly. The width of webbing from a Type 2 seat belt assembly may be measured during the breaking strength test described in paragraph (b) of this section.

(b) Breaking strength. Webbing from three seat belt assemblies shall be conditioned in accordance with paragraph (a) of this section and tested for breaking strength in a testing machine of capacity verified to have an error of not more than one percent in the range of the breaking strength of the webbing in accordance with ASTM E4–79 (incorporated by reference, see §571.5). The machine shall be equipped with split drum grips illustrated in Figure 1, having a diameter between 51 and 102 mm. The rate of grip separation shall be between 51 and 102 mm per minute. The distance between the centers of the grips at the start of the test shall be between 102 and 254 mm. After placing the specimen in the grips, the webbing shall be stretched continuously at a uniform rate to failure. Each value shall be not less than the applicable breaking strength requirement in S4.2(b), but the median value shall be used for determining the retention of breaking strength in paragraphs (d), (e) and (f) of this section.

(c) Elongation. Elongation shall be measured during the breaking strength test described in paragraph (b) of this section by the following procedure: A preload between 196 N and 245 N shall be placed on the webbing mounted in the grips of the testing machine and the needle points of an extensometer, in which the points remain parallel during test, are inserted in the center of the specimen. Initially the points shall be set at a known distance apart between 102 and 203 mm. When the force on the webbing reaches the value specified in S4.2(c), the increase in separation of the points of the extensometer shall be measured and the percent elongation shall be calculated to the nearest 0.5 percent. Each value shall be not more than the appropriate elongation requirement in S4.2(c).

(d) Resistance to abrasion. The webbing from three seat belt assemblies shall be tested for resistance to abrasion by rubbing over the hexagon bar prescribed in Figure 2 in the following manner: The webbing shall be mounted in the apparatus shown schematically in Figure 2. One end of the webbing (A) shall be attached to a mass (B) of 2.35 kg ±0.5 kg, except that a mass of 1.5 kg ±0.5 kg shall be used for webbing in pelvic and upper torso restraints of a belt assembly used in a child restraint system. The webbing shall be passed over the two new abrading edges of the hexagonal bar (C) and the other end attached to an oscillating drum (D) which has a stroke of 330 mm. Suitable guides shall be used to prevent movement of the webbing along the axis of hexagonal bar C. Drum D shall be oscillated for 5,000 strokes or 2,500 cycles at a rate of 60 ±2 strokes per minute or 30 ±1 cycles per minute. The abraded webbing shall be conditioned as prescribed in paragraph (a) of this section and tested for breaking strength by the procedure described in paragraph (b) of this section. The median values for the breaking strengths determined on abraded and unabraded specimens shall be used to calculate the percentage of breaking strength retained.

(e) Resistance to light. Webbing at least 508 mm in length from three seat belt assemblies shall be suspended vertically on the inside of the specimen track in a Type E carbon-arc light exposure apparatus described in ASTM G23–81 (incorporated by reference, see §571.5), except that the filter used for 100 percent polyester yarns shall be chemically strengthened soda-lime glass with a transmittance of less than 5 percent for wave lengths equal to or less than 305 nanometers and 90 percent or greater transmittance for wave lengths of 375 to 800 nanometers. The apparatus shall be operated without water spray at an air temperature of 60° ±2 °Celsius (°C) measured at a point 25 ±5 mm outside the specimen rack and midway in height. The temperature sensing element shall be shielded from radiation. The specimens shall be exposed to light from the carbon-arc for 100 hours and then conditioned as prescribed in paragraph (a) of this section. The colorfastness of the exposed and conditioned specimens shall be determined on the AATCC Gray Scale for Evaluating Change in Color (incorporated by reference, see §571.5). The breaking strength of the specimens
shall be determined by the procedure prescribed in paragraph (b) of this section. The median values for the breaking strengths determined on exposed and unexposed specimens shall be used to calculate the percentage of breaking strength retained.

(i) Resistance to micro-organisms. Webbing at least 508 millimeters (mm) in length from three seat belt assemblies shall first be preconditioned in accordance with appendix A(1) and (2) of AATCC Test Method 30–1981 (incorporated by reference, see §571.5), and then subjected to Test I, “Soil Burial Test" of that test method. After soil-burial for a period of 2 weeks, the specimens shall be washed in water, dried and conditioned as prescribed in paragraph (a) of this section. The breaking strengths of the specimens shall be determined by the procedure prescribed in paragraph (b) of this section. The median values for the breaking strengths determined on exposed and unexposed specimens shall be used to calculate the percentage of breaking strength retained.

NOTE: This test shall not be required on webbing made from material which is inherently resistant to micro-organisms.

§5.2 Hardware.

(a) Corrosion resistance. Three seat belt assemblies shall be tested in accordance with ASTM B117–73 (Reapproved 1979) (incorporated by reference, see §571.5). Any surface coating or material not intended for permanent retention on the metal parts during service life shall be removed prior to preparation of the test specimens for testing. The period of test shall be 50 hours for all attachment hardware at or near the floor, consisting of two periods of 24 hours exposure to salt spray followed by 1 hour drying and 25 hours for all other hardware, consisting of one period of 24 hours exposure to salt spray followed by 1 hour drying. In the salt spray test chamber, the parts from the three assemblies shall be oriented differently, selecting those orientations most likely to develop corrosion on the larger areas. At the end of test, the seat belt assembly shall be washed thoroughly with water to remove the salt. After drying for at least 24 hours under standard laboratory conditions specified in §5.1(a) attachment hardware shall be examined for ferrous corrosion on significant surfaces, that is, all surfaces that can be contacted by a sphere 19 mm in diameter, and other hardware shall be examined for ferrous and nonferrous corrosion which may be transferred, either directly or by means of the webbing, to a person or his clothing during use of a seat belt assembly incorporating the hardware.

NOTE: When attachment and other hardware are permanently fastened, by sewing or other means, to the same piece of webbing, separate assemblies shall be used to test the two types of hardware. The test for corrosion resistance shall not be required for attachment hardware made from corrosion-resistant steel containing at least 11.5 percent chromium or for attachment hardware protected with an electrodeposited coating of nickel, or copper and nickel, as prescribed in §4.3(a). The assembly that has been used to test the corrosion resistance of the buckle shall be used to measure adjustment force, tilt-lock adjustment, and buckle latch in paragraphs (e), (f), and (g), respectively, of this section, assembly performance in §5.3 and buckle release force in paragraph (d) of this section.

(b) Temperature resistance. Three seat belt assemblies having plastic or non-metallic hardware or having retractors shall be subjected to the conditions prescribed in Procedure D of ASTM D756–78 (incorporated by reference, see §571.5). The dimension and weight measurement shall be omitted. Buckles shall be unlatched and retractors shall be fully retracted during conditioning. The hardware parts after conditioning shall be used for all applicable tests in §4.3 and §4.4.

(c) Attachment hardware. (1) Attachment bolts used to secure the pelvic restraint of a seat belt assembly to a motor vehicle shall be tested in a manner similar to that shown in Figure 3. The load shall be applied at an angle of 45° to the axis of the bolt through attachment hardware. The attachment hardware or simulated fixture shall be fastened by the bolt to the anchorage shown in Figure 3, which has a standard ¼–20UNF–2B or ½–UNF–2B or metric equivalent threaded hole in a hardened steel plate at least 10 mm in thickness. The bolt shall be installed
§ 571.209
49 CFR Ch. V (10–1–16 Edition)

with two full threads exposed from the fully seated position. The appropriate force required by S4.3(c) shall be applied. A bolt from each of three seat belt assemblies shall be tested.

(2) Attachment hardware, other than bolts, designed to receive the ends of two seat belt assemblies shall be subjected to a tensile force of 26,689 N in a manner simulating use. The hardware shall be examined for fracture after the force is released. Attachment hardware from three seat belt assemblies shall be tested.

(3) Single attachment hook for connecting webbing to any eye bolt shall be tested in the following manner: The hook shall be held rigidly so that the retainer latch or keeper, with cotter pin or other locking device in place, is in a horizontal position as shown in Figure 4. A force of 667 N ± 9 N shall be applied vertically as near as possible to the free end of the retainer latch, and the movement of the latch by this force at the point of application shall be measured. The vertical force shall be released, and a force of 667 N ± 9 N shall be applied horizontally as near as possible to the free end of the retainer latch. The movement of the latch by this force at the point of load application shall be measured. Alternatively, the hook may be held in other positions, provided the forces are applied and the movements of the latch are measured at the points indicated in Figure 4. A single attachment hook from each of three seat belt assemblies shall be tested.

(d) Buckle release. (1) Three seat belt assemblies shall be tested to determine compliance with the maximum buckle release force requirements, following the assembly test in S5.3. After subjecting to the force applicable for the assembly being tested, the force shall be reduced and maintained at 667 N on the assembly loop of a Type 1 seat belt assembly, 334 N on the components of a Type 2 seat belt assembly. The buckle release force shall be measured by applying a force on the buckle in a manner and direction typical of those which would be employed by a seat belt occupant. For push button-release buckles, the force shall be applied at least 3 mm from the edge of the push button access opening of the buckle in a direction that produces maximum releasing effect. For lever-release buckles, the force shall be applied on the centerline of the buckle lever or finger tab in a direction that produces maximum releasing effect.

(2) The area for application of release force on pushbutton actuated buckle shall be measured to the nearest 30 mm². The cylinder specified in S4.3(d) shall be inserted in the actuation portion of a lever released buckle for determination of compliance with the requirement. A buckle with other release actuation shall be examined for access of release by fingers.

(3) The buckle of a Type 1 or Type 2 seat belt assembly shall be subjected to a compressive force of 1779 N applied anywhere on a test line that is coincident with the center line of the belt extended through the buckle or on any line that extends over the center of the release mechanism and intersects the extended centerline of the belt at an angle of 60°. The load shall be applied by using a curved cylindrical bar having a cross section diameter of 19 mm and a radius of curvature of 152 mm, placed with its longitudinal center line along the test line and its center directly above the point or the buckle to which the load will be applied. The buckle shall be latched, and a tensile force of 334 N shall be applied to the connected webbing during the application of the compressive force. Buckles from three seat belt assemblies shall be tested to determine compliance with paragraph S4.3(d)(3).

(e) Adjustment Force. Three seat belt assemblies shall be tested for adjustment force on the webbing at the buckle, or other manual adjusting device normally used to adjust the size of the assembly. With no load on the anchor end, the webbing shall be drawn through the adjusting device at a rate of 508 mm ± 50 mm per minute and the maximum force shall be measured to the nearest 1 N after the first 25 mm of webbing movement. The webbing shall be precycled 10 times prior to measurement.

(f) Tilt-lock adjustment. This test shall be made on buckles or other manual adjusting devices having tilt-lock adjustment normally used to adjust the size of the assembly. Three buckles or
devices shall be tested. The base of the adjustment mechanism and the anchor end of the webbing shall be oriented in planes normal to each other. The webbing shall be drawn through the adjustment mechanism in a direction to increase belt length at a rate of 508 mm ±50 mm per minute while the plane of the base is slowly rotated in a direction to lock the webbing. Rotation shall be stopped when the webbing locks, but the pull on the webbing shall be continued until there is a resistance of at least 89 N. The locking angle between the anchor end of the webbing and the base of the adjustment mechanism shall be measured to the nearest degree. The webbing shall be precycled 10 times prior to measurement.

(g) Buckle latch. The buckles from three seat belt assemblies shall be opened fully and closed at least 10 times. Then the buckles shall be clamped or firmly held against a flat surface so as to permit normal movement of buckle part, but with the metal mating plate (metal-to-metal buckles) or of webbing end (metal-to-webbing buckles) withdrawn from the buckle. The release mechanism shall be moved 200 times through the maximum possible travel against its stop with a force of 133 N ±13 N at a rate not to exceed 30 cycles per minute. The buckle shall be examined to determine compliance with the performance requirements of §4.3(g). A metal-to-metal buckle shall be examined to determine whether partial engagement is possible by means of any technique representative of actual use. If partial engagement is possible, the maximum force of separation when in such partial engagement shall be determined.

(h) Nonlocking retractor. After the retractor is cycled 10 times by full extension and retraction of the webbing, the retractor and webbing shall be suspended vertically and a force of 18 N shall be applied to extend the webbing from the retractor. The force shall be reduced to 15 N when attached to a pelvic restraint, or to 5 N per strap or webbing that contacts the shoulder of an occupant when retractor is attached to an upper torso restraint. The residual extension of the webbing shall be measured by manual rotation of the retractor drum or by disengaging the retraction mechanism. Measurements shall be made on three retractors. The location of the retractor attached to upper torso restraint shall be examined for visibility of reel during use of seat belt assembly in a vehicle.

Note: This test shall not be required on a nonlocking retractor attached to the free end of webbing which is not subjected to any tension during restraint of an occupant by the assembly.

(i) Automatic-locking retractor. Three retractors shall be tested in a manner to permit the retraction force to be determined exclusive of the gravitational forces on hardware or webbing being retracted. The webbing shall be fully extended from the retractor. While the webbing is being retracted, the average force or retraction within plus or minus 51 mm of 75 percent extension (25 percent retraction) shall be determined and the webbing movement between adjacent locking segments shall be measured in the same region of extension. A seat belt assembly with automatic locking retractor in upper torso restraint shall be tested in a vehicle in a manner prescribed by the installation and usage instructions. The retraction force on the occupant of the seat belt assembly shall be determined before and after traveling for 10 minutes at a speed of 24 kilometers per hour (km/h) or more over a rough road (e.g., Belgian block road) where the occupant is subjected to displacement with respect to the vehicle in both horizontal and vertical directions. Measurements shall be made with the vehicle stopped and the occupant in the normal seated position.

(j) Emergency-locking retractor.

(1) For seat belt assemblies manufactured before February 22, 2007. Except for manufacturers that elect to comply with §4.3(j)(2) and the corresponding test procedures of §5.2(j)(2), a retractor shall be tested in a manner that permits the retraction force to be determined exclusive of the gravitational forces on hardware or webbing being retracted. The webbing shall be fully extended from the retractor, passing over or through any hardware or other material specified in the installation instructions. While the webbing is being retracted, the retraction within ±51 mm of 75 percent
extension shall be determined. A retractor that is sensitive to webbing withdrawal shall be subjected to an acceleration of 3 m/s² (0.3 g) within a period of 50 milliseconds (ms) while the webbing is at 75 percent extension, to determine compliance with §4.3(j)(2)(i)(D). The retractor shall be subjected to an acceleration of 7 m/s² (0.7 g) within a period of 50 ms, while the webbing is at 75 percent extension, and the webbing movement before locking shall be measured under the following conditions: For a retractor sensitive to webbing withdrawal, the retractor shall be accelerated in the direction of webbing retraction while the retractor drum’s central axis is oriented horizontally and at angles of 45°, 90°, 135°, and 180° to the horizontal plane. For a retractor sensitive to vehicle acceleration, the retractor shall be:

(i) Accelerated in the horizontal plane in two directions normal to each other, while the retractor drum’s central axis is oriented at the angle at which it is installed in the vehicle; and

(ii) Accelerated in three directions normal to each other while the retractor drum’s central axis is oriented at angles of 45°, 90°, 135°, and 180° from the angle at which it is installed in the vehicle.

(2) For seat belt assemblies manufactured on or after February 22, 2007 and for manufacturers opting for early compliance. A retractor shall be tested in a manner that permits the retraction force to be determined exclusive of the gravitational forces on the hardware or webbing being retracted.

(i) Retraction force: The webbing shall be extended fully from the retractor, passing over and through any hardware or other material specified in the installation instructions. While the webbing is being retracted, measure the lowest force of retraction within ±51 mm of 75 percent extension.

(ii) Gravitational locking: For a retractor sensitive to vehicle acceleration, rotate the retractor in any direction to an angle greater than 45 degrees from the angle at which it is installed in the vehicle. Apply a force to the webbing greater than the minimum force measured in S5.2(j)(2)(i) to determine compliance with §4.3(j)(2)(i)(D).

(iii) Dynamic tests: Each acceleration pulse shall be recorded using an accelerometer having a full scale range of ±10 g and processed according to the practices set forth in SAE Recommended Practice J211–1 DEC2003 (incorporated by reference, see §571.5) Channel Frequency Class 60. The webbing shall be positioned at 75 percent extension, and the displacement shall be measured using a displacement transducer. For tests specified in S5.2(j)(2)(iii)(A) and (B), the 0.7 g acceleration pulse shall be within the acceleration-time corridor shown in Figure 8 of this standard.

(A) For a retractor sensitive to vehicle acceleration—

(1) The retractor drum’s central axis shall be oriented at the angle at which it is installed in the vehicle ±0.5 degrees. Accelerate the retractor in the horizontal plane in two directions normal to each other while the retractor drum’s central axis is oriented at angles of 45, 90, 135, and 180 degrees from the angle at which it is installed in the vehicle.

(2) If the retractor does not meet the 45-degree tilt-lock requirement of §4.3(j)(2)(i)(D), accelerate the retractor in three directions normal to each other while the retractor drum’s central axis is oriented at angles of 45, 90, 135, and 180 degrees from the angle at which it is installed in the vehicle and measure webbing payout.

(B) For a retractor sensitive to webbing withdrawal—

(1) The retractor drum’s central axis shall be oriented horizontally ±0.5 degrees. Accelerate the retractor in the direction of webbing retraction and measure webbing payout; and

(2) The retractor drum’s central axis is oriented at angles of 45, 90, 135, and 180 degrees to the horizontal plane. Accelerate the retractor in the direction of the webbing retraction and measure the webbing payout.

(C) A retractor that is sensitive to webbing withdrawal shall be subjected to an acceleration no greater than 0.3 g occurring within a period of the first 50 ms and sustaining an acceleration no greater than 0.3 g throughout the test, while the webbing is at 75 percent extension. Measure the webbing payout.
(k) Performance of retractor. After completion of the corrosion-resistance test described in paragraph (a) of this section, the webbing shall be fully extended and allowed to dry for at least 24 hours under standard laboratory conditions specified in S5.1(a). The retractor shall be examined for ferrous and nonferrous corrosion which may be transferred, either directly or by means of the webbing, to a person or his clothing during use of a seat belt assembly incorporating the retractor, and for ferrous corrosion on significant surfaces if the retractor is part of the attachment hardware. The webbing shall be withdrawn manually and allowed to retract for 25 cycles. The retractor shall be mounted in an apparatus capable of extending the webbing fully, applying a force of 89 N at full extension, and allowing the webbing to retract freely and completely. The webbing shall be withdrawn from the retractor and allowed to retract repeatedly in this apparatus until 2,500 cycles are completed. The retractor and webbing shall then be subjected to the temperature resistance test prescribed in paragraph (b) of this section. The retractor shall be subjected to 2,500 additional cycles of webbing withdrawal and retraction. Then, the retractor and webbing shall be subjected to dust in a chamber similar to one illustrated in Figure 8 containing about 0.9 kg of coarse grade dust conforming to the specification given in SAE Recommended Practice J726 SEP79 (incorporated by reference, see §571.5). The dust shall be agitated every 20 minutes for 5 seconds by compressed air, free of oil and moisture, at a gage pressure of 550 ±55 kPa entering through an orifice 1.5 ±0.1 mm in diameter. The webbing shall be extended to the top of the chamber and kept extended at all times except that the webbing shall be subjected to 10 cycles of complete retraction and extension within 1 to 2 minutes after each agitation of the dust. At the end of 5 hours, the assembly shall be removed from the chamber. The webbing shall be fully withdrawn from the retractor manually and allowed to retract completely for 25 cycles. An automatic-locking retractor or a nonlocking retractor attached to pelvic restraint shall be subjected to 5,000 additional cycles of webbing withdrawal and retraction. An emergency locking retractor or a nonlocking retractor attached to upper torso restraint shall be subjected to 45,000 additional cycles of webbing withdrawal and retraction between 50 and 100 percent extension. The locking mechanism of an emergency locking retractor shall be actuated at least 10,000 times within 50 to 100 percent extension of webbing during the 50,000 cycles. At the end of test, compliance of the retractors with applicable requirements in S4.3 (h), (i), and (j) shall be determined. Three retractors shall be tested for performance.

S5.3 Assembly performance—(a) Type 1 seat belt assembly. Three complete seat belt assemblies, including webbing, straps, buckles, adjustment and attachment hardware, and retractors, arranged in the form of a loop as shown in Figure 5, shall be tested in the following manner:

(1) The testing machine shall conform to the requirements specified in S5.1(b). A double-roller block shall be attached to one head of the testing machine. This block shall consist of two rollers 102 mm in diameter and sufficiently long so that no part of the seat belt assembly touches parts of the block other than the rollers during test. The rollers shall be mounted on antifriction bearings and spaced 305 mm between centers, and shall have sufficient capacity so that there is no brinelling, bending or other distortion of parts which may affect the results. An anchorage bar shall be fastened to the other head of the testing machine.

(2) The attachment hardware furnished with the seat belt assembly shall be attached to the anchorage bar. The anchor points shall be spaced so that the webbing is parallel in the two sides of the loop. The attaching bolts shall be parallel to, or at an angle of 45° or 90° to the webbing, whichever results in an angle nearest to 90° between webbing and attachment hardware except that eye bolts shall be vertical, and attaching bolts or nonthreaded anchorage of a seat belt assembly designed for use in specific models of motor vehicles shall be installed to
produce the maximum angle in use indicated by the installation instructions, utilizing special fixtures if necessary to simulate installation in the motor vehicle. Rigid adapters between anchorage bar and attachment hardware shall be used if necessary to locate and orient the adjustment hardware. The adapters shall have a flat support face perpendicular to the threaded hole for the attaching bolt and adequate in area to provide full support for the base of the attachment hardware connected to the webbing. If necessary, a washer shall be used under a swivel plate or other attachment hardware to prevent the webbing from being damaged as the attaching bolt is tightened.

(3) The length of the assembly loop from attaching bolt to attaching bolt shall be adjusted to about 1295 mm, or as near thereto as possible. A force of 245 N shall be applied to the loop to remove any slack in webbing at hardware. The force shall be removed and the heads of the testing machine shall be adjusted for an assembly loop between 1220 and 1270 mm in length. The length of the assembly loop shall then be adjusted by applying a force between 89 and 98 N to the free end of the webbing at the buckle, or by the retraction force of an automatic-locking or emergency-locking retractor. A seat belt assembly that cannot be adjusted to this length shall be adjusted as closely as possible. An automatic-locking or emergency locking retractor when included in a seat belt assembly shall be locked at the start of the test with a tension on the webbing slightly in excess of the retractive force in order to keep the retractor locked. The buckle shall be in a location so that it does not touch the rollers during test, but to facilitate making the buckle release test in §5.2(d) the buckle should be between the rollers or near a roller in one leg.

(4) The heads of the testing machine shall be separated at a rate between 51 and 102 mm per minute until a force of 22,241 ±222 N is applied to the assembly loop. The extension of the loop shall be determined from measurements of head separation before and after the force is applied. The force shall be decreased to 667 ±45 N and the buckle release force measured as prescribed in §5.2(d).

(5) After the buckle is released, the webbing shall be examined for cutting by the hardware. If the yarns are partially or completely severed in a line for a distance of 10 percent or more of the webbing width, the cut webbing shall be tested for breaking strength as specified in §5.1(b) locating the cut in the free length between grips. If there is insufficient webbing on either side of the cut to make such a test for breaking strength, another seat belt assembly shall be used with the webbing repositioned in the hardware. A tensile force of 11,120 ±111 N shall be applied to the components or a force of 22,241 ±222 N shall be applied to the assembly loop. After the force is removed, the breaking strength of the cut webbing shall be determined as prescribed above.

(6) If a Type 1 seat belt assembly includes an automatic-locking retractor or an emergency-locking retractor, the webbing and retractor shall be subjected to a tensile force of 11,120 ±111 N with the webbing fully extended from the retractor.

(7) If a seat belt assembly has a buckle in which the tongue is capable of inverted insertion, one of the three assemblies shall be tested with the tongue inverted.

(b) Type 2 seat belt assembly. Components of three seat belt assemblies shall be tested in the following manner:

(1) The pelvic restraint between anchorages shall be adjusted to a length between 1220 and 1270 mm, or as near this length as possible if the design of the pelvic restraint does not permit its adjustment to this length. An automatic-locking or emergency-locking retractor when included in a seat belt assembly shall be locked at the start of the test with a tension on the webbing slightly in excess of the retractive force in order to keep the retractor locked. The attachment hardware shall be oriented to the webbing as specified in paragraph (a)(2) of this section and illustrated in Figure 5. A tensile force 11,120 ±111 N shall be applied to the components in any convenient manner and the extension between anchorages under this force shall be measured. The force shall be reduced to 334 ±22 N and
the buckle release force measured as prescribed in §5.2(d).

(2) The components of the upper torso restraint shall be subjected to a tensile force of 6,672 ±67 N following the procedure prescribed above for testing pelvic restraint and the extension between anchorages under this force shall be measured. If the testing apparatus permits, the pelvic and upper torso restraints may be tested simultaneously. The force shall be reduced to 334 ±22 N and the buckle release force measured as prescribed in §5.2(d).

(3) Any component of the seat belt assembly common to both pelvic and upper torso restraint shall be subjected to a tensile force of 13,344 ±134 N.

(4) After the buckle is released in tests of pelvic and upper torso restraints, the webbing shall be examined for cutting by the hardware. If the yarns are partially or completely severed in a line for a distance of 10 percent or more of the webbing width, the cut webbing shall be tested for breaking strength as specified in §5.1(b) locating the cut in the free length between grips. If there is insufficient webbing on either side of the cut to make such a test for breaking strength, another seat belt assembly shall be used with the webbing repositioned in the hardware. The force applied shall be 11,120 ±111 N for components of pelvic restraint, and 6,672 ±67 N for components of upper torso restraint. After the force is removed, the breaking strength of the cut webbing shall be determined as prescribed above.

(5) If a Type 2 seat belt assembly includes an automatic-locking retractor or an emergency-locking retractor the webbing and retractor shall be subjected to a tensile force of 11,120 ±111 N with the webbing fully extended from the retractor, or to a tensile force of 6,672 ±67 N with the webbing fully extended from the retractor if the design of the assembly permits only upper torso restraint forces on the retractor.

(6) If a seat belt assembly has a buckle in which the tongue is capable of inverted insertion, one of the three assemblies shall be tested with the tongue inverted.

(c) Resistance to buckle abrasion. Seat belt assemblies shall be tested for resistance to abrasion by each buckle or manual adjusting device normally used to adjust the size of the assembly. The webbing of the assembly to be used in this test shall be exposed for 4 hours to an atmosphere having relative humidity of 65 per cent and temperature of 18 °C. The webbing shall be pulled back and forth through the buckle or manual adjusting device as shown schematically in Figure 7. The anchor end of the webbing (A) shall be attached to a mass (B) of 1.4 kg. The webbing shall pass through the buckle (C), and the other end (D) shall be attached to a reciprocating device so that the webbing forms an angle of 8° with the hinge stop (E). The reciprocating device shall be operated for 2,500 cycles at a rate of 18 cycles per minute with a stroke length of 203 mm. The abraded webbing shall be tested for breaking strength by the procedure described in paragraph §5.1(b).

§5.4 Tolerances on angles. Unless a range of angles is specified or a tolerance is otherwise explicitly provided, all angles and orientations of seat belt assemblies and components specified in this standard shall have a tolerance of ±3 degrees.
§ 571.209

A — WEBBING
B — WEIGHT
C — HEXAGONAL ROD
 STEEL — SAE 5140
 ROCKWELL HARDNESS — 85 TO 90
 SURFACE — COLD DRAWN FINISH
 SIZE — 0.250 ± 0.001 INCH OR
 0.03 ± 0.003 MILLIMETER
 RADIUS ON EDGES — 0.010 ± 0.004 INCH OR
 0.05 ± 0.01 MILLIMETER
D — DRUM DIAMETER — 15 INCHES OR
 40 CENTIMETERS
E — CRANK
F — CRANK ARM
G — ANGLE BETWEEN WEBBING — ± 2 DEGS.

FIGURE 1

FIGURE 2
§ 571.209

49 CFR Ch. V (10–1–16 Edition)

FIGURE 6

34 F.R. 115
January 4, 1969

FIGURE 7
§ 571.210 Standard No. 210; Seat belt assembly anchorages.

S1. Purpose and scope. This standard establishes requirements for seat belt assembly anchorages to insure their proper location for effective occupant restraint and to reduce the likelihood of their failure.

S2. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, buses, and school buses.

S3. Definitions.

School bus torso belt adjusted height means the vertical height above the seating reference point (SgRP) of the horizontal plane containing a segment of the torso belt centerline located 25 mm to 75 mm forward of the torso belt height adjuster device, when the torso belt retractor is locked and the torso belt is pulled away from the seat back by applying a 20 N horizontal force in the forward direction through the webbing at a location 100 mm or more forward of the adjustment device as shown in Figure 5.

School bus torso belt anchor point means the midpoint of the torso belt width where the torso belt first contacts the uppermost torso belt anchorages. Seat belt anchorage means any component, other than the webbing or straps, involved in transferring seat belt loads to the vehicle structure, including, but not limited to, the attachment hardware, seat frames, seat pedestals, the vehicle structure itself, and any part of the vehicle whose failure causes separation of the belt from the vehicle structure.

[44 FR 72139, Dec. 13, 1979]
§ 571.210

Small occupant seating position is as defined in 49 CFR 571.222.

S4. Requirements.

S4.1 Type.

S4.1.1 Seat belt anchorages for a Type 1 or a Type 2 seat belt assembly shall be installed for each designated seating position for which a Type 1 or a Type 2 seat belt assembly is required by Standard No. 208 (49 CFR 571.208). Seat belt anchorages for a Type 2 seat belt assembly shall be installed for each designated seating position for which a Type 2 seat belt assembly is required by Standard No. 208 (49 CFR 571.208).

S4.1.2 (a) Notwithstanding the requirement of S4.1.1, each vehicle manufactured on or after September 1, 1987 that is equipped with an automatic restraint at the front right outboard designated seating position, which automatic restraint cannot be used for securing a child restraint system or cannot be adjusted by the vehicle owner to secure a child restraint system solely through the use of attachment hardware installed as an item of original equipment by the vehicle manufacturer, shall have, at the manufacturer's option, either anchorages for a Type 1 seat belt assembly installed at that position or a Type 1 or Type 2 seat belt assembly installed at that position. If a manufacturer elects to install anchorages for a Type 1 seat belt assembly to comply with this requirement, those anchorages shall consist of, at a minimum, holes threaded to accept bolts that comply with S4.1(f) of Standard No. 209 (49 CFR 571.209).

(b) The requirement in S4.1.1 of this standard that seat belt anchorages for a Type 1 or a Type 2 seat belt assembly shall be installed for certain designated seating positions does not apply to any such seating positions that are equipped with a seat belt assembly that meets the frontal crash protection requirements of S5.1 of Standard No. 208 (49 CFR 571.208).

S4.1.3 School bus passenger seats.

S4.1.3.1 For school buses manufactured on or after October 21, 2011, seat belt anchorages for school bus passenger seats must be attached to the school bus seat structure, including seats with wheelchair positions or side emergency doors behind them. Seats with no other seats behind them, no wheelchair positions behind them and no side emergency door behind them are excluded from the requirement that the seat belt anchorages must be attached to the school bus seat structure. For school buses with a GVWR less than or equal to 4,536 kg (10,000 pounds), the seat belt shall be Type 2 as defined in S3. of FMVSS No. 209 (49 CFR 571.209). For school buses with a GVWR greater than 4,536 kg (10,000 pounds), the seat belt shall be Type 1 or Type 2 as defined in S3. of FMVSS No. 209 (49 CFR 571.209).

S4.1.3.2 Type 2 seat belt anchorages on school buses manufactured on or after October 21, 2011 must meet the following location requirements.

(a) For a small occupant seating position of a flexible occupancy seat, as defined in 49 CFR 571.222, the school bus torso belt anchor point must be 400 mm or more vertically above the seating reference point (SgRP) or adjustable to 400 mm or more vertically above the SgRP. For all other seating positions, the school bus torso belt anchor point must be 520 mm or more vertically above the SgRP or adjustable to 520 mm or more vertically above the SgRP. The school bus torso belt adjusted height at each seating position shall be adjustable to no more than 280 mm vertically above the SgRP in the lowest position and no less than the required vertical height of the school bus torso belt anchor point for that seating position in the highest position. (See Figure 4.)

(b) The minimum lateral distance between the vertical centerline of the bolt holes or the centroid of any other means of attachment to the structure specified in 4.1.3.1, simultaneously achievable by all seating positions, must be:

(i) 280 mm for seating positions in a flexible occupancy seat in a maximum occupancy configuration, as defined in 49 CFR 571.222; and

(ii) 330 mm for all other seating positions.

S4.1.3.3 School buses with a GVWR less than or equal to 4,536 kg (10,000 pounds) must meet the requirements of S4.2.2 of this standard.

S4.1.3.4 School buses with a GVWR greater than 4,536 kg (10,000 pounds)
§ 571.210

Manufactured on or after October 21, 2011, with Type 1 seat belt anchorages, must meet the strength requirements specified in §4.2.1 of this standard.

§4.1.3.5 School buses with a GVWR greater than 4,536 kg (10,000 pounds) manufactured on or after October 21, 2011, with Type 2 seat belt anchorages, must meet the strength requirements specified in §4.2.2 of this standard.

§4.2 Strength.

§4.2.1 Except as provided in §4.2.5, the anchorages, attachment hardware, and attachment bolts for any of the following seat belt assemblies shall withstand a 5,000 pound force when tested in accordance with §5.1 of this standard:

(a) Type 1 seat belt assembly; and

(b) Lap belt portion of either a Type 2 or automatic seat belt assembly, if such seat belt assembly is equipped with a detachable upper torso belt.

§4.2.2 Except as provided in §4.2.5, the anchorages, attachment hardware, and attachment bolts for any of the following seat belt assemblies shall withstand a 3,000 pound force applied to the lap belt portion of the seat belt assembly simultaneously with a 3,000 pound force applied to the shoulder belt portion of the seat belt assembly, when tested in accordance with §5.2 of this standard:

(a) Type 2 and automatic seat belt assemblies that are installed to comply with Standard No. 208 (49 CFR 571.208); and

(b) Type 2 and automatic seat belt assemblies that are installed at a seating position required to have a Type 1 or Type 2 seat belt assembly by Standard No. 208 (49 CFR 571.208).

§4.2.3 Permanent deformation or rupture of a seat belt anchorage or its surrounding area is not considered to be a failure, if the required force is sustained for the specified time.

§4.2.4 Anchorages, attachment hardware, and attachment bolts shall be tested by simultaneously loading them in accordance with the applicable procedures set forth in §5 of this standard if the anchorages are either:

(a) For designated seating positions that are common to the same occupant seat and that face in the same direction, or

(b) For laterally adjacent designated seating positions that are not common to the same occupant seat, but that face in the same direction, if the vertical centerline of the bolt hole for at least one of the anchorages for one of those designated seating positions is within 305 mm of the vertical center line of the bolt hole for an anchorage for one of the adjacent seating positions.

§4.2.5 The attachment hardware of a seat belt assembly, which is subject to the requirements of §5.1 of Standard No. 208 (49 CFR 571.208) by virtue of any provision of Standard No. 208 other than §4.1.2.1(c)(2) of that standard, does not have to meet the requirements of §4.2.1 and §4.2.2 of this standard.

§4.3 Location. As used in this section, “forward” means the direction in which the seat faces, and other directional references are to be interpreted accordingly. Anchorages for seat belt assemblies that meet the frontal crash protection requirements of §5.1 of Standard No. 208 (49 CFR 571.208) are exempt from the location requirements of this section.

§4.3.1 Seat belt anchorages for Type 1 seat belt assemblies and the pelvic portion of Type 2 seat belt assemblies.

§4.3.1.1 In an installation in which the seat belt does not bear upon the seat frame:

(a) If the seat is a nonadjustable seat, then a line from the seating reference point to the nearest contact point of the belt with the anchorage shall extend forward from the anchorage at an angle with the horizontal of not less than 30 degrees and not more than 75 degrees.

(b) If the seat is an adjustable seat, then a line from a point 64 mm forward of and 10 mm above the seating reference point to the nearest contact point of the belt with the anchorage shall extend forward from the anchorage at an angle with the horizontal of not less than 30 degrees and not more than 75 degrees.

§4.3.1.2 In an installation in which the belt bears upon the seat frame, the seat belt anchorage, if not on the seat structure, shall be aft of the rearmost belt contact point on the seat frame with the seat in the rearmost position.
The line from the seating reference point to the nearest belt contact point on the seat frame, with the seat positioned at the seating reference point, shall extend forward from that contact point at an angle with the horizontal of not less than 30 degrees and not more than 75 degrees.

S4.3.1.3 In an installation in which the seat belt attaches to the seat structure, the line from the seating reference point to the nearest contact point of the belt with the hardware attaching it to the seat structure shall extend forward from that contact point at an angle with the horizontal of not less than 30 degrees and not more than 75 degrees.

S4.3.1.4 Anchorage for an individual seat belt assembly shall be located at least 165 mm apart laterally, measured between the vertical center line of the bolt holes or, for designs using other means of attachment to the vehicle structure, between the centroid of such means.

S4.3.2 Seat belt anchorages for the upper torso portion of Type 2 seat belt assemblies. Adjust the seat to its full rearward and downward position and adjust the seat back to its most upright position. Except a small occupant seating position as defined in 49 CFR 571.222, with the seat and seat back so positioned, as specified by subsection (a) or (b) of this section, the upper end of the upper torso restraint shall be located within the acceptable range shown in Figure 1, with reference to a two-dimensional drafting template described in SAE Standard J826 MAY87 (incorporated by reference, see §571.5). The template’s “H” point shall be at the design “H” point of the seat for its full rearward and full downward position, as defined in SAE Recommended Practice J1100 JUN84 (incorporated by reference, see §571.5), and the template’s torso line shall be at the same angle from the vertical as the seat back.

(a) For fixed anchorages, compliance with this section shall be determined at the vertical centerline of the bolt holes or, for designs using another means of attachment to the vehicle structure, at the centroid of such means.

(b) Except for seating positions on school bus bench seats, compliance with this section shall be determined with adjustable anchorages at the mid-point of the adjustment range of all adjustable positions. For seating positions on school bus bench seats, place adjustable anchorages and torso belt height adjusters in their uppermost position.

S5. Test procedures. Each vehicle shall meet the requirements of S4.2 of this standard when tested according to the following procedures. Where a range of values is specified, the vehicle shall be able to meet the requirements at all points within the range. For the testing specified in these procedures, the anchorage shall be connected to material whose breaking strength is equal to or greater than the breaking strength of the webbing for the seat belt assembly installed as original equipment at that seating position. The geometry of the attachment duplicates the geometry, at the initiation of the test, of the attachment of the originally installed seat belt assembly.

S5.1 Seats with Type 1 or Type 2 seat belt anchorages. With the seat in its rearmost position, apply a force of 22,241 N in the direction in which the seat faces to a pelvic body block as described in Figure 2A, in a plane parallel to the longitudinal centerline of the vehicle for forward and rear facing seats, and in a plane perpendicular to the longitudinal centerline of the vehicle for side facing seats, with an initial force application angle of not less than 5 degrees or more than 15 degrees above the horizontal. Apply the force at the onset rate of not more than 222,411 N per second. Attain the 22,241 N force in not more than 30 seconds and maintain it for 10 seconds. At the manufacturer’s option, the pelvic body block described in Figure 2B may be substituted for the pelvic body block described in Figure 2A to apply the specified force to the center set(s) of anchorages for any group of three or more sets of anchorages that are simultaneously loaded in accordance with S4.2.4 of this standard.

S5.2 Seats with Type 2 or automatic seat belt anchorages. With the seat in its rearmost position, apply forces of 13,345 N in the direction in which the seat faces simultaneously to a pelvic body block, as described in Figure 2A.
and an upper torso body block, as described in Figure 3, in a plane parallel to the longitudinal centerline of the vehicle for forward and rear facing seats, and in a plane perpendicular to the longitudinal centerline of the vehicle for side facing seats, with an initial force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. Apply the forces at the onset rate of not more than 133,447 N per second. Attain the 13,345 N force in not more than 30 seconds and maintain it for 10 seconds. At the manufacturer’s option, the pelvic body block described in Figure 2B may be substituted for the pelvic body block described in Figure 2A to apply the specified force to the center set(s) of anchorages for any group of three or more sets of anchorages that are simultaneously loaded in accordance with S4.2.4 of this standard.
FIGURE 1 - LOCATION OF ANCHORAGE FOR UPPER TORSO RERAINT

- Horizontal Line
- Shoulder Reference Point
- Torso Line
- Design H-Point
- 6.0 in. (152.4 mm)
- 40 deg.
- 80 deg.
- ACCEPTABLE RANGE
- 22.16 in. (563 mm)
Figure 2A.—BODY BLOCK FOR LAP BELT ANCHORAGE

Figure 2B.—OPTIONAL BODY BLOCK FOR CENTER SEATING POSITIONS

NOTES:
1. Block Covered by 25 Med. Density Canvas Covered Foam Rubber
2. All Dimensions in millimeters (mm)
86. Owner’s Manual Information. The owner’s manual in each vehicle with a gross vehicle weight rating of 4,536 kg or less manufactured after September 1, 1987 shall include:

(a) A section explaining that all child restraint systems are designed to be secured in vehicle seats by lap belts or the lap belt portion of a lap-shoulder belt. The section shall also explain that children could be endangered in a crash if their child restraints are not properly secured in the vehicle.

(b) In a vehicle with rear designated seating positions, a statement alerting vehicle owners that, according to accident statistics, children are safer when properly restrained in the rear seating positions than in the front seating positions.
§ 571.210

School bus torso belt anchor point (vertical distance from the SgRP must be fixed or adjustable to at least 400 mm for a small occupant seating position and 520 mm for all other seating positions).

School bus torso belt adjusted height range (must adjust to within 280 mm of SgRP).

Seating Reference Point (SgRP)

Figure 4 - Seat belt anchorage diagram
§ 571.211 [Reserved]

§ 571.212 Standard No. 212; Windshield mounting.

S1. Scope. This standard establishes windshield retention requirements for motor vehicles during crashes.

S2. Purpose. The purpose of this standard is to reduce crash injuries and fatalities by providing for retention of the vehicle windshield during a crash, thereby utilizing fully the penetration-resistance and injury-avoidance properties of the windshield glazing material and preventing the ejection of occupants from the vehicle.

S3. Application. This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks, and buses having a gross vehicle weight rating of 4536 kilograms or less. However, it does not apply to forward control vehicles, walk-in van-type vehicles, or to open-body type vehicles with fold-down or removable windshields.

S4. Definition. Passive restraint system means a system meeting the occupant crash protection requirements of S5, of Standard No. 208 by means that require no action by vehicle occupants.

S5. Requirements. When the vehicle travelling longitudinally forward at any speed up to and including 48 kilometers per hour impacts a fixed collision barrier that is perpendicular to the line of travel of the vehicle, under
§571.213 Standard No. 213; Child restraint systems.

S1. Scope. This standard specifies requirements for child restraint systems used in motor vehicles and aircraft.

S2. Purpose. The purpose of this standard is to reduce the number of children killed or injured in motor vehicle crashes and in aircraft.

S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks and buses, and to child restraint systems for use in motor vehicles and aircraft.

S4. Definitions.

Add-on child restraint system means any portable child restraint system.

Backless child restraint system means a child restraint, other than a belt-positioning seat, that consists of a seating platform that does not extend up to provide a cushion for the child's back or head and has a structural element designed to restrain forward motion of the child's torso in a forward impact.

Belt-positioning seat means a child restraint system that positions a child on a vehicle seat to improve the fit of a vehicle Type II belt system on the child and that lacks any component, such as a belt system or a structural element, designed to restrain forward movement of the child's torso in a forward impact.
Booster seat means either a backless child restraint system or a belt-positioning seat.

Built-in child restraint system means a child restraint system that is designed to be an integral part of and permanently installed in a motor vehicle.

Car bed means a child restraint system designed to restrain or position a child in the supine or prone position on a continuous flat surface.

Child restraint anchorage system is defined in S3 of FMVSS No. 225 (§ 571.225).

Child restraint system means any device, except Type I or Type II seat belts, designed for use in a motor vehicle or aircraft to restrain, seat, or position children who weigh 36 kilograms (kg) (80 lb) or less.

Contactable surface means any child restraint system surface (other than that of a belt, belt buckle, or belt adjustment hardware) that may contact any part of the head or torso of the appropriate test dummy, specified in S7, when a child restraint system is tested in accordance with S6.1.

Factory-installed built-in child restraint system means a built-in child restraint system that has been or will be permanently installed in a motor vehicle before that vehicle is certified as a completed or altered vehicle in accordance with part 567 of this chapter.

Harness means a combination pelvic and upper torso child restraint system that consists primarily of flexible material, such as straps, webbing or similar material, and that does not include a rigid seating structure for the child.

Rear-facing child restraint system means a child restraint system, except a car bed, that positions a child to face in the direction opposite to the normal direction of travel of the motor vehicle.

Representative aircraft passenger seat means either a Federal Aviation Administration approved production aircraft passenger seat or a simulated aircraft passenger seat conforming to Figure 6.

Seat orientation reference line or SORL means the horizontal line through Point Z as illustrated in Figure 1A.

Specific vehicle shell means the actual vehicle model part into which the built-in child restraint system is or is intended to be fabricated, including the complete surroundings of the built-in system. If the built-in child restraint system is or is intended to be fabricated as part of any seat other than a front seat, these surroundings include the back of the seat in front, the interior rear side door panels and trim, the floor pan, adjacent pillars (e.g., the B and C pillars), and the ceiling. If the built-in system is or is intended to be fabricated as part of the front seat, these surroundings include the dashboard, the steering mechanism and its associated trim hardware, any levers and knobs installed on the floor or on a console, the interior front side door panels and trim, the front seat, the floor pan, the A pillars and the ceiling.

Tether anchorage is defined in S3 of FMVSS No. 225 (§ 571.225).

Tether strap is defined in S3 of FMVSS No. 225 (§ 571.225).

Tether hook is defined in S3 of FMVSS No. 225 (§ 571.225).

Torso means the portion of the body of a seated anthropomorphic test dummy, excluding the thighs, that lies between the top of the child restraint system seating surface and the top of the shoulders of the test dummy.

S5. Requirements. (a) Each motor vehicle with a built-in child restraint system shall meet the requirements in this section when, as specified, tested in accordance with S6.1 and this paragraph.

(b) Each child restraint system manufactured for use in motor vehicles shall meet the requirements in this section when, as specified, tested in accordance with S6.1 and this paragraph. Each add-on system shall meet the requirements at each of the restraint’s seat back angle adjustment positions and restraint belt routing positions, when the restraint is oriented in the direction recommended by the manufacturer (e.g., forward, rearward or laterally) pursuant to S5.6, and tested with the test dummy specified in S7.

(c) Each child restraint system manufactured for use in aircraft shall meet the requirements in this section and the additional requirements in S8.

(d) Each child restraint tested with a Part 572 Subpart S dummy need not meet S5.1.2 and S5.1.3.
(e) Each child restraint system tested with a part 572 subpart T dummy need not meet S5.1.2.1(a).

(f) Each child restraint system that is equipped with an internal harness or other internal components to restrain the child need not meet this standard when attached to the lower anchors of the child restraint anchorage system on the standard seat assembly if the sum of the weight of the child restraint system (in pounds) and the average weight of child represented by the test dummy used to test the child restraint in accordance with S7 of this standard, shown in the table below, exceeds 65 pounds. Such a child restraint must meet this standard when tested using its internal harness or components to restrain such a test dummy while installed using the standard seat belt assembly specified in S5.3.2 of this standard.

<table>
<thead>
<tr>
<th>Test dummy (specified in S7 of this standard)</th>
<th>Average weight of child represented by test dummy (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRABII 12-month-old infant dummy (49 CFR Part 572, Subpart R)</td>
<td>22</td>
</tr>
<tr>
<td>Hybrid III 3-year-old dummy (49 CFR Part 572, Subpart P)</td>
<td>31</td>
</tr>
<tr>
<td>Hybrid III 6-year-old dummy (49 CFR Part 572, Subpart N)</td>
<td>45</td>
</tr>
<tr>
<td>Hybrid III 6-year-old weighted child test dummy (49 CFR Part 572, Subpart S)</td>
<td>62</td>
</tr>
<tr>
<td>Hybrid II 6-year-old dummy (49, CFR Part 572, Subpart I)</td>
<td>45</td>
</tr>
</tbody>
</table>

S5.1 Dynamic performance.

S5.1.1 Child restraint system integrity.

When tested in accordance with S6.1, each child restraint system shall meet the requirements of paragraphs (a) through (c) of this section.

(a) Exhibit no complete separation of any load bearing structural element and no partial separation exposing either surfaces with a radius of less than ¼ inch or surfaces with protrusions greater than ⅛ inch above the immediate adjacent surrounding contactable surface of any structural element of the system.

(b)(1) If adjustable to different positions, remain in the same adjustment position during the testing that it was in immediately before the testing, except as otherwise specified in paragraph (b)(2).

(2)(i) Subject to paragraph (b)(2)(ii), a rear-facing child restraint system may have means for repositioning the seating surface of the system that allows the system’s occupant to move from a reclined position to an upright position and back to a reclined position during testing.

(ii) No opening that is exposed and is larger than ½ inch before the testing shall become smaller during the testing as a result of the movement of the seating surface relative to the restraint system as a whole.

(c) If a front facing child restraint system, not allow the angle between the system’s back support surfaces for the child and the system’s seating surface to be less than 45 degrees at the completion of the test.

S5.1.2 Injury criteria. When tested in accordance with S6.1 and with the test dummies specified in S7, each child restraint system manufactured before August 1, 2005, that, in accordance with S5.5.2, is recommended for use by children whose mass is more than 10 kg shall—

(a) Limit the resultant acceleration at the location of the accelerometer mounted in the test dummy head as specified in part 572 such that the expression:

\[
\left(\frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} \text{adt} \right)^{2.5} (t_2 - t_1)
\]

shall not exceed 1,000, where a is the resultant acceleration expressed as a multiple of g (the acceleration of gravity), and t_1 and t_2 are any two moments during the impacts.

(b) Limit the resultant acceleration at the location of the accelerometer mounted in the test dummy upper thorax as specified in part 572 to not more than 60 g’s, except for intervals whose cumulative duration is not more than 3 milliseconds.

S5.1.2.1 When tested in accordance with S6.1 and with the test dummies specified in S7, each child restraint system manufactured on or after August 1, 2005 shall—

(a) Limit the resultant acceleration at the location of the accelerometer
§571.213 49 CFR Ch. V (10–1–16 Edition)

mounted in the test dummy head such that, for any two points in time, \(t_1 \) and \(t_2 \), during the event which are separated by not more than a 36 millisecond time interval and where \(t_1 \) is less than \(t_2 \), the maximum calculated head injury criterion (HIC96) shall not exceed 1,000, determined using the resultant head acceleration at the center of gravity of the dummy head, \(ar \), expressed as a multiple of \(g \) (the acceleration of gravity), calculated using the expression:

\[
HIC = \left[\frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} a(t) \, dt \right]^{2.5} (t_2 - t_1)
\]

(b) The resultant acceleration calculated from the output of the thoracic instrumentation shall not exceed 60 \(g \)'s, except for intervals whose cumulative duration is not more than 3 milliseconds.

S5.1.2.2 At the manufacturer’s option (with said option irrevocably selected prior to, or at the time of, certification of the restraint), child restraint systems manufactured before August 1, 2005 may be tested to the requirements of S5 while using the test dummies specified in S7.1.2 of this standard according to the criteria for selecting test dummies specified in that paragraph. That paragraph specifies the dummies used to test child restraint systems manufactured on or after August 1, 2005. If a manufacturer selects the dummies specified in S7.1.2 to test its product, the injury criteria specified by S5.1.2.1 of this standard must be met. Child restraints manufactured on or after August 1, 2005 must be tested using the test dummies specified in S7.1.2.

S5.1.3 Occupant excursion. When tested in accordance with S6.1 and the requirements specified in this section, each child restraint system shall meet the applicable excursion limit requirements specified in S5.1.3.1–S5.1.3.3.

S5.1.3.1 Child restraint systems other than rear-facing ones and car beds. Each child restraint system, other than a rear-facing child restraint system or a car bed, shall retain the test dummy’s torso within the system.

(a) For each add-on child restraint system:

1. No portion of the test dummy’s head shall pass through a vertical transverse plane that is 720 mm or 813 mm (as specified in the table in this S5.1.3.1) forward of point \(Z \) on the standard seat assembly, measured along the center SORL (as illustrated in figure 1B of this standard); and

2. Neither knee pivot point shall pass through a vertical transverse plane that is 915 mm forward of point \(Z \) on the standard seat assembly, measured along the center SORL.

Table to S5.1.3.1(a)—Add-On Forward-Facing Child Restraints

<table>
<thead>
<tr>
<th>When this type of child restraint is tested in accordance with</th>
<th>these excursion limits apply</th>
<th>EXPLANATORY NOTE: In the test specified in 2nd column, the child restraint is attached to the test seat assembly in the manner described below, subject to certain conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harnesses, backless booster seats and restraints designed for use by physically handicapped children.</td>
<td>S6.1.2(a)(1)(i)(A) Head 813 mm; Knee 915 mm</td>
<td>Attached with lap belt; in addition, if a tether is provided, it is attached.</td>
</tr>
<tr>
<td>Harnesses labeled per S5.3.1(b)(i) through S5.3.1(b)(iii) and Figure 12. Belt-positioning seats</td>
<td>S6.1.2(a)(1)(i)(A) Head 813 mm; Knee 915 mm</td>
<td>Attached with seat back mount.</td>
</tr>
<tr>
<td>All other child restraints, manufactured before September 1, 1999.</td>
<td>S6.1.2(a)(1)(i)(B) Head 813 mm; Knee 915 mm</td>
<td>Attached with lap and shoulder belt; no tether is attached.</td>
</tr>
<tr>
<td>All other child restraints, manufactured on or after September 1, 1999.</td>
<td>S6.1.2(a)(1)(i)(B) Head 813 mm; Knee 915 mm</td>
<td>Attached with lap belt; no tether is attached.</td>
</tr>
<tr>
<td>S6.1.2(a)(1)(i)(B) (beginning September 1, 2002).</td>
<td>S6.1.2(a)(1)(i)(A) Head 813 mm; Knee 915 mm</td>
<td>Attached to lower anchorages of child restraint anchorage system; no tether is attached.</td>
</tr>
<tr>
<td>S6.1.2(a)(1)(i)(BC) (beginning September 1, 2002).</td>
<td>S6.1.2(a)(1)(i)(A) Head 720 mm; Knee 915 mm</td>
<td>Attached with lap belt; in addition, if a tether is provided, it is attached.</td>
</tr>
</tbody>
</table>

TABLE TO S5.1.3.1(a)—ADD-ON FORWARD-FACING CHILD RESTRAINTS
§571.213

(b) In the case of a built-in child restraint system, neither knee pivot point shall, at any time during the dynamic test, pass through a vertical transverse plane that is 305 mm forward of the initial pre-test position of the respective knee pivot point, measured along a horizontal line that passes through the knee pivot point and is parallel to the vertical longitudinal plane that passes through the vehicle’s longitudinal centerline.

S5.1.3.2 Rear-facing child restraint systems. In the case of each rear-facing child restraint system, all portions of the test dummy’s torso shall be retained within the system and neither of the target points on either side of the dummy’s head and on the transverse axis passing through the center of mass of the dummy’s head and perpendicular to the head’s midsagittal plane, shall pass through the transverse orthogonal planes whose intersection contains the forward-most and top-most points on the child restraint system surfaces (illustrated in Figure 1C).

S5.1.3.3 Car beds. In the case of car beds, all portions of the test dummy’s head and torso shall be retained within the confines of the car bed.

S5.1.4 Back support angle. When a rear-facing child restraint system is tested in accordance with S6.1, the angle between the system’s back support surface for the child and the vertical shall not exceed 70 degrees.

S5.2 Force distribution.

S5.2.1 Minimum head support surface—child restraints other than car beds.

S5.2.1.1 Except as provided in S5.2.1.2, each child restraint system other than a car bed shall provide restraint against rearward movement of the head of the child (rearward in relation to the child) by means of a continuous seat back which is an integral part of the system and which—

(a) Has a height, measured along the system seat back surface for the child in the vertical longitudinal plane passing through the longitudinal centerline of the child restraint systems from the lowest point on the system seating surface that is contacted by the buttocks of the seated dummy, as follows:

<table>
<thead>
<tr>
<th>Weight</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not more than 18 kg</td>
<td>500</td>
</tr>
<tr>
<td>More than 18 kg</td>
<td>560</td>
</tr>
</tbody>
</table>

1 When a child restraint system is recommended under S5.5 for use by children of the above weights.

2 The height of the portion of the system seat back providing head restraint shall not be less than the above.

(b) Has a width of not less than 8 inches, measured in the horizontal plane at the height specified in paragraph (a) of this section. Except that a child restraint system with side supports extending at least 4 inches forward from the padded surface of the portion of the restraint system provided for support of the child’s head may have a width of not less than 6 inches, measured in the horizontal plane at the height specified in paragraph (a) of this section.

(c) Limits the rearward rotation of the test dummy head so that the angle between the head and torso of the dummy specified in S7, when tested in accordance with S6.1 is not more than 45 degrees greater than the angle between the head and torso after the dummy has been placed in the system in accordance with S6.1.2.3 and before the system is tested in accordance with S6.1.

S5.2.1.2 The applicability of the requirements of S5.2.1.1 to a front-facing child restraint, and the conformance of any child restraint other than a car bed to those requirements, is determined using the largest of the test dummies specified in S7 for use in testing that restraint, provided that the 6-year-old dummy described in subpart I or subpart N of part 572 of this title and the 10-year-old dummy described in subpart T of part 572 of this title, are not used to determine the applicability of or compliance with S5.2.1.1. A front facing child restraint system is not required to comply with S5.2.1.1 if the target point on either side of the dummy’s head is below a horizontal plane tangent to the top of—

(a) The standard seat assembly, in the case of an add-on child restraint system, when the dummy is positioned in the system and the system is installed on the assembly in accordance with S6.1.2.

(b) The vehicle seat, in the case of a built-in child restraint system, when
the system is activated and the dummy is positioned in the system in accordance with S6.1.2.

S5.2.2 Torso impact protection. Each child restraint system other than a car bed shall comply with the applicable requirements of S5.2.2.1 and S5.2.2.2.

S5.2.2.1(a) The system surface provided for the support of the child’s back shall be flat or concave and have a continuous surface area of not less than 65 square inches.

(b) Each system surface provided for support of the side of the child’s torso shall be flat or concave and have a continuous surface of not less than 24 square inches for systems recommended for children weighing 20 pounds or more, or 48 square inches for systems recommended for children weighing less than 20 pounds.

(c) Each horizontal cross section of each system surface designed to restrain forward movement of the child’s torso shall be flat or concave and each vertical longitudinal cross section shall be flat or convex with a radius of curvature of the underlying structure of not less than 2 inches.

S5.2.2.2 Each forward-facing child restraint system shall have no fixed or movable surface—

(a) Directly forward of the dummy and intersected by a horizontal line—

(1) Parallel to the SORL, in the case of the add-on child restraint system, or

(2) Parallel to a vertical plane through the longitudinal center line of the vehicle seat, in the case of a built-in child restraint system, and,

(b) Passing through any portion of the dummy, except for surfaces which restrain the dummy when the system is tested in accordance with S6.1.2(a)(2), so that the child restraint system shall conform to the requirements of S5.1.2 and S5.1.3.1.

S5.2.3 [Reserved]

§ 571.213 Protrusion limitation. Any portion of a rigid structural component within or underlying a contactable surface, or any portion of a child restraint system surface that is subject to the requirements of S5.2.3 shall, with any padding or other flexible overlay material removed, have a height above any immediately adjacent restraint system surface of not more than 3/8 inch and no exposed edge with a radius of less than 1/4 inch.

S5.3 Installation.

S5.3.1 Add-on child restraints shall meet either (a) or (b), as appropriate.

(a) Except for components designed to attach to a child restraint anchor system, each add-on child restraint system must not have any means designed for attaching the system to a vehicle seat cushion or vehicle seat back and any component (except belts) that is designed to be inserted between the vehicle seat cushion and vehicle seat back.

(b) Harnesses manufactured for use on school bus seats must meet S5.3.1(a) of this standard, unless a label that conforms in content to Figure 12 and to the requirements of S5.3.1(b)(1) through S5.3.1(b)(3) of this standard is permanently affixed to the part of the harness that attaches the system to a vehicle seat back. Harnesses that are not labeled as required by this paragraph must meet S5.3.1(a).

(1) The label must be plainly visible when installed and easily readable.

(2) The message area must be white with black text. The message area must be no less than 20 square centimeters.

(3) The pictogram shall be gray and black with a red circle and slash on a white background. The pictogram shall be no less than 20 mm in diameter.

S5.3.2 Each add-on child restraint system shall be capable of meeting the requirements of this standard when installed solely by each of the means indicated in the following table for the particular type of child restraint system:
TABLE FOR §5.3.2

<table>
<thead>
<tr>
<th>Type of add-on child restraint system</th>
<th>Means of installation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type 1 seat belt assembly</td>
</tr>
<tr>
<td>Harnesses labeled per §5.3.1(b)(1) through §5.3.1(b)(3) and Figure 12</td>
<td>X</td>
</tr>
<tr>
<td>Other harnesses</td>
<td>X</td>
</tr>
<tr>
<td>Car beds</td>
<td>X</td>
</tr>
<tr>
<td>Rear-facing restraints</td>
<td>X</td>
</tr>
<tr>
<td>Belt-positioning seats</td>
<td>X</td>
</tr>
<tr>
<td>All other child restraints</td>
<td>X</td>
</tr>
</tbody>
</table>

S5.3.3 Car beds. Each car bed shall be designed to be installed on a vehicle seat so that the car bed’s longitudinal axis is perpendicular to a vertical longitudinal plane through the longitudinal axis of the vehicle.

S5.4 Belts, belt buckles, and belt webbing.

S5.4.1 Performance requirements.

S5.4.1.1 Child restraint systems manufactured before September 1, 2007. The webbing of belts provided with a child restraint system and used to attach the system to the vehicle or to restrain the child within the system shall—
(a) Have a minimum breaking strength for new webbing of not less than 15,000 N in the case of webbing used to secure a child restraint system to the vehicle, including the tether and lower anchorages of a child restraint anchorage system, and not less than 11,000 N in the case of the webbing used to secure a child to a child restraint system when tested in accordance with §5.1 of FMVSS No. 209. Each value shall be not less than the 15,000 N and 11,000 N applicable breaking strength requirements, but the median value shall be used for determining the retention of breaking strength in paragraphs (b)(1), (c)(1), and (c)(2) of this section.

(b)(1) After being subjected to abrasion as specified in §5.1(d) or §5.3(c) of FMVSS 209 (§571.209), have a breaking strength of not less than 75 percent of the new webbing strength, when tested in accordance with §5.1(b) of FMVSS 209.

(b)(2) A mass of 2.35 ± 0.05 kg shall be used in the test procedure in §5.1(d) of FMVSS 209 for webbing, including webbing used to secure a child restraint system to the tether and lower anchorages of a child restraint anchorage system, except that a mass of 1.5 ± 0.05 kg shall be used for webbing in pelvic and upper torso restraints of a belt assembly used in a child restraint system. The mass is shown as (B) in Figure 2 of FMVSS 209.

S5.4.1.2 Child restraint systems manufactured on or after September 1, 2007. The webbing of belts provided with a child restraint system and used to attach the system to the vehicle or to restrain the child within the system shall—
(a) Have a minimum breaking strength for new webbing of not less than 15,000 N in the case of webbing used to secure a child restraint system to the vehicle, including the tether and lower anchorages of a child restraint anchorage system, and not less than 11,000 N in the case of the webbing used to secure a child to a child restraint system when tested in accordance with §5.1 of FMVSS No. 209. Each value shall be not less than the 15,000 N and 11,000 N applicable breaking strength requirements, but the median value shall be used for determining the retention of breaking strength in paragraphs (b)(1), (c)(1), and (c)(2) of this section.

(b)(1) After being subjected to abrasion as specified in §5.1(d) or §5.3(c) of FMVSS 209 (§571.209), have a breaking strength of not less than 75 percent of the new webbing strength, when tested in accordance with §5.1(b) of FMVSS 209.

(b)(2) A mass of 2.35 ± 0.05 kg shall be used in the test procedure in §5.1(d) of FMVSS 209 for webbing, including webbing to secure a child restraint system to the vehicle, including the tether and lower anchorages of a child restraint anchorage system, except that a mass of 1.5 ± 0.05 kg shall be used for webbing in pelvic and upper torso restraints of a belt assembly used in a child restraint system. The mass is shown as (B) in Figure 2 of FMVSS 209.
(c)(1) After exposure to the light of a carbon arc and tested by the procedure specified in S5.1(e) of FMVSS 209 (§571.209), have a breaking strength of not less than 60 percent of the new webbing, and shall have a color retention not less than No. 2 on the AATCC Gray Scale for Evaluating Change in Color (incorporated by reference, see §571.5).

(2) After being subjected to micro-organisms and tested by the procedures specified in S5.1(f) of FMVSS 209 (§571.209), shall have a breaking strength not less than 85 percent of the new webbing.

(d) If contactable by the test dummy torso when the system is tested in accordance with S6.1, have a width of not less than 1½ inches when measured in accordance with S5.4.1.3.

S5.4.1.3 Width test procedure. Condition the webbing for 24 hours in an atmosphere of any relative humidity between 48 and 67 percent, and any ambient temperature between 70° and 77° F. Measure belt webbing width under a tension of 5 pounds applied lengthwise.

S5.4.2 Belt buckles and belt adjustment hardware. Each belt buckle and item of belt adjustment hardware used in a child restraint system shall conform to the requirements of S4.3(a) and S4.3(b) of FMVSS No. 209 (§571.209).

S5.4.3 Belt Restraint.

S5.4.3.1 General. Each belt that is part of a child restraint system and that is designed to restrain a child using the system shall be adjustable to snugly fit any child whose height and weight are within the ranges recommended in accordance with S5.5.2(f) and who is positioned in the system in accordance with the instructions required by S5.6.

S5.4.3.2 Direct restraint. Except for belt-positioning seats, each belt that is part of a child restraint system and that is designed to restrain a child using the system shall be adjustable to snugly fit any child whose height and weight are within the ranges recommended in accordance with the instructions required by S5.6.

S5.4.3.3 Seating systems. Except for child restraint systems subject to S5.4.3.4, each child restraint system that is designed for use by a child in a seated position and that has belts designed to restrain the child, shall, with the test dummy specified in S7 positioned in the system in accordance with S10 provide:

(a) Upper torso restraint in the form of:
 (i) Belts passing over each shoulder of the child, or
 (ii) A fixed or movable surface that complies with S5.2.2.1(c), and

(b) Lower torso restraint in the form of:
 (i) A lap belt assembly making an angle between 45° and 90° with the child restraint seating surface at the lap belt attachment points, or
 (ii) A fixed or movable surface that complies with S5.2.2.1(c), and

(c) In the case of each seating system recommended for children whose masses are more than 10 kg, crotch restraint in the form of:
 (i) A crotch belt connectable to the lap belt or other device used to restrain the lower torso, or
 (ii) A fixed or movable surface that complies with S5.2.2.1(c).

S5.4.3.4 Harnesses. Each harness shall:

(a) Provide upper torso restraint, including belts passing over each shoulder of the child;

(b) Provide lower torso restraint by means of lap and crotch belt; and

(c) Prevent a child of any height for which the restraint is recommended for use pursuant to S5.5.2(f) from standing upright on the vehicle seat when the child is placed in the device in accordance with the instructions required by S5.6.

S5.4.3.5 Buckle release. Any buckle in a child restraint system belt assembly designed to restrain a child using the system shall:

(a) In the case of an add-on child restraint system, from the mass of the seat back of the standard seat assembly specified in S6.1, or

(b) In the case of a built-in child restraint system, from the mass of any part of the vehicle into which the child restraint system is built.
newtons (N) is applied and shall release when a force of not more than 62 N is applied;
(b) After the dynamic test of §6.1, when tested in accordance with the appropriate sections of §6.2, release when a force of not more than 71 N is applied, provided, however, that the performance of any child restraint to this requirement is determined using the largest of the test dummies specified in §7 for use in testing that restraint when the restraint is facing forward, rearward, and/or laterally;
(c) Meet the requirements of §4.3(d)(2) of FMVSS No. 209 (§571.209), except that the minimum surface area for child restraint buckles designed for push button application shall be 0.6 square inch;
(d) Meet the requirements of §4.3(g) of FMVSS No. 209 (§571.209) when tested in accordance with §3.2(g) of FMVSS No. 209; and
(e) Not release during the testing specified in §6.1.
§5.5 Labeling. Any labels or written instructions provided in addition to those required by this section shall not obscure or confuse the meaning of the required information or be otherwise misleading to the consumer. Any labels or written instructions other than in the English language shall be an accurate translation of English labels or written instructions.
§5.5.1 Each add-on child restraint system shall be permanently labeled with the information specified in §5.5.2 (a) through (m).
§5.5.2 The information specified in paragraphs (a) through (m) of this section shall be stated in the English language and lettered in letters and numbers that are not smaller than 10 point type. Unless otherwise specified, the information shall be labeled on a white background with black text. Unless written in all capitals, the information shall be stated in sentence capitalization.
(a) The model name or number of the system.
(b) The manufacturer’s name. A distributor’s name may be used instead if the distributor assumes responsibility for all duties and liabilities imposed on the manufacturer with respect to the system by the National Traffic and Motor Vehicle Safety Act, as amended.
(c) The statement: “Manufactured in ___,” inserting the month and year of manufacture.
(d) The place of manufacture (city and State, or foreign country). However, if the manufacturer uses the name of the distributor, then it shall state the location (city and State, or foreign country) of the principal offices of the distributor.
(e) The statement: “This child restraint system conforms to all applicable Federal motor vehicle safety standards.”
(f) One of the following statements, as appropriate, inserting the manufacturer’s recommendations for the maximum mass of children who can safely occupy the system, except that booster seats shall not be recommended for children whose masses are less than 13.6 kg. For seats that can only be used as belt-positioning seats, manufacturers must include the maximum and minimum recommended height, but may delete the reference to weight:
(1) Use only with children who weigh ___ pounds (___ kg) or less and whose height is (insert values in English and metric units; use of word “mass” in label is optional) or less; or
(2) Use only with children who weigh between ___ and ___ pounds (insert appropriate English and metric values; use of word “mass” is optional) and whose height is (insert appropriate values in English and metric units) or less and who are capable of sitting upright alone; or
(3) Use only with children who weigh between ___ and ___ pounds (insert appropriate English and metric values; use of word “mass” is optional) and whose height is (insert appropriate values in English and metric units) or less.
(4) Use only with children who weigh between ___ and ___ pounds (insert appropriate English and metric values; use of word “mass” is optional) and whose height is between ___ and ___ (insert appropriate values in English and metric units).
(g) The statements specified in paragraphs (1) and (2):
(1) A heading as specified in §5.5.2(k)(3)(i), with the statement
“WARNING! DEATH or SERIOUS INJURY can occur,” capitalized as written and followed by bulleted statements in the following order:

(i) As appropriate, the statements required by the following sections will be bulleted and placed after the statement required by 5.5.2(g)(1) in the following order: 5.5.2(k)(1) or 5.5.2(k)(2), 5.5.2(f), 5.5.2(h), 5.5.2(j), and 5.5.2(i).

(ii) Secure this child restraint with the vehicle’s child restraint anchorage system, if available, or with a vehicle belt. [For car beds, harnesses, and belt positioning seats, the first part of the statement regarding attachment by the child restraint anchorage system is optional.] [For belt-positioning seats, the second part of the statement regarding attachment by the vehicle belt does not apply.] [For child restraints manufactured from February 27, 2014 to February 26, 2015, the following statement applies.] Child restraint systems equipped with internal harnesses to restrain the child and with components to attach to a child restraint anchorage system and for which the combined weight of the child restraint system and the maximum recommended child weight for use with internal harnesses exceeds 65 pounds, must be labeled with the lower anchors of the child restraint anchorage system (LATCH system) to attach this child restraint when restraining a child weighing more than * [*insert a recommended weight value in English and metric units such that the sum of the recommended weight value and the weight of the child restraint system does not exceed 65 pounds (29.5 kg)] with the internal harnesses of the child restraint.

(iii) Follow all instructions on this child restraint and in the written instructions located (insert storage location on the restraint for the manufacturer’s installation instruction booklet or sheet).

(iv) Register your child restraint with the manufacturer.

(2) At the manufacturer’s option, the phrase “DEATH or SERIOUS INJURY can occur” in the heading can be on either a white or yellow background.

(3) More than one label may be used for the required bulleted statements. Multiple labels shall be placed one above the other unless that arrangement is precluded by insufficient space or shape of the child restraint. In that case, multiple labels shall be placed side by side. When using multiple labels, the mandated warnings must be in the correct order when read from top to bottom. If the labels are side-by-side, then the mandated warnings must appear top to bottom of the leftmost label, then top to bottom of the next label to its right, and so on. There shall be no intervening labels and the required heading shall only appear on the first label in the sequence.

(a) In the case of each child restraint system that has belts designed to restrain children using them and which do not adjust automatically to fit the child: Snugly adjust the belts provided with this child restraint around your child.

(b) Except as provided in paragraph (i)(2)(ii) of this section, for a booster seat which is recommended for use with both a vehicle’s Type I and Type II seat belt assemblies, the following statement: Use only the vehicle’s lap belt system, or the lap belt part of a lap/shoulder belt system with the shoulder belt placed behind the child, when restraining the child with the (insert description of the system element provided to restrain forward movement of the child’s torso when used with a lap belt (e.g., shield)), and only the vehicle’s lap and shoulder belt system when using the booster without the (insert above description).

(ii) A booster seat which is recommended for use with both a vehicle’s Type I and Type II seat belt assemblies is not subject to §5.5.2(i)(2)(1) if, when the booster is used with the shield or similar component, the booster will cause the shoulder belt to be located in
a position other than in front of the child when the booster is installed. However, such a booster shall be labeled with a warning to use the booster with the vehicle’s lap and shoulder belt system when using the booster without a shield.

(j) In the case of each child restraint system equipped with a top anchorage strap, the statement: Secure the top anchorage strap provided with this child restraint.

(k)(1) In the case of each rear-facing child restraint system that is designed for infants only, the statement: Use only in a rear-facing position when using it in the vehicle.

(2) In the case of a child restraint system that is designed to be used rearward-facing for infants and forward-facing for older children, the statement: Use only in a rear-facing position when using it with an infant weighing less than (insert a recommended weight that is not less than 20 pounds).

(3) Except as provided in (k)(4) of this section, each child restraint system that can be used in a rear-facing position shall have a label that conforms in content to Figure 10 and to the requirements of §S5.2(k)(3)(i) through §S5.2(k)(3)(ii) of this standard permanently affixed to the outer surface of the cushion or padding in or adjacent to the area where a child’s head would rest, so that the label is plainly visible and easily readable.

(i) The heading area shall be yellow with the word “warning” and the alert symbol in black.

(ii) The message area shall be white with black text. The message area shall be no less than 30 square cm.

(iii) The pictogram shall be black with a red circle and slash on a white background. The pictogram shall be no less than 30 mm in diameter.

(4) If a child restraint system is equipped with a device that deactivates the passenger-side air bag in a vehicle when and only when the child restraint is installed in the vehicle and provides a signal, for at least 60 seconds after deactivation, that the air bag is deactivated, the label specified in Figure 10 may include the phrase “unless air bag is off” after “on front seat with air bag.”

(1) An installation diagram showing the child restraint system installed in:

(1) A seating position equipped with a continuous-loop lap/shoulder belt;

(2) A seating position equipped with only a lap belt, as specified in the manufacturer’s instructions; and

(3) A seating position equipped with a child restraint anchorage system. For child restraint systems manufactured on or after February 27, 2015, the following paragraphs (1)(3)(1) and (1l) apply, as appropriate.

(1) If the child restraint is designed to meet the requirements of this standard when installed by the child restraint anchorage system according to §S5.3.2, and if the sum of the weight of the child restraint and the maximum child weight recommended for the child restraint when used with the restraint’s internal harness or components is greater than 65 lb when used forward-facing or rear-facing, include the following statement on this installation diagram: “Do not install by this method for a child weighing more than *.” At the manufacturer’s option, “*” is the child weight limit in English units in accordance with §S5.5.2(l)(3)(A)(1), (1l), or (ii). The corresponding child weight limit in metric units may also be included in the statement at the manufacturer’s option.

(A) For forward-facing and rear-facing child restraints, * is less than or equal to 65 minus child restraint weight (pounds).

(B) For forward-facing child restraints, * is the child weight limit specified in the following table corresponding to the value CW, calculated as 65 minus child restraint weight (pounds).

<table>
<thead>
<tr>
<th>CW</th>
<th>Child weight limit (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 < CW ≤ 25</td>
<td>25</td>
</tr>
<tr>
<td>25 < CW ≤ 30</td>
<td>30</td>
</tr>
<tr>
<td>30 < CW ≤ 35</td>
<td>35</td>
</tr>
<tr>
<td>35 < CW ≤ 40</td>
<td>40</td>
</tr>
<tr>
<td>40 < CW ≤ 45</td>
<td>45</td>
</tr>
<tr>
<td>45 < CW ≤ 50</td>
<td>50</td>
</tr>
<tr>
<td>50 < CW ≤ 55</td>
<td>55</td>
</tr>
<tr>
<td>55 < CW ≤ 60</td>
<td>60</td>
</tr>
</tbody>
</table>

Table to §S5.5.2(L)(3)(i)(B)—Maximum Child Weight Limit for Lower Anchor Use for Forward-Facing Child Restraint System—Rounding
§ 571.213

49 CFR Ch. V (10–1–16 Edition)

(C) For rear-facing child restraints, * is the child weight limit specified in the following table corresponding to the value CW, calculated as 60 minus child restraint weight (pounds).

<table>
<thead>
<tr>
<th>CW = 60—child restraint weight (pounds)</th>
<th>Child weight limit (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 < CW ≤ 20</td>
<td>20</td>
</tr>
<tr>
<td>20 < CW ≤ 25</td>
<td>25</td>
</tr>
<tr>
<td>25 < CW ≤ 30</td>
<td>30</td>
</tr>
<tr>
<td>30 < CW ≤ 35</td>
<td>35</td>
</tr>
<tr>
<td>35 < CW ≤ 40</td>
<td>40</td>
</tr>
<tr>
<td>40 < CW ≤ 45</td>
<td>45</td>
</tr>
<tr>
<td>45 < CW ≤ 50</td>
<td>50</td>
</tr>
<tr>
<td>50 < CW ≤ 55</td>
<td>55</td>
</tr>
</tbody>
</table>

TABLE TO S5.5.2(l)(3)(i)(C)—MAXIMUM CHILD WEIGHT LIMIT FOR LOWER ANCHOR USE FOR REAR-FACING CHILD RESTRAINT SYSTEM—ROUNDING

(ii) "Child restraints could be recalled for safety reasons. You must register this restraint to be reached in a recall. Send your name, address, e-mail address if available (preceding four words are optional) and the restraint’s model number and manufacturing date to (insert address) or call (insert a U.S. telephone number). For recall information, call the U.S. Government’s Vehicle Safety Hotline at 1–888–327–4236 (TTY: 1–800–424–9153), or go to http://www.NHTSA.gov.”

(n) Child restraint systems, other than belt-positioning seats, harnesses and backless child restraint systems, may be certified as complying with the provisions of S8. Child restraints that are so certified shall be labeled with the statement “This Restraint is Certified for Use in Motor Vehicles and Aircraft.” Belt-positioning seats, harnesses and backless child restraint systems shall be labeled with the statement “This Restraint is Not Certified for Use in Aircraft.” The statement required by this paragraph shall be in red lettering and shall be placed after the certification statement required by S5.5.2(e).

S5.5.3 The information specified in S5.5.2(f) through (l) shall be located on the add-on child restraint system so that it is visible when the system is installed as specified in S5.6.1, except that for child restraints with a detachable base, the installation diagrams specified in S5.5.2(l) are required to be visible only when the base alone is installed.

S5.5.4 (a) Each built-in child restraint system other than a factory-installed built-in restraint shall be permanently labeled with the information specified in S5.5.5 (a) through (l). The information specified in S5.5.5(a)
§571.213

through (j) and in S5.5.5(1) shall be visible when the system is activated for use.

(b) Each factory-installed built-in child restraint shall be permanently labeled with the information specified in S5.5.5(f) through (j) and S5.5.5(l), so that the information is visible when the restraint is activated for use. The information shall also be included in the vehicle owner's manual.

S5.5.5 The information specified in paragraphs (a) through (l) of this section that is required by S5.5.4 shall be in English and lettered in letters and numbers using a not smaller than 10 point type. Unless specified otherwise, the information shall be labeled on a white background with black text. Unless written in all capitals, the information shall be stated in sentence capitalization.

(a) The model name or number of the system.

(b) The manufacturer’s name. A distributor’s or dealer’s name may be used instead if the distributor or dealer assumes responsibility for all duties and liabilities imposed on the manufacturer with respect to the system by the National Traffic and Motor Vehicle Safety Act, as amended.

(c) The statement: “Manufactured in ___,” inserting the month and year of manufacture.

(d) The place of manufacture (city and State, or foreign country). However, if the manufacturer uses the name of the distributor or dealer, then it shall state the location (city and State, or foreign country) of the principal offices of the distributor or dealer.

(e) The statement: “This child restraint system conforms to all applicable Federal motor vehicle safety standards.”

(f) One of the following statements, inserting the manufacturer’s recommendations for the maximum mass of children who can safely occupy the system, except that booster seats shall not be recommended for children whose masses are less than 13.6 kg. For seats that can only be used as belt-positioning seats, manufacturers must include the maximum and minimum recommended height, but may delete the reference to weight:

(1) Use only with children who weigh _____ pounds (___ kg) or less and whose height is (insert values in English and metric units; use of word “mass” in label is optional) or less; or

(2) Use only with children who weigh between _____ and _____ pounds (___ and ___ kg) and whose height is (insert appropriate values in English and metric units; use of word “mass” in label is optional) or less and who are capable of sitting upright alone; or

(3) Use only with children who weigh between _____ and _____ pounds (___ and ___ kg) and whose height is (insert appropriate values in English and metric units; use of word “mass” in label is optional) or less.

(g) The heading and statement specified in paragraph (1), and if appropriate, the statements in paragraph (2) and (3). If used, the statements in paragraphs (2) and (3) shall be bulleted and precede the bulleted statement required by paragraph (1) after the heading.

(1) A heading as specified in S5.5.2(k)(3)(i), with the statement “WARNING! DEATH or SERIOUS INJURY can occur,” capitalized as written and followed by the bulleted statement: Follow all instructions on the child restraint and in the vehicle’s owner’s manual. At the manufacturer’s option, the phrase “DEATH or SERIOUS INJURY can occur” in the heading can be on either a white or yellow background.

(2) In the case of each built-in child restraint system which is not intended for use in motor vehicles in certain adjustment positions or under certain circumstances, an appropriate statement of the manufacturer’s restrictions regarding those positions or circumstances.

(3) As appropriate, the statements required by the following sections will be bulleted and placed after the statement required by 5.5.5(g)(1) in the following order: 5.5.5(g)(2), 5.5.5(f), S5.5.5(h) and S5.5.5(i).
§571.213

(h) In the case of each built-in child restraint system that has belts designed to restrain children using them and which do not adjust automatically to fit the child: Snugly adjust the belts provided with this child restraint around your child.

(i) In the case of each built-in child restraint which can be used in a rear-facing position, the following statement: Place an infant in a rear-facing position in this child restraint.

(j) A diagram or diagrams showing the fully activated child restraint system in infant and/or child configurations.

(k) One of the following statements, inserting an address and a U.S. telephone number. If a manufacturer opts to provide a Web site on the registration card as permitted in Figure 9a of this section, the manufacturer must include the statement in part (ii):

(i) “Child restraints could be recalled for safety reasons. You must register this restraint to be reached in a recall. Send your name, address, e-mail address if available (preceding four words are optional), and the restraint’s model number and manufacturing date to (insert address) or call (insert a U.S. telephone number). For recall information, call the U.S. Government’s Vehicle Safety Hotline at 1–888–327–4236 (TTY: 1–800–424–9153), or go to http://www.NHTSA.gov.”

(ii) “Child restraints could be recalled for safety reasons. You must register this restraint to be reached in a recall. Send your name, address, e-mail address if available (preceding four words are optional), and the restraint’s model number and manufacturing date to (insert address) or call (insert telephone number) or register online at (insert Web site for electronic registration form). For recall information, call the U.S. Government’s Vehicle Safety Hotline at 1–888–327–4236 (TTY: 1–800–424–9153), or go to http://www.NHTSA.gov.”

(l) In the case of a built-in belt-positioning seat that uses either the vehicle’s Type I or Type II belt systems or both, a statement describing the manufacturer’s recommendations for the maximum height and weight of children who can safely occupy the system and how the booster should be used (e.g., with or without shield) with the different vehicle belt systems.

S5.6 Printed Instructions for Proper Use. Any labels or written instructions provided in addition to those required by this section shall not obscure or confuse the meaning of the required information or be otherwise misleading to the consumer. Any labels or written instructions other than in the English language shall be an accurate translation of English labels or written instructions. Unless written in all capitals, the information required by S5.6.1 through S5.6.3 shall be stated in sentence capitalization.

S5.6.1 Add-on child restraint systems. Each add-on child restraint system shall be accompanied by printed installation instructions in English that provide a step-by-step procedure, including diagrams, for installing the system in motor vehicles, securing the system in the vehicles, positioning a child in the system, and adjusting the system to fit the child. For each child restraint system that has components for attaching to a tether anchorage or a child restraint anchorage system, the installation instructions shall include a step-by-step procedure, including diagrams, for properly attaching to that anchorage or system.

S5.6.1.1 In a vehicle with rear designated seating positions, the instructions shall alert vehicle owners that, according to accident statistics, children are safer when properly restrained in the rear seating positions than in the front seating positions.

S5.6.1.2 The instructions shall specify in general terms the types of vehicles, the types of seating positions, and the types of vehicle safety belts with which the add-on child restraint system can or cannot be used.

S5.6.1.3 The instructions shall explain the primary consequences of not following the warnings required to be labeled on the child restraint system in accordance with S5.5.2 (g) through (k).

S5.6.1.4 The instructions for each car bed shall explain that the car bed should position in such a way that the child’s head is near the center of the vehicle.

S5.6.1.5 The instructions shall state that add-on child restraint systems
should be securely belted to the vehicle, even when they are not occupied, since in a crash an unsecured child restraint system may injure other occupants.

S5.6.1.6 Each add-on child restraint system shall have a location on the restraint for storing the manufacturer’s instructions.

S5.6.1.7 One of the following statements, inserting an address and a U.S. telephone number. If a manufacturer opts to provide a Web site on the registration card as permitted in Figure 9a of this section, the manufacturer must include the statement in part (ii):

(i) “Child restraints could be recalled for safety reasons. You must register this restraint to be reached in a recall. Send your name, address, e-mail address if available (preceding four words are optional), and the restraint’s model number and manufacturing date to (insert address) or call (insert a U.S. telephone number). For recall information, call the U.S. Government’s Vehicle Safety Hotline at 1–888–327–4236 (TTY: 1–800–424–9153), or go to http://www.NHTSA.gov.”

(ii) “Child restraints could be recalled for safety reasons. You must register this restraint to be reached in a recall. Send your name, address, e-mail address if available (preceding four words are optional), and the restraint’s model number and manufacturing date to (insert address) or call (insert telephone number) or register online at (insert Web site for electronic registration form). For recall information, call the U.S. Government’s Vehicle Safety Hotline at 1–888–327–4236 (TTY: 1–800–424–9153), or go to http://www.NHTSA.gov.”

S5.6.1.8 In the case of each child restraint system that can be used in a position so that it is facing the rear of the vehicle, the instructions shall provide a warning against using rear-facing restraints at seating positions equipped with air bags, and shall explain the reasons for, and consequences of not following the warning. The instructions shall also include a statement that owners of vehicles with front passenger side air bags should refer to their vehicle owner’s manual for child restraint installation instructions.

S5.6.1.9 In the case of each rear-facing child restraint system that has a means for repositioning the seating surface of the system that allows the system’s occupant to move from a reclined position to an upright position during testing, the instructions shall include a warning against impeding the ability of the restraint to change adjustment position.

S5.6.1.10(a) For instructions for a booster seat that is recommended for use with either a vehicle’s Type I or Type II seat belt assembly, one of the following statements, as appropriate, and the reasons for the statement:

(1) Warning! Use only the vehicle’s lap and shoulder belt system when restraining the child in this booster seat; or,

(2) Warning! Use only the vehicle’s lap belt system, or the lap belt part of a lap/shoulder belt system with the shoulder belt placed behind the child, when restraining the child in this seat.

(b)(1) Except as provided in S5.6.1.10(b)(2), the instructions for a booster seat that is recommended for use with both a vehicle’s Type I and Type II seat belt assemblies shall include the following statement and the reasons therefor: Warning! Use only the vehicle’s lap belt system, or the lap belt part of a lap/shoulder belt system with the shoulder belt placed behind the child, when restraining the child with the (insert description of the system element provided to restrain forward movement of the child’s torso when used with a lap belt (e.g., shield)), and only the vehicle’s lap and shoulder belt system when using this booster without the (insert above description).

(2) A booster seat which is recommended for use with both a vehicle’s Type I and Type II seat belt assemblies is not subject to S5.6.1.10(b)(1) if, when the booster is used with the shield or similar component, the booster will cause the shoulder belt to be located in a position other than in front of the child when the booster is installed. However, the instructions for such a booster shall include a warning to use the booster with the vehicle’s lap and shoulder belt system when using the booster without a shield.
870

§571.213 49 CFR Ch. V (10–1–16 Edition)

(c) The instructions for belt-positioning seats shall include the statement: “This restraint is not certified for aircraft use,” and the reasons for this statement.

S5.6.1.11 For harnesses that are manufactured for use on school bus seats, the instructions must include the following statements:

“WARNING! This restraint must only be used on school bus seats. Entire seat directly behind must be unoccupied or have restrained occupants.”

The labeling requirement refers to a restrained occupant as: an occupant restrained by any user appropriate vehicle restraint or child restraint system (e.g. lap belt, lap and shoulder belt, booster, child seat, harness...).

S5.6.1.12(a) Child restraint systems manufactured from February 27, 2014 to February 26, 2015. The instructions for child restraint systems equipped with an internal harness to restrain the child and with components to attach to a child restraint anchorage system, and for which the combined weight of the child restraint system and the maximum recommended child weight for use with the internal harness exceeds 65 pounds, must include the following statement: “Do not use the lower anchors of the child restraint anchorage system (LATCH system) to attach this child restraint when restraining a child weighing more than **[*insert a recommended weight value in English and metric units such that the sum of the recommended weight value and the weight of the child restraint system does not exceed 65 pounds (29.5 kg)]** with the internal harness of the child restraint.”

(b) Child restraint systems manufactured on or after February 27, 2015. If the child restraint is designed to meet the requirements of this standard when installed by the child restraint anchorage system according to S5.3.2, the installation diagram showing the child restraint system installed using a child restraint anchorage system must meet the specifications in S5.5.2(1)(3).

S5.6.2 Built-in child restraint systems.

(a) Each built-in child restraint system shall be accompanied by printed instructions in English that provide a step-by-step procedure, including diagrams, for activating the restraint system, positioning a child in the system, adjusting the restraint and, if provided, the restraint harness to fit the child. The instructions for each built-in car bed shall explain that the child should be positioned in the bed in such a way that the child’s head is near the center of the vehicle.

(b) Each motor vehicle equipped with a factory-installed built-in child restraint shall have the information specified in paragraph (a) of this section included in its vehicle owner’s manual.

S5.6.2.1 The instructions shall explain the primary consequences of not following the manufacturer’s warnings for proper use of the child restraint system in accordance with S5.5.5 (f) through (i).

S5.6.2.2 The instructions for each built-in child restraint system other than a factory-installed restraint, shall include one of the following statements, inserting an address and a U.S. telephone number. If a manufacturer opts to provide a Web site on the registration card as permitted in Figure 9a of this section, the manufacturer must include the statement in part (ii):

(i) “Child restraints could be recalled for safety reasons. You must register this restraint to be reached in a recall. Send your name, address, e-mail address if available (preceding four words are optional), and the restraint’s model number and manufacturing date to (**insert address**) or call (**insert a U.S. telephone number**) or register online at (**insert Web site for electronic registration form**). For recall information, call the U.S. Government’s Vehicle Safety Hotline at 1–888–327–4236 (TTY: 1–800–424–9153), or go to **http://www.NHTSA.gov**.”

(ii) “Child restraints could be recalled for safety reasons. You must register this restraint to be reached in a recall. Send your name, address, e-mail address if available (preceding four words are optional), and the restraint’s model number and manufacturing date to (**insert address**) or call (**insert U.S. telephone number**) or register online at (**insert Web site for electronic registration form**). For recall information, call the U.S. Government’s Vehicle Safety Hotline at 1–888–327–4236 (TTY: 1–800–424–9153), or go to **http://www.NHTSA.gov**.”

870
§ 571.213

S5.6.2.3 Each built-in child restraint system other than a factory-installed built-in restraint, shall have a location on the restraint for storing the instructions.

S5.6.2.4 Each built-in child restraint system, other than a system that has been installed in a vehicle or a factory-installed built-in system that is designed for a specific vehicle model and seating position, shall be accompanied by instructions in English that provide a step-by-step procedure for installing the system in a motor vehicle. The instructions shall specify the types of vehicles and the seating positions into which the restraint can or cannot be installed. The instructions for each car bed shall explain that the bed should be installed so that the child’s head will be near the center of the vehicle.

S5.6.2.5 In the case of a built-in belt-positioning seat that uses either the vehicle’s Type I or Type II belt systems or both, the instructions shall include a statement describing the manufacturer’s recommendations for the maximum height and weight of children who can safely occupy the system and how the booster must be used with the vehicle belt systems appropriate for the booster seat. The instructions shall explain the consequences of not following the directions. The instructions shall specify that, if the booster seat is recommended for use with only the lap-belt part of a Type II assembly, the shoulder belt portion of the assembly must be placed behind the child.

S5.6.3 Add-on and built-in child restraint systems. In the case of each child restraint system that has belts designed to restrain children using them and which do not adjust automatically to fit the child, the printed instructions shall include the following statement: A snug strap should not allow any slack. It lies in a relatively straight line without sagging. It does not press on the child’s flesh or push the child’s body into an unnatural position.

S5.7 Flammability. Each material used in a child restraint system shall conform to the requirements of §4 of FMVSS No. 302 (571.302). In the case of a built-in child restraint system, the requirements of §4 of FMVSS No. 302 shall be met in both the “in-use” and “stowed” positions.

S5.8 Information requirements—attached registration form and electronic registration form.

S5.8.1 Attached registration form.

(a) Each child restraint system, except a factory-installed built-in restraint system, shall have a registration form attached to any surface of the restraint that contacts the dummy when the dummy is positioned in the system in accordance with S6.1.2 of Standard 213.

(b) Each attached form shall:

(1) Consist of a postcard that is attached at a perforation to an informational card;

(2) Conform in size, content and format to Figures 9a and 9b of this section; and

(3) Have a thickness of at least 0.007 inches and not more than 0.0095 inches.

(c) Each postcard shall provide the model name or number and date of manufacture (month, year) of the child restraint system to which the form is attached, shall contain space for the purchaser to record his or her name, mailing address, and at the manufacturer’s option, e-mail address, shall be addressed to the manufacturer, and shall be postage paid. No other information shall appear on the postcard, except identifying information that distinguishes a particular child restraint system from other systems of that model name or number may be preprinted in the shaded area of the postcard, as shown in figure 9a.

(d) Manufacturers may voluntarily provide a web address on the informational card enabling owners to register child restraints online, provided that the web address is a direct link to the electronic registration form meeting the requirements of S5.8.2 of this section.

S5.8.2 Electronic registration form.

(a) Each electronic registration form must meet the requirements of this S5.8.2. Each form shall:

(1) Contain the following statements at the top of the form:

(i) “FOR YOUR CHILD’S CONTINUED SAFETY” (Displayed in bold type face, caps, and minimum 12 point type.)

(ii) “Although child restraint systems undergo testing and evaluation, it
§ 571.213 Attachment to child restraint anchorage system.

(a) Each add-on child restraint anchorage system manufactured on or after September 1, 2002, other than a car bed, harness and belt-positioning seat, shall have components permanently attached to the system that enable the restraint to be securely fastened to the lower anchorages of the child restraint anchorage system specified in Standard No. 225 (§ 571.225) and depicted in Drawing Package SAS–100–1000, Standard Seat Belt Assembly with Addendum A or in Drawing Package, ‘‘NHTSA Standard Seat Assembly; FMVSS No. 213, No. NHTSA–213–2003’’ (both incorporated by reference, see §571.5). The components must be attached by use of a tool, such as a screwdriver. In the case of rear-facing child restraints with detachable bases, only the base is required to have the components.

(b) In the case of each child restraint system that is manufactured on or after September 1, 1999 and that has components for attaching the system to a tether anchorage, those components shall include a tether hook that conforms to the configuration and geometry specified in Figure 11 of this standard.

(c) In the case of each child restraint system that is manufactured on or after September 1, 1999 and that has components, including belt webbing, for attaching the system to a tether anchorage or to a child restraint anchorage system, the belt webbing shall be adjustable so that the child restraint can be tightly attached to the vehicle.

(d) Beginning September 1, 1999, each child restraint system with components that enable the restraint to be securely fastened to the lower anchorages of a child restraint anchorage system, other than a system with hooks for attaching to the lower anchorages, shall provide either an indication when each attachment to the lower anchorages becomes fully latched or attached, or a visual indication that all attachments to the lower anchorages are fully latched or attached. Visual indications shall be detectable under normal daylight lighting conditions.

§ 6 Test conditions and procedures.

S6. Dynamic systems test for child restraint systems.
The test conditions described in §6.1.1 apply to the dynamic systems test. The test procedure for the dynamic systems test is specified in §6.1.2. The test dummy specified in §7 is placed in the test specimen (child restraint), clothed as described in §9 and positioned according to §10.

§6.1.1 Test conditions.
(a) Test devices.
(1) Add-on child restraints.
 (i) [Reserved]
 (ii) The test device for add-on restraint systems manufactured on or after August 1, 2005 is a standard seat assembly consisting of a simulated vehicle bench seat, with three seating positions, which is depicted in Drawing Package, “NHTSA Standard Seat Assembly; FMVSS No. 213, No. NHTSA–213–2003,” (consisting of drawings and a bill of materials) dated June 3, 2003 (incorporated by reference; see §571.5). The assembly is mounted on a dynamic test platform so that the center SORL of the seat is parallel to the direction of the test platform travel and so that movement between the base of the assembly and the platform is prevented.

(2) The test device for built-in restraint systems manufactured on or after August 1, 2005 is a standard seat assembly consisting of a simulated vehicle bench seat, with three seating positions, which is depicted in Drawing Package, “NHTSA Standard Seat Assembly; FMVSS No. 213, No. NHTSA–213–2003,” (consisting of drawings and a bill of materials) dated June 3, 2003 (incorporated by reference; see §571.5). The assembly is mounted on a dynamic test platform so that the center SORL of the seat is parallel to the direction of the test platform travel and so that movement between the base of the assembly and the platform is prevented.

(b) The test device for add-on restraint systems is either the specific vehicle shell or the specific vehicle.
 (i) Specific vehicle shell.
 (A) The specific vehicle shell, if selected for testing, is mounted on a dynamic test platform so that the longitudinal center line of the shell is parallel to the direction of the test platform travel and so that movement between the base of the shell and the platform is prevented. Adjustable seats are in the adjustment position midway between the forwardmost and rearmost positions, and if separately adjustable in a vertical direction, are at the lowest position. If an adjustment position does not exist midway between the forwardmost and rearmost position, the closest adjustment position to the rear of the midpoint is used. Adjustable seat backs are in the manufacturer’s nominal design riding position. If such a position is not specified, the seat back is positioned so that the longitudinal center line of the child test dummy’s neck is vertical, and if an instrumented test dummy is used, the accelerometer surfaces in the dummy’s head and thorax, as positioned in the vehicle, are horizontal. If the vehicle seat is equipped with adjustable head restraints, each is adjusted to its highest adjustment position.

 (B) The specific vehicle is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus the appropriate child test dummy and, at the vehicle manufacturer’s option, an anthropomorphic test dummy which conforms to the requirements of subpart B or subpart E of part 572 of this title for a 50th percentile adult male dummy placed in the front outboard seating position. If the built-in child restraint system is installed at one of the seating positions otherwise requiring the placement of a part 572 test dummy, then in the frontal barrier crash specified in (c), the appropriate child test dummy shall be substituted for the part 572 adult dummy, but only at that seating position. The fuel tank is filled to any level from 90 to 95 percent of capacity.

 (C) Adjustable seat backs are in the manufacturer’s nominal design riding position. If a nominal position is not specified, the seat back is positioned so that the longitudinal center line of the child test dummy’s neck is vertical, and if an anthropomorphic test dummy is used, the accelerometer surfaces in the vehicle.
§571.213 49 CFR Ch. V (10–1–16 Edition)

The test dummy’s head and thorax, as positioned in the vehicle, are horizontal. If the vehicle is equipped with adjustable head restraints, each is adjusted to its highest adjustment position.

(D) Movable vehicle windows and vents are, at the manufacturer’s option, placed in the fully closed position.

(E) Convertibles and open-body type vehicles have the top, if any, in place in the closed passenger compartment configuration.

(F) Doors are fully closed and latched but not locked.

(G) All instrumentation and data reduction is in conformance with SAE Recommended Practice J211 (1980) (incorporated by reference, see §571.5).

(b) The tests are frontal barrier impact simulations of the test platform or frontal barrier crashes of the specific vehicles as specified in S5.1 of §571.208 and for:

(1) Test Configuration I, are at a velocity change of 48 km/h with the acceleration of the test platform entirely within the curve shown in Figure 2 (for child restraints manufactured before August 1, 2005) or in Figure 2A (for child restraints manufactured on or after August 1, 2005), or for the specific vehicle test with the deceleration produced in a 48 km/h frontal barrier crash.

(2) Test Configuration II, are set at a velocity change of 32 km/h with the acceleration of the test platform entirely within the curve shown in Figure 3, or for the specific vehicle test, with the deceleration produced in a 32 km/h frontal barrier crash.

(c) As illustrated in Figures 1A and 1B of this standard, attached to the standard seat assembly is a child restraint anchorage system conforming to the specifications of Standard No. 225 (§571.225), in the case of add-on child restraint systems other than belt-positioning booster seats.

(d)(1) When using the test dummy specified in 49 CFR part 572, subparts I and K, performance tests under S6.1 are conducted at any ambient temperature from 19 °C to 26 °C and at any relative humidity from 10 percent to 70 percent.

(2) When using the test dummies specified in 49 CFR part 572, subparts N, P, R or T, performance tests under S6.1 are conducted at any ambient temperature from 20.6 °C to 22.2 °C and at any relative humidity from 10 percent to 70 percent.

(e) In the case of add-on child restraint systems, the restraint shall meet the requirements of S5 at each of its seat back angle adjustment positions and restraint belt routing positions, when the restraint is oriented in the direction recommended by the manufacturer (e.g., forward, rearward or laterally) pursuant to S5.6, and tested with the test dummy specified in S7.

S6.1.2 Dynamic test procedure.

(a) Activate the built-in child restraint or attach the add-on child restraint to the seat assembly as described below:

(1) Test configuration I.

(i) Child restraints other than belt-positioning seats. Attach the child restraint in any of the following manners specified in S6.1.2(a)(1)(i)(A) through (D), unless otherwise specified in this standard.

(A) Install the child restraint system at the center seating position of the standard seat assembly, in accordance with the manufacturer’s instructions provided with the system pursuant to S5.6.1, except that the standard lap belt is used and, if provided, a tether strap may be used. For harnesses that bear the label shown in Figure 12 and that meet S5.3.1(b)(1) through S5.3.1(b)(3), attach the harness in accordance with the manufacturer’s instructions provided with the system pursuant to S5.6.1, i.e., the seat back mount is used.

(B) Except for a child harness, a backless child restraint system with a tether strap, and a restraint designed
for use by physically handicapped children, install the child restraint system at the center seating position of the standard seat assembly as in §6.1.2(a)(1)(i)(A), except that no tether strap (or any other supplemental device) is used.

(C) Install the child restraint system using the child restraint anchorage system at the center seating position of the standard seat assembly in accordance with the manufacturer’s instructions provided with the system pursuant to §5.6.1. The tether strap, if one is provided, is attached to the tether anchorage.

(D) Install the child restraint system using only the lower anchorages of the child restraint anchorage system as in §6.1.2(a)(1)(i)(C). No tether strap (or any other supplemental device) is used.

(ii) Belt-positioning seats. A belt-positioning seat is attached to either outboard seating position of the standard seat assembly in accordance with the manufacturer’s instructions provided with the system pursuant to §5.6.1 using only the standard vehicle lap and shoulder belt and no tether (or any other supplemental device). Place the belt-positioning seat on the standard seat assembly such that the center plane of the belt-positioning seat is parallel and aligned to the center plane of the outboard seating positions on the standard seat assembly and the base of the belt-positioning seat is flat on the standard seat assembly cushion. Move the belt-positioning seat rearward on the standard seat assembly until some part of the belt-positioning seat touches the standard seat assembly back. Keep the belt-positioning seat and the seating position center plane aligned as much as possible. Apply 133 N (30 pounds) of force to the front of the belt-positioning seat rearward into the standard seat assembly and release.

(iii) In the case of each built-in child restraint system, activate the restraint in the specific vehicle shell or the specific vehicle, in accordance with the manufacturer’s instructions provided in accordance with §5.6.2.

(2) Test configuration II. (i) In the case of each add-on child restraint system which is equipped with a fixed or movable surface described in §5.2.2.2, or a backless child restraint system with a top anchorage strap, install the add-on child restraint system at the center seating position of the standard seat assembly using only the standard seat lap belt to secure the system to the standard seat.

(ii) In the case of each built-in child restraint system which is equipped with a fixed or movable surface described in §5.2.2.2, or a built-in booster seat with a top anchorage strap, activate the system in the specific vehicle shell or the specific vehicle in accordance with the manufacturer’s instructions provided in accordance with §5.6.2.

(b) Select any dummy specified in §7 for testing systems for use by children of the heights and weights for which the system is recommended in accordance with §5.5. The dummy is assembled, clothed and prepared as specified in §7 and §9 and Part 572 of this chapter, as appropriate.

(c) Place the dummy in the child restraint. Position it, and attach the child restraint belts, if appropriate, as specified in §10.

(d) Belt adjustment. (1) Add-on systems other than belt-positioning seats.

(i) If appropriate, shoulder and pelvic belts that directly restrain the dummy shall be adjusted as follows: Tighten the belts until a 9 N force applied (as illustrated in figure 5) to the webbing at the top of each dummy shoulder and to the pelvic webbing 50 mm on either side of the torso midsagittal plane pulls the webbing 7 mm from the dummy.

(ii) All Type I belt systems used to attach an add-on child restraint system to the standard seat assembly, and any provided additional anchorage belt (tether), are tightened to a tension of not less than 53.5 N and not more than 67 N, as measured by a load cell used on the webbing portion of the belt. All belt systems used to attach a harness that bears the label shown in Figure 12 and that meets §5.3.1(b)(i) through §5.3.1(b)(iii) are also tightened to a tension of not less than 53.5 N and not more than 67 N, by measurement means specified in this paragraph.

(iii) When attaching a child restraint system to the tether anchorage and the
child restraint anchorage system on the standard seat assembly, tighten all belt systems used to attach the restraint to the standard seat assembly to a tension of not less than 53.5 N and not more than 67 N, as measured by a load cell or other suitable means used on the webbing portion of the belt.

(2) Add-on belt-positioning seats.

(i) The lap portion of Type II belt systems used to restrain the dummy is tightened to a tension of not less than 9 N (2 pounds) and not more than 18 N (4 pounds).

(ii) The shoulder portion of Type II belt systems used to restrain the dummy is tightened to a tension of not less than 9 N and not more than 18 N, as measured by a load cell used on the webbing portion of the belt.

(3) Built-in child restraint systems.

(i) The lap portion of Type II belt systems used to secure a dummy to the built-in child restraint system is tightened to a tension of not less than 53.5 N and not more than 67 N, as measured by a load cell used on the webbing portion of the belt.

(ii) The shoulder portion of Type II belt systems used to secure a child is tightened to a tension of not less than 9 N and not more than 18 N, as measured by a load cell used on the webbing portion of the belt.

(iii) If provided, and if appropriate to attach the child restraint belts under S10, shoulder (other than the shoulder portion of a Type II vehicle belt system) and pelvic belts that directly restrain the dummy shall be adjusted as follows: Tighten the belts until a 9 N force applied (as illustrated in figure 5) to the webbing at the top of each dummy shoulder and to the pelvic webbing 50 mm on either side of the torso midsagittal plane pulls the webbing 7 mm from the dummy.

(e) Accelerate the test platform to simulate frontal impact in accordance with Test Configuration I or II, as appropriate.

(f) Determine conformance with the requirements in S5.1.

S6.2 Buckle release test procedure.

The belt assembly buckles used in any child restraint system shall be tested in accordance with S6.2.1 through S6.2.4 inclusive.

S6.2.1 Before conducting the testing specified in S6.1, place the loaded buckle on a hard, flat, horizontal surface. Each belt end of the buckle shall be pre-loaded in the following manner. The anchor end of the buckle shall be loaded with a 9 N force in the direction away from the buckle. In the case of buckles designed to secure a single latch plate, the belt latch plate end of the buckle shall be pre-loaded with a 9 N force in the direction away from the buckle. In the case of buckles designed to secure two or more latch plates, the belt latch plate ends of the buckle shall be loaded equally so that the total load is 9 N, in the direction away from the buckle. For pushbutton-release buckles, the release force shall be applied by a conical surface (cone angle not exceeding 90 degrees). For pushbutton-release mechanisms with a fixed edge (referred to in Figure 7 as “hinged button”), the release force shall be applied at the centerline of the button, 3 mm away from the movable edge directly opposite the fixed edge, and in the direction that produces maximum releasing effect. For pushbutton-release mechanisms with no fixed edge (referred to in Figure 7 as “floating button”), the release force shall be applied at the center of the release mechanism in the direction that produces the maximum releasing effect. Measure the force required to release the buckle. Figure 7 illustrates the loading for the different buckles and the point where the release force should be applied, and Figure 8 illustrates the conical surface used to apply the release force to pushbutton-release buckles.

S6.2.2 After completion of the testing specified in S6.1 and before the buckle is unlatched, tie a self-adjusting sling to each wrist and ankle of the test dummy in the manner illustrated in Figure 4, without disturbing the belted dummy and the child restraint system.

S6.2.3 Pull the sling tied to the dummy restrained in the child restraint system and apply the following force: 50 N for a system tested with a newborn dummy (49 CFR part 572, subpart K); 90 N for a system tested with
877

§ 571.213

a 12-month-old dummy (49 CFR part 572, subpart R); 200 N for a system tested with a 3-year-old dummy (49 CFR part 572, subpart P); 270 N for a system tested with a 6-year-old dummy (49 CFR part 572, subpart S); or 437 N for a system tested with a 10-year-old dummy (49 CFR part 572, subpart T). The force is applied in the manner illustrated in Figure 4 and as follows:

(a) Add-on Child Restraints. For an add-on child restraint other than a car bed, apply the specified force by pulling the sling horizontally and parallel to the SORL of the standard seat assembly. For a car bed, apply the force by pulling the sling vertically.

(b) Built-in Child Restraints. For a built-in child restraint other than a car bed, apply the force by pulling the sling parallel to the longitudinal centerline of the specific vehicle shell or the specific vehicle. In the case of a car bed, apply the force by pulling the sling vertically.

S6.2.4 While applying the force specified in S6.2.3, and using the device shown in Figure 8 for pushbutton-release buckles, apply the release force in the manner and location specified in S6.2.1, for that type of buckle. Measure the force required to release the buckle.

S6.3 [Reserved]

S7 Test dummies. (Subparts referenced in this section are of part 572 of this chapter.) S7.1 Dummy selection. Select any dummy specified in S7.1.1, S7.1.2 or S7.1.3, as appropriate, for testing systems for use by children of the height and mass for which the system is recommended in accordance with S5.5. A child restraint that meets the criteria in two or more of the following paragraphs in S7 may be tested with any of the test dummies specified in those paragraphs.

S7.1.1 [Reserved]

S7.1.2 Child restraints that are manufactured on or after August 1, 2005, are subject to the following provisions and S7.1.3.

(a) A child restraint that is recommended by its manufacturer in accordance with S5.5 for use either by children in a specified mass range that includes any children having a mass of not greater than 5 kg, or by children in a specified height range that includes any children whose height is not greater than 650 mm, is tested with a newborn test dummy conforming to part 572 subpart K.

(b) A child restraint that is recommended by its manufacturer in accordance with S5.5 for use either by children in a specified mass range that includes any children having a mass greater than 5 but not greater than 10 kg, or by children in a specified height range that includes any children whose height is greater than 650 mm but not greater than 850 mm, is tested with a newborn test dummy conforming to part 572 subpart K, and a 12-month-old test dummy conforming to part 572 subpart R.

(c) A child restraint that is recommended by its manufacturer in accordance with S5.5 for use either by children in a specified mass range that includes any children having a mass greater than 10 kg but not greater than 18 kg, or by children in a specified height range that includes any children whose height is greater than 850 mm but not greater than 1100 mm, is tested with a newborn test dummy conforming to part 572 subpart K, and a 3-year-old test dummy conforming to part 572 subpart R.

(d) A child restraint that is recommended by its manufacturer in accordance with S5.5 for use either by children in a specified mass range that includes any children having a mass greater than 18 kg (40 lb) but not greater than 22.7 kg (50 lb), or by children in a specified height range that includes any children whose height is greater than 1100 mm but not greater than 1250 mm is tested with a 49 CFR part 572, subpart N dummy (Hybrid III 6-year-old dummy).

(e) A child restraint that is recommended by its manufacturer in accordance with S5.5 for use either by children in a specified mass range that includes any children having a mass greater than 22.7 kg (50 lb) but not greater than 30 kg (65 lb) or by children in a specified height range that includes any children whose height is
§ 571.213 49 CFR Ch. V (10–1–16 Edition)

greater than 1100 mm but not greater than 1250 mm is tested with a 49 CFR part 572, subpart N dummy (Hybrid III 6-year-old dummy) and with a part 572, subpart S dummy (Hybrid III 6-year-old weighted dummy).

(f) A child restraint that is recommended by its manufacturer in accordance with S5.5 for use either by children in a specified mass range that includes any children having a mass greater than 30 kg (65 lb) or by children in a specified height range that includes any children whose height is greater than 1250 mm is tested with a 49 CFR part 572, subpart T dummy (Hybrid III 10-year-old dummy).

S7.1.3 Voluntary use of alternative dummies. At the manufacturer’s option (with said option irrevocably selected prior to, or at the time of, certification of the restraint), when this section specifies use of the 49 CFR part 572, subpart N (Hybrid III 6-year-old dummy) test dummy, the test dummy specified in 49 CFR part 572, subpart I (Hybrid II 6-year-old dummy) may be used in place of the subpart N test dummy.

S8 Requirements, test conditions, and procedures for child restraint systems manufactured for use in aircraft. Each child restraint system manufactured for use in both motor vehicles and aircraft must comply with all of the applicable requirements specified in Section S5 and with the additional requirements specified in S8.1 and S8.2.

S8.1 Installation instructions. Each child restraint system manufactured for use in aircraft shall be accompanied by printed instructions in English that provide a step-by-step procedure, including diagrams, for installing the system in aircraft passenger seats, securing a child in the system when it is installed in aircraft, and adjusting the system to fit the child.

S8.2 Inversion test. When tested in accordance with S8.2.1 through S8.2.5, each child restraint system manufactured for use in aircraft shall meet the requirements of S8.2.1 through S8.2.6. The manufacturer may, at its option, use any seat which is a representative aircraft passenger seat within the meaning of S4. Each system shall meet the requirements at each of the restraint’s seat back angle adjustment positions and restraint belt routing positions, when the restraint is oriented in the direction recommended by the manufacturer (e.g., facing forward, rearward or laterally) pursuant to S8.1, and tested with the test dummy specified in S7. If the manufacturer recommendations do not include instructions for orienting the restraint in aircraft when the restraint seat back angle is adjusted to any position, position the restraint on the aircraft seat by following the instructions (provided in accordance with S5.6) for orienting the restraint in motor vehicles.

S8.2.1 A standard seat assembly consisting of a representative aircraft passenger seat shall be positioned and adjusted so that its horizontal and vertical orientation and its seat back angle are the same as shown in Figure 6.

S8.2.2 The child restraint system shall be attached to the representative aircraft passenger seat using, at the manufacturer’s option, any Federal Aviation Administration approved aircraft safety belt, according to the restraint manufacturer’s instructions for attaching the restraint to an aircraft seat. No supplementary anchorage belts or tether straps may be attached; however, Federal Aviation Administration approved safety belt extensions may be used.

S8.2.3 In accordance with S10, place in the child restraint any dummy specified in S7 for testing systems for use by children of the heights and weights for which the system is recommended in accordance with S5.5 and S8.1.

S8.2.4 If provided, shoulder and pelvic belts that directly restrain the dummy shall be adjusted in accordance with S6.1.2.

S8.2.5 The combination of representative aircraft passenger seat, child restraint, and test dummy shall be rotated forward around a horizontal axis which is contained in the median transverse vertical plane of the seating surface portion of the aircraft seat and is located 25 mm below the bottom of the seat frame, at a speed of 35 to 45 degrees per second, to an angle of 180 degrees. The rotation shall be stopped when it reaches that angle and the seat shall be held in this position for three seconds. The child restraint shall not
§ 571.213

The child restraint shall not fall out of the aircraft safety belt nor shall the test dummy fall out of the child restraint at any time during the rotation or the three second period. The specified rate of rotation shall be attained in not less than one half second and not more than one second, and the rotating combination shall be brought to a stop in not less than one half second and not more than one second.

S8.2.6 Repeat the procedures set forth in S8.2.1 through S8.2.4. The combination of the representative aircraft passenger seat, child restraint, and test dummy shall be rotated sideways around a horizontal axis which is contained in the median longitudinal vertical plane of the seating surface portion of the aircraft seat and is located 25 mm below the bottom of the seat frame, at a speed of 35 to 45 degrees per second, to an angle of 180 degrees. The rotation shall be stopped when it reaches that angle and the seat shall be held in this position for three seconds. The child restraint shall not fall out of the aircraft safety belt nor shall the test dummy fall out of the child restraint at any time during the rotation or the three second period. The specified rate of rotation shall be attained in not less than one half second and not more than one second, and the rotating combination shall be brought to a stop in not less than one half second and not more than one second.

S9 Dummy clothing and preparation.

S9.1 Type of clothing.

(a) Newborn dummy. When used in testing under this standard, the dummy is unclothed.

(b) Reserved

(c) 12-month-old dummy (49 CFR part 572, subpart R). When used in testing under this standard, the dummy specified in 49 CFR part 572, subparts R, is clothed in a cotton-polyester based tight fitting sweat shirt with long sleeves and ankle long pants whose combined weight is not more than 0.25 kg.

(d) Hybrid II three-year-old and Hybrid II six-year-old dummies (49 CFR part 572, subparts C and I). When used in testing under this standard, the dummies specified in 49 CFR part 572, subparts C and I, are clothed in thermal knit, waffle-weave polyester and cotton underwear or equivalent, a size 4 long-sleeved shirt (3-year-old dummy) or a size 5 long-sleeved shirt (6-year-old dummy) having a mass of 0.090 kg, a size 4 pair of long pants having a mass of 0.090 kg, and cut off just far enough above the knee to allow the knee target to be visible, and size 7M sneakers (3-year-old dummy) or size 12½M sneakers (6-year-old dummy) with rubber toe caps, uppers of dacron and cotton or nylon and a total mass of 0.453 kg.

(e) Hybrid III, 3-year-old dummy (49 CFR part 572, subpart P). When used in testing under this standard, the dummy specified in 49 CFR Part 572, Subpart P, is clothed as specified in that subpart, except that the shoes are children's size 8 canvas oxford style sneakers weighing not more than 0.26 kg each.

(f) Hybrid III 6-year-old dummy (49 CFR part 572, subpart N) and Hybrid III 6-year-old weighted dummy (49 CFR part 572, subpart S), and Hybrid III 10-year-old dummy (49 CFR Part 572, subpart T). When used in testing under this standard, the dummies specified in 49 CFR part 572, subparts N and S, are clothed as specified in subpart N and with child or youth size 13 M sneakers weighing not more than 0.45 kg each. When used in testing under this standard, the dummy specified in 49 CFR part 572, subpart T, is clothed as specified in subpart T and with youth size 3 sneakers weighing not more than 0.6 kg each.

S9.2 Preparing clothing. Clothing other than the shoes is machined-washed in 71 °C to 82 °C and machine-dried at 49 °C to 60 °C for 30 minutes.

S9.3 Preparing dummies. (Subparts referenced in this section are of Part 572 of this chapter.)

S9.3.1 When using the test dummies conforming to part 572 C, I, or K, prepare the dummies as specified in this paragraph. Before being used in testing under this standard, dummies must be conditioned at any ambient temperature from 19 °C to 25.5 °C and at any relative humidity from 10 percent to 70 percent, for at least 4 hours.

S9.3.2 When using the test dummies conforming to part 572 subparts N, P, R, S or T, prepare the dummies as specified in this paragraph. Before being used in testing under this standard,
dummies must be conditioned at any ambient temperature from 20.6° to 22.2°C and at any relative humidity from 10 percent to 70 percent, for at least 4 hours.

§571.213 Positioning the dummy and attaching the system belts.

571.213.1 Car beds. Place the test dummy in the car bed in the supine position with its midsagittal plane perpendicular to the center SORL of the standard seat assembly, in the case of an add-on car bed, or perpendicular to the longitudinal axis of the specific vehicle shell or the specific vehicle, in the case of a built-in car bed. Position the dummy within the car bed in accordance with the instructions for child positioning that the manufacturer provided with the bed in accordance with §5.6.

571.2 Restraints other than car beds.

571.2.1 Newborn dummy and 12-month-old dummy. Position the test dummy according to the instructions for child positioning that the manufacturer provided with the system under §5.6.1 or §5.6.2, while conforming to the following:

(a) [Reserved]
(b)(1) [Reserved]
(2) When testing rear-facing child restraint systems, place the newborn, or 12-month-old dummy in the child restraint system so that the back of the dummy torso contacts the back support surface of the system. For a child restraint system which is equipped with a fixed or movable surface described in §5.2.2.2 which is being tested under the conditions of test configuration II, do not attach any of the child restraint belts unless they are an integral part of the fixed or movable surface. For all other child restraint systems and for a child restraint system with a fixed or movable surface which is being tested under the conditions of test configuration I, attach all appropriate child restraint belts and tighten them as specified in §5.6.1 or §5.6.2.

(ii) After the steps specified in paragraph (c)(1)(i) of this section, rotate each dummy limb downwards in the plane parallel to the dummy’s midsagittal plane until the limb contacts a surface of the child restraint system or the standard seat assembly, in the case of an add-on system, or the specific vehicle shell or specific vehicle, in the case of a built-in system, as appropriate. Position the limbs, if necessary, so that limb placement does not inhibit torso or head movement in tests conducted under §6.
(2) When testing rear-facing child restraint systems, extend the dummy’s arms vertically upwards and then rotate each arm downward toward the dummy’s lower body until the arm contacts a surface of the child restraint system or the standard seat assembly in the case of an add-on child restraint system, or the specific vehicle shell or the specific vehicle, in the case of a built-in child restraint system. Ensure that no arm is restrained from movement in other than the downward direction, by any part of the system or the belts used to anchor the system to the standard seat assembly, the specific shell, or the specific vehicle.

S10.2.2 Other dummies generally. When using: (1) the Hybrid III 3-year-old (part 572, subpart P), Hybrid II 6-year-old (part 572, subpart I), and Hybrid III weighted 6-year-old (part 572, subpart S) in child restraint systems including belt-positioning seats; (2) the Hybrid III 6-year-old (part 572, subpart N) and the Hybrid III 10-year-old (part 572, subpart T) in child restraint systems other than belt-positioning seats, position the dummy in accordance with S5.6.1 or S5.6.2, while conforming to the following:

(a) Holding the test dummy torso upright until it contacts the system’s design seating surface, place the test dummy in the seated position within the system with the midsagittal plane of the test dummy head—

(1) Coincident with the center SORL of the standard seating assembly, in the case of the add-on child restraint system, or

(2) Vertical and parallel to the longitudinal center line of the specific vehicle, in the case of a built-in child restraint system.

(b) Extend the arms of the test dummy as far as possible in the upward vertical direction. Extend the legs of the dummy as far as possible in the forward horizontal direction, with the dummy feet perpendicular to the center line of the lower legs.

(c) Using a flat square surface with an area of 2580 square millimeters, apply a force of 178 N, perpendicular to:

(1) The plane of the back of the standard seat assembly, in the case of an add-on system, or

(2) The back of the vehicle seat in the specific vehicle seat or the specific vehicle, in the case of a built-in system, first against the dummy crotch and then at the dummy thorax in the midsagittal plane of the dummy. For a child restraint system with a fixed or movable surface described in S5.2.2.2, which is being tested under the conditions of test configuration II, do not attach any of the child restraint belts unless they are an integral part of the fixed or movable surface. For all other child restraint systems and for a child restraint system with a fixed or movable surface which is being tested under the conditions of test configuration I, attach all appropriate child restraint belts and tighten them as specified in S6.1.2. Attach all appropriate vehicle belts and tighten them as specified in S6.1.2. Position each movable surface in accordance with the instructions that the manufacturer provided under S5.6.1 or S5.6.2.

(d) After the steps specified in paragraph (c) of this section, rotate each dummy limb downwards in the plane parallel to the dummy’s midsagittal plane until the limb contacts a surface of the child restraint system or the standard seat assembly, in the case of an add-on system, or the specific vehicle shell or specific vehicle, in the case of a built-in system, as appropriate. Position the limbs, if necessary, so that limb placement does not inhibit torso or head movement in tests conducted under S6.

S10.2.3 Hybrid III 6-year-old in belt-positioning seats and Hybrid III 10-year-old in belt-positioning seats. When using the Hybrid III 6-year-old (part 572, subpart N) or the Hybrid III 10-year-old (part 572, subpart T) in belt-positioning seats, position the dummy in accordance with S5.6.1 or S5.6.2, while conforming to the following:

(a) Prepare the dummy. (1) When using the Hybrid III 10-year-old dummy, prepare the dummy according to the following:

(i) Set the dummy’s neck angle at the SP–16 setting (“SP” means standard procedure), see Figure 14a.

(ii) Set the dummy’s lumbar angle at the SP–12 setting, see Figure 14b. This is done by aligning the notch on the lumbar adjustment bracket with the
§ 571.213 49 CFR Ch. V (10–1–16 Edition)

SP–12 notch on the lumbar attachment.

(iii) Adjust the limb joints to 1–2 g while the torso is in the seated position.

(iv) Apply double-sided tape to the surface of a lap shield, which is a piece of translucent silicone rubber 3 mm ±0.5 mm thick (50A durometer) cut to the dimensions specified in Figure 13. Place the lap shield on the pelvis of the dummy. Align the top of the lap shield with the superior anterior edge of the pelvis skin. Attach the lap shield to the dummy.

(v) Apply double-sided tape to one side of a pelvis positioning pad, which is a 125 × 95 × 20 mm (±2 mm tolerance in each of the three dimensions) piece of closed cell (Type 2 according to ASTM D–1056–07) (incorporated by reference; see § 571.5) foam or rubber cut from material having the following specifications: compression resistance between 9 to 17 psi in a compression-deflection test specified in ASTM D–1056–07 (incorporated by reference; see § 571.5), and a density of 7 to 12.5 lb/ft³. Center the long axis of the pad on the posterior of the pelvis with the top edge of the foam aligned with the superior edge of the pelvis skin. Attach the pelvis positioning pad to the dummy.

(vi) Dress and prepare the dummy according to S9.

(2) When using the Hybrid III 6-year-old dummy, prepare the dummy according to the following:

(i) If necessary, adjust the limb joints to 1–2 g while the torso is in the seated position.

(ii) Apply double-sided tape to the surface of a lap shield, which is a piece of translucent silicone rubber 3 mm thick (50A durometer) cut to the dimensions specified in Figure 13. Place the lap shield on the pelvis of the dummy. Align the top of the lap shield with the superior anterior edge of the pelvis skin. Attach the lap shield to the dummy.

(iii) Dress and prepare the dummy according to S9.

(b) Position the belt-positioning seat according to S6.1.2(a)(1)(ii).

(c) Position the dummy in the belt-positioning seat.

(1) Place the dummy on the seat cushion of the belt-positioning seat such that the plane of the posterior pelvis is parallel to the plane of the seat back of the belt-positioning seat, standard seat assembly or vehicle seat back, but not touching. Pick up and move the dummy rearward, maintaining the parallel planes, until the pelvis positioning pad, if used, or the pelvis or back of the dummy and the back of the belt-positioning seat or the back of the standard seat assembly, are in minimal contact.

(2) Straighten and align the arm segments horizontally, then rotate the arms upward at the shoulder as far as possible without contacting the belt-positioning seat. Straighten and align the legs horizontally and extend the lower legs as far as possible in the forward horizontal direction, with the feet perpendicular to the centerline of the lower legs.

(3) Using a flat square surface with an area of 2580 square millimeters, apply a force of 178 N (40 lb) first against the dummy crotch and then against the dummy thorax on the midsagittal plane of the dummy, perpendicular to:

(i) The plane of the back of the belt-positioning seat, in the case of a belt-positioning seat with a back, or,

(ii) The plane of the back of the standard seat assembly or vehicle seat, in the case of a backless belt-positioning seat or built-in booster.

(4) Rotate the arms of the dummy down so that they are perpendicular to the torso.

(5) Bend the knees until the back of the lower legs are in minimal contact with the belt-positioning seat, standard seat assembly or vehicle seat. Position the legs such that the outer edges of the knees are 180 ±10 mm apart for the Hybrid III 6-year-old dummy and 220 ±10 mm apart for the Hybrid III 10-year-old dummy. Position the feet such that the soles are perpendicular to the centerline of the lower legs. In the case of a belt-positioning seat with a back, adjust the dummy so that the shoulders are parallel to a line connecting the shoulder belt guides. This can be accomplished by leaning the torso such that the dummy’s head and neck are centered on the backrest components of the belt-positioning seat. In case of a backless child restraint, adjust the
dummy’s torso so that the head is as close to laterally level as possible.

(d) **Apply the belt.** Attach the vehicle belts and tighten them as specified in S6.1.2.

(e) **Dummy final positioning.** (1) Check the leg, feet, thorax and head positions and make any necessary adjustments to achieve the positions described in S10.2.3(c)(5). Position the legs, if necessary, so that the leg placement does not inhibit thorax movement in tests conducted under S6.

(2) Rotate each dummy arm downwards in the plane parallel to the dummy’s midsagittal plane until the arm contacts a surface of the child restraint system or the standard seat assembly, in the case of an add-on system, or the specific vehicle shell or specific vehicle, in the case of a built-in system, as appropriate. Position the arms, if necessary, so that the arm placement does not inhibit torso or head movement in tests conducted under S6.
Figure 1A: Seat Orientation Reference Line and Location of Universal Child Restraint Anchorage System on the Standard Seat Assembly
NOTES:
(1) Anchor Point on Rear Package Shell Located 544 mm Right or Left of the Center SORL as shown in Fig. 1A
(2) Rear Lap Belt Buckle Located 178 mm Right or Left of the Center SORL as shown in Fig. 1A

LOCATION OF BELT ANCHORAGE POINTS AND FORWARD EXCURSION LIMITS ON THE STANDARD SEAT ASSEMBLY
Figure 1B
NOTES:
(1) Anchor Point on Rear Package Shelf Located 544 mm Right or Left of the Center SDRL as shown in Fig. 1A.
(2) Rear Lap Belt Buckle Located 178 mm Right or Left of the Center SDRL as shown in Fig. 1A.
(3) Head Excursion Limit is: (i) 770 mm with Tether Attached and (ii) 813 mm with Tether Unattached.
(4) Universal Lower Anchor Bars Located 102 mm Forward of Pt. 2 and 279 mm Upward from Floor.

LOCATION OF UNIVERSAL CHILD RESTRAINT ANCHORAGE SYSTEM AND FORWARD EXCURSION LIMITS FOR THE STANDARD SEAT ASSEMBLY
Figure 1B"
REAR FACING CHILD RESTRAINT
FORWARD AND UPPER HEAD EXCURSION LIMITS

FIGURE 1C

Note: The limits illustrated move during dynamic testing.
<table>
<thead>
<tr>
<th>Point</th>
<th>Time (msec)</th>
<th>Acceleration (g)</th>
<th>Point</th>
<th>Time (msec)</th>
<th>Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>3</td>
<td>E</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>25</td>
<td>F</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>C</td>
<td>52</td>
<td>25</td>
<td>G</td>
<td>46</td>
<td>19</td>
</tr>
<tr>
<td>D</td>
<td>90</td>
<td>0</td>
<td>H</td>
<td>75</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 2A
FIGURE 4 - Buckle Release Test
WEBBING TENSION PULL DEVICE

FIGURE 5
"A" represents a 2- to 3-inch thick polyurethane foam pad, 1.5-2.0 pounds per cubic foot density, over 0.020-inch-thick aluminum pan, and covered by 12- to 14-ounce marine canvas. The sheet aluminum pan is 20 inches wide and supported on each side by a rigid structure. The seat back is a rectangular frame covered with the aluminum sheet and weighing between 14 and 15 pounds, with a center of mass 13 to 16 inches above the seat pivot axis. The mass moment of inertia of the seat back about the seat pivot axis is between 195 and 220 ounce-inch-second². The seat back is free to fold forward about the pivot, but a stop prevents rearward motion. The passenger safety belt anchor points are spaced 21 to 22 inches apart and are located in line with the seat pivot axis.

FIGURE 6: SIMULATED AIRCRAFT PASSENGER SEAT
Figure 7. Pre-impact Buckle Release Force Test Set-up
Figure 8. Release Force Application Device--Push Button Release Buckles
FOR YOUR CHILD’S CONTINUED SAFETY

Please take a few moments to promptly fill out and return the attached card [or register online using the direct link to the manufacturer’s registration website provided].

Although child restraint systems undergo testing and evaluation, it is possible that a child restraint could be recalled.

In case of recall, we can reach you only if we have your name and address, so please send in the card [or register online] to be on our recall list.

Please fill this card out and mail it NOW, [or register online at (insert manufacturer’s registration website)] while you are thinking about it.

The card is already addressed and we’ve paid the postage.

Tear off and mail this part

Consumer: Just fill in your name and address and e-mail address (optional).

Your Name

Your Street Address

City State Zip Code

E-mail Address (optional)

CHILD RESTRAINT REGISTRATION CARD

RESTRAT MODEL XXX
SERIAL NUMBER YYYY
MANUFACTURED ZZ-ZZ-20ZZ

Figure 9a - Registration form for child restraint systems – product identification number and purchaser information side.
In case of a recall, we can reach you only if we have your name and address. You MUST send in the attached card or register online to be on our recall list.

We've already paid the postage.

Do it today.

Figure 9b - Registration form for child restraint systems — address side.
Figure 10. Label on Child Seat Where Child's Head Rests.

[Label image showing a warning: DO NOT place rear-facing child seat on front seat with air bag. DEATH OR SERIOUS INJURY can occur. The back seat is the safest place for children 12 and under.]
Notes
1. Dimensions in mm, except where otherwise indicated
2. Drawing not to scale

Figure 11 -- Interface Profile of Tether Hook
Label Outline, Vertical and Horizontal Line Black

Artwork Gray and Black
With White Background

Text Black With
White Background

Circle and Line Red
With White Background

WARNING! This restraint must only be used on school bus seats. Entire seat directly behind must be unoccupied or have restrained occupants.

Figure 12. Label on Harness Component That Attaches to School Bus Seat Back.

Figure 13 – Lap Shield
§571.214 Standard No. 214; Side impact protection.

(a) Scope. This standard specifies performance requirements for protection of occupants in side impacts.

(b) Purpose. The purpose of this standard is to reduce the risk of serious and fatal injury to occupants of passenger cars, multipurpose passenger vehicles, trucks and buses in side impacts by specifying strength requirements for side doors, limiting the forces, deflections and accelerations measured on anthropomorphic dummies in test crashes, and by other means.
S2 Applicability. This standard applies to passenger cars, and to multi-purpose passenger vehicles, trucks and buses with a gross vehicle weight rating (GVWR) of 4,536 kilograms (kg) (10,000 pounds (lb)) or less, except for walk-in vans, or otherwise specified.

S3 Definitions.

Contoured means, with respect to a door, that the lower portion of its front or rear edge is curved upward, typically to conform to a wheel well.

Double side doors means a pair of hinged doors with the lock and latch mechanisms located where the door lips overlap.

Limited line manufacturer means a manufacturer that sells three or fewer carlines, as that term is defined in 49 CFR 583.4, in the United States during a production year.

Lowered floor means the replacement floor on a motor vehicle whose original floor has been removed, in part or in total, and replaced by a floor that is lower than the original floor.

Modified roof means the replacement roof on a motor vehicle whose original roof has been removed, in part or in total.

Raised roof is used as defined in paragraph S4 of 49 CFR 571.216.

Walk-in van means a special cargo/mail delivery vehicle that has only one designated seating position. That designated seating position must be forward facing and for use only by the driver. The vehicle usually has a thin and light sliding (or folding) side door for easy operation and a high roof clearance that a person of medium stature can enter the passenger compartment area in an up-right position.

S4 Requirements. Subject to the exceptions of S5—

(a) Passenger cars. Passenger cars must meet the requirements set forth in S6 (door crush resistance), S7 (moving deformable barrier test), and S9 (vehicle-to-pole test), subject to the phased-in application of S7 and S9.

(b) Multipurpose passenger vehicles, trucks and buses with a GVWR of 2,722 kg or less (6,000 lb or less). Multipurpose passenger vehicles, trucks and buses with a GVWR of 2,722 kg or less (6,000 lb or less) must meet the requirements set forth in S6 (door crush resistance), S7 (moving deformable barrier test), and S9 (vehicle-to-pole test), subject to the phased-in application of S9.

S5 General exclusions.

(a) Exclusions from S6 (door crush resistance). A vehicle need not meet the requirements of S6 (door crush resistance) for—

(1) Any side door located so that no point on a ten-inch horizontal longitudinal line passing through and bisected by the H-point of a manikin placed in any seat, with the seat adjusted to any position and the seat back adjusted as specified in S8.3, falls within the transverse, horizontal projection of the door's opening,

(2) Any side door located so that no point on a ten-inch horizontal longitudinal line passing through and bisected by the H-point of a manikin placed in any seat recommended by the manufacturer for installation in a location for which seat anchorage hardware is provided, with the seat adjusted to any position and the seat back adjusted as specified in S8.3, falls within the transverse, horizontal projection of the door's opening,

(3) Any side door located so that a portion of a seat, with the seat adjusted to any position and the seat back adjusted as specified in S8.3, falls within the transverse, horizontal projection of the door's opening, but a longitudinal vertical plane tangent to the outboard side of the seat cushion is more than 254 mm (10 inches) from the innermost point on the inside surface of the door at a height between the H-point and shoulder reference point (as shown in Figure 1 of Federal Motor Vehicle Safety Standard No. 210 (49 CFR 571.210)) and longitudinally between the front edge of the cushion with the seat adjusted to its forwardmost position and the rear edge of the cushion with the seat adjusted to its rearmost position.

(4) Any side door that is designed to be easily attached to or removed (e.g.,
using simple hand tools such as pliers and/or a screwdriver) from a motor vehicle manufactured for operation without doors.

(b) Exclusions from S7 (moving deformable barrier test). The following vehicles are excluded from S7 (moving deformable barrier test):

(1) Motor homes; (2) Ambulances and other emergency rescue/medical vehicles (including vehicles with fire-fighting equipment) except police cars; (3) Vehicles with a lowered floor or raised or modified roof and vehicles that have had the original roof rails removed and not replaced; (4) Vehicles in which the seat for the driver or right front passenger has been removed and wheelchair restraints installed in place of the seat are excluded from meeting the vehicle-to-pole test at that position; and (5) Vehicles that have no doors, or exclusively have doors that are designed to be easily attached or removed so the vehicle can be operated without doors.

(2) Passenger cars with a wheelbase greater than 130 inches need not meet the requirements of S7 as applied to the rear seat.

(3) Passenger cars, multipurpose passenger vehicles, trucks and buses need not meet the requirements of S7 (moving deformable barrier test) as applied to the rear seat for side-facing rear seats and for rear seating areas that are so small that a Part 572 Subpart V dummy representing a 5th percentile adult female cannot be accommodated according to the positioning procedure specified in S12.3.4 of this standard. Vehicles that are manufactured before September 1, 2010, and vehicles that manufactured on or after September 1, 2010, that are not part of the percentage of a manufacturer’s production meeting the moving deformable barrier test requirements with advanced test dummies (S7.2 of this section) or are otherwise excluded from the phase-in requirements of S7.2, need not meet the requirements of the moving deformable barrier test as applied to the rear seat for rear seating areas that are so small that a Subpart F dummy (SID) cannot be accommodated according to the positioning procedure specified in S12.1 of this standard.

(4) Multipurpose passenger vehicles, trucks and buses with a GVWR of more than 2,722 kg (6,000 lb) need not meet the requirements of S7 (moving deformable barrier test).

(c) Exclusions from S9 (vehicle-to-pole test). The following vehicles are excluded from S9 (vehicle-to-pole test) (wholly or in limited part, as set forth below):
S6.2.3 Peak crush resistance. The peak crush resistance shall not be less than three and one half times the curb weight of the vehicle or 53,378 N (12,000 lb), whichever is less.

S6.3 Test procedures for door crush resistance. The following procedures apply to determining compliance with S6.1 and S6.2 of S6, Door crush resistance requirements.

(a) Place side windows in their uppermost position and all doors in locked position. Place the sill of the side of the vehicle opposite to the side being tested against a rigid unyielding vertical surface. Fix the vehicle rigidly in position by means of tiedown attachments located at or forward of the front wheel centerline and at or rearward of the rear wheel centerline.

(b) Prepare a loading device consisting of a rigid steel cylinder or semi-cylinder 305 mm (12 inches) in diameter with an edge radius of 13 mm (1/2 inch). The length of the loading device shall be such that—

(1) For doors with windows, the top surface of the loading device is at least 13 mm (1/2 inch) above the bottom edge of the door window opening but not of a length that will cause contact with any structure above the bottom edge of the door window opening during the test.

(2) For doors without windows, the top surface of the loading device is at the same height above the ground as when the loading device is positioned in accordance with paragraph (b)(1) of this section for purposes of testing a front door with windows on the same vehicle.

(c) Locate the loading device as shown in Figure 1 (side view) of this section so that—

(1) Its longitudinal axis is vertical.

(2) Except as provided in paragraphs (c)(2)(i) and (ii) of this section, its longitudinal axis is laterally opposite the midpoint of a horizontal line drawn across the outer surface of the door 127 mm (5 inches) above the lowest point of the door, exclusive of any decorative or protective molding that is not permanently affixed to the door panel.

(i) For contoured doors on trucks, buses, and multipurpose passenger vehicles with a GVWR of 4,536 kg (10,000 lb) or less, its bottom surface is in the same horizontal plane as the horizontal line drawn across the outer surface of the door 127 mm (5 inches) above the lowest point of the door, exclusive of any decorative or protective molding that is not permanently affixed to the door panel.

(ii) For double side doors on trucks, buses, and multipurpose passenger vehicles with a GVWR of 4,536 kg (10,000 lb) or less, its bottom surface is in the same horizontal plane as the horizontal line drawn across the outer surface of the double door span, 127 mm (5 inches) above the lowest point on the doors, exclusive of any decorative or protective molding that is not permanently affixed to the door panel.

(3) Except as provided in paragraphs (c)(3)(i) and (ii) of this section, its bottom surface is in the same horizontal plane as the horizontal line drawn across the outer surface of the door 127 mm (5 inches) above the lowest point of the door, exclusive of any decorative or protective molding that is not permanently affixed to the door panel.

(i) For contoured doors on trucks, buses, and multipurpose passenger vehicles with a GVWR of 4,536 kg (10,000 lb) or less, its bottom surface is in the lowest horizontal plane such that every point on the lateral projection of the bottom surface of the device on the door is at least 127 mm (5 inches), horizontally and vertically, from any edge of the door panel, exclusive of any decorative or protective molding that is not permanently affixed to the door panel.

(ii) For double side doors, its bottom surface is in the same horizontal plane as a horizontal line drawn across the outer surface of the double door span, 127 mm (5 inches) above the lowest point of the doors, exclusive of any decorative or protective molding that is not permanently affixed to the door panel.

(d) Using the loading device, apply a load to the outer surface of the door in an inboard direction normal to a vertical plane along the vehicle’s longitudinal centerline. Apply the load continuously such that the loading device travel rate does not exceed 12.7 mm (0.5
inch) per second until the loading device travels 457 mm (18 inches). Guide the loading device to prevent it from being rotated or displaced from its direction of travel. The test is completed within 120 seconds.

(e) Record applied load versus displacement of the loading device, either continuously or in increments of not more than 25.4 mm (1 inch) or 91 kg (200 pounds) for the entire crush distance of 457 mm (18 inches).

(f) Determine the initial crush resistance, intermediate crush resistance, and peak crush resistance as follows:

1. From the results recorded in paragraph (e) of this section, plot a curve of load versus displacement and obtain the integral of the applied load with respect to the crush distances specified in paragraphs (f)(2) and (3) of this section. These quantities, expressed in mm-kN (inch-pounds) and divided by the specified crush distances, represent the average forces in kN (pounds) required to deflect the door those distances.

2. The initial crush resistance is the average force required to deform the door over the initial 152 mm (6 inches) of crush.

3. The intermediate crush resistance is the average force required to deform the door over the initial 305 mm (12 inches) of crush.

4. The peak crush resistance is the largest force recorded over the entire 457 mm (18-inch) crush distance.

Figure 1—LOADING DEVICE LOCATION AND APPLICATION TO THE DOOR

All dimensions in millimeters (mm)
§ 571.214 Moving Deformable Barrier (MDB) Requirements.

Except as provided in section S5, when tested under the conditions of S8 each vehicle shall meet S7.3 and the following requirements in a 53 ±1.0 km/h (33.5 mph) impact in which the vehicle is struck on either side by a moving deformable barrier.

S7.1 MDB test with SID. For vehicles manufactured before September 1, 2010, the following requirements must be met. The following requirements also apply to vehicles manufactured on or after September 1, 2010 that are not part of the percentage of a manufacturer’s production meeting the MDB test with advanced test dummies (S7.2 of this section) or are otherwise excluded from the phase-in requirements of S7.2.

(a) Place the Subpart U ES–2re 50th percentile male dummy in the front seat and the Subpart V SID–IIs 5th percentile female test dummy in the rear seat. The test dummies are placed and positioned in the front and rear outboard seating positions on the struck side of the vehicle, as specified in S11 and S12 of this standard (49 CFR 571.214).

(b) For vehicles manufactured on or after September 1, 2010 that are not part of the percentage of a manufacturer’s production meeting S7.2.1 of this section, the requirements of S7.1 of this section must be met.

(c) Place the Subpart U ES–2re 50th percentile male dummy in the front seat and the Subpart V SID–IIs 5th percentile female test dummy in the rear seat. The test dummies are placed and positioned in the front and rear outboard seating positions on the struck side of the vehicle, as specified in S11 and S12 of this standard (49 CFR 571.214).

S7.2 MDB test with advanced test dummies.

S7.2.1 Vehicles manufactured on or after September 1, 2010 to August 31, 2014.

(a) Subject to S7.2.4 of this section, each vehicle manufactured on or after September 1, 2014 must meet the requirements of S7.2.5 and S7.2.6, when tested with the test dummy specified in those sections.

(b) Place the Subpart U ES–2re 50th percentile male dummy in the front seat and the Subpart V SID–IIs 5th percentile female test dummy in the rear seat. The test dummies are placed and positioned in the front and rear outboard seating positions on the struck side of the vehicle, as specified in S11 and S12 of this standard (49 CFR 571.214).

S7.2.2 Vehicles manufactured on or after September 1, 2014.

(a) Subject to S7.2.4 of this section, each vehicle manufactured on or after September 1, 2014 must meet the requirements of S7.2.5 and S7.2.6, when tested with the test dummy specified in those sections.

(b) Place the Subpart U ES–2re 50th percentile male dummy in the front seat and the Subpart V SID–IIs 5th percentile female test dummy in the rear seat. The test dummies are placed and positioned in the front and rear outboard seating positions on the struck side of the vehicle, as specified in S11 and S12 of this standard (49 CFR 571.214).

S7.2.3 [Reserved]

S7.2.4 Exceptions from the MDB phase-in; special allowances.

(a)(1) Vehicles that are manufactured by an original vehicle manufacturer that produces or assembles fewer than 5,000 vehicles annually for sale in the United States are not subject to S7.2.1 of this section (but vehicles that will be manufactured on or after September 1, 2014 are subject to S7.2.2); (2) Vehicles that are manufactured by a limited line manufacturer are not subject to S7.2.1 of this section (but vehicles that will be manufactured on or after September 1, 2014 are subject to S7.2.2).
(3) Convertibles manufactured before September 1, 2015, are not subject to S7.2.1 or S7.2.2 of this section. These vehicles may be voluntarily certified to meet the MDB test requirements prior to September 1, 2015. Vehicles manufactured on or after September 1, 2015 are subject to S7 and S7.2.2.

(b) Vehicles that are altered (within the meaning of 49 CFR 567.7) before September 1, 2016 after having been previously certified in accordance with part 567 of this chapter, and vehicles manufactured in two or more stages before September 1, 2016, are not subject to S7.2.1. Vehicles that are altered on or after September 1, 2016, and vehicles that are manufactured in two or more stages on or after September 1, 2016, must meet the requirements of S7.2.5 and S7.2.6, when tested with the test dummy specified in those sections. Place the Subpart U ES–2re 50th percentile male dummy in the front seat and the Subpart V SID-IIs 5th percentile female test dummy in the rear seat. The test dummies are placed and positioned in the front and rear outboard seating positions on the struck side of the vehicle, as specified in S11 and S12 of this standard (49 CFR 571.214).

S7.2.5 Dynamic performance requirements using the Part 572 Subpart U dummy (ES-2re 50th percentile male) dummy. Use the 49 CFR Part 572 Subpart U ES-2re 50th percentile male dummy specified in S11 with measurements in accordance with S11.5. The following criteria shall be met:

(a) The HIC shall not exceed 1000 when calculated in accordance with the following formula:

$$HIC = \left(\frac{1}{(t_2-t_1)} \int_{t_1}^{t_2} a dt \right)^{2.5} (t_2-t_1)$$

Where the term a is the resultant head acceleration expressed as a multiple of g (the acceleration of gravity), and t_1 and t_2 are any two points in time during the impact which are separated by not more than a 36 millisecond time interval and where t_1 is less than t_2.

(b) Thorax. The deflection of any of the upper, middle, and lower ribs, shall not exceed 44 mm (1.73 inches).

(c) Force measurements.

(1) The sum of the front, middle and rear abdominal forces, shall not exceed 2,500 N (562 lb).

(2) The pubic symphysis force shall not exceed 6,000 N (1,350 pounds).

S7.2.6 Dynamic performance requirements using the Part 572 Subpart V SID-II s (5th percentile female) dummy. Use the 49 CFR Part 572 Subpart V SID-IIs 5th percentile female dummy specified in S11 with measurements in accordance with S11.5. The following criteria shall be met:

(a) The HIC shall not exceed 1000 when calculated in accordance with the following formula:

$$HIC = \left(\frac{1}{(t_2-t_1)} \int_{t_1}^{t_2} a dt \right)^{2.5} (t_2-t_1)$$

Where the term a is the resultant head acceleration expressed as a multiple of g (the acceleration of gravity), and t_1 and t_2 are any two points in time during the impact which are separated by not more than a 36 millisecond time interval.

(b) The resultant lower spine acceleration shall not exceed 82 g.

(c) The sum of the acetabular and iliac pelvic forces shall not exceed 5,525 N.

S7.3 Door opening.

(a) Any side door that is struck by the moving deformable barrier shall not separate totally from the vehicle.

(b) Any door (including a rear hatchback or tailgate) that is not struck by the moving deformable barrier shall meet the following requirements:

(1) The door shall not disengage from the latched position;

(2) The latch shall not separate from the striker, and the hinge components shall not separate from each other or from their attachment to the vehicle.

(3) Neither the latch nor the hinge systems of the door shall pull out of their anchorages.

S8 Test conditions for determining compliance with moving deformable barrier requirements. General test conditions for determining compliance with...
the moving deformable barrier test are specified below. Additional specifications may also be found in S12 of this standard (49 CFR 571.214).

§ 571.214 Test weight. Each vehicle is loaded to its unloaded vehicle weight, plus 136 kg (300 pounds) or its rated cargo and luggage capacity (whichever is less), secured in the luggage or load-carrying area, plus the weight of the necessary anthropomorphic test dummies. Any added test equipment is located away from impact areas in secure places in the vehicle. The vehicle’s fuel system is filled in accordance with the following procedure. With the test vehicle on a level surface, pump the fuel from the vehicle’s fuel tank and then operate the engine until it stops. Then, add Stoddard solvent to the test vehicle’s fuel tank in an amount that is equal to not less than 92 percent and not more than 94 percent of the fuel tank’s usable capacity stated by the vehicle’s manufacturer. In addition, add the amount of Stoddard solvent needed to fill the entire fuel system from the fuel tank through the engine’s induction system.

§ 571.214 8.1 Vehicle test attitude. Determine the distance between a level surface and a standard reference point on the test vehicle’s body, directly above each wheel opening, when the vehicle is in its fully loaded condition at the test site, with all tires inflated to the manufacturer’s specifications listed on the vehicle’s tire placard, and with the vehicle filled to 100 percent of all fluid capacities. The “fully loaded condition” is the test vehicle loaded in accordance with §571.214. The load placed in the cargo area is centered over the longitudinal centerline of the vehicle. The pre-test vehicle attitude is equal to the fully loaded attitude ± 10 mm.

§ 571.214 8.3 Adjustable seats.

§ 571.214 8.3.1 50th Percentile Male ES-2re Dummy (49 CFR Part 572 Subpart U) In Front Seats

§ 571.214 8.3.1.1 Lumbar support adjustment. Position adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position.

§ 571.214 8.3.1.1 Other seat adjustments. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or non-deployed adjustment position. Position any adjustable head restraint in the highest and most forward position. Place adjustable seat backs in the manufacturer’s nominal design riding position in the manner specified by the manufacturer. If the position is not specified, set the seat back at the first detent rearward of 25° from the vertical.

§ 571.214 8.3.1.1.3 Seat position adjustment. If the driver and passenger seats do not adjust independently of each other, the struck side seat shall control the final position of the non-struck side seat. If the driver and passenger seats adjust independently of each other, adjust both the struck and non-struck side seats in the manner specified in §8.3.1.

§ 571.214 8.3.1.1.3.1 Using only the controls that primarily move the seat and seat cushion independent of the seat back in the fore and aft directions, move the seat cushion reference point (SCR) to the rearmost position. Using any part of any control other than those just used, determine the full range of angles of the seat cushion reference line and set the seat cushion reference line to the middle of the range. Using any part of any control other than those that primarily move the seat or seat cushion fore and aft, while maintaining the seat cushion reference line angle, place the SCR to its lowest position.

§ 571.214 8.3.1.1.3.2 Using only the control that primarily moves the seat fore and aft, move the seat cushion reference point to the mid travel position. If an adjustment position does not exist midway between the forwardmost and rearmost positions, the closest adjustment position to the rear of the midpoint is used.

§ 571.214 8.3.1.3 If the seat or seat cushion height is adjustable, other than by the controls that primarily move the seat or seat cushion fore and aft, set the height of the seat cushion reference point to the minimum height, with the seat cushion reference line angle set as closely as possible to the angle determined in §8.3.1.1.3.1. Mark location of the seat for future reference.

§ 571.214 8.3.2 50th Percentile Male SID Dummy (49 CFR Part 572 Subpart F) In Front and Rear Seats
§571.214

S8.3.2.1 Adjustable seats. Adjustable seats are placed in the adjustment position midway between the forwardmost and rearmost positions, and if separately adjustable in a vertical direction, are at the lowest position. If an adjustment position does not exist midway between the forward most and rearmost positions, the closest adjustment position to the rear of the midpoint is used.

S8.3.2.2 Adjustable seat back placement. Place adjustable seat backs in the manufacturer's nominal design riding position in the manner specified by the manufacturer. If the position is not specified, set the seat back at the first detent rearward of 25° from the vertical. Place each adjustable head restraint in the manufacturer's highest adjustment position. Position adjustable lumbar supports so that they are set in their released, i.e., full back position.

S8.3.3 5th Percentile Female Dummy in Second Row Seat.

S8.3.3.1 Lumbar support adjustment. Position adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position.

S8.3.3.2 Other seat adjustments. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or non-deployed adjustment position. Position any adjustable head restraint in the lowest and most forward in-use position. If it is possible to achieve a position lower than the effective detent range, the head restraint should be set to its lowest possible position. A non-use position as specified by §4.4 of FMVSS No. 202a, is excluded from being considered as the lowest possible position.

S8.3.3.3 Seat position adjustment. Using only the controls that primarily move the seat and seat cushion independent of the seat back in the fore and aft directions, move the seat cushion reference point (SCRP) to the rearmost position. Using any part of any control, other than those just used, determine the full range of angles of the seat cushion reference line and set the seat cushion reference line to the middle of the range. Using any part of any control other than those that primarily move the seat or seat cushion fore and aft, while maintaining the seat cushion reference line angle, place the SCRP to its lowest position. Mark location of the seat for future reference. If the non-struck side seat adjusts independently of the struck side seat, adjust the seat in the manner specified in this section.

S8.4 Adjustable steering wheel. Adjustable steering controls are adjusted so that the steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions. If there is no setting detent in the mid-position, lower the steering wheel to the detent just below the mid-position. If the steering column is telescoping, place the steering column in the mid-position. If there is no mid-position, move the steering wheel rearward one position from the mid-position.

S8.5 Windows and sunroofs. Movable vehicle windows and vents are placed in the fully closed position on the struck side of the vehicle. Any sunroof shall be placed in the fully closed position.

S8.6 Convertible tops. Convertibles and open-body type vehicles have the top, if any, in place in the closed passenger compartment configuration.

S8.7 Doors. Doors, including any rear hatchback or tailgate, are fully closed and latched but not locked.

S8.8 Transmission and brake engagement. For a vehicle equipped with a manual transmission, the transmission is placed in second gear. For a vehicle equipped with an automatic transmission, the transmission is placed in neutral. For all vehicles, the parking brake is engaged.

S8.9 Moving deformable barrier. The moving deformable barrier conforms to the dimensions shown in Figure 2 and specified in 49 CFR Part 587.

S8.10 Impact configuration. The test vehicle (vehicle A in Figure 3) is stationary. The line of forward motion of the moving deformable barrier (vehicle B in Figure 3) forms an angle of 63 degrees with the centerline of the test vehicle. The longitudinal centerline of the moving deformable barrier is perpendicular to the longitudinal centerline of the test vehicle when the barrier strikes the test vehicle. In a test in which the test vehicle is to be struck on its left (right) side: All
wheels of the moving deformable barrier are positioned at an angle of 27 ± 1 degrees to the right (left) of the centerline of the moving deformable barrier; and the left (right) forward edge of the moving deformable barrier is aligned so that a longitudinal plane tangent to that side passes through the impact reference line within a tolerance of ±51 mm (2 inches) when the barrier strikes the test vehicle.

S8.11 Impact reference line. Place a vertical reference line at the location described below on the side of the vehicle that will be struck by the moving deformable barrier.

S8.11.1 Passenger cars.
(a) For vehicles with a wheelbase of 2,896 mm (114 inches) or less, 940 mm (37 inches) forward of the center of the vehicle’s wheelbase.
(b) For vehicles with a wheelbase greater than 2,896 mm (114 inches), 508 mm (20 inches) rearward of the centerline of the vehicle’s front axle.

S8.11.2 Multipurpose passenger vehicles, trucks and buses.
(a) For vehicles with a wheelbase of 2,489 mm (98 inches) or less, 305 mm (12 inches) rearward of the centerline of the vehicle’s front axle, except as otherwise specified in paragraph (d) of this section.
(b) For vehicles with a wheelbase greater than 2,489 mm (98 inches) but not greater than 2,896 mm (114 inches), 940 mm (37 inches) forward of the center of the vehicle’s wheelbase, except as otherwise specified in paragraph (d) of this section.
(c) For vehicles with a wheelbase greater than 2,896 mm (114 inches), 508 mm (20 inches) rearward of the centerline of the vehicle’s front axle, except as otherwise specified in paragraph (d) of this section.

(d) At the manufacturer’s option, for different wheelbase versions of the same model vehicle, the impact reference line may be located by the following:
(1) Select the shortest wheelbase vehicle of the different wheelbase versions of the same model and locate on it the impact reference line at the location described in (a), (b) or (c) of this section, as appropriate;
(2) Measure the distance between the seating reference point (SgRP) and the impact reference line;
(3) Maintain the same distance between the SgRP and the impact reference line for the version being tested as that between the SgRP and the impact reference line for the shortest wheelbase version of the model.

S8.12 Anthropomorphic test dummies. The anthropomorphic test dummies used to evaluate a vehicle’s performance in the moving deformable barrier test conform to the requirements of S11 and are positioned as described in S12 of this standard (49 CFR 571.214).
Figure 2—NHTSA SIDE IMPACTOR – MOVING DEFORMABLE BARRIER
All dimensions in millimeters (mm)
S9. Vehicle-To-Pole Requirements.

S9.1 Except as provided in S5, when tested under the conditions of S10:

S9.1.1 Except as provided in S9.1.3 of this section, for vehicles manufactured on or after September 1, 2010 to August 31, 2014, a percentage of each manufacturer’s production, as specified in S13.1.1, S13.1.2, S13.1.3, and S13.1.4 shall meet the requirements of S9.2.1, S9.2.2, and S9.2.3 when tested under the conditions of S10 into a fixed, rigid pole of 254 mm (10 inches) in diameter, at any velocity between 26 km/h to 32 km/h (16 to 20 mph) inclusive. Vehicles manufactured before September 1, 2014 that are
not subject to the phase-in may be certified as meeting the requirements specified in this section.

§ 571.214 Except as provided in § 571.214 of this section, each vehicle manufactured on or after September 1, 2014, must meet the requirements of § 571.212, § 571.212 and § 571.23, when tested under the conditions specified in § 571.214 into a fixed, rigid pole of 254 mm (10 inches) in diameter, at any speed up to and including 32 km/h (20 mph). All vehicles manufactured on or after September 1, 2014 must meet § 571.214 without the use of advance credits.

§ 571.214 Exceptions from the phase-in; special allowances.

(a)(1) Vehicles that are manufactured by an original vehicle manufacturer that produces or assembles fewer than 5,000 vehicles annually for sale in the United States are not subject to § 571.214 of this section (but vehicles manufactured on or after September 1, 2014 by these manufacturers are subject to § 571.22);

(b) Vehciles that are altered (within the meaning of 49 CFR 567.7) before September 1, 2016 after having been previously certified in accordance with part 567 of this chapter, and vehicles manufactured in two or more stages before September 1, 2016, are not subject to § 571.22. Vehicles that are altered on or after September 1, 2016, and vehicles that are manufactured in two or more stages on or after September 1, 2016, must meet the requirements of § 571.214, when tested under the conditions specified in § 571.214 into a fixed, rigid pole of 254 mm (10 inches) in diameter, at any speed up to and including 32 km/h (20 mph).

§ 571.214 Requirements.

Each vehicle shall meet these vehicle-to-pole test requirements when tested under the conditions of § 571.214 of this standard. At NHTSA’s option, either the 50th percentile adult male test dummy (ES-2re dummy, 49 CFR Part 572 Subpart U) or the 5th percentile adult female test dummy (SID-IIs, 49 CFR Part 572 Subpart V) shall be used in the test. At NHTSA’s option, either front outboard seating position shall be tested. The vehicle shall meet the specific requirements at all front outboard seating positions.

§ 571.214 Dynamic performance requirements using the Part 572 Subpart U (ES-2re 50th percentile male) dummy.

When using the ES-2re Part 572 Subpart U dummy, the following performance requirements must be met using measurements in accordance with § 571.214.

(a) The HIC shall not exceed 1000 when calculated in accordance with the following formula:

\[\text{HIC} = \frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} a(t) dt \]

Where the term \(a \) is the resultant head acceleration at the center of gravity of the dummy head expressed as a multiple of \(g \) (the acceleration of gravity), and \(t_1 \) and \(t_2 \) are any two points in...
§571.214
49 CFR Ch. V (10–1–16 Edition)

time during the impact which are sepa-
rated by not more than a 36 milli-
second time interval and where t1 is
less than t2.

(b) Thorax. The deflection of any of
the upper, middle, and lower ribs, shall
not exceed 44 mm (1.73 inches).

(c) Force measurements.
(1) The sum of the front, middle and
rear abdominal forces, shall not exceed
2,500 N (562 pounds).
(2) The pubic symphysis force shall
not exceed 6,000 N (1,350 pounds).

S9.2.2 Dynamic performance require-
ments using the Part 572 Subpart V SID–
IIs (5th percentile female) dummy. When
using the SID-IIs Part 572 Subpart V
dummy, use the specifications of S11 of
this standard (49 CFR 571.214). When
using the dummy, the following per-
formance requirements must be met.
(a) The HIC shall not exceed 1000
when calculated in accordance with the
following formula:

\[HIC = \left(\frac{1}{(t_2 - t_1)^{1.2}} \right) \int_{t_1}^{t_2} a dt \]

Where the term \(a \) is the resultant
head acceleration at the center of grav-
ity of the dummy head expressed as a
multiple of \(g \) (the acceleration of grav-
ity), and \(t_1 \) and \(t_2 \) are any two points in
time during the impact which are sepa-
rated by not more than a 36 milli-
second time interval and where \(t_1 \) is
less than \(t_2 \).

(b) Resultant lower spine accelera-
tion must not exceed 82 g.

(c) The sum of the acetabular and
iliac pelvic forces must not exceed 5,525
N.

S9.2.3 Door opening.
(a) Any side door that is struck by
the pole shall not separate totally from
the vehicle.

(b) Any door (including a rear
hatchback or tailgate) that is not
struck by the pole shall meet the fol-
lowing requirements:
(1) The door shall not disengage from
the latched position; and
(2) The latch shall not separate from
the striker, and the hinge components
shall not separate from each other or
from their attachment to the vehicle.

(3) Neither the latch nor the hinge
systems of the door shall pull out of
their anchorages.

S10. General test conditions for deter-
mining compliance with vehicle-to-pole re-
quirements. General test conditions for
determining compliance with the vehi-
cle-to-pole test are specified below and
in S12 of this standard (49 CFR 571.214).

S10.1 Test weight. Each vehicle is
loaded as specified in S8.1 of this stand-
ard (49 CFR 571.214).

S10.2 Vehicle test attitude. When the
vehicle is in its “as delivered,” “fully
loaded” and “as tested” condition, lo-
cate the vehicle on a flat, horizontal
surface to determine the vehicle atti-
dude. Use the same level surface or ref-
ence plane and the same standard
points on the test vehicle when deter-
miming the “as delivered,” “fully load-
ed” and “as tested” conditions. Measure
the angles relative to a horizontal
plane, front-to-rear and from left-to-
right for the “as delivered,” “fully
loaded,” and “as tested” conditions.
The front-to-rear angle (pitch) is measured
along a fixed reference on the
driver’s and front passenger’s door sill.
Mark where the angles are taken on
the door sill. The left to right angle
(roll) is measured along a fixed ref-
ence point at the front and rear of
the vehicle at the vehicle longitudinal
center plane. Mark where the angles
are measured. The “as delivered” con-
dition is the vehicle as received at the
test site, with 100 percent of all fluid
capacities and all tires inflated to the
manufacturer’s specifications listed on
the vehicle’s tire placard. When the ve-
hicle is in its “fully loaded” condition,
measure the angle between the driver’s
door sill and the horizontal, at the
same place the “as delivered” angle
was measured. The “fully loaded con-
dition” is the test vehicle loaded in ac-
cordance with S8.1 of this standard (49
CFR 571.214). The load placed in the
cargo area is centered over the longitu-
dinal centerline of the vehicle. The ve-
hicle “as tested” pitch and roll angles
are between the “as delivered” and
“fully loaded” condition, inclusive.

S10.3 Adjustable seats.
S10.3.1 Driver and front passenger seat
set-up for 50th percentile male dummy.
The driver and front passenger seats
are set up as specified in S8.3.1 of this standard, 49 CFR 571.214.

 §10.3.2. Driver and front passenger seat set-up for 49 CFR Part 572 Subpart V 5th percentile female dummy.

 §10.3.2.1 Lumbar support adjustment. Position adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position.

 §10.3.2.2 Other seat adjustments. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or non-deployed adjustment position. Position any adjustable head restraint in the lowest and most forward in-use position. If it is possible to achieve a position lower than the effective detent range, the head restraint should be set to its lowest possible position. A non-use position as specified by S4.4 of FMVSS No. 202a, is excluded from being considered as the lowest possible position.

 §10.3.2.3 Seat position adjustment. If the driver and passenger seats do not adjust independently of each other, the struck side seat shall control the final position of the non-struck side seat. If the driver and passenger seats adjust independently of each other, adjust both the struck and non-struck side seats in the manner specified in §10.3.2.

 §10.3.2.3.1 Using only the controls that primarily move the seat and seat cushion independent of the seat back in the fore and aft directions, move the seat cushion reference point (SCRP) to the rearmost position. Using any part of any control, other than those just used, determine the full range of angles of the seat cushion reference line and set the seat cushion reference line to the middle of the range. Using any part of any control other than those that primarily move the seat or seat cushion fore and aft, while maintaining the seat cushion reference line angle, place the SCRP to its lowest position.

 §10.3.2.3.2 Using only the control that primarily moves the seat fore and aft, move the seat reference point to the most forward position.

 §10.3.2.3.3 If the seat or seat cushion height is adjustable, other than by the controls that primarily move the seat or seat cushion fore and aft, set the seat reference point to the midpoint height, with the seat cushion reference line angle set as close as possible to the angle determined in §10.3.2.3.1. Mark location of the seat for future reference.

 §10.4 Positioning dummies for the vehicle-to-pole test.

 (a) 50th percentile male test dummy (49 CFR Part 572 Subpart U ES–2re dummy). The 50th percentile male test dummy is positioned in the front outboard seating position on the struck side of the vehicle in accordance with the provisions of §12.2 of this standard, 49 CFR 571.214.

 (b) 5th percentile female test dummy (49 CFR Part 572 Subpart V SID–IIs dummy). The 5th percentile female test dummy is positioned in the front outboard seating positions on the struck side of the vehicle in accordance with the provisions of §12.3 of this standard, 49 CFR 571.214.

 §10.5 Adjustable steering wheel. Adjustable steering controls are adjusted so that the steering wheel hub is at the geometric center of the locus it describes when it is moved through its full range of driving positions. If there is no setting detent in the mid-position, lower the steering wheel to the detent just below the mid-position. If the steering column is telescoping, place the steering column in the mid-position. If there is no mid-position, move the steering wheel rearward one position from the mid-position.

 §10.6 Windows and sunroofs. Movable vehicle windows and vents are placed in the fully closed position on the struck side of the vehicle. Any sunroof is placed in the fully closed position.

 §10.7 Convertible tops. Convertibles and open-body type vehicles have the top, if any, in place in the closed passenger compartment configuration.

 §10.8 Doors. Doors, including any rear hatchback or tailgate, are fully closed and latched but not locked.

 §10.9 Transmission and brake engagement. For a vehicle equipped with a manual transmission, the transmission is placed in second gear. For a vehicle equipped with an automatic transmission, the transmission is placed in neutral. For all vehicles, the parking brake is engaged.

 §10.10 Rigid pole. The rigid pole is a vertical metal structure beginning no more than 102 millimeters (4 inches)
above the lowest point of the tires on the striking side of the test vehicle when the vehicle is loaded as specified in §8.1 and extending above the highest point of the roof of the test vehicle. The pole is 254 mm (10 inches) ± 6 mm (0.25 in) in diameter and set off from any mounting surface, such as a barrier or other structure, so that the test vehicle will not contact such a mount or support at any time within 100 milliseconds of the initiation of vehicle to pole contact.

§10.11 Impact reference line. The impact reference line is located on the striking side of the vehicle at the intersection of the vehicle exterior and a vertical plane passing through the center of gravity of the head of the dummy seated in accordance with §12 in the front outboard designated seating position. The vertical plane forms an angle of 28.5 (or 75) degrees with the vehicle’s longitudinal centerline for the right (or left) side impact test. The angle is measured counterclockwise from the vehicle’s positive X-axis as defined in §10.13.

§10.12 Impact configuration.

§10.12.1 The rigid pole is stationary.

§10.12.2 The test vehicle is propelled sideways so that its line of forward motion forms an angle of 28.5 (or 75) degrees (±3 degrees) for the right (or left) side impact with the vehicle’s longitudinal centerline. The angle is measured counterclockwise from the vehicle’s positive X-axis as defined in §10.13. The impact reference line is aligned with the center line of the rigid pole surface, as viewed in the direction of vehicle motion, so that, when the vehicle-to-pole contact occurs, the center line contacts the vehicle area bounded by two vertical planes parallel to and 38 mm (1.5 inches) forward and aft of the impact reference line.

§10.13 Vehicle reference coordinate system. The vehicle reference coordinate system is an orthogonal coordinate system consisting of three axes, a longitudinal axis (X), a transverse axis (Y), and a vertical axis (Z). X and Y are in the same horizontal plane and Z passes through the intersection of X and Y. The origin of the system is at the center of gravity of the vehicle. The X-axis is parallel to the longitudinal centerline of the vehicle and is positive to the vehicle front end and negative to the rear end. The Y-axis is positive to the left side of the vehicle and negative to the right side. The Z-axis is positive above the X-Y plane and negative below it.

§11 Anthropomorphic test dummies. The anthropomorphic test dummies used to evaluate a vehicle’s performance in the moving deformable barrier and vehicle-to-pole tests are specified in 49 CFR part 572. In a test in which the test vehicle is to be struck on its left side, each dummy is to be configured and instrumented to be struck on its left side, in accordance with part 572. In a test in which the test vehicle is to be struck on its right side, each dummy is to be configured and instrumented to be struck on its right side, in accordance with part 572.

§11.1 Clothing.

(a) 50th percentile male. Each test dummy representing a 50th percentile male is clothed in formfitting cotton stretch garments with short sleeves and midcalf length pants. Each foot of the test dummy is equipped with a size 11EEE shoe, which meets the configuration size, sole, and heel thickness specifications of MIL–S–13192 (incorporated by reference, see §571.5) and weighs 0.68 ± 0.09 kilograms (1.25 ± 0.2 lb).

(b) 5th percentile female. The 49 CFR Part 572 Subpart V test dummy representing a 5th percentile female is clothed in formfitting cotton stretch garments with short sleeves and about the knee length pants. Each foot has on a size 7.5W shoe that meets the configuration and size specifications of MIL–S–21711E (incorporated by reference, see §571.5) or its equivalent.

§11.2 Limb joints.

(a) For the 50th percentile male dummy, set the limb joints at between 1 and 2 g. Adjust the leg joints with the torso in the supine position. Adjust the knee and ankle joints so that they just support the lower leg and the foot when extended horizontally (1 to 2 g adjustment).

(b) For the 49 CFR Part 572 Subpart V 5th percentile female dummy, set the limb joints at slightly above 1 g, barely restraining the weight of the limb when extended horizontally. The force needed to move a limb segment does not exceed 2 g throughout the range of
limb motion. Adjust the leg joints with the torso in the supine position.

S11.3 The stabilized temperature of the test dummy at the time of the test is at any temperature between 20.6 degrees C and 22.2 degrees C.

S11.4 Acceleration data. Accelerometers are installed on the head, rib, spine and pelvis components of various dummies as required to meet the injury criteria of the standard. Accelerations measured from different dummy components may use different filters and processing methods.

S11.5 Processing Data.

(a) Subpart F (SID) test dummy. (1) Process the acceleration data from the accelerometers mounted on the ribs, spine and pelvis of the Subpart F dummy with the FIR100 software specified in 49 CFR 572.44(d). Process the data in the following manner:

(i) Filter the data with a 300 Hz, SAE Class 180 filter;

(ii) Subsample the data to a 1600 Hz sampling rate;

(iii) Remove the bias from the subsampled data; and

(iv) Filter the data with the FIR100 software specified in 49 CFR 572.44(d), which has the following characteristics—

(A) Passband frequency 100 Hz.

(B) Stopband frequency 189 Hz.

(C) Stopband gain ≤ 50 db.

(D) Passband ripple 0.0225 db.

(2) [Reserved]

(b) Subpart U (ES–2re 50th percentile male) test dummy. (1) The rib deflection data are filtered at channel frequency class of 180 Hz. Abdominal and pubic force data are filtered at channel frequency class of 600 Hz.

(2) The acceleration data from the accelerometers installed inside the skull cavity of the ES–2re test dummy are filtered at channel frequency class of 1000 Hz.

(c) Subpart V (SID–IIs 5th percentile female) test dummy.

(1) The acceleration data from the accelerometers installed inside the skull cavity of the SID–IIs test dummy are filtered at channel frequency class of 1000 Hz.

(2) The acceleration data from the accelerometers installed on the lower spine of the SID–IIs test dummy are filtered at channel frequency class of 180 Hz.

(3) The iliac and acetabular forces from load cells installed in the pelvis of the SID–IIs are filtered at channel frequency class of 600 Hz.

S12 Positioning procedures for the anthropomorphic test dummies.

S12.1 50th percentile male test dummy—49 CFR part 572 subpart F (SID). Position a correctly configured test dummy, conforming to the applicable requirements of part 572 Subpart F of this chapter, in the front outboard seating position on the side of the test vehicle to be struck by the moving deformable barrier and, if the vehicle has a second seat, position another conforming test dummy in the second seat outboard position on the same side of the vehicle, as specified in S12.1.3. Each test dummy is restrained using all available belt systems in all seating positions where such belt restraints are provided. Place any adjustable anchorages at the manufacturer’s nominal design position for a 50th percentile adult male occupant. In addition, any folding armrest is retracted. Additional positioning procedures are specified below.

S12.1.1 Positioning a Part 572 Subpart F (SID) dummy in the driver position.

(a) Torso. Hold the dummy’s head in place and push laterally on the non-imacted side of the upper torso in a single stroke with a force of 66.7–89.0 N (15–20 lb) towards the impacted side.

(1) For a bench seat. The upper torso of the test dummy rests against the seat back. The midsagittal plane of the test dummy is vertical and parallel to the vehicle’s longitudinal centerline, and passes through the center of the steering wheel.

(2) For a bucket seat. The upper torso of the test dummy rests against the seat back. The midsagittal plane of the test dummy is vertical and parallel to the vehicle’s longitudinal centerline, and coincides with the longitudinal centerline of the bucket seat.

(b) Pelvis.

(1) H-point. The H-points of each test dummy coincide within 12.7 mm (1/2 inch) in the vertical dimension and 12.7 mm (1/2 inch) in the horizontal dimension of a point that is located 6.4 mm (1/4 inch) below the position of the H-
§ 571.214 49 CFR Ch. V (10–1–16 Edition)

point determined by using the equipment for the 50th percentile and procedures specified in SAE Standard J826–1980 (incorporated by reference, see § 571.5), except that Table 1 of SAE Standard J826–1980 is not applicable. The length of the lower leg and thigh segments of the H-point machine are adjusted to 414 and 401 mm (16.3 and 15.8 inches), respectively.

(2) Pelvic angle. As determined using the pelvic angle gauge (GM drawing 78051–532 incorporated by reference in part 572, Subpart E of this chapter) which is inserted into the H–point gauging hole of the dummy, the angle of the plane of the surface on the lumbar-pelvic adaptor on which the lumbar spine attaches is 23 to 25 degrees from the horizontal, sloping upward toward the front of the vehicle.

(3) Legs. The upper legs of each test dummy rest against the seat cushion to the extent permitted by placement of the feet. The left knee of the dummy is positioned such that the distance from the outer surface of the knee pivot bolt to the dummy’s midsagittal plane is 152.4 mm (6.0 inches). To the extent practicable, the left leg of the test dummy is in a vertical longitudinal plane.

(4) Feet. The right foot of the test dummy rests on the undepressed accelerator with the heel resting as far forward as possible on the floorpan. The left foot is set perpendicular to the lower leg with the heel resting on the floorpan in the same lateral line as the right heel.

S12.1.2 Positioning a Part 572 Subpart F (SID) dummy in the front outboard seating position.

(a) Torso. Hold the dummy’s head in place and push laterally on the non-impacted side of the upper torso in a single stroke with a force of 66.7–89.0 N (15–20 lb) towards the impacted side.

(1) For a bench seat. The upper torso of the test dummy rests against the seat back. The midsagittal plane of the test dummy is vertical and parallel to the vehicle’s longitudinal centerline, and the same distance from the vehicle’s longitudinal centerline as would be the midsagittal plane of a test dummy positioned in the driver position under S12.1.1(a)(1).

(2) For a bucket seat. The upper torso of the test dummy rests against the seat back. The midsagittal plane of the test dummy is vertical and parallel to the vehicle’s longitudinal centerline, and coincides with the longitudinal centerline of the bucket seat.

(b) Pelvis.

(1) H-point. The H-points of each test dummy coincide within 12.7 mm (½ inch) in the vertical dimension and 12.7 mm (½ inch) in the horizontal dimension of a point that is located 6.4 mm (¼ inch) below the position of the H-point determined by using the equipment for the 50th percentile and procedures specified in SAE Standard J826–1980 (incorporated by reference, see § 571.5), except that Table 1 of SAE J826–1980 is not applicable. The length of the lower leg and thigh segments of the H-point machine are adjusted to 414 and 401 mm (16.3 and 15.8 inches), respectively.

(2) Pelvic angle. As determined using the pelvic angle gauge (GM drawing 78051–532 incorporated by reference in part 572, Subpart E of this chapter) which is inserted into the H–point gauging hole of the dummy, the angle of the plane of the surface on the lumbar-pelvic adaptor on which the lumbar spine attaches is 23 to 25 degrees from the horizontal, sloping upward toward the front of the vehicle.

(c) Legs. The upper legs of each test dummy rest against the seat cushion to the extent permitted by placement of the feet. To the extent practicable, both legs of the test dummies in outboard passenger positions are in vertical longitudinal planes. Final adjustment to accommodate placement of feet in accordance with S12.1.2(d) for various passenger compartment configurations is permitted.

(d) Feet. The feet of the test dummy are placed on the vehicle’s toeboard with the heels resting on the floorpan as close as possible to the intersection of the toeboard and floorpan. If the feet cannot be placed flat on the toeboard, they are set perpendicular to the lower legs and placed as far forward as possible so that the heels rest on the floorpan.
S12.1.3 Positioning a Part 572 Subpart F (SID) dummy in the rear outboard seating positions.

(a) Torso. Hold the dummy's head in place and push laterally on the non-impacted side of the upper torso in a single stroke with a force of 66.7–89.0 N (15–20 lb) towards the impacted side.

(1) For a bench seat. The upper torso of the test dummy rests against the seat back. The midsagittal plane of the test dummy is vertical and parallel to the vehicle's longitudinal centerline, and, if possible, the same distance from the vehicle's longitudinal centerline as the midsagittal plane of a test dummy positioned in the driver position under S12.1.1(a)(1). If it is not possible to position the test dummy so that its midsagittal plane is parallel to the vehicle's longitudinal centerline and is at this distance from the vehicle's longitudinal centerline, the test dummy is positioned so that some portion of the test dummy just touches, at or above the seat level, the side surface of the vehicle, such as the upper quarter panel, an armrest, or any interior trim (i.e., either the broad trim panel surface or a smaller, localized trim feature).

(2) For a bucket or contoured seat. The upper torso of the test dummy rests against the seat back. The midsagittal plane of the test dummy is vertical and parallel to the vehicle's longitudinal centerline, and coincides with the longitudinal centerline of the bucket or contoured seat.

(b) Pelvis.

(1) H-point. The H-points of each test dummy coincide within 12.7 mm (½ inch) in the vertical dimension and 12.7 mm (½ inch) in the horizontal dimension of a point that is located 6.4 mm (¼ inch) below the position of the H-point determined by using the equipment for the 50th percentile and procedures specified in SAE Standard J826–1980 (incorporated by reference, see §571.5), except that Table 1 of SAE J826–1980 is not applicable. The length of the lower leg and thigh segments of the H-point machine are adjusted to 414 and 401 mm (16.3 and 15.8 inches), respectively.

(2) Pelvic angle. As determined using the pelvic angle gauge (GM drawing 78051–332 incorporated by reference in part 572, Subpart E of this chapter) which is inserted into the H-point gauging hole of the dummy, the angle of the plane of the surface on the lumbar-pelvic adaptor on which the lumbar spine attaches is 23 to 25 degrees from the horizontal, sloping upward toward the front of the vehicle.

(c) Legs. Rest the upper legs of each test dummy against the seat cushion to the extent permitted by placement of the feet. The initial distance between the outboard knee clevis flange surfaces is 292 mm (11.5 inches). To the extent practicable, both legs of the test dummies in outboard passenger positions are in vertical longitudinal planes. Final adjustment to accommodate placement of feet in accordance with S12.1.3(d) for various passenger compartment configurations is permitted.

(d) Feet. Place the feet of the test dummy flat on the floorpan and beneath the front seat as far as possible without front seat interference. If necessary, the distance between the knees may be changed in order to place the feet beneath the seat.

S12.2.1 Positioning an ES–2re dummy in all seating positions. Position a correctly configured ES–2re test dummy, conforming to the applicable requirements of part 572 of this chapter, in the front outboard seating position on the side of the test vehicle to be struck by the moving deformable barrier or pole. Restrain the test dummy using all available belt systems in the seating positions where the belt restraints are provided. Place any adjustable anchorages at the manufacturer's nominal design position for a 50th percentile adult male occupant. Retract any folding armrest.

(a) Upper torso.

(1) The plane of symmetry of the dummy coincides with the vertical median plane of the specified seating position.

(2) Bend the upper torso forward and then lay it back against the seat back. Set the shoulders of the dummy fully rearward.

(b) Pelvis. Position the pelvis of the dummy according to the following:
(1) Position the pelvis of the dummy such that a lateral line passing through the dummy H-points is perpendicular to the longitudinal center plane of the seat. The line through the dummy H-points is horizontal with a maximum inclination of ±2 degrees. The dummy may be equipped with tilt sensors in the thorax and the pelvis. These instruments can help to obtain the desired position.

(2) The correct position of the dummy pelvis may be checked relative to the H-point of the H-point Manikin by using the M3 holes in the H-point back plates at each side of the ES-2re pelvis. Position the dummy such that the M3 holes are located within a circle of radius 10 mm (0.39 in.) around the H-point of the H-point Manikin.

(c) Arms. For the driver seating position and for the front outboard passenger seating position, place the dummy’s upper arms such that the angle between the projection of the arm centerline on the mid-sagittal plane of the dummy and the torso reference line is 40° ±5°. The torso reference line is defined as the thoracic spine centerline. The shoulder-arm joint allows for discrete arm positions at 0, 40, and 90 degree settings forward of the spine.

(d) Legs and Feet. Position the legs and feet of the dummy according to the following:

(1) For the driver’s seating position, without inducing pelvis or torso movement, place the right foot of the dummy on the un-pressed accelerator pedal with the heel resting as far forward as possible on the floor pan. Set the left foot perpendicular to the lower leg with the heel resting on the floor pan in the same lateral line as the right heel. Set the knees of the dummy such that their outside surfaces are 150 ±10 mm (5.9 ±0.4 inches) from the plane of symmetry of the dummy.

S12.3 5th percentile female test dummy—49 CFR Part 572 Subpart V (SID–IIs). Position a correctly configured 5th percentile female Part 572 Subpart V (SID–IIs) test dummy, conforming to the applicable requirements of part 572 of this chapter, in the front outboard seating position on the side of the test vehicle to be struck by the pole and, for the moving deformable barrier, if the vehicle has a second seat, position a conforming test dummy in the second seat outboard position on the same side of the vehicle (side to be struck) as specified in S12.3.4. Retract any folding armrest. Additional procedures are specified below.

S12.3.1 General provisions and definitions.

(a) Measure all angles with respect to the horizontal plane unless otherwise stated.

(b) Adjust the SID–IIs dummy’s neck bracket to align the zero degree index marks.

(c) Other seat adjustments. The longitudinal centerline of a bucket seat cushion passes through the SgRP and is parallel to the longitudinal centerline of the vehicle.

(d) Driver and passenger manual belt adjustment. Use all available belt systems. Place adjustable belt anchorages at the nominal position for a 5th percentile adult female suggested by the vehicle manufacturer.

(e) Definitions.

(1) The term “midsagittal plane” refers to the vertical plane that separates the dummy into equal left and right halves.

(2) The term “vertical longitudinal plane” refers to a vertical plane parallel to the vehicle’s longitudinal centerline.

(3) The term “vertical plane” refers to a vertical plane, not necessarily parallel to the vehicle’s longitudinal centerline.

(4) The term “transverse instrumentation platform” refers to the transverse instrumentation surface inside the dummy’s skull casting to which the neck load cell mounts. This surface
is perpendicular to the skull cap’s machined inferior-superior mounting surface.

(5) The term “thigh” refers to the femur between, but not including, the knee and the pelvis.

(6) The term “leg” refers to the lower part of the entire leg including the knee.

(7) The term “foot” refers to the foot, including the ankle.

(8) For leg and thigh angles, use the following references:

(i) Thigh—a straight line on the thigh skin between the center of the 1⁄2-13 UNC–2B tapped hole in the upper leg femur clamp and the knee pivot shoulder bolt.

(ii) Leg—a straight line on the leg skin between the center of the ankle shell and the knee pivot shoulder bolt.

(9) The term “seat cushion reference point” (SCRP) means a point placed on the outboard side of the seat cushion at a horizontal distance between 150 mm (5.9 in) and 250 mm (9.8 in) from the front edge of the seat used as a guide in positioning the seat.

(10) The term “seat cushion reference line” means a line on the side of the seat cushion, passing through the seat cushion reference point, whose projection in the vehicle vertical longitudinal plane is straight and has a known angle with respect to the horizontal.

§571.214 5th percentile female driver dummy positioning.

(a) Driver torso/head/seat back angle positioning.

(1) With the seat in the position determined in S10.3.2, use only the control that moves the seat fore and aft to place the seat in the rearmost position. If the seat cushion reference line angle automatically changes as the seat is moved from the full forward position, maintain, as closely as possible, the seat cushion reference line angle determined in S10.3.2.3.3, for the final forward position when measuring the pelvic angle as specified in S12.3.2(a)(11). The seat cushion reference line angle position may be achieved through the use of any seat or seat cushion adjustments other than that which primarily moves the seat or seat cushion fore-aft.

(2) Fully recline the seat back, if adjustable. Install the dummy into the driver’s seat, such that when the legs are positioned 120 degrees to the thighs, the calves of the legs are not touching the seat cushion.

(3) Bucket seats. Center the dummy on the seat cushion so that its midsagittal plane is vertical and passes through the SgRP within ±10 mm (±0.4 in).

(4) Bench seats. Position the midsagittal plane of the dummy vertical and parallel to the vehicle’s longitudinal centerline and aligned within ±10 mm (±0.4 in) of the center of the steering wheel rim.

(5) Hold the dummy’s thighs down and push rearward on the upper torso to maximize the dummy’s pelvic angle.

(6) Place the legs at 120 degrees to the thighs. Set the initial transverse distance between the longitudinal centerlines at the front of the dummy’s knees at 160 to 170 mm (6.3 to 6.7 in), with the thighs and legs of the dummy in vertical planes. Push rearward on the dummy’s knees to force the pelvis into the seat so there is no gap between the pelvis and the seat back or until contact occurs between the back of the dummy’s calves and the front of the seat cushion.

(7) Gently rock the upper torso relative to the lower torso laterally in a side to side motion three times through a ±5 degree arc (approximately 51 mm (2 in) side to side).

(8) If needed, extend the legs slightly so that the feet are not in contact with the floor pan. Let the thighs rest on the seat cushion to the extent permitted by the foot movement. Keeping the leg and the thigh in a vertical plane, place the foot in the vertical longitudinal plane that passes through the centerline of the accelerator pedal. Rotate the left thigh outboard about the hip until the center of the knee is the same distance from the midsagittal plane of the dummy as the right knee ±5 mm (±0.2 in). Using only the control that moves the seat fore and aft, attempt to return the seat to the full forward position. If either of the dummy’s legs first contacts the steering wheel, then adjust the steering wheel, if adjustable, upward until contact with the steering wheel is avoided. If the steering wheel is not adjustable, separate the knees enough to avoid steering wheel contact. Proceed with moving
§ 571.214 49 CFR Ch. V (10–1–16 Edition)

the seat forward until either the leg contacts the vehicle interior or the seat reaches the full forward position. (The right foot may contact and depress the accelerator and/or change the angle of the foot with respect to the leg during seat movement.) If necessary to avoid contact with the vehicle’s brake or clutch pedal, rotate the test dummy’s left foot about the leg. If there is still interference, rotate the left thigh outboard about the hip the minimum distance necessary to avoid pedal interference. If a dummy leg contacts the vehicle interior before the full forward position is attained, position the seat at the next detent where there is no contact. If the seat is a power seat, move the seat fore and aft to avoid contact while assuring that there is a maximum of 5 mm (0.2 in) distance between the vehicle interior and the point on the dummy that would first contact the vehicle interior. If the steering wheel was moved, return it to the position described in §10.5. If the steering wheel contacts the dummy’s leg(s) prior to attaining this position, adjust it to the next higher detent, or if infinitely adjustable, until there is 5 mm (0.2 in) clearance between the wheel and the dummy’s leg(s).

(9) Head leveling

(i) Vehicles with fixed seat backs. Adjust the lower neck bracket to level the transverse instrumentation platform angle of the head to within ±0.5 degrees. If it is not possible to level the transverse instrumentation platform to within ±0.5 degrees, select the neck bracket adjustment position that minimizes the difference between the transverse instrumentation platform angle and level, and then adjust the neck bracket to level the transverse instrumentation platform angle to within ±0.5 degrees if possible. If it is still not possible to level the transverse instrumentation platform to within ±0.5 degrees, select the neck bracket angle position that minimizes the difference between the transverse instrumentation platform angle and level.

(ii) Vehicles with adjustable seat backs. While holding the thighs in place, rotate the seat back adjustment position that minimizes the difference between the transverse instrumentation platform angle and level, then adjust the neck bracket to level the transverse instrumentation platform angle to within ±0.5 degrees if possible. If it is still not possible to level the transverse instrumentation platform to within ±0.5 degrees, select the neck bracket angle position that minimizes the difference between the transverse instrumentation platform angle and level.

(10) If the torso contacts the steering wheel, adjust the steering wheel in the following order until there is no contact: telescoping adjustment, lowering adjustment, raising adjustment. If the vehicle has no adjustments or contact with the steering wheel cannot be eliminated by adjustment, position the seat at the next detent where there is no contact with the steering wheel as adjusted in §10.5. If the seat is a power seat, position the seat to avoid contact while assuring that there is a maximum of 5 mm (0.2 in) distance between the steering wheel as adjusted in §10.5 and the point of contact on the dummy.

(11) Measure and set the dummy’s pelvic angle using the pelvic angle gage. The angle is set to 20.0 degrees ±2.5 degrees. If this is not possible, adjust the pelvic angle as close to 20.0 degrees as possible while keeping the transverse instrumentation platform of the head as level as possible by adjustments specified in §12.3.2(a)(9).

(12) If the dummy is contacting the vehicle interior after these adjustments, move the seat rearward until there is a maximum of 5 mm (0.2 in) between the contact point of the dummy and the interior of the vehicle or if it has a manual seat adjustment, to the next rearward detent position. If after these adjustments, the dummy contact point is more than 5 mm (0.2 in) from the vehicle interior and the seat is still not in its forwardmost position, move the seat forward until the contact point is 5 mm (0.2 in) or less from the vehicle interior, or if it has a manual seat adjustment, move the seat to the closest detent position without making contact, or until the seat reaches its forwardmost position, whichever occurs first.

(b) Driver foot positioning.
(1) If the vehicle has an adjustable accelerator pedal, adjust it to the full forward position. If the heel of the right foot can contact the floor pan, follow the positioning procedure in S12.3.2(b)(1)(i). If not, follow the positioning procedure in S12.3.2(b)(1)(ii).

(i) Rest the right foot of the test dummy on the un-depressed accelerator pedal with the rearmost point of the heel on the floor pan in the plane of the pedal. If the foot cannot be placed on the accelerator pedal, set it initially perpendicular to the leg and then place it as far forward as possible in the direction of the pedal centerline with the rearmost point of the heel resting on the floor pan. If the vehicle has an adjustable accelerator pedal and the right foot is not touching the accelerator pedal when positioned as above, move the pedal rearward until it touches the right foot. If the accelerator pedal in the full rearward position still does not touch the foot, leave the pedal in that position.

(ii) Extend the foot and lower leg by decreasing the knee flexion angle until any part of the foot contacts the un-depressed accelerator pedal or the highest part of the foot is at the same height as the highest part of the pedal. If the vehicle has an adjustable accelerator pedal and the right foot is not touching the accelerator pedal when positioned as above, move the pedal rearward until it touches the right foot. If the accelerator pedal in the full rearward position still does not touch the foot, leave the pedal in that position.

(2) If the ball of the foot does not contact the pedal, increase the ankle plantar flexion angle such that the toe of the foot contacts or is as close as possible to contact with the un-depressed accelerator pedal.

(3) If, in its final position, the heel is off of the vehicle floor, a spacer block is used under the heel to support the final foot position. The surface of the block in contact with the heel has an inclination of 30 degrees, measured from the horizontal, with the highest surface towards the rear of the vehicle.

(4) Place the left foot on the toe-board with the rearmost point of the heel resting on the floor pan as close as possible to the point of intersection of the planes described by the toe-board and floor pan, and not on or in contact with the vehicle’s brake pedal, clutch pedal, wheel-well projection or foot rest, except as provided in S12.3.2(b)(6).

(5) If the left foot cannot be positioned on the toe board, place the foot perpendicular to the lower leg centerline as far forward as possible with the heel resting on the floor pan.

(6) If the left foot does not contact the floor pan, place the foot parallel to the floor and place the leg as perpendicular to the thigh as possible. If necessary to avoid contact with the vehicle’s brake pedal, clutch pedal, wheel-well, or foot rest, use the three foot position adjustments listed in S12.3.2(b)(6)(i) through (iii). The adjustment options are listed in priority order, with each subsequent option incorporating the previous. In making each adjustment, move the foot the minimum distance necessary to avoid contact. If it is not possible to avoid all prohibited foot contact, priority is given to avoiding brake or clutch pedal contact:

(i) Rotate (abduction/adduction) the test dummy’s left foot about the lower leg;

(ii) Planar flex the foot;

(iii) Rotate the left leg outboard about the hip.

(c) Driver arm/hand positioning. Place the dummy’s upper arm such that the angle between the projection of the arm centerline on the midsagittal plane of the dummy and the torso reference line is 45° ±5°. The torso reference line is defined as the thoracic spine centerline. The shoulder-arm joint allows for discrete arm positions at 0°, ±45°, ±90°, ±135°, and 180° settings where positive is forward of the spine.

S12.3.3 5th percentile female front passenger dummy positioning (a) Passenger torso/head/seat back angle positioning.

(1) With the seat at the mid-height in the full-forward position determined in S10.3.2, use only the control that primarily moves the seat fore and aft to place the seat in the rearmost position, without adjusting independent height controls. If the seat cushion reference line angle automatically changes as the seat is moved from the full forward position, maintain, as closely as possible, the seat cushion reference line angle determined in S10.3.2.3.3, for the...
final forward position when measuring the pelvic angle as specified in §12.3.3(a)(11). The seat cushion reference line angle position may be achieved through the use of any seat or seat cushion adjustments other than that which primarily moves the seat or seat cushion fore-aft.

(2) Fully recline the seat back, if adjustable. Place the dummy into the passenger’s seat, such that when the legs are positioned 120 degrees to the thighs, the calves of the legs are not touching the seat cushion.

(3) Bucket seats. Place the dummy on the seat cushion so that its midsagittal plane is vertical and passes through the SgRP within ±10 mm (±0.4 in).

(4) Bench seats. Position the midsagittal plane of the dummy vertical and parallel to the vehicle’s longitudinal centerline and the same distance from the vehicle’s longitudinal centerline, within ±10 mm (±0.4 in), as the midsagittal plane of the driver dummy.

(5) Hold the dummy’s thighs down and push rearward on the upper torso to maximize the dummy’s pelvic angle.

(6) Place the legs at 120 degrees to the thighs. Set the initial transverse distance between the longitudinal centerlines at the front of the dummy’s knees at 160 to 170 mm (6.3 to 6.7 in), with the thighs and legs of the dummy in vertical planes. Push rearward on the dummy’s knees to force the pelvis into the seat so there is no gap between the pelvis and the seat back or until contact occurs between the back of the dummy’s calves and the front of the seat cushion.

(7) Gently rock the upper torso relative to the lower torso laterally in a side to side motion three times through ±5 degree arc (approximately 51 mm (2 in) side to side).

(8) If needed, extend the legs slightly so that the feet are not in contact with the floor pan. Let the thighs rest on the seat cushion to the extent permitted by the foot movement. With the feet perpendicular to the legs, place the heels on the floor pan. If a heel will not contact the floor pan, place it as close to the floor pan as possible. Using only the control that primarily moves the seat fore and aft, attempt to return the seat to the full forward position. If a dummy leg contacts the vehicle interior before the full forward position is attained, position the seat at the next detent where there is no contact. If the seats are power seats, position the seat to avoid contact while assuring that there is a maximum of 5 mm (0.2 in) distance between the vehicle interior and the point on the dummy that would first contact the vehicle interior.

(9) Head leveling.

(i) Vehicles with fixed seat backs. Adjust the lower neck bracket to level the transverse instrumentation platform angle of the head to within ±0.5 degrees. If it is not possible to level the transverse instrumentation platform to within ±0.5 degrees, select the neck bracket adjustment position that minimizes the difference between the transverse instrumentation platform angle and level.

(ii) Vehicles with adjustable seat backs. While holding the thighs in place, rotate the seat back forward until the transverse instrumentation platform angle of the head is level to within ±0.5 degrees, making sure that the pelvis does not interfere with the seat back. If it is not possible to level the transverse instrumentation platform to within ±0.5 degrees, select the seat back adjustment position that minimizes the difference between the transverse instrumentation platform angle and level, then adjust the neck bracket to level the transverse instrumentation platform angle to within ±0.5 degrees if possible. If it is still not possible to level the transverse instrumentation platform to within ±0.5 degrees, select the neck bracket angle position that minimizes the difference between the transverse instrumentation platform angle and level.

(10) Measure and set the dummy’s pelvic angle using the pelvic angle gage. The angle is set to 20.0 degrees ±2.5 degrees. If this is not possible, adjust the pelvic angle as close to 20.0 degrees as possible while keeping the transverse instrumentation platform of the head as level as possible by adjustments specified in §12.3.3(a)(9).

(11) If the dummy is contacting the vehicle interior after these adjustments, move the seat rearward until
§ 571.214 5th percentile female in rear outboard seating positions.

(a) Set the rear outboard seat at the full rearward, full down position determined in §8.3.3.

(b) Fully recline the seat back, if adjustable. Install the dummy into the passenger’s seat, such that when the legs are 120 degrees to the thighs, the calves of the legs are not touching the seat cushion.

(c) Place the dummy on the seat cushion so that its midsagittal plane is vertical and coincides with the vertical longitudinal plane through the center of the seating position SgRP within ±10 mm (±0.4 in).

(d) Hold the dummy’s thighs down and push rearward on the upper torso to maximize the dummy’s pelvic angle.

(e) Place the legs at 120 degrees to the thighs. Set the initial transverse distance between the longitudinal centerlines at the front of the dummy’s knees at 180 to 170 mm (6.3 to 6.7 in), with the thighs and legs of the dummy in vertical planes. Push rearward on the dummy’s knees to force the pelvis into the seat so there is no gap between the pelvis and the seat back or until contact occurs between the back of the dummy’s calves and the front of the seat cushion.

(f) Gently rock the upper torso laterally side to side three times through a ±5 degree arc (approximately 51 mm (2 in) side to side).

(g) If needed, extend the legs slightly so that the feet are not in contact with the floor pan. Let the thighs rest on the seat cushion to the extent permitted by the foot movement. With the feet perpendicular to the legs, place the heels on the floor pan. If a heel will not contact the floor pan, place it as close to the floor pan as possible.

(h) Head leveling.

(1) Vehicles with fixed seat backs. Adjust the lower neck bracket to level the transverse instrumentation platform angle of the head to within ±0.5 degrees. If it is not possible to level the transverse instrumentation platform to within ±0.5 degrees, select the neck bracket adjustment position that minimizes the difference between the transverse instrumentation platform angle and level.

(2) Vehicles with adjustable seat backs. While holding the thighs in place, rotate the seat back forward until the transverse instrumentation platform angle of the head is level to within ±0.5 degrees, making sure that the pelvis does not interfere with the seat bight. If it is not possible to level the transverse instrumentation platform to within ±0.5 degrees, select the seat back adjustment position that minimizes the difference between the transverse instrumentation platform angle and level, then adjust the neck bracket to level the transverse instrumentation platform angle to within ±0.5 degrees if possible. If it is still not
possible to level the transverse instrumentation platform to within ±0.5 degrees, select the neck bracket angle position that minimizes the difference between the transverse instrumentation platform angle and level.

(i) [Reserved]

(j) Measure and set the dummy’s pelvic angle using the pelvic angle gauge. The angle is set to 20.0 degrees ±2.5 degrees. If this is not possible, adjust the pelvic angle as close to 20.0 degrees as possible while keeping the transverse instrumentation platform of the head as level as possible, as specified in S12.3.4(h).

(k) Passenger foot positioning.

(1) Place the rear seat passenger’s feet flat on the floor pan and beneath the front seat as far as possible without front seat interference.

(2) If either foot does not contact the floor pan, place the foot parallel to the floor and place the leg as perpendicular to the thigh as possible.

(l) Passenger arm/hand positioning. Place the rear dummy’s upper arm such that the angle between the projection of the arm centerline on the midsagittal plane of the dummy and the torso reference line is 45° ±5°. The torso reference line is defined as the thoracic spine centerline. The shoulder-arm joint allows for discrete arm positions at 0°, ±45°, ±90°, ±135°, and 180° degree settings where positive is forward of the spine.

S13 Phase-in of moving deformable barrier and vehicle-to-pole performance requirements.

S13.1 Vehicles manufactured on or after September 1, 2010 and before September 1, 2014. At anytime during the production years ending August 31, 2011, August 31, 2012, August 31, 2013, and August 31, 2014, each manufacturer shall, upon request from the Office of Vehicle Safety Compliance, provide information identifying the vehicles (by make, model and vehicle identification number) that have been certified as complying with the moving deformable barrier test with advanced test dummies (S7.2), or the vehicles (by make, model and vehicle identification number) that have been certified as complying with the vehicle-to-pole test requirements (S9.1) of this standard. The manufacturer’s designation of a vehicle as a certified vehicle meeting S7.2 or S9.1 is irrevocable.

S13.1.1 Vehicles manufactured on or after September 1, 2010 and before September 1, 2011.

(a) Subject to S13.4, for vehicles manufactured on or after September 1, 2010 and before September 1, 2011, the number of vehicles complying with S7.2 shall be not less than 20 percent of:

(1) The manufacturer’s average annual production of vehicles manufactured in the three previous production years; or

(2) The manufacturer’s production in the current production year.

(b) Subject to S13.4, for vehicles manufactured on or after September 1, 2010 and before September 1, 2011, the number of vehicles complying with S9.1 shall be not less than 20 percent of:

(1) The manufacturer’s average annual production of vehicles manufactured in the three previous production years; or

(2) The manufacturer’s production in the current production year.

S13.1.2 Vehicles manufactured on or after September 1, 2011 and before September 1, 2012.

(a) Subject to S13.4, for vehicles manufactured on or after September 1, 2011 and before September 1, 2012, the number of vehicles complying with S7.2 shall be not less than 40 percent of:

(1) The manufacturer’s average annual production of vehicles manufactured in the three previous production years; or

(2) The manufacturer’s production in the current production year.

(b) Subject to S13.4, for vehicles manufactured on or after September 1, 2011 and before September 1, 2012, the number of vehicles complying with S9.1 shall be not less than 40 percent of:

(1) The manufacturer’s average annual production of vehicles manufactured in the three previous production years; or

(2) The manufacturer’s production in the current production year.

S13.1.3 Vehicles manufactured on or after September 1, 2012 and before September 1, 2013.

(a) Subject to S13.4, for vehicles manufactured on or after September 1, 2012...
and before September 1, 2013, the number of vehicles complying with §7.2 shall be not less than 60 percent of:
(1) The manufacturer’s average annual production of vehicles manufactured in the three previous production years; or
(2) The manufacturer’s production in the current production year.

(b) Subject to §13.4, for vehicles manufactured on or after September 1, 2012 and before September 1, 2013, the number of vehicles complying with §9.1 shall be not less than 60 percent of:
(1) The manufacturer’s average annual production of vehicles manufactured in the three previous production years; or
(2) The manufacturer’s production in the current production year.

S13.2 Vehicles produced by more than one manufacturer.

S13.2.1 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under §13.1.1 and §13.1.2, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to §13.2.2.

(a) A vehicle that is imported shall be attributed to the importer.

(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.

S13.2.2 A vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under §13.2.1.

S13.3(a) For the purposes of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under §13.1.1(a), §13.1.2(a), §13.1.3(a), and §13.1.4(a), do not count any vehicle that is excluded by Standard No. 214 from the moving deformable barrier test with the ES-2ve or SID-IIs test dummies (§7.2).

(b) For the purposes of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under §13.1.1(b), §13.1.2(b), §13.1.3(b), and §13.1.4(b), do not count any vehicle that is excluded by Standard No. 214 from the vehicle-to-pole test (§9).

S13.4 Calculation of complying vehicles.

(a) For the purposes of calculating the vehicles complying with §13.1.1, a manufacturer may count a vehicle if it is manufactured on or after October 11, 2007 but before September 1, 2011.

(b) For purposes of complying with §13.1.2, a manufacturer may count a vehicle if it—
(1) Is manufactured on or after October 11, 2007 but before September 1, 2012 and,
(2) Is not counted toward compliance with §13.1.1.

(c) For purposes of complying with §13.1.3, a manufacturer may count a vehicle if it—
(1) Is manufactured on or after October 11, 2007 but before September 1, 2013 and,
(2) Is not counted toward compliance with §13.1.1 or §13.1.2.
§ 571.215 49 CFR Ch. V (10–1–16 Edition)

(d) For purposes of complying with §13.1.4, a manufacturer may count a vehicle if it—

(1) Is manufactured on or after October 11, 2007 but before September 1, 2014 and,
(2) Is not counted toward compliance with §13.1.1, §13.1.2, or §13.1.3.

(e) For the purposes of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer, each vehicle that is excluded from having to meet the applicable requirement is not counted.

§ 571.216 Standard No. 216; Roof crush resistance; Applicable unless a vehicle is certified to §571.216a.

S1. Scope. This standard establishes strength requirements for the passenger compartment roof.

S2. Purpose. The purpose of this standard is to reduce deaths and injuries due to the crushing of the roof into the occupant compartment in rollover crashes.

S3. Application. (a) This standard applies to passenger cars, and to multi-purpose passenger vehicles, trucks and buses with a GVWR of 2,722 kilograms (6,000 pounds) or less. However, it does not apply to—

(a) School buses;
(b) Vehicles that conform to the rollover test requirements (§5.3) of Standard No. 208 (§571.208) by means that require no action by vehicle occupants;
(c) Convertibles, except for optional compliance with the standard as an alternative to the rollover test requirements in §5.3 of Standard No. 208; or
(d) Vehicles certified to comply with §571.216a.

S4. Definitions.

Altered roof means the replacement roof on a motor vehicle whose original roof has been removed, in part or in total, and replaced by a roof that is higher than the original roof. The replacement roof on a motor vehicle whose original roof has been replaced, in whole or in part, by a roof that consists of glazing materials, such as those in T-tops and sunroofs, and is located at the level of the original roof, is not considered to be an altered roof.

Raised roof means, with respect to a roof which includes an area that protrudes above the surrounding exterior roof structure, that protruding area of the roof.

Roof over the front seat area means the portion of the roof, including windshield trim, forward of a transverse vertical plane passing through a point 162 mm rearward of the SgRP of the rearmost front outboard seating position.

Windshield trim means molding of any material between the windshield glazing and the exterior roof surface, including material that covers a part of either the windshield glazing or exterior roof surface.

S5. Requirements. Subject to S5.1, when the test device described in §6 is used to apply a force to either side of the forward edge of a vehicle’s roof in accordance with the procedures of §7, the lower surface of the test device must not move more than 127 millimeters. The applied force in Newtons is equal to 1.5 times the unloaded vehicle weight of the vehicle, measured in kilograms and multiplied by 9.8, but does not exceed 22,240 Newtons for passenger cars. Both the left and right front portions of the vehicle’s roof structure must be capable of meeting the requirements. A particular vehicle need not meet further requirements after being tested at one location.

S5.1 For multipurpose passenger vehicles, trucks and buses that have a raised roof or altered roof, manufacturers have the option of using the test procedures of §8 instead of the procedures of §7 until October 25, 2000. The option of using the test procedures of §8 ceases to be available on that date.

S6. Test device. The test device is a rigid unyielding block whose lower surface is a flat rectangle measuring 762 millimeters by 1,829 millimeters.

S7. Test procedure. Each vehicle must be capable of meeting the requirements of §5 when tested in accordance with the procedure in S7.1 through 7.6.

S7.1 Place the sills or the chassis frame of the vehicle on a rigid horizontal surface, fix the vehicle rigidly in position, close all windows, close and
lock all doors, and secure any convertible top or removable roof structure in place over the occupant compartment. Remove roof racks or other non-structural components.

S7.2 Orient the test device as shown in Figure 1 of this section, so that—

(a) Its longitudinal axis is at a forward angle (in side view) of 5 degrees below the horizontal, and is parallel to the vertical plane through the vehicle’s longitudinal centerline;

(b) Its transverse axis is at an outboard angle, in the front view projection, of 25 degrees below the horizontal.

S7.3 Maintaining the orientation specified in S7.2—

(a) Lower the test device until it initially makes contact with the roof of the vehicle.

(b) Position the test device so that—

(1) The longitudinal centerline on its lower surface is on the initial point of contact, or on the center of the initial contact area, with the roof; and

(2) Except as specified in S7.4, the midpoint of the forward edge of the lower surface of the test device is within 10 mm of the transverse vertical plane 254 mm forward of the forwardmost point on the exterior surface of the roof, including windshield trim, that lies in the longitudinal vertical plane passing through the vehicle’s longitudinal centerline.

S7.4 If the vehicle being tested is a multipurpose passenger vehicle, truck, or bus that has a raised roof or altered roof, and the initial contact point of the test device is on the raised roof or altered roof to the rear of the roof over the front seat area, the plate is positioned so that the midpoint of the rearward edge of the lower surface of the test device is within 10 mm of the transverse vertical plane located at the rear of the roof over the front seat area.

S7.5 Apply force so that the test device moves in a downward direction perpendicular to the lower surface of the test device at a rate of not more than 13 millimeters per second until reaching the force level specified in S5. Guide the test device so that throughout the test it moves, without rotation, in a straight line with its lower surface oriented as specified in S7.2(a) and S7.2(b). Complete the test within 120 seconds.

S7.6 Measure the distance that the test device moved, i.e., the distance between the original location of the lower surface of the test device and its location as the force level specified in S5 is reached.

S8 Alternate test procedure for multipurpose passenger vehicles, trucks and buses that have a raised roof or altered roof manufactured until October 25, 2000 (see S5.1). Each vehicle shall be capable of meeting the requirements of S5 when tested in accordance with the following procedure.

S8.1 Place the sills or the chassis frame of the vehicle on a rigid horizontal surface, fix the vehicle rigidly in position, close all windows, close and lock all doors, and secure any convertible top or removable roof structure in place over the passenger compartment.

S8.2 Orient the test device as shown in Figure 2, so that—

(a) Its longitudinal axis is at a forward angle (side view) of 5° below the horizontal, and is parallel to the vertical plane through the vehicle’s longitudinal centerline;

(b) Its lateral axis is at a lateral outboard angle, in the front view projection, of 25° below the horizontal;

(c) Its lower surface is tangent to the surface of the vehicle; and

(d) The initial contact point, or center of the initial contact area, is on the longitudinal centerline of the lower surface of the test device and 254 millimeters from the forwardmost point of that centerline.

S8.3 Apply force in a downward direction perpendicular to the lower surface of the test device at a rate of not more than 13 millimeters per second until reaching a force in Newtons of 1½ times the unloaded vehicle weight of the tested vehicle, measured in kilograms and multiplied by 9.8. Complete the test within 120 seconds. Guide the test device so that throughout the test it moves, without rotation, in a straight line with its lower surface oriented as specified in S8.2(a) through S8.2(d).

S8.4 Measure the distance that the test device moves, i.e., the distance between the original location of the lower surface of the test device and its
location as the force level specified in S8.3 is reached.

Figure 1 to §571.216
§ 571.216a Standard No. 216a; Roof crush resistance; Upgraded standard.

S1. Scope. This standard establishes strength requirements for the passenger compartment roof.

S2. Purpose. The purpose of this standard is to reduce deaths and injuries due to the crushing of the roof into the occupant compartment in rollover crashes.

S3. Application and selection of compliance options.

S3.1 Application.

(a) This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks and buses with a GVWR of 4,536 kilograms (10,000 pounds) or less, according to the implementation schedule specified in S8 and S9 of this section. However, it does not apply to—

(1) School buses;

(2) Vehicles that conform to the rollover test requirements (§5.3) of Standard No. 208 (§571.208) by means that require no action by vehicle occupants;

(b) At the option of the manufacturer, vehicles within either of the following categories may comply with the roof crush requirements (S4) of Standard No. 220 (§571.220) instead of the requirements of this standard:

(1) Vehicles built in two or more stages, other than vehicles built using a chassis cab;

(2) Vehicles with a GVWR greater than 2,722 kilograms (6,000 pounds) that have an altered roof as defined by S4 of this section.

(c) Manufacturers may comply with the standard in this §571.216a as an alternative to §571.216.
§ 571.216a

S3.2 Selection of compliance option. Where manufacturer options are specified, the manufacturer shall select the option by the time it certifies the vehicle and may not thereafter select a different option for the vehicle. Each manufacturer shall, upon the request from the National Highway Traffic Safety Administration, provide information regarding which of the compliance options it selected for a particular vehicle or make/model.

S4. Definitions.

Altered roof means the replacement roof on a motor vehicle whose original roof has been removed, in part or in total, and replaced by a roof that is higher than the original roof. The replacement roof on a motor vehicle whose original roof has been replaced, in whole or in part, by a roof that consists of glazing materials, such as those in T-tops and sunroofs, and is located at the level of the original roof, is not considered to be an altered roof.

Convertible means a vehicle whose A-pillars are not joined with the B-pillars (or rearmost pillars) by a fixed, rigid structural member.

S5. Requirements.

S5.1 When the test device described in S6 is used to apply a force to a vehicle’s roof in accordance with S7, first to one side of the roof and then to the other side of the roof:

(a) The lower surface of the test device must not move more than 127 millimeters, and

(b) No load greater than 222 Newtons (50 pounds) may be applied to the head form specified in S5.2 of 49 CFR 571.201 located at the head position of a 50th percentile adult male in accordance with S7.2 of this section.

S5.2 The maximum applied force to the vehicle’s roof in Newtons is:

(a) For vehicles with a GVWR of 2,722 kilograms (6,000 pounds) or less, any value up to and including 3.0 times the unloaded vehicle weight of the vehicle, measured in kilograms and multiplied by 9.8, and

(b) For vehicles with a GVWR greater than 2,722 kilograms (6,000 pounds), any value up to and including 1.5 times the unloaded vehicle weight of the vehicle, measured in kilograms and multiplied by 9.8.

S6. Test device. The test device is a rigid unyielding block whose lower surface is a flat rectangle measuring 762 millimeters by 1,829 millimeters.

S7. Test procedure. Each vehicle must be capable of meeting the requirements of S5 when tested in accordance with the procedure in S7.1 through S7.6.

S7.1 Support the vehicle off its suspension and rigidly secure the sills and the chassis frame (when applicable) of the vehicle on a rigid horizontal surface(s) at a longitudinal attitude of 0 degrees ± 0.5 degrees. Measure the longitudinal vehicle attitude by measuring the vertical distance between a level surface and a standard reference point on the bottom of the driver and passenger side sills. The difference between the vertical distance measured on the driver side and the passenger side sills is not more than ±10 mm. Close all windows, close and lock all doors, and close and secure any moveable roof panel, moveable shade, or removable roof structure in place over the occupant compartment. Remove roof racks or other non-structural components. For a vehicle built on a chassis-cab incomplete vehicle that has some portion of the added body structure above the height of the incomplete vehicle, remove the entire added body structure prior to testing (the vehicle’s unloaded vehicle weight as specified in S5 includes the weight of the added body structure).

S7.2 Adjust the seats in accordance with S8.3.1 of 49 CFR 571.214. Position the top center of the head form specified in S5.2 of 49 CFR 571.201 at the location of the top center of the Head Restraint Measurement Device (HRMD) specified in 49 CFR 571.202a, in the front outboard designated seating position on the side of the vehicle being tested as follows:

(a) Position the three dimensional manikin specified in SAE Standard J826 JUL95 (incorporated by reference, see §571.5), in accordance to the seating procedure specified in that document, except that the length of the lower leg and thigh segments of the H-point machine are adjusted to 414 and 401 millimeters, respectively, instead of the
50th percentile values specified in Table 1 of SAE J826 JUL95.

(b) Remove four torso weights from the three-dimensional manikin specified in SAE J826 (July 1995) (two from the left side and two from the right side), replace with two HRMD torso weights (one on each side), and attach and level the HRMD head form.

(c) Mark the location of the top center of the HRMD in three dimensional space to locate the top center of the head form specified in §5.2 of 49 CFR 571.201.

S7.3 Orient the test device as shown in Figure 1 of this section, so that—

(a) Its longitudinal axis is at a forward angle (in side view) of 5 degrees (±0.5 degrees) below the horizontal, and is parallel to the vertical plane through the vehicle’s longitudinal centerline;

(b) Its transverse axis is at an outboard angle, in the front view projection, of 25 degrees below the horizontal (±0.5 degrees).

S7.4 Maintaining the orientation specified in S7.3 of this section—

(a) Lower the test device until it initially makes contact with the roof of the vehicle.

(b) Position the test device so that—

(1) The longitudinal centerline on its lower surface is within 10 mm of the initial point of contact, or on the center of the initial contact area, with the roof; and

(2) The midpoint of the forward edge of the lower surface of the test device is within 10 mm of the transverse vertical plane 254 mm forward of the forwardmost point on the exterior surface of the roof, including windshield trim, that lies in the longitudinal vertical plane passing through the vehicle’s longitudinal centerline.

S7.5 Apply force so that the test device moves in a downward direction perpendicular to the lower surface of the test device at a rate of not more than 13 millimeters per second until reaching the force level specified in §5. Guide the test device so that throughout the test it moves, without rotation, in a straight line with its lower surface oriented as specified in S7.3(a) and S7.3(b). Complete the test within 120 seconds.

S7.6 Repeat the test on the other side of the vehicle.

S8. Phase-in schedule for vehicles with a GVWR of 2,722 kilograms (6,000 pounds) or less.

S8.1 Vehicles manufactured on or after September 1, 2012, and before September 1, 2013. For vehicles manufactured on or after September 1, 2012, and before September 1, 2013, the number of vehicles complying with this standard must not be less than 25 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 2009, and before September 1, 2012; or

(b) The manufacturer’s production on or after September 1, 2012, and before September 1, 2013.

S8.2 Vehicles manufactured on or after September 1, 2013, and before September 1, 2014. For vehicles manufactured on or after September 1, 2013, and before September 1, 2014, the number of vehicles complying with this standard must not be less than 50 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 2010, and before September 1, 2013; or

(b) The manufacturer’s production on or after September 1, 2013, and before September 1, 2014.

S8.3 Vehicles manufactured on or after September 1, 2014, and before September 1, 2015. For vehicles manufactured on or after September 1, 2014, and before September 1, 2015, the number of vehicles complying with this standard must not be less than 75 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 2011, and before September 1, 2014; or

(b) The manufacturer’s production on or after September 1, 2014, and before September 1, 2015.

S8.4 Vehicles manufactured on or after September 1, 2015. Except as provided in S8.8, each vehicle manufactured on or after September 1, 2015 must comply with this standard.

S8.5 Calculation of complying vehicles.

(a) For purpose of complying with S8.1, a manufacturer may count a vehicle if it is certified as complying with this standard and is manufactured on or after September 1, 2012, but before September 1, 2013.
§ 571.216a
(b) For purposes of complying with S8.2, a manufacturer may count a vehicle if it:

(1) Is certified as complying with this standard and is manufactured on or after September 1, 2012, but before September 1, 2014; and

(2) Is not counted toward compliance with S8.1.

(c) For purposes of complying with S8.3, a manufacturer may count a vehicle if it:

(1) Is certified as complying with this standard and is manufactured on or after September 1, 2012, but before September 1, 2015; and

(2) Is not counted toward compliance with S8.1 or S8.2.

S8.6 Vehicles produced by more than one manufacturer.

S8.6.1 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S8.1 through S8.3, a vehicle produced by more than one manufacturer must be attributed to a single manufacturer as follows, subject to S8.6.2:

(a) A vehicle that is imported must be attributed to the importer.

(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, must be attributed to the manufacturer that markets the vehicle.

S8.6.2 A vehicle produced by more than one manufacturer must be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR Part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S8.6.1.

S8.7 Small volume manufacturers. Vehicles manufactured during any of the three years of the September 1, 2012 through August 31, 2015 phase-in by a manufacturer that produces fewer than 5,000 vehicles for sale in the United States during that year are not subject to the requirements of S8.1, S8.2, and S8.3.

S8.8 Final-stage manufacturers and alterers.

Vehicles that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having previously been certified in accordance with Part 567 of this chapter are not subject to the requirements of S8.1 through S8.3. Instead, all vehicles produced by these manufacturers on or after September 1, 2016 must comply with this standard.

S9 Vehicles with a GVWR above 2,722 kilograms (6,000 pounds).

(a) Except as provided in S9(b), each vehicle manufactured on or after September 1, 2016 must comply with this standard.

(b) Vehicles that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having previously been certified in accordance with part 567 of this chapter are not subject to the requirements of S8.1 through S8.3. Instead, all vehicles produced by these manufacturers on or after September 1, 2017 must comply with this standard.
§ 571.217 Standard No. 217; Bus emergency exits and window retention and release.

S1. Scope. This standard establishes requirements for the retention of windows other than windshields in buses, and establishes operating forces, opening dimensions, and markings for bus emergency exits.

S2. Purpose. The purpose of this standard is to minimize the likelihood of occupants being thrown from the bus and to provide a means of readily accessible emergency egress.

S3. Application. This standard applies to buses, except buses manufactured for the purpose of transporting persons under physical restraint.

S4. Definitions. Adjacent seat means a designated seating position located so that some portion of its occupant space is not more than 10 inches from an emergency exit, for a distance of at least 15 inches measured horizontally and parallel to the exit.

Daylight opening means the maximum unobstructed opening of an emergency exit when viewed from a direction perpendicular to the plane of the opening.

Mid-point of the passenger compartment means any point on a vertical transverse plane bisecting the vehicle longitudinal centerline that extends between the two vertical transverse planes which define the foremost and rearmost limits of the passenger compartment.

Occupant space means the space directly above the seat and footwell, bounded vertically by the ceiling and horizontally by the normally positioned seat back and the nearest obstruction of occupant motion in the direction the seat faces.

Passenger compartment means space within the school bus interior that is between a vertical transverse plane located 76 centimeters in front of the forwardmost passenger seating reference point and a vertical transverse plane tangent to the rear interior wall of the bus at the vehicle centerline.

Post and roof bow panel space means the area between two adjacent post and roof bows.

Push-out window means a vehicle window designed to open outward to provide for emergency egress.

Sliding window means a bus window designed to open by moving vertically or horizontally to provide emergency egress.

Wheelchair means a wheeled seat frame for the support and conveyance of a physically disabled person, comprising at least a frame, seat, and wheels.

Wheelchair securement anchorage means the provision for transferring wheelchair securement device loads to the vehicle structure.

Wheelchair securement device means a strap, webbing or other device used for securing a wheelchair to the school bus, including all necessary buckles and other fasteners.

S5. Requirements.

S5.1 Window retention. Except as provided in §5.1.2, each piece of window glazing and each surrounding window frame when tested in accordance with the procedure in §5.1.1 under the conditions of §6.1 through §6.3, shall be retained by its surrounding structure in a manner that prevents the formation of any opening large enough to admit the passage of a 4-inch diameter sphere under a force, including the weight of the sphere, of 5 pounds until any one of the following events occurs:

(a) A force of 1,200 pounds is reached.

(b) At least 80 percent of the glazing thickness has developed cracks running from the load contact region to the periphery at two or more points, or shattering of the glazing occurs.

(c) The inner surface of the glazing at the center of force application has moved relative to the window frame, along a line perpendicular to the undisturbed inner surface, a distance equal to one-half of the square root of the minimum surface dimension measured through the center of the area of the entire sheet of window glazing.

S5.1.1 An increasing force shall be applied to the window glazing through the head form specified in Figure 4, outward and perpendicular to the undisturbed inside surface at the center of the area of each sheet of window glazing, with a head form travel of 2 inches per minute.
S5.1.2 The requirements of this standard do not apply to a window whose minimum surface dimension measured through the center of its area is less than 8 inches.

S5.2 Provision of emergency exits.

S5.2.1 Buses other than school buses shall meet the requirements of either S5.2.2 or S5.2.3. School buses shall meet the requirements of S5.2.3.

S5.2.1.1 A bus with GVWR of more than 10,000 pounds may satisfy the unobstructed openings requirement by providing at least one side door for each three passenger seating positions in the vehicle.

S5.2.2 Buses other than school buses.

S5.2.2.1 Buses other than school buses shall provide unobstructed openings for emergency exit which collectively amount, in total square centimeters, to at least 432 times the number of designated seating positions on the bus. At least 40 percent of the total required area of unobstructed openings, computed in the above manner, shall be provided on each side of a bus. However, in determining the total unobstructed openings provided by a bus, no emergency exit, regardless of its area, shall be credited with more than 3,458 square centimeters of the total area requirement.

S5.2.2.2 Buses with GVWR of more than 10,000 pounds. Buses with a GVWR of more than 10,000 pounds shall meet the unobstructed openings requirements in S5.2.2.1 by providing side exits and at least one rear exit that conforms to S5.3 through S5.5. The rear exit shall meet the requirements of S5.3 through S5.5 when the bus is up-right and when the bus is overturned on either side, with the occupant standing facing the exit. When the bus configuration precludes installation of an accessible rear exit, a roof exit that meets the requirements of S5.3 through S5.5 when the bus is overturned on either side, with the occupant standing facing the exit, shall be provided in the rear half of the bus.

S5.2.2.3 Buses with GVWR of 10,000 pounds or less. Buses other than school buses with GVWR of 10,000 pounds or less may meet the unobstructed openings requirement in S5.2.2.1 by providing:

(a) Devices that meet the requirements of S5.3 through S5.5 without using remote controls or central power systems;

(b) Windows that can be opened manually to a position that provides an opening large enough to admit unobstructed passage, keeping a major axis horizontal at all times, of an ellipsoid generated by rotating about its minor axis an ellipse having a major axis of 50 centimeters and a minor axis of 33 centimeters; or

(c) Doors.

S5.2.3 School buses. Except as provided in S5.2.3.4, each school bus shall comply with S5.2.3.1 through S5.2.3.3.

S5.2.3.1. Each school bus shall be equipped with the exits specified in either S5.2.3.1(a) or S5.2.3.1(b), chosen at the option of the manufacturer.

(a) One rear emergency door that opens outward and is hinged on the right side (either side in the case of a bus with a GVWR of 10,000 pounds or less), and the additional exits, if any, specified by Table 1.

(b) One emergency door on the vehicle’s left side that is hinged on its forward side and meets the requirements of S5.2.3.2(a), and a push-out rear window that provides a minimum opening clearance 41 centimeters high and 122 centimeters wide and meets the requirements of S5.2.3.2(c), and the additional exits, if any, specified by Table 2.

<table>
<thead>
<tr>
<th>Seating capacity</th>
<th>Additional exits required*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–45</td>
<td>None.</td>
</tr>
<tr>
<td>46–62</td>
<td>1 left side exit door or 2 exit windows.</td>
</tr>
<tr>
<td>63–70</td>
<td>1 left side exit door or 2 exit windows, and 1 roof exit.</td>
</tr>
<tr>
<td>71 and above.</td>
<td>1 left side exit door or 2 exit windows, and 1 roof exit, and any combination of door, roof, or windows such that the total capacity credit specified in Table 3 for these exits, plus 70, is greater than the seating capacity of the bus.</td>
</tr>
</tbody>
</table>

* Side emergency exit doors must meet the requirements of S5.2.3.2(a); emergency roof exits must meet the requirements of S5.2.3.2(b); emergency window exits must meet the requirements of S5.2.3.2(c).

<table>
<thead>
<tr>
<th>Seating capacity</th>
<th>Additional exits required*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–57</td>
<td>None.</td>
</tr>
<tr>
<td>58–74</td>
<td>1 right side exit door or 2 exit windows.</td>
</tr>
</tbody>
</table>
TABLE 2—Continued

<table>
<thead>
<tr>
<th>Seating capacity</th>
<th>Additional exits required*</th>
</tr>
</thead>
<tbody>
<tr>
<td>75–82</td>
<td>1 right side exit door or 2 exit windows, and 1 roof exit.</td>
</tr>
<tr>
<td>83 and above.</td>
<td>1 right side exit door or 2 windows, and 1 roof exit, and any combination of door, roof, or windows such that the total capacity credit specified in Table 3 for these exits plus 82 is greater than the capacity of the bus.</td>
</tr>
</tbody>
</table>

* Side emergency exit doors must meet the requirements of §5.2.3.2(a), emergency roof exits must meet the requirements of §5.2.3.2(b), emergency window exits must meet the requirements of §5.2.3.2(c).

Table 3

<table>
<thead>
<tr>
<th>Exit Type</th>
<th>Capacity Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side Door</td>
<td>16</td>
</tr>
<tr>
<td>Window</td>
<td>8</td>
</tr>
<tr>
<td>Roof Exit</td>
<td>8</td>
</tr>
</tbody>
</table>

(c) The area of an opening equipped with a wheelchair lift may be credited toward the required additional exits if it meets the requirements of paragraphs (a) or (b) of §5.2.3.1 and if the lift folds or stows in such a manner that the area is available for use by persons not needing the lift. With the lift in the folded or stowed position, such opening is considered a side emergency exit door.

§5.2.3.2 All emergency exits required by §5.2.3.1(a) and §5.2.3.1(b) shall meet the following criteria:

(a) Side emergency exit doors.

(1) Each side emergency exit door shall be hinged on its forward side.

(2) The first side emergency exit door installed pursuant to Table 1, shall be located on the left side of the bus and as near as practicable to the midpoint of the passenger compartment. A second side emergency exit door installed pursuant to Table 1 shall be located on the right side of the bus. In the case of a bus equipped with three side emergency exit doors pursuant to Table 1, the third shall be located on the right side of the bus.

(3) The first side emergency exit door installed pursuant to Table 2 shall be located on the right side of the bus. A second side emergency exit door installed pursuant to Table 2 shall be located on the left side of the bus. In the case of a bus equipped with three side emergency exit doors pursuant to Table 2, the third shall be located on the right side of the bus.

(4) No two side emergency exit doors shall be located, in whole or in part, within the same post and roof bow panel space.

(b) Emergency roof exit. (1) Each emergency roof exit shall be hinged on its forward side, and shall be operable from both inside and outside the vehicle.

(2) In a bus equipped with a single emergency roof exit, the exit shall be located as near as practicable to the midpoint of the passenger compartment.

(3) In a bus equipped with two emergency roof exits, one shall be located as near as practicable to a point equidistant between the midpoint of the passenger compartment and the foremost limit of the passenger compartment and the other shall be located as near as practicable to a point equidistant between the midpoint of the passenger compartment and the rearmost point of the passenger compartment.

(4) In a bus equipped with three or more emergency roof exits, the roof exits shall be installed so that, to the extent practicable, the longitudinal distance between each pair of adjacent roof exits is the same and equal to the distance from the foremost point of the passenger compartment to the foremost roof exit and to the distance from the rearmost point of that compartment to the rearmost roof exit.

(5) Except as provided in paragraph (b)(6) of this section, each emergency roof exit shall be installed with its longitudinal centerline coinciding with a longitudinal vertical plane passing through the longitudinal centerline of the school bus.

(6) In a bus equipped with two or more emergency roof exits, for each roof exit offset from the longitudinal vertical plane specified in paragraph (b)(5) of this section, there shall be another roof exit offset from that plane an equal distance to the other side.

(c) Emergency exit windows. A bus equipped with emergency exit windows shall have an even number of such windows, not counting the push-out rear window required by §5.2.3.1(b). Any side emergency exit windows shall be
evenly divided between the right and left sides of the bus. School buses shall not be equipped with horizontally-sliding emergency exit windows. Further, except for buses equipped with rear push-out emergency exit windows in accordance with S5.2.3.1(b), school buses shall not be equipped with both sliding and push-out emergency exit windows.

S5.2.3.3 The engine starting system of a bus shall not operate if any emergency exit is locked from either inside or outside the bus. For purposes of this requirement, “locked” means that the release mechanism cannot be activated and the exit opened by a person at the exit without a special device such as a key or special information such as a combination.

S5.2.3.4 Each school bus manufactured before September 1, 1994 may, at the manufacturer’s option, comply with either S5.2.3.4(a) or S5.2.3.4(b) instead of S5.2.3.3.

(a) Each bus shall be equipped with one rear emergency door that opens outward and is hinged on the right side (either side in the case of a bus with a GVWR of 4,536 kilograms or less); or

(b) Each bus shall be equipped with one emergency door on the vehicle’s left side that is hinged on its forward side and meets the requirements of S5.2.3.2(a), and a push-out rear window that provides a minimum opening clearance 41 centimeters high and 122 centimeters wide and meets the requirements of S5.2.3.2(c).

S5.3 Emergency exit release.

S5.3.1 Each emergency exit not required by S5.2.3 shall be releasable by operating one or two mechanisms located within the regions specified in Figure 1, Figure 2, or Figure 3. The lower edge of the region in Figure 1, and Region B in Figure 2, shall be located 13 centimeters above the adjacent seat, or 5 centimeters above the arm rest, if any, whichever is higher.

S5.3.2 (a) When tested under the conditions of S6, both before and after the window retention test required by S5.1, each emergency exit not required by S5.2.3 shall allow manual release of the exit by a single person, from inside the passenger compartment, using force applications each of which conforms, at the option of the manufacturer, either to S5.3.2.1(a) or S5.3.2.1(b).

(b) Each exit described in S5.3.2(a) shall have no more than two release mechanisms. For exits with one release mechanism, the exit shall require two force applications to open the exit; One force application shall be applied to the mechanism and another force application shall be applied to open the exit. The force application for the release mechanism must differ by not less than 90 degrees and not more than 180 degrees from the direction of the initial motion to open the exit. For exits with two release mechanisms, there shall be a total of three force applications to open the exit: One force application shall be applied to each of the two mechanisms to release each mechanism, and another force shall be applied to open the exit. The force application for at least one of the release mechanisms must differ by not less than 90 degrees and not more than 180 degrees from the direction of the initial motion to open the exit. The force applications for the mechanism(s) must conform to either S5.3.2.1(a) or S5.3.2.1(b), as appropriate.

S5.3.2.1(a) Low-force application.

(1) Location: As shown in Figure 1 or Figure 3.

(2) Type of motion: Rotary or straight.

(3) Magnitude: Not more than 90 N.

(b) High-force application.

(1) Location: As shown in Figure 2 or Figure 3.

(2) Type of motion: Straight and perpendicular to the undisturbed exit surface.

(3) Magnitude: Not more than 270 N.

S5.3.3 School bus emergency exit release.

S5.3.3.1 When tested under the conditions of S6., both before and after the window retention test required by S5.1, each school bus emergency exit door shall allow manual release of the door by a single person, from both inside and outside the passenger compartment, using force application that conforms to S5.3.3.1 (a) through (c) of this section, except a school bus with a GVWR of 10,000 pounds or less is not required to conform to S5.3.3.1 (a). The release mechanism shall operate without the use of remote controls or tools,
§ 571.217 49 CFR Ch. V (10–1–16 Edition)

and notwithstanding any failure of the vehicle's power system. When the release mechanism is not in the position that causes an emergency exit door to be closed and the vehicle's ignition is in the “on” position, a continuous warning sound shall be audible at the driver's seating position and in the vicinity of the emergency exit door.

(a) Location: Within the high force access region shown in Figure 3A for a side emergency exit door, within the high force access region shown in both Figure 3D(1) and Figure 3D(2) for an interior release mechanism for a rear emergency exit door, and within the high force access region shown in Figure 3D(1) for an exterior release mechanism for a rear emergency exit door.

(b) Type of motion: Upward from inside the bus and, at the discretion of the manufacturer, from outside the bus. Buses with a GVWR of 10,000 pounds or less shall provide interior release mechanisms that operate by either an upward or pull-type motion. The pull-type motion shall be used only when the release mechanism is recessed in such a manner that the handle, level, or other activating device, before being activated, does not protrude beyond the rim of the recessed receptacle.

(c) Magnitude of force: Not more than 178 newtons.

S5.3.3.2 When tested under the conditions of § 56.1, both before and after the window retention test required by § 55.1, each school bus emergency exit window shall allow manual release of the exit by a single person, from inside the passenger compartment, using not more than two release mechanisms located in specified low-force or high-force regions (at the option of the manufacturer) with force applications and types of motions that conform to either S5.3.3.2 (a) or (b) of this section. In the case of windows with one release mechanism, the mechanism shall require two force applications to release the exit. In the case of windows with two release mechanisms, each mechanism shall require one application to release the exit. At least one of the force applications for each window shall differ from the direction of the initial motion to open the exit by no less than 90° and no more than 180°.

(a) Emergency exit windows—Low-force application.

(1) Location: Within the low-force access regions shown in Figures 1 and 3 for an emergency exit window.

(2) Type of motion: Rotary or straight.

(3) Magnitude: Not more than 89 newtons.

(b) Emergency exit windows—High-force application.

(1) Location: Within the high-force access regions shown in Figures 2 and 3 for an emergency exit window.

(2) Type of motion: Straight and perpendicular to the undisturbed exit surface.

(3) Magnitude: Not more than 178 newtons.

S5.3.3.3 When tested under the conditions of § 56.1, both before and after the window retention test required by § 55.1, each school bus emergency roof exit shall allow manual release of the exit by a single person from both inside and outside the passenger compartment, using not more than two release mechanisms located at specified low-force or high-force regions (at the option of the manufacturer) with force applications and types of motions that conform to either S5.3.3.3 (a) or (b) of this section. In the case of roof exits with one release mechanism, the mechanism shall require two force applications to release the exit. In the case of roof exits with two release mechanisms, each mechanism shall require one application to release the exit. At least one of the force applications for each roof exit shall differ from the direction of the initial push-out motion of the exit by no less than 90° and no more than 180°.

(a) Emergency roof exits—Low-force application.

(1) Location: Within the low force access regions shown in Figure 3B, in the case of buses whose roof exits are not offset from the plane specified in S5.2.3.2(b)(5). In the case of buses which have roof exits offset from the plane.
specified in §5.2.3.2(b)(5), the amount of offset shall be used to recalculate the dimensions in Figure 3B for the offset exits.

(2) Type of motion: Rotary or straight.

(3) Magnitude: Not more than 89 newtons.

(b) Emergency roof exits—High-force application.

(1) Location: Within the high force access regions shown in Figure 3B, in the case of buses whose roof exits are not offset from the plane specified in §5.2.3.2(b)(5). In the case of buses which have roof exits offset from the plane specified in §5.2.3.2(b)(5), the amount of offset shall be used to recalculate the dimensions in Figure 3B for the offset exits.

(2) Type of motion: Straight and perpendicular to the undisturbed exit surface.

(3) Magnitude: Not more than 178 newtons.

§5.4 Emergency exit opening.

§5.4.1 After the release mechanism has been operated, each emergency exit not required by §5.2.3 shall, under the conditions of §6., both before and after the window retention test required by §5.1, using the reach distances and corresponding force levels specified in §5.3.2, allow manual opening by a single occupant to a position that provides an opening large enough to admit unobstructed passage, keeping a major axis horizontal at all times, of an ellipsoid generated by rotating about its minor axis an ellipse having a major axis of 50 centimeters and a minor axis of 33 centimeters.

§5.4.2 School bus emergency exit opening.

§5.4.2.1 School buses with a GVWR of more than 10,000 pounds.

(a) Emergency exit doors. After the release mechanism has been operated, each emergency exit door of a school bus shall, under the conditions of §6., before and after the window retention test required by §5.1, using the force levels specified in §5.3.3, be manually extendable by a single person to a position that permits:

(1) In the case of a rear emergency exit door, an opening large enough to permit unobstructed passage into the bus of a rectangular parallelepiped 1,145 millimeters (45 inches) high, 610 millimeters (24 inches) wide, and 305 millimeters (12 inches) deep, keeping the 1,145 millimeter (45 inch) dimension vertical, the 610 (24 inch) millimeter dimension parallel to the opening, and the lower surface in contact with the floor of the bus at all times, until the bottom edge of the rearmost surface of the parallelepiped is tangent to the plane of the door opening; and

(2) In the case of a side emergency exit door, an opening at least 114 centimeters high and 61 centimeters wide.

(i) Except as provided in paragraph (a)(2)(ii) of this section, no portion of a seat or a restraining barrier shall be installed within the area bounded by the opening of a side emergency exit door, a vertical transverse plane tangent to the rearward edge of the door opening frame, a vertical transverse plane parallel to that plane at a distance of 30 centimeters forward of that plane, and a longitudinal vertical plane passing through the longitudinal centerline of the bus. (See Figure 5A).

(ii) A seat bottom may be located within the area described in paragraph (a)(2)(i) of this section if the seat bottom pivots and automatically assumes and retains a vertical position when not in use, so that no portion of the seat bottom is within the area described in paragraph (i) when the seat bottom is vertical. (See Figure 5B).

(iii) No portion of a seat or restraining barrier located forward of the area described in paragraph (a)(2)(i) of this section and between the door opening and a longitudinal vertical plane passing through the longitudinal centerline of the bus shall extend rearward of a vertical transverse plane tangent to the forwardmost portion of a latch mechanism on the door. (See Figures 5B and 5C.)

(3)(i) Each emergency exit door of a school bus shall be equipped with a positive door opening device that, after the release mechanism has been operated, under the conditions of §6, before and after the window retention test required by §5.1—

(A) Bears the weight of the door;

(B) Keeps the door from closing past the point at which the door is perpendicular to the side of the bus body, regardless of the body’s orientation; and
§571.217 49 CFR Ch. V (10–1–16 Edition)

(C) Provides a means for release or override.

(ii) The positive door opening device shall perform the functions specified in paragraph (a)(3)(i) (A) and (B) of this section without the need for additional action beyond opening the door past the point at which the door is perpendicular to the side of the bus body.

(b) Emergency roof exits. After the release mechanism has been operated, each emergency roof exit of a school bus shall, under the conditions of S6., both before and after the window retention test required by S5.1, using the force levels specified in S5.3.3, be manually extendable by a single person to a position that permits an opening at least 41 centimeters high and 41 centimeters wide.

(c) Emergency exit windows. After the release mechanism has been operated, each emergency exit window of a school bus shall, under the conditions of S6., both before and after the window retention test of S5.1, using force levels specified in S5.3.3, be manually extendable by a single occupant to a position that provides an opening large enough to admit unobstructed passage, keeping a major axis horizontal at all times, of an ellipsoid generated by rotating about its minor axis an ellipse having a major axis of 50 centimeters and a minor axis of 33 centimeters.

S5.4.2.2 School buses with a GVWR of 10,000 pounds or less. A school bus with a GVWR of 10,000 pounds or less shall conform to all the provisions of S5.4.2, except that the parallelepiped dimension for the opening of the rear emergency door or doors shall be 45 inches high, 22 inches wide, and six inches deep.

S5.4.3 Restriction on wheelchair anchorage location.

S5.4.3.1 Except as provided in paragraph S5.4.3.2 of this section, no portion of a wheelchair securement anchorage shall be located in a school bus such that:

(a) In the case of side emergency exit doors, any portion of the wheelchair securement anchorage is within the space bounded by the interior side wall and emergency exit door opening, transverse vertical planes 905 mm (12 inches) forward and rearward of the center of any side emergency exit door restricted area, and a longitudinal vertical plane through the longitudinal centerline of the school bus, as shown in Figure 6A.

(b) In the case of rear emergency exit doors in school buses, using the parallelepiped described in S5.4.2.1(a)(1) (for school buses with a GVWR greater than 10,000 lb) or S5.4.2.2 (for school buses with a GVWR of 10,000 lb or less), when the parallelepiped is positioned, as described in S5.4.2.1(a), flush with the floor and with the rear surface of the parallelepiped tangent to the opening of the rear emergency exit door, there must not be any portion of a wheelchair securement anchorage within the space occupied by the parallelepiped or within the downward vertical projection of the parallelepiped, as shown in Figure 6C.

S5.4.3.2 The restriction in S5.4.3.1(a) of this section does not apply to tracks or track-type devices that are used for mounting seats and/or for wheelchair securement devices.

S5.5 Emergency exit identification.

S5.5.1 In buses other than school buses, and except for windows serving as emergency exits in accordance with S5.2.2.3(b) and doors in buses with a GVWR of 10,000 pounds or less, each emergency exit door shall have the designation “Emergency Door” or “Emergency Exit,” and every other emergency exit shall have the designation “Emergency Exit,” followed by concise operating instructions describing each motion necessary to unlatch and open the exit, located within 16 centimeters of the release mechanism.

Examples: (1) Lift to Unlatch, Push to Open
(2) Lift Handle and Push out to Open

When a release mechanism is not located within an occupant space of an adjacent seat, a label meeting the requirements of S5.5.2 that indicates the location of the nearest release mechanism shall be placed within the occupant space.

Example: “Emergency Exit Instructions Located Next to Seat Ahead”

S5.5.2 In buses other than school buses. Except as provided in S5.5.2.1, each marking shall be legible, when the only source of light is the normal
§ 571.217

nighttime illumination of the bus interior to occupants having corrected visual acuity of 20/40 (Snellen ratio) seated in the adjacent seat, seated in the seat directly adjoining the adjacent seat, and standing in the aisle location that is closest to that adjacent seat. The marking shall be legible from each of these locations when the other two corresponding locations are occupied.

S5.5.2.1 If the exit has no adjacent seat, the marking must meet the legibility requirements of S5.5.2 for occupants standing in the aisle location nearest to the emergency exit, except for a roof exit, which must meet the legibility requirements for occupants positioned with their backs against the floor opposite the roof exit.

§5.5.3 School Bus.

(a) Each school bus emergency exit provided in accordance with S5.2.3.1 shall have the designation “Emergency Door” or “Emergency Exit,” as appropriate, in letters at least 5 centimeters high, of a color that contrasts with its background. For emergency exit doors, the designation shall be located at the top of, or directly above, the emergency exit door on both the inside and outside surfaces of the bus. The designation for roof exits shall be located on an inside surface of the exit, or within 30 centimeters of the roof exit opening. For emergency window exits, the designation shall be located at the top of, or directly above, or at the bottom of the emergency window exit on both the inside and outside surfaces of the bus.

(b) Concise operating instructions describing the motions necessary to unlatch and open the emergency exit shall be located within 15 centimeters of the release mechanism on the inside surface of the bus. These instructions shall be in letters at least 1 centimeter high and of a color that contrasts with its background.

Examples: (1) Lift to Unlatch, Push to Open
(2) Turn Handle, Push Out to Open

(c) Each opening for a required emergency exit shall be outlined around its outside perimeter with a retroreflective tape with a minimum width of 2.5 centimeters and either red, white, or yellow in color, that when tested under the conditions specified in S6.1 of Standard No. 131 (49 CFR 571.131), meets the criteria specified in Table 1 of that section.

(d) On the inside surface of each school bus with one or more wheelchair anchorage positions, there shall be a label directly beneath or above each “Emergency Door” or “Emergency Exit” designation specified by paragraph (a) of S5.5.3 of this standard for an emergency exit door or window. The label shall state in letters at least 25 mm (one inch) high, the words “DO NOT BLOCK” in a color that contrasts with the background of the label.

S6. Test conditions.

S6.1 The vehicle is on a flat, horizontal surface.

S6.2 The inside of the vehicle and the outside environment are kept at any temperature from 70° to 85 °Fahrenheit for 4 hours immediately preceding the tests, and during the tests.

S6.3 For the window retention test, windows are installed, closed, and latched (where latches are provided) in the condition intended for normal bus operation.

S6.4 For the emergency exit release and extension tests, windows are installed as in S6.3, seats, armrests, and interior objects near the windows are installed as for normal use, and seats are in the upright position.
FIGURE 1 LOW-FORCE ACCESS REGION FOR EMERGENCY EXITS HAVING ADJACENT SEATS

CLEARANCE AREA AROUND ADJACENT SEAT

FLOOR BENEATH EMERGENCY EXIT

FLOOR PARALLEL TO SEAT BACK

FLOOR PERPENDICULAR TO SEAT BACK

POSSIBLE ARMREST

ADJACENT SEAT

ADJACENT SEAT
§571.217

49 CFR Ch. V (10–1–16 Edition)

3A. SIDE EMERGENCY EXIT

3B. ROOF EMERGENCY EXIT
3C. REAR EMERGENCY EXIT WITH REAR OBSTRUCTION

3D. REAR EMERGENCY EXIT WITHOUT REAR OBSTRUCTION

FIGURE 3 LOW AND HIGH-FORCE ACCESS REGIONS FOR EMERGENCY EXITS WITHOUT ADJACENT SEATS
§ 571.217

49 CFR Ch. V (10–1–16 Edition)

Notes:
1. Dimensions in mm
2. All Dimensions ± 5 mm
3. Not to scale

Figure 3D
Figure 5A. Minimum Side Emergency Exit Clearance Specifications (Plan View)
Figure 5B. Minimum Side Emergency Exit Flip-Up Seat Clearance Specifications
Figure 5C. Minimum Side Emergency Exit Clearance Specifications
Figure 6A. Side Emergency Exit – No Wheelchair Anchorages within the shaded region.

Figure 6B [Reserved]
Figure 6C. Rear Door Emergency Exit - No Wheelchair Anchorages within the shaded region

<table>
<thead>
<tr>
<th>GVWR</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>>4536 kg</td>
<td>305</td>
<td>610</td>
</tr>
<tr>
<td><=4536 kg</td>
<td>152</td>
<td>558</td>
</tr>
</tbody>
</table>

Dimensions in millimeters

Figure 6D [RESERVED]
§ 571.218 Standard No. 218; Motorcycle helmets.

S1. Scope. This standard establishes minimum performance requirements for helmets designed for use by motorcyclists and other motor vehicle users.

S2. Purpose. The purpose of this standard is to reduce deaths and injuries to motorcyclists and other motor vehicle users resulting from head impacts.

S3. Application. This standard applies to all helmets designed for use by motorcyclists and other motor vehicle users.

S4. Definitions.

Basic plane means a plane through the centers of the right and left external ear openings and the lower edge of the eye sockets (Figure 1) of a reference headform (Figure 2) or test headform.

Table 1. Minimum Specific Intensity Per Unit Area (SIA)
(Candels per Footcandle Per Square Foot)
Type III Retroreflective Material

A - Glass Bead Retroreflective Element Material

<table>
<thead>
<tr>
<th>Observation Angle (°)</th>
<th>Entrance Angle (°)</th>
<th>White</th>
<th>Red</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>-4</td>
<td>250</td>
<td>45</td>
<td>170</td>
</tr>
<tr>
<td>0.2</td>
<td>+30</td>
<td>150</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>0.5</td>
<td>-4</td>
<td>95</td>
<td>15</td>
<td>62</td>
</tr>
<tr>
<td>0.5</td>
<td>+30</td>
<td>65</td>
<td>10</td>
<td>45</td>
</tr>
</tbody>
</table>

B - Prismatic Retroreflective Element Material

<table>
<thead>
<tr>
<th>Observation Angle (°)</th>
<th>Entrance Angle (°)</th>
<th>White</th>
<th>Red</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>-4</td>
<td>250</td>
<td>45</td>
<td>170</td>
</tr>
<tr>
<td>0.2</td>
<td>+30</td>
<td>95</td>
<td>13.3</td>
<td>64</td>
</tr>
<tr>
<td>0.5</td>
<td>-4</td>
<td>200</td>
<td>28</td>
<td>136</td>
</tr>
<tr>
<td>0.5</td>
<td>+30</td>
<td>65</td>
<td>10</td>
<td>45</td>
</tr>
</tbody>
</table>

[37 FR 9395, May 10, 1972]
Discrete size means a numerical value that corresponds to the diameter of an equivalent circle representing the helmet interior in inches (±0.25 inch) or to the circumference of the equivalent circle in centimeters (±0.64 centimeters).

Helmet positioning index means the distance in inches, as specified by the manufacturer, from the lowest point of the brow opening at the lateral midpoint of the helmet to the basic plane of a reference headform, when the helmet is firmly and properly positioned on the reference headform.

Impact site means the point on the helmet where the helmet shell first contacts the test anvil during the impact attenuation test.

Midsagittal plane means a longitudinal plane through the apex of a reference headform or test headform that is perpendicular to the basic plane (Figure 3).

Reference headform means a measuring device contoured to the dimensions of one of the three headforms described in Table 2 and Figures 5 through 8 with surface markings indicating the locations of the basic, midsagittal, and reference planes, and the centers of the external ear openings.

Reference plane means a plane above and parallel to the basic plane on a reference headform or test headform (Figure 2) at the distance indicated in Table 2.

Retention system means the complete assembly by which the helmet is retained in position on the head during use.

Test headform means a test device contoured to the dimensions of one of the three headforms described in Table 2 and Figures 5 through 8 with surface markings indicating the locations of the basic, midsagittal, and reference planes.

S5. Requirements. Each helmet shall meet the requirements of S5.1, S5.2, and S5.3 when subjected to any conditioning procedure specified in S6.4, and tested in accordance with S7.1, S7.2, and S7.3.

S5.1 Impact attenuation. When an impact attenuation test is conducted in accordance with S7.1, all of the following requirements shall be met:

(a) Peak accelerations shall not exceed 400g;
(b) Accelerations in excess of 200g shall not exceed a cumulative duration of 2.0 milliseconds; and
(c) Accelerations in excess of 150g shall not exceed a cumulative duration of 4.0 milliseconds.

S5.2 Penetration. When a penetration test is conducted in accordance with S7.2, the striker shall not contact the surface of the test headform.

S5.3 Retention system.

S5.3.1 When tested in accordance with S7.3:

(a) The retention system or its components shall attain the loads specified without separation; and
(b) The adjustable portion of the retention system test device shall not move more than 1 inch (2.5 cm) measured between preliminary and test load positions.

S5.3.2 Where the retention system consists of components which can be independently fastened without securing the complete assembly, each such component shall independently meet the requirements of S5.3.1.

S5.4 Configuration. Each helmet shall have a protective surface of continuous contour at all points on or above the test line described in S6.2.3. The helmet shall provide peripheral vision clearance of at least 105° to each side of the midsagittal plane, when the helmet is adjusted as specified in S6.3. The vertex of these angles, shown in Figure 3, shall be at the point on the anterior surface of the reference headform at the intersection of the mid-sagittal and basic planes. The brow opening of the helmet shall be at least 1 inch (2.5 cm) above all points in the basic plane that are within the angles of peripheral vision (see Figure 3).

S5.5 Projections. A helmet shall not have any rigid projections inside its shell. Rigid projections outside any helmet’s shell shall be limited to those required for operation of essential accessories, and shall not protrude more than 0.20 inch (5 mm).

S5.6 Labeling.

S5.6.1 On a label or labels separate from the certification label required by S5.6.2, each helmet shall be labeled permanently and legibly, in a manner
such that the label(s) can be read easily without removing padding or any other permanent part, with the following:

(a) Manufacturer’s name.
(b) Discrete size.
(c) Month and year of manufacture. This may be spelled out (for example, June 2010), or expressed in numerals (for example, 6/10).
(d) Instructions to the purchaser as follows:
 (1) “Shell and liner constructed of (identify type(s) of materials).”
 (2) “Helmet can be seriously damaged by some common substances without damage being visible to the user. Apply only the following: (Recommended cleaning agents, paints, adhesives, etc., as appropriate).”
 (3) “Make no modifications. Fasten helmet securely. If helmet experiences a severe blow, return it to the manufacturer for inspection, or destroy it and replace it.”
 (4) Any additional relevant safety information should be applied at the time of purchase by means of an attached tag, brochure, or other suitable means.

§5.6.2 Certification. Each helmet shall be labeled permanently and legibly with a label, constituting the manufacturer’s certification that the helmet conforms to the applicable Federal motor vehicle safety standards, that is separate from the label(s) used to comply with §5.6.1, and complies with paragraphs (a) through (c) of this section.

(a) Content, format, and appearance. The label required by paragraph §5.6.2 shall have the following content, format, and appearance:
 (1) The symbol “DOT,” horizontally centered on the label, in letters not less than 0.38 inch (1.0 cm) high.
 (2) The term “FMVSS No. 218,” horizontally centered beneath the symbol DOT, in letters not less than 0.09 inches (0.23 cm) high.
 (3) The word “CERTIFIED,” horizontally centered beneath the term “FMVSS No. 218,” in letters not less than 0.09 inches (0.23 cm) high.
 (4) The precise model designation, horizontally centered above the symbol DOT, in letters and/or numerals not less than 0.09 inch (0.23 cm) high.

(b) Other information. No information, other than the information specified in subparagraph (a), shall appear on the label.

(c) Location. The label shall appear on the outer surface of the helmet and be placed so that it is centered laterally with the horizontal centerline of the DOT symbol located a minimum of 1 inch (2.5 cm) and a maximum of 3 inches (7.6 cm) from the bottom edge of the posterior portion of the helmet.

§5.7 Helmet positioning index. Each manufacturer of helmets shall establish a positioning index for each helmet he manufactures. This index shall be furnished immediately to any person who requests the information, with respect to a helmet identified by manufacturer, model designation, and size.

§6. Preliminary test procedures. Before subjecting a helmet to the testing sequence specified in §7., prepare it according to the procedures in §6.1, §6.2, and §6.3.

§6.1 Selection of appropriate headform.

§6.1.1 A helmet with a manufacturer’s designated discrete size or size range which does not exceed 63⁄4 (European size: 54) is tested on the small headform. A helmet with a manufacturer’s designated discrete size or size range which exceeds 63⁄4, but does not exceed 71⁄2 (European size: 60) is tested on the medium headform. A helmet with a manufacturer’s designated discrete size or size range which exceeds 71⁄2 is tested on the large headform.

§6.1.2 A helmet with a manufacturer’s designated size range which includes sizes falling into two or all three size ranges described in §6.1.1 is tested on each headform specified for each size range.

§6.2 Reference marking.

§6.2.1 Use a reference headform that is firmly seated with the basic and reference planes horizontal. Place the complete helmet to be tested on the appropriate reference headform, as specified in §6.1.1 and §6.1.2.
§571.218

S6.2.2 Apply a 10-pound (4.5 kg) static vertical load through the helmet’s apex. Center the helmet laterally and seat it firmly on the reference headform according to its helmet positioning index.

S6.2.3 Maintaining the load and position described in S6.2.2, draw a line (hereinafter referred to as “test line”) on the outer surface of the helmet coinciding with portions of the intersection of that service with the following planes, as shown in Figure 2:

(a) A plane 1 inch (2.5 cm) above and parallel to the reference plane in the anterior portion of the reference headform;

(b) A vertical transverse plane 2.5 inches (6.4 cm) behind the point on the anterior surface of the reference headform at the intersection of the mid-sagittal and reference planes;

(c) The reference plane of the reference headform;

(d) A vertical transverse plane 2.5 inches (6.4 cm) behind the center of the external ear opening in a side view; and

(e) A plane 1 inch (2.5 cm) below and parallel to the reference plane in the posterior portion of the reference headform.

S6.3 Helmet positioning.

S6.3.1 Before each test, fix the helmet on a test headform in the position that conforms to its helmet positioning index. Secure the helmet so that it does not shift position before impact or before application of force during testing.

S6.3.2 In testing as specified in S7.1 and S7.2, place the retention system in a position such that it does not interfere with free fall, impact or penetration.

S6.4 Conditioning.

S6.4.1 Immediately before conducting the testing sequence specified in S7, condition each test helmet in accordance with any one of the following procedures:

(a) Ambient conditions. Expose to any temperature from 61 °F to and including 79 °F (from 16 °C to and including 26 °C) and any relative humidity from 30 to and including 70 percent for a minimum of 4 hours.

(b) Low temperature. Expose to any temperature from 5 °F to and including 23 °F (from −15 °C to and including −5 °C) for a minimum of 4 hours and no more than 24 hours.

(c) High temperature. Expose to any temperature from 113 °F to and including 131 °F (from 45 °C to and including 55 °C) for a minimum of 4 hours and no more than 24 hours.

(d) Water immersion. Immerse in water at any temperature from 61 °F to and including 79 °F (from 16 °C to and including 26 °C) for a minimum of 4 hours and no more than 24 hours.

S6.4.2 If during testing, as specified in S7.1.3 and S7.2.3, a helmet is returned to the conditioning environment before the time out of that environment exceeds 4 minutes, the helmet is kept in the environment for a minimum of 3 minutes before resumption of testing with that helmet. If the time out of the environment exceeds 4 minutes, the helmet is returned to the environment for a minimum of 3 minutes for each minute or portion of a minute that the helmet remained out of the environment in excess of 4 minutes or for a maximum of 12 hours, whichever is less, before the resumption of testing with that helmet.

S7. Test conditions.

S7.1 Impact attenuation test.

S7.1.1 Impact attenuation is measured by determining acceleration imparted to an instrumented test headform on which a complete helmet is mounted as specified in S6.3, when it is dropped in guided free fall upon a fixed hemispherical anvil and a fixed flat steel anvil.

S7.1.2 Each helmet is impacted at four sites with two successive impacts at each site. Two of these sites are impacted upon a flat steel anvil and two upon a hemispherical steel anvil as specified in S7.1.10 and S7.1.11. The impact sites are at any point on the area above the test line described in paragraph S6.2.3, and separated by a distance not less than one-sixth of the maximum circumference of the helmet in the test area. For each site, the location where the helmet first contacts the anvil on the second impact shall not be greater than 0.75 inch (1.9 cm) from the location where the helmet first contacts the anvil on the first impact.
§ 571.218

S7.1.3 Impact testing at each of the four sites, as specified in S7.1.2, shall start at two minutes, and be completed by four minutes, after removal of the helmet from the conditioning environment.

S7.1.4 (a) The guided free fall drop height for the helmet and test headform combination onto the hemispherical anvil shall be such that the impact speed is any speed from 16.4 ft/s to and including 17.7 ft/s (from 5.0 m/s to and including 5.4 m/s).

(b) The guided free fall drop height for the helmet and test headform combination onto the flat anvil shall be such that the impact speed is any speed from 19.0 ft/s to and including 20.3 ft/s (from 5.8 m/s to and including 6.2 m/s).

S7.1.5 Test headforms for impact attenuation testing are constructed of magnesium alloy (K–1A), and exhibit no resonant frequencies below 2,000 Hz.

S7.1.6 The monorail drop test system is used for impact attenuation testing.

S7.1.7 The weight of the drop assembly, as specified in Table 1, is the combined weight of the test headform and the supporting assembly for the drop test. The weight of the supporting assembly is not less than 2.0 lbs and not more than 2.4 lbs (0.9 to 1.1 kg). The supporting assembly weight for the monorail system is the drop assembly weight minus the combined weight of the test headform, the headform’s clamp down ring, and its tie down screws.

S7.1.8 The center of gravity of the test headform is located at the center of the mounting ball on the supporting assembly and lies within a cone with its axis vertical and forming a 10° included angle with the vertex at the point of impact. The center of gravity of the drop assembly lies within the rectangular volume bounded by x = −0.25 inch (−0.64 cm), x = 0.85 inch (2.16 cm), y = 0.25 inch (0.64 cm), and y = −0.25 inch (−0.64 cm) with the origin located at the center of gravity of the test headform. The rectangular volume has no boundary along the z-axis. The x-y-z axes are mutually perpendicular and have positive or negative designations in accordance with the right-hand rule (See Figure 5). The origin of the coordinate axes also is located at the center of the mounting ball on the supporting assembly (See Figures 6, 7, and 8). The x-y-z axes of the test headform assembly on a monorail drop test equipment are oriented as follows: From the origin, the x-axis is horizontal with its positive direction going toward and passing through the vertical centerline of the monorail. The positive z-axis is downward. The y-axis also is horizontal and its direction can be decided by the z- and x-axes, using the right-hand rule.

S7.1.9 The acceleration transducer is mounted at the center of gravity of the test headform with the sensitive axis aligned to within 5° of vertical when the test headform assembly is in the data impact position. The acceleration data channel complies with the SAE Recommended Practice J211/1, revised March 1995 (incorporated by reference, see §571.5) requirements for channel class 1,000.

S7.1.10 The flat anvil is constructed of steel with a 5-inch (12.7 cm) minimum diameter impact face, and the hemispherical anvil is constructed of steel with a 1.9 inch (4.8 cm) radius impact face.

S7.1.11 The rigid mount for both of the anvils consists of a solid mass of at least 300 pounds (136.1 kg), the outer surface of which consists of a steel plate with minimum thickness of 1 inch (2.5 cm) and minimum surface area of 1 ft² (929 cm²).

S7.1.12 The drop system restricts side movement during the impact attenuation test so that the sum of the areas bounded by the acceleration-time response curves for both the x- and y-axes (horizontal axes) is less than five percent of the area bounded by the acceleration-time response curve for the vertical axis.

S7.2 Penetration test.

S7.2.1 The penetration test is conducted by dropping the penetration test striker in guided free fall, with its axis aligned vertically, onto the outer surface of the complete helmet, when mounted as specified in S6.3, at any point above the test line, described in S6.2.3, except on a fastener or other rigid projection.

S7.2.2 Two penetration blows are applied at least 3 inches (7.6 cm) apart, and at least 3 inches (7.6 cm) from the
S7.2.3 The application of the two penetration blows, specified in S7.2.2, starts at two minutes and is completed by four minutes, after removal of the helmet from the conditioning environment.

S7.2.4 The height of the guided free fall is 118.1 ±0.6 in (3 ±0.015 m), as measured from the striker point to the impact point on the outer surface of the test helmet.

S7.2.5 The contactable surface of the penetration test headform is constructed of a metal or metallic alloy having a Brinell hardness number no greater than 55, which will permit ready detection should contact by the striker occur. The surface is refinished if necessary before each penetration test blow to permit detection of contact by the striker.

S7.2.6 The weight of the penetration striker is not less than 6 pounds, 8 ounces and not more than 6 pounds, 12 ounces (2.95 to 3.06 kg).

S7.2.7 The point of the striker has an included angle of 60 ±0.5°, a cone height of 1.5 ±0.015 in. (3.8 ±0.038 cm), a tip radius of 0.02 ±0.004 in. (0.5 ±0.1 mm), and a minimum hardness of 60 Rockwell, C-scale.

S7.2.8 The rigid mount for the penetration test headform is as described in S7.1.11.

S7.3 Retention system test.

S7.3.1 The retention system test is conducted by applying a quasi-static tensile load at any rate from 0.4 to and including 1.2 inch/min (from 1.0 to and including 3.0 cm/min) to the retention assembly of a complete helmet, which is mounted, as described in S6.3, on a stationary test headform as shown in Figure 4, and by measuring the movement of the adjustable portion of the retention system test device under tension.

S7.3.2 The retention system test device consists of both an adjustable loading mechanism by which a quasi-static tensile load is applied at any rate from 0.4 to and including 1.2 inch/min (from 1.0 to and including 3.0 cm/min) to the helmet retention assembly and a means for holding the test headform and helmet stationary. The retention assembly is fastened around two freely moving rollers, both of which have a 0.5 inch (1.3 cm) diameter and a 3 inch (7.6 cm) center-to-center separation, and which are mounted on the adjustable portion of the tensile loading device (Figure 4). The helmet is fixed on the test headform as necessary to ensure that it does not move during the application of the test loads to the retention assembly.

S7.3.3 A 50-pound (22.7 kg) preliminary test load is applied to the retention assembly, normal to the basic plane of the test headform and symmetrical with respect to the center of the retention assembly for 30 seconds, and the maximum distance from the extremity of the adjustable portion of the retention system test device to the apex of the helmet is measured.

S7.3.4 An additional 250-pound (113.4 kg) test load is applied to the retention assembly, in the same manner and at the same location as described in S7.3.3, for 120 seconds, and the maximum distance from the extremity of the adjustable portion of the retention system test device to the apex of the helmet is measured.

APPENDIX TO § 571.218

TABLE 1—Weight Ranges for Impact Attenuation Test Drop Assembly

<table>
<thead>
<tr>
<th>Test headform size</th>
<th>Weight range 1—lb kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>7.6–8.0 (3.4–3.6)</td>
</tr>
<tr>
<td>Medium</td>
<td>10.8–11.2 (4.9–5.1)</td>
</tr>
<tr>
<td>Large</td>
<td>13.2–13.6 (6.0–6.2)</td>
</tr>
</tbody>
</table>

1 Combined weight of instrumented test headform and supporting assembly for drop test.
Figure 1

- BASIC PLANE
- CENTER OF EXTERNAL EAR OPENING
- LOWER EDGE OF EYE SOCKET
Note: Solid lines would correspond to the test line on a test helmet.

Test Surface

Figure 2
Figure 3
STATIONARY TEST HEADFORM

TEST HELMET

RETENTION ASSEMBLY

APPLYING A STATIC TENSILE LOAD

FREELY MOVING ROLLERS MOUNTED ON ADJUSTABLE PORTION OF RETENTION SYSTEM TEST DEVICE WITH DIAMETERS 0.6 INCH; AND CENTER-TO-CENTER SEPARATION 3 INCHES.

RETENTION SYSTEM TEST DEVICE

Figure 4
Figure 5
HEADFORM SECTIONS
Mid-Sagittal Plane (Symmetrical Plane)

Apex

Level +2
Reference Plane
Coordinate Origin
for Table
Basic Plane
Bottom Opening
Front

Rear

Headform Coordinate Systems
(Right-hand Rule)
Table 2
Medium Headform — Exterior Dimensions

<table>
<thead>
<tr>
<th>θ</th>
<th>R</th>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.292</td>
<td>4.292</td>
<td>0</td>
<td>4.289</td>
<td>4.289</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>4.296</td>
<td>4.201</td>
<td>0.741</td>
<td>4.270</td>
<td>4.205</td>
<td>0.742</td>
</tr>
<tr>
<td>20</td>
<td>4.199</td>
<td>3.908</td>
<td>1.423</td>
<td>4.172</td>
<td>3.920</td>
<td>1.427</td>
</tr>
<tr>
<td>30</td>
<td>3.967</td>
<td>3.436</td>
<td>1.984</td>
<td>3.961</td>
<td>3.430</td>
<td>1.981</td>
</tr>
<tr>
<td>40</td>
<td>3.690</td>
<td>2.904</td>
<td>2.353</td>
<td>3.670</td>
<td>2.811</td>
<td>2.359</td>
</tr>
<tr>
<td>50</td>
<td>3.332</td>
<td>2.142</td>
<td>2.563</td>
<td>3.352</td>
<td>2.155</td>
<td>2.568</td>
</tr>
<tr>
<td>60</td>
<td>3.039</td>
<td>1.520</td>
<td>2.632</td>
<td>3.067</td>
<td>1.534</td>
<td>2.666</td>
</tr>
<tr>
<td>70</td>
<td>2.839</td>
<td>0.971</td>
<td>2.668</td>
<td>2.869</td>
<td>0.990</td>
<td>2.696</td>
</tr>
<tr>
<td>80</td>
<td>2.720</td>
<td>0.472</td>
<td>2.679</td>
<td>2.772</td>
<td>0.481</td>
<td>2.730</td>
</tr>
<tr>
<td>90</td>
<td>2.675</td>
<td>0</td>
<td>2.675</td>
<td>2.709</td>
<td>0</td>
<td>2.709</td>
</tr>
<tr>
<td>100</td>
<td>2.703</td>
<td>-0.469</td>
<td>2.662</td>
<td>2.724</td>
<td>-0.473</td>
<td>2.693</td>
</tr>
<tr>
<td>110</td>
<td>2.794</td>
<td>-0.945</td>
<td>2.597</td>
<td>2.794</td>
<td>-0.956</td>
<td>2.626</td>
</tr>
<tr>
<td>120</td>
<td>2.888</td>
<td>-1.444</td>
<td>2.501</td>
<td>2.917</td>
<td>-1.462</td>
<td>2.526</td>
</tr>
<tr>
<td>130</td>
<td>2.995</td>
<td>-1.919</td>
<td>2.287</td>
<td>3.040</td>
<td>-1.954</td>
<td>2.329</td>
</tr>
<tr>
<td>140</td>
<td>3.100</td>
<td>-2.375</td>
<td>1.983</td>
<td>3.175</td>
<td>-2.432</td>
<td>2.041</td>
</tr>
<tr>
<td>150</td>
<td>3.175</td>
<td>-2.750</td>
<td>1.588</td>
<td>3.232</td>
<td>-2.790</td>
<td>1.816</td>
</tr>
<tr>
<td>160</td>
<td>3.186</td>
<td>-2.994</td>
<td>1.090</td>
<td>3.246</td>
<td>-3.060</td>
<td>1.110</td>
</tr>
<tr>
<td>170</td>
<td>3.177</td>
<td>-3.129</td>
<td>0.552</td>
<td>3.237</td>
<td>-3.188</td>
<td>0.592</td>
</tr>
<tr>
<td>180</td>
<td>3.197</td>
<td>-3.187</td>
<td>0</td>
<td>3.246</td>
<td>-3.246</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ</th>
<th>R</th>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.272</td>
<td>4.272</td>
<td>0</td>
<td>4.247</td>
<td>4.247</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>4.248</td>
<td>4.184</td>
<td>0.738</td>
<td>4.223</td>
<td>4.159</td>
<td>0.723</td>
</tr>
<tr>
<td>20</td>
<td>4.147</td>
<td>3.897</td>
<td>1.416</td>
<td>4.120</td>
<td>3.872</td>
<td>1.409</td>
</tr>
<tr>
<td>30</td>
<td>3.961</td>
<td>3.430</td>
<td>1.961</td>
<td>3.940</td>
<td>3.412</td>
<td>1.970</td>
</tr>
<tr>
<td>40</td>
<td>3.687</td>
<td>2.824</td>
<td>2.370</td>
<td>3.683</td>
<td>2.821</td>
<td>2.367</td>
</tr>
<tr>
<td>50</td>
<td>3.394</td>
<td>2.175</td>
<td>2.562</td>
<td>3.392</td>
<td>2.180</td>
<td>2.598</td>
</tr>
<tr>
<td>60</td>
<td>3.111</td>
<td>1.556</td>
<td>2.694</td>
<td>3.132</td>
<td>1.566</td>
<td>2.772</td>
</tr>
<tr>
<td>70</td>
<td>2.927</td>
<td>1.001</td>
<td>2.751</td>
<td>2.960</td>
<td>1.012</td>
<td>2.782</td>
</tr>
<tr>
<td>80</td>
<td>2.816</td>
<td>0.469</td>
<td>2.772</td>
<td>2.860</td>
<td>0.497</td>
<td>2.817</td>
</tr>
<tr>
<td>90</td>
<td>2.779</td>
<td>0</td>
<td>2.779</td>
<td>2.838</td>
<td>0</td>
<td>2.808</td>
</tr>
<tr>
<td>100</td>
<td>2.802</td>
<td>-0.467</td>
<td>2.759</td>
<td>2.861</td>
<td>-0.497</td>
<td>2.818</td>
</tr>
<tr>
<td>110</td>
<td>2.887</td>
<td>-0.987</td>
<td>2.713</td>
<td>2.958</td>
<td>-1.012</td>
<td>2.780</td>
</tr>
<tr>
<td>120</td>
<td>3.019</td>
<td>-1.510</td>
<td>2.616</td>
<td>3.098</td>
<td>-1.549</td>
<td>2.693</td>
</tr>
<tr>
<td>130</td>
<td>3.190</td>
<td>-2.044</td>
<td>2.436</td>
<td>3.260</td>
<td>-2.096</td>
<td>2.487</td>
</tr>
<tr>
<td>140</td>
<td>3.306</td>
<td>-2.533</td>
<td>2.125</td>
<td>3.405</td>
<td>-2.608</td>
<td>2.189</td>
</tr>
<tr>
<td>150</td>
<td>3.398</td>
<td>-2.943</td>
<td>1.699</td>
<td>3.516</td>
<td>-3.045</td>
<td>1.758</td>
</tr>
<tr>
<td>170</td>
<td>3.475</td>
<td>-3.422</td>
<td>0.603</td>
<td>3.612</td>
<td>-3.657</td>
<td>0.627</td>
</tr>
<tr>
<td>180</td>
<td>3.472</td>
<td>-3.472</td>
<td>0</td>
<td>3.609</td>
<td>-3.609</td>
<td>0</td>
</tr>
</tbody>
</table>
§571.218

Medium Headform – Exterior Dimensions (Continued)

<table>
<thead>
<tr>
<th>θ</th>
<th>R</th>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.208</td>
<td>4.208</td>
<td>0</td>
<td>4.148</td>
<td>4.148</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>4.179</td>
<td>4.116</td>
<td>0.726</td>
<td>4.112</td>
<td>4.056</td>
<td>0.714</td>
</tr>
<tr>
<td>20</td>
<td>4.075</td>
<td>3.829</td>
<td>1.394</td>
<td>4.013</td>
<td>3.771</td>
<td>1.373</td>
</tr>
<tr>
<td>40</td>
<td>3.654</td>
<td>2.799</td>
<td>2.349</td>
<td>3.609</td>
<td>2.765</td>
<td>2.320</td>
</tr>
<tr>
<td>50</td>
<td>3.377</td>
<td>2.171</td>
<td>2.587</td>
<td>3.362</td>
<td>2.155</td>
<td>2.568</td>
</tr>
<tr>
<td>60</td>
<td>3.094</td>
<td>1.547</td>
<td>2.680</td>
<td>3.137</td>
<td>1.569</td>
<td>2.717</td>
</tr>
<tr>
<td>70</td>
<td>2.982</td>
<td>1.023</td>
<td>2.822</td>
<td>2.988</td>
<td>1.022</td>
<td>2.809</td>
</tr>
<tr>
<td>80</td>
<td>2.891</td>
<td>0.502</td>
<td>2.947</td>
<td>2.902</td>
<td>0.504</td>
<td>2.858</td>
</tr>
<tr>
<td>90</td>
<td>2.876</td>
<td>0</td>
<td>2.876</td>
<td>2.884</td>
<td>0</td>
<td>2.884</td>
</tr>
<tr>
<td>100</td>
<td>2.918</td>
<td>-0.507</td>
<td>2.874</td>
<td>2.943</td>
<td>-0.511</td>
<td>2.898</td>
</tr>
<tr>
<td>110</td>
<td>3.021</td>
<td>-1.033</td>
<td>2.639</td>
<td>3.052</td>
<td>-1.044</td>
<td>2.698</td>
</tr>
<tr>
<td>120</td>
<td>3.170</td>
<td>-1.585</td>
<td>2.745</td>
<td>3.225</td>
<td>-1.613</td>
<td>2.793</td>
</tr>
<tr>
<td>130</td>
<td>3.337</td>
<td>-2.145</td>
<td>2.666</td>
<td>3.397</td>
<td>-2.184</td>
<td>2.602</td>
</tr>
<tr>
<td>140</td>
<td>3.483</td>
<td>-2.668</td>
<td>2.239</td>
<td>3.536</td>
<td>-2.709</td>
<td>2.273</td>
</tr>
<tr>
<td>150</td>
<td>3.604</td>
<td>-3.121</td>
<td>1.602</td>
<td>3.657</td>
<td>-3.167</td>
<td>1.629</td>
</tr>
<tr>
<td>160</td>
<td>3.692</td>
<td>-3.460</td>
<td>1.259</td>
<td>3.751</td>
<td>-3.525</td>
<td>1.283</td>
</tr>
<tr>
<td>170</td>
<td>3.726</td>
<td>-3.668</td>
<td>0.647</td>
<td>3.807</td>
<td>-3.749</td>
<td>0.661</td>
</tr>
<tr>
<td>180</td>
<td>3.741</td>
<td>-3.741</td>
<td>0</td>
<td>3.822</td>
<td>-3.822</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ</th>
<th>R</th>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.067</td>
<td>4.067</td>
<td>0</td>
<td>3.971</td>
<td>3.971</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>4.033</td>
<td>3.972</td>
<td>0.700</td>
<td>3.935</td>
<td>3.875</td>
<td>0.683</td>
</tr>
<tr>
<td>20</td>
<td>3.944</td>
<td>3.706</td>
<td>1.349</td>
<td>3.863</td>
<td>3.621</td>
<td>1.318</td>
</tr>
<tr>
<td>30</td>
<td>3.777</td>
<td>3.271</td>
<td>1.888</td>
<td>3.701</td>
<td>3.205</td>
<td>1.851</td>
</tr>
<tr>
<td>40</td>
<td>3.552</td>
<td>2.721</td>
<td>2.303</td>
<td>3.491</td>
<td>2.674</td>
<td>2.244</td>
</tr>
<tr>
<td>50</td>
<td>3.323</td>
<td>2.136</td>
<td>2.546</td>
<td>3.279</td>
<td>2.106</td>
<td>2.512</td>
</tr>
<tr>
<td>60</td>
<td>3.126</td>
<td>1.563</td>
<td>2.707</td>
<td>3.101</td>
<td>1.551</td>
<td>2.686</td>
</tr>
<tr>
<td>70</td>
<td>2.987</td>
<td>1.022</td>
<td>2.807</td>
<td>2.979</td>
<td>1.019</td>
<td>2.799</td>
</tr>
<tr>
<td>80</td>
<td>2.912</td>
<td>0.506</td>
<td>2.886</td>
<td>2.910</td>
<td>0.506</td>
<td>2.866</td>
</tr>
<tr>
<td>90</td>
<td>2.893</td>
<td>0</td>
<td>2.883</td>
<td>2.890</td>
<td>0</td>
<td>2.890</td>
</tr>
<tr>
<td>100</td>
<td>2.896</td>
<td>-0.503</td>
<td>2.861</td>
<td>2.945</td>
<td>-0.511</td>
<td>2.900</td>
</tr>
<tr>
<td>110</td>
<td>3.064</td>
<td>-1.048</td>
<td>2.679</td>
<td>3.062</td>
<td>-1.047</td>
<td>2.677</td>
</tr>
<tr>
<td>120</td>
<td>3.231</td>
<td>-1.616</td>
<td>2.796</td>
<td>3.228</td>
<td>-1.614</td>
<td>2.796</td>
</tr>
<tr>
<td>130</td>
<td>3.411</td>
<td>-2.193</td>
<td>2.613</td>
<td>3.413</td>
<td>-2.194</td>
<td>2.615</td>
</tr>
<tr>
<td>140</td>
<td>3.560</td>
<td>-2.727</td>
<td>2.288</td>
<td>3.563</td>
<td>-2.729</td>
<td>2.290</td>
</tr>
<tr>
<td>150</td>
<td>3.682</td>
<td>-3.189</td>
<td>1.641</td>
<td>3.681</td>
<td>-3.188</td>
<td>1.641</td>
</tr>
<tr>
<td>170</td>
<td>3.866</td>
<td>-3.826</td>
<td>0.675</td>
<td>3.832</td>
<td>-3.774</td>
<td>0.665</td>
</tr>
<tr>
<td>180</td>
<td>3.857</td>
<td>-3.857</td>
<td>0</td>
<td>3.844</td>
<td>-3.844</td>
<td>0</td>
</tr>
<tr>
<td>θ</td>
<td>Level +1 Z=0.500</td>
<td></td>
<td>Level +2 Z=1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3.830</td>
<td>3.830</td>
<td>0.000</td>
<td>3.865</td>
<td>3.865</td>
<td>0.022</td>
</tr>
<tr>
<td>10</td>
<td>3.725</td>
<td>3.743</td>
<td>1.274</td>
<td>3.554</td>
<td>3.340</td>
<td>1.216</td>
</tr>
<tr>
<td>20</td>
<td>3.587</td>
<td>3.106</td>
<td>1.794</td>
<td>3.436</td>
<td>2.976</td>
<td>1.718</td>
</tr>
<tr>
<td>30</td>
<td>3.399</td>
<td>2.604</td>
<td>2.185</td>
<td>3.271</td>
<td>2.506</td>
<td>2.103</td>
</tr>
<tr>
<td>40</td>
<td>3.205</td>
<td>2.060</td>
<td>2.466</td>
<td>3.102</td>
<td>1.984</td>
<td>2.376</td>
</tr>
<tr>
<td>50</td>
<td>3.044</td>
<td>1.522</td>
<td>2.636</td>
<td>2.959</td>
<td>1.480</td>
<td>2.563</td>
</tr>
<tr>
<td>60</td>
<td>2.927</td>
<td>1.001</td>
<td>2.751</td>
<td>2.864</td>
<td>0.976</td>
<td>2.682</td>
</tr>
<tr>
<td>70</td>
<td>2.861</td>
<td>0.497</td>
<td>2.618</td>
<td>2.792</td>
<td>0.405</td>
<td>2.790</td>
</tr>
<tr>
<td>80</td>
<td>2.865</td>
<td>0.000</td>
<td>2.856</td>
<td>2.763</td>
<td>0.000</td>
<td>2.763</td>
</tr>
<tr>
<td>90</td>
<td>2.827</td>
<td>-0.503</td>
<td>2.863</td>
<td>2.832</td>
<td>-0.492</td>
<td>2.789</td>
</tr>
<tr>
<td>100</td>
<td>3.007</td>
<td>-1.029</td>
<td>2.826</td>
<td>2.938</td>
<td>-1.005</td>
<td>2.761</td>
</tr>
<tr>
<td>110</td>
<td>3.176</td>
<td>-1.588</td>
<td>2.751</td>
<td>3.102</td>
<td>-1.551</td>
<td>2.686</td>
</tr>
<tr>
<td>120</td>
<td>3.372</td>
<td>-2.168</td>
<td>2.583</td>
<td>3.294</td>
<td>-2.117</td>
<td>2.523</td>
</tr>
<tr>
<td>130</td>
<td>3.620</td>
<td>-2.697</td>
<td>2.263</td>
<td>3.450</td>
<td>-2.643</td>
<td>2.218</td>
</tr>
<tr>
<td>140</td>
<td>3.643</td>
<td>-3.155</td>
<td>1.822</td>
<td>3.564</td>
<td>-3.087</td>
<td>1.782</td>
</tr>
<tr>
<td>150</td>
<td>3.728</td>
<td>-3.503</td>
<td>1.275</td>
<td>3.637</td>
<td>-3.418</td>
<td>1.244</td>
</tr>
<tr>
<td>160</td>
<td>3.777</td>
<td>-3.720</td>
<td>0.666</td>
<td>3.675</td>
<td>-3.619</td>
<td>0.630</td>
</tr>
<tr>
<td>170</td>
<td>3.782</td>
<td>-3.782</td>
<td>0.000</td>
<td>3.670</td>
<td>-3.670</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ</th>
<th>Level +3 Z=1.450</th>
<th></th>
<th>Level +4 Z=1.980</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.419</td>
<td>3.419</td>
<td>0.000</td>
<td>3.061</td>
<td>3.061</td>
</tr>
<tr>
<td>10</td>
<td>3.382</td>
<td>3.331</td>
<td>0.587</td>
<td>3.035</td>
<td>2.989</td>
</tr>
<tr>
<td>20</td>
<td>3.269</td>
<td>3.100</td>
<td>1.128</td>
<td>2.966</td>
<td>2.767</td>
</tr>
<tr>
<td>30</td>
<td>3.197</td>
<td>2.769</td>
<td>1.599</td>
<td>2.872</td>
<td>2.487</td>
</tr>
<tr>
<td>40</td>
<td>3.052</td>
<td>2.338</td>
<td>1.962</td>
<td>2.754</td>
<td>2.110</td>
</tr>
<tr>
<td>50</td>
<td>2.911</td>
<td>1.871</td>
<td>2.230</td>
<td>2.642</td>
<td>1.688</td>
</tr>
<tr>
<td>60</td>
<td>2.786</td>
<td>1.363</td>
<td>2.413</td>
<td>2.532</td>
<td>1.261</td>
</tr>
<tr>
<td>70</td>
<td>2.700</td>
<td>0.924</td>
<td>2.537</td>
<td>2.477</td>
<td>0.847</td>
</tr>
<tr>
<td>80</td>
<td>2.647</td>
<td>0.460</td>
<td>2.607</td>
<td>2.442</td>
<td>0.424</td>
</tr>
<tr>
<td>90</td>
<td>2.636</td>
<td>0.000</td>
<td>2.636</td>
<td>2.442</td>
<td>0.000</td>
</tr>
<tr>
<td>100</td>
<td>2.691</td>
<td>-0.467</td>
<td>2.650</td>
<td>2.482</td>
<td>-0.433</td>
</tr>
<tr>
<td>110</td>
<td>2.796</td>
<td>-0.956</td>
<td>2.627</td>
<td>2.599</td>
<td>-0.989</td>
</tr>
<tr>
<td>120</td>
<td>2.961</td>
<td>-1.481</td>
<td>2.564</td>
<td>2.768</td>
<td>-1.379</td>
</tr>
<tr>
<td>130</td>
<td>3.147</td>
<td>-2.023</td>
<td>2.411</td>
<td>2.906</td>
<td>-1.887</td>
</tr>
<tr>
<td>140</td>
<td>3.301</td>
<td>-2.529</td>
<td>2.122</td>
<td>3.081</td>
<td>-2.360</td>
</tr>
<tr>
<td>150</td>
<td>3.408</td>
<td>-2.951</td>
<td>1.704</td>
<td>3.176</td>
<td>-2.751</td>
</tr>
<tr>
<td>170</td>
<td>3.514</td>
<td>-3.461</td>
<td>0.610</td>
<td>3.270</td>
<td>-3.220</td>
</tr>
<tr>
<td>180</td>
<td>3.502</td>
<td>-3.502</td>
<td>0.000</td>
<td>3.271</td>
<td>-3.271</td>
</tr>
</tbody>
</table>
Table 2

Medium Headform – Exterior Dimensions (Continued)

<table>
<thead>
<tr>
<th>θ</th>
<th>R</th>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.526</td>
<td>2.526</td>
<td>0</td>
<td>1.798</td>
<td>1.798</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>2.521</td>
<td>2.483</td>
<td>0.483</td>
<td>1.798</td>
<td>1.771</td>
<td>0.312</td>
</tr>
<tr>
<td>20</td>
<td>2.464</td>
<td>2.315</td>
<td>0.843</td>
<td>1.757</td>
<td>1.651</td>
<td>0.601</td>
</tr>
<tr>
<td>30</td>
<td>2.387</td>
<td>2.067</td>
<td>1.194</td>
<td>1.719</td>
<td>1.489</td>
<td>0.893</td>
</tr>
<tr>
<td>40</td>
<td>2.305</td>
<td>1.766</td>
<td>1.482</td>
<td>1.678</td>
<td>1.285</td>
<td>1.079</td>
</tr>
<tr>
<td>50</td>
<td>2.232</td>
<td>1.435</td>
<td>1.710</td>
<td>1.652</td>
<td>1.062</td>
<td>1.266</td>
</tr>
<tr>
<td>60</td>
<td>2.174</td>
<td>1.067</td>
<td>1.883</td>
<td>1.641</td>
<td>0.821</td>
<td>1.421</td>
</tr>
<tr>
<td>70</td>
<td>2.144</td>
<td>0.733</td>
<td>2.015</td>
<td>1.645</td>
<td>0.563</td>
<td>1.546</td>
</tr>
<tr>
<td>80</td>
<td>2.132</td>
<td>0.370</td>
<td>2.100</td>
<td>1.673</td>
<td>0.291</td>
<td>1.648</td>
</tr>
<tr>
<td>90</td>
<td>2.147</td>
<td>0</td>
<td>2.147</td>
<td>1.712</td>
<td>0</td>
<td>1.712</td>
</tr>
<tr>
<td>100</td>
<td>2.213</td>
<td>-0.384</td>
<td>2.179</td>
<td>1.809</td>
<td>-0.314</td>
<td>1.782</td>
</tr>
<tr>
<td>110</td>
<td>2.316</td>
<td>-0.792</td>
<td>2.176</td>
<td>1.925</td>
<td>-0.698</td>
<td>1.909</td>
</tr>
<tr>
<td>120</td>
<td>2.463</td>
<td>-1.232</td>
<td>2.133</td>
<td>2.066</td>
<td>-1.033</td>
<td>1.789</td>
</tr>
<tr>
<td>130</td>
<td>2.624</td>
<td>-1.687</td>
<td>2.010</td>
<td>2.213</td>
<td>-1.423</td>
<td>1.695</td>
</tr>
<tr>
<td>140</td>
<td>2.763</td>
<td>-2.117</td>
<td>1.776</td>
<td>2.356</td>
<td>-1.806</td>
<td>1.516</td>
</tr>
<tr>
<td>150</td>
<td>2.963</td>
<td>-2.479</td>
<td>1.432</td>
<td>2.469</td>
<td>-2.138</td>
<td>1.236</td>
</tr>
<tr>
<td>160</td>
<td>2.919</td>
<td>-2.743</td>
<td>0.908</td>
<td>2.536</td>
<td>-2.383</td>
<td>0.867</td>
</tr>
<tr>
<td>170</td>
<td>2.954</td>
<td>-2.909</td>
<td>0.513</td>
<td>2.561</td>
<td>-2.522</td>
<td>0.445</td>
</tr>
<tr>
<td>180</td>
<td>2.956</td>
<td>-2.908</td>
<td>0</td>
<td>2.556</td>
<td>-2.556</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ</th>
<th>R</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.081</td>
<td>1.081</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1.088</td>
<td>1.072</td>
<td>0.189</td>
</tr>
<tr>
<td>20</td>
<td>1.086</td>
<td>0.991</td>
<td>0.361</td>
</tr>
<tr>
<td>30</td>
<td>1.039</td>
<td>0.900</td>
<td>0.520</td>
</tr>
<tr>
<td>40</td>
<td>1.039</td>
<td>0.796</td>
<td>0.668</td>
</tr>
<tr>
<td>50</td>
<td>1.052</td>
<td>0.676</td>
<td>0.806</td>
</tr>
<tr>
<td>60</td>
<td>1.068</td>
<td>0.534</td>
<td>0.925</td>
</tr>
<tr>
<td>70</td>
<td>1.106</td>
<td>0.378</td>
<td>1.039</td>
</tr>
<tr>
<td>80</td>
<td>1.171</td>
<td>0.203</td>
<td>1.153</td>
</tr>
<tr>
<td>90</td>
<td>1.242</td>
<td>0</td>
<td>1.242</td>
</tr>
<tr>
<td>100</td>
<td>1.422</td>
<td>-0.247</td>
<td>1.400</td>
</tr>
<tr>
<td>110</td>
<td>1.489</td>
<td>-0.509</td>
<td>1.399</td>
</tr>
<tr>
<td>120</td>
<td>1.683</td>
<td>-0.842</td>
<td>1.468</td>
</tr>
<tr>
<td>130</td>
<td>1.801</td>
<td>-1.168</td>
<td>1.380</td>
</tr>
<tr>
<td>140</td>
<td>1.954</td>
<td>-1.487</td>
<td>1.256</td>
</tr>
<tr>
<td>150</td>
<td>2.063</td>
<td>-1.804</td>
<td>1.042</td>
</tr>
<tr>
<td>160</td>
<td>2.138</td>
<td>-2.009</td>
<td>0.731</td>
</tr>
<tr>
<td>170</td>
<td>2.175</td>
<td>-2.142</td>
<td>0.378</td>
</tr>
<tr>
<td>180</td>
<td>2.175</td>
<td>-2.175</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

1. Apex is located at (-0.75, 0, 3.02) for (X,Y,Z) or (0.75, 180, 3.02) for (R, θ, Z).
2. Center of ear opening is located at (-0.40, 2.76, -2.36) for (X,Y,Z) or (2.80, 81.8, -2.36) for (R, θ, Z).
3. Scale all dimensions by 0.8041 for small headform.
4. Scale all dimensions by 1.069 for large headform.
5. Headform is symmetrical about the mid-sagittal plane.
7. To obtain metric equivalents in centimeters, multiply each figure by 2.54.
Figure 6
Small Headform — Interior Design

Note:
To obtain metric equivalents in centimeters, multiply each figure by 2.54.
Figure 7
Medium Headform – Interior Design

Section C-C

Note:
To obtain metric equivalents in centimeters, multiply each figure by 2.54.
§ 571.219 Standard No. 219; Windshield zone intrusion.

S1. Scope. This standard specifies limits for the displacement into the windshield area of motor vehicle components during a crash.

S2. Purpose. The purpose of this standard is to reduce crash injuries and fatalities that result from occupants contacting vehicle components displaced near or through the windshield.

S3. Application. This standard applies to passenger cars and to multipurpose passenger vehicles, trucks and buses of 4,536 kilograms or less gross vehicle weight rating. However, it does not apply to forward control vehicles, walk-in van-type vehicles, or to open-body-type vehicles with fold-down or removable windshields.
§ 571.219

49 CFR Ch. V (10–1–16 Edition)

S4. Definitions. Daylight Opening (DLO) means the maximum unobstructed opening through the glazing surface, including reveal or garnish moldings adjoining the surface, as measured parallel to the outer surface of the glazing material.

S5. Requirement. When the vehicle travelling longitudinally forward at any speed up to and including 48 km/h impacts a fixed collision barrier that is perpendicular to the line of travel of the vehicle, under the conditions of S7, no part of the vehicle outside the occupant compartment, except windshield molding and other components designed to be normally in contact with the windshield, shall penetrate the protected zone template, affixed according to S6, to a depth of more than 6 mm, and no such part of a vehicle shall penetrate the inner surface of that portion of the windshield, within the DLO, below the protected zone defined in S6.

S6. Protected zone template.

S6.1 The lower edge of the protected zone is determined by the following procedure (See Figure 1).

(a) Place a 165 mm diameter rigid sphere, with a mass of 6.8 kg in a position such that it simultaneously contacts the inner surface of the windshield and the surface of the instrument panel, including padding. If any accessories or equipment such as the steering control system obstruct positioning of the sphere, remove them for the purposes of this procedure.

(b) Draw the locus of points on the inner surface of the windshield contactable by the sphere across the width of the instrument panel. From the outermost contactable points, extend the locus line horizontally to the edges of the glazing material.

(c) Draw a line on the inner surface of the windshield below and 13 mm distant from the locus line.

(d) The lower edge of the protected zone is the longitudinal projection onto the outer surface of the windshield of the line determined in S6.1.

S6.2 The protected zone is the space enclosed by the following surfaces, as shown in Figure 1:

(a) The outer surface of the windshield in its precrash configuration.

(b) The locus of points 76 mm outward along perpendiculars drawn to each point on the outer surface of the windshield.

(c) The locus of lines forming a 45° angle with the outer surface of the windshield at each point along the top and side edges of the outer surface of the windshield and the lower edge of the protected zone determined in S6.1, in the plane perpendicular to the edge at that point.

S6.3 A template is cut or formed from Styrofoam, type DB, cut cell, to the dimensions of the zone as determined in S6.2. The template is affixed to the windshield so that it delineates the protected zone and remains affixed throughout the crash test.

S7. Test conditions. The requirement of S5. shall be met under the following conditions:

S7.1 The protected zone template is affixed to the windshield in the manner described in S6.

S7.2 The hood, hood latches, and any other hood retention components are engaged prior to the barrier crash.

S7.3 Adjustable cowl tops or other adjustable panels in front of the windshield are in the position used under normal operating conditions when windshield wiping systems are not in use.

S7.4 The parking brake is disengaged and the transmission is in neutral.

S7.5 Tires are inflated to the vehicle manufacturer’s specifications.

S7.6 The fuel tank is filled to any level from 90 to 95 per cent of capacity.

S7.7 The vehicle, including test devices and instrumentation, is loaded as follows:

(a) Except as specified in S7.6, a passenger car is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus a 50th-percentile test dummy as specified in part 572 of this chapter at each front outboard designated seating position and at any other position whose protection system is required to be tested by a dummy under the provisions of Standard No. 208. Each dummy is restrained only by means that are installed for protection at its seating position.

(b) Except as specified in S7.6, a multipurpose passenger vehicle, truck or bus is loaded to its unloaded vehicle...
weight, plus 136 kg or its rated cargo and luggage capacity, whichever is less, secured to the vehicle, plus a 50th-percentile test dummy as specified in part 572 of this chapter at each front outboard designated seating position and at any other position whose protection system is required to be tested by a dummy under the provisions of Standard No. 208. Each dummy is restrained only by means that are installed for protection at its seating position. The load is distributed so that the mass on each axle as measured at the tire-ground interface is in proportion to its GAWR. If the mass on any axle when the vehicle is loaded to its unloaded vehicle weight plus dummy mass exceeds the axle’s proportional share of the test mass, the remaining mass is placed so that the mass on that axle remains the same. For the purposes of this section, unloaded vehicle weight does not include the mass of work-performing accessories. Vehicles are tested to a maximum unloaded vehicle weight of 2,495 kg.

Figure 1.—WINDSHIELD PROTECTION ZONE
All dimensions in millimeters (mm)

§ 571.220 Standard No. 220; School bus rollover protection.
S1. Scope. This standard establishes performance requirements for school bus rollover protection.
S2. Purpose. The purpose of this standard is to reduce the number of deaths and the severity of injuries that result from failure of the school bus body structure to withstand forces encountered in rollover crashes.
S3. Applicability. This standard applies to school buses.
S4. Requirements. When a force in Newtons equal to 1 1/2 times the unloaded vehicle weight in kilograms
multiplied by 9.8 m/sec² is applied to the roof of the vehicle's body structure through a force application plate as specified in S5, Test procedures—

(a) The downward vertical movement at any point on the application plate shall not exceed 130 mm and

(b) Each emergency exit of the vehicle provided in accordance with Standard No. 217 (§571.217) shall be capable of opening as specified in that standard during the full application of the force and after release of the force, except that an emergency exit located in the roof of the vehicle is not required to be capable of being opened during the application of the force. A particular vehicle (i.e., test specimen) need not meet the emergency exit opening requirement after release of force if it is subjected to the emergency exit opening requirements during the full application of the force.

S5. Test procedures. Each vehicle shall be capable of meeting the requirements of S4, when tested in accordance with the procedures set forth below.

S5.1 With any non-rigid chassis-to-body mounts replaced with equivalent rigid mounts, place the vehicle on a rigid horizontal surface so that the vehicle is entirely supported by means of the vehicle frame. If the vehicle is constructed without a frame, place the vehicle on its body sills. Remove any components which extend upward from the vehicle roof.

S5.2 Use a flat, rigid, rectangular force application plate that is measured with respect to the vehicle roof longitudinal and lateral centerlines,

(a) In the case of a vehicle with a GVWR of more than 4,536 kg, 305 mm shorter than the vehicle roof and 914 mm wide; and

(b) In the case of a vehicle with a GVWR of 4,536 kg or less, 127 mm longer and 127 mm wider than the vehicle roof. For purposes of these measurements, the vehicle roof is that structure, seen in the top projected view, that coincides with the passenger and driver compartment of the vehicle.

S5.3 Position the force application plate on the vehicle roof so that its rigid surface is perpendicular to a vertical longitudinal plane and it contacts the roof at not less than two points, and so that, in the top projected view, its longitudinal centerline coincides with the longitudinal centerline of the vehicle, and its front and rear edges are an equal distance inside the front and rear edges of the vehicle roof at the centerline.

S5.4 Apply an evenly-distributed vertical force in the downward direction to the force application plate at any rate not more than 13 mm per second, until a force of 2,224 N has been applied.

S5.5 Apply additional vertical force in the downward direction to the force application plate at a rate of not more than 13 mm per second until the force specified in S4. has been applied, and maintain this application of force.

S5.6 Measure the downward movement of any point on the force application plate which occurred during the application of force in accordance with S5.5.

S5.7 To test the capability of the vehicle's emergency exits to open in accordance with S4.(b)—

(a) In the case of testing under the full application of force, open the emergency exits as specified in S4.(b) while maintaining the force applied in accordance with S5.4 and S5.5; and

(b) In the case of testing after the release of all force, release all downward force applied to the force application plate and open the emergency exits as specified in S4.(b).

S6. Test conditions. The following conditions apply to the requirements specified in S4.

S6.1 Temperature. The ambient temperature is any level between 0 °C and 32 °C.

S6.2 Windows and doors. Vehicle windows, doors, and emergency exits are in the fully-closed position, and latched but not locked.

§ 571.221 Standard No. 221; School bus body joint strength.

S1. Scope. This standard establishes requirements for the strength of the body panel joints in school bus bodies.
§571.221

S2. Purpose. The purpose of this standard is to reduce deaths and injuries resulting from the structural collapse of school bus bodies during crashes.

S3. Application. This standard applies to school buses.

S4. Definitions.

Body component means a part of a bus body made from a single piece of homogeneous material or from a single piece of composite material such as plywood.

Body panel means a body component used on the exterior or interior surface to enclose the bus’ occupant space.

Body panel joint means the area of contact or close proximity between the edges of a body panel and another body component, including but not limited to floor panels, and body panels made of composite materials such as plastic or plywood, excluding trim and decorative parts which do not contribute to the strength of the bus body, members such as rub rails which are entirely outside of body panels, components provided for functional purposes, and engine access covers.

Bus body means that portion of a bus that encloses the bus occupant space, including the floor, but excluding the bumpers and chassis frame and any structure forward of the passenger compartment.

Maintenance access panel means a body panel which must be moved or removed to provide access to one or more serviceable component(s).

Passenger compartment means space within the school bus interior that is between a vertical transverse plane located 762 mm in front of the forwardmost passenger seating reference point and including a vertical transverse plane tangent to the rear interior wall of the bus at the vehicle centerline.

Serviceable component means any part of the bus, of either a mechanical or electrical nature, which is explicitly identified by the bus chassis and/or body manufacturer in the owner’s manual or factory service manual as requiring routine maintenance actions at intervals of one year or less. Tubing, wires and harnesses are considered to be serviceable components only at their attachments.

S5. Requirements.

S5.1 Except as provided in S5.2, each body panel joint, including small, curved, and complex joints, when tested in accordance with the procedure of S6, shall hold the body panel to the member to which it is joined when subjected to a force of 60 percent of the tensile strength of the weakest joined body panel determined pursuant to S6.2.

S5.2 Exclusions

S5.2.1 The requirements of S5.1 do not apply to—

(a) Any interior maintenance access panel or joint which lies forward of the passenger compartment.

(b) Any interior maintenance access panel within the passenger compartment that does not exceed 305 mm when measured across any two points diametrically on opposite sides of the opening.

(c) Trim and decorative parts which do not contribute to the strength of the joint, support members such as rub rails which are entirely outside of body panels, doors and windows, ventilation panels, and engine access covers.

S6. Procedure

S6.1 Preparation of the test specimen.

S6.1.1 If a body panel joint is 203 mm or longer, cut a test specimen that consists of any 203 mm segment of the joint, together with a portion of the bus body whose dimensions are those specified in Figure 1, so that the specimen’s centerline is perpendicular to the joint at the midpoint of the joint segment. Where the body panel joint is not fastened continuously, select the segment so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to the strength of a body panel joint, such as rub rails on the outside of body panels or underlying structure attached to joint members, shall remain attached to the test specimen, except that material may be removed from the support members as necessary to clear the gripping areas of the joint members being tested.

S6.1.2 If a joint is less than 203 mm long, cut a test specimen with enough of the adjacent material to permit it to
§571.221

be held in the tension testing machine specified in S6.3.

S6.1.3 Prepare the test specimen in accordance with the preparation procedures specified in ASTM E8-89 (incorporated by reference, see §571.5).

S6.2 Determination of minimum allowable strength. For purposes of determining the minimum allowable joint strength, determine the tensile strengths of the joined body components as follows:

(a) If the mechanical properties of a joint component material are specified in ASTM E8-89 (incorporated by reference, see §571.5), the lowest value of that material's thickness and tensile strength per unit of area shown in that source shall be used.

(b) If the mechanical properties of a material are not specified in ASTM E8-89 (incorporated by reference, see §571.5), determine its tensile strength by cutting a sheet specimen from outside the joint region of the bus body in accordance with Figure 1 of ASTM E8-89, and by testing it in accordance with S6.3.

(c) The cross sectional area of material removed to facilitate the installation of fasteners shall be subtracted from the cross-sectional area of the panel in the determination of the tensile strength of the weakest joined body panel.

S6.3 Strength Test.

S6.3.1 The joint specimen is gripped on opposite sides of the joint in a tension testing machine in accordance with ASTM E8-89 (incorporated by reference, see §571.5).

S6.3.2 Adjust the testing machine grips so that the applied force on the joint is at 90 degrees plus or minus 3 degrees from the joint centerline, as shown in Figure 1.

S6.3.3 A tensile force is applied to the specimen by separating the heads of the testing machine at any uniform rate not less than 3 mm and not more than 10 mm per minute until the specimen separates.

FIGURE 1

EDITORIAL NOTE: At 65 FR 11754, Mar. 6, 2000, §571.221 was amended by revising S5.2.1(a); however, the paragraph did not exist, and the amendment could not be incorporated.
§ 571.222 Standard No. 222; School bus passenger seating and crash protection.

S1. Scope. This standard establishes occupant protection requirements for school bus passenger seating and restraining barriers.

S2. Purpose. The purpose of this standard is to reduce the number of deaths and the severity of injuries that result from the impact of school bus occupants against structures within the vehicle during crashes and sudden driving maneuvers.

S3. Application. This standard applies to school buses.

§ 571.222 Definitions. Contactable surface means any surface within the zone specified in §5.3.1.1 that is contactable from any direction by the test device described in §6.6, except any surface on the front of a seat back or restraining barrier 76 mm or more below the top of the seat back or restraining barrier.

Fixed occupancy seat means a bench seat equipped with Type 2 seat belts that has a permanent configuration regarding the number of seating positions on the seat. The number of seating positions on the bench seat cannot be increased or decreased.

Flexible occupancy seat means a bench seat equipped with Type 2 seat belts that can be reconfigured so that the number of seating positions on the seat can change. The seat has a minimum occupancy configuration and maximum occupancy configuration, and the number of passengers capable of being carried in the minimum occupancy configuration must differ from the number of passengers capable of being carried in the maximum occupancy configuration.

Maximum occupancy configuration means, on a bench seat equipped with Type 2 seat belts, an arrangement whereby the lap belt portion of the Type 2 seat belts is such that the maximum number of occupants can be belted.

Minimum occupancy configuration means, on a bench seat equipped with Type 2 seat belts, an arrangement whereby the lap belt portion of the Type 2 seat belts is such that the minimum number of occupants can be belted.

School bus passenger seat means a seat in a school bus, other than the driver's seat.

Seat bench width means the maximum transverse width of the bench seat cushion.

Small occupant seating position means the center seating position on a flexible occupancy seat in a maximum occupancy configuration, if the torso belt portion of the Type 2 seat belt is intended to restrain occupants whose dimensions range from those of a 50th percentile 6 year-old child only to those of a 50th percentile 10 year-old child and the torso belt anchor point cannot achieve a minimum height of 520 mm above the seating reference point, as specified by §4.1.3.2(a) of 49 CFR 571.210.

Wheelchair means a wheeled seat frame for the support and conveyance of a physically disabled person, comprised of at least a frame, seat, and wheels.

Wheelchair occupant restraint anchorage means the provision for transferring wheelchair occupant restraint system loads to the vehicle structure.

Wheelchair securement anchorage means the provision for transferring wheelchair securement device loads to the vehicle structure.

Wheelchair securement device means a strap, webbing or other device used for securing a wheelchair to the school bus, including all necessary buckles and other fasteners.

S4.1 Determination of the number of seating positions and seat belt positions
(a) The number of seating positions considered to be in a bench seat for vehicles manufactured before October 21, 2011 is expressed by the symbol W, and calculated as the seat bench width in millimeters divided by 381 and rounded to the nearest whole number.

(b) The number of seating positions and the number of Type 1 seat belt positions considered to be in a bench seat for vehicles manufactured on or after October 21, 2011 is expressed by the symbol W, and calculated as the seat bench width in millimeters divided by 380 and rounded to the nearest whole number.

(c) Except as provided in §4.1(d), the number of Type 2 seat belt positions on
§ 571.222 49 CFR Ch. V (10–1–16 Edition)

A flexible occupancy seat in a minimum occupancy configuration or a fixed occupancy seat for vehicles manufactured on or after October 21, 2011 is expressed by the symbol Y, and calculated as the seat bench width in millimeters divided by 380 and rounded to the next lowest whole number. The minimum seat bench width for a seat equipped with a Type 2 seat belt is 380 mm. See Table 1 for an illustration.

(d) A flexible occupancy seat meeting the requirements of §4.1(c) may also have a maximum occupancy configuration with Y + 1 Type 2 seat belt positions, if the minimum seat bench width for this configuration is Y + 1 times 330 mm. See Table 1 for an illustration.

(e) A flexible occupancy seat equipped with Type 2 seat belts in a maximum occupancy configuration may have up to one single small occupant seating position.

Table 1—Number of Seating Positions as a Function of Seat Bench Width

<table>
<thead>
<tr>
<th>Seating configuration</th>
<th>Seat bench width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum or Fixed Occupancy</td>
<td>1</td>
</tr>
<tr>
<td>Maximum Occupancy</td>
<td>1</td>
</tr>
</tbody>
</table>

S5. Requirements.

(a) Large school buses.

(1) Each school bus manufactured before October 21, 2011 with a gross vehicle weight rating of more than 4,536 kg (10,000 pounds) shall be capable of meeting any of the requirements set forth under this heading when tested under the conditions of §6. However, a particular school bus passenger seat (i.e., a test specimen) in that weight class need not meet further requirements after having met §5.1.2 and §5.1.5, or having been subjected to either §5.1.3, §5.1.4, or §5.3.

(2) Each school bus manufactured on or after October 21, 2011 with a gross vehicle weight rating of more than 4,536 kg (10,000 pounds) shall be capable of meeting any of the requirements set forth under this heading when tested under the conditions of §6 of this standard or §571.210. However, a particular school bus passenger seat (i.e., a test specimen) in that weight class need not meet further requirements after having met §5.1.2 and §5.1.5, or having been subjected to either §5.1.3, §5.1.4, or §5.3.

(b) Small school buses. Each vehicle with a gross vehicle weight rating of 4,536 kg (10,000 pounds) or less shall be capable of meeting the following requirements at all seating positions:

(i) In the case of vehicles manufactured before September 1, 1991, the requirements of §§571.208, 571.209, and 571.210 as they apply to multipurpose passenger vehicles;

(ii) In the case of vehicles manufactured on or after September 1, 1991, the requirements of §571.208 and the requirements of §§571.209 and 571.210 as they apply to school buses with a gross vehicle weight rating of 4,536 kg or less;

(iii) In the case of vehicles manufactured on or after October 21, 2011, the requirements of §571.208 and the requirements of §§571.207, 571.208 and 571.210 as they apply to school buses with a gross vehicle weight rating of 4,536 kg or less.
§ 571.222

(2) The requirements of §§ 5.1.2, 5.1.3, 5.1.4, 5.1.5, 5.1.6, 5.1.7, 5.3, 5.4 and 5.5 of this standard. However, the requirements of §§ 5.1.208 and 5.1.210 shall be met at Y seat belt positions in a fixed occupancy seat, and at Y and Y + 1 seat belt positions for a flexible occupancy seat. A particular school bus passenger seat (i.e. a test specimen) in that weight class need not meet further requirements after having met §§ 5.1.2 and 5.1.5, or after having been subjected to either §§ 5.1.3, 5.1.4, 5.1.6, or 5.3 of this standard or § 5.1.207, § 5.1.210 or § 5.1.225.

§ 5.1 Seating requirements. School bus passenger seats shall be forward facing.

§ 5.1.1 [Reserved]

§ 5.1.2 Seat back height, position, and surface area.

(a) For school buses manufactured before October 21, 2009, each school bus passenger seat must be equipped with a seat back that has a vertical height of at least 508 mm (20 inches) above the seating reference point. Each school bus passenger seat must be equipped with a seat back that, in the front projected view, has front surface area above the horizontal plane that passes through the seating reference point, and below the horizontal plane 508 mm (20 inches) above the seating reference point, of not less than 90 percent of the seat bench width in millimeters multiplied by 508.

(b) For school buses manufactured on or after October 21, 2009, each school bus passenger seat must be equipped with a seat back that, in the front projected view, has front surface area above the horizontal plane that passes through the seating reference point, and below the horizontal plane 508 mm (20 inches) above the seating reference point, of not less than 90 percent of the seat bench width in millimeters multiplied by 508.

§ 5.1.3 Seat performance forward. When a school bus passenger seat that has another seat behind it is subjected to the application of force as specified in §§ 5.1.3.1 and 5.1.3.2, and subsequently, the application of additional force to the seat back as specified in §§ 5.1.3.3 and 5.1.3.4:

(a) The seat back force/deflection curve shall fall within the zone specified in Figure 1;

(b) Seat back deflection shall not exceed 356 mm; (for determination of (a) and (b) the force/deflection curve describes only the force applied through the upper loading bar, and only the forward travel of the pivot attachment point of the upper loading bar, measured from the point at which the initial application of 44 N of force is attained.)

(c) The seat shall not deflect by an amount such that any part of the seat moves to within 102 mm of any part of another school bus passenger seat or restraining barrier in its originally installed position;

(d) The seat shall not separate from the vehicle at any attachment point; and

(e) Seat components shall not separate at any attachment point.

§ 5.1.3.1 Position the loading bar specified in § 5.5 so that it is laterally centered behind the seat back with the bar’s longitudinal axis in a transverse plane of the vehicle and in any horizontal plane between 102 mm above and 102 mm below the seating reference point of the school bus passenger seat behind the test specimen.

§ 5.1.3.2 Apply a force of 3,114 W newtons horizontally in the forward direction through the loading bar at the pivot attachment point. Reach the specified load in not less than 5 nor more than 30 seconds.

§ 5.1.3.3 No sooner than 1.0 second after attaining the required force, reduce that force to 1,557 W newtons and, while maintaining the pivot point position of the first loading bar at the position where the 1,557 W newtons is attained, position a second loading bar described in § 5.5 so that it is laterally centered behind the seat back with the bar’s longitudinal axis in a transverse plane of the vehicle and in the horizontal plane 406 mm above the seating reference point of the school bus passenger seat behind the test specimen, and move the bar forward against the
§ 571.222

49 CFR Ch. V (10–1–16 Edition)

seat back until a force of 44 N has been applied.

S5.1.3.4 Apply additional force horizontally in the forward direction through the upper bar until 452 W joules of energy have been absorbed in deflecting the seat back (or restraining barrier). Apply the additional load in not less than 5 seconds nor more than 30 seconds. Maintain the pivot attachment point in the maximum forward travel position for not less than 5 seconds nor more than 10 seconds and release the load in not less than 5 nor more than 30 seconds. (For the determination of S5.1.3.4 the force/deflection curve describes only the force applied through the upper loading bar, and the forward and rearward travel distance of the upper loading bar pivot attachment point measured from the position at which the initial application of 44 N of force is attained.)

S5.1.4 Seat performance rearward.

When a school bus passenger seat that has another seat behind it is subjected to the application of force as specified in S5.1.4.1 and S5.1.4.2:

(a) Seat back force shall not exceed 9,786 N;

(b) Seat back deflection shall not exceed 254 mm; (for determination of (a) and (b) the force/deflection curve describes only the force applied through the loading bar, and only the rearward travel of the pivot attachment point of the loading bar, measured from the point at which the initial application of 222 N is attained.

(c) The seat shall not deflect by an amount such that any part of the seat moves to within 102 mm of any part of another passenger seat in its originally installed position;

(d) The seat shall not separate from the vehicle at any attachment point; and

(e) Seat components shall not separate at any attachment point.

S5.1.4.1 Position the loading bar described in S6.5 so that it is laterally centered forward of the seat back with the bar’s longitudinal axis in a transverse plane of the vehicle and in the horizontal plane 343 mm above the seating reference point of the test specimen, and move the loading bar rearward against the seat back until a force of 222 N has been applied.

S5.1.4.2 Apply additional force horizontally rearward through the loading bar until 316 W joules (J) of energy has been absorbed in deflecting the seat back. Apply the additional load in not less than 5 seconds nor more than 30 seconds. Maintain the pivot attachment point in the maximum rearward travel position for not less than 5 seconds nor more than 10 seconds and release the load in not less than 5 nor more than 30 seconds. (For determination of S5.1.4.2 the force deflection curve describes the force applied through the loading bar and the rearward and forward travel distance of the loading bar pivot attachment point measured from the position at which the initial application of 222 N of force is attained.)

S5.1.5 Seat cushion latching and retention.

(a) School bus passenger seat cushions equipped with attachment devices that allow for the seat cushion to be removable without tools or to flip up must have a self-latching mechanism that latches when subjected to the conditions specified in S5.1.5.1. The seat cushion shall not separate from the seat at any attachment point when subjected to the conditions specified in S5.1.5.2 after being subjected to the conditions of S5.1.5.1.

(b) School bus passenger seat cushions that are removable only with the use of tools shall not separate from the seat at any attachment point when subjected to the conditions of S5.1.5.2.
This section applies to school buses manufactured on or after October 21, 2011 with a gross vehicle weight rating expressed in the first column of Tables 2 through 4, and that are equipped with Type 2 seat belt assemblies.

(a) Except as provided in S5.1.6(b), when tested under the conditions of S5.1.6.1 through S5.1.6.6, the criteria specified in S5.1.6.1 and S5.1.6.2 must be met.

(b) A school bus passenger seat that does not have another seat behind it is not loaded with the upper and lower loading bars as specified in S5.1.6.5.2, S5.1.6.5.3, and S5.1.6.5.7 and is excluded from the requirements of S5.1.6.1(b).

S5.1.6.1 Displacement limits. In Tables 2 and 3, AH is the height in millimeters of the school bus torso belt anchor point specified by S4.1.3.2(a) of Standard No. 210 (49 CFR 571.210) and \(F \) is the angle of the posterior surface of the seat back defined in S5.1.6.3 of this standard.

(a) Any school bus torso belt anchor point, as defined in S3 of Standard No. 210, must not displace horizontally forward from its initial position (when \(F \) was determined) more than the value in millimeters calculated from the following expression in the second column of Table 2:

\[
\text{Displacement limit in millimeters} = (AH + 100) (\tan \Phi + 0.242/\cos \Phi) \quad \text{for more than 4,536 kg (10,000 pounds).}
\]

\[
\text{Displacement limit in millimeters} = (AH + 100) (\tan \Phi + 0.356/\cos \Phi) \quad \text{for less than or equal to 4,536 kg (10,000 pounds).}
\]

(b) A point directly rearward of any school bus torso belt anchor point, as defined in S3 of Standard No. 210 (49 CFR 571.210) on the rear facing surface of the seat back, must not displace horizontally forward from its initial position (when \(\Phi \) was determined) more than the value in millimeters calculated from the following expression in the second column of Table 3:

\[
\text{Displacement limit in millimeters} = (AH + 100) (\tan \Phi + 0.174/\cos \Phi) \quad \text{for more than 4,536 kg (10,000 pounds).}
\]

\[
\text{Displacement limit in millimeters} = (AH + 100) (\tan \Phi + 0.259/\cos \Phi) \quad \text{for less than or equal to 4,536 kg (10,000 pounds).}
\]

S5.1.6.2 Slippage of device used to achieve torso belt adjusted height. If the torso belt adjusted height, as defined in S3 of Standard No. 210 (49 CFR 571.210), is achieved without the use of an adjustable torso belt anchorage, the adjustment device must not slip more than 25 mm (1.0 inches) along the webbing or guide material upon which it moves for the purpose of adjusting the torso belt height.

S5.1.6.3 Angle of the posterior surface of a seat back. If the seat back inclination is adjustable, the seat back is placed in the manufacturer’s normal design riding position. If such a position is not specified, the seat back is positioned so it is in the most upright position. Position the loading bar specified in S6.5 of this standard so that it is laterally centered behind the seat back with the bar’s longitudinal axis in a transverse plane of the vehicle in a horizontal plane within \(\pm 6 \) mm (0.25 inches) of the horizontal plane passing through the seating reference point and move the bar forward until a force of 44 N (10 pounds) has been applied. Position a second loading bar as described in S6.5 of this standard so that it is laterally centered behind the seat back with the bar’s longitudinal axis in a transverse plane of the vehicle and in the horizontal plane passing through the seating reference point and move the bar forward until a force of 44 N (10 pounds) has been applied. Determine the angle from vertical of a line in the longitudinal vehicle plane that passes through the geometric center of the cross-section of each cylinder, as shown in Figure 8. That angle is the angle of the posterior surface of the seat back.

S5.1.6.4 The seat back must absorb 452W joules of energy when subjected to the force specified in S5.1.6.5.7.

S5.1.6.5 Quasi-static test procedure.
§ 571.222

S5.1.6.5.1 Adjust the seat back as specified in S5.1.6.3. Place all torso anchor points in their highest position of adjustment. If the torso belt adjusted height, as defined in S3 of FMVSS No. 210, is achieved by a method other than an adjustable anchor point, initially place the torso belt adjusted height at its highest position. Then move the adjustment device 38 mm (1.5 inches) downward with respect to its webbing or guide material.

S5.1.6.5.2 Position the lower loading bar specified in S6.5 of this standard so that it is laterally centered behind the seat back with the bar’s longitudinal axis in a transverse plane of the vehicle and in any horizontal plane between 102 mm (4 inches) above and 102 mm (4 inches) below the seating reference point of the school bus passenger seat behind the test specimen. Position the upper loading bar described in S6.5 so that it is laterally centered behind the seat back with the bar’s longitudinal axis in a transverse plane of the vehicle and in the horizontal plane 406 mm (16 inches) above the seating reference point of the school bus passenger seat behind the test specimen.

S5.1.6.5.3 Apply a force of 3,114 N (700 pounds) horizontally in the forward direction through the lower loading bar specified at S6.5 at the pivot attachment point. Reach the specified load in not less than 5 and not more than 30 seconds. No sooner than 1.0 second after attaining the required force, reduce that force to 1,557 N (350 pounds) and maintain the pivot point of the loading bar at the position where the 1,557 N (350 pounds) is attained until the completion of S5.1.6.5.7 of this standard.

S5.1.6.5.4 Position the body block specified in Figure 3 of FMVSS No. 210 (49 CFR 571.210) under each torso belt (between the torso belt and the seat back) in the passenger seat and apply a preload force of 900 ±50 N (135 ±11 pounds) on each body block in a forward direction parallel to the longitudinal centerline of the vehicle pursuant to the specifications of Standard No. 210 (49 CFR 571.210). After preload application is complete, the origin of the 203 mm body block radius at any point across the 102 mm body block thickness shall lie within the zone defined by S5.1.6.5.4(a) and S5.1.6.5.4(b) as shown in Figure 9:

(a) At or rearward of a transverse vertical plane of the vehicle located 100 mm longitudinally forward of the seating reference point.

(b) Within 75 mm of the horizontal plane located midway between the horizontal plane passing through the school bus torso belt adjusted height, specified in S3 of Standard No. 210 (49 CFR 571.210), and the horizontal plane 100 mm below the seating reference point.

S5.1.6.5.5 Load application.

(a) Fixed Occupancy Seat. For school buses with the gross vehicle weight rating listed in the first column of Table 4, if the expression in the second column is true, simultaneously apply the force listed in the third column to each body block.

<table>
<thead>
<tr>
<th>Gross vehicle weight rating</th>
<th>True expression</th>
<th>Applied force</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than 4,536 kg (10,000 pounds)</td>
<td>((seat bench width in mm)−(380Y)) ≤25 mm (1 inch).</td>
<td>3,300 N (742 pounds).</td>
</tr>
<tr>
<td>More than 4,536 kg (10,000 pounds)</td>
<td>((seat bench width in mm)−(380Y)) >25 mm (1 inch).</td>
<td>5,000 N (1,124 pounds).</td>
</tr>
<tr>
<td>Less than or equal to 4,536 kg (10,000 pounds).</td>
<td>((seat bench width in mm)−(380Y)) ≤25 mm (1 inch).</td>
<td>5,000 N (1,124 pounds).</td>
</tr>
<tr>
<td>Less than or equal to 4,536 kg (10,000 pounds).</td>
<td>((seat bench width in mm)−(380Y)) >25 mm (1 inch).</td>
<td>7,500 N (1,686 pounds).</td>
</tr>
</tbody>
</table>

(b) Flexible Occupancy Seat.

(1) For school buses with the gross vehicle weight rating listed in the first column of Table 5 and a bench seat in the maximum occupancy configuration for a flexible occupancy seat of Y + 1 seat belt positions as specified in S4.1(d), simultaneously apply the force listed in the second column of Table 5 to each body block.
TABLE 5—TORSO BODY BLOCK FORCES IN MAXIMUM OCCUPANCY CONFIGURATION

<table>
<thead>
<tr>
<th>Gross vehicle weight rating</th>
<th>Applied force</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than 4,536 kg (10,000 pounds)</td>
<td>3,300 N (742 pounds).</td>
</tr>
<tr>
<td>Less than or equal to 4,536 kg (10,000 pounds).</td>
<td>5,000 N (1,124 pounds).</td>
</tr>
</tbody>
</table>

(2) For a flexible occupancy seat in the minimum occupant configuration, apply the forces to each body block as specified in S5.1.6.5.5(a).

S5.1.6.5.6 Reach the specified load in not less than 5 and not more than 30 seconds. While maintaining the load, measure the school bus torso belt anchor point and seat back point horizontal displacement and then remove the body block.

S5.1.6.5.7 Move the upper bar forward against the seat back until a force of 44 N has been applied. Apply an additional force horizontally in the forward direction through the upper bar until 452W joules of energy have been absorbed in deflecting the seat back. The maximum travel of the pivot attachment point for the upper loading bar shall not exceed 356 mm as measured from the position at which the initial application of 44 N of force is attained and the maximum load must stay below the upper boundary of the force/deflection zone in Figure 1. Apply the additional load in not less than 5 seconds and not more than 30 seconds. Maintain the pivot attachment point at the maximum forward travel position for not less than 5 seconds and not more than 10 seconds and release the load in not less than 5 seconds and not more than 30 seconds. (For the determination of S5.1.6.5.7, the energy calculation describes only the force applied through the upper loading bar, and the forward and rearward travel distance of the upper loading bar pivot attachment point measured from the position at which the application in this section of 44 N of force is attained.)

S5.1.7 Buckle side length limit. This section applies to rear passenger seats on school buses manufactured on or after October 21, 2011 that are equipped with Type 1 or Type 2 seat belt assemblies. All portions of the buckle/latchplate assembly must remain rearward of the limit plane defined in S5.1.7.1 when tested under the conditions of S5.1.7.2.

S5.1.7.1 Buckle/latchplate limit plane. Establish a transverse limit plane 65 mm from the SgRP that is perpendicular to a transverse plane that passes through the SgRP at an angle of 50 degrees to the horizontal.

S5.1.7.2 Load application. Insert the seat belt latchplate into the seat belt buckle. Apply a 20 N load to the buckle/latchplate assembly whose vector is in a vertical longitudinal plane. Apply the load along the centerline of the webbing attached to the latchplate at least 100 mm from the nearest point on the latchplate. The load may be applied at any angle in the range of 30 to 75 degrees from horizontal.

S5.2 Restraining barrier requirements. Each vehicle shall be equipped with a restraining barrier forward of any designated seating position that does not have the rear surface of another school bus passenger seat within 610 mm of its seating reference point, measured along a horizontal longitudinal line through the seating reference point in the forward direction.

S5.2.1 Barrier-seat separation. The horizontal distance between the restraining barrier’s rear surface and the seating reference point of the seat in front of which the barrier is required shall not be more than 610 mm measured along a horizontal longitudinal line through the seating reference point in the forward direction.

S5.2.2 Barrier height, position, and rear surface area. The position and rear surface area of the restraining barrier shall be such that, in a front projected view of the bus, each point of the barrier’s perimeter coincides with or lies outside of the perimeter of the minimum seat back area required by S5.1.2 for the seat immediately rearward of the restraining barrier.

S5.2.3 Barrier performance forward. When force is applied to the restraining barrier in the same manner as specified in S5.1.3.1 through S5.1.3.4 for seating performance tests:

(a) The restraining barrier force/deflection curve shall fall within the zone specified in Figure 1;

(b) Restraining barrier deflection shall not exceed 356 mm; (for computation of (a) and (b) the force/deflection
curve describes only the force applied through the upper loading bar, and only the forward travel of the pivot attachment point of the loading bar, measured from the point at which the initial application of 44 N of force is attained.)

(c) Restraining barrier deflection shall not interfere with normal door operation;

(d) The restraining barrier shall not separate from the vehicle at any attachment point; and

(e) Restraining barrier components shall not separate at any attachment point.

S5.3 Impact zone requirements.

S5.3.1 Head protection zone. Any contactable surface of the vehicle within any zone specified in S5.3.1.1 shall meet the requirements of S5.3.1.2 and S5.3.1.3. However, a surface area that has been contacted pursuant to an impact test need not meet further requirements contained in S5.3.

S5.3.1.1 The head protection zones in each vehicle are the spaces in front of each school bus passenger seat which are not occupied by bus sidewall, window, or door structure and which, in relation to that seat and its seating reference point, are enclosed by the following planes:

(a) Horizontal planes 305 mm and 1016 mm above the seating reference point;

(b) A vertical longitudinal plane tangent to the inboard (aisle side) edge of the seat;

(c) A vertical longitudinal plane 83 mm inboard of the outboard edge of the seat;

(d) Vertical transverse planes through and 762 mm forward of the reference point.

S5.3.1.2 Head form impact requirement. When any contactable surface of the vehicle within the zones specified in S5.3.1.1 is impacted from any direction at 6.7 m/s by the head form described in S6.6, the energy necessary to deflect the impacted material shall be not less than 4.5 joules before the force level on the head form exceeds 667 N. When any contactable surface within such zones is impacted by the head form from any direction at 1.5 m/s the contact area on the head form surface shall be not less than 1.935 mm².

S5.3.1.3 Head form force distribution. When any contactable surface of the vehicle within the zones specified in S5.3.1.1 is impacted from any direction at 6.7 m/s by the head form described in S6.6, the axial acceleration due to gravity, and “t₁,” and “t₂” are any two points in time during the impact.

\[
\frac{1}{t_1-t_2} \int_{t_1}^{t_2} a(t) \, dt
\]

shall not exceed 1.000 where “a” is the axial acceleration expressed as a multiple of “g” (the acceleration due to gravity), and “t₁,” and “t₂” are any two points in time during the impact.

S5.3.2 Leg protection zone. Any part of the seat backs or restraining barriers in the vehicle within any zone specified in S5.3.2.1 shall meet the requirements of S5.3.2.2.

S5.3.2.1 The leg protection zones of each vehicle are those parts of the school bus passenger seat backs and restraining barriers bounded by horizontal planes 305 mm above and 102 mm below the seating reference point of the school bus passenger seat immediately behind the seat back or restraining barrier.

S5.3.2.2 When any point on the rear surface of that part of a seat back or restraining barrier within any zone specified in S5.3.2.1 is impacted from any direction at 4.9 m/s by the knee form specified in S6.7, the resisting force of the impacted material shall not exceed 2,669 N and the contact area on the knee form surface shall not be less than 1.935 mm².

S5.4 Each school bus having one or more locations designed for carrying a person seated in a wheelchair shall comply with S5.4.1 through S5.4.4 at each such wheelchair location.

S5.4.1 Wheelchair securement anchorages. Each wheelchair location shall have not less than four wheelchair securement anchorages complying with S5.4.1.1 through S5.4.1.3.

S5.4.1.1 Each wheelchair securement anchorage shall have a wheelchair securement device complying with S5.4.2 attached to it.

S5.4.1.2 The wheelchair securement anchorages at each wheelchair location shall be situated so that—
§ 571.222

(a) A wheelchair can be secured in a forward-facing position.

(b) The wheelchair can be secured by wheelchair securement devices at two locations in the front and two locations in the rear.

(c) The front wheel of a three-wheeled wheelchair can be secured.

S5.4.1.3 Each wheelchair securement anchorage shall be capable of withstanding a force of 13,344 Newtons applied as specified in paragraphs (a) through (d) of this section. When more than one securement device share a common anchorage, the anchorage shall be capable of withstanding a force of 13,344 Newtons multiplied by the number of securement devices sharing that anchorage.

(a) The initial application force shall be applied at an angle of not less than 30 degrees, but not more than 60 degrees, measured from the horizontal. (See Figure 4.)

(b) The horizontal projection of the force direction shall be within a horizontal arc of ±45 degrees relative to a longitudinal line which has its origin at the anchorage location and projects rearward for an anchorage whose wheelchair securement device is intended to secure the front of the wheelchair, and forward for an anchorage whose wheelchair securement device is intended to secure the rear of the wheelchair. (See Figure 4.)

(c) The force shall be applied at the onset rate of not more than 133,440 Newtons per second.

(d) The 13,344 Newton force shall be attained in not more than 30 seconds, and shall be maintained for 10 seconds.

S5.4.2 Wheelchair securement devices. Each wheelchair securement device shall—

(a) If incorporating webbing or a strap—

(1) Comply with the requirements for Type 1 safety belt systems in S4.2, S4.3, and S4.4(a) of FMVSS No. 209, Seat Belt Assemblies; and

(2) Provide a means of adjustment to remove slack from the device.

(b) If not incorporating webbing or a strap, limit movement of the wheelchair through either the equipment design or a means of adjustment.

S5.4.3 Wheelchair occupant restraint anchorages.

S5.4.3.1 Each wheelchair location shall have:

(a) Not less than one anchorage for the upper end of the upper torso restraint; and

(b) Not less than two floor anchorages for wheelchair occupant pelvic and upper torso restraint.

S5.4.3.2 Each wheelchair occupant restraint floor anchorage shall be capable of withstanding a force of 13,344 Newtons applied as specified in paragraphs (a) through (d). When more than one wheelchair occupant restraint share a common anchorage, the anchorage shall be capable of withstanding a force of 13,344 Newtons multiplied by the number of occupant restraints sharing that anchorage.

(a) The initial application force shall be applied at an angle of not less than 45 degrees, but not more than 80 degrees, measured from the horizontal. (See Figure 5.)

(b) The horizontal projection of the force direction shall be within a horizontal arc of ±45 degrees relative to a longitudinal line which has its origin at the anchorage and projects forward. (See Figure 5.)

(c) The force shall be applied at an onset rate of not more than 133,440 Newtons per second.

(d) The 13,344 Newton force shall be attained in not more than 30 seconds, and shall be maintained for 10 seconds.

(e) When a wheelchair securement device and an occupant restraint share a common anchorage, including occupant restraint designs that attach the occupant restraint to the securement device or the wheelchair, the loads specified by S5.4.1.3 and S5.4.3.2 shall be applied simultaneously, under the conditions specified in S6.4.3.2 (a) and (b). (See Figure 6.)

S5.4.3.3 Each anchorage for a wheelchair occupant upper torso restraint shall be capable of withstanding a force of 6,672 Newtons applied as specified in paragraphs (a) through (d).

(a) The initial application force shall be applied at a vertical angle of not less than zero degrees, but not more than 40 degrees, below a horizontal plane which passes through the anchorage. (See Figure 7.)

(b) The projection of the force direction onto the horizontal plane shall be
§ 571.222

within zero degrees and 45 degrees as measured from a longitudinal line with its origin at the anchorage and projecting forward. (See Figure 7.)

(c) The force shall be applied at the onset rate of not more than 66,720 Newtons per second.

(d) The 6,672 Newton force shall be attained in not more than 30 seconds, and shall be maintained for 10 seconds.

S5.4.4 Wheelchair occupant restraints.

(a) Each wheelchair location shall have wheelchair occupant pelvic and upper torso restraints attached to the anchorages required by S5.4.3.

(b) Each wheelchair occupant restraint shall comply with the requirements for Type 2 safety belt systems in S4.2, S4.3, and S4.4(b) of FMVSS No. 209, Seat Belt Assemblies.

S5.5 Labeling.

(a) A small occupant seating position must be permanently and legibly marked or labeled with the phrase: “Do Not Sit In Middle Seat If Over Age 10”. The phrase must be comprised of no more than two lines of text. The label must be placed on the torso belt portion of the Type 2 seat belt. It must be plainly visible and easily readable when the seat belt is in a stored position. The distance from the top edge of the top line of text to the bottom edge of the bottom line of text must be at least 35 mm. If the label is sewn on, it must be stitched around its entire perimeter.

(b) [Reserved]

S6. Test conditions.

The following conditions apply to the requirements specified in S5.

S6.1 Test surface. The bus is at rest on a level surface.

S6.2 Tires. Tires are inflated to the pressure specified by the manufacturer for the gross vehicle weight rating.

S6.3 Temperature. The ambient temperature is any level between 0 degrees C and 32 degrees C.

S6.4 Seat back position. If adjustable, a seat back is adjusted to its most upright position.

S6.5 Loading bar. The loading bar is a rigid cylinder with an outside diameter of 152 mm that has hemispherical ends with radii of 76 mm and with a surface roughness that does not exceed 1.6 μm, root mean square. The length of the loading bar is 102 mm less than the width of the seat back in each test. The stroking mechanism applies force through a pivot attachment at the center point of the loading bar which allows the loading bar to rotate in a horizontal plane 30 degrees in either direction from the transverse position.

S6.5.1 A vertical or lateral force of 17,792 N applied externally through the pivot attachment point of the loading bar at any position reached during a test specified in this standard shall not deflect that point more than 25 mm.

S6.6 Head form. The head form for the measurement of acceleration is a rigid surface comprised of two hemispherical shapes, with total equivalent mass of 5.2 kg. The first of the two hemispherical shapes has a diameter of 166 mm. The second of the two hemispherical shapes has a 50 mm diameter and is centered as shown in Figure 3 to protrude from the outer surface of the first hemispherical shape. The surface roughness of the hemispherical shapes does not exceed 1.6 μm, root mean square.

S6.6.1 The direction of travel of the head form is coincidental with the straight line connecting the centerpoints of the two spherical outer surfaces which constitute the head form shape.

S6.6.2 The head form is instrumented with an acceleration sensing device whose output is recorded in a data channel that conforms to the requirements for a 1,000 Hz channel class as specified in SAE Recommended Practice J211a (1971) (incorporated by reference, see §571.5). The head form exhibits no resonant frequency below three times the frequency of the channel class. The axis of the acceleration sensing device coincides with the straight line connecting the centerpoints of the two hemispherical outer surfaces which constitute the head form shape.

S6.6.3 The head form is guided by a stroking device so that the direction of travel of the head form is not affected by impact with the surface being tested at the levels called for in the standard.

S6.7 Knee form. The knee form for measurement of force is a rigid 76 millimeter-diameter cylinder, with an equivalent weight of 44 N that has one hemispherical end with a 38 mm radius forming a contact surface of the knee.
form. The hemispherical surface roughness does not exceed 1.6 μm, root mean square.

S6.7.1 The direction of travel of the knee form is coincidental with the centerline of the rigid cylinder.

S6.7.2 The knee form is instrumented with an acceleration sensing device whose output is recorded in a data channel that conforms to the requirements of a 600 Hz channel class as specified in SAE Recommended Practice J211a (1971) (incorporated by reference, see §571.5). The knee form exhibits no resonant frequency below three times the frequency of the channel class. The axis of the acceleration sensing device is aligned to measure acceleration along the centerline of the cylindrical knee form.

S6.7.3 The knee form is guided by a stroking device so that the direction of travel of the knee form is not affected by impact with the surface being tested at the levels called for in the standard.

S6.8 The head form, knee form, and contactable surfaces are clean and dry during impact testing.

Figure 1.—Force/Deflection Zone

![Graph showing force versus deflection with shaded areas indicating limits.](image-url)
Figure 2.—Body Block for Lap Belt
All Dimensions in Millimeters (mm)
Figure 3
All dimensions in millimeters (mm)
Figure 6. Pelvic Restraint and Wheelchair Securement
Common Anchorage Loading Direction
(Rear Direction Only)
Figure 7. Upper Torso Restraint and Torso Harness Anchorage Loading Location
Figure 8 – Definition of initial angle of compartmentalizing seat back surface
§571.222 Standard No. 222: School bus passenger seating and crash protection.

(a) Large school buses.

* * *

(2) * * *

(i) S4.4.3.2 of Standard No. 208 (49 CFR 571.208);

(b) Small school buses. * * *

(1) * * *

(i) In the case of vehicles manufactured on or after October 21, 2011 the requirements of S4.4.3.2 of §571.208 and the requirements of §§571.207, 571.209 and 571.210 as they apply to

Figure 9 – Torso Block Zone

[41 FR 4018, Jan. 28, 1976]
§ 571.223 Standard No. 223; Rear impact guards.

S1. Scope. This standard specifies requirements for rear impact guards for trailers and semitrailers.

S2. Purpose. The purpose of this standard is to reduce the number of deaths and serious injuries that occur when light duty vehicles collide with the rear end of trailers and semitrailers.

S3. Application. This standard applies to rear impact guards for trailers and semitrailers subject to Federal Motor Safety Standard No. 224, Rear Impact Protection (§571.224).

S4. Definitions.

In this standard, directional terms such as bottom, center, height, horizontal, longitudinal, transverse, and rear refer to directions relative to the vehicle orientation when the guard is oriented as if it were installed on a vehicle according to the installation instructions in S5.5 of this section.

Chassis means the load supporting frame structure of a motor vehicle.

Guard width means the maximum horizontal guard dimension that is perpendicular to the longitudinal vertical plane passing through the longitudinal centerline of the vehicle when the guard is installed on the vehicle according to the installation instructions in S5.5 of this section.

Horizontal member means the structural member of the guard that meets the configuration requirements of S5.1.1 through S5.1.3 of §571.224, Rear Impact Protection, when the guard is installed on a vehicle according to the guard manufacturer’s installation instructions.

Hydraulic guard means a guard designed to use fluid properties to provide resistance force to deformation.

Rear impact guard means a device installed on or near the rear of a vehicle so that when the vehicle is struck from the rear, the device limits the distance that the striking vehicle’s front end slides under the rear end of the impacted vehicle.

Rigid test fixture means a supporting structure on which a rear impact guard can be mounted in the same manner it is mounted to a vehicle. The rigid test fixture is designed to resist the forces applied to the rear impact guard without significant deformation, such that a performance requirement of this standard must be met no matter how small an amount of energy is absorbed by the rigid test fixture.

S5. Requirements.

S5.1 Projected Vertical Height. The horizontal member of each guard, when viewed from the rear as it would be installed on a trailer pursuant to the installation instructions or procedures required by S5.5 of this standard, shall have a vertical height of at least 100 mm at each point across the guard width, when projected horizontally on a transverse vertical plane. Those installation instructions or procedures shall specify that the guard is to be mounted so that all portions of the horizontal member necessary to achieve a 100 mm high projected vertical height are located not more than 305 mm forward of the vehicle’s rear extremity, as defined in S4 of 49 CFR 571.224, Rear Impact Protection. See Figure 1 of this section.

S5.2 Strength and Energy Absorption. When tested under the procedures of S6 of this section, each guard shall comply with the strength requirements of S5.2.1 of this section at each test location and the energy absorption requirements of S5.2.2 of this section at test location P3, as specified in S6.4 of this section. However, a particular guard (i.e., test specimen) need not be tested at more than one location.

S5.2.1 Guard Strength. The guard must resist the force levels specified in S5.2.1(a) through (c) of this section without deflecting by more than 125 mm.

(a) A force of 50,000 N at test location P1 on either the left or the right side of the guard as defined in S6.4(a) of this section.

(b) A force of 50,000 N at test location P2 as defined in S6.4(b) of this section.

(c) A force of 100,000 N at test location P3 on either the left or the right side of the guard as defined in S6.4(c) of this section.

S5.2.2 Guard Energy Absorption. A guard, other than a hydraulic guard,
shall absorb by plastic deformation within the first 125 mm of deflection at least 5,650 J of energy at each test location P3. See Figure 2 of this section.

§5.3 Labeling. Each guard shall be permanently labeled with the information specified in §5.3 (a) through (c) of this section. The information shall be in English and in letters that are at least 2.5 mm high. The label shall be placed on the forward or rearward facing surface of the horizontal member of the guard, provided that the label does not interfere with the retroreflective sheeting required by §5.7.1.4.1(c) of FMVSS No. 108 (49 CFR 571.108), and is readily accessible for visual inspection.

(a) The guard manufacturer's name and address.

(b) The statement: “Manufactured in ___” (inserting the month and year of guard manufacture).

(c) The letters “DOT”, constituting a certification by the guard manufacturer that the guard conforms to all requirements of this standard.

§5.4 Guard Attachment Hardware. Each guard, other than a guard that is to be installed on a vehicle manufactured by the manufacturer of the guard, shall be accompanied by all attachment hardware necessary for installation of the guard on the chassis of the motor vehicle for which it is intended.

§5.5 Installation Instructions. The manufacturer of rear impact guards for sale to vehicle manufacturers shall include with each guard printed instructions in English for installing the guard, as well as a diagram or schematic depicting proper guard installation. The manufacturer of a rear impact guard for one of its own vehicles shall prepare and keep a copy of installation procedures applicable to each vehicle/guard combination for a period of one year from the date of vehicle manufacture and provide them to NHTSA on request. The instructions or procedures shall specify:

(a) Vehicles on which the guard can be installed. Vehicles may be designated by listing the make and model of the vehicles for which the guard is suitable, or by specifying the design elements that would make any vehicle an appropriate host for the particular guard (e.g., vehicles with frame rails of certain spacing and gauge of steel).

(b) A description of the chassis surface to which the guard will be attached, including frame design types with dimensions, material thickness, and tire track width. This description shall be detailed enough to permit the agency to locate and duplicate the chassis surface during compliance testing.

(c) An explanation of the method of attaching the guard to the chassis of each vehicle make and model listed or to the design elements specified in the instructions or procedures. The principal aspects of vehicle chassis configuration that are necessary to the proper functioning of the guard shall be specified. If the chassis strength is inadequate for the guard design, the instructions or procedures shall specify methods for adequately reinforcing the vehicle chassis. Procedures for properly installing any guard attachment hardware shall be provided.

§6. Guard Test Procedures. The procedures for determining compliance with §5.2 of this section are specified in §6.1 through §6.6 of this section.

§6.1 Preparation of Hydraulic Guards. For hydraulic guards, the horizontal member of the guard is deflected in a forward direction until the hydraulic unit(s) have reached the full extent of their designed travel or 610 mm, whichever occurs first. The hydraulic units are compressed before the application of force to the guard in accordance with §6.6 of this section and maintained in this condition throughout the testing under §6.6 of this section.

§6.2 Guard Installation for Strength and Energy Absorption Tests.

(a) The rear impact guard is attached to a test device.

(b) The test device for the compliance test will be whichever of the following devices, if either was used, the manufacturer used as a basis for its certification of the guard in §5.3(c) of this section. If the manufacturer did not use one of these devices or does not specify a device when asked by the agency, the agency may choose either of the following devices—

(1) A rigid test fixture. In the case of testing on a rigid test fixture NHTSA
will consult the installation instructions or procedures to determine the surface or structure that the guard is supposed to be mounted to and mount it to the rigid test fixture in the same way.

(2) A complete trailer for which installation of the guard is suitable, as provided in the manufacturer’s installation instructions or procedures required by §5.5 of this section. The trailer chassis is secured so that it behaves essentially as a fixed object during the test, such that the test must be passed no matter how little it moves during the test.

(c) The guard is attached in accordance with the instructions or procedures for guard attachment provided by the guard manufacturer for that guard as required by §5.5 of this section.

§6.3 Force Application Device. The force application device employed in §6.6 of this section consists of a rectangular solid made of rigid steel. The steel solid is 203 mm in height, 203 mm in width, and 25 mm in thickness. The 203 mm by 203 mm face of the block is used as the contact surface for application of the forces specified in §5.2.1 (a) through (c) of this section. Each edge of the contact surface of the block has a radius of curvature of 5 mm plus or minus 1 mm.

§6.4 Test Locations. With the guard mounted to the rigid test fixture or to a complete trailer, determine the test locations P1, P2, and P3 in accordance with the procedure set forth in §6.4 (a) through (c) of this section. See Figure 1 of this section.

(a) Test location P1 is the point on the rearmost surface of the horizontal member of the guard that:

(1) Is located at a distance of \(\frac{3}{8} \) of the guard width from the vertical longitudinal plane passing through center of the guard;

(2) Lies on either side of the center of the guard’s horizontal member; and

(3) Is 50 mm above the bottom of the guard.

(b) Test location P2 is the point on the rearmost surface of the horizontal member of the guard that:

(1) Lies in the longitudinal vertical plane passing through the center of the guard’s horizontal member; and

(2) Is 50 mm above the bottom of the guard.

(c) Test location P3 is any point on the rearmost surface of the horizontal member of the guard that:

(1) Is not less than 355 mm and not more than 635 mm from the vertical longitudinal plane passing through center of the guard;

(2) Lies on either the right or left side of the horizontal member of the guard; and

(3) Is 50 mm above the bottom of the guard.

§6.5 Positioning of Force Application Device. Before applying any force to the guard, locate the force application device such that:

(a) The center point of the contact surface of the force application device is aligned with and touching the guard test location, as defined by the specifications of §6.4 of this section.

(b) The longitudinal axis of the force application device passes through the test location and is perpendicular to the transverse vertical plane that is tangent to the rearmost surface of the guard’s horizontal member.

§6.6 Force Application. After the force application device has been positioned according to §6.5 of this section, apply the loads specified in §5.2.1 of this section. Load application procedures are specified in the §6.6 (a) through (d) of this section.

(a) Using the force application device, apply force to the guard in a forward direction such that the displacement rate of the force application device is the rate, plus or minus 10 percent, designated by the guard manufacturer within the range of 2.0 cm per minute to 9.0 cm per minute. If the guard manufacturer does not designate a rate, any rate within that range may be chosen.

(b) If conducting a strength test to satisfy the requirement of §5.2.1 of this section, the force is applied until the forces specified in §5.2.1 of this section have been exceeded, or until the displacement of the force application device has reached at least 125 mm, whichever occurs first.

(c) If conducting a test to be used for the calculation of energy absorption levels to satisfy the requirement of §5.2.2 of this section, apply the force to
the guard until displacement of the force application device has reached 125 mm. For calculation of guard energy absorption, the value of force is recorded at least ten times per 25 mm of displacement of the contact surface of the loading device. Reduce the force until the guard no longer offers resistance to the force application device. Produce a force vs. deflection diagram of the type shown in Figure 2 of this section using this information. Determine the energy absorbed by the guard by calculating the shaded area bounded by the curve in the force vs. deflection diagram and the abscissa (X-axis).

(d) During each force application, the force application device is guided so that it does not rotate. At all times during the application of force, the location of the longitudinal axis of the force application device remains constant.
§ 571.224 Standard No. 224; Rear impact protection.

S1. Scope. This standard establishes requirements for the installation of rear impact guards on trailers and semitrailers with a gross vehicle weight rating (GVWR) of 4,536 kg or more.

S2. Purpose. The purpose of this standard is to reduce the number of deaths and serious injuries occurring when light duty vehicles impact the rear of trailers and semitrailers with a GVWR of 4,536 kg or more.

S3. Application. This standard applies to trailers and semitrailers with a GVWR of 4,356 kg or more. The standard does not apply to pole trailers, pulpwood trailers, road construction controlled horizontal discharge trailers, special purpose vehicles, wheels back vehicles, or temporary living quarters as defined in 49 CFR 529.2. If a cargo tank motor vehicle, as defined in 49 CFR 171.8, is certified to carry hazardous materials and has a rear bumper or rear end protection device conforming with 49 CFR part 178 located in the area of the horizontal member of the rear underride guard required by this standard, the guard need not comply with the energy absorption requirement (S5.2.2) of 49 CFR 571.223.

S4. Definitions.

Chassis means the load supporting frame structure of a motor vehicle.

Horizontal member means the structural member of the guard that meets the configuration requirements of S5.1

of this section when the guard is installed on the vehicle according to the installation instructions or procedures required by §5.5 of §571.223, Rear Impact Guards.

Low chassis vehicle means a trailer or semitrailer having a chassis that extends behind the rearmost point of the rearmost tires and a lower rear surface that meets the configuration requirements of S5.1.1 through S5.1.3 of this section.

Outer or Outboard means away from the trailer centerline and toward the side extremities of the trailer.

Pulpwood trailer means a trailer that is designed exclusively for harvesting logs or pulpwood and constructed with a skeletal frame with no means for attachment of a solid bed, body, or container.

Rear extremity means the rearmost point on a vehicle that is above a horizontal plane located 600 mm above the ground and below a horizontal plane located 1,900 mm above the ground when the vehicle is configured as specified in S5.1 of this section and when the vehicle’s cargo doors, tailgate, or other permanent structures are positioned as they normally are when the vehicle is in motion. Nonstructural protrusions such as taillights, rubber bumpers, hinges and latches are excluded from the determination of the rearmost point.

Road construction controlled horizontal discharge trailer means a trailer or semitrailer that is equipped with a mechanical drive and a conveyor to deliver asphalt and other road building materials, in a controlled horizontal manner, into a lay down machine or paving equipment for road construction and paving operations.

Rounded corner means a guard’s outermost end that curves upward or forward toward the front of the vehicle, or both.

Side extremity means the outermost point on a vehicle’s side that is located above a horizontal plane 190 cm above the ground, below a horizontal plane located 190 cm above the ground, and between a transverse vertical plane tangent to the rear extremity of the vehicle and a transverse vertical plane located 305 mm forward of that plane when the vehicle is configured as specified in S5.1 of this section. Non-structural protrusions such as taillights, hinges, rubber bumpers, and latches are excluded from the determination of the outermost point.

Special purpose vehicle means a trailer or semitrailer that:

1. Has work performing equipment that, while the vehicle is in transit, resides in or moves through any portion of the space bounded:
 (i) Vertically from the ground to a horizontal plane 660 mm above the ground;
 (ii) Laterally the full width of the trailer, determined by the trailer’s side extremities as defined in §4 of this section; and
 (iii) From the rear extremity of the trailer as defined in §4 of this section to a transverse vertical plane 305 mm forward of the rear extremity of the trailer; or
2. Is equipped with a loading platform that, while the vehicle is in transit, is completely stowed in the space bounded by a plane tangent to the underside of the vehicle, the ground, the rear extremity of the vehicle, and the rearmost axle, and that, when operated, deploys from its stowed position to the rear of the vehicle through any portion of the space described above.

Wheels back vehicle means a trailer or semitrailer whose rearmost axle is permanently fixed and is located such that the rearmost surface of tires of the size recommended by the vehicle manufacturer for the vehicle on that axle is not more than 305 mm forward of the transverse vertical plane tangent to the rear extremity of the vehicle.

S5. Requirements.

S5.1 Installation; vehicle configuration.
Each vehicle shall be equipped with a rear impact guard certified as meeting Federal Motor Vehicle Safety Standard No. 223, Rear Impact Guards (§571.223). When the vehicle to which the guard is attached is resting on level ground, unloaded, with its full capacity of fuel, and with its tires inflated and air suspension, if so equipped, pressurized in accordance with the manufacturer’s recommendations, the guard shall comply with the requirements of S5.1.1 through S5.1.3 of this section. See Figure 1 of this section.
S5.1.1 Guard width. The outermost surfaces of the horizontal member of the guard shall extend outboard to within 100 mm of the longitudinal vertical planes that are tangent to the side extremities of the vehicle, but shall not extend outboard of those planes. See Figure 1 of this section.

S5.1.2 Guard height. The vertical distance between the bottom edge of the horizontal member of the guard and the ground shall not exceed 560 mm at any point across the full width of the member. Notwithstanding this requirement, guards with rounded corners may curve upward within 255 mm of the longitudinal vertical planes that are tangent to the side extremities of the vehicle. See Figure 1 of this section.

S5.1.3 Guard rear surface. At any height 560 mm or more above the ground, the rearmost surface of the horizontal member of the guard shall be located as close as practical to a transverse vertical plane tangent to the rear extremity of the vehicle, but no more than 305 mm forward of that plane. Notwithstanding this requirement, the horizontal member may extend rearward of the plane, and guards with rounded corners may curve forward within 255 mm of the longitudinal vertical planes that are tangent to the side extremities of the vehicle.

S5.2 Installation Requirements. Guards shall be attached to the vehicle’s chassis by the vehicle manufacturer in accordance with the installation instructions or procedures provided pursuant to S5.5 of Standard No. 223, Rear Impact Guards (§571.223). The vehicle must be of a type identified in the installation instructions as appropriate for the guard.
§ 571.225 Standard No. 225; Child restraint anchorage systems.

S1. Purpose and scope. This standard establishes requirements for child restraint anchorage systems to ensure their proper location and strength for the effective securing of child restraints, to reduce the likelihood of the anchorage systems' failure, and to increase the likelihood that child restraints are properly secured and thus more fully achieve their potential effectiveness in motor vehicles.

S2. Application. This standard applies to passenger cars; to trucks and multi-purpose passenger vehicles with a gross vehicle weight rating (GVWR) of 3,855 kilograms (8,500 pounds) or less; and to
§ 571.225

49 CFR Ch. V (10–1–16 Edition)

buses (including school buses) with a GVWR of 4,536 kg (10,000 lb) or less. This standard does not apply to walk-in van-type vehicles, vehicles manufactured to be sold exclusively to the U.S. Postal Service, shuttle buses, and funeral coaches.

S3. Definitions.

Child restraint anchorage means any vehicle component, other than Type I or Type II seat belts, that is involved in transferring loads generated by a child restraint system to the vehicle structure.

Child restraint anchorage system means a vehicle system that is designed for attaching a child restraint system to a vehicle at a particular designated seating position, consisting of:

(a) Two lower anchorages meeting the requirements of S9; and

(b) A tether anchorage meeting the requirements of S6.

Child restraint fixture (CRF) means the fixture depicted in Figures 1 and 2 of this standard that simulates the dimensions of a child restraint system, and that is used to determine the space required by the child restraint system and the location and accessibility of the lower anchorages.

Funeral coach means a vehicle that contains only a front row of occupant seats, is designed exclusively for transporting a body and casket and that is equipped with features to secure a casket in place during operation of the vehicle.

Rear designated seating position means any designated seating position (as that term is defined at §571.3) that is rearward of the front seats(s).

Seat bight means the area close to and including the intersection of the surfaces of the vehicle seat cushion and the seat back.

SFAD 1 means Static Force Application Device 1 shown in Figures 12 to 16 of this standard.

SFAD 2 means Static Force Application Device 2 shown in Figures 17 and 18 of this standard.

Shuttle bus means a bus with only one row of forward-facing seating positions rearward of the driver’s seat.

Tether anchorage means a user-ready, permanently installed vehicle system that transfers loads from a tether strap through the tether hook to the vehicle structure and that accepts a tether hook.

Tether strap means a strap that is secured to the rigid structure of the seat back of a child restraint system, and is connected to a tether hook that transfers the load from that system to the tether anchorage.

Tether hook means a device, illustrated in Figure 11 of Standard No. 213 (§571.213), used to attach a tether strap to a tether anchorage.

S4. General vehicle requirements.

S4.1 Each tether anchorage and each child restraint anchorage system installed, either voluntarily or pursuant to this standard, in any new vehicle manufactured on or after September 1, 1999, shall comply with the configuration, location, marking and strength requirements of this standard. The vehicle shall be delivered with written information, in English, on how to appropriately use those anchorages and systems.

S4.2 For passenger cars manufactured on or after September 1, 1999 and before September 1, 2000, not less than 80 percent of the manufacturer’s average annual production of vehicles (not including convertibles), as set forth in S13, shall be equipped with a tether anchorage as specified in paragraphs (a), (b) and (c) of S4.2, except as provided in S5.

(a) Each vehicle with three or more forward-facing rear designated seating positions shall be equipped with a tether anchorage conforming to the requirements of S6 at no fewer than three forward-facing rear designated seating positions. The tether anchorage of a child restraint anchorage system may count towards the three required tether anchorages. In each vehicle with a forward-facing rear designated seating position other than an outboard designated seating position, at least one tether anchorage (with or without the lower anchorages of a child restraint anchorage system) shall be at such a designated seating position. In a vehicle with three or more rows of seating positions, at least one of the tether anchorages (with or without the lower anchorages of a child restraint anchorage system) shall be installed at a forward-facing seating position in the second row if such a forward-facing
seating position is available in that row.

(b) Each vehicle with not more than two forward-facing rear designated seating positions shall be equipped with a tether anchorage conforming to the requirements of S6 at each forward-facing rear designated seating position. The tether anchorage of a child restraint anchorage system may count toward the required tether anchorages.

(c) Each vehicle without any forward-facing rear designated seating position shall be equipped with a tether anchorage conforming to the requirements of S6 at each front forward-facing passenger seating position.

S4.3 Each vehicle manufactured on or after September 1, 2000 and before September 1, 2002, shall be equipped as specified in paragraphs (a) and (b) of S4.3, except as provided in S5.

(a) A specified percentage of each manufacturer’s yearly production, as set forth in S14, shall be equipped as follows:

(1) Each vehicle with three or more forward-facing rear designated seating positions shall be equipped with a child restraint anchorage system conforming to the requirements of S9 at not fewer than two forward-facing rear designated seating positions. In a vehicle with three or more rows of seating positions, at least one of the child restraint anchorage systems shall be at a forward-facing seating position in the second row if such a forward-facing seating position is available in that row.

(2) Each vehicle with not more than two forward-facing rear designated seating positions shall be equipped with a child restraint anchorage system conforming to the requirements of S9 at each forward-facing rear designated seating position. The tether anchorage of a child restraint anchorage system may count toward the required tether anchorages.

(b) Each vehicle, including a vehicle that is counted toward the percentage of a manufacturer’s yearly production required to be equipped with child restraint anchorage systems, shall be equipped as described in S4.3(b)(1), (2) or (3), subject to S13.

(1) Each vehicle with three or more forward-facing rear designated seating positions shall be equipped with a tether anchorage conforming to the requirements of S6 at no fewer than three forward-facing rear designated seating positions. The tether anchorage of a child restraint anchorage system may count toward the three required tether anchorages. In each vehicle with a forward-facing rear designated seating position other than an outboard designated seating position, at least one tether anchorage (with or without the lower anchorages of a child restraint anchorage system) shall be at such a designated seating position. In a vehicle with three or more rows of seating positions, at least one of the tether anchorages (with or without the lower anchorages of a child restraint anchorage system) shall be installed at a forward-facing seating position in the second row if such a forward-facing seating position is available in that row.

(2) Each vehicle with not more than two forward-facing rear designated seating positions shall be equipped with a tether anchorage conforming to the requirements of S6 at each forward-facing rear designated seating position. The tether anchorage of a child restraint anchorage system may count toward the required tether anchorages.

(3) Each vehicle without any forward-facing rear designated seating position shall be equipped with a tether anchorage conforming to the requirements of S6 at each front passenger seating position.

S4.4 Vehicles manufactured on or after September 1, 2002 shall be equipped as specified in paragraphs (a) through (c) of S4.4, except as provided in S5.

(a) Each vehicle with three or more forward-facing rear designated seating positions shall be equipped as specified in S4.4(a)(1) and (2).

(1) Each vehicle shall be equipped with a child restraint anchorage system conforming to the requirements of S9 at not fewer than two forward-facing rear designated seating positions. At least one of the child restraint anchorage systems shall be installed at a forward-facing seating position in the second row in each vehicle that has three or more rows, if such a forward-facing seating position is available in that row.

(2) Each vehicle shall be equipped with a tether anchorage conforming to...
§ 571.225
49 CFR Ch. V (10–1–16 Edition)

the requirements of S6 at a third forward-facing rear designated seating position. The tether anchorage of a child restraint anchorage system may count towards the third required tether anchorage. In each vehicle with a forward-facing rear designated seating position other than an outboard designated seating position, at least one tether anchorage (with or without the lower anchorages of a child restraint anchorage system) shall be at such a designated seating position.

(b) Each vehicle with not more than two forward-facing rear designated seating positions shall be equipped with a child restraint anchorage system conforming to the requirements of S9 at each forward-facing rear designated seating position.

(c) Each vehicle without any forward-facing rear designated seating position shall be equipped with a tether anchorage conforming to the requirements of S6 at each front forward-facing passenger seating position.

S4.5 As an alternative to complying with the requirements of S4.2 through S4.4 that specify the number of tether anchorages that are required in a vehicle and the designated seating positions for which tether anchorages must be provided, a vehicle manufactured from September 1, 1999 to August 31, 2004 may, at the manufacturer’s option (with said option irrevocably selected prior to, or at the time of, certification of the vehicle), meet the requirements of this S4.5. This alternative ceases to be available on and after September 1, 2004. A tether anchorage conforming to the requirements of S6 must be installed—

(a) For each designated seating position, other than that of the driver, in a vehicle that has only one row of designated seating positions;

(b) For each forward-facing designated seating position in the second row of seating positions in a passenger car or truck;

(c) For each of any two forward-facing designated seating positions in the second row of seating positions in a multipurpose passenger vehicle that has five or fewer designated seating positions; and,

(d) For each of any three forward-facing designated seating positions that are located to the rear of the first row of designated seating positions in a multipurpose passenger vehicle that has six or more designated seating positions.

S4.6 Adjustable seats. (a) A vehicle that is equipped with a forward-facing rear designated seating position that can be relocated such that it is capable of being used at either an outboard or non-outboard forward-facing seating position shall be considered as having a forward-facing non-outboard seating position. Such an adjustable seat must be equipped with a tether anchorage (with or without the lower anchorages of a child restraint anchorage system) if the vehicle does not have another forward-facing non-outboard seating position that is so equipped.

(b) Tether and lower anchorages shall be available for use at all times, except when the seating position for which it is installed is not available for use because the vehicle seat has been removed or converted to an alternate use such as the carrying of cargo.

S5. General exceptions.

(a) Convertibles and school buses are excluded from the requirements to be equipped with tether anchorages.

(b) A vehicle may be equipped with a built-in child restraint system conforming to the requirements of Standard No. 213 (49 CFR 571.213) instead of one of the required tether anchorages or child restraint anchorage systems.

(c)(1) Each vehicle that—

(i) Does not have a rear designated seating position and that thus meets the conditions in S4.5.4.1(a) of Standard No. 208 (§571.208); and

(ii) Has an air bag on-off switch meeting the requirements of S4.5.4 of Standard No. 208 (§571.208), shall have a child restraint anchorage system for a designated passenger seating position in the front seat, instead of only a tether anchorage. In the case of convertibles, the front designated passenger seating position need have only the two lower anchorages meeting the requirements of S9 of this standard.

(iii) For vehicles manufactured on or after September 1, 2002, each vehicle that does not have a rear designated seating position, and does not have an air bag installed at front passenger designated seating positions pursuant to a
temporary exemption granted by NHTSA under 49 CFR Part 555, must have a child restraint anchorage system installed at a front passenger designated seating position. In the case of convertibles, the front designated passenger seating position need have only the two lower anchorages meeting the requirements of S9 of this standard.

(2) Each vehicle that—

(i) Has a rear designated seating position and meets the conditions in §4.5.4.1(b) of Standard No. 208 (§571.208); and,

(ii) Has an air bag on-off switch meeting the requirements of §4.5.4 of Standard 208 (§571.208), shall have a child restraint anchorage system for a designated passenger seating position in the front seat, instead of a child restraint anchorage system that is required for the rear seat. In the case of convertibles, the front designated passenger seating position need have only the two lower anchorages meeting the requirements of S9 of this standard.

(iii) For vehicles manufactured on or after September 1, 2002, each vehicle that has a rear designated seating position and meets the conditions in §4.5.4.1(b) of Standard No. 208 (§571.208), and does not have an air bag installed at front passenger designated seating positions pursuant to a temporary exemption granted by NHTSA under 49 CFR Part 555, must have a child restraint anchorage system installed at a front passenger designated seating position in place of one of the child restraint anchorage systems that is required for the rear seat. In the case of convertibles, the front designated passenger seating position need have only the two lower anchorages meeting the requirements of S9 of this standard.

(d) A vehicle that does not have an air bag on-off switch meeting the requirements of §4.5.4 of Standard No. 208 (§571.208), shall not have any child restraint anchorage system installed at a front designated seating position.

(e) A vehicle with a rear designated seating position for which interference with transmission and/or suspension components prevents the location of the lower bars of a child restraint anchorage system anywhere within the zone described by S9.2 or S15.1.2.2(b) such that the attitude angles of S15.1.2.2(a) could be met, is excluded from the requirement to provide a child restraint anchorage system at that position. However, except as provided elsewhere in S5 of this standard, for vehicles manufactured on or after September 1, 2001, such a vehicle must have a tether anchorage at a front passenger designated seating position.

S6. Requirements for tether anchorages.

S6.1 Configuration of the tether anchorage. Each tether anchorage shall:

(a) Permit the attachment of a tether hook of a child restraint system meeting the configuration and geometry specified in Figure 11 of Standard No. 213 (§571.213);

(b) Be accessible without the need for any tools other than a screwdriver or coin;

(c) Once accessed, be ready for use without the need for any tools; and

(d) Be sealed to prevent the entry of exhaust fumes into the passenger compartment.

S6.2 Location of the tether anchorage. A vehicle manufactured on or after September 1, 1999 and before September 1, 2004 may, at the manufacturer’s option (with said option irrevocably selected prior to, or at the time of, certification of the vehicle), meet the requirements of S6.2.1 or S6.2.2. Vehicles manufactured on or after September 1, 2004 must meet the requirements of S6.2.1 of this standard.

S6.2.1 Subject to S6.2.1.1 and S6.2.1.2, the part of each tether anchorage that attaches to a tether hook must be located within the shaded zone shown in Figures 3 to 7 of this standard of the designated seating position for which it is installed. The zone is defined with reference to the seating reference point (see §571.3). (For purposes of the figures, “H Point” is defined to mean seating reference point.) A tether anchorage may be recessed in the seat back, provided that it is not in the strap wrap-around area at the top of the vehicle seat back. For the area under the vehicle seat, the forwardmost edge of the shaded zone is defined by the torso line reference plane.

S6.2.1.1 In the case of passenger cars and multipurpose passenger vehicles manufactured before September 1, 2004,
the part of each user-ready tether anchorage that attaches to a tether hook may, at the manufacturer’s option (with said option selected prior to, or at the time of, certification of the vehicle), instead of complying with §6.2.1, be located within the shaded zone shown in Figures 8 to 11 of this standard of the designated seating position for which it is installed, relative to the shoulder reference point of the three dimensional H-point machine described in section 3.1 of SAE Standard J826–1992 (incorporated by reference, see §571.5) such that—

(a) The H-point of the three dimensional H-point machine is located—

(1) At the actual H-point of the seat, as defined in section 2.2.11.3 of SAE Recommended Practice J1100–1993 (incorporated by reference, see §571.5), at the full rearward and downward position of the seat; or

(2) In the case of a designated seating position that has a child restraint anchorage system, midway between vertical longitudinal planes passing through the lateral center of the bar in each of the two lower anchorages of that system; and

(b) The back pan of the H-point machine is at the same angle to the vertical as the vehicle seat back with the seat adjusted to its full rearward and full downward position and the seat back in its most upright position.

§6.2.1.2 In the case of a vehicle that—

(a) Has a user-ready tether anchorage for which no part of the shaded zone shown in Figures 3 to 7 of this standard of the designated seating position for which it is installed is accessible without removing a seating component of the vehicle; and

(b) Has a tether strap routing device that is—

(1) Not less than 65 mm behind the torso line for that seating position, in the case of a flexible routing device or a deployable routing device, measured horizontally and in a vertical longitudinal plane; or

(2) Not less than 100 mm behind the torso line for that seating position, in the case of a fixed rigid routing device, measured horizontally and in a vertical longitudinal plane, the part of that anchorage that attaches to a tether hook may, at the manufacturer’s option (with said option selected prior to, or at the time of, certification of the vehicle) be located outside that zone.

(c) The measurement of the location of the flexible or deployable routing device described in §6.2.1.2(b)(1) is made with SFAD 2 properly attached to the lower anchorages. A 40 mm wide nylon tether strap is routed through the routing device and attached to the tether anchorage in accordance with the written instructions required by S12 of this standard. The forwardmost contact point between the strap and the routing device must be within the stated limit when the tether strap is flat against the top surface of the SFAD and tensioned to 55 to 65 N. In seating positions without lower anchorages of a child restraint anchorage system, the SFAD 2 is held with its central lateral plane in the central vertical longitudinal plane of the seating position. The adjustable anchor attaching bars of the SFAD 2 are replaced by spacers that end flush with the back surface of the SFAD.

§6.2.2 Subject to §6.2.2.1 and §6.2.2.2, the portion of each user-ready tether anchorage that is designed to bind with a tether strap hook shall be located within the shaded zone shown in Figures 3 to 7 of this standard of the designated seating position for which it is installed, with reference to the H-point of a template described in section 3.1 of SAE Standard J826–1992 (incorporated by reference, see §571.5), if:

(a) The H-point of the template is located—

(1) At the unique Design H-point of the designated seating position, as defined in section 2.2.11.1 of SAE Recommended Practice J1100–1993 (incorporated by reference, see §571.5), at the full downward and full rearward position of the seat, or—

(2) In the case of a designated seating position that has a means of affixing the lower portion of a child restraint system to the vehicle, other than a vehicle seat belt, midway between the two lower restraint system anchorages;

(b) The torso line of the template is at the same angle to the transverse vertical plane as the vehicle seat back with the seat adjusted to its full rearward and full downward position and
the seat back in its most upright position; and
(c) The template is positioned in the vertical longitudinal plane that contains the H-point of the template.

S6.2.2.1 In passenger cars and multipurpose passenger vehicles manufactured before September 1, 2004, the portion of each user-ready tether anchorage to which a tether strap hook attaches may be located within the shaded zone shown in Figures 8 to 11 of the designated seating position for which it is installed, with reference to the shoulder reference point of a template described in section 3.1 of SAE Standard J826–1992 (incorporated by reference, see §571.5), if:
(a) The H-point of the template is located—
 (1) At the unique Design H-point of the designated seating position, as defined in section 2.2.11.1 of SAE Recommended Practice J1100–1993 (incorporated by reference, see §571.5), at the full downward and full rearward position of the seat, or—
 (2) In the case of a designated seating position that has a means of affixing the lower portion of a child restraint system to the vehicle, other than a vehicle seat belt, midway between the two lower restraint system anchorages;
(b) The torso line of the template is at the same angle to the vertical plane as the vehicle seat back with the seat adjusted to its full rearward and full downward position and the seat back in its most upright position; and
(c) The template is positioned in the vertical longitudinal plane that contains the H-point of the template.

S6.2.2.2 The portion of a user-ready tether anchorage in a vehicle that is designed to bind with the tether strap hook may be located outside the shaded zone referred to in S6.2.2, if no part of the shaded zone is accessible without removing a seating component of the vehicle and the vehicle is equipped with a routing device that—
(a) Ensures that the tether strap functions as if the portion of the anchorage designed to bind with the tether strap hook were located within the shaded zone;
(b) Is at least 65 mm behind the torso line, in the case of a non-rigid-webbing-type routing device or a deployable routing device, or at least 100 mm behind the torso line, in the case of a fixed rigid routing device; and
(c) When tested after being installed as it is intended to be used, is of sufficient strength to withstand, with the user-ready tether anchorage, the load referred to in S6.3.4 or S6.3.4.1, as applicable.

S6.3 Strength requirements for tether anchorages. Subject to S6.3.2, a vehicle manufactured on or after September 1, 1999, and before September 1, 2004, at the manufacturer's option (with said option irrevocably selected prior to, or at the time of, certification of the vehicle), meet the requirements of S6.3.1 or S6.3.4. Vehicles manufactured on or after September 1, 2004 and before September 1, 2005 must meet the requirements of S6.3.1 of this standard, except as provided in S16 of this standard. Vehicles manufactured on or after September 1, 2005 must meet the requirements of S6.3.1.

S6.3.1 Subject to S6.3.2, when tested in accordance with S8, after preloading the device with a force of 500 N, the tether anchorage must not separate completely from the vehicle seat or seat anchorage or the structure of the vehicle.

S6.3.2 In vehicles manufactured before September 1, 2004, each user-ready tether anchorage in a row of designated seating positions in a passenger car may, at the manufacturer's option (with said option selected prior to, or at the time of, certification of the vehicle), instead of complying with S6.3.1, withstand the application of a force of 5,300 N, when tested in accordance with S8.2, such that the anchorage does not release the belt strap specified in S8.2 or allow any point on the tether anchorage to be displaced more than 125 mm.

S6.3.3 Provisions for simultaneous and sequential testing. (a) In the case of vehicle seat assemblies equipped with more than one tether anchorage system, the force referred to in S6.3.1 and S6.3.2 may, at the agency's option, be applied simultaneously to each of those tether anchorages. However, that force may not be applied simultaneously to tether anchorages for any two adjacent seating positions whose midpoints are less than 400 mm apart, as measured in
§ 571.225 49 CFR Ch. V (10–1–16 Edition)

according with S6.3.3(a)(1) and (2) and Figure 20.

(1) The midpoint of the seating position lies in the vertical longitudinal plane that is equidistant from vertical longitudinal planes through the geometric center of each of the two lower anchorages at the seating position. For those seating positions that do not provide lower anchorages, the midpoint of the seating position lies in the vertical longitudinal plane that passes through the SgRP of the seating position.

(2) Measure the distance between the vertical longitudinal planes passing through the midpoints of the adjacent seating positions, as measured along a line perpendicular to the planes.

(b) A tether anchorage of a particular child restraint anchorage system will not be tested with the lower anchorages of that anchorage system if one or both of those lower anchorages have been previously tested under this standard.

S6.3.4 Subject to subsections S6.3.4.1 and S6.3.4.2, every user-ready tether anchorage in a row of designated seating positions shall, when tested, withstand the application of a force of 10,000 N—

(a) Applied by means of one of the following types of test devices, installed as a child restraint system would be installed in accordance with the manufacturer’s installation instructions, namely,

(1) SFAD 1, to test a tether anchorage at a designated seating position that does not have a child restraint anchorage system; or

(2) SFAD 2, to test a tether anchorage at a designated seating position that has a child restraint anchorage system;

(b) Applied—

(1) In a forward direction parallel to the vehicle’s vertical longitudinal plane, and

(2) Initially, along a horizontal line or along any line below that line that is at an angle to that line of not more than 20 degrees;

(c) Attained within 30 seconds, at any onset force rate of not more than 135,000 N/s; and

(d) Maintained at a 10,000 N level for one second.

S6.3.4.1 In a passenger car manufactured before September 1, 2004, every user-ready tether anchorage in a row of designated seating positions must, when tested, subject to subsection S6.3.4.2, withstand the application of a force of 5,300 N, which force must be—

(a) Applied by means of a belt strap that—

(1) Extends not less than 250 mm forward from the vertical plane touching the rear top edge of the vehicle seat back,

(2) Is fitted at one end with suitable hardware for applying the force and at the other end with a bracket for the attachment of the user-ready tether anchorage, and

(3) Passes over the top of the vehicle seat back as shown in Figure 19 of this standard;

(b) Applied—

(1) In a forward direction parallel to the vehicle’s longitudinal vertical plane, and

(2) Initially, along a horizontal line or along any line below that line that is at an angle to that line of not more than 20 degrees;

(c) Attained within 30 seconds, at any onset force rate of not more than 135,000 N/s; and

(d) Maintained at a 5,300 N level for one second.

S6.3.4.2 If the zones in which tether anchorages are located overlap and if, in the overlap area, a user-ready tether anchorage is installed that is designed to accept the tether strap hooks of two restraint systems simultaneously, both portions of the tether anchorage that are designed to bind with a tether strap hook shall withstand the force referred to in subsection S6.3.4 or S6.3.4.1, as the case may be, applied to both portions simultaneously.

S6.3.4.3 Provisions for simultaneous and sequential testing. (a) In the case of vehicle seat assemblies equipped with more than one tether anchorage system, the force referred to in S6.3.4, 6.3.4.1 or 6.3.4.2 may, at the agency’s option, be applied simultaneously to each of those tether anchorages. However, that force may not be applied simultaneously to tether anchorages for any two adjacent seating positions.
whose midpoints are less than 400 mm apart, as measured in accordance with S6.3.4.3(a)(1) and (2) and Figure 20.

(1) The midpoint of the seating position lies in the vertical longitudinal plane that is equidistant from vertical longitudinal planes through the geometric center of each of the two lower anchorages at the seating position. For those seating positions that do not provide lower anchorages, the midpoint of the seating position lies in the vertical longitudinal plane that passes through the SgRP of the seating position.

(2) Measure the distance between the vertical longitudinal planes passing through the midpoints of the adjacent seating positions, as measured along a line perpendicular to the planes.

(b) A tether anchorage of a particular child restraint anchorage system will not be tested with the lower anchorages of that anchorage system if one or both of those lower anchorages have been previously tested under this standard.

S6.3.4.4 The strength requirement tests shall be conducted with the vehicle seat adjusted to its full rearward and full downward position and the seat back in its most upright position. When SFAD 2 is used in testing and cannot be attached to the lower anchorages with the seat back in this position, adjust the seat back as recommended by the manufacturer in its instructions for attaching child restraints. If no instructions are provided, adjust the seat back to the position that enables SFAD 2 to attach to the lower anchorages that is the closest to the most upright position.

(b) Head restraints are adjusted in accordance with the manufacturer’s instructions, provided pursuant to S12, as to how the head restraints should be adjusted when using the child restraint anchorage system. If instructions with regard to head restraint adjustment are not provided pursuant to S12, the head restraints are adjusted to any position.

S7. Test conditions for testing tether anchorages.

The test conditions described in paragraphs (a) and (b) of S7 apply to the test procedures in S8.

(a) Vehicle seats are adjusted to their full rearward and full downward position and the seat back is placed in its most upright position. When SFAD 2 is used in testing and cannot be attached to the lower anchorages with the seat back in this position, adjust the seat back as recommended by the manufacturer in its instructions for attaching child restraints. If no instructions are provided, adjust the seat back to the position that enables SFAD 2 to attach to the lower anchorages that is the closest to the most upright position.

(b) Head restraints are adjusted in accordance with the manufacturer’s instructions, provided pursuant to S12, as to how the head restraints should be adjusted when using the child restraint anchorage system. If instructions with regard to head restraint adjustment are not provided pursuant to S12, the head restraints are adjusted to any position.

S8. Test procedures. Each vehicle shall meet the requirements of S6.3.1 and S6.3.3 when tested according to the following procedures. Where a range of values is specified, the vehicle shall be able to meet the requirements at all points within the range. For the testing specified in these procedures, the SFAD used in the test has a tether strap consisting of webbing material with an elongation limit of 4 percent at a tensile load of 65,000 N (14,612 lb). Pre-tension the tether strap with 53.5 N to 67 N of preload prior to the test. The strap is fitted at one end with a high strength steel tether hook for attachment to the tether anchorage. The tether hook meets the specifications in Standard No. 213 (49 CFR §571.213) as to the configuration and geometry of tether hooks required by the standard. A steel cable is connected to the X point through which the test force is applied.

S8.1 Apply the force specified in S6.3.1 as follows—

(a) Use the following specified test device, as appropriate:

(1) SFAD 1, to test a tether anchorage at a designated seating position that does not have a child restraint anchorage system; or,

(2) SFAD 2, to test a tether anchorage at a designated seating position that has a child restraint anchorage system.

(b) Attach the SFAD 1 to the vehicle seat using the vehicle belts or the SFAD 2 to the lower anchorages of the child restraint anchorage system, as appropriate, and attach the test device to the tether anchorage, in accordance with the manufacturer’s instructions provided pursuant to S12 of this standard. For the testing specified in this procedure, if SFAD 1 cannot be attached using the vehicle belts because
of the location of the vehicle belt buckle, the test device is attached by material whose breaking strength is equal to or greater than the breaking strength of the webbing for the seat belt assembly installed as original equipment at that seating position. The geometry of the attachment duplicates the geometry, at the pre-load point, of the attachment of the originally installed seat belt assembly. All belt systems (including the tether) used to attach the test device are tightened to a tension of not less than 53.5 N and not more than 67 N on the webbing portion of the belt. For SFAD 1, apply a rearward force of 135 N \pm 15 N, in a horizontal plane through point "X" of SFAD 1. While maintaining the force, tighten the vehicle seat belt to a tension of not less than 53.5 N and not more than 67 N measured at the lap portion of the seat belt and maintain the tension during the preload, lock the seat belt retractor, and tighten the tether belt strap to remove all slack. A rearward force of 135 N \pm 15 N is applied to the center of the lower front cross-member of SFAD 2 to press the device against the seat back as the fore-aft position of the rearward extensions of the SFAD is adjusted to remove any slack or tension.

(c) Apply the force—
(1) Initially, in a forward direction in a vertical longitudinal plane and through the Point X on the test device; and
(2) Initially, along a line through the X point and at an angle of 10 \pm 5 degrees above the horizontal. Apply a preload force of 500 N to measure the angle; and then
(3) Increase the pull force as linearly as practicable to a full force application of 15,000 N in not less than 24 seconds and not more than 30 seconds, and maintain at a 15,000 N level for 1 second.

S9.2 Apply the force specified in S6.3.2 as follows:
(a) Attach a belt strap, and tether hook, to the user-ready tether anchorage. The belt strap extends not less than 250 mm forward from the vertical transverse plane touching the rear top edge of the vehicle seat back, and passes over the top of the vehicle seat back as shown in Figure 19 of this standard;
(b) Apply the force at the end of the belt strap—
(1) Initially, in a forward direction in a vertical longitudinal plane that is parallel to the vehicle's longitudinal centerline;
(2) Initially, along a horizontal line or along any line below or above that line that is at an angle to that line of not more than 20 degrees;
(3) So that the force is attained within 30 seconds, at any onset rate of not more than 135,000 N/s; and
(4) Maintained at a 5,300 N level for a minimum of 1 second.

S9 Requirements for the lower anchorages of the child restraint anchorage system. As an alternative to complying with the requirements of S9, a vehicle manufactured on or after September 1, 1999 and before September 1, 2004 may, at the manufacturer’s option (with said option irrevocably selected prior to, or at the time of, certification of the vehicle), meet the requirements in S15 of this standard. Vehicles manufactured on or after September 1, 2004 and before September 1, 2005 must meet all of the requirements of S9 of this standard, except as provided in S16 of this standard with regard to S9.4. Vehicles manufactured on or after September 1, 2005 must meet all the requirements of S9 of this standard.

S9.1 Configuration of the lower anchorages
S9.1.1 The lower anchorages shall consist of two bars that—
(a) Are 6 mm \pm 1 mm in diameter;
(b) Are straight, horizontal and transverse;
(c) As shown in Figure 21, are:
(i) Not less than 25 mm in length, and
(ii) Are not more than 60 mm in length between the anchor bar supports or other structural members of the vehicle that restrict lateral movement of the components of a child restraint that are designed to attach to the bars, measured in a vertical plane 7 mm rearward of the vertical plane that is tangent of the rearward face of the anchor bar.
(d) For bars installed in vehicles manufactured on or after March 1, 2005, the bars must not be capable of being
stowable (foldable or otherwise stowable).

(e) [Reserved]

(f) Are part of the vehicle, such that they can only be removed by use of a tool, such as a screwdriver or wrench; and

(g) Are rigidly attached to the vehicle such that they will not deform more than 5 mm when subjected to a 100 N force in any direction.

S9.2 Location of the lower anchorages.
S9.2.1 The anchorage bars are located at the vehicle seating position by using the CRF rearward extensions, with the CRF placed against or near the vehicle seat back. With the CRF attached to the anchorages and resting on the seat cushion, the bottom surface shall have attitude angles within the limits in the following table, angles measured relative to the vehicle horizontal, longitudinal and transverse reference planes.

<table>
<thead>
<tr>
<th></th>
<th>Pitch</th>
<th>Roll</th>
<th>Yaw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15° ± 10°</td>
<td>0° ± 5°</td>
<td>0° ± 10°</td>
</tr>
</tbody>
</table>

NOTE: An explanation of the above angles is given in Figure 1.

S9.2.2 With adjustable seats adjusted as described in S9.2.3, each lower anchorage bar shall be located so that a vertical transverse plane tangent to the front surface of the bar is:

(a) Not more than 70 mm behind the corresponding point Z of the CRF, measured parallel to the bottom surface of the CRF and in a vertical longitudinal plane, while the CRF is pressed against the seat back by the rearward application of a horizontal force of 100 N at point A on the CRF; and

(b) Not less than 120 mm behind the vehicle seating reference point, measured horizontally and in a vertical longitudinal plane.

S9.2.3 Adjustable seats are adjusted as follows:

(a) Place adjustable seat backs in the manufacturer’s nominal design riding position in the manner specified by the manufacturer; and

(b) Place adjustable seats in the full rearward and full downward position.

S9.3 Adequate fit of the lower anchorages. Each vehicle and each child restraint anchorage system in that vehicle shall be designed such that the CRF can be placed inside the vehicle and attached to the lower anchorages of each child restraint anchorage system, with adjustable seats adjusted as described in S9.3(a) and (b).

(a) Place adjustable seat backs in the manufacturer’s nominal design riding position in the manner specified by the manufacturer; and

(b) Place adjustable seats in the full rearward and full downward position.

(c) To facilitate installation of the CRF in a vehicle seat, the side, back and top frames of the CRF may be removed for installation in the vehicle, as indicated in Figure 1A of this standard. If necessary, the height of the CRF may be 560 mm.

S9.4 Strength of the lower anchorages.
S9.4.1 When tested in accordance with S11, the lower anchorages shall not allow point X on SFAD 2 to be displaced horizontally more than the distances specified below, after preloading the device—

(a) 175 mm, when a force of 11,000 N is applied in a forward direction in a vertical longitudinal plane; and

(b) 150 mm, for lower anchorages when a force of 5,000 N is applied in a lateral direction in a vertical longitudinal plane that is 75 ± 5 degrees to either side of a vertical longitudinal plane.

S9.4.1.1 Forces described in S9.4.1(a), forward direction, shall be applied with an initial force application angle of 10 ± 5 degrees above the horizontal. Forces described in S9.4.1(b), lateral direction, shall be applied horizontally (0 ± 5 degrees).

S9.4.1.2 The amount of displacement is measured relative to an undisturbed point on the vehicle body.

S9.4.2 Provisions for simultaneous and sequential testing. (a) In the case of vehicle seat assemblies equipped with more than one child restraint anchorage system, the lower anchorages may, at the agency’s option, be tested simultaneously. However, forces may not be applied simultaneously for any two adjacent seating positions whose midpoints are less than 400 mm apart, as measured in accordance with S9.4.2(a)(1) and (2) and Figure 20.

1) The midpoint of the seating position lies in the vertical longitudinal...
plane that is equidistant from vertical longitudinal planes through the geometric center of each of the two lower anchorages at the seating position.

(2) Measure the distance between the vertical longitudinal planes passing through the midpoints of the adjacent seating positions, as measured along a line perpendicular to the planes.

(b) The lower anchorages of a particular child restraint anchorage system will not be tested if one or both of the anchorages have been previously tested under this standard.

§ 59.5 Marking and conspicuity of the lower anchorages. Each vehicle shall comply with § 59.5(a) or (b).

(a) Above each bar installed pursuant to § 4, the vehicle shall be permanently marked with a circle:

(1) That is not less than 13 mm in diameter;

(2) That is either solid or open, with or without words, symbols or pictograms, provided that if words, symbols or pictograms are used, their meaning is explained to the consumer in writing, such as in the vehicle’s owner’s manual; and

(3) That is located such that its center is on each seat back between 50 and 100 mm above or on the seat cushion 100 ±25 mm forward of the intersection of the vertical transverse and horizontal longitudinal planes intersecting at the horizontal centerline of each lower anchorage, as illustrated in Figure 22. The center of the circle must be in the vertical longitudinal plane that passes through the center of the bar (±25 mm).

(4) The circle may be on a tag.

(b) The vehicle shall be configured such that the following is visible: Each of the bars installed pursuant to § 4, or a permanently attached guide device for each bar. The bar or guide device must be visible without the compression of the seat cushion or seat back, when the bar or device is viewed, in a vertical longitudinal plane passing through the center of the bar or guide device, along a line making an upward 30 degree angle with a horizontal plane. Seat backs are in the nominal design riding position. The bars may be covered by a removable cap or cover, provided that the cap or cover is permanently marked with words, symbols or pictograms whose meaning is explained to the consumer in written form as part of the owner’s manual.

S10. Test conditions for testing the lower anchorages. The test conditions described in this paragraph apply to the test procedures in S11.

(a) Adjust vehicle seats to their full rearward and full downward position and place the seat backs in their most upright position. When SFAD 2 is used in testing and cannot be attached to the lower anchorages with the seat back in this position, adjust the seat back as recommended by the manufacturer in its instructions for attaching child restraints. If no instructions are provided, adjust the seat back to the position closest to the upright position that enables SFAD 2 to attach to the lower anchorages.

(b) Head restraints are adjusted in accordance with the manufacturer’s instructions, provided pursuant to §12, as to how the head restraints should be adjusted when using the child restraint anchorage system. If instructions with regard to head restraint adjustment are not provided pursuant to §12, the head restraints are adjusted to any position.

S11. Test procedure. Each vehicle shall meet the requirements of § 59.4 when tested according to the following procedures. Where a range of values is specified, the vehicle shall be able to meet the requirements at all points within the range.

(a) Forward force direction. Place SFAD 2 in the vehicle seating position and attach it to the two lower anchorages of the child restraint anchorage system. Do not attach the tether anchorage. A rearward force of 135 ±15 N is applied to the center of the tether crossbar of SFAD 2 to press the device against the seat back as the fore-aft position of the rearward extensions of the SFAD is adjusted to remove any slack or tension. Apply a preload force of 500 N at point X of the test device. Increase the pull force as linearly as practicable to a full force application of 11,000 N in not less than 24 seconds and not more than 30 seconds, and maintain at an 11,000 N level for 1 second.
(b) **Lateral force direction.** Place SFAD 2 in the vehicle seating position and attach it to the two lower anchorages of the child restraint anchorage system. Do not attach the tether anchorage. A rearward force of 135 ±15 N is applied to the center of the lower front crossbar of SFAD 2 to press the device against the seat back as the fore-aft position of the rearward extensions of the SFAD is adjusted to remove any slack or tension. Apply a preload force of 500 N at point X of the test device. Increase the pull force as linearly as practicable to a full force application of 5,000 N in not less than 24 seconds and not more than 30 seconds, and maintain at a 5,000 N level for 1 second.

S12. **Written instructions.** The vehicle must provide written instructions, in English, for using the tether anchorages and the child restraint anchorage system in the vehicle. If the vehicle has an owner’s manual, the instructions must be in that manual. The instructions shall:

(a) Indicate which seating positions in the vehicle are equipped with tether anchorages and child restraint anchorage systems;

(b) In the case of vehicles required to be marked as specified in paragraphs S4.1, S9.5(a), or S15.4, explain the meaning of markings provided to locate the lower anchorages of child restraint anchorage systems; and

(c) Include instructions that provide a step-by-step procedure, including diagrams, for properly attaching a child restraint system’s tether strap to the tether anchorages.

S13. **Tether anchorage phase-in requirements.**

S13.1 Passenger cars manufactured on or after September 1, 1999 and before September 1, 2000 shall comply with S13.1.1 through S13.2. At anytime during the production year ending August 31, 2000, each manufacturer shall, upon request from the Office of Vehicle Safety Compliance, provide information identifying the passenger cars (by make, model and vehicle identification number) that have been certified as complying with the tether anchorage requirements of this standard. The manufacturer’s designation of a passenger car as a certified vehicle is irrevocable.

S13.1.1 Subject to S13.2, for passenger cars manufactured on or after September 1, 1999 and before September 1, 2000, the number of vehicles complying with S4.2 shall be not less than 80 percent of:

(a) The manufacturer’s average annual production of passenger cars manufactured on or after September 1, 1999 and before September 1, 1999; or

(b) The manufacturer’s production of passenger cars manufactured on or after September 1, 1999 and before September 1, 2000.

S13.1.2 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S13.1.1, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as provided in S13.1.2(a) through (c), subject to S13.2.

(a) A vehicle which is imported shall be attributed to the importer.

(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer which markets the vehicle.

(c) A vehicle produced by more than one manufacturer must be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S13.1.2(a) or (b).

S13.2 For the purposes of calculating average annual production of passenger cars for each manufacturer and the number of passenger cars manufactured by each manufacturer under S13.1, each passenger car that is excluded from the requirement to provide tether anchorages is not counted.

S13.3 Until May 1, 2001, vehicles manufactured by a final-stage manufacturer or alterer need not be equipped with the tether anchorages required by S4.3 of this standard. Vehicles manufactured by a final-stage manufacturer or alterer on or after May 1, 2001 must be equipped with the tether anchorages specified in S4.3.
§ 571.225 49 CFR Ch. V (10–1–16 Edition)

S14. Lower anchorages phase-in requirements for vehicles manufactured on or after September 1, 2000 and before September 1, 2002.

S14.1 Vehicles manufactured on or after September 1, 2000 and before September 1, 2002 shall comply with S14.1.1 through S14.1.2. At anytime during the production years ending August 31, 2001, and August 31, 2002, each manufacturer shall, upon request from the Office of Vehicle Safety Compliance, provide information identifying the vehicles (by make, model and vehicle identification number) that have been certified as complying with the child restraint anchorage requirements of this standard. The manufacturer’s designation of a vehicle as a certified vehicle is irrevocable.

S14.1.1 Vehicles manufactured on or after September 1, 2000 and before September 1, 2001. Subject to S14.4, for vehicles manufactured on or after September 1, 2000 and before September 1, 2001, the number of vehicles complying with S4.3 shall be not less than 20 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 1997 and before September 1, 2000; or

(b) The manufacturer’s production on or after September 1, 2000 and before September 1, 2001.

S14.1.2 Vehicles manufactured on or after September 1, 2001 and before September 1, 2002. Subject to S14.4, for vehicles manufactured on or after September 1, 2001 and before September 1, 2002, the number of vehicles complying with S4.3 shall be not less than 50 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 1998 and before September 1, 2001; or

(b) The manufacturer’s production on or after September 1, 2001 and before September 1, 2002.

S14.2 Vehicles produced by more than one manufacturer.

S14.2.1 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S14.1.1 through S14.1.2, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S14.2.2.

(a) A vehicle which is imported shall be attributed to the importer.

(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer which markets the vehicle.

S14.2.2 A vehicle produced by more than one manufacturer must be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S14.2.1.

S14.3 Alternative phase-in schedules.

(a) Final-stage manufacturers and alterers. A final-stage manufacturer or alterer may, at its option, comply with the requirements set forth in S14.3(a)(1) and (2), instead of the requirements set forth in S14.1.1 through S14.1.2.

(1) Vehicles manufactured on or after September 1, 2000 and before September 1, 2002 are not required to be equipped with the lower anchorages specified in this standard.

(2) Vehicles manufactured on or after September 1, 2002 must be equipped with the lower anchorages specified in this standard.

(b) Small volume manufacturers. Vehicles manufactured on or after September 1, 2000 and before September 1, 2002 that are manufactured by a manufacturer that produces fewer than 5,000 vehicles worldwide annually are not required to provide the lower anchorages specified in this standard.

S14.4 For the purposes of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S14.1.1 and S14.1.2, each vehicle that is excluded from the requirement to provide child restraint anchorage systems is not counted.

S15 Alternative to complying with the requirements of S9. As an alternative to complying with the requirements of S9, a vehicle manufactured on or after September
1. 2004 may, at the manufacturer’s option (with said option irrevocably selected prior to, or at the time of, certification of the vehicle), meet the requirements in §15 of this standard. Vehicles manufactured on or after September 1, 2004 must meet the requirements of §9 of this standard.

§15.1 Dimensions and installation requirements.

§15.1.1 General. The vehicle anchorages are positioned near the seat bight. The location of the anchorages is defined with respect to the CRF. If the vehicle seat is adjustable, it is adjusted as recommended by the vehicle manufacturer for use with child restraint systems.

§15.1.2 Anchorage dimensions and location.

§15.1.2.1 The lower anchorages shall consist of two bars that—
(a) Are 6 mm ± 1 mm in diameter;
(b) Are straight, horizontal and transverse;
(c) Are not less than 25 mm in length;
(d)-(e) [Reserved]
(f) Are permanently attached to the vehicle or vehicle seat such that they can only be removed by use of a tool, such as a screwdriver or wrench.

§15.1.2.2 (a) The anchorage bars are located at the vehicle seating position with the aid of and with respect to the CRF rearward extensions, with the CRF placed against or near the vehicle seat back. With the CRF attached to the anchorages and resting on the seat cushion, the bottom surface shall have attitude angles within the limits in the following table, angles measured relative to the vehicle horizontal, longitudinal and transverse reference planes.

<table>
<thead>
<tr>
<th>Pitch</th>
<th>15° ±10°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll</td>
<td>0° ±5°</td>
</tr>
<tr>
<td>Yaw</td>
<td>0° ±10°</td>
</tr>
</tbody>
</table>

NOTE: An explanation of the above angles is given in Figure 1.

(b) With adjustable seats adjusted as described in §15.1.2.2(c), each lower anchorage bar shall be located so that a vertical transverse plane intersecting the center of the bar is:

(1) Not more than 70 mm behind point Z of the CRF, measured parallel to the bottom surface of the CRF and to the center of the bar, with the CRF rear surface against the seat back; and
(2) Not less than 120 mm behind the vehicle seating reference point, measured horizontally and to the center of the bar. (NOTE: To facilitate installation of the CRF in a vehicle seat, the CRF may be constructed of smaller separable parts and assembled in the vehicle seat. Alternatively, vehicle components may be removed to allow access.)

(c) Adjustable seats are adjusted as recommended by the vehicle manufacturer for use with child restraint systems.

§15.2 Static Strength Requirements.

§15.2.1 The strength of the anchorages shall be determined using the procedure of §15.3 to apply forces to the SFAD 2, installed in the vehicle seating position and engaged with the anchorages. The vehicle seat shall be installed in the vehicle, or in sufficient parts of the vehicle so as to be representative of the strength and rigidity of the vehicle structure. If the seat is adjustable, it shall be placed in the position recommended by the vehicle manufacturer for use with child restraint systems. If no adjusted position is recommended, the seat shall be placed in any position, at the agency’s option.

§15.2.2 Horizontal excursion of point X during application of the 8 kN and 5 kN forces must be not more than 125 mm, after preloading the device. The amount of displacement is measured relative to an undisturbed point on the vehicle body.

§15.3 Forces and directions.

§15.3.1 A rearward force of 135 N ±15 N shall be applied to the center of the lower front crossbar of SFAD 2 to press the device against the seat back as the fore-aft position of the rearward extensions of the SFAD is adjusted to remove any slack or tension. Forces shall be applied to SFAD 2 in forward and lateral directions according to the following table.

<table>
<thead>
<tr>
<th>Forward</th>
<th>0° ±5°</th>
<th>8 kN ±0.25 kN</th>
</tr>
</thead>
</table>
TABLE TO S15.3.1—DIRECTIONS OF TEST FORCES—Continued

| Lateral | 75° ±5° (to both sides of straight forward) | 5 kN ±0.25 kN |

S15.3.2 Forces in the forward direction shall be applied with an initial force application angle of 10° ± 5° above the horizontal. Lateral forces shall be applied horizontally (0° ± 5°). A pre-load force of 500 N ± 25 N shall be applied at the prescribed loading point (point X) in Figure 17. The force shall be increased to 8 kN ± 0.25 kN for forward tests, or to 5 kN ± 0.25 kN for lateral tests. Full application of the force shall be achieved within a time period of 2 seconds or less. The force shall be maintained for a period of 0.25 seconds ± 0.05 seconds.

S15.3.3 Provisions for simultaneous and sequential testing. (a) If anchorages for more than one child restraint anchorage system are installed in the vehicle seat assembly and not directly into the vehicle structure, the forces described in S15.3 may, at the agency’s option, be applied simultaneously to SFADs engaged with the anchorages. However, that force may not be applied simultaneously to SFADs engaged at any two adjacent seating positions whose midpoints are less than 400 mm apart, as measured in accordance with S15.3.3(a)(1) and (2) and Figure 20.

(1) The midpoint of the seating position lies in the vertical longitudinal plane that is equidistant from vertical longitudinal planes through the geometric center of each of the two lower anchorages at the seating position.

(2) Measure the distance between the vertical longitudinal planes passing through the midpoints of the adjacent seating positions, as measured along a line perpendicular to the planes.

(b) The lower anchorages of a particular child restraint anchorage system will not be tested if one or both of the anchorages have been previously tested under this standard.

S15.4 Marking and conspicuity of the lower anchorages. At least one anchor-age bar (when deployed for use), one guidance fixture, or one seat marking feature shall be readily visible to the person installing the CRF. If guidance fixtures are used to meet this require-
§571.225

(a) A vehicle which is imported shall be attributed to the importer.
(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.

S16.3.2 A vehicle produced by more than one manufacturer must be attributed to any one of the vehicle's manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S16.3.1.

S16.4 Alternative phase-in schedules.
(a) Final-stage manufacturers and alterers. A final-stage manufacturer or alterer may, at its option, comply with the requirements set forth in S16.4(a)(1) and (2), instead of the requirements set forth in S16.1 through S16.2.
(1) Vehicles manufactured on or after September 1, 2004 and before September 1, 2005 may meet the requirements of S6.3.4 instead of S6.3.1, and may meet the requirements of S15.2 and S15.3 instead of S9.4.
(2) Vehicles manufactured on or after September 1, 2005 must meet the requirements of S6.3.4 and S9.4.
(b) Small volume manufacturers. Vehicles manufactured on or after September 1, 2004 and before September 1, 2005 that are manufactured by a manufacturer that produces fewer than 5,000 vehicles worldwide annually may meet the requirements of S6.3.4 instead of S6.3.1, and may meet the requirements of S15.2 and S15.3 instead of S9.4. Vehicles manufactured on or after September 1, 2005 must meet the requirements of S6.3.4 and S9.4.
Figure 1 – Child restraint fixture (CRF)
Figure 1A - Child Restraint Fixture (CRF) with Side and Top Frames Removed
Note:
1. Mass of CRF 5 to 8 kg

Figure 2 - Child restraint fixture (CRF)
Notes
1. Dimensions in mm, except where otherwise indicated
2. Portion of user-ready tether anchorage that is designed to bind with the tether strap hook to be located within shaded zone
3. Drawing not to scale
4. “R” Point: Shoulder reference point
5. “V” Point: V-reference point, 350 mm vertically above and 175 mm horizontally back from H-point
6. “W” Point: W-reference point, 50 mm vertically below and 50 mm horizontally back from “R” Point
7. “M” Plane: M-reference plane, 1,000 mm horizontally back from “R” Point

Figure 3 -- Side View, User-ready Tether Anchorage Location
Notes
1. Dimensions in mm, except where otherwise indicated
2. Portion of user-ready tether anchorage that is designed to bind with the tether strap hook to be located within shaded zone
3. Drawing not to scale
4. "R" Point: Shoulder reference point
5. "V" Point: V-reference point, 350 mm vertically above and 175 mm horizontally back from H-point
6. "W" Point: W-reference point, 50 mm vertically below and 50 mm horizontally back from "R" Point
7. "M" Plane: M-reference plane, 1000 mm horizontally back from "R" Point

Figure 4 -- Enlarged Side View of Strap Wrap-around Area, User-ready Tether Anchorage Location
1. Dimensions in mm, except where otherwise indicated
2. Portion of user-ready tether anchorage that is designed to bind with the tether strap hook to be located within shaded zone
3. Drawing not to scale
4. "R" Point: Shoulder reference point
5. "V" Point: V-reference point, 350 mm vertically above and 175 mm horizontally back from H-point.
6. "W" Point: W-reference point, 50 mm vertically below and 50 mm horizontally back from "R" Point

Figure 5. Plan View (R-plane Cross Section), User-ready Tether Anchorage Location
Notes
1. Portion of user-ready tether anchorage that is designed to bind with the tether strap hook to be located within shaded zone
2. Drawing not to scale
3. "R" Point: Shoulder reference point
4. "V" Point: V-reference point, 350 mm vertically above and 175 mm horizontally back from H-point
5. "W" Point: W-reference point, 50 mm vertically below and 50 mm horizontally back from "R" Point

Figure 6 -- Front View, User-ready Tether Anchorage Location
Notes
1. Portion of user-ready tether anchorage that is designed to bind with the tether strap hook to be located within shaded zone.
2. Drawing not to scale.
4. “V” Point: V-reference point, 350 mm vertically above and 175 mm horizontally back from H-point.
5. “W” Point: W-reference point, 50 mm vertically below and 50 mm horizontally back from “R” Point.

Figure 7 – Three-dimensional Schematic View of User-ready Tether Anchorage Location.
§ 571.225 49 CFR Ch. V (10–1–16 Edition)

Notes
1. Dimensions in mm, except where otherwise indicated
2. Portion of user-ready tether anchorage that is designed to bind with the tether strap hook to be located within shaded zone
3. Drawing not to scale
4. “R” Point: Shoulder reference point
5. “M” Plane: M-reference plane, 1 000 mm horizontally back from “R” Point

Figure 8 -- Side View, User-ready Tether Anchorage Optional Location for Passenger Cars and Multipurpose Passenger Vehicles until September 1, 2004
Notes
1. Dimensions in mm, except where otherwise indicated
2. Portion of user-ready tether anchorage that is designed to bind with the tether strap hook to be located within shaded zone
3. Drawing not to scale
4. “R” Point: Shoulder reference point

Figure 9 -- Plan View (R-point Level), User-ready Tether Anchorage Optional Location for Passenger Cars and Multipurpose Passenger Vehicles until September 1, 2004
Figure 10 — Front View, User-ready Tether Anchorage Optional Location for Passenger Cars and Multipurpose Passenger Vehicles until September 1, 2004

Notes
1. Portion of user-ready tether anchorage that is designed to bind with the tether strap hook to be located within shaded zone
2. Drawing not to scale
3. “R” Point: Shoulder reference point
Notes
1. Portion of user-ready tether anchorage that is designed to bind with the tether strap hook to be located within shaded zone
2. Drawing not to scale
3. "R" Point: Shoulder reference point

Figure 11 — Three-dimensional Schematic View of User-ready Tether Anchorage Optional Location for Passenger Cars and Multipurpose Passenger Vehicles until September 1, 2004
Figure 12 – Three Dimensional Schematic View of the Static Force Application Device 1 (SFAD 1)
Notes
1. Material: 6061-T6-910 Aluminum
2. Dimensions in mm, except where otherwise indicated
3. Drawing not to scale
4. Break all outside corners

Figure 13 -- Side View, Static Force Application Device 1 (SFAD 1)
Notes
1. Material: 6061-T6-910 Aluminum
2. Dimensions in mm, except where otherwise indicated
3. Drawing not to scale
4. Break all outside corners and lightning hole edges 1.5 mm approximately.
5. Break edges of vehicle seat belt path holes at least 4 mm
6. “B” = approximately 0.8 mm

Figure 14 -- Plan View, Static Force Application Test Device 1 (SFAD 1)
Notes
1. Material: 6061-T6-910 Aluminum
2. Dimensions in mm, except where otherwise indicated
3. Drawing not to scale
4. "B" = approximately 0.8 mm
5. "C" = approximately 3.2 mm

Figure 15 -- Front View, Static Force Application Device 1 (SFAD 1)
Notes
1. Material: Steel
2. Dimensions in mm, except where otherwise indicated
3. Drawing not to scale
4. Break all outside corners approximately 1.5 mm
5. Surfaces and edges are not to be machined unless otherwise specified for tolerance.
6. Saw-cut or stock size material whenever possible.
7. Construction to be securely welded.

Figure 16 – Cross Bar, Static Force Application Device 1 (SFAD 1)
Nat'l Highway Traffic Safety Admin., DOT § 571.225

Notes:
1. Drawing not to scale
2. Dimensions in mm, except where otherwise indicated
3. Device stiffness satisfied when using a securely welded construction consisting of rectangular 3 mm steel tubing and 6 mm thick load application plate
4. If construction not as per note 3, stiffness of device is satisfied if movement of point "X" is not more than 2 mm in any direction when forces are applied as specified in S15.2.1, with device attached to rigid anchorage bars and the front cross member supported by a rigid bar that is held at the center by a longitudinal pivot 25 mm below the SFAD2 base (as shown in broken lines) to allow bending and twisting of the base of the device. Any deformation of the anchorage bars to be excluded from the measurements of the movement of point "X".

Figure 17- Side, Back and Bottom Views, ISO 13216-1 Static Force Application Device 2 (SFAD 2)
Figure 18 -- Three-dimensional Schematic Views of the ISO 13216-1 Static Force Application Device 2 (SFAD 2)
Figure 19 – Side View, Optional Tether Anchorage Test for Passenger Cars until September 1, 2004

Figure 20 – Measurement of Distance Between Adjacent Seating Positions for Use in Simultaneous Testing

d = center to center distance between lower anchorages for a given seating position (nominally 280 mm).

D = distance between vertical longitudinal planes located midway between the anchorages for a given seating position.

SgRP = Seating reference point, as defined in 49 CFR §571.3.
§ 571.225

Configuration shown is for illustration purposes only.

Figure 21. Length of Lower Anchorage Bars

Notes:
1. Drawing not to scale.
2. 50 mm ≤ a ≤ 100 mm.
3. b = 100 mm ± 25 mm.

Figure 22. Placement of Symbol on the Seat Back and Seat Cushion of a vehicle

§ 571.226 Standard No. 226; Ejection Mitigation.

S1. Purpose and Scope. This standard establishes requirements for ejection mitigation systems to reduce the likelihood of complete and partial ejections of vehicle occupants through side windows during rollovers or side impact events.

S2. Application. This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks and buses with a gross vehicle weight rating of 4,536 kg or less, except walk-in vans, modified roof vehicles and convertibles. Also excluded from this standard are law enforcement vehicles, correctional institution vehicles, taxis and limousines, if they have a fixed security partition separating the 1st and 2nd or 2nd and 3rd rows and if they are produced by more than one manufacturer or are altered (within the meaning of 49 CFR 567.7).

S3. Definitions.

Ejection impactor means a device specified in S7.1 of this standard that is a component of the ejection mitigation test device and is the moving mass that strikes the ejection mitigation countermeasure.

Ejection impactor targeting point means the intersection of the y-axis of the ejection headform and the outer surface of the ejection headform.

Ejection mitigation countermeasure means a device or devices, except seat belts, integrated into the vehicle that reduce the likelihood of occupant ejection through a side window opening, and that requires no action by the occupant for activation.

Ejection propulsion mechanism means a device that is a component of the ejection mitigation test device consisting of a mechanism capable of propelling the ejection impactor and constraining it to move along its axis or shaft.

Limited-line manufacturer means a manufacturer that sells three or fewer carlines, as that term is defined in 49 CFR 583.4, in the United States during a production year.

Modified roof means the replacement roof on a motor vehicle whose original roof has been removed, in part or in total, or a roof that has to be built over the driver’s compartment in vehicles that did not have an original roof over the driver’s compartment.

Movable window means a daylight opening composed of glazing designed to be moved with respect to the vehicle or frame while the vehicle is in motion.

Row means a set of one or more seats whose seat outlines do not overlap with the seat outline of any other seats, when all seats are adjusted to their rearmost normal riding or driving position, when viewed from the side.

Seat outline means the outer limits of a seat projected laterally onto a vertical longitudinal vehicle plane.

Side daylight opening means, other than a door opening, the locus of all points where a horizontal line, perpendicular to the vehicle vertical longitudinal plane, is tangent to the periphery of the opening. The periphery includes surfaces 100 millimeters inboard of the inside surface of the window glazing and 25 mm outboard of the outside surface of the side glazing. The periphery excludes the following: any flexible gasket material or weather stripping used to create a waterproof seal between the glazing or door and the vehicle interior; grab handles used to facilitate occupant egress and ingress; and any part of a seat.

Small manufacturer means an original vehicle manufacturer that produces or assembles fewer than 5,000 vehicles annually for sale in the United States.

Target means the x-z plane projection of the ejection headform face as shown in Figure 1.

Walk-in van means a special cargo/mail delivery vehicle that only has a driver designated seating position. The vehicle has a sliding (or folding) side door and a roof clearance that enables a person of medium stature to enter the passenger compartment area in an up-right position.

Zero displacement plane means, a vertical plane parallel to the vehicle longitudinal centerline and tangent to the most outboard surface of the ejection headform when the headform is aligned with an impact target location and just touching the inside surface of a window covering the side daylight opening.

S4. Phase-in, performance and other requirements.

S4.1 Phase-in requirements.
§ 571.226
49 CFR Ch. V (10–1–16 Edition)

S4.1.1 Except as provided in S4.1.3 of this standard, a percentage of each manufacturer’s vehicle production, as specified in S8 of this standard, manufactured on or after September 1, 2013 to August 31, 2017, shall meet the requirements of S4.2. Vehicles that are not subject to the phase-in may be certified as meeting the requirements specified in this standard.

S4.1.2 Except as provided in S4.1.3 of this section, each vehicle manufactured on or after September 1, 2017 must meet the requirements of S4.2 without use of advanced credits.

S4.1.3 Exceptions from the phase-in; special allowances.
 (a) Vehicles produced by a small manufacturer and by a limited line manufacturer are not subject to S4.1.1 of this standard, but are subject to S4.1.2.
 (b) Vehicles that are altered (within the meaning of 49 CFR 567.7) before September 1, 2018, after having been previously certified in accordance with part 567 of this chapter, and vehicles manufactured in two or more stages before September 1, 2018, are not required to meet the requirements of S4.2. Vehicles that are altered on or after September 1, 2018, and vehicles that are manufactured in two or more stages on or after September 1, 2018, must meet the requirements of S4.2.

S4.2 Performance and other requirements.
 S4.2.1 When the ejection propulsion mechanism propels the ejection impactor into the impact target locations of each side daylight opening of a vehicle according to the test procedures specified in S5 of this standard, the most outboard surface of the ejection headform shall not displace more than 100 millimeters beyond the zero displacement plane.
 S4.2.1.1 No vehicle shall use movable glazing as the sole means of meeting the displacement limit of S4.2.1.
 S4.2.1.2 Vehicles with an ejection mitigation countermeasure that deploys in the event of a rollover must deploy the countermeasure for the side daylight opening being tested according to the procedure specified in S5 of this standard.
 S4.2.1.3 If a side daylight opening contains no target locations, the impact test of S4.2.1 is not performed on that opening.

S4.2.2 Vehicles that have an ejection mitigation countermeasure that deploys in the event of a rollover must have a monitoring system with a readiness indicator. The indicator shall monitor its own readiness and must be clearly visible from the driver’s designated seating position. The same readiness indicator required by S4.5.2 of FMVSS No. 208 may be used to meet the requirement. A list of the elements of the system being monitored by the indicator shall be included with the information furnished in accordance with S4.2.3.

S4.2.3 Written information.
 (a) Vehicles with an ejection mitigation countermeasure that deploys in the event of a rollover must be described as such in the vehicle’s owner manual or in other written information provided by the vehicle manufacturer to the consumer.
 (b) Vehicles that have an ejection mitigation countermeasure that deploys in the event of a rollover must include in written information a discussion of the readiness indicator required by S4.2.2, specifying a list of the elements of the system being monitored by the indicator, a discussion of the purpose and location of the telltale, and instructions to the consumer on the steps to take if the telltale is illuminated.

S4.2.4 Technical Documentation. For vehicles that have an ejection mitigation countermeasure that deploys in the event of a rollover, the vehicle manufacturer must make available to the agency, upon request, the following information: A discussion of the sensor system used to deploy the countermeasure, including the pertinent inputs to the computer or calculations within the computer and how its algorithm uses that information to determine if the countermeasure should be deployed.

S5. Test procedures.
 S5.1 Demonstrate compliance with S4.2 of this standard in accordance with the test procedures specified in this standard, under the conditions of S6, using the equipment described in S7. In the impact test described by these procedures, target locations are
identified (S5.2) and the zero displacement plane location is determined (S5.3). The glazing is pre-broken, fully retracted or removed prior to the impact test (S5.4). The countermeasure is deployed, if applicable, and an ejection impactor (see §7.1) strikes the countermeasure at the impact target locations, at the specified speeds and times (S5.5). The lateral displacement of the ejection impactor beyond the zero displacement plane is measured.

§5.2 Determination of impact target locations.

§5.2.1 Boundary of target location.

§5.2.1.1 Initial determination of offset line. Determine the location of an offset line within the side daylight opening by projecting each point of the side daylight opening laterally onto a vehicle vertical longitudinal plane. Move each point by 25±2 mm towards the center of the side daylight opening projection and perpendicular to a line tangent to the projection at that point, while maintaining the point on a vehicle vertical longitudinal plane.

§5.2.1.2 Rearmost limit of offset line. (a) Seats fixed in a forward facing direction. Except as provided in §5.2.1.2(b), if an offset line extends rearward of a transverse vehicle plane located behind the seating reference point at the distance specified in 5.2.1.2(a)(1) or (2), the transverse vehicle plane defines the rearward edge of the offset line for the purposes of determining target locations.

(1) For a vehicle with fewer than 3 rows—1,400 mm behind the portion of the seat rearmost in the vehicle.

(2) For a vehicle with 3 or more rows—600 mm behind the portion of the seat rearmost in the vehicle, for a seat in the 3rd row.

(c) Vehicles with partitions or bulkheads. If a vehicle has a fixed transverse partition or bulkhead behind which there are no designated seating positions, a vertical transverse vehicle plane 25 mm forward of the most forward portion of the partition or bulkhead defines the rearward edge of the offset line for the purposes of determining target locations when said plane is forward of the limiting plane defined in §5.2.1.2(a) or (b).

§5.2.2 Preliminary target locations.

(a) To identify the impact target locations, the following procedures are performed with the x and z axes of the target, shown in Figure 1 (provided for illustration purposes), aligned within ±1 degree of the vehicle longitudinal and vertical axes, respectively, and the target y axis pointing in the outboard direction.

(b) Place targets at any location inside the offset-line where the target is tangent to within 2 mm of the offset line at just two or three points (see Figure 2) (figure provided for illustration purposes).

§5.2.3 Determination of primary target locations. Divide the side daylight opening into four quadrants by passing a vertical line and a horizontal line, in a vehicle vertical longitudinal plane, through the geometric center of the side daylight opening.

§5.2.3.1 Front windows. For any side daylight opening forward of the vehicle B-pillar, the primary quadrants are the forward-lower and rearward-upper.
S5.2.3.2 Rear windows. For any side daylight opening rearward of the B-pillar, the primary quadrants are the forward-upper and rearward-lower.

S5.2.3.3 If a primary quadrant contains only one target center, that target is the primary target for that quadrant (see Figure 3) (figure provided for illustration purposes). If there is more than one target center in a primary quadrant, the primary target for that quadrant is the lowest target in a lower quadrant and the highest target in an upper quadrant. If there is a primary quadrant that does not contain a target center, the target center closest to the primary quadrant outline is the primary target.

S5.2.4 Determination of secondary target locations.

S5.2.4.1 Front windows. Measure the horizontal distance between the centers of the primary targets. For a side daylight opening forward of the B-pillar, place one secondary target center rearward of the forward primary target by one-third of the horizontal distance between the primary target centers and tangent with upper portion of the offset-line. Place another secondary target center rearward of the forward primary target by two-thirds of the horizontal distance between the primary target centers and tangent with the lower portion of the offset-line (see Figure 4) (figure provided for illustration purposes).

S5.2.4.2 Rear windows. For side daylight openings rearward of the B-pillar, place one secondary target center rearward of the forward primary target by one-third of the horizontal distance between the primary target centers and tangent with lower portion of the offset-line. Place another secondary target center rearward of the forward primary target by two-thirds of the horizontal distance between the primary target centers and tangent with the upper portion of the offset-line (see Figure 4) (figure provided for illustration purposes).

S5.2.5 Target adjustment.

S5.2.5.1 Target elimination and reconstitution.

S5.2.5.1.1 Target elimination. Determine the horizontal and vertical distance between the centers of the targets. If the minimum distance between the z axes of the targets is less than 135 mm and the minimum distance between the x axes of the targets is less than 170 mm, eliminate the targets in the order of priority given in steps 1 through 4 of Table 1 (see Figures 5a and 5b) (figures provided for illustration purposes). In each case, both the z axes of the targets must be closer than 135 mm and x axes of the targets must be closer than 170 mm. If the minimum distance between the z axes of the targets is not less than 135 mm or the minimum distance between the x axes of the targets is not less than 170 mm, do not eliminate the target. Continue checking all the targets listed in steps 1 through 4 of Table 1.

| TABLE 1—PRIORITY LIST OF TARGET DISTANCE TO BE CHECKED AGAINST LIMITS |
|---|---|---|
| Step | Measure distance from z axis to z axis and x axis to x axis for these targets | Eliminate this target if distances between z axes of targets and x axes of targets are less than 135 mm and 170 mm, respectively |
| 1 | Upper Secondary to Lower Secondary | Upper Secondary. |
| 2 | Upper Primary to Upper or Remaining Secondary | Upper or Remaining Secondary. |
| 3 | Lower Primary to Lower or Remaining Secondary | Lower or Remaining Secondary. |
| 4 | Upper Primary to Lower Primary | Upper Primary. |

S5.2.5.1.2 Target reconstitution. If after following the procedure given in S5.2.5.1.1, there are only two targets remaining, determine the absolute distance between the centers of these targets. If this distance is greater than or equal to 360 mm, place a target such that its center bisects a line connecting the centers of the remaining targets.

S5.2.5.2 Target reorientation—90 degree rotation. If after following the procedure given in S5.2.5.1 there are less than four targets in a side daylight opening, repeat the procedure in 5.2 through 5.2.5.1.2, with a modification to S5.2 as follows. Reorient the target by
rotating it 90 degrees about the y axis of the target such that the target positive z axis is aligned within ±1 degree of the vehicle longitudinal axis, pointing in the direction of the vehicle positive x axis (see Figures 5a and 5b) (figures provided for illustration purposes). If after performing the procedure in this section, the remaining targets exceed the number of targets determined with the original orientation of the target, the reoriented targets represent the final target locations for the side daylight opening.

§5.2.5.3 Target reorientation incremental rotation. If after following the procedure given in §5.2.5.2 there are no targets in a side daylight opening, starting with the target in the position defined in §5.2.2(a), reorient the target by rotating it in 5 degree increments about the y axis of the target by rotating the target positive z axis toward the vehicle positive x axis. At each increment of rotation, attempt to fit the target within the offset line of the side daylight opening. At the first increment of rotation where the target will fit, place the target center as close as possible to the geometric center of the side daylight opening. If more than one position exists that is closest to the geometric center of the side daylight opening, select the lowest.

§5.3 Determination of zero displacement plane. The glazing covering the target location of the side daylight opening being tested is intact and in place in the case of fixed glazing and intact and fully closed in the case of movable glazing. With the ejection impactor targeting point aligned within ±2 mm of the center of any target location specified in §5.2, and with the ejection impactor on the inside of the vehicle, slowly move the impactor towards the window until contact is made with the interior of the glazing with no more than 20 N of pressure being applied to the window. The location of the most outboard surface of the headform establishes the zero displacement plane for this target location.

§5.4 Window position and condition. Subject to §5.5(b), prior to impact testing, the glazing covering the target location must be removed from the side daylight opening, fully retracted, or pre-broken according to the procedure in §5.4.1, at the vehicle manufacturer’s option.

§5.4.1 Window glazing pre-breaking procedure.

§5.4.1.1 Breakage pattern. Locate the geometric center of the side daylight opening, established in §5.2.3 of this standard. Mark the outside surface of the window glazing in a horizontal and vertical grid of points separated by 75±2 mm with one point coincident within ±2 mm of the geometric center of the side daylight opening (see Figure 6) (figure provided for illustration purposes). Mark the inside surface of the window glazing in a horizontal and vertical grid of points separated by 75±2 mm with the entire grid horizontally offset by 37.5±2 mm from the grid of points on the outside of the glazing.

§5.4.1.2 Breakage method.

(a) Start with the inside surface of the window and forward-most, lowest mark made as specified in §5.4.1.1 of this standard. Use a center punch in this procedure. The punch tip has a 5±2 mm diameter prior to coming to a point. The spring is adjusted to require 150±25 N of force to activate the punch. Only once at each mark location, apply pressure to activate the spring in the center punch in a direction which is perpendicular to the tangent of the window surface at the point of contact, within ±10 degrees. Apply the pressure only once at each mark location, even if the glazing does not break or no hole results.

(b) Use a 100±10 mm × 100±10 mm piece of plywood with a minimum thickness of 18 mm as a reaction surface on the opposite side of the glazing to prevent to the extent possible the window surface from deforming by more than 10 mm when pressure is being applied to the hole-punch.

(c) Continue the procedure with the center punch by moving rearward in the grid until the end of a row is reached. When the end of a row is reached, move to the forward-most mark on the next higher row and continue the procedure. Continue in this pattern until the procedure is conducted at each marked location on the inside surface of the glazing.

(d) Repeat the process on the outside surface of the window.
§ 571.226 49 CFR Ch. V (10–1–16 Edition)

(e) If punching a hole causes the glazing to disintegrate, halt the breakage procedure and proceed with the headform impact test.

S5.5 Impact speeds and time delays.
The ejection impactor speeds specified below must be achieved after propulsion has ceased.

(a) Vehicles with or without an ejection mitigation countermeasure that deploys in a rollover. For a vehicle with an ejection mitigation countermeasure that deploys in a rollover, using the ejection propulsion mechanism, propel the ejection impactor such that it first strikes the countermeasure, while aligned with any target location specified in S5.2 of this standard, 1.5 ±0.1 seconds after activation of the ejection mitigation countermeasure that deploys in the event of a rollover, and at a speed of 20 ±0.5 km/h. For a vehicle without an ejection mitigation countermeasure that deploys in a rollover, propel the ejection impactor any time such that it first strikes the countermeasure, while aligned with any target location specified in S5.2 of this standard, at a speed of 20 ±0.5 km/h.

(b) Vehicles with an ejection mitigation countermeasure that deploys in a rollover. For a vehicle with an ejection mitigation countermeasure that deploys in a rollover, remove or fully retract any movable glazing from the side daylight opening. Using the ejection propulsion mechanism, propel the ejection impactor such that it first strikes the countermeasure, while aligned with any target location specified in S5.2 of this standard, 6.0 ±0.1 seconds after activation of an ejection mitigation countermeasure that deploys in the event of a rollover, and at a speed of 16 ±0.5 km/h.

(c) An ejection mitigation countermeasure that deploys in the event of a rollover is described as such in the vehicle's owner manual or in other written information provided by the vehicle manufacturer to the consumer.

S5.6 Ejection impactor orientation.

S5.6.1 If the targets for the side daylight opening being impacted were determined by the procedure specified in S5.2.2 through S5.2.5.1 only, the ejection impactor orientation is as follows. At the time of launch the ejection impactor is aligned with the x, y and z axes of the ejection headform must be aligned within ±1 degree of the vehicle longitudinal, transverse and vertical axes, respectively.

S5.6.2 If the targets for the side daylight opening being impacted were determined by the procedure specified in S5.2.5.2, the ejection impactor orientation is as follows. At the time of launch the ejection impactor is rotated by 90 degrees about the ejection headform y axis, from the orientation specified in S5.6.1, resulting in the headform positive z axis pointing in the direction of the vehicle positive x axis.

S5.6.3 If the targets for the side daylight opening being impacted were determined by the procedure specified in S5.2.5.3, the ejection impactor orientation is as follows. At the time of launch the ejection impactor is rotated about the y axis of the ejection headform by rotating the headform positive z axis towards the vehicle positive x axis, in the increment determined to be necessary in S5.2.5.3 to fit the target within the side daylight opening.

S5.6.4 After any test, extend the ejection impactor to the zero plane and determine that x, y and z axes of the ejection headform remain aligned within ±1 degree of its orientation at launch as specified in S5.6.1—5.6.3.

S6 General test conditions.

S6.1 Vehicle test attitude. The vehicle is supported off its suspension at an attitude determined in accordance with S6.1(a) through (f).

(a) The vehicle is loaded to its unloaded vehicle weight.

(b) All tires are inflated to the manufacturer's specifications listed on the vehicle's tire placard.

(c) Place vehicle on a level surface.

(d) Pitch: Measure the sill angle of the driver door sill and mark where the angle is measured.

(e) Roll: Mark a point on the vehicle body above the left and right front wheel wells. Determine the vertical height of these two points from the level surface.

(f) Support the vehicle off its suspension such that the driver door sill angle is within ±1 degree of that measured at the marked area in S6.1(d) and the vertical height difference of the two points marked in S6.1(e) is within ±15
mm of the vertical height difference determined in S6.1(e).

S6.2 Doors.
(a) Except as provided in S6.2(b) or S6.2(c), doors, including any rear hatchback or tailgate, are fully closed and latched but not locked.

(b) During testing, any side door on the opposite side of the longitudinal centerline of the vehicle from the target to be impacted may be open or removed.

(c) During testing, any rear hatchback or tailgate may be open or removed for testing any target.

S6.3 Steering wheel, steering column, seats, grab handles, and exterior mirrors. During targeting and testing, the steering wheel, steering column, seats, grab handles and exterior mirrors may be removed from the vehicle or adjusted to facilitate testing and/or provide an unobstructed path for headform travel through and beyond the vehicle.

S6.4 Other vehicle components and structures. During targeting and testing, interior vehicle components and vehicle structures other than specified in S6.2 and S6.3 may be removed or adjusted to the extent necessary to allow positioning of the ejection propulsion mechanism and provide an unobstructed path for the headform travel through and beyond the vehicle.

S6.5 Temperature and humidity.
(a) During testing, the ambient temperature is between 18 degrees C. and 29 degrees C., at any relative humidity between 10 percent and 70 percent.

(b) The headform specified in S7.1.1 of this standard is exposed to the conditions specified in S6.5(a) for a continuous period not less than one hour, prior to the test.

S7. Ejection mitigation test device specifications. The ejection mitigation test device consists of an ejection impactor and ejection propulsion mechanism with the following specifications. The ability of a test device to meet these specifications may be determined outside of the vehicle.

S7.1 Ejection impactor. The ejection impactor consists of an ejection headform attached to a shaft. The ejection impactor has a mass of 18 kg ±0.05 kg. The shaft is parallel to the y axis of the headform.

S7.1.1 Ejection headform dimensions. The ejection headform has the dimensions shown in Figure 1 and is depicted in the “Parts List; Ejection Mitigation Headform Drawing Package,” December 2010, and the “Parts List and Drawings; Ejection Mitigation Headform Drawing Package,” December 2010 (incorporated by reference; see §571.5).

S7.2 Static deflection. The ejection impactor targeting point must not deflect more than 20 mm in the x-z plane when a 981 N ±5 N force is applied in a vehicle vertical longitudinal plane, through the y axis of the headform and no more than 5 mm rear of the posterior surface of the headform. The force is applied once in each of the following headform axes: +z, –z, +x, –x. The static deflection measurement is made with the ejection impactor extended 400 mm outboard of the theoretical point of impact with the countermeasure and attached to the ejection propulsion mechanism, including any support frame and anchors.

S7.3 Frictional characteristics.
(a) Measure the dynamic coefficient of friction of the ejection impactor and any associated bearings and bearing housing in a test ready orientation. Repeat the measurement in three more orientations with the ejection impactor and any associated bearings and bearing housing rotated 90, 180 and 270 degrees about the headform y axis. Perform the measurement five consecutive times at each orientation.

(b) Measure the average force necessary to move the ejection impactor 200 mm rearward into the ejection propulsion mechanism at a rate of 50 (±13) mm per second, starting at a point 400 mm outboard of the theoretical point of impact with the countermeasure. Measure the force to an accuracy of ±5 N. The measurement excludes the force measured over the first 25 mm of travel and is recorded at a minimum frequency of 100 Hz. During the test a 100 kg ±0.5 kg mass is attached to the impactor with its center of gravity passing through the axis of motion of the impactor and no more than 5 mm rear of the posterior surface of the headform.

(c) Take the five force level averages made at each impactor orientation in S7.3(a) and average them. Take the
§ 571.226

maximum of the force average values and divide by 9.81 times the combined mass of the ejection impactor and mass added in S7.3(b). The resulting value must not exceed 0.25.

S7.4 Targeting accuracy. Determine that the ejection mitigation test device can deliver the ejection impactor targeting point through a zone defined by a cylinder with a 20 mm diameter and 100 mm length, when the ejection impactor is moving at the speed specified in S5.5. The projection of the long axis of the cylinder is normal to the target and passes through the target center. The long axis of the cylinder is bisected by a vehicle vertical longitudinal plane passing through the theoretical point of impact with the countermeasure.

S8 Phase-in Schedule for Vehicle Certification.

S8.1 Vehicles manufactured on or after September 1, 2013 and before September 1, 2016. At anytime during the production years ending August 31, 2014, August 31, 2015, and August 31, 2016, each manufacturer shall, upon request from the Office of Vehicle Safety Compliance, provide information identifying the vehicles (by make, model and vehicle identification number) that have been certified as complying with this standard. The manufacturer’s designation of a vehicle as a certified vehicle is irrevocable.

S8.2 Vehicles manufactured on or after September 1, 2013 and before September 1, 2014. Subject to S8.9, for vehicles manufactured on or after September 1, 2013 and before September 1, 2014, the number of vehicles complying with S4.2 shall be not less than 25 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured in the three previous production years; or

(b) The manufacturer’s production in the current production year.

S8.3 Vehicles manufactured on or after September 1, 2015 and before September 1, 2016. Subject to S8.3, for vehicles manufactured on or after September 1, 2015 and before September 1, 2016, the number of vehicles complying with S4.2 shall be not less than 50 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured in the three previous production years; or

(b) The manufacturer’s production in the current production year.

S8.4 Vehicles manufactured on or after September 1, 2015 and before September 1, 2016. Subject to S8.3, for vehicles manufactured on or after September 1, 2015 and before September 1, 2016, the number of vehicles complying with S4.2 shall be not less than 50 percent of:

(a) The manufacturer’s average annual production of vehicles manufactured in the three previous production years; or

(b) The manufacturer’s production in the current production year.

S8.5 Vehicles manufactured on or after September 1, 2016 and before September 1, 2017. Subject to S8.9, for vehicles manufactured on or after September 1, 2016 and before September 1, 2017, the number of vehicles complying with S4.2 shall be not less than 100 percent of the manufacturer’s production in the current production year.

S8.6 Vehicles produced by more than one manufacturer. For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S8.1 through S8.4, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S8.7.

(a) A vehicle that is imported shall be attributed to the importer.

(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.

S8.7 A vehicle produced by more than one manufacturer shall be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 585, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S8.5.

S8.8 For the purposes of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S8, do not count any
S8.9 Calculation of complying vehicles.

(a) For the purposes of calculating the vehicles complying with S8.2, a manufacturer may count a vehicle if it is manufactured on or after March 1, 2011 but before September 1, 2014.

(b) For purposes of complying with S8.3, a manufacturer may count a vehicle if it—
 (1) Is manufactured on or after March 1, 2011 but before September 1, 2015 and,
 (2) Is not counted toward compliance with S8.2.

(c) For purposes of complying with S8.4, a manufacturer may count a vehicle if it—
 (1) Is manufactured on or after March 1, 2011 but before September 1, 2016 and,
 (2) Is not counted toward compliance with S8.2 or S8.3.

(d) For purposes of complying with S8.5, a manufacturer may count a vehicle if it—
 (1) Is manufactured on or after March 1, 2011 but before September 1, 2017 and,
 (2) Is not counted toward compliance with S8.2, S8.3, or S8.4.

(e) For the purposes of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer, each vehicle that is excluded from having to meet this standard is not counted.

Figure 1 – Ejection Headform Face. All dimensions are millimeters.
Figure 5
Facing Left Side of Vehicle
Target Orientation and Minimum Distance Between X and Z Axes of Targets

Vertical Orientation

Horizontal Orientation

Figure 5a

Facing Right Side of Vehicle
Target Orientation and Minimum Distance Between X and Z Axes of Targets

Vertical Orientation

Horizontal Orientation

Figure 5b
§571.301 Standard No. 301; Fuel system integrity.

S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems.

S2. Purpose. The purpose of this standard is to reduce deaths and injuries occurring from fires that result from fuel spillage during and after motor vehicle crashes, and resulting from ingestion of fuels during siphoning.

S3. Application. This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks and buses that have a GVWR of 4,536 kg or less and use fuel with a boiling point above 0 °C, and to school buses that have a GVWR greater than 4,536 kg and use fuel with a boiling point above 0 °C.

S4. Definition. Fuel spillage means the fall, flow, or run of fuel from the vehicle but does not include wetness resulting from capillary action.

S5. General requirements.

S5.1 Passenger cars, and multipurpose passenger vehicles, trucks, and buses with a GVWR of 10,000 pounds or less. Each passenger car and each multipurpose passenger vehicle, truck, and bus with a GVWR of 10,000 pounds or less shall meet the requirements of S6.1 through S6.4. Each of these types of vehicles that is manufactured to use alcohol fuels shall also meet the requirements of S6.6.

S5.2 [Reserved]

S5.3 [Reserved]

S5.4 Schoolbuses with a GVWR greater than 10,000 pounds. Each schoolbus with a GVWR greater than 10,000 pounds shall meet the requirements of S6.5. Each schoolbus with a GVWR greater than 10,000 pounds that is manufactured to use alcohol fuels shall meet the requirements of S6.6.

S5.5 Fuel spillage; Barrier crash. Fuel spillage in any fixed or moving barrier crash test shall not exceed 28 g from impact until motion of the vehicle has ceased, and shall not exceed a total of 142 g in the 5-minute period following the crash test.

Figure 6

cessation of motion. For the subsequent 25-minute period, fuel spillage during any 1 minute interval shall not exceed 28 g.

§5.6 Fuel spillage; rollover. Fuel spillage in any rollover test, from the onset of rotational motion, shall not exceed a total of 142 g for the first 5 minutes of testing at each successive 90° increment. For the remaining test period, at each increment of 90° fuel spillage during any 1 minute interval shall not exceed 28 g.

§5.7 Alcohol fuel vehicles. Each vehicle manufactured to operate on an alcohol fuel (e.g., methanol, ethanol) or a fuel blend containing at least 20 percent alcohol fuel shall meet the requirements of §6.6.

§6. Test requirements. Each vehicle with a GVWR of 4,536 kg or less shall be capable of meeting the requirements of any applicable barrier crash test followed by a static rollover, without alteration of the vehicle during the test sequence. A particular vehicle need not meet further requirements after having been subjected to a single barrier crash test and a static rollover test. Where manufacturer options are specified in this standard, the manufacturer must select an option not later than the time it certifies the vehicle and may not thereafter select a different option for that vehicle. Each manufacturer must, upon request from the National Highway Traffic Safety Administration, provide information regarding which of the compliance options it has selected for a particular vehicle or make/model.

§6.1 Frontal barrier crash. When the vehicle travelling longitudinally forward at any speed up to and including 48 km/h impacts a fixed collision barrier that is perpendicular to the line of travel of the vehicle, or at any angle up to 30° in either direction from the perpendicular to the line of travel of the vehicle, with 50th-percentile test dummies as specified in part 572 of this chapter at each front outboard designated seating position and at any other position whose protection system is required to be tested by a dummy under the provisions of Standard No. 208, under the applicable conditions of §7, fuel spillage shall not exceed the limits of §5.5.

§6.2 Rear moving barrier crash. (a) Vehicles manufactured before September 1, 2006. When the vehicle is impacted from the rear by the barrier specified in §7.3(a) of this standard moving at 48 km/h, with 50th percentile test dummies as specified in part 572 of this chapter at each front outboard designated seating position, under the applicable conditions of §7, fuel spillage must not exceed the limits of §5.5.

(b) Vehicles manufactured on or after September 1, 2006. When the vehicle is impacted from the rear by a moving deformable barrier 80 ± 1.0 km/h with a 70 percent overlap, with 50th percentile test dummies as specified in part 572 of this chapter at each front outboard designated seating position, under the applicable conditions of §7, fuel spillage must not exceed the limits of §5.5.

(c) Small volume manufacturers. Notwithstanding §6.2(b) of this standard, vehicles manufactured on or after September 1, 2004 and before September 1, 2008 by a manufacturer that produces fewer than 5,000 vehicles annually for sale in the United States may meet the requirements of §6.2(a). Vehicles manufactured on or after September 1, 2008 by small volume manufacturers must meet the requirements of §6.2(b).

§6.3 Side moving barrier crash. (a) Vehicles manufactured before September 1, 2004. When the vehicle is impacted laterally on either side by a barrier moving at 32 km/h with 50th percentile test dummies as specified in part 572 of this chapter at positions required for testing to Standard No. 208 (49 CFR 571.208), under the applicable conditions of §7, fuel spillage shall not exceed the limits of §5.5.

(b) Vehicles manufactured on or after September 1, 2004. When the vehicle is impacted laterally on either side by a moving deformable barrier at 53 ± 1.0 km/h with the appropriate 49 CFR part 572 test dummies specified in 571.214 at positions required for testing by §7.1.1, §7.2.1, or §7.2.2 of Standard 214, under the applicable conditions of §7 of this standard, fuel spillage shall not exceed the limits of §5.5 of this standard.

(c)(1) Notwithstanding §6.3(b) of this standard, vehicles having a GVWR greater than 6,000 lb (2,722 kg) may meet §6.3(a) instead of §6.3(b) of this standard until September 1, 2005.
(2) Notwithstanding S6.3(b) of this standard, vehicles having a GVWR greater than 6,000 lb (2,722 kg) manufactured on or after September 1, 2005 must meet the requirements of S6.3(b) of this standard unless they are excluded from S6.3(b) under the phase-in specified in this paragraph. Excluded vehicles must meet the requirements of S6.3(a) of this standard. For vehicles having a GVWR greater than 6,000 lb (2,722 kg) manufactured on or after September 1, 2005 and before September 1, 2006, the number of vehicles complying with S6.3(b) shall be not less than 90 percent of:

(i) The manufacturer's average annual production of vehicles with a GVWR greater than 6,000 lb (2,722 kg) manufactured on or after September 1, 2002 and before September 1, 2005; or

(ii) The manufacturer's production of vehicles with a GVWR greater than 6,000 lb (2,722 kg) on or after September 1, 2004 and before September 1, 2005.

(iii) Vehicles that have a GVWR greater than 6,000 lb (2,722 kg) and that are manufactured on or after September 1, 2006 must meet the requirements of S6.3(b) of this standard.

(3) Vehicles produced by more than one manufacturer. For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S6.3(c)(2)(i) and S6.3(c)(2)(ii) of this standard, a vehicle produced by more than one manufacturer shall be attributed to a single manufacturer as follows, subject to S6.3(c)(4).

(i) A vehicle which is imported shall be attributed to the importer.

(ii) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, shall be attributed to the manufacturer that markets the vehicle.

(iii) A vehicle produced by more than one manufacturer shall be attributed to a single manufacturer specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR 568.6, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S6.3(c)(3).

(d) Notwithstanding S6.3(b) of this standard, vehicles with a GVWR of 6,000 lb (2,722 kg) or less that are manufactured in two or more stages or altered (within the meaning of 49 CFR 567.7) after having been previously certified in accordance with part 567 of this chapter may meet S6.3(a) of this standard until September 1, 2005. Vehicles with a GVWR of 6,000 lb (2,722 kg) or less that are manufactured in two or more stages or altered (within the meaning of 49 CFR 567.7) after having been previously certified in accordance with part 567 of this chapter and that are manufactured on or after September 1, 2005 must meet the requirements of S6.3(b).

(e) Notwithstanding S6.3(b) and (c) of this standard, vehicles with a GVWR greater than 6,000 lb (2,722 kg) that are manufactured in two or more stages or altered (within the meaning of 49 CFR 567.7) after having been previously certified in accordance with part 567 of this chapter and that are manufactured on or after September 1, 2006 must meet the requirements of S6.3(b).

S6.4 Static rollover. When the vehicle is rotated on its longitudinal axis to each successive increment of 90° following an impact crash of S6.1, S6.2, or S6.3, fuel spillage shall not exceed the limits of S6.5.

S6.5 Moving contoured barrier crash. When the moving contoured barrier assembly traveling longitudinally forward at any speed up to and including 48 km/h impacts the test vehicle (school bus with a GVWR exceeding 4,536 kg) at any point and angle, under the applicable conditions of S7.1 and S7.5, fuel spillage shall not exceed the limits of S5.5.

S6.6 Anti-siphoning test for alcohol fuel vehicles. Each vehicle shall have means that prevent any hose made of vinyl plastic or rubber, with a length of not less than 1200 millimeters (mm) and an outside diameter of not less than 5.2 mm, from contacting the level...
surface of the liquid fuel in the vehicle’s fuel tank or fuel system, when the hose is inserted into the filler neck attached to the fuel tank with the fuel tank filled to any level from 90 to 95 percent of capacity.

§571.301 Test conditions. The requirements of §5.1 through §5.6 and §6.1 through §6.5 shall be met under the following conditions. Where a range is specified, the vehicle must be capable of meeting the requirements at all points within the range.

1 General test conditions. The following conditions apply to all tests.

1.1 The fuel tank is filled to any level from 90 to 95 percent of capacity with Stoddard solvent, having the physical and chemical properties of type 1 solvent, Table I of ASTM D484-71 (incorporated by reference, see §571.5).

1.2 The fuel system other than the fuel tank is filled with Stoddard solvent to its normal operating level.

1.3 In meeting the requirements of §6.1 through §6.3, if the vehicle has an electrically driven fuel pump that normally runs when the vehicle’s electrical system is activated, it is operating at the time of the barrier crash.

1.4 The parking brake is disengaged and the transmission is in neutral, except that in meeting the requirements of §6.5 the parking brake is set.

1.5 Tires are inflated to manufacturer’s specifications.

1.6 The vehicle, including test devices and instrumentation, is loaded as follows:

(a) Except as specified in §7.1.1, a passenger car is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus the necessary test dummies as specified in §6, restrained only by means that are installed in the vehicle for protection at its seating position.

(b) Except as specified in §7.1.1, a multipurpose passenger vehicle, truck, or bus with a GVWR of 4,536 kg or less is loaded to its unloaded vehicle weight, plus the necessary test dummies as specified in §6, plus 136 kg or its rated cargo and luggage capacity weight, whichever is less, secured in the load carrying area and distributed as nearly as possible in proportion to its GAWR. For the purpose of this standard, unloaded vehicle weight does not include the weight of work-performing accessories. Each dummy is restrained only by means that are installed in the vehicle for protection at its seating position.

(c) Except as specified in §7.1.1, a school bus with a GVWR greater than 4,536 kg is loaded to its unloaded vehicle weight, plus 54 kg of unsecured mass at each designated seating position.

2 Side moving barrier test conditions. (a) Vehicles manufactured before September 1, 2004. The side moving barrier crash test conditions are those specified in §8.2 of Standard No. 208 (49 CFR 571.208).

(b) Vehicles manufactured on or after September 1, 2004. The side moving deformable barrier crash test conditions are those specified in §8 of Standard 214 (49 CFR 571.214).

3 Rear moving barrier test conditions. (a) Vehicles manufactured before September 1, 2006. The rear moving barrier test conditions are those specified in §8.2 of Standard No. 208 (49 CFR 571.208), except for the positioning of the barrier and the vehicle. The barrier and test vehicle are positioned so that at impact—

(1) The vehicle is at rest in its normal attitude;

(2) The barrier is traveling at 48 km/h with its face perpendicular to the longitudinal centerline of the vehicle; and

(3) A vertical plane through the geometric center of the barrier impact surface and perpendicular to that surface coincides with the longitudinal centerline of the vehicle.

(b) Vehicles manufactured on or after September 1, 2006. The rear moving deformable barrier is the same as that shown in Figure 2 of Standard No. 214 (49 CFR 571.214) and specified in 49 CFR part 587, except as otherwise specified in paragraph §7.3 (b). The barrier and test vehicle are positioned so that at impact—

(1) The vehicle is stationary;

(2) The deformable face of the barrier is mounted on the barrier 50 mm (2 inches) lower than the height from the
Nat’l Highway Traffic Safety Admin., DOT § 571.301

ground specified in Figure 2 of Standard No. 214 (49 CFR 571.214) (All dimensions from the ground in Figure 2, Front View should be reduced by 50 mm (2 inches));

(3) The barrier is traveling 80 ±1.0 km/h; and

(4) The barrier impacts the test vehicle with the longitudinal centerline of the vehicle parallel to the line of travel and perpendicular to the barrier face within a tolerance of ±5 degrees. The test vehicle and barrier face are aligned so that the barrier strikes the rear of the vehicle with 70 percent overlap toward either side of the vehicle. So aligned, the barrier face fully engages one half of the rear of the vehicle and partially engages the other half. At impact, the vehicle’s longitudinal centerline is located inboard either of the side edges of the barrier by a distance equal to 20 percent of the vehicle’s width ±50 mm (see Figure 3). The vehicle’s width is the maximum dimension measured across the widest part of the vehicle, including bumpers and molding, but excluding such components as exterior mirrors, flexible mud flaps, marker lamps, and dual rear wheel configurations.

S7.4 Static rollover test conditions. The vehicle is rotated about its longitudinal axis, with the axis kept horizontal, to each successive increment of 90°, 180°, and 270° at a uniform rate, with 90° of rotation taking place in any time interval from 1 to 3 minutes. After reaching each 90° increment the vehicle is held in that position for 5 minutes.

S7.5 Moving contoured barrier test conditions. The following conditions apply to the moving contoured barrier crash test.

S7.5.1 The moving barrier, which is mounted on a carriage as specified in Figure 1, is of rigid construction, symmetrical about a vertical longitudinal plane. The contoured impact surface, which is 629 mm high and 1,981 mm wide, conforms to the dimensions shown in Figure 2, and is attached to the carriage as shown in that figure. The ground clearance to the lower edge of the impact surface is 133 mm ±13 mm. The wheelbase is 3,948 mm ±50 mm.

S7.5.2 The moving contoured barrier, including the impact surface, supporting structure, and carriage, has a mass of 1,814 kg ±23 kg with the mass distributed so that 408 kg ±11 kg is at each rear wheel and 499 kg ±11 kg is at each front wheel. The center of gravity is located 1,372 mm ±38 mm rearward of the front wheel axis, in the vertical longitudinal plane of symmetry, 401 mm ±13 mm above the ground.

S7.5.3 The moving contoured barrier has a solid nonsteerable front axle and fixed rear axle attached directly to the frame rails with no spring or other type of suspension system on any wheel. (The moving barrier assembly is equipped with a braking device capable of stopping its motion.)

S7.5.4 The concrete surface upon which the vehicle is tested is level, rigid, and of uniform construction, with a skid number of 75 when measured in accordance with ASTM E274–65T (incorporated by reference, see § 571.5) at 64 km/h, omitting water delivery as specified in paragraph 7.1 of that method.

S7.5.5 The barrier assembly is released from the guidance mechanism immediately prior to impact with the vehicle.

S7.6 The moving barrier assemblies specified in S7.2, S7.3 and S7.5 are equipped with P205/75R15 pneumatic tires inflated to 200 kPa ±21 kPa.

S8 Phase-In schedule.

S8.1 Rear impact test upgrade. (a) Vehicles manufactured on or after September 1, 2006 and before September 1, 2007. For vehicles manufactured on or after September 1, 2006, and before September 1, 2007, the number of vehicles complying with S6.2(b) of this standard must not be less than 40 percent of:

(1) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 2004, and before September 1, 2007; or

(2) The manufacturer’s production on or after September 1, 2006, and before September 1, 2007.

(b) Vehicles manufactured on or after September 1, 2007 and before September 1, 2008. For vehicles manufactured on or after September 1, 2007 and before September 1, 2008, the number of vehicles complying with S6.2(b) of this standard must not be less than 70 percent of:
§ 571.301

(1) The manufacturer’s average annual production of vehicles manufactured on or after September 1, 2005, and before September 1, 2008; or

(2) The manufacturer’s production on or after September 1, 2007, and before September 1, 2008.

(c) Vehicles manufactured on or after September 1, 2008. For vehicles manufactured on or after September 1, 2008, the number of vehicles complying with S6.2(b) of this standard must be 100 percent of the manufacturer’s production during that period.

S8.2 Vehicles manufactured in two or more stages. A final stage manufacturer or alterer may, at its option, comply with the requirements set forth in S8.2.1 and S8.2.2.

S8.2.1 Vehicles manufactured on or after September 1, 2006 and before September 1, 2009 are not required to comply with the requirements specified in S6.2(b) of this standard.

S8.2.2 Vehicles manufactured on or after September 1, 2009 must comply with the requirements specified in S6.2(b) of this standard.

S8.3 Vehicles produced by more than one manufacturer.

S8.3.1 For the purpose of calculating average annual production of vehicles for each manufacturer and the number of vehicles manufactured by each manufacturer under S8.1, a vehicle produced by more than one manufacturer must be attributed to a single manufacturer as follows, subject to S8.3.2:

(a) A vehicle that is imported must be attributed to the importer.

(b) A vehicle manufactured in the United States by more than one manufacturer, one of which also markets the vehicle, must be attributed to the manufacturer that markets the vehicle.

S8.3.2 A vehicle produced by more than one manufacturer must be attributed to any one of the vehicle’s manufacturers specified by an express written contract, reported to the National Highway Traffic Safety Administration under 49 CFR part 586, between the manufacturer so specified and the manufacturer to which the vehicle would otherwise be attributed under S8.3.1.
NOTES:
1. UPPER FRAME 4.0 IN DIA X 0.25 IN WALL (102 mm DIA X 6 mm WALL) STEEL TUBING (THREE SIDES).
2. LOWER FRAME 6.0 IN DIA X 0.50 IN WALL (152 mm DIA X 13 mm WALL) STEEL TUBING.
3. FACE PLATE 0.75 IN (19 mm) THICK COLD ROLLED STEEL.
4. LEADING EDGE 1.0 X 4.0 IN (25 X 102 mm) STEEL BAND, SHARP EDGES BROKEN.
5. ALL INNER REINFORCEMENTS 4.0 X 2.0 X 0.19 IN (102 X 51 X 5 mm) STEEL TUBING.

Fig. 2 – Common Carriage with Contoured Impact Surface Attached
FIGURE 3 — MOVING DEFORMABLE BARRIER REAR IMPACT - 70% OVERLAP

20% of W ± 50 mm (W = maximum width of the test vehicle)

Longitudinal centerline of test vehicle

Moving Deformable Barrier

(Impact velocity = 80 km/h ± 1 km/h)

[40 FR 48353, Oct. 15, 1975]

EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §571.301, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.fdsys.gov.
§ 571.302 Standard No. 302; Flammability of interior materials.

S1. Scope. This standard specifies burn resistance requirements for materials used in the occupant compartments of motor vehicles.

S2. Purpose. The purpose of this standard is to reduce the deaths and injuries to motor vehicle occupants caused by vehicle fires, especially those originating in the interior of the vehicle from sources such as matches or cigarettes.

S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, and buses.

S3A. Definitions. Occupant compartment air space means the space within the occupant compartment that normally contains refreshable air.

S4. Requirements.

S4.1 The portions described in S4.2 of the following components of vehicle occupant compartments shall meet the requirements of S4.3: Seat cushions, seat backs, seat belts, headlining, convertible tops, arm rests, all trim panels including door, front, rear, and side panels, compartment shelves, head restraints, floor coverings, sun visors, curtains, shades, wheel housing covers, engine compartment covers, mattress covers, and any other interior materials, including padding and crash-deployed elements, that are designed to absorb energy on contact by occupants in the event of a crash.

S4.1.1 [Reserved]

S4.2 Any portion of a single or composite material which is within 13 mm of the occupant compartment air space shall meet the requirements of S4.3.

S4.2.1 Any material that does not adhere to other material(s) at every point of contact shall meet the requirements of S4.3 when tested separately.

S4.2.2 Any material that adheres to other materials at every point of contact shall meet the requirements of S4.3 when tested as a composite with the other material(s).

Material A has a non-adhering interface with material B and is tested separately. Part of material B is within 13 mm of the occupant compartment air space, and materials B and C adhere at every point of contact; therefore, B and C are tested as a composite. The cut is in material C as shown, to make a specimen 13 mm thick.

S4.3(a) When tested in accordance with S5, material described in S4.1 and S4.2 shall not burn, nor transmit a flame front across its surface, at a rate of more than 102 mm per minute. The requirement concerning transmission

Material A has a non-adhering interface with material B and is tested separately. Part of material B is within 13 mm of the occupant compartment air space, and materials B and C adhere at every point of contact; therefore, B and C are tested as a composite. The cut is in material C as shown, to make a specimen 13 mm thick.

S4.3(a) When tested in accordance with S5, material described in S4.1 and S4.2 shall not burn, nor transmit a flame front across its surface, at a rate of more than 102 mm per minute. The requirement concerning transmission
of a flame front shall not apply to a surface created by cutting a test specimen for purposes of testing pursuant to S5.

(b) If a material stops burning before it has burned for 60 seconds from the start of timing, and has not burned more than 51 mm from the point where the timing was started, it shall be considered to meet the burn-rate requirement of S4.3(a).

S5.1 Conditions.
S5.1.1 The test is conducted in a metal cabinet for protecting the test specimens from drafts. The interior of the cabinet is 381 mm long, 203 mm deep, and 356 mm high. It has a glass observation window in the front, a closable opening to permit insertion of the specimen holder, and a hole to accommodate tubing for a gas burner. For ventilation, it has a 13 mm clearance space around the top of the cabinet, ten holes in the base of the cabinet, each hole 19 mm in diameter and legs to elevate the bottom of the cabinet by 10 mm, all located as shown in Figure 1.

![Figure 1](image)

Figure 1
All dimensions in millimeters (mm)

S5.1.2 Prior to testing, each specimen is conditioned for 24 hours at a temperature of 21 °C, and a relative humidity of 50 percent, and the test is conducted under those ambient conditions.

S5.1.3 The test specimen is inserted between two matching U-shaped frames of metal stock 25 mm wide and 10 mm high. The interior dimensions of the U-shaped frames are 51 mm wide by 330 mm long. A specimen that softens and bends at the flaming end so as to cause
erratic burning is kept horizontal by supports consisting of thin, heat-resistant wires, spanning the width of the U-shaped frame under the specimen at 25 mm intervals. A device that may be used for supporting this type of material is an additional U-shaped frame, wider than the U-shaped frame containing the specimen, spanned by 10 mil wires of heat-resistant composition at 25 mm intervals, inserted over the bottom U-shaped frame.

S5.1.4 A bunsen burner with a tube of 10 mm inside diameter is used. The gas adjusting valve is set to provide a flame, with the tube vertical, of 38 mm in height. The air inlet to the burner is closed.

S5.1.5 The gas supplied to the burner has a flame temperature equivalent to that of natural gas.

S5.2 Preparation of specimens.

S5.2.1 Each specimen of material to be tested shall be a rectangle 102 mm wide by 356 mm long, wherever possible. The thickness of the specimen is that of the single or composite material used in the vehicle, except that if the material’s thickness exceeds 13 mm, the specimen is cut down to that thickness measured from the surface of the specimen closest to the occupant compartment air space. Where it is not possible to obtain a flat specimen because of surface curvature, the specimen is cut to not more than 13 mm in thickness at any point. The maximum available length or width of a specimen is used where either dimension is less than 356 mm or 102 mm, respectively, unless surrogate testing is required under S4.1.1.

S5.2.2 The specimen is produced by cutting the material in the direction that provides the most adverse test results. The specimen is oriented so that the surface closest to the occupant compartment air space faces downward on the test frame.

S5.2.3 Material with a napped or tufted surface is placed on a flat surface and combed twice against the nap with a comb having seven to eight smooth, rounded teeth per 25 mm.

S5.3 Procedure.

(a) Mount the specimen so that both sides and one end are held by the U-shaped frame, and one end is even with the open end of the frame. Where the maximum available width of a specimen is not more than 51 mm, so that the sides of the specimen cannot be held in the U-shaped frame, place the specimen in position on wire supports as described in S5.1.3, with one end held by the closed end of the U-shaped frame.

(b) Place the mounted specimen in a horizontal position, in the center of the cabinet.

(c) With the flame adjusted according to S5.1.4, position the bunsen burner and specimen so that the center of the burner tip is 19 mm below the center of the bottom edge of the open end of the specimen.

(d) Expose the specimen to the flame for 15 seconds.

(e) Begin timing (without reference to the period of application of the burner flame) when the flame from the burning specimen reaches a point 38 mm from the open end of the specimen.

(f) Measure the time that it takes the flame to progress to a point 38 mm from the clamped end of the specimen. If the flame does not reach the specified end point, time its progress to the point where flaming stops.

(g) Calculate the burn rate from the formula:

\[B = 60 \times \left(\frac{D}{T} \right) \]

Where:

- \(B \) = Burn rate in millimeters per minute
- \(D \) = Length the flame travels in millimeters, and
- \(T \) = Time in seconds for the flame to travel \(D \) millimeters.

§ 571.303 Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG fuel systems of bi-fuel, dedicated, and dual fuel CNG vehicles.

S2. Purpose. The purpose of this standard is to reduce deaths and injuries occurring from fires that result from fuel leakage during and after motor vehicle crashes.
S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks and buses that have a gross vehicle weight rating (GVWR) of 10,000 pounds or less and use CNG as a motor fuel. This standard also applies to school buses regardless of weight that use CNG as a motor fuel.

S4. Definitions.

Bi-fuel CNG vehicle means a vehicle equipped with two independent fuel systems, one of which is designed to supply CNG and the second to supply a fuel other than CNG.

CNG fuel container means a container designed to store CNG as motor fuel onboard a motor vehicle.

CNG fuel system means all components used to store or supply CNG to a vehicle’s engine.

Dedicated CNG vehicle means a vehicle equipped with one fuel system and designed to operate on CNG.

Dual-fuel CNG vehicle means a vehicle which is fueled by two fuels simultaneously, one of which is CNG and the second is a fuel other than CNG.

High pressure portion of a fuel system means all the components from and including each CNG fuel container up to, but not including, the first pressure regulator.

Service pressure means the internal pressure of a CNG fuel container when filled to design capacity with CNG at 20 °Celsius (68 °Fahrenheit).

S5. General requirements.

S5.1 Vehicle requirements.

S5.1.1 Vehicles with GVWR of 10,000 pounds or less. Each passenger car, multipurpose passenger vehicle, truck, and bus with a GVWR of 10,000 pounds or less that uses CNG as a motor fuel and that is manufactured on or after September 1, 1995 shall meet the requirements of S6, except S6.4.

S5.1.2 Schoolbuses with a GVWR greater than 10,000 pounds. Each schoolbus with a GVWR greater than 10,000 pounds that uses CNG as a motor fuel and that is manufactured on or after September 1, 1995 shall meet the requirements of S6.4.

S5.2 Fuel system pressure drop: barrier crash.

(a) For all vehicles, the pressure drop in the high pressure portion of the fuel system expressed in kiloPascals (kPa), in any fixed or moving barrier crash from vehicle impact through the 60 minute period following cessation of motion shall not exceed:

(1) 1062 kPa (154 psi), or

(2) \(895 \times \left(\frac{T}{V_{FS}}\right)\); whichever is higher

where \(T\) is the average temperature of the test gas in degrees Kelvin, stabilized to ambient temperature before testing, where average temperature \((T)\) is calculated by measuring ambient temperature at the start of the test time and then every 15 minutes until the test time of 60 minutes is completed; the sum of the ambient temperatures is then divided by five to yield the average temperature \((T)\); and where \(V_{FS}\) is the internal volume in liters of the fuel container and the fuel lines up to the first pressure regulator.

(b) For bi-fuel or dual fuel CNG vehicles, the test requirement in S5.2(a) shall apply to the CNG fuel system, and the test requirement of Standard No. 301 shall apply to the other fuel system, if that standard is applicable.

S5.3 Each CNG vehicle shall be permanently labeled, near the vehicle refueling connection, with the information specified in S5.3.1 and S5.3.2 of this section. The information shall be visible to a person standing next to the vehicle during refueling, in English, and in letters and numbers that are not less than 4.76 mm (3/16 inch) high.

S5.3.1 The statement: “Service pressure \(\text{ kPa} (\text{ psig})\).”

S5.3.2 The statement “See instructions on fuel container for inspection and service life.”

S5.4 When a motor vehicle is delivered to the first purchaser for purposes other than resale, the manufacturer shall provide the purchaser with a written statement of the information in S5.3.1 and S5.3.2 in the owner’s manual, or, if there is no owner’s manual, on a one-page document. The information shall be in English and in not less than 10 point type.

S6. Test requirements: fuel system integrity. Each vehicle with a GVWR of 10,000 pounds or less shall meet the requirements of any applicable barrier crash test. A particular vehicle need not meet further requirements after having been subjected to a single barrier crash test.
§ 571.303

S6.1 Frontal barrier crash. When the vehicle traveling longitudinally forward at any speed up to and including 30 mph impacts a fixed collision barrier that is perpendicular to the line of travel of the vehicle, or at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle, with 50th percentile test dummies as specified in part 572 of this chapter at each front outboard designated seating position and at any other position whose protection system is required to be tested by a dummy under the provisions of Standard No. 208, under the applicable conditions of S7, the fuel pressure drop shall not exceed the limits of S5.2.

S6.2 Rear moving barrier crash. When the vehicle is impacted from the rear by a barrier moving at any speed up to and including 30 mph, with test dummies as specified in part 572 of this chapter at each front outboard designated seating position, under the applicable conditions of S7, the fuel pressure drop shall not exceed the limits of S5.2.

S6.3 Lateral moving barrier crash. When the vehicle is impacted laterally on either side by a barrier moving at any speed up to and including 30 mph with 50th percentile test dummies as specified in part 572 of this chapter at each front outboard designated seating position, under the applicable conditions of S7, the fuel pressure drop shall not exceed the limits of S5.2.

S6.4 Moving contoured barrier crash. When the moving contoured barrier assembly traveling longitudinally forward at any speed up to and including 30 mph impacts the test vehicle (schoolbus with a GVWR exceeding 10,000 pounds) at any point and angle, under the applicable conditions of S7, the fuel pressure drop shall not exceed the limits of S5.2.

S7. Test conditions. The requirements of S5 and S6 shall be met under the following conditions. Where a range of conditions is specified, the vehicle must be capable of meeting the requirements at all points within the range.

S7.1 General test conditions. The following conditions apply to all tests.

(a) Each fuel storage container is filled to 100 percent of service pressure with nitrogen, N₂. The gas pressure shall stabilize to ambient temperature before testing may be conducted.

(b) After each fuel storage container is filled as specified in S7.1.1, the fuel system other than each fuel storage container is filled with nitrogen, N₂, to normal operating pressures. All manual shutoff valves are to be in the open position.

(c) In meeting the requirements of S6.1 through S6.4, if the vehicle has an electrically driven fuel pump that normally runs when the vehicle’s electrical system is activated, it is operating at the time of the barrier crash. If the vehicle has any high pressure electric shutoff valve that is normally open when the electrical system is activated, it is open at the time of the barrier crash. Furthermore, if any electric shutoff valve prevents sensing of system pressure by the pressure transducer when closed, it must be open for both the initial pressure measurement and the pressure measurement 60 minutes after the vehicle ceases motion from impact. Any valve shall be open for a period of one minute to equalize the system pressure.

S7.1.2 The parking brake is disengaged and the transmission is in neutral, except that in meeting the requirements of S6.4, the parking brake is set.

S7.1.3 Tires are inflated to manufacturer’s specifications.

S7.1.4 The vehicle, including test devices and instrumentation, is loaded as follows:

(a) A passenger car, with its fuel system filled as specified in S7.1.1 and S7.1.2, is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus the necessary test dummies as specified in S6, restrained only by means that are installed in the vehicle for protection at its seating position.

(b) A multipurpose passenger vehicle, truck, or bus with a GVWR of 10,000 pounds or less, whose fuel system is filled as specified in S7.1.1 and S7.1.2, is loaded to its unloaded vehicle weight, plus the necessary test dummies as specified in S6, plus 136.1 kilograms (kg.) (300 pounds (lb.)), or its rated cargo and luggage capacity weight,
§ 571.304 Standard No. 304; Compressed natural gas fuel container integrity.

S1. Scope. This standard specifies requirements for the integrity of compressed natural gas (CNG), motor vehicle fuel containers.

S2. Purpose. The purpose of this standard is to reduce deaths and injuries occurring from fires that result from fuel leakage during and after motor vehicle crashes.

S3. Application. This standard applies to each passenger car, multipurpose passenger vehicle, truck, and bus that uses CNG as a motor fuel and to each container designed to store CNG as motor fuel on-board any motor vehicle.

S4. Definitions.

Brazing means a group of welding processes wherein coalescence is produced by heating to a suitable temperature above 800 °F and by using a nonferrous filler metal, having a melting point below that to the base metals. The filler metal is distributed between the closely fitted surfaces of the joint by capillary attraction.

Burst pressure means the highest internal pressure reached in a CNG fuel container during a burst test at a temperature of 21 °C (70 °F).

CNG fuel container means a container designed to store CNG as motor fuel on-board a motor vehicle.

Fill pressure means the internal pressure of a CNG fuel container attained at the time of filling. Fill pressure varies according to the gas temperature in the container which is dependent on the charging parameters and the ambient conditions.

Full wrapped means applying the reinforcement of a filament or resin system over the entire liner, including the domes.

Hoop wrapped means winding of filament in a substantially circumferential pattern over the cylindrical portion of the liner so that the filament does not transmit any significant stresses in a direction parallel to the cylinder longitudinal axis.

Hydrostatic pressure means the internal pressure to which a CNG fuel container is taken during testing set forth in S5.4.1.
§571.304

Liner means the inner gas tight container or gas cylinder to which the overwrap is applied.

Service pressure means the internal settled pressure of a CNG fuel container at a uniform gas temperature of 21 °C (70 °F) and full gas content. It is the pressure for which the container has been constructed under normal conditions.

S5 Container and material requirements.

S5.1 Container designations. Container designations are as follows:

S5.1.1 Type 1—Non-composite metallic container means a metal container.

S5.1.2 Type 2—Composite metallic hoop wrapped container means a metal liner reinforced with resin impregnated continuous filament that is “hoop wrapped.”

S5.1.3 Type 3—Composite metallic full wrapped container means a metal liner reinforced with resin impregnated continuous filament that is “full wrapped.”

S5.1.4 Type 4—Composite non-metallic full wrapped container means resin impregnated continuous filament with a non-metallic liner “full wrapped.”

S6 General requirements.

S6.1 Each passenger car, multipurpose passenger vehicle, truck, and bus that uses CNG as a motor fuel shall be equipped with a CNG fuel container that meets the requirements of S7 through S7.4.

S6.2 Each CNG fuel container manufactured on or after March 27, 1995 shall meet the requirements of S7 through S7.4.

S7 Test requirements. Each CNG fuel container shall meet the applicable requirements of S7 through S7.4.

S7.1 Pressure cycling test at ambient temperature. Each CNG fuel container shall not leak when tested in accordance with S8.1.

S7.2 Hydrostatic burst test.

S7.2.1 Each Type 1 CNG fuel container shall not leak when subjected to burst pressure and tested in accordance with S8.2. Burst pressure shall not be less than 2.25 times the service pressure for non-welded containers and shall not be less than 3.5 times the service pressure for welded containers.

S7.2.2 Each Type 2, Type 3, or Type 4 CNG fuel container shall not leak when subjected to burst pressure and tested in accordance with S8.2. Burst pressure shall be not less than 2.25 times the service pressure.

S7.3 Bonfire test. Each CNG fuel container shall be equipped with a pressure relief device. Each CNG fuel container shall completely vent its contents through a pressure relief device or shall not burst while retaining its entire contents when tested in accordance with S8.3.

S7.4 Labeling. Each CNG fuel container shall be permanently labeled with the information specified in paragraphs (a) through (h) of this section. Any label affixed to the container in compliance with this section shall remain in place and be legible for the manufacturer’s recommended service life of the container. The information shall be in English and in letters and numbers that are at least 6.35 mm (¼ inch) high.

(a) The statement: “If there is a question about the proper use, installation, or maintenance of this container, contact ______________________,” inserting the CNG fuel container manufacturer’s name, address, and telephone number.

(b) The statement: “Manufactured in ________________,” inserting the month and year of manufacture of the CNG fuel container.

(c) The statement: “Service pressure ________________ kPa, (____________ psig).”

(d) The symbol DOT, constituting a certification by the CNG container manufacturer that the container complies with all requirements of this standard.

(e) The container designation (e.g., Type 1, 2, 3, 4).

(f) The statement: “CNG Only.”

(g) The statement: “This container should be visually inspected after a motor vehicle accident or fire and at least every 36 months or 36,000 miles, whichever comes first, for damage and deterioration.”

(h) The statement: “Do Not Use After ________________,” inserting the month and year that mark the end of the manufacturer’s recommended service life for the container.

S8 Test conditions: fuel container integrity.
§ 571.304

S8.1 Pressure cycling test. The requirements of S7.1 shall be met under the conditions of S8.1.1 through S8.1.4.

S8.1.1 Hydrostatically pressurize the CNG container to the service pressure, then to not more than 10 percent of the service pressure, for 13,000 cycles.

S8.1.2 After being pressurized as specified in S8.1.1, hydrostatically pressurize the CNG container to 125 percent of the service pressure, then to not more than 10 percent of the service pressure, for 5,000 cycles.

S8.1.3 The cycling rate for S8.1.1 and S8.1.2 shall be any value up to and including 10 cycles per minute.

S8.1.4 The cycling is conducted at ambient temperature.

S8.2 Hydrostatic burst test. The requirements of S7.2 shall be met under the conditions of S8.2.1 through S8.2.2.

S8.2.1 Hydrostatically pressurize the CNG fuel container, as follows: The pressure is increased up to the minimum prescribed burst pressure determined in S7.2.1 or S7.2.2, and held constant at the minimum burst pressure for 10 seconds.

S8.2.2 The pressurization rate throughout the test shall be any value up to and including 1,379 kPa (200 psi) per second.

S8.3 Bonfire test. The requirements of S7.3 shall be met under the conditions of S8.3.1 through S8.3.7.

S8.3.1 Fill the CNG fuel container with compressed natural gas and test it at:

(a) 100 percent of service pressure; and

(b) 25 percent of service pressure.

S8.3.2 Container positioning.

(a) Position the CNG fuel container in accordance with paragraphs (b) and (c) of S8.3.2.

(b) Position the CNG fuel container so that its longitudinal axis is horizontal and its bottom is 100 mm (4 inches) above the fire source.

(c)(1) Position a CNG fuel container that is 1.65 meters (65 inches) in length or less and is fitted with one pressure relief device so that the center of the container is over the center of the fire source.

(2) Position a CNG fuel container that is greater than 1.65 meters (65 inches) in length and is fitted with one pressure relief device at one end of the container so that the center of the fire source is 0.825 meters (32.5 inches) from the other end of the container, measured horizontally along a line parallel to the longitudinal axis of the container.

(3) Position a CNG fuel container that is fitted with pressure relief devices at more than one location along its length so that the portion of container over the center of the fire source is the portion midway between the two pressure relief devices that are separated by the greatest distance, measured horizontally along a line parallel to the longitudinal axis of the container.

(4) Test a CNG fuel container that is greater than 1.65 meters (65 inches) in length, is protected by thermal insulation, and does not have pressure relief devices, twice at 100 percent of service pressure. In one test, position the center of the container over the center of the fire source. In another test, position one end of the container so that the fire source is centered 0.825 meters (32.5 inches) from one end of the container, measured horizontally along a line parallel to the longitudinal axis of the container.

S8.3.3 Number and placement of thermocouples. To monitor flame temperature, place three thermocouples so that they are suspended 25 mm (one inch) below the bottom of the CNG fuel container. Position thermocouples so that they are equally spaced over the length of the fire source or length of the container, whichever is shorter.

S8.3.4 Shielding.

(a) Use shielding to prevent the flame from directly contacting the CNG fuel container valves, fittings, or pressure relief devices.

(b) To provide the shielding, use steel with 0.6 mm (.025 in) minimum nominal thickness.

(c) Position the shielding so that it does not directly contact the CNG fuel container valves, fittings, or pressure relief devices.

S8.3.5 Fire source. Use a uniform fire source that is 1.65 meters long (65 inches). Beginning five minutes after the fire is ignited, maintain an average flame temperature of not less than 430 degrees Celsius (800 degrees Fahrenheit) as determined by the average of
§ 571.305 Electric-powered vehicles: electrolyte spillage and electrical shock protection.

S1. Scope. This standard specifies requirements for limitation of electrolyte spillage, retention of electric energy storage/conversion devices, and protection from harmful electric shock during and after a crash.

S2. Purpose. The purpose of this standard is to reduce deaths and injuries during and after a crash that occurs because of electrolyte spillage from electric energy storage devices, intrusion of electric energy storage/conversion devices into the occupant compartment, and electrical shock.

S3. Application. This standard applies to passenger cars, and to multipurpose passenger vehicles, trucks and buses with a GVWR of 4,536 kg or less, that use electrical propulsion components with working voltages more than 60 volts direct current (VDC) or 30 volts alternating current (VAC), and whose speed attainable over a distance of 1.6 km on a paved level surface is more than 40 km/h.

S4. Definitions.

Automatic disconnect means a device that when triggered, conductively separates a high voltage source from the electric power train or the rest of the electric power train.

Electric energy storage device means a high voltage source that stores energy for vehicle propulsion. This includes, but is not limited to, a high voltage battery or battery pack, rechargeable energy storage device, and capacitor module.

Electric energy storage/conversion device means a high voltage source that stores or converts energy for vehicle propulsion. This includes, but is not limited to, a high voltage battery or battery pack, fuel cell stack, rechargeable energy storage device, and capacitor module.
Electric power train means an assembly of electrically connected components which includes, but is not limited to, electric energy storage/conversion systems and propulsion systems.

Electrical chassis means conductive parts of the vehicle whose electrical potential is taken as reference and which are: (1) conductively linked together, and (2) not high voltage sources during normal vehicle operation.

Electrical isolation of a high voltage source in the vehicle means the electrical resistance between the high voltage source and any of the vehicle’s electrical chassis divided by the working voltage of the high voltage source.

High voltage source means any electric component contained in the electric power train or conductively connected to the electric power train that has a working voltage greater than 30 VAC or 60 VDC.

Propulsion system means an assembly of electric or electro-mechanical components or circuits that propel the vehicle using the energy that is supplied by a high voltage source. This includes, but is not limited to, electric motors, inverters/converters, electronic controllers, and associated wire harnesses and connectors, and coupling systems for charging rechargeable energy storage systems.

VAC means volts of alternating current (AC) expressed using the root mean square value.

VDC means volts of direct current (DC).

Working Voltage means the highest root mean square voltage of the voltage source, which may occur across its terminals or between its terminals and any conductive parts in open circuit conditions or under normal operating conditions.

S5. General requirements. Each vehicle to which this standard applies, must meet the requirements in S5.1, S5.2, and S5.3 when tested according to S6 under the conditions of S7.

S5.1 Electrolyte spillage from propulsion batteries. Not more than 5.0 liters of electrolyte from propulsion batteries shall spill outside the passenger compartment, and no visible trace of electrolyte shall spill into the passenger compartment. Spillage is measured from the time the vehicle ceases motion after a barrier impact test until 30 minutes thereafter, and throughout any static rollover after a barrier impact test.

S5.2 Electric energy storage/conversion device retention. During and after each test specified in S6 of this standard:

(a) Electric energy storage/conversion devices shall remain attached to the vehicle by at least one component anchorage, bracket, or any structure that transfers loads from the device to the vehicle structure, and

(b) Electric energy storage/conversion devices located outside the occupant compartment shall not enter the occupant compartment.

S5.3 Electrical safety. After each test specified in S6 of this standard, each high voltage source in a vehicle must meet the electrical isolation requirements of subparagraph (a) or the voltage level requirements of subparagraph (b).

(a) The electrical isolation of the high voltage source, determined in accordance with the procedure specified in S7.6, must be greater than or equal to one of the following:

(1) 500 ohms/volt for an AC high voltage source; or

(2) 500 ohms/volt for a DC high voltage source without electrical isolation monitoring during vehicle operation; or

(3) 100 ohms/volt for a DC high voltage source with electrical isolation monitoring, in accordance with the requirements of S5.4, during vehicle operation.

(b) The voltages V1, V2, and Vb of the high voltage source, measured according to the procedure specified in S7.7, must be less than or equal to 30 VAC for AC components or 60 VDC for DC components.

S5.4 Electrical isolation monitoring. Each high voltage source with electrical isolation monitoring during vehicle operation pursuant to S5.3(a)(3) shall be monitored by an electrical isolation monitoring system that displays a warning for loss of isolation when tested according to S8. The system must monitor its own readiness and the warning display must be visible to the driver seated in the driver’s designated seating position.
§ 571.305
49 CFR Ch. V (10–1–16 Edition)

S6. Test requirements. Each vehicle to which this standard applies, under the conditions of S7, must be capable of meeting the requirements of any applicable single barrier crash/static rollover test sequence, without alteration of the vehicle during the test sequence. A particular vehicle need not meet further test requirements after having been subjected to a single barrier crash/static rollover test sequence.

S6.1 Frontal barrier crash. The vehicle must meet the requirements of S5.1, S5.2 and S5.3 when it is traveling longitudinally forward at any speed, up to and including 48 km/h, and impacts a fixed collision barrier that is perpendicular to the line of travel of the vehicle, or at any angle up to 30 degrees in either direction from the perpendicular to the line of travel of the vehicle.

S6.2 Rear moving barrier impact. The vehicle must meet the requirements of S5.1, S5.2, and S5.3 when it is impacted from the rear by a barrier that conforms to S7.3(b) of 571.301 of this chapter and that is moving at any speed up to and including 80 km/h (50 mph) with dummies in accordance with S6.2 of 571.301 of this chapter.

S6.3 Side moving deformable barrier impact. The vehicle must meet the requirements of S5.1, S5.2 and S5.3 when it is impacted from the side by a barrier that conforms to part 587 of this chapter and that is moving at any speed up to and including 54 km/h, with the appropriate 49 CFR part 572 test dummies specified in 571.214 of this chapter.

S6.4 Post-impact test static rollover. The vehicle must meet the requirements of S5.1, S5.2, and S5.3, after being rotated on its longitudinal axis to each successive increment of 90 degrees after each impact test specified in S6.1, S6.2, and S6.3.

S7. Test conditions. When the vehicle is tested according to S6, the requirements of S5.1 through S5.3 must be met under the conditions specified in S7.1 through S7.7. All measurements for calculating voltage(s) and electrical isolation are made after a minimum of 5 seconds after the vehicle comes to rest in tests specified in S6. Where a range is specified, the vehicle must be capable of meeting the requirements at all points within the range.

S7.1 Electric energy storage device state-of-charge. The electric energy storage device shall be at the state-of-charge specified in either subparagraph (a), (b), or (c):

(a) At the maximum state-of-charge in accordance with the vehicle manufacturer's recommended charging procedures, as stated in the vehicle owner's manual or on a label that is permanently affixed to the vehicle; or

(b) If the manufacturer has made no recommendation for charging procedures in the owner's manual or on a label permanently affixed to the vehicle, at a state-of-charge of not less than 95 percent of the maximum capacity of the electric energy storage device; or

(c) If the electric energy storage device(s) is/are rechargeable only by an energy source on the vehicle, at any state-of-charge within the normal operating voltage defined by the vehicle manufacturer.

S7.2 Vehicle conditions. The switch or device that provides power from the electric energy storage/conversion system to the propulsion system is in the activated position or the ready-to-drive position.

S7.2.1 The parking brake is disengaged and the transmission, if any, is in the neutral position. In a test conducted under S6.3, the parking brake is set.

S7.2.2 Tires are inflated to the manufacturer's specifications.

S7.2.3 The vehicle, including test devices and instrumentation, is loaded as follows:

(a) A passenger car is loaded to its unloaded vehicle weight plus its rated cargo and luggage capacity weight, secured in the luggage area, plus the necessary test dummies as specified in S6, restrained only by means that are installed in the vehicle for protection at its seating position.

(b) A multipurpose passenger vehicle, truck, or bus with a GVWR of 4536 kg or less is loaded to its unloaded vehicle weight plus the necessary dummies, as specified in S6, plus 136 kg or its rated cargo and luggage capacity weight, whichever is less. Each dummy is restrained only by means that are installed in the vehicle for protection at its seating position.
§ 571.305

S7.3 Static rollover test conditions. In addition to the conditions of S7.1 and S7.2, the conditions of S7.4 of Sec. 571.301 of this chapter apply to the conduct of static rollover tests specified in S6.4.

S7.4 Rear moving barrier impact test conditions. In addition to the conditions of S7.1 and S7.2, the conditions of S7.3(b) and S7.6 of 571.301 of this chapter apply to the conducting of the rear moving deformable barrier impact test specified in S6.2.

S7.5 Side moving deformable barrier impact test conditions. In addition to the conditions of S7.1 and S7.2, the conditions in S7.6.1 through S7.6.7 apply to the measuring of electrical isolation specified in S5.3(a).

S7.6 Electrical isolation test procedure. In addition to the conditions of S7.1 and S7.2, the conditions in S7.6.1 through S7.6.7 apply to the measuring of electrical isolation specified in S5.3(a).

S7.6.2 Prior to any barrier impact test, the energy storage/conversion system is connected to the vehicle’s propulsion system, and the vehicle ignition is in the “on” (propulsion system energized) position. Bypass any devices or systems that do not allow the propulsion system to be energized at the time of impact when the vehicle ignition is on and the vehicle is in neutral. For a high voltage source that has an automatic disconnect that is physically contained within itself, the electrical isolation measurement after the test is made from the side of the automatic disconnect connected to the electric power train or to the rest of the electric power train if the high voltage source is a component contained in the power train. For a high voltage source that has an automatic disconnect that is not physically contained within itself, the electrical isolation measurement after the test is made from both the high voltage source side of the automatic disconnect and from the side of the automatic disconnect connected to the electric power train or to the rest of the electric power train if the high voltage source is a component contained in the power train.

S7.6.3 The voltmeter used in this test has an internal resistance of at least 10 MΩ.

S7.6.4 The voltage V1 between the negative side of the high voltage source and the electrical chassis is measured as shown in Figure 1.

S7.6.5 The voltage V2 between the positive side of the high voltage source and the electrical chassis is measured as shown in Figure 2.

S7.6.6 If V1 is greater than or equal to V2, insert a known resistance (Ro) between the negative side of the high voltage source and the electrical chassis. With the Ro installed, measure the voltage (V1') as shown in Figure 4.

S7.6.7 If V2 is greater than V1, insert a known resistance (Ro) between the positive side of the high voltage source and the electrical chassis. With the Ro installed, measure the voltage (V2') as shown in Figure 5.

S7.7 Voltage measurement. For the purpose of determining the voltage level of the high voltage source specified in S5.3(b), voltage is measured as shown in Figure 1. Voltage Vb is measured across the two terminals of the voltage source. Voltages V1 and V2 are measured between the source and the electrical chassis. For a high voltage source that has an automatic disconnect that is physically contained within itself, the voltage measurement after the test is made from the side of
the automatic disconnect connected to the electric power train or to the rest of the electric power train if the high voltage source is a component contained in the power train. For a high voltage source that has an automatic disconnect that is not physically contained within itself, the voltage measurement after the test is made from both the high voltage source side of the automatic disconnect and from the side of the automatic disconnect connected to the electric power train or to the rest of the electric power train if the high voltage source is a component contained in the power train.

S8. Test procedure for on-board electrical isolation monitoring system. Prior to any impact test, the requirements of S5.4 for the on-board electrical isolation monitoring system shall be tested using the following procedure.

(1) The electric energy storage device is at the state-of-charge specified in S7.1.

(2) The switch or device that provides power from the electric energy storage/conversion system to the propulsion system is in the activated position or the ready-to-drive position.

(3) Determine the isolation resistance, R_i, of the high voltage source with the electrical isolation monitoring system using the procedure outlined in S7.6.2 through S7.6.7.

(4) Insert a resistor with resistance R_o equal to or greater than $1/(1/(95 \text{ times the working voltage of the high voltage source}) - 1/R_i)$ and less than $1/(1/(100 \text{ times the working voltage of the high voltage source}) - 1/R_i)$ between the positive terminal of the high voltage source and the electrical chassis.

(5) The electrical isolation monitoring system indicator shall display a warning visible to the driver seated in the driver’s designated seating position.

Figure 1. S7.6.3 and S7.7 Voltage Measurements of the High Voltage Source
Figure 2. S7.6.4 Measurement for V1 Voltage between the Negative Side of the High Voltage Source and the Electrical Chassis
Figure 3. S7.6.5 Measurement for V2 Voltage between the Positive Side of the High Voltage Source and the Electrical Chassis
Figure 4. S7.6.6 Measurement for V1’ Voltage across Resistor between Negative Side of the High Voltage Source and Electrical Chassis

\[R_i = R_o \left(1 + \frac{V_2}{V_1}\right) \left(\frac{V_1 - V_1'}{V_1'}\right) \]
§ 571.401 49 CFR Ch. V (10–1–16 Edition)

S1. Purpose and scope. This standard establishes the requirement for providing a trunk release mechanism that makes it possible for a person trapped inside the trunk compartment of a passenger car to escape from the compartment.

S2. Application. This standard applies to passenger cars that have a trunk compartment. This standard does not apply to passenger cars with a back door.

S3. Definitions.

Back door means a door or door system on the back end of a passenger car through which cargo can be loaded or unloaded. The term includes the hinged back door on a hatchback or a station wagon.

Trunk compartment. (a) Means a space that:

(1) Is intended to be used for carrying luggage or cargo,

(2) Is wholly separated from the occupant compartment of a passenger car by a permanently attached partition or by a fixed or fold-down seat back and/or partition,

(3) Has a trunk lid, and

(4) Is large enough so that the three-year-old child dummy described in Subpart C of Part 572 can be placed inside the trunk compartment, and the trunk lid can be closed and latched with all removable equipment furnished by the passenger car manufacturer stowed in accordance with label(s) on the passenger car or information in the passenger car owner’s manual, or, if no information is provided, as located when the passenger car is delivered. (Note: For purposes of this standard, the Part 572 Subpart C test dummy need not be equipped with the accelerometers specified in § 572.21.)
§ 571.403 Standard No. 403; Platform lift systems for motor vehicles.

S1. Scope. This standard specifies requirements for platform lifts used to assist persons with limited mobility in entering or leaving a vehicle.

S2. Purpose. The purpose of this standard is to prevent injuries and fatalities to passengers and bystanders during the operation of platform lifts installed in motor vehicles.

S3 Application. This standard applies to platform lifts manufactured on and after April 1, 2005, that are designed to carry standing passengers, who may be aided by canes or walkers, as well as persons seated in wheelchairs, scooters, and other mobility aids, into and out of motor vehicles.

S4. Definitions. Bridging device means that portion of a platform lift that provides a transitional surface between the platform surface and the surface of the vehicle floor within the platform threshold area.

Cycle means deploying a platform lift from a stowed position, lowering the lift to the ground level loading position, raising the lift to the vehicle floor loading position, and stowing the lift. The term includes operation of any wheelchair retention device, bridging device, and inner roll stop.

Deploy means with respect to a platform, its movement from a stowed position to an extended position or, one of the two loading positions. With respect to a wheelchair retention device or inner roll stop, the term means the movement of the device or stop to a fully functional position intended to
§ 571.403

prevent a passenger from disembarking the platform or being pinched between the platform and vehicle.

Floor reference plane means the plane perpendicular to the longitudinal vehicle reference plane for platform lifts that deploy from the side of the vehicle or perpendicular to the transverse vehicle reference plane for platform lifts that deploy from the rear of the vehicle, and tangent to the outermost edge of the vehicle floor surface adjacent to the lift platform. (See figure 1.)

Gap means a discontinuity in a plane surface, or between two adjacent surfaces.

Inner roll-stop means a device that is located at the edge of the platform that a passenger or mobility aid must traverse when entering and exiting the platform from the vehicle floor loading position and that is designed to retain mobility aids on the platform surface during the range of passenger operation.

Lift reference plane means the plane that is defined by two orthogonal axes passing through the geometric center of the platform surface of a platform lift. One axis is perpendicular to the platform reference plane and the other is parallel to the direction of wheelchair travel during loading of the lift. (See figure 1.)

Loading position means, with respect to a platform lift, a position at which a passenger can either embark or disembark the lift. The two loading positions are at vehicle floor and ground level.

Longitudinal vehicle reference plane means the plane that is perpendicular to the floor reference plane and contains the longitudinal axis of the vehicle when the vehicle body is level and moves along with the vehicle body in response to the loading of the vehicle suspension. (See figure 1.)

Outer barrier is a particular wheelchair retention device that is located on the edge of the platform, is traversed during ground level loading and unloading, and is designed to retain wheelchairs on the platform surface during the range of passenger operation.

Platform means that portion of a platform lift on which the mobility aid or passenger rests while being raised or lowered.

Platform lift means a level change device, including any integration of existing vehicle components, and excluding a ramp, used to assist persons with limited mobility in entering or leaving a vehicle.

Platform reference plane means a plane tangent to the platform surface at its geometric center. (See figure 1.)

Platform surface means the passenger-carrying surface of the lift platform.

Platform threshold area means the rectangular area of the vehicle floor defined by moving a line that lies on the portion of the edge of the vehicle floor directly adjacent to the platform, through a distance of 437 mm (18 inches) across the vehicle floor in a direction perpendicular to the edge. Any portion of a bridging device that lies on this area must be considered part of that area.

Private use lift means a platform lift certified to the requirements for private use lifts and requirements in this standard for all lifts.

Public use lift means a platform lift certified to the requirements for public use lifts and requirements in this standard for all lifts.

Range of passenger operation means the portion of the lift cycle during which the platform is at or between the vehicle floor and ground level loading positions excluding any stow and deploy operations.

Standard test load means a static load or mass centered on the test pallet such that the total combined mass for public-use lifts shall be 272 kg (600 lb), and the total combined mass for private-use lifts shall be the lift manufacturer’s stated rated load or 181 kg (400 lb), whichever is greater.

Stow means with respect to a platform, its movement from a position within the range of passenger operation to the position maintained during normal vehicle travel; and, with respect to a wheelchair retention device, bridging device, or inner-roll stop, its movement from a fully functional position to a position maintained during normal vehicle travel.

Test pallet means a platform on which required test loads are placed for handling and moving.
Transverse vehicle reference plane means the plane that is perpendicular to the floor reference plane and contains the transverse axis of the vehicle when the vehicle body is level and that moves along with the vehicle body in response to the loading of the vehicle suspension (see figure 1).

Wheelchair retention device means a device designed to prevent wheelchairs from leaving the edge of the platform used for ground level loading and unloading during the range of passenger operation.

§5. [Reserved]

§6. Requirements.

(a) Each platform lift must comply with the requirements for private use lifts or public use lifts and with the requirements for all lifts.

(b) Each public use lift must

(1) Comply with the requirements for public use lifts and with the requirements for all lifts.

(2) Bear a label with the words “DOT-Public Use Lift” as certification of compliance with the requirements specified in paragraph §6(b)(1).

(c) Each private use lift must

(1) Comply with the requirements for private use lifts and with the requirements for all lifts.

(2) Bear a label with the words “DOT-Private Use Lift” as certification of compliance with the requirements specified in §6(c)(1).

(d) Platform lifts suitable for installation on buses, school buses, and MPVs other than motor homes with a GVWR greater than 4,536 kg (10,000 lb.), except motor homes, must be certified by the manufacturer as meeting the requirements for public use lifts. For platform lifts suitable for installation on all other vehicles, the manufacturer may select the option of certifying compliance with either the public use lift requirements or the private use lift requirements of this standard at the time it certifies the vehicle and may not thereafter select a different option for the vehicle.

(e) For all lifts, where a range of values is specified, the equipment must meet the requirements at all points within the range.

(f) The test procedures in §7 are used to determine compliance with all requirements, except §6.6, §6.7.5, §6.12 and §6.13.

§6.1 Threshold warning signal.

§6.1.1 Except when the platform lift is operated manually in backup mode as required by §6.9, the lift must meet the requirements of §6.1.2 and §6.1.3. The lift is tested in accordance with §7.4 to determine compliance with this section.

§6.1.2. Private-use lifts: Except for platform lifts where platform loading takes place wholly over the vehicle floor, a visual or audible warning must activate if the platform is more than 25 mm (1 inch) below the platform threshold area and portions of a passenger’s body or mobility aid is on the platform threshold area defined in §4 when tested in accordance with §7.4.

§6.1.3 Public-use lifts: A visual and audible warning must activate if the platform is more than 25 mm (1 inch) below the platform threshold area and portions of a passenger’s body or mobility aid is on the platform threshold area defined in §4 when tested in accordance with §7.4.

§6.1.4 The visual warning required by §6.1.2 and §6.1.3 must be a flashing red beacon as defined in SAE Recommended Practice J578 (1995) (incorporated by reference, see §571.5), must have a minimum intensity of 20 candelas, a frequency from 1 to 2 Hz, and must be located within the interior of the vehicle such that it is visible from a point 914 mm (3 ft) above the center of the threshold area (see Figure 2) wherever the lift is installed and with any configuration of the vehicle interior.

§6.1.5 The audible warning required by §6.1.2 and §6.1.3 must be a minimum of 85 dBA between 500 and 3000 Hz.

§6.1.6 The intensity of the audible warning and visibility of the visual warning required by §6.1.2 and §6.1.3 is measured/observed at a location 914 mm (3 ft) above the center of the platform threshold area. (See Figure 2).

§6.2 Platform lift operational requirements.

§6.2.1 General. Throughout the range of passenger operation and during the lift operations specified in §7.9.3 through §7.9.8, the platform lift must meet the requirements of §6.2.2 through §6.2.4. These requirements
must be satisfied both with and without a standard load on the lift platform, except for S6.2.2.2, which must be satisfied without any load.

S6.2.2 Maximum platform velocity.
S6.2.2.1 Throughout the range of passenger operation specified in S7.9.4 through S7.9.7, both the vertical and horizontal velocity of the platform must be less than or equal to 152 mm (6 inches) per second when measured at the geometric center of the platform when the platform is unloaded and at the geometric center of the top, horizontal surface of the standard load specified in S7.1.1 when the platform is loaded.

S6.2.2.2 Except for platform lifts that manually stow (fold) and deploy (unfold), during the stow and deploy operations specified in S7.9.3 through S7.9.8, both the vertical and horizontal velocity of any portion of the platform must be less than or equal to 305 mm (12 inches) per second.

S6.2.3 Maximum platform acceleration.
Throughout the range of passenger operation specified in S7.9.4 through S7.9.7, both the horizontal and vertical acceleration of the platform must be less than or equal to 0.3 g after the accelerometer output is filtered with a channel frequency class (CFC) 3 filter. The filter must meet the requirements of SAE Recommended Practice J211/1 MAR95 (incorporated by reference, see § 571.5), with \(F_H = 3 \text{ Hz} \) and \(F_N = 5 \text{ Hz} \). The accelerometer is located at the geometric center of the platform and is mounted directly on the platform when it is unloaded and on the geometric center of the top, horizontal surface of the standard load specified in S7.1.1 when the platform is loaded.

S6.3 Environmental resistance.

S6.3.1 Internally mounted platform lifts. On platform lifts and their components internal to the occupant compartment of the vehicle or internal to other compartments that provide protection from the elements when stowed, attachment hardware must be free of ferrous corrosion on significant surfaces except for permissible ferrous corrosion, as defined in §571.209, at peripheral surface edges or edges of holes on under-floor reinforcing plates and washers after being subjected to the conditions specified in S7.3. Alternatively, such hardware must be made from corrosion-resistant steel containing at least 11.5 percent chromium per §571.209, S5.2(a) or must be protected against corrosion by an electrodeposited coating of nickel, or copper and nickel with at least a service condition number of SC2, and other attachment hardware must be protected by an electrodeposited coating of nickel, or copper and nickel with a service condition number of SC1, in accordance with ASTM B456–95 (incorporated by reference, see §571.5), but such hardware may not be racked for electroplating in locations subjected to maximum stress. The manufacturer shall select the option by the time it certifies the lift and may not thereafter select a different option for the lift. The lift must be accompanied by all attachment hardware necessary for its installation on a vehicle.

S6.3.2 Externally mounted platform lifts. On platform lifts and their components external to the occupant compartment of the vehicle and external to other compartments that provide protection from the elements when...
stowed, the lift and its components must be free of ferrous corrosion on significant surfaces except for permissible ferrous corrosion, as defined in FMVSS No. 209, at peripheral surface edges and edges of holes and continue to function properly after being subjected to the conditions specified in §7.3. Alternatively, such lifts and all associated hardware and components must be completely made from corrosion-resistant steel containing at least 11.5 percent chromium per FMVSS 571.209, §5.2(a). The manufacturer shall select the option by the time it certifies the lift and may not thereafter select a different option for the lift. The lift must be accompanied by all attachment hardware necessary for its installation on a vehicle.

§571.403 Platform requirements.

S6.4 General. Throughout the range of passenger operations and during the platform lift operations specified in §7.9.4 through §7.9.7, the platform lift must meet the requirements of S6.4.2 through S6.4.12. The requirements of S6.4.2 through S6.4.6, S6.4.7.4, S6.4.9.4, S6.4.9.5, S6.4.9.6, and S6.4.9.8 must be satisfied both with and without a standard load on the lift platform.

S6.4.2 Unobstructed platform operating volume. S6.4.2.1 Public use lifts. For public use lifts, the minimum platform operating volume is the sum of an upper part and a lower part (see Figure 3). The lower part is a rectangular solid whose base is 725 mm (28.5 in) wide by the length of the platform surface, whose height is 50 mm (2 in), and which is resting on the platform surface with each side of the base parallel with the nearest side of the platform surface. The width is perpendicular to the lift reference plane and the length is parallel to the lift reference plane (see Figure 1). The upper part is a rectangular solid whose base is 760 mm (30 in) by 1,220 mm (48 in) long, whose height is 711 mm (28 in), and whose base is tangent to the top surface of the lower rectangular solid (see Figure 3). The centroids of both the upper and lower parts coincide with the vertical centroidal axis of the platform reference plane (see Figure 1).

S6.4.2.2 Private use lifts. For private use lifts, the platform operating volume is as specified by the lift manufacturer and identified in the lift insert to the vehicle owner’s manual.

S6.4.3 Platform surface protrusions. S6.4.3.1 Public use lifts. For public use lifts, except as required for deployment of the wheelchair retention device and inner roll stop, throughout the range of passenger operation, the platform surface may not have protrusions which rise more than 6.5 mm (0.25 in) above the platform surface, measured perpendicular to the platform surface by a device with its base centered between 50–100 mm (2–4 in) from the protrusion. Any cross-sectional dimension of the base of the protrusion measurement device must be greater than or equal to 25 mm (1 in) and less than or equal to 50 mm (2 in).

S6.4.3.2 Private use lifts. For private use lifts, except as required for deployment of the wheelchair retention device and inner roll stop, the platform surface may not have protrusions which rise more than 13 mm (0.5 in) above the platform surface, measured perpendicular to the platform surface by a device with its base centered between 50–100 mm (2–4 in) from the protrusion. All portions of the sides of a protrusion that are between 6.5 mm (0.25 in) and 13 mm (0.5 in) above the platform must have a slope not greater than 1:2, measured with respect to the platform surface at the location of the protrusion. Any cross-sectional dimension of the base of the protrusion measurement device must be greater than or equal to 25 mm (1 in) and less than or equal to 50 mm (2 in).

S6.4.4 Gaps, transitions and openings. S6.4.4.1 When the platform lift is at the ground level loading position, any vertical surface transition measured perpendicular to the ground over which a passenger may traverse to enter or exit the platform, may not be greater than 6.5 mm (0.25 in). When the lift is at the vehicle level loading position, any vertical surface transition measured perpendicular to the platform threshold area over which a passenger may traverse to enter or exit the platform, may not be greater than 6.5 mm (0.25 in).

S6.4.4.2 When the platform lift is at the ground or vehicle level loading position, the slope of any surface over
which a passenger may traverse to enter or exit the platform must have a rise to run not greater than 1:2 on the portion of the rise between 6.5 mm (0.25 in) and 13 mm (0.5 in), and 1:8 on the portion of the rise between 13 mm (0.5 in) and 75 mm (3 in). The rise of any sloped surface may not be greater than 75 mm (3 inches). When the lift is at the ground level loading position, measurements are made perpendicular to the ground. When the lift is at the vehicle level loading position, measurements are made perpendicular to the platform threshold area.

S6.4.4.3 When the inner roll stop or any outer barrier is deployed, any gap between the inner roll stop and lift platform and any gap between the outer barrier and lift platform must prevent passage of the clearance test block specified in S7.1.3 when its long axis is held perpendicular to the platform reference plane.

S6.4.4.4 When the platform is at the vehicle floor or ground level loading position, any horizontal gap over which a passenger may traverse to enter or exit the platform must prevent passage of a 13 mm (0.5 inch) diameter sphere.

S6.4.4.5 Any opening in that portion of the platform surface that coincides with the unobstructed platform operating volume described in S6.4.2 must prevent passage of a 19 mm (0.75 inch) diameter sphere.

S6.4.4.6 Any gap between the platform sides and edge guards which move with the platform must prevent passage of a 13 mm (0.5 inch) diameter sphere. Where structures fixed to the vehicle are used as edge guards, the horizontal gap between the platform side and vehicle structure must prevent passage of a 6.5 mm (0.25 inch) diameter sphere.

S6.4.5 Platform deflection. The angle of the deployed platform, when stationary, and loaded with a standard load, must not exceed 4.8 degrees with respect to the vehicle floor and must not exceed 3 degrees with respect to the platform’s unloaded position. The angles are measured between a vertical axis from the vehicle floor and an axis normal to the platform center as shown in Figure 1.

S6.4.6 Edge guards.

S6.4.6.1 The platform lift must have edge guards that extend continuously along each side of the lift platform to within 75 mm (3 inches) of the edges of the platform that are traversed while entering and exiting the platform at both the ground and vehicle floor level loading positions. The edge guards must be parallel to the direction of wheelchair movement during loading and unloading. Alternatively, when tested in accordance with S7.7.4, all portions of the wheels of the wheelchair test device must remain above the platform surface and after the control is released to Neutral, at the end of each attempt to steer the test device off the platform, all wheels of the wheelchair test device must be in contact with the platform surface. The manufacturer shall select the option by the time it certifies the lift and may not thereafter select a different option for the lift.

S6.4.6.2 Edge guards that move with the platform must have vertical sides facing the platform surface and a minimum height of 38 mm (1.5 inches), measured vertically from the platform surface.

S6.4.6.3 Except whenever any part of the platform surface is below a horizontal plane 75 mm (3 inches) above the ground, edge guards must be deployed throughout the range of passenger operation.

S6.4.7 Wheelchair retention.

S6.4.7.1 Impact I. Except for platform lifts designed so that platform loading takes place wholly over the vehicle floor, the lift must have a means of retaining the test device specified in S7.1.2. After impact, the test device must remain supported by the platform surface with none of the axles of its wheels extending beyond a plane that is perpendicular to the platform reference plane (Figure 1) and that is tangent to the edge of the platform that is traversed when entering or exiting the platform from the ground level loading position throughout its range of passenger operation, except as provided in S6.4.7.4. The lift is tested in accordance with S7.7 to determine compliance with this section.

S6.4.7.2 Impact II. For platform lifts designed so that platform loading takes place wholly over the vehicle
floor, the lift must have a means of retaining the test device specified in §7.1.2. After impact, the test device must remain upright with all of its wheels on the platform surface, throughout the range of passenger operation, except as provided in §6.4.7.4. The lift is tested in accordance with §7.7 to determine compliance with this section.

§6.4.7.3 Overload. The deployed wheelchair retention device(s) must be capable of sustaining 7,117 N (1,600 lb force) when tested in accordance with §7.13. No separation, fracture, or breakage of the wheelchair retention device may occur as a result of conducting the test in §7.13.

§6.4.7.4 Deployment. Except whenever any part of the platform surface is below a horizontal plane 75 mm (3 in) above the ground, the wheelchair retention device(s) must be deployed throughout the range of passenger operation.

§6.4.8 Inner roll stop.

§6.4.8.1 Public use lifts. Public use lifts must have an inner roll stop that meets the requirements of §6.4.8.3.

§6.4.8.2 Private use lifts. Private use lifts must:
(a) Have an inner roll stop that meets the requirements of §6.4.8.3; or
(b) Have operating instructions near the lift controls and in the vehicle owner's manual, as specified in §6.7.8 and §6.12.4.3, that contain a warning that wheelchairs should back onto the platform when entering from the ground.

§6.4.8.3 Requirements. When tested in accordance with §7.8, platform lifts must have an inner roll stop that provides a means that prevents:
(a) The front wheels of the test device specified in §7.1.2 from extending beyond a plane that is perpendicular to the platform reference plane (Figure 1) and that is tangent to the edge of the platform where the roll stop is located when the lift is at ground level loading position; and
(b) Any portion of the test device specified in §7.1.2 from being contacted simultaneously with a portion of the lift platform and any other structure, throughout the lift's range of passenger operation.

§6.4.9 Handrails.

§6.4.9.1 Public use lifts. Public use lifts must have a handrail located on each side of the lift that meets the requirements of §6.4.9.3 through §6.4.9.9.

§6.4.9.2 Private use lifts. Private use lifts are not required to be equipped with handrails. Private use lifts that are equipped with handrails must meet the requirement of §6.4.9.3 through §6.4.9.9.

§6.4.9.3 The graspable portion of each handrail may not be less than 760 mm (30 inches) and more than 965 mm (38 inches) above the platform surface, measured vertically.

§6.4.9.4 The cross section of the graspable portion of each handrail may not be less than 31.5 mm (1.25 inches) and more than 38 mm (1.5 inches) in diameter or width, and may not have less than a 3.2 mm (0.125 inch) radii on any corner.

§6.4.9.5 The vertical projection of the graspable portion of each handrail must intersect two planes that are perpendicular to the platform reference plane and to the direction of travel of a wheelchair on the lift when entering or exiting the platform, and are 203 mm (8 inches) apart.

§6.4.9.6 The handrails must move such that the position of the handrails relative to the platform surface does not change.

§6.4.9.7 When tested in accordance with §7.12.1, each handrail must withstand 445 N (100 pounds force) applied at any point and in any direction on the handrail without more than 25 mm (1 inch) of displacement relative to the platform surface. After removal of the load, the handrail must exhibit no permanent deformation.

§6.4.9.8 When tested in accordance with §7.12.1, there must be at least 38 mm (1.5 inches) of clearance between each handrail and any portion of the vehicle, throughout the range of passenger operation.

§6.4.9.9 When tested in accordance with §7.12.2, each handrail must withstand 1,112 N (250 lb/f) applied at any point and in any direction on the handrail without sustaining any failure, such as cracking, separation, fracture, or more than 100 mm (4 inches) of displacement of any point on the handrails relative to the platform surface.
§ 571.403

S6.4.10 Platform markings on public use lifts. Throughout the range of passenger operation, all edges of the platform surface, the visible edge of the vehicle floor or bridging device adjacent to the platform lift, and any designated standing area on a public use lift must be outlined. The outlines must be at least 25 mm (1 in) wide and of a color that contrasts with its background by 60 percent, determined according to the following equation:

\[
\text{Contrast} = 100 \times \left(\frac{L_1 - L_2}{L_1}\right)
\]

Where:
\(L_1\) = luminance of the lighter color or shade, and
\(L_2\) = luminance of the darker color or shade.

S6.4.11 Platform slip resistance. When tested in accordance with S7.2, the coefficient of friction, in any direction, of any part of a wet platform surface may not be less than 0.65.

S6.5 Structural integrity.

S6.5.1 Fatigue endurance.

S6.5.1.1 Public use lifts. Except for lifts that manually stow (fold) and deploy (unfold), public use lifts must remain operable when operated through a total of 15,600 cycles: 7,800 unloaded Raise/Lower and Stow/Deploy operations and 7,800 loaded Raise/Lower operations as specified in S7.10. Public use lifts that manually stow (fold) and deploy (unfold) must remain operable when operated through a total of 15,800 cycles: 7,800 unloaded Raise/Lower operations and 7,800 loaded Raise/Lower operations. No separation, fracture, or breakage of any vehicle or lift component may occur as a result of conducting the fatigue test in S7.10.

S6.5.2 Proof load. The platform lift must be capable of holding three times the standard load, as specified in S7.11, without separation, fracture, or breakage of any vehicle or lift component. After the test, the lift must pass Static Load Test I as specified in S7.9.

S6.5.3 Ultimate load. The platform lift must be capable of holding four times the standard load, as specified in S7.14, without separation, fracture, or breakage of the platform, supporting structure, or lifting mechanism.

S6.6 Platform free fall limits. In the event of any single-point failure of systems for raising, lowering or supporting the platform, any portion of the platform, loaded as specified in S7.1.1, may not fall vertically faster than 305 mm (12 in) per second or change angular orientation more than 2 degrees from the orientation prior to the failure. This requirement applies whenever the lift is under primary power source operation or manual backup operation.

S6.7 Control panel switches.

S6.7.1 The platform lift must meet the requirements of S6.7.2 through S6.7.8 and, when operated by means of the control panel switches specified in S6.7.2, must perform the lift operations specified in S7.9.

S6.7.2 The platform lift system must have control panel switches that perform not less than the following functions: (platform lifts that manually stow (fold) and deploy (unfold) are exempt from S6.7.2.2 and S6.7.2.5).

S6.7.2.1 Enables and disables the lift control panel switches. This function must be identified as “POWER” if located on the control. The POWER function must have two states: “ON” and “OFF”. The “ON” state must allow platform lift operation. When the POWER function is in the “ON” state, an indicator light on the controls must illuminate. The “OFF” state must prevent lift operation and must turn off the indicator light. Verification with this requirement is made throughout the lift operations specified in S7.9.3 through S7.9.8.
S6.7.2.2 Moves the lift from a stowed position to an extended position or, to one of the two loading positions. This function must be identified as “DEPLOY” or “UNFOLD” on the control.

S6.7.2.3 Lowers the lift platform. This function must be identified as “Down” or “Lower” on the control.

S6.7.2.4 Raises the lift platform. This function must be identified as “Up” or “Raise” on the control.

S6.7.2.5 Moves the lift from a position within the range of passenger operation to a stowed position. This function must be identified as “Stow” or “Fold” on the control.

S6.7.3 Except for the Power function described in S6.7.2.1, the functions specified in S6.7.2 must activate in a momentary fashion, by one switch or by a combination of switches. Verification with this requirement is made throughout the lift operations specified in S7.9.3 through S7.9.8.

S6.7.4 Except for the POWER function described in S6.7.2.1, the control system specified in S6.7.2 must prevent the simultaneous performance of more than one function. If an initial function is actuated, then one or more other functions are actuated while the initial function remains actuated, the platform must either continue in the direction dictated by the initial function or stop. Verification of this requirement is made throughout the lift operations specified in S7.9.3 through S7.9.8.

S6.7.5 Any single-point failure in the control panel switches may not prevent the operation of any of the interlocks as specified in S6.10.

S6.7.6 Identification of operating functions.

S6.7.6.1 Each operating function of each platform lift control must be identified with characters that are at least 2.5 mm (0.1 in) in height.

S6.7.6.2 Public use lifts. Public-use lift controls located within the portion of the passenger compartment specified in §5.3.4(a) of Standard No. 101 ($571.101) must have characters that are illuminated in accordance with §5.3 of Standard No. 101 when the vehicle’s headlights are illuminated. Public-use lift controls located outside the portion of the passenger compartment specified in §5.3.4(a) of Standard No. 101 ($571.101) must have means for illuminating the characters to make them visible under daylight and nighttime conditions.

S6.7.7 Control location for public use lifts: In public use lifts, except for the backup operation specified in S6.9, all control panel switches must be positioned together and in a location such that the lift operator has a direct, unobstructed view of the platform lift passenger and the passenger’s mobility aid, if applicable. Verification with this requirement is made throughout the lift operations specified in S7.9.3 through S7.9.8. Additional controls may be positioned in other locations.

S6.7.8 Operating instructions: Simple instructions regarding the platform lift operating procedures, including backup operations as specified by S6.9, must:

S6.7.8.1 Be located near the controls.

S6.7.8.2 Have characters with a minimum height of 2.5 mm (0.1 in) and written in English.

S6.7.8.3 Public use lifts: Include the statement “DOT—Public Use Lift”.

S6.7.8.4 Private use lifts: Include the statement “DOT—Private Use Lift”, the manufacturer’s rated load for the lift, and, if applicable, instructions indicating that the wheelchair occupant must back onto the lift when loading from the ground.

S6.8 Jacking prevention.

S6.8.1 Except when the platform lift is operated in backup mode as required by S6.9, throughout the lift operations specified in S7.9.4 and S7.9.7, the lift system must meet the requirements of S6.8.2, both with and without a standard load on the lift.

S6.8.2 The control system or platform lift design must prevent the raising of any portion of the vehicle by the lift system when lowering the lift is attempted while the lift is at the ground level loading position.

S6.9 Backup operation.

S6.9.1 The platform lift must be equipped with a manual backup operating mode that can, in the event there is a loss of the primary power source for lift operation or a lift malfunction, deploy the lift, lower the loaded platform to the ground level loading position, raise the unloaded platform to the vehicle floor loading position, and...
§ 571.403 49 CFR Ch. V (10–1–16 Edition)

stow the lift. During backup operation of the lift, the wheelchair retention device and inner roll stop must be manually deployable and stowable. The operating instructions near the lift controls and in the vehicle owner’s manual insert, as specified in §6.7.8 and §6.12.2, must contain information on manual backup operation which must include manual operation of the wheelchair retention device and inner roll stop during backup operation of the lift.

S6.10 Interlocks.

S6.10.1 Except when the platform lift is operated in backup mode as required by §6.9, the requirements of S6.10.2 must be met, both with and without a standard load on the lift.

S6.10.2 The platform lift system must have interlocks or operate in such a manner when installed according to the installation instructions, as to prevent:

S6.10.2.1 Forward or rearward mobility of the vehicle unless the platform lift is stowed. The design of this system must be such that it discourages accidental release and does not affect vehicle movement when the lift is stowed until the vehicle is stopped and the lift deployed. Verification with this requirement is made throughout the lift operations specified in §7.9.2 and §7.9.3.

S6.10.2.2 Operation of the platform lift from the stowed position until forward and rearward mobility of the vehicle is inhibited, by means of placing the transmission in park or placing the transmission in neutral and actuating the parking brake or the vehicle service brakes by means other than the operator depressing the vehicle’s service brake pedal. Verification with this requirement is made throughout the lift operations specified in §7.9.2 and §7.9.3.

S6.10.2.3 Stowing of the platform lift when occupied by portions of a passenger’s body, and/or a mobility aid. Platform lifts designed to be occupied while stowed and platform lifts that manually stow (fold) are excluded from this requirement. Verification with this requirement is made using the test device specified in §7.1.4 on its narrowest side on any portion of the platform surface that coincides with the unobstructed platform operating volume described in §6.4.2. Using the operator control specified in §7.7.2.5, attempt to stow the lift. The interlock must prevent the lift from stowing.

S6.10.2.4 Movement of the platform up or down, throughout the range of passenger operation, unless the inner roll stop required to comply with §6.4.8 is deployed. When the platform reaches a level where the inner roll stop is designed to fully deploy, the platform must stop unless the inner roll stop has fully deployed. Verification with this requirement is made by performing the test procedure specified in §7.6.1.

S6.10.2.5 Movement of the platform up or down, throughout the range of passenger operation, when the highest point of the platform surface at the outer most platform edge is above a horizontal plane 75 mm (3 in) above the ground level loading position, unless the wheelchair retention device required to comply with §6.4.7 is deployed throughout the range of passenger operations. Verification of compliance is made using the test procedure specified in §7.5.1.

S6.10.2.6 In the case of a platform lift that is equipped with an outer barrier, vertical deployment of the outer barrier when it is occupied by portions of the passenger’s body or mobility aid throughout the lift operation. When the platform stops, the vertical change in distance of the horizontal plane (passing through the point of contact between the wheelchair test device wheel(s) and the upper surface of the outer barrier) must not be greater than 13 mm (0.5 in). Verification of compliance with this requirement is made using the test procedure specified in §7.5.1.

S6.10.2.7 Vertical deployment of the inner roll stop required to comply with §6.4.8 when it is occupied by portions of a passenger’s body or mobility aid throughout the lift operations. When the platform stops, the vertical change in distance of the horizontal plane (passing through the point of contact between the wheelchair test device wheel(s) and the upper surface of the inner roll stop or platform edge) must
§ 571.403

not be greater than 13 mm (0.5 in). Verification of compliance with this requirement is made using the test procedure specified in §7.6.1.

S6.11 Operations counter. The platform lift must have an operation or cycle counter that records each complete Up/Down (Raise/Lower) operation throughout the range of passenger operation. Determination of compliance with this requirement is made during the lift operations specified in §7.9.4 and §7.9.5.

S6.12 Vehicle owner’s manual insert. The lift manufacturer must provide with the lift, inserts for the vehicle owner’s manual that provide specific information about the platform lift. The vehicle owner’s manual insert must be written in English and must include:

S6.12.1 A maintenance schedule that includes maintenance requirements that have, at a minimum, some dependency on the number of cycles on the operations counter specified in §6.11.

S6.12.2 Instructions regarding the platform lift operating procedures, including backup operations, as specified by §6.9.

S6.12.3 Public use lifts: In addition to meeting the requirements of §6.12.1 and §6.12.2, the owner’s manual insert for public use lifts must also include:

S6.12.3.1 The statement “DOT—Public Use Lift” on the front cover of the vehicle owner’s manual insert; and

S6.12.3.2 The statement “DOT—Public Use Lift” verifies that this platform lift meets the “public use lift” requirements of FMVSS No. 403. This lift may be installed on all vehicles appropriate for the size and weight of the lift, except for buses, school buses, and multi-purpose passenger vehicles other than motor homes with a gross vehicle weight rating (GVWR) that exceeds 4,536 kg (10,000 lb).”

S6.12.4 Private use lifts: In addition to meeting the requirements of §6.12.1 and §6.12.2, the owner’s manual insert for private use lifts must also include:

S6.12.4.1 The dimensions that constitute the unobstructed platform operating volume;

S6.12.4.2 The manufacturer’s rated load for the lift;

S6.12.4.3 Information on whether a wheelchair user must back onto the platform from the ground level loading position due to the absence of an inner roll stop;

S6.12.4.4 The statement “DOT—Private Use Lift” on the front cover of the vehicle owner’s manual insert; and

S6.12.4.5 The statement “DOT—Private Use Lift” verifies that this platform lift meets only the “private use lift” requirements of FMVSS No. 403. This lift may be installed on all vehicles appropriate for the size and weight of the lift, except for buses, school buses, and multi-purpose passenger vehicles other than motor homes with a gross vehicle weight rating (GVWR) that exceeds 4,536 kg (10,000 lb).”

S6.13 Installation instructions. The manufacturer of a platform lift must include installation instructions with each lift. Information must be included in the installation instructions that identifies:

S6.13.1 The vehicles on which the lift is designed to be installed. Vehicles may be identified by listing the make, model, and year of the vehicles for which the lift is suitable, or by specifying the design elements that would make a vehicle an appropriate host for the particular lift, and for which the platform lift manufacturer has certified compliance.

S6.13.2 Procedures for operational checks that the vehicle manufacturer must perform to verify that the lift is fully operational. Such checks include, but are not limited to, platform lighting, the threshold-warning signal, and interlocks, including those that interface with vehicle systems.

S6.13.3 Any informational material or labels that must be placed on or in the vehicle in order to comply with the requirements of this standard. Labels must be of a permanent nature that can withstand the elements of the outside environment.

S6.13.4 Public use lifts: In addition to meeting the requirements of §6.13.1 through §6.13.3, the installation instructions for public use lifts must also include, on the front cover of the instructions, the statement “DOT—Public Use Lift”.

S6.13.4.1 Installation instructions for public use lifts must contain the
S6.13.5 Private use lifts: In addition to meeting the requirements of S6.13.1 through S6.13.3, the installation instructions for private use lifts must also include, on the front cover of the instructions, the manufacturer’s rated load for the lift and the statement “DOT-Private Use Lift.”

S7 Test conditions and procedures. Each platform lift must be capable of meeting all of the tests specified in this standard, both separately, and in the sequence specified in this section. The tests specified in S7.4, S7.7.4 and S7.8 through S7.12 are performed on a single lift and vehicle combination. The tests specified in S7.2, S7.3, S7.5, S7.6, S7.7.1, S7.13, and S7.14 may be performed with the lift installed on a test jig rather than on a vehicle. Tests of requirements in S6.1 through S6.11 may be performed on a single lift and vehicle combination, except for the requirements of S6.5.3. Attachment hardware may be replaced if damaged by removal and reinstallation of the lift between a test jig and vehicle.

S7.1 Test devices.

S7.1.1 Test pallet and load. The surface of the test pallet that rests on the platform used for the tests specified in S7.9 through S7.11 and S7.14 has sides that measure between 660 mm (26 in) and 686 mm (27 in). For the tests specified in S7.9 and S7.10, the test pallet is made of a rectangular steel plate of uniform thickness and the load that rests on the test pallet is made of rectangular steel plate(s) of uniform thickness and sides that measure between 533 mm (21 in) and 686 mm (27 in). The standard test load that rests on the pallet is defined in S4.

S7.1.2 Wheelchair test device. The test device is an unloaded power wheelchair whose size is appropriate for a 95th percentile male and that has the dimensions, configuration and components described in S7.1.2.1 through S7.1.2.11. If the dimension in S7.1.2.9 is measured for a particular wheelchair by determining its tipping angle, the batteries are prevented from moving from their original position.

S7.1.2.1 a cross-braced steel frame;
S7.1.2.2 a sling seat integrated in the frame;
S7.1.2.3 a belt drive;
S7.1.2.4 detachable footrests, with the lowest point of the footrest adjustable in a range not less than 25 mm (1 in) to 123 mm (5 in) from the ground;
S7.1.2.5 Two pneumatic rear tires with a diameter not less than 495 mm (19.5 in) and not more than 521 mm (20.5 in) inflated to the wheelchair manufacturer’s recommended pressure or if no recommendation exists, to the maximum pressure that appears on the sidewall of the tire;
S7.1.2.6 Two pneumatic front tires with a diameter not less than 190 mm (7.5 in) and not more than 216 mm (8.5 in) inflated to the wheelchair manufacturer’s recommended pressure or if no recommendation exists, to the maximum pressure that appears on the sidewall of the tire;
S7.1.2.7 a distance between front and rear axles not less than 457 mm (18 in) and not more than 533 mm (21 in);
S7.1.2.8 a horizontal distance between rear axle and center of gravity not less than 114 mm (4.5 in) and not more than 152 mm (6.0 in);
S7.1.2.9 a vertical distance between ground and center of gravity not less than 260 mm (10.25 in) and not more than 298 mm (11.75 in);
S7.1.2.10 a mass of not less than 72.5 kg (160 lb) and not more than 86.0 kg (190 lb);
S7.1.2.11 Batteries with a charge not less than 75 percent of their rated nominal capacity (for tests that require use of the wheelchair’s propulsion system).

S7.1.3 Clearance test block for gaps, transitions, and openings. The clearance test block is made of a rigid material and is 16 × 16 × 100 mm (0.625 × 0.625 × 4.0 in) with all corners having a 1.6 mm (0.0625 inch) radius.

S7.1.4 Test Device for detecting platform occupancy. Occupancy of the platform is detected using a 152 × 152 × 305 mm (6 × 6 × 12 inches) rigid box having a total weight of 22.7 kg (50 lb).

S7.2 Slip resistance test.
S7.2.1 To determine compliance with S6.4.12, clean any 450mm × 100mm...
Nat’l Highway Traffic Safety Admin., DOT § 571.403

(17.5 in × 3.94 in) section of the platform with household glass cleaner (ammonia hydroxide solution). Wet the cleaned section of the platform by evenly spraying 3 ml (0.10 oz) of distilled water per 100 cm² (15.5 in²) of surface area. Begin the test specified in S7.2.2 within 30 seconds of completion of the wetting process.

S7.2.2 Use the test procedure defined in ANSI/RESNA Standard WC/Vol. 1–1998, Section 13 (incorporated by reference, see §571.5), except for clauses 5.3, Force Gage and 6, Test Procedure, on the wet section of platform. In lieu of clauses 5.3 and 6, implement the requirements of S7.2.2.1 and S7.2.2.2.

S7.2.2.1 Force gage. The pulling force is measured, at a frequency of at least 10 Hz, by a force gauge that has been calibrated to an accuracy of ±2 percent of the reading in the range of 25N to 100N.

S7.2.2.2 Test procedure. Before the test, prepare the surface of the test rubber by lightly abrading with waterproof silicon carbide paper, grade P120, weight D (120 wet and dry). Then wipe the surface clean with a dry cloth or brush. No solvents or other cleaning materials are used. To determine the coefficient of friction for the wet platform section pull the test block, with the test rubber attached, by machine at a rate of 20 ±2mm/s. The machine and test block are rigidly linked by a device that exhibits a stiffness greater than or equal to 1 × 10⁵ N/m. Pull the test block for a minimum of 13 seconds. Record the pulling force over the final 10 seconds of the test at a minimum frequency of 10 Hz. Repeat the test at least 5 times on any one area of the platform surface, in a single direction. Calculate the average pulling force for each trial, \(F_1 \) through \(F_n \), where \(n \) is the number of trials. Measure the weight of the test block with the force gauge and call it \(F_b \). Calculate the coefficient of friction, \(\mu_p \), from the following equation:

\[
\mu_p = \frac{F_1 + F_2 + F_3 + \ldots + F_n}{n \times F_b}
\]

S7.3 Environmental resistance test.

S7.3.1 Perform the procedures specified in S7.3.2 through S7.3.5 to determine compliance with S6.3.

S7.3.2 Attachment hardware, as specified in S6.3.1, and externally mounted platform lifts or components, as specified in S6.3.2, are tested in accordance with ASTM B117-97 (incorporated by reference, see §571.5). Any surface coating or material not intended for permanent retention on the metal parts during service life are removed prior to testing. Except as specified in S7.3.3, the period of the test is 50 hours, consisting of two periods of 24 hours exposure to salt spray followed by one hour drying.

S7.3.3 For attachment hardware located within the occupant compartment of the motor vehicle or internal to other compartments that provide protection from the elements and not at or near the floor of the compartment, the period of the test is 25 hours, consisting of one period of 24 hours exposure to salt spray followed by one hour drying.

S7.3.4 For performance of this test, externally mounted platform lifts or components may be installed on test jigs rather than on the vehicle. The lift is in a stowed position. The configuration of the test setup is such that areas of the lift that would be exposed to the outside environment during actual use are not protected from the salt spray by the test jig.

S7.3.5 At the end of the test, any surface exposed to the salt spray is washed thoroughly with water to remove the salt. After drying for at least 24 hours under laboratory conditions, the platform lift and components are examined for ferrous corrosion on significant surfaces, i.e., all surfaces that can be contacted by a sphere 2 cm (0.79 in) in diameter.

S7.4 Threshold warning signal test.

S7.4.1 Determine compliance with S6.1.2 and S6.1.3 using the test procedure specified in S7.4.2.

S7.4.2 During the threshold warning test, the wheelchair test device may be occupied by a human representative of a 5th percentile female meeting the requirements of FMVSS 208, S29.1(f) and S29.2. If present, the human subject is seated in the wheelchair test device with his or her feet supported by the wheelchair foot rests which are adjusted properly for length and in the

1091
down position (not elevated). The manufacturer shall select the option by the time it certifies the lift and may not thereafter select a different test option for the lift. Maneuver the lift platform to the vehicle floor level loading position. Using the wheelchair test device specified in S7.1.2, place one front wheel of the wheelchair test device on any portion of the threshold area defined in S4. Move the platform down until the alarm is actuated. Remove the test wheelchair wheel from the threshold area to deactivate the alarm. Measure the vertical distance between the platform and the threshold area and determine whether that distance is greater than 25 mm (1 in).

S7.5 Outer barrier non-deployment interlock and occupied outer barrier interlock test.

S7.5.1 Determine compliance with both S6.10.2.5 and S6.10.2.6 by using the following single test procedure.

S7.5.1.1 Place the test jig or vehicle on which the lift is installed on a flat, level, horizontal surface. Maneuver the platform to the ground level loading position. Using the lift control, move the lift upward until the point where the outer barrier fully deploys. Stop the platform at that point and measure the vertical distance between the highest point on the platform surface at the outer most edge and the ground to determine whether the distance is greater than 75 mm (3 in).

S7.5.1.2 Place one front wheel of the wheelchair test device on any portion of the threshold area. The manufacturer shall select the option by the time it certifies the lift and may not thereafter select a different test option for the lift. Maneuver the lift platform to the vehicle floor level loading position. Using the wheelchair test device specified in S7.1.2, place one front wheel of the wheelchair test device on any portion of the threshold area defined in S4. Move the platform down until the alarm is actuated. Remove the test wheelchair wheel from the threshold area to deactivate the alarm. Measure the vertical distance between the platform and the threshold area and determine whether that distance is greater than 25 mm (1 in).

S7.5.2 Maneuver the platform to the vehicle floor level loading position, and position the wheelchair test device specified in S7.1.2 on the platform with the front of the wheelchair test device facing the vehicle. Using the lift control, move the platform down until the inner roll stop fully deploys. Stop the lift and note that location.

S7.5.3 Reposition the platform at the vehicle floor level loading position. Place one front wheel of the wheelchair test device on the inner roll stop. If the platform is too small to maneuver one front wheel on the inner roll stop, two front wheels may be placed on the inner roll stop. Note the vertical distance between a horizontal plane (passing through the point of contact between the wheelchair test device wheel(s) and the upper surface of the outer barrier) to determine compliance with S6.10.2.6.

S7.6 Inner roll stop non-deployment interlock and occupied inner roll stop interlock test.

S7.6.1 Determine compliance with both S6.10.2.4 and S6.10.2.7 by using the single test procedure in S7.6.2 and S7.6.3.

S7.6.2 Maneuver the platform to the vehicle floor level loading position, and position the wheelchair test device specified in S7.1.2 on the platform with the front of the wheelchair test device facing the vehicle. Using the lift control, move the platform down until the inner roll stop fully deploys. Stop the lift and note that location.

S7.6.3 Reposition the platform at the vehicle floor level loading position. Place one front wheel of the wheelchair test device on the inner roll stop. If the platform is too small to maneuver one front wheel on the inner roll stop, two front wheels may be placed on the inner roll stop. Note the vertical distance between a horizontal plane (passing through the point of contact between the wheelchair test device wheel(s) and the upper surface of the inner roll stop) to determine compliance with S6.10.2.4. Measure the vertical change in distance of the horizontal plane (passing through the point of contact between the wheelchair test device wheel(s) and the upper surface of the inner roll stop) to determine compliance with S6.10.2.7.

S7.7 Wheelchair retention device impact test and edge guard test.
S7.7.1 Determine compliance with §6.4.7.1 and §6.4.7.2 using the test device specified in S7.1.2, under the procedures specified in S7.7.2 and S7.7.3.

S7.7.2 Conduct the test in accordance with the procedures in S7.7.2.1 through S7.7.2.5 to determine compliance with §6.4.7.1. In the case of private use lifts, perform both S7.7.2.5(a) and (b), unless the operating directions specify a required direction of wheelchair movement onto the platform. When a direction is indicated in the operating instructions, perform the procedure specified in S7.7.2.5(a) or (b) with the test device oriented as required by the operating instructions.

S7.7.2.1 Place the lift platform at the vehicle floor loading position.

S7.7.2.2 If the wheelchair retention device is an outer barrier, the footrests are adjusted such that at their lowest point they have a height 25 mm ± 2 mm (1 in ± 0.08 in) less than the outer barrier. If the wheelchair retention device is not an outer barrier, the footrests are adjusted such that at their lowest point they have a height 50 mm ± 2 mm (2 in ± 0.08 in) above the platform.

S7.7.2.3 Position the test device with its plane of symmetry coincident with the lift reference plane and at a distance from the platform sufficient to achieve the impact velocities required by §6.4.7.2.

S7.7.2.4 An optional 50 kg (110 pounds) of weight may be centered, evenly distributed, and secured in the seat of the wheelchair test device to assist in stabilizing the wheelchair test device during testing. The manufacturer shall select the option by the time it certifies the lift and may not thereafter select a different test option for the lift. Accelerate the test device onto the platform under its own power such that the test device impacts the wheelchair retention device at each speed and direction combination specified in §6.4.7.2. Terminate power to the wheelchair test device by means of the wheelchair controller after completion of the initial impact of any portion of the wheelchair test device with the wheelchair retention device. Note the position of the wheelchair test device following each impact to determine compliance with §6.4.7. If necessary, after each impact, adjust or replace the footrests to restore them to their original condition.

S7.7.2.5 The test device is operated at the following speeds, in the following directions—

(a) At a speed of not less than 2.0 m/s (4.4 mph) and not more than 2.1 m/s (4.7 mph) in the forward direction.
(b) At a speed of not less than 1.75 m/s (3.9 mph) and not more than 1.85 m/s (4.1 mph) in the rearward direction.

S7.7.3 Rotary platform lifts: For rotary platform lifts, conduct the test under the procedures in S7.7.3.3 through S7.7.3.7 to determine compliance with §6.4.7.2.

S7.7.3.1 Public use lifts: For public use lifts, perform the test in both possible test device orientations.

S7.7.3.2 Private use lifts: For private use lifts, perform the test in both possible test device orientations unless a required direction of wheelchair movement onto the platform is indicated in the operating instructions. If a required direction is indicated in the operating instructions, perform the test with the test device oriented as required by the operating instructions.

S7.7.3.3 Adjust the footrests of the test device to the shortest length. Place the test device on the platform with its plane of symmetry coincident with the lift reference plane.

S7.7.3.4 Position the platform surface 90 mm ± 10 mm (3.5 inches ± 0.4 inches) above the ground level position.

S7.7.3.5 Slowly move the test device in the forward direction until it contacts a wheelchair retention device. Activate the controller of the test device such that, if the test device were unloaded and unrestrained on a flat, level surface, it would achieve a maximum forward velocity of not less than 2.0 m/s (4.4 mph) and not more than 2.1 m/s (4.7 mph).

S7.7.3.6 Realign the test device on the platform so that its plane of symmetry is coincident with the lift reference plane. Slowly move the test device in the rearward direction until it contacts a wheelchair retention device. Activate the controller of the test device such that, if the test device were unloaded and unrestrained on a flat, level surface, it would achieve a maximum rearward velocity of not less than 1.75 m/s (3.9 mph) and not more than 1.85 m/s (4.1 mph).
§ 571.403

than 1.75 m/s (3.9 mph) and not more than 1.85 m/s (4.1 mph).

S7.7.3.7 During the impacts specified in S7.7.3.5 and S7.7.3.6, maintain power to the drive motors until all test device motion has ceased except rotation of the drive wheels. Note the position of the test device after its motion has ceased following each impact to determine compliance with S6.4.7.2.

S7.7.4 Edge Guard Test. Determine compliance with S6.4.6 using the test device specified in S7.1.2 by performing the test procedure specified in S7.7.4.1 through S7.7.4.6. During the edge guard tests, remove the footrests from the wheelchair test device.

S7.7.4.1 Position the platform surface 90 mm ±10 mm (3.5 in ±0.4 in) above the ground level loading position.

S7.7.4.2 Place the test device on the platform surface with its plane of symmetry coincident with the lift reference plane within ±10 mm (±0.4 in), its forward direction of travel inboard toward the vehicle, and its position on the platform as far rearward as the wheelchair inner roll-stop or vehicle body will allow it to be placed.

S7.7.4.3 Adjust the control of the test device to a setting that provides maximum acceleration and steer the test device from side-to-side and corner-to-corner of the lift platform, attempting to steer the test device off the platform. After each attempt, when the wheelchair test device stalls due to contact with a barrier, release the control to Neutral and realign the test device to the starting position. Repeat this sequence at any level that is more than 90 mm ±10 mm (3.5 in ±0.4 in) above the ground level loading position and more than 38 mm ±10 mm (1.5 in ±0.4 in) below the vehicle floor loading position. Repeat this sequence at 38 mm ±10 mm (1.5 in ±0.4 in) below the vehicle floor loading position.

S7.7.4.4 Next position the platform surface at a speed of not less than 1.5 m/s (3.4 mph) and not more than 1.6 m/s (3.6 mph). Terminate power to the wheelchair test device by means of the wheelchair controller after completion of the initial impact of any portion of the wheelchair test device with the inner roll stop. Determine compliance with S6.4.8.3(a).
§ 571.403

S 7.8.4 If necessary, adjust or replace the footrests to restore them to the condition they were in prior to the impact. Reposition the test device on the platform with its plane of symmetry coincident with the lift reference plane. Slowly move the test device in the forward direction until it contacts the inner roll stop.

S 7.8.5 Apply a static load to the inner roll stop by activating the controller of the test device such that, with the test device were unrestrained on a flat and level surface, it achieves a maximum forward velocity of not less than 2.0 m/s and not more than 2.1 m/s.

S 7.8.6 Maintain control activation and raise the platform to the vehicle loading position. Determine compliance with S 6.4.8.3(b).

S 7.9 Static load test I—working load.

S 7.9.1 By use of the lift controls specified in S 6.7.2, perform the operations specified in S 7.9.2 through S 7.9.8 in the order they are specified.

S 7.9.2 Place the platform in the stowed position.

S 7.9.3 Deploy the platform to the vehicle floor loading position. Center a standard load, including the test pallet, on the platform surface.

S 7.9.4 Lower the lift platform from the vehicle floor level loading position to the ground level loading position, stopping once between the two positions. Remove the test pallet from the lift platform.

S 7.9.5 Raise the lift platform from the ground level loading position to the vehicle floor level loading position, stopping once between the two positions.

S 7.9.6 Lower the lift platform from the vehicle floor level loading position to the ground level loading position, stopping once between the two positions.

S 7.9.7 Center the loaded test pallet on the platform surface. Raise the lift platform from the ground level loading position to the vehicle floor loading position, stopping once between the two positions.

S 7.9.8 Remove the pallet from the lift platform. Stow the lift.

S 7.9.9 Turn power off to the lift and repeat S 7.9.3 through S 7.9.5 and stow the lift using the backup operating mode as specified by S 6.9 in accordance with the manufacturer’s backup operating instructions.

S 7.10 Fatigue endurance test.

S 7.10.1 Perform the test procedure specified in S 7.10.2 through S 7.10.6 and determine compliance with S 6.5.1.

S 7.10.2 Put the unloaded lift platform at the ground level loading position. Center a standard load, including the test pallet, on the platform surface.

S 7.10.3 Each sequence of lift operations specified in S 7.10.5.1, S 7.10.5.2, S 7.10.6.1 and S 7.10.6.2 are done in blocks of 10 cycles with a 1 minute maximum rest period between each cycle in any block. The minimum rest period between each block of 10 cycles is such that the temperature of the lift components is maintained below the values specified by the manufacturer or that degrade the lift function.

S 7.10.4 During the test sequence specified in S 7.10.2 through S 7.10.6, perform any lift maintenance as specified in the vehicle owner’s manual.

S 7.10.5 Public use lifts: Using the lift controls specified in S 6.7.2, perform the operations specified in S 7.10.5.1 through S 7.10.5.3 in the order they are given. Public use lifts that manually stow (fold) and deploy (unfold) are not required to perform the stow and deploy portions of the tests.

S 7.10.5.1 Raise and lower the platform through the range of passenger operation 3,900 times.

S 7.10.5.2 Remove the test pallet from the platform. Raise the platform to the vehicle floor loading position, stow the lift, deploy the lift and lower the platform to the ground level loading position 3,900 times.

S 7.10.5.3 Perform the test sequence specified in S 7.10.5.1 and S 7.10.5.2 two times.

S 7.10.6 Private use lifts: Using the lift controls specified in S 6.7.2, perform the operation specified in S 7.10.6.1 through S 7.10.6.3 in the order they are given. Private use lifts that manually stow (fold) and deploy (unfold) are not required to perform the stow and deploy portions of the tests.

S 7.10.6.1 Raise and lower the platform through the range of passenger operation 1,100 times.

S 7.10.6.2 Remove the test pallet from the platform. Raise the platform
§ 571.403 49 CFR Ch. V (10–1–16 Edition)

to the vehicle floor loading position, stow the lift, deploy the lift and lower the platform to the ground level loading position 1,100 times.

S7.10.6.3 Perform the test sequence specified in S7.10.6.1 and S7.10.6.2 two times.

S7.11 Static load test II—proof load.
S7.11.1 Perform the test procedures specified in S7.11.2 through S7.11.5 and determine compliance with S6.5.2.
S7.11.2 Place the platform at the vehicle floor level loading position, center three times the standard load, including the test pallet, on the platform surface. Fully place the pallet on the platform within 1 minute of beginning to place it.
S7.11.3 Two minutes after fully placing the loaded test pallet on the platform surface, remove the loaded test pallet and examine the platform lift and vehicle for separation, fracture or breakage.
S7.11.4 After completing the static load test specified in S7.11.2 through S7.11.4, repeat Static Load Test I specified in S7.9.
S7.12 Handrail test.
S7.12.1 To determine compliance with S6.4.9.7, apply 4.4 N (1 lbf) through an area of 1,290 mm² (2 in²) in any direction at any point on the handrail in order to remove any looseness or slack from the handrail structure. Use this position of the handrail relative to the platform as the reference point for the measurement of handrail displacement. Apply 1,112 N (250 lbf) through an area of 1,290 mm² (2 in²) in a direction and location opposite to that of the 1.4 N (1 lbf). Attain the force within 1 minute after beginning to apply it. Five seconds after attaining the force, measure the amount of displacement of the handrail relative to the reference point. Maintain the force for two minutes. Release the force and inspect the handrail for cracking, separations or fractures.

S7.13 Wheelchair retention device overload test.
S7.13.1 Perform the test procedures as specified in S7.13.2 through S7.13.5 to determine compliance with S6.4.7.3.
S7.13.2 Position the platform surface 90 mm ±10 mm (3.5 in ±0.4 in) above the ground level loading position. Apply 7,117 N (1,600 lbf) to the wheelchair retention device in a direction parallel to both the platform lift and platform reference planes. Attain the force within 1 minute after beginning to apply it.
S7.13.3 For a wheelchair retention device that is in the form of an outer barrier, apply the force through a rectangular area with a height of 25 mm (1 in) and a width spanning the entire barrier. Distribute the force evenly about an axis 64 mm (2.5 in) above the platform reference plane. If the bottom edge of the outer barrier falls 50 mm (2 in) or more above the platform reference plane, distribute the force about an axis 13 mm (0.5 in) above the bottom edge of the barrier.
S7.13.4 For a wheelchair retention device other than an outer barrier, place the test device specified in S7.1.2 on the lift platform with its plane of symmetry coincident with the lift reference plane and directed such that forward motion is impeded by the wheelchair retention device. Move the test device forward until it contacts the wheelchair retention device. Remove the test device from the platform. Apply the force specified in S7.13.2 distributed evenly at all areas.
of the wheelchair retention device that made contact with the test device when it was moved forward. Attain the force within 1 minute after beginning to apply it.

S7.13.5 After maintaining the force for two minutes, remove it and examine the wheelchair retention device for separation, fracture or breakage.

S7.14 Static load test III—ultimate load.

S7.14.2 Reinforce the vehicle structure where the lift is attached such that it is rigid and will not deform, break or separate during application of the load specified in S7.14.3 or remove the platform lift from the vehicle and install it on a test jig that is rigid and will not deform, break or separate during application of the load specified in S7.14.3.

S7.14.3 When the platform is at the vehicle floor loading position, center four times the standard load, including the test pallet, on the platform surface. Fully place the pallet on the platform within 1 minute of beginning to place it.

S7.14.4 Two minutes after fully placing the loaded test pallet on the platform surface, remove the loaded test pallet and examine the platform lift for separation, fracture or breakage.
PLANES OF REFERENCE

FIGURE 1
FIGURE 2

PLATFORM THRESHOLD AREA AUDIBLE WARNING MEASUREMENT POINT

FIGURE 2
§ 571.404 Standard No. 404; Platform lift installations in motor vehicles.

S1. Scope. This standard specifies requirements for vehicles equipped with platform lifts used to assist persons with limited mobility in entering or leaving a vehicle.

S2. Purpose. The purpose of this standard is to prevent injuries and fatalities to passengers and bystanders during the operation of platform lifts installed in motor vehicles.

S3. Application. This standard applies to motor vehicles manufactured on and after July 1, 2005, that are equipped with a platform lift designed to carry standing passengers who may be aided by canes or walkers, as well as persons seated in wheelchairs, scooters, and other mobility aids, into and out of the vehicle.

S4. Requirements.

S4.1 Installation requirements.

S4.1.1 Lift-equipped buses, school buses, and MPVs other than motor homes with a GVWR greater than 4,536 kg (10,000 lb) must be equipped with a public use lift certified as meeting Federal Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403).

S4.1.2 Lift-equipped motor vehicles, other than ones subject to paragraph S4.1.1, must be equipped with a platform lift certified as meeting either the public use lift or private use lift requirements of Federal Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403).

S4.1.3 Platform lifts must be installed in the vehicle in accordance with the installation instructions or procedures provided pursuant to S6.13 of Standard 403. The vehicle must be of
§ 571.500 Standard No. 500; Low-speed vehicles.

S1. Scope. This standard specifies requirements for low-speed vehicles.

S2. Purpose. The purpose of this standard is to ensure that low-speed vehicles operated on the public streets, roads, and highways are equipped with the minimum motor vehicle equipment appropriate for motor vehicle safety.

S3. Applicability. This standard applies to low-speed vehicles.

S4. [Reserved.]

S5. Requirements.

(a) When tested in accordance with test conditions in S6 and test procedures in S7, the maximum speed attainable in 1.6 km (1 mile) by each low-speed vehicle shall not more than 40 kilometers per hour (25 miles per hour).

(b) Each low-speed vehicle shall be equipped with:

1. Headlamps,
2. Front and rear turn signal lamps,
3. Taillamps,
4. Stop lamps,
5. Reflex reflectors: one red on each side as far to the rear as practicable, and one red on the rear,
6. An exterior mirror mounted on the driver's side of the vehicle and either an exterior mirror mounted on the passenger's side of the vehicle or an interior mirror,
7. A parking brake,
8. A windshield that conforms to the Federal motor vehicle safety standard on glazing materials (49 CFR 571.205),
9. A VIN that conforms to the requirements of part 565 Vehicle Identification Number of this chapter, and
10. A Type 1 or Type 2 seat belt assembly conforming to Sec. 571.209 of this part, Federal Motor Vehicle Safety Standard No. 209, Seat belt assemblies,
§ 571.500

installed at each designated seating position.

(11) Low-speed vehicles shall comply with the rear visibility requirements specified in paragraphs S6.2 of FMVSS No. 111.

S6. General test conditions. Each vehicle must meet the performance limit specified in S5(a) under the following test conditions.

S6.1. Ambient conditions.

S6.1.1. Ambient temperature. The ambient temperature is any temperature between 0 °C (32 °F) and 40 °C (104 °F).

S6.1.2. Wind speed. The wind speed is not greater than 5 m/s (11.2 mph).

S6.2. Road test surface.

S6.2.2. Gradient. The test surface has not more than a 1 percent gradient in the direction of testing and not more than a 2 percent gradient perpendicular to the direction of testing.

S6.2.3. Lane width. The lane width is not less than 3.5 m (11.5 ft).

S6.3. Vehicle conditions.

S6.3.1. The test weight for maximum speed is unloaded vehicle weight plus a mass of 78 kg (170 pounds), including driver and instrumentation.

S6.3.2. No adjustment, repair or replacement of any component is allowed after the start of the first performance test.

S6.3.3. Tire inflation pressure. Cold inflation pressure is not more than the maximum permissible pressure molded on the tire sidewall.

S6.3.4. Break-in. The vehicle completes the manufacturer’s recommended break-in agenda as a minimum condition prior to beginning the performance tests.

S6.3.5. Vehicle openings. All vehicle openings (doors, windows, hood, trunk, convertible top, cargo doors, etc.) are closed except as required for instrumentation purposes.

S6.3.6. Battery powered vehicles. Prior to beginning the performance tests, propulsion batteries are at the state of charge recommended by the manufacturer or, if the manufacturer has made no recommendation, at a state of charge of not less than 95 percent. No further charging of any propulsion battery is permissible.

S7. Test procedure. Each vehicle must meet the performance limit specified in S5(a) under the following test procedure. The maximum speed performance is determined by measuring the maximum attainable vehicle speed at any point in a distance of 1.6 km (1.0 mile) from a standing start and repeated in the opposite direction within 30 minutes.

FINDING AIDS

A list of CFR titles, subtitles, chapters, subchapters and parts and an alphabetical list of agencies publishing in the CFR are included in the CFR Index and Finding Aids volume to the Code of Federal Regulations which is published separately and revised annually.

Table of CFR Titles and Chapters
Alphabetical List of Agencies Appearing in the CFR
List of CFR Sections Affected
Table of CFR Titles and Chapters
(Revised as of October 1, 2016)

Title 1—General Provisions

I Administrative Committee of the Federal Register (Parts 1–49)
II Office of the Federal Register (Parts 50–299)
III Administrative Conference of the United States (Parts 300–399)
IV Miscellaneous Agencies (Parts 400–500)

Title 2—Grants and Agreements

SUBTITLE A—Office of Management and Budget Guidance for Grants and Agreements
I Office of Management and Budget Governmentwide Guidance for Grants and Agreements (Parts 2–199)
II Office of Management and Budget Guidance (Parts 200–299)

SUBTITLE B—Federal Agency Regulations for Grants and Agreements
III Department of Health and Human Services (Parts 300–399)
IV Department of Agriculture (Parts 400–499)
VI Department of State (Parts 600–699)
VII Agency for International Development (Parts 700–799)
VIII Department of Veterans Affairs (Parts 800–899)
IX Department of Energy (Parts 900–999)
X Department of the Treasury (Parts 1000–1099)
XI Department of Defense (Parts 1100–1199)
XII Department of Transportation (Parts 1200–1299)
XIII Department of Commerce (Parts 1300–1399)
XIV Department of the Interior (Parts 1400–1499)
XV Environmental Protection Agency (Parts 1500–1599)
XVIII National Aeronautics and Space Administration (Parts 1800–1899)
XX United States Nuclear Regulatory Commission (Parts 2000–2099)
XXII Corporation for National and Community Service (Parts 2200–2299)
XXIII Social Security Administration (Parts 2300–2399)
XXIV Housing and Urban Development (Parts 2400–2499)
XXV National Science Foundation (Parts 2500–2599)
XXVI National Archives and Records Administration (Parts 2600–2699)
XXVII Small Business Administration (Parts 2700–2799)
Title 2—Grants and Agreements—Continued

XXVIII Department of Justice (Parts 2800—2899)
XXIX Department of Labor (Parts 2900—2999)
XXX Department of Homeland Security (Parts 3000—3099)
XXXI Institute of Museum and Library Services (Parts 3100—3199)
XXXII National Endowment for the Arts (Parts 3200—3299)
XXXIII National Endowment for the Humanities (Parts 3300—3399)
XXXIV Department of Education (Parts 3400—3499)
XXXV Export-Import Bank of the United States (Parts 3500—3599)
XXXVI Office of National Drug Control Policy, Executive Office of the President (Parts 3600—3699)
XXXVII Peace Corps (Parts 3700—3799)
LIX Gulf Coast Ecosystem Restoration Council (Parts 5900—5999)

Title 3—The President

I Executive Office of the President (Parts 100—199)

Title 4—Accounts

I Government Accountability Office (Parts 1—199)

Title 5—Administrative Personnel

I Office of Personnel Management (Parts 1—1199)
II Merit Systems Protection Board (Parts 1200—1299)
III Office of Management and Budget (Parts 1300—1399)
IV Office of Personnel Management and Office of the Director of National Intelligence (Parts 1400—1499)
V The International Organizations Employees Loyalty Board (Parts 1500—1599)
VI Federal Retirement Thrift Investment Board (Parts 1600—1699)
VIII Office of Special Counsel (Parts 1800—1899)
IX Appalachian Regional Commission (Parts 1900—1999)
XI Armed Forces Retirement Home (Parts 2100—2199)
XIV Federal Labor Relations Authority, General Counsel of the Federal Labor Relations Authority and Federal Service Impasses Panel (Parts 2400—2499)
XVI Office of Government Ethics (Parts 2600—2699)
XXI Department of the Treasury (Parts 3100—3199)
XXII Federal Deposit Insurance Corporation (Parts 3200—3299)
XXIII Department of Energy (Parts 3300—3399)
XXIV Federal Energy Regulatory Commission (Parts 3400—3499)
XXV Department of the Interior (Parts 3500—3599)
XXVI Department of Defense (Parts 3600—3699)
XXVIII Department of Justice (Parts 3800—3899)
Title 5—Administrative Personnel—Continued

XXIX Federal Communications Commission (Parts 3900—3999)
XXX Farm Credit System Insurance Corporation (Parts 4000—4099)
XXXI Farm Credit Administration (Parts 4100—4199)
XXXIII Overseas Private Investment Corporation (Parts 4300—4399)
XXXIV Securities and Exchange Commission (Parts 4400—4499)
XXXV Office of Personnel Management (Parts 4500—4599)
XXXVI Department of Homeland Security (Parts 4600—4699)
XXXVII Federal Election Commission (Parts 4700—4799)
XL Interstate Commerce Commission (Parts 5000—5099)
XLI Commodity Futures Trading Commission (Parts 5100—5199)
XLII Department of Labor (Parts 5200—5299)
XLIII National Science Foundation (Parts 5300—5399)
XLV Department of Health and Human Services (Parts 5500—5599)
XLVI Postal Rate Commission (Parts 5600—5699)
XLVII Federal Trade Commission (Parts 5700—5799)
XLVIII Nuclear Regulatory Commission (Parts 5800—5899)
XLIX Federal Labor Relations Authority (Parts 5900—5999)
L Department of Transportation (Parts 6000—6099)
LII Export-Import Bank of the United States (Parts 6200—6299)
LIII Department of Education (Parts 6300—6399)
LIV Environmental Protection Agency (Parts 6400—6499)
LV National Endowment for the Arts (Parts 6500—6599)
LVI National Endowment for the Humanities (Parts 6600—6699)
LVII General Services Administration (Parts 6700—6799)
LVIII Board of Governors of the Federal Reserve System (Parts 6800—6899)
LIX National Aeronautics and Space Administration (Parts 6900—6999)
LX United States Postal Service (Parts 7000—7099)
LXI National Labor Relations Board (Parts 7100—7199)
LXII Equal Employment Opportunity Commission (Parts 7200—7299)
LXIII Inter-American Foundation (Parts 7300—7399)
LXIV Merit Systems Protection Board (Parts 7400—7499)
LXV Department of Housing and Urban Development (Parts 7500—7599)
LXVI National Archives and Records Administration (Parts 7600—7699)
LXVII Institute of Museum and Library Services (Parts 7700—7799)
LXVIII Commission on Civil Rights (Parts 7800—7899)
LXIX Tennessee Valley Authority (Parts 7900—7999)
LXX Court Services and Offender Supervision Agency for the District of Columbia (Parts 8000—8099)
LXXI Consumer Product Safety Commission (Parts 8100—8199)
LXXIII Department of Agriculture (Parts 8300—8399)
LXXIV Federal Mine Safety and Health Review Commission (Parts 8400—8499)
Title 5—Administrative Personnel—Continued

LXXVI Federal Retirement Thrift Investment Board (Parts 8600—8699)
LXXVII Office of Management and Budget (Parts 8700—8799)
LXXX Federal Housing Finance Agency (Parts 9000—9099)
LXXXIII Special Inspector General for Afghanistan Reconstruction (Parts 9300—9399)
LXXXIV Bureau of Consumer Financial Protection (Parts 9400—9499)
LXXXVI National Credit Union Administration (Parts 9600—9699)
XCVIII Council of the Inspectors General on Integrity and Efficiency (Parts 9800—9899)
XCIX Military Compensation and Retirement Modernization Commission (Parts 9900—9999)
C National Council on Disability (Parts 10000—10049)

Title 6—Domestic Security

I Department of Homeland Security, Office of the Secretary (Parts 1—199)
X Privacy and Civil Liberties Oversight Board (Parts 1000—1099)

Title 7—Agriculture

Subtitle A—Office of the Secretary of Agriculture (Parts 0—26)
Subtitle B—Regulations of the Department of Agriculture

I Agricultural Marketing Service (Standards, Inspections, Marketing Practices), Department of Agriculture (Parts 27—209)
II Food and Nutrition Service, Department of Agriculture (Parts 210—299)
III Animal and Plant Health Inspection Service, Department of Agriculture (Parts 300—399)
IV Federal Crop Insurance Corporation, Department of Agriculture (Parts 400—499)
V Agricultural Research Service, Department of Agriculture (Parts 500—599)
VI Natural Resources Conservation Service, Department of Agriculture (Parts 600—699)
VII Farm Service Agency, Department of Agriculture (Parts 700—799)
VIII Grain Inspection, Packers and Stockyards Administration (Federal Grain Inspection Service), Department of Agriculture (Parts 800—899)
IX Agricultural Marketing Service (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), Department of Agriculture (Parts 900—999)
X Agricultural Marketing Service (Marketing Agreements and Orders; Milk), Department of Agriculture (Parts 1000—1199)
Title 7—Agriculture—Continued

XI Agricultural Marketing Service (Marketing Agreements and Orders; Miscellaneous Commodities), Department of Agriculture (Parts 1200—1299)

XIV Commodity Credit Corporation, Department of Agriculture (Parts 1400—1499)

XV Foreign Agricultural Service, Department of Agriculture (Parts 1500—1599)

XVI Rural Telephone Bank, Department of Agriculture (Parts 1600—1699)

XVII Rural Utilities Service, Department of Agriculture (Parts 1700—1799)

XVIII Rural Housing Service, Rural Business-Cooperative Service, Rural Utilities Service, and Farm Service Agency, Department of Agriculture (Parts 1800—2099)

XX Local Television Loan Guarantee Board (Parts 2200—2299)

XXV Office of Advocacy and Outreach, Department of Agriculture (Parts 2500—2599)

XXVI Office of Inspector General, Department of Agriculture (Parts 2600—2699)

XXVII Office of Information Resources Management, Department of Agriculture (Parts 2700—2799)

XXVIII Office of Operations, Department of Agriculture (Parts 2800—2899)

XXIX Office of Energy Policy and New Uses, Department of Agriculture (Parts 2900—2999)

XXX Office of the Chief Financial Officer, Department of Agriculture (Parts 3000—3099)

XXXI Office of Environmental Quality, Department of Agriculture (Parts 3100—3199)

XXXII Office of Procurement and Property Management, Department of Agriculture (Parts 3200—3299)

XXXIII Office of Transportation, Department of Agriculture (Parts 3300—3399)

XXXIV National Institute of Food and Agriculture (Parts 3400—3499)

XXXV Rural Housing Service, Department of Agriculture (Parts 3500—3599)

XXXVI National Agricultural Statistics Service, Department of Agriculture (Parts 3600—3699)

XXXVII Economic Research Service, Department of Agriculture (Parts 3700—3799)

XXXVIII World Agricultural Outlook Board, Department of Agriculture (Parts 3800—3899)

XLI [Reserved]

XLII Rural Business-Cooperative Service and Rural Utilities Service, Department of Agriculture (Parts 4200—4299)

Title 8—Aliens and Nationality

I Department of Homeland Security (Immigration and Naturalization) (Parts 1—499)
Chap.

Title 8—Aliens and Nationality—Continued

V Executive Office for Immigration Review, Department of Justice (Parts 1000—1399)

Title 9—Animals and Animal Products

I Animal and Plant Health Inspection Service, Department of Agriculture (Parts 1—199)
II Grain Inspection, Packers and Stockyards Administration (Packers and Stockyards Programs), Department of Agriculture (Parts 200—299)
III Food Safety and Inspection Service, Department of Agriculture (Parts 300—599)

Title 10—Energy

I Nuclear Regulatory Commission (Parts 0—199)
II Department of Energy (Parts 200—699)
III Department of Energy (Parts 700—999)
X Department of Energy (General Provisions) (Parts 1000—1099)
XIII Nuclear Waste Technical Review Board (Parts 1300—1399)
XVII Defense Nuclear Facilities Safety Board (Parts 1700—1799)
XVIII Northeast Interstate Low-Level Radioactive Waste Commission (Parts 1800—1899)

Title 11—Federal Elections

I Federal Election Commission (Parts 1—9099)
II Election Assistance Commission (Parts 9400—9499)

Title 12—Banks and Banking

I Comptroller of the Currency, Department of the Treasury (Parts 1—199)
II Federal Reserve System (Parts 200—299)
III Federal Deposit Insurance Corporation (Parts 300—399)
IV Export-Import Bank of the United States (Parts 400—499)
V Office of Thrift Supervision, Department of the Treasury (Parts 500—599)
VI Farm Credit Administration (Parts 600—699)
VII National Credit Union Administration (Parts 700—799)
VIII Federal Financing Bank (Parts 800—899)
IX Federal Housing Finance Board (Parts 900—999)
X Bureau of Consumer Financial Protection (Parts 1000—1099)
XI Federal Financial Institutions Examination Council (Parts 1100—1199)
XII Federal Housing Finance Agency (Parts 1200—1299)
XIII Financial Stability Oversight Council (Parts 1300—1399)
XIV Farm Credit System Insurance Corporation (Parts 1400—1499)
Title 12—Banks and Banking—Continued

XV Department of the Treasury (Parts 1500—1599)
XVI Office of Financial Research (Parts 1600—1699)
XVII Office of Federal Housing Enterprise Oversight, Department of Housing and Urban Development (Parts 1700—1799)
XVIII Community Development Financial Institutions Fund, Department of the Treasury (Parts 1800—1899)

Title 13—Business Credit and Assistance

I Small Business Administration (Parts 1—199)
III Economic Development Administration, Department of Commerce (Parts 300—399)
IV Emergency Steel Guarantee Loan Board (Parts 400—499)
V Emergency Oil and Gas Guaranteed Loan Board (Parts 500—599)

Title 14—Aeronautics and Space

I Federal Aviation Administration, Department of Transportation (Parts 1—199)
II Office of the Secretary, Department of Transportation (Aviation Proceedings) (Parts 200—399)
III Commercial Space Transportation, Federal Aviation Administration, Department of Transportation (Parts 400—1199)
V National Aeronautics and Space Administration (Parts 1200—1299)
VI Air Transportation System Stabilization (Parts 1300—1399)

Title 15—Commerce and Foreign Trade

SUBTITLE A—OFFICE OF THE SECRETARY OF COMMERCE (PARTS 0—29)
SUBTITLE B—REGULATIONS RELATING TO COMMERCE AND FOREIGN TRADE
I Bureau of the Census, Department of Commerce (Parts 30—199)
II National Institute of Standards and Technology, Department of Commerce (Parts 200—299)
III International Trade Administration, Department of Commerce (Parts 300—399)
IV Foreign-Trade Zones Board, Department of Commerce (Parts 400—499)
VII Bureau of Industry and Security, Department of Commerce (Parts 700—799)
VIII Bureau of Economic Analysis, Department of Commerce (Parts 800—899)
IX National Oceanic and Atmospheric Administration, Department of Commerce (Parts 900—999)
XI Technology Administration, Department of Commerce (Parts 1100—1199)
XIII East-West Foreign Trade Board (Parts 1300—1399)
Title 15—Commerce and Foreign Trade—Continued

Chap. XIV Minority Business Development Agency (Parts 1400—1499)

SUBTITLE C—REGULATIONS RELATING TO FOREIGN TRADE AGREEMENTS

XX Office of the United States Trade Representative (Parts 2000—2099)

SUBTITLE D—REGULATIONS RELATING TO TELECOMMUNICATIONS AND INFORMATION

XXIII National Telecommunications and Information Administration, Department of Commerce (Parts 2300—2399)

Title 16—Commercial Practices

I Federal Trade Commission (Parts 0—999)

II Consumer Product Safety Commission (Parts 1000—1799)

Title 17—Commodity and Securities Exchanges

I Commodity Futures Trading Commission (Parts 1—199)

II Securities and Exchange Commission (Parts 200—399)

IV Department of the Treasury (Parts 400—499)

Title 18—Conservation of Power and Water Resources

I Federal Energy Regulatory Commission, Department of Energy (Parts 1—399)

III Delaware River Basin Commission (Parts 400—499)

VI Water Resources Council (Parts 700—799)

VIII Susquehanna River Basin Commission (Parts 800—899)

XIII Tennessee Valley Authority (Parts 1300—1399)

Title 19—Customs Duties

I U.S. Customs and Border Protection, Department of Homeland Security; Department of the Treasury (Parts 0—199)

II United States International Trade Commission (Parts 200—299)

III International Trade Administration, Department of Commerce (Parts 300—399)

IV U.S. Immigration and Customs Enforcement, Department of Homeland Security (Parts 400—599)

Title 20—Employees’ Benefits

I Office of Workers’ Compensation Programs, Department of Labor (Parts 1—199)

II Railroad Retirement Board (Parts 200—399)

III Social Security Administration (Parts 400—499)

IV Employees’ Compensation Appeals Board, Department of Labor (Parts 500—599)
Title 20—Employees' Benefits—Continued

V Employment and Training Administration, Department of Labor (Parts 600—699)

VI Office of Workers’ Compensation Programs, Department of Labor (Parts 700—799)

VII Benefits Review Board, Department of Labor (Parts 800—899)

VIII Joint Board for the Enrollment of Actuaries (Parts 900—999)

IX Office of the Assistant Secretary for Veterans’ Employment and Training Service, Department of Labor (Parts 1000—1099)

Title 21—Food and Drugs

I Food and Drug Administration, Department of Health and Human Services (Parts 1—1299)

II Drug Enforcement Administration, Department of Justice (Parts 1300—1399)

III Office of National Drug Control Policy (Parts 1400—1499)

Title 22—Foreign Relations

I Department of State (Parts 1—199)

II Agency for International Development (Parts 200—299)

III Peace Corps (Parts 300—399)

IV International Joint Commission, United States and Canada (Parts 400—499)

V Broadcasting Board of Governors (Parts 500—599)

VII Overseas Private Investment Corporation (Parts 700—799)

IX Foreign Service Grievance Board (Parts 900—999)

X Inter-American Foundation (Parts 1000—1099)

XI International Boundary and Water Commission, United States and Mexico, United States Section (Parts 1100—1199)

XII United States International Development Cooperation Agency (Parts 1200—1299)

XIII Millennium Challenge Corporation (Parts 1300—1399)

XIV Foreign Service Labor Relations Board; Federal Labor Relations Authority; General Counsel of the Federal Labor Relations Authority; and the Foreign Service Impasse Disputes Panel (Parts 1400—1499)

XV African Development Foundation (Parts 1500—1599)

XVI Japan-United States Friendship Commission (Parts 1600—1699)

XVII United States Institute of Peace (Parts 1700—1799)

Title 23—Highways

I Federal Highway Administration, Department of Transportation (Parts 1—999)

II National Highway Traffic Safety Administration and Federal Highway Administration, Department of Transportation (Parts 1200—1299)
Title 23—Highways—Continued

III National Highway Traffic Safety Administration, Department of Transportation (Parts 1300—1399)

Title 24—Housing and Urban Development

SUBTITLE A—Office of the Secretary, Department of Housing and Urban Development (Parts 0—99)

SUBTITLE B—Regulations Relating to Housing and Urban Development

I Office of Assistant Secretary for Equal Opportunity, Department of Housing and Urban Development (Parts 100—199)

II Office of Assistant Secretary for Housing—Federal Housing Commissioner, Department of Housing and Urban Development (Parts 200—299)

III Government National Mortgage Association, Department of Housing and Urban Development (Parts 300—399)

IV Office of Housing and Office of Multifamily Housing Assistance Restructuring, Department of Housing and Urban Development (Parts 400—499)

V Office of Assistant Secretary for Community Planning and Development, Department of Housing and Urban Development (Parts 500—599)

VI Office of Assistant Secretary for Community Planning and Development, Department of Housing and Urban Development (Parts 600—699) [Reserved]

VII Office of the Secretary, Department of Housing and Urban Development (Housing Assistance Programs and Public and Indian Housing Programs) (Parts 700—799)

VIII Office of the Assistant Secretary for Housing—Federal Housing Commissioner, Department of Housing and Urban Development (Section 8 Housing Assistance Programs, Section 202 Direct Loan Program, Section 202 Supportive Housing for the Elderly Program and Section 811 Supportive Housing for Persons With Disabilities Program) (Parts 800—899)

IX Office of Assistant Secretary for Public and Indian Housing, Department of Housing and Urban Development (Parts 900—1699)

X Office of Assistant Secretary for Housing—Federal Housing Commissioner, Department of Housing and Urban Development (Interstate Land Sales Registration Program) (Parts 1700—1799)

XI Office of Inspector General, Department of Housing and Urban Development (Parts 2000—2099)

XV Emergency Mortgage Insurance and Loan Programs, Department of Housing and Urban Development (Parts 2700—2799) [Reserved]

XX Office of Assistant Secretary for Housing—Federal Housing Commissioner, Department of Housing and Urban Development (Parts 3200—3899)

XXIV Board of Directors of the HOPE for Homeowners Program (Parts 4000—4099) [Reserved]

XXV Neighborhood Reinvestment Corporation (Parts 4100—4199)
Title 25—Indians

I Bureau of Indian Affairs, Department of the Interior (Parts 1—299)
II Indian Arts and Crafts Board, Department of the Interior (Parts 300—399)
III National Indian Gaming Commission, Department of the Interior (Parts 500—599)
IV Office of Navajo and Hopi Indian Relocation (Parts 700—799)
V Bureau of Indian Affairs, Department of the Interior, and Indian Health Service, Department of Health and Human Services (Part 900)
VI Office of the Assistant Secretary-Indian Affairs, Department of the Interior (Parts 1000—1199)
VII Office of the Special Trustee for American Indians, Department of the Interior (Parts 1200—1299)

Title 26—Internal Revenue

I Internal Revenue Service, Department of the Treasury (Parts 1—End)

Title 27—Alcohol, Tobacco Products and Firearms

I Alcohol and Tobacco Tax and Trade Bureau, Department of the Treasury (Parts 1—399)
II Bureau of Alcohol, Tobacco, Firearms, and Explosives, Department of Justice (Parts 400—699)

Title 28—Judicial Administration

I Department of Justice (Parts 0—299)
III Federal Prison Industries, Inc., Department of Justice (Parts 300—399)
V Bureau of Prisons, Department of Justice (Parts 500—599)
VI Offices of Independent Counsel, Department of Justice (Parts 600—699)
VII Office of Independent Counsel (Parts 700—799)
VIII Court Services and Offender Supervision Agency for the District of Columbia (Parts 800—899)
IX National Crime Prevention and Privacy Compact Council (Parts 900—999)
XI Department of Justice and Department of State (Parts 1100—1199)

Title 29—Labor

SUBTITLE A—OFFICE OF THE SECRETARY OF LABOR (PARTS 0—99)
SUBTITLE B—REGULATIONS RELATING TO LABOR
I National Labor Relations Board (Parts 100—199)
Title 29—Labor—Continued

II Office of Labor-Management Standards, Department of Labor (Parts 200—299)
III National Railroad Adjustment Board (Parts 300—399)
IV Office of Labor-Management Standards, Department of Labor (Parts 400—499)
V Wage and Hour Division, Department of Labor (Parts 500—899)
IX Construction Industry Collective Bargaining Commission (Parts 900—999)
X National Mediation Board (Parts 1200—1299)
XII Federal Mediation and Conciliation Service (Parts 1400—1499)
XIV Equal Employment Opportunity Commission (Parts 1600—1699)
XVII Occupational Safety and Health Administration, Department of Labor (Parts 1900—1999)
XX Occupational Safety and Health Review Commission (Parts 2200—2499)
XXV Employee Benefits Security Administration, Department of Labor (Parts 2500—2599)
XXVII Federal Mine Safety and Health Review Commission (Parts 2700—2799)
XL Pension Benefit Guaranty Corporation (Parts 4000—4999)

Title 30—Mineral Resources

I Mine Safety and Health Administration, Department of Labor (Parts 1—199)
II Bureau of Safety and Environmental Enforcement, Department of the Interior (Parts 200—299)
IV Geological Survey, Department of the Interior (Parts 400—499)
V Bureau of Ocean Energy Management, Department of the Interior (Parts 500—599)
VII Office of Surface Mining Reclamation and Enforcement, Department of the Interior (Parts 700—999)
XII Office of Natural Resources Revenue, Department of the Interior (Parts 1200—1299)

Title 31—Money and Finance: Treasury

SUBTITLE A—OFFICE OF THE SECRETARY OF THE TREASURY (PARTS 0—50)
SUBTITLE B—REGULATIONS RELATING TO MONEY AND FINANCE
I Monetary Offices, Department of the Treasury (Parts 51—199)
II Fiscal Service, Department of the Treasury (Parts 200—399)
IV Secret Service, Department of the Treasury (Parts 400—499)
V Office of Foreign Assets Control, Department of the Treasury (Parts 500—599)
VI Bureau of Engraving and Printing, Department of the Treasury (Parts 600—699)
VII Federal Law Enforcement Training Center, Department of the Treasury (Parts 700—799)
Title 31—Money and Finance: Treasury—Continued

VIII Office of International Investment, Department of the Treasury (Parts 800—899)
IX Federal Claims Collection Standards (Department of the Treasury—Department of Justice) (Parts 900—999)
X Financial Crimes Enforcement Network, Department of the Treasury (Parts 1000—1099)

Title 32—National Defense

SUBTITLE A—DEPARTMENT OF DEFENSE
I Office of the Secretary of Defense (Parts 1—399)
V Department of the Army (Parts 400—699)
VI Department of the Navy (Parts 700—799)
VII Department of the Air Force (Parts 800—1099)
SUBTITLE B—OTHER REGULATIONS RELATING TO NATIONAL DEFENSE
XII Defense Logistics Agency (Parts 1200—1299)
XVI Selective Service System (Parts 1600—1699)
XVII Office of the Director of National Intelligence (Parts 1700—1799)
XVIII National Counterintelligence Center (Parts 1800—1899)
XIX Central Intelligence Agency (Parts 1900—1999)
XX Information Security Oversight Office, National Archives and Records Administration (Parts 2000—2099)
XXI National Security Council (Parts 2100—2199)
XXIV Office of Science and Technology Policy (Parts 2400—2499)
XXVII Office for Micronesian Status Negotiations (Parts 2700—2799)
XXVIII Office of the Vice President of the United States (Parts 2800—2899)

Title 33—Navigation and Navigable Waters

I Coast Guard, Department of Homeland Security (Parts 1—199)
II Corps of Engineers, Department of the Army (Parts 200—399)
IV Saint Lawrence Seaway Development Corporation, Department of Transportation (Parts 400—499)

Title 34—Education

SUBTITLE A—OFFICE OF THE SECRETARY, DEPARTMENT OF EDUCATION (PARTS 1—99)
SUBTITLE B—REGULATIONS OF THE OFFICES OF THE DEPARTMENT OF EDUCATION
I Office for Civil Rights, Department of Education (Parts 100—199)
II Office of Elementary and Secondary Education, Department of Education (Parts 200—299)
III Office of Special Education and Rehabilitative Services, Department of Education (Parts 300—399)
Title 34—Education—Continued

IV Office of Career, Technical and Adult Education, Department of Education (Parts 400—499)
V Office of Bilingual Education and Minority Languages Affairs, Department of Education (Parts 500—599) [Reserved]
VI Office of Postsecondary Education, Department of Education (Parts 600—699)
VII Office of Educational Research and Improvement, Department of Education (Parts 700—799) [Reserved]
SUBTITLE C—Regulations Relating to Education
XI [Reserved]
XII National Council on Disability (Parts 1200—1299)

Title 35 [Reserved]

Title 36—Parks, Forests, and Public Property

I National Park Service, Department of the Interior (Parts 1—199)
II Forest Service, Department of Agriculture (Parts 200—299)
III Corps of Engineers, Department of the Army (Parts 300—399)
IV American Battle Monuments Commission (Parts 400—499)
V Smithsonian Institution (Parts 500—599)
VI [Reserved]
VII Library of Congress (Parts 700—799)
VIII Advisory Council on Historic Preservation (Parts 800—899)
IX Pennsylvania Avenue Development Corporation (Parts 900—999)
X Presidio Trust (Parts 1000—1099)
XI Architectural and Transportation Barriers Compliance Board (Parts 1100—1199)
XII National Archives and Records Administration (Parts 1200—1299)
XV Oklahoma City National Memorial Trust (Parts 1500—1599)
XVI Morris K. Udall Scholarship and Excellence in National Environmental Policy Foundation (Parts 1600—1699)

Title 37—Patents, Trademarks, and Copyrights

I United States Patent and Trademark Office, Department of Commerce (Parts 1—199)
II U.S. Copyright Office, Library of Congress (Parts 200—299)
III Copyright Royalty Board, Library of Congress (Parts 300—399)
IV Assistant Secretary for Technology Policy, Department of Commerce (Parts 400—599)

Title 38—Pensions, Bonuses, and Veterans' Relief

I Department of Veterans Affairs (Parts 0—199)
II Armed Forces Retirement Home (Parts 200—299)

1118
Title 39—Postal Service

I United States Postal Service (Parts 1—999)
III Postal Regulatory Commission (Parts 3000—3099)

Title 40—Protection of Environment

I Environmental Protection Agency (Parts 1—1099)
IV Environmental Protection Agency and Department of Justice (Parts 1400—1499)
V Council on Environmental Quality (Parts 1500—1599)
VI Chemical Safety and Hazard Investigation Board (Parts 1600—1699)
VII Environmental Protection Agency and Department of Defense; Uniform National Discharge Standards for Vessels of the Armed Forces (Parts 1700—1799)
VIII Gulf Coast Ecosystem Restoration Council (Parts 1800—1899)

Title 41—Public Contracts and Property Management

SUBTITLE A—FEDERAL PROCUREMENT REGULATIONS SYSTEM
[Note]

SUBTITLE B—OTHER PROVISIONS RELATING TO PUBLIC CONTRACTS
50 Public Contracts, Department of Labor (Parts 50–1—50–999)
51 Committee for Purchase From People Who Are Blind or Severely Disabled (Parts 51–1—51–99)
60 Office of Federal Contract Compliance Programs, Equal Employment Opportunity, Department of Labor (Parts 60–1—60–999)
61 Office of the Assistant Secretary for Veterans’ Employment and Training Service, Department of Labor (Parts 61–1—61–999)
62—100 [Reserved]

SUBTITLE C—FEDERAL PROPERTY MANAGEMENT REGULATIONS SYSTEM
101 Federal Property Management Regulations (Parts 101–1—101–99)
102 Federal Management Regulation (Parts 102–1—102–99)
103—104 [Reserved]
105 General Services Administration (Parts 105–1—105–999)
109 Department of Energy Property Management Regulations (Parts 109–1—109–99)
114 Department of the Interior (Parts 114–1—114–99)
115 Environmental Protection Agency (Parts 115–1—115–99)
128 Department of Justice (Parts 128–1—128–99)
129—200 [Reserved]

SUBTITLE D—OTHER PROVISIONS RELATING TO PROPERTY MANAGEMENT [Reserved]

SUBTITLE E—FEDERAL INFORMATION RESOURCES MANAGEMENT REGULATIONS SYSTEM [Reserved]

SUBTITLE F—FEDERAL TRAVEL REGULATION SYSTEM
300 General (Parts 300–1—300–99)
301 Temporary Duty (TDY) Travel Allowances (Parts 301–1—301–99)
Title 41—Public Contracts and Property Management—Continued

302 Relocation Allowances (Parts 302–1—302–99)
303 Payment of Expenses Connected with the Death of Certain Employees (Part 303–1—303–99)
304 Payment of Travel Expenses from a Non-Federal Source (Parts 304–1—304–99)

Title 42—Public Health

I Public Health Service, Department of Health and Human Services (Parts 1—199)
IV Centers for Medicare & Medicaid Services, Department of Health and Human Services (Parts 400—599)
V Office of Inspector General-Health Care, Department of Health and Human Services (Parts 1000—1999)

Title 43—Public Lands: Interior

SUBTITLE A—Office of the Secretary of the Interior (Parts 1—199)
SUBTITLE B—Regulations Relating to Public Lands
I Bureau of Reclamation, Department of the Interior (Parts 400—999)
II Bureau of Land Management, Department of the Interior (Parts 1000—9999)
III Utah Reclamation Mitigation and Conservation Commission (Parts 10000—10099)

Title 44—Emergency Management and Assistance

I Federal Emergency Management Agency, Department of Homeland Security (Parts 0—399)
IV Department of Commerce and Department of Transportation (Parts 400—499)

Title 45—Public Welfare

SUBTITLE A—Department of Health and Human Services (Parts 1—199)
SUBTITLE B—Regulations Relating to Public Welfare
II Office of Family Assistance (Assistance Programs), Administration for Children and Families, Department of Health and Human Services (Parts 200—299)
III Office of Child Support Enforcement (Child Support Enforcement Program), Administration for Children and Families, Department of Health and Human Services (Parts 300—399)
IV Office of Refugee Resettlement, Administration for Children and Families, Department of Health and Human Services (Parts 400—499)
V Foreign Claims Settlement Commission of the United States, Department of Justice (Parts 500—599)
Chap.

Title 45—Public Welfare—Continued

VI National Science Foundation (Parts 600—699)
VII Commission on Civil Rights (Parts 700—799)
VIII Office of Personnel Management (Parts 800—899)
IX Denali Commission (Parts 900—999)
X Office of Community Services, Administration for Children and Families, Department of Health and Human Services (Parts 1000—1099)
XI National Foundation on the Arts and the Humanities (Parts 1100—1199)
XII Corporation for National and Community Service (Parts 1200—1299)
XIII Administration for Children and Families, Department of Health and Human Services (Parts 1300—1399)
XVI Legal Services Corporation (Parts 1600—1699)
XVII National Commission on Libraries and Information Science (Parts 1700—1799)
XVIII Harry S. Truman Scholarship Foundation (Parts 1800—1899)
XXI Commission on Fine Arts (Parts 2100—2199)
XXIII Arctic Research Commission (Part 2301)
XXIV James Madison Memorial Fellowship Foundation (Parts 2400—2499)
XXV Corporation for National and Community Service (Parts 2500—2599)

Title 46—Shipping

I Coast Guard, Department of Homeland Security (Parts 1—199)
II Maritime Administration, Department of Transportation (Parts 200—399)
III Coast Guard (Great Lakes Pilotage), Department of Homeland Security (Parts 400—499)
IV Federal Maritime Commission (Parts 500—599)

Title 47—Telecommunication

I Federal Communications Commission (Parts 0—199)
II Office of Science and Technology Policy and National Security Council (Parts 200—299)
III National Telecommunications and Information Administration, Department of Commerce (Parts 300—399)
IV National Telecommunications and Information Administration, Department of Commerce, and National Highway Traffic Safety Administration, Department of Transportation (Parts 400—499)

Title 48—Federal Acquisition Regulations System

1 Federal Acquisition Regulation (Parts 1—99)
Title 48—Federal Acquisition Regulations System—Continued

2 Defense Acquisition Regulations System, Department of Defense (Parts 200—299)
3 Health and Human Services (Parts 300—399)
4 Department of Agriculture (Parts 400—499)
5 General Services Administration (Parts 500—599)
6 Department of State (Parts 600—699)
7 Agency for International Development (Parts 700—799)
8 Department of Veterans Affairs (Parts 800—899)
9 Department of Energy (Parts 900—999)
10 Department of the Treasury (Parts 1000—1099)
12 Department of Transportation (Parts 1200—1299)
13 Department of Commerce (Parts 1300—1399)
14 Department of the Interior (Parts 1400—1499)
15 Environmental Protection Agency (Parts 1500—1599)
16 Office of Personnel Management, Federal Employees Health Benefits Acquisition Regulation (Parts 1600—1699)
17 Office of Personnel Management (Parts 1700—1799)
18 National Aeronautics and Space Administration (Parts 1800—1899)
19 Broadcasting Board of Governors (Parts 1900—1999)
20 Nuclear Regulatory Commission (Parts 2000—2099)
21 Office of Personnel Management, Federal Employees Group Life Insurance Federal Acquisition Regulation (Parts 2100—2199)
23 Social Security Administration (Parts 2300—2399)
24 Department of Housing and Urban Development (Parts 2400—2499)
25 National Science Foundation (Parts 2500—2599)
28 Department of Justice (Parts 2800—2899)
29 Department of Labor (Parts 2900—2999)
30 Department of Homeland Security, Homeland Security Acquisition Regulation (HSAR) (Parts 3000—3099)
34 Department of Education Acquisition Regulation (Parts 3400—3499)
51 Department of the Army Acquisition Regulations (Parts 5100—5199)
52 Department of the Navy Acquisition Regulations (Parts 5200—5299)
53 Department of the Air Force Federal Acquisition Regulation Supplement (Parts 5300—5399) [Reserved]
54 Defense Logistics Agency, Department of Defense (Parts 5400—5499)
57 African Development Foundation (Parts 5700—5799)
61 Civilian Board of Contract Appeals, General Services Administration (Parts 6100—6199)
63 Department of Transportation Board of Contract Appeals (Parts 6300—6399)
Title 48—Federal Acquisition Regulations System—Continued

99 Cost Accounting Standards Board, Office of Federal Procurement Policy, Office of Management and Budget (Parts 9900—9999)

Title 49—Transportation

SUBTITLE A—OFFICE OF THE SECRETARY OF TRANSPORTATION (PARTS 1—99)

SUBTITLE B—OTHER REGULATIONS RELATING TO TRANSPORTATION

I Pipeline and Hazardous Materials Safety Administration, Department of Transportation (Parts 100—199)

II Federal Railroad Administration, Department of Transportation (Parts 200—299)

III Federal Motor Carrier Safety Administration, Department of Transportation (Parts 300—399)

IV Coast Guard, Department of Homeland Security (Parts 400—499)

V National Highway Traffic Safety Administration, Department of Transportation (Parts 500—599)

VI Federal Transit Administration, Department of Transportation (Parts 600—699)

VII National Railroad Passenger Corporation (AMTRAK) (Parts 700—799)

VIII National Transportation Safety Board (Parts 800—999)

X Surface Transportation Board (Parts 1000—1399)

XI Research and Innovative Technology Administration, Department of Transportation (Parts 1400—1499) [Reserved]

XII Transportation Security Administration, Department of Homeland Security (Parts 1500—1699)

Title 50—Wildlife and Fisheries

I United States Fish and Wildlife Service, Department of the Interior (Parts 1—199)

II National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Department of Commerce (Parts 200—299)

III International Fishing and Related Activities (Parts 300—399)

IV Joint Regulations (United States Fish and Wildlife Service, Department of the Interior and National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Department of Commerce); Endangered Species Committee Regula-tions (Parts 400—499)

V Marine Mammal Commission (Parts 500—599)

VI Fishery Conservation and Management, National Oceanic and Atmospheric Administration, Department of Commerce (Parts 600—699)
<table>
<thead>
<tr>
<th>Agency</th>
<th>CFR Title, Subtitle or Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Committee of the Federal Register</td>
<td>1, I</td>
</tr>
<tr>
<td>Administrative Conference of the United States</td>
<td>1, III</td>
</tr>
<tr>
<td>Advisory Council on Historic Preservation</td>
<td>36, VIII</td>
</tr>
<tr>
<td>Advocacy and Outreach, Office of</td>
<td>7, XXV</td>
</tr>
<tr>
<td>Afghanistan Reconstruction, Special Inspector General for</td>
<td>5, LXXXIII</td>
</tr>
<tr>
<td>African Development Foundation</td>
<td>22, XV</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 57</td>
</tr>
<tr>
<td>Agency for International Development</td>
<td>2, VII; 22, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 7</td>
</tr>
<tr>
<td>Agricultural Marketing Service</td>
<td>7, I, IX, X, XI</td>
</tr>
<tr>
<td>Agricultural Research Service</td>
<td>7, V</td>
</tr>
<tr>
<td>Agriculture Department</td>
<td>2, IV; 8, LXXXIII</td>
</tr>
<tr>
<td>Advocacy and Outreach, Office of</td>
<td>7, XXV</td>
</tr>
<tr>
<td>Agricultural Marketing Service</td>
<td>7, I, IX, X, XI</td>
</tr>
<tr>
<td>Agricultural Research Service</td>
<td>7, V</td>
</tr>
<tr>
<td>Animal and Plant Health Inspection Service</td>
<td>7, III; 9, I</td>
</tr>
<tr>
<td>Chief Financial Officer, Office of</td>
<td>7, XXX</td>
</tr>
<tr>
<td>Commodity Credit Corporation</td>
<td>7, XIV</td>
</tr>
<tr>
<td>Economic Research Service</td>
<td>7, XXXVII</td>
</tr>
<tr>
<td>Energy Policy and New Uses, Office of</td>
<td>2, IX; 7, XXIX</td>
</tr>
<tr>
<td>Environmental Quality, Office of</td>
<td>7, XXXI</td>
</tr>
<tr>
<td>Farm Service Agency</td>
<td>7, VII, XVIII</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 4</td>
</tr>
<tr>
<td>Federal Crop Insurance Corporation</td>
<td>7, IV</td>
</tr>
<tr>
<td>Food and Nutrition Service</td>
<td>7, II</td>
</tr>
<tr>
<td>Food Safety and Inspection Service</td>
<td>9, III</td>
</tr>
<tr>
<td>Foreign Agricultural Service</td>
<td>7, XV</td>
</tr>
<tr>
<td>Forest Service</td>
<td>36, II</td>
</tr>
<tr>
<td>Grain Inspection, Packers and Stockyards Administration</td>
<td>7, VIII; 9, II</td>
</tr>
<tr>
<td>Information Resources Management, Office of</td>
<td>7, XXVII</td>
</tr>
<tr>
<td>Inspector General, Office of</td>
<td>7, XXVI</td>
</tr>
<tr>
<td>National Agricultural Library</td>
<td>7, XLI</td>
</tr>
<tr>
<td>National Agricultural Statistics Service</td>
<td>7, XXXVI</td>
</tr>
<tr>
<td>National Institute of Food and Agriculture</td>
<td>7, XXXIV</td>
</tr>
<tr>
<td>Natural Resources Conservation Service</td>
<td>7, VI</td>
</tr>
<tr>
<td>Operations, Office of</td>
<td>7, XXVIII</td>
</tr>
<tr>
<td>Procurement and Property Management, Office of</td>
<td>7, XXXII</td>
</tr>
<tr>
<td>Rural Business-Cooperative Service</td>
<td>7, XVIII, XLII</td>
</tr>
<tr>
<td>Rural Development Administration</td>
<td>7, XLII</td>
</tr>
<tr>
<td>Rural Housing Service</td>
<td>7, XVIII, XXXV</td>
</tr>
<tr>
<td>Rural Telephone Bank</td>
<td>7, XVI</td>
</tr>
<tr>
<td>Rural Utilities Service</td>
<td>7, XVII, XVIII, XLII</td>
</tr>
<tr>
<td>Secretary of Agriculture, Office of</td>
<td>7, Subtitle A</td>
</tr>
<tr>
<td>Transportation, Office of</td>
<td>7, XXXIII</td>
</tr>
<tr>
<td>World Agricultural Outlook Board</td>
<td>7, XXXVIII</td>
</tr>
<tr>
<td>Air Force Department</td>
<td>32, VII</td>
</tr>
<tr>
<td>Federal Acquisition Regulation Supplement</td>
<td>48, 53</td>
</tr>
<tr>
<td>Air Transportation Stabilization Board</td>
<td>14, VI</td>
</tr>
<tr>
<td>Alcohol and Tobacco Tax and Trade Bureau</td>
<td>27, I</td>
</tr>
<tr>
<td>Alcohol, Tobacco, Firearms, and Explosives, Bureau of AMTRAK</td>
<td>27, II</td>
</tr>
<tr>
<td>American Battle Monuments Commission</td>
<td>36, IV</td>
</tr>
<tr>
<td>American Indians, Office of the Special Trustee</td>
<td>25, VII</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Animal and Plant Health Inspection Service</td>
<td>7, III; 9, I</td>
</tr>
<tr>
<td>Appalachian Regional Commission</td>
<td>5, IX</td>
</tr>
<tr>
<td>Architectural and Transportation Barriers Compliance Board</td>
<td>36, XI</td>
</tr>
<tr>
<td>Arctic Research Commission</td>
<td>45, XXIII</td>
</tr>
<tr>
<td>Armed Forces Retirement Home</td>
<td>5, XI</td>
</tr>
<tr>
<td>Army Department</td>
<td>32, V</td>
</tr>
<tr>
<td>Engineers, Corps of</td>
<td>33, II; 36, III</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 51</td>
</tr>
<tr>
<td>Bilingual Education and Minority Languages Affairs, Office of</td>
<td>34, V</td>
</tr>
<tr>
<td>Blind or Severely Disabled, Committee for Purchase from</td>
<td>41, 51</td>
</tr>
<tr>
<td>People Who Are</td>
<td></td>
</tr>
<tr>
<td>Broadcasting Board of Governors</td>
<td>22, V</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 19</td>
</tr>
<tr>
<td>Career, Technical and Adult Education, Office of</td>
<td>34, IV</td>
</tr>
<tr>
<td>Census Bureau</td>
<td>15, I</td>
</tr>
<tr>
<td>Centers for Medicare & Medicaid Services</td>
<td>42, IV</td>
</tr>
<tr>
<td>Central Intelligence Agency</td>
<td>32, XIX</td>
</tr>
<tr>
<td>Chemical Safety and Hazardous Investigation Board</td>
<td>40, VI</td>
</tr>
<tr>
<td>Chief Financial Officer, Office of</td>
<td>7, XXX</td>
</tr>
<tr>
<td>Child Support Enforcement, Office of</td>
<td>45, III</td>
</tr>
<tr>
<td>Children and Families, Administration for</td>
<td>45, II, III, IV, X, XIII</td>
</tr>
<tr>
<td>Civil Rights, Commission on</td>
<td>5, LXVIII; 45, VII</td>
</tr>
<tr>
<td>Civil Rights, Office for</td>
<td>34, I</td>
</tr>
<tr>
<td>Council of the Inspectors General on Integrity and Efficiency</td>
<td>5, XCVIII</td>
</tr>
<tr>
<td>Court Services and Offender Supervision Agency for the</td>
<td>5, LXX</td>
</tr>
<tr>
<td>District of Columbia</td>
<td></td>
</tr>
<tr>
<td>Coast Guard</td>
<td>33, I; 46, I; 49, IV</td>
</tr>
<tr>
<td>Coast Guard (Great Lakes Pilotage)</td>
<td>46, III</td>
</tr>
<tr>
<td>Commerce Department</td>
<td>2, XIII; 44, IV; 50, VI</td>
</tr>
<tr>
<td>Census Bureau</td>
<td>15, I</td>
</tr>
<tr>
<td>Economic Analysis, Bureau of</td>
<td>15, VIII</td>
</tr>
<tr>
<td>Economic Development Administration</td>
<td>13, III</td>
</tr>
<tr>
<td>Emergency Management and Assistance</td>
<td>44, IV</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 13</td>
</tr>
<tr>
<td>Foreign-Trade Zones Board</td>
<td>15, IV</td>
</tr>
<tr>
<td>Industry and Security, Bureau of</td>
<td>15, VII</td>
</tr>
<tr>
<td>International Trade Administration</td>
<td>15, III; 19, III</td>
</tr>
<tr>
<td>National Institute of Standards and Technology</td>
<td>15, II</td>
</tr>
<tr>
<td>National Marine Fisheries Service</td>
<td>50, II, IV</td>
</tr>
<tr>
<td>National Oceanic and Atmospheric Administration</td>
<td>15, IX; 50, II, III, IV, VI</td>
</tr>
<tr>
<td>National Telecommunications and Information</td>
<td>15, XXIII; 47, III, IV</td>
</tr>
<tr>
<td>Administration</td>
<td></td>
</tr>
<tr>
<td>National Weather Service</td>
<td>15, IX</td>
</tr>
<tr>
<td>Patent and Trademark Office, United States</td>
<td>37, I</td>
</tr>
<tr>
<td>Productivity, Technology and Innovation, Assistant</td>
<td>37, IV</td>
</tr>
<tr>
<td>Secretary for Secretary of Commerce, Office of</td>
<td>15, Subtitle A</td>
</tr>
<tr>
<td>Technology Administration</td>
<td>15, XI</td>
</tr>
<tr>
<td>Technology Policy, Assistant Secretary for</td>
<td>37, IV</td>
</tr>
<tr>
<td>Commercial Space Transportation</td>
<td>14, III</td>
</tr>
<tr>
<td>Commodity Credit Corporation</td>
<td>7, XIV</td>
</tr>
<tr>
<td>Commodity Futures Trading Commission</td>
<td>5, XLI; 17, I</td>
</tr>
<tr>
<td>Community Planning and Development, Office of Assistant</td>
<td>24, V, VI</td>
</tr>
<tr>
<td>Secretary for Community Services, Office of</td>
<td>45, X</td>
</tr>
<tr>
<td>Comptroller of the Currency</td>
<td>12, I</td>
</tr>
<tr>
<td>Construction Industry Collective Bargaining Commission</td>
<td>29, IX</td>
</tr>
<tr>
<td>Consumer Financial Protection Bureau</td>
<td>5, LXXXIV; 12, X</td>
</tr>
<tr>
<td>Consumer Product Safety Commission</td>
<td>5, LXXI; 16, II</td>
</tr>
<tr>
<td>Copyright Royalty Board</td>
<td>37, III</td>
</tr>
<tr>
<td>Corporation for National and Community Service</td>
<td>2, XXII; 45, XII, XXV</td>
</tr>
<tr>
<td>Cost Accounting Standards Board</td>
<td>48, 99</td>
</tr>
<tr>
<td>Council on Environmental Quality</td>
<td>40, V</td>
</tr>
<tr>
<td>Court Services and Offender Supervision Agency for the</td>
<td>5, LXX; 28, VIII</td>
</tr>
<tr>
<td>District of Columbia</td>
<td></td>
</tr>
<tr>
<td>Customs and Border Protection</td>
<td>19, I</td>
</tr>
<tr>
<td>Defense Contract Audit Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Defense Department</td>
<td>2, XI; 5, XXVI; 32, Subtitle A; 40, VII</td>
</tr>
<tr>
<td>Advanced Research Projects Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Air Force Department</td>
<td>32, VII</td>
</tr>
<tr>
<td>Army Department</td>
<td>32, V; 33, II; 36, III; 48, 51</td>
</tr>
<tr>
<td>Defense Acquisition Regulations System</td>
<td>48, 2</td>
</tr>
<tr>
<td>Defense Intelligence Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Logistics Agency</td>
<td>32, I, XII; 48, 54</td>
</tr>
<tr>
<td>Engineers, Corps of</td>
<td>32, I</td>
</tr>
<tr>
<td>National Imagery and Mapping Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Navy Department</td>
<td>32, VI; 48, 52</td>
</tr>
<tr>
<td>Secretary of Defense, Office of</td>
<td>2, XI; 32, I</td>
</tr>
<tr>
<td>Defense Contract Audit Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Intelligence Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>Defense Logistics Agency</td>
<td>32, XII; 48, 54</td>
</tr>
<tr>
<td>Defense Nuclear Facilities Safety Board</td>
<td>10, XVII</td>
</tr>
<tr>
<td>Delaware River Basin Commission</td>
<td>18, III</td>
</tr>
<tr>
<td>Denali Commission</td>
<td>45, IX</td>
</tr>
<tr>
<td>District of Columbia, Court Services and Offender Supervision Agency for the</td>
<td>5, LXX; 28, VIII</td>
</tr>
<tr>
<td>Drug Enforcement Administration</td>
<td>21, II</td>
</tr>
<tr>
<td>East-West Foreign Trade Board</td>
<td>15, XIII</td>
</tr>
<tr>
<td>Economic Analysis, Bureau of</td>
<td>15, VIII</td>
</tr>
<tr>
<td>Economic Development Administration</td>
<td>13, III</td>
</tr>
<tr>
<td>Economic Research Service</td>
<td>7, XXXVII</td>
</tr>
<tr>
<td>Education, Department of</td>
<td>2, XXXIV; 5, LIII</td>
</tr>
<tr>
<td>Bilingual Education and Minority Languages Affairs, Office of</td>
<td>34, V</td>
</tr>
<tr>
<td>Career, Technical and Adult Education, Office of</td>
<td>34, IV</td>
</tr>
<tr>
<td>Civil Rights, Office for</td>
<td>34, I</td>
</tr>
<tr>
<td>Educational Research and Improvement, Office of</td>
<td>34, VII</td>
</tr>
<tr>
<td>Elementary and Secondary Education, Office of</td>
<td>34, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 34</td>
</tr>
<tr>
<td>Postsecondary Education, Office of</td>
<td>34, VI</td>
</tr>
<tr>
<td>Secretary of Education, Office of</td>
<td>34, Subtitle A</td>
</tr>
<tr>
<td>Special Education and Rehabilitative Services, Office of</td>
<td>34, III</td>
</tr>
<tr>
<td>Career, Technical, and Adult Education, Office of</td>
<td>34, IV</td>
</tr>
<tr>
<td>Educational Research and Improvement, Office of</td>
<td>34, VII</td>
</tr>
<tr>
<td>Election Assistance Commission</td>
<td>2, I; VIII; 11, II</td>
</tr>
<tr>
<td>Elementary and Secondary Education, Office of</td>
<td>34, II</td>
</tr>
<tr>
<td>Emergency Oil and Gas Guaranteed Loan Board</td>
<td>13, V</td>
</tr>
<tr>
<td>Emergency Steel Guarantee Loan Board</td>
<td>13, IV</td>
</tr>
<tr>
<td>Employee Benefits Security Administration</td>
<td>29, XXV</td>
</tr>
<tr>
<td>Employees' Compensation Appeals Board</td>
<td>20, IV</td>
</tr>
<tr>
<td>Employees Loyalty Board</td>
<td>5, V</td>
</tr>
<tr>
<td>Employment and Training Administration</td>
<td>20, V</td>
</tr>
<tr>
<td>Employment Standards Administration</td>
<td>20, VI</td>
</tr>
<tr>
<td>Endangered Species Committee</td>
<td>50, IV</td>
</tr>
<tr>
<td>Energy, Department of</td>
<td>2, IX; 5, XXXIII; 10, II, III, X</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 9</td>
</tr>
<tr>
<td>Federal Energy Regulatory Commission</td>
<td>5, XXIV; 18, I</td>
</tr>
<tr>
<td>Property Management Regulations</td>
<td>41, 109</td>
</tr>
<tr>
<td>Energy, Office of</td>
<td>7, XXXIX</td>
</tr>
<tr>
<td>Engineers, Corps of</td>
<td>33, II; 36, III</td>
</tr>
<tr>
<td>Engraving and Printing, Bureau of</td>
<td>31, VI</td>
</tr>
<tr>
<td>Environmental Protection Agency</td>
<td>2, XV; 5, LIV; 40, I, IV, VII</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 15</td>
</tr>
<tr>
<td>Property Management Regulations</td>
<td>41, 115</td>
</tr>
<tr>
<td>Environmental Quality, Office of</td>
<td>7, XXXI</td>
</tr>
<tr>
<td>Equal Employment Opportunity Commission</td>
<td>5, LXII; 29, XIV</td>
</tr>
<tr>
<td>Equal Opportunity, Office of Assistant Secretary for</td>
<td>24, I</td>
</tr>
<tr>
<td>Executive Office of the President</td>
<td>3, I</td>
</tr>
<tr>
<td>Environmental Quality, Council on Management and Budget, Office of</td>
<td>40, V</td>
</tr>
<tr>
<td></td>
<td>2, Subtitle A; 5, III, LXXVII; 14, VI; 48, 99</td>
</tr>
</tbody>
</table>
Agency | CFR Title, Subtitle or Chapter
--- | ---
National Drug Control Policy, Office of | 2, XXXVI; 21, III
National Security Council | 32, XXI: 47, 2
Presidential Documents | 3
Science and Technology Policy, Office of | 32, XXIV; 47, II
Trade Representative, Office of the United States | 15, XX
Export-Import Bank of the United States | 2, XXXV: 5, LII; 12, IV
Family Assistance, Office of | 45, II
Farm Credit Administration | 5, XXXI: 12, VI
Farm Credit System Insurance Corporation | 5, XXX; 12, XIV
Farm Service Agency | 7, VII, XVIII
Federal Acquisition Regulation | 48, 1
Federal Aviation Administration | 14, I
Commercial Space Transportation | 14, III
Federal Claims Collection Standards | 31, IX
Federal Communications Commission | 5, XXIX; 47, I
Federal Contract Compliance Programs, Office of | 41, 60
Federal Crop Insurance Corporation | 7, IV
Federal Deposit Insurance Corporation | 5, XXII; 12, III
Federal Election Commission | 5, XXXVII: 11, I
Federal Emergency Management Agency | 44, I
Federal Employees Group Life Insurance Federal Acquisition Regulation | 48, 21
Federal Employees Health Benefits Acquisition Regulation | 48, 16
Federal Energy Regulatory Commission | 5, XXXIV: 18, I
Federal Financial Institutions Examination Council | 12, XI
Federal Financing Bank | 12, VIII
Federal Highway Administration | 23, I, II
Federal Home Loan Mortgage Corporation | 1, IV
Federal Housing Enterprise Oversight Office | 12, XVII
Federal Housing Finance Agency | 5, LXXX; 12, XII
Federal Housing Finance Board | 12, IX
Federal Labor Relations Authority | 5, XIV, XLIX; 22, XIV
Federal Law Enforcement Training Center | 31, VII
Federal Management Regulation | 41, 102
Federal Maritime Commission | 46, IV
Federal Mediation and Conciliation Service | 29, XII
Federal Mine Safety and Health Review Commission | 5, LXX; 29, XXVII
Federal Motor Carrier Safety Administration | 49, III
Federal Prison Industries, Inc. | 29, III
Federal Procurement Policy Office | 48, 99
Federal Registry | 41, 101
Federal Register, Administrative Committee of | 1, I
Federal Register, Office of | 1, II
Federal Reserve System | 12, II
Board of Governors | 5, LVIII
Federal Retirement Thrift Investment Board | 5, VI, LXXVI
Federal Service Impasses Panel | 5, XIV
Federal Trade Commission | 5, XLVII; 16, I
Federal Transit Administration | 49, VI
Federal Travel Regulation System | 41, Subtitle F
Financial Crimes Enforcement Network | 31, X
Financial Research Office | 12, XVI
Financial Stability Oversight Council | 12, XIII
Fine Arts, Commission on | 45, XXI
Fiscal Service | 31, II
Fish and Wildlife Service, United States | 50, I, IV
Food and Drug Administration | 21, I
Food and Nutrition Service | 7, I
Food Safety and Inspection Service | 9, III
Foreign Agricultural Service | 7, XV
Foreign Claims Settlement Commission of the United States | 45, V
Foreign Service Grievance Board | 22, IX
Foreign Service Impasses Disputes Panel | 22, XIV
Foreign Service Labor Relations Board | 22, XIV
Foreign Trade Zones Board | 15, IV
<table>
<thead>
<tr>
<th>Agency</th>
<th>CFR Title, Subtitle or Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest Service</td>
<td>36, II</td>
</tr>
<tr>
<td>General Services Administration</td>
<td>5, LVII; 41, 105</td>
</tr>
<tr>
<td>Contract Appeals, Board of</td>
<td>48, 61</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 5</td>
</tr>
<tr>
<td>Federal Management Regulation</td>
<td>41, 102</td>
</tr>
<tr>
<td>Federal Property Management Regulations</td>
<td>41, 101</td>
</tr>
<tr>
<td>Federal Travel Regulation System</td>
<td>41, Subtitle F</td>
</tr>
<tr>
<td>General</td>
<td>41, 300</td>
</tr>
<tr>
<td>Payment From a Non-Federal Source for Travel Expenses</td>
<td>41, 304</td>
</tr>
<tr>
<td>Payment of Expenses Connected With the Death of Certain Employees</td>
<td>41, 303</td>
</tr>
<tr>
<td>Relocation Allowances</td>
<td>41, 302</td>
</tr>
<tr>
<td>Temporary Duty (TDY) Travel Allowances</td>
<td>41, 301</td>
</tr>
<tr>
<td>Geological Survey</td>
<td>30, IV</td>
</tr>
<tr>
<td>Government Accountability Office</td>
<td>4, I</td>
</tr>
<tr>
<td>Government Ethics, Office of</td>
<td>5, XVI</td>
</tr>
<tr>
<td>Government National Mortgage Association</td>
<td>24, III</td>
</tr>
<tr>
<td>Grain Inspection, Packers and Stockyards Administration</td>
<td>7, VIII; 9, II</td>
</tr>
<tr>
<td>Gulf Coast Ecosystem Restoration Council</td>
<td>2, LIX; 49, VIII</td>
</tr>
<tr>
<td>Harry S. Truman Scholarship Foundation</td>
<td>45, XVIII</td>
</tr>
<tr>
<td>Health and Human Services, Department of</td>
<td>2, III; 5, XLV; 45, Subtitle A,</td>
</tr>
<tr>
<td>Centers for Medicare & Medicaid Services</td>
<td>42, IV</td>
</tr>
<tr>
<td>Child Support Enforcement, Office of</td>
<td>45, III</td>
</tr>
<tr>
<td>Children and Families, Administration for</td>
<td>45, II, III, IV, X, XIII</td>
</tr>
<tr>
<td>Community Services, Office of</td>
<td>45, X</td>
</tr>
<tr>
<td>Family Assistance, Office of</td>
<td>45, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 3</td>
</tr>
<tr>
<td>Food and Drug Administration</td>
<td>21, I</td>
</tr>
<tr>
<td>Indian Health Service</td>
<td>25, V</td>
</tr>
<tr>
<td>Inspector General (Health Care), Office of</td>
<td>42, 1</td>
</tr>
<tr>
<td>Public Health Service</td>
<td>42, I</td>
</tr>
<tr>
<td>Refugee Resettlement, Office of</td>
<td>45, IV</td>
</tr>
<tr>
<td>Homeland Security, Department of</td>
<td>2, XXX; 5, XXXVI; 6, I; 8, I</td>
</tr>
<tr>
<td>Coast Guard</td>
<td>33, I; 46, I; 49, IV</td>
</tr>
<tr>
<td>Coast Guard (Great Lakes Pilotage)</td>
<td>46, III</td>
</tr>
<tr>
<td>Customs and Border Protection</td>
<td>19, I</td>
</tr>
<tr>
<td>Federal Emergency Management Agency</td>
<td>44, I</td>
</tr>
<tr>
<td>Human Resources Management and Labor Relations Systems</td>
<td>5, XCVII</td>
</tr>
<tr>
<td>Immigration and Customs Enforcement Bureau</td>
<td>19, IV</td>
</tr>
<tr>
<td>Transportation Security Administration</td>
<td>49, XII</td>
</tr>
<tr>
<td>HOPE for Homeowners Program, Board of Directors of</td>
<td>24, XXIV</td>
</tr>
<tr>
<td>Housing and Urban Development, Department of</td>
<td>2, XXIV; 5, LXV; 24, Subtitle B</td>
</tr>
<tr>
<td>Community Planning and Development, Office of Assistant Secretary for</td>
<td>24, V, VI</td>
</tr>
<tr>
<td>Equal Opportunity, Office of Assistant Secretary for</td>
<td>24, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 24</td>
</tr>
<tr>
<td>Government National Mortgage Association</td>
<td>24, III</td>
</tr>
<tr>
<td>Housing—Federal Housing Commissioner, Office of Assistant Secretary for</td>
<td>24, II, VIII, X, XX</td>
</tr>
<tr>
<td>Housing, Office of, and Multifamily Housing Assistance</td>
<td>24, IV</td>
</tr>
<tr>
<td>Restructuring, Office of</td>
<td>24, XII</td>
</tr>
<tr>
<td>Inspector General, Office of</td>
<td>24, IX</td>
</tr>
<tr>
<td>Public and Indian Housing, Office of Assistant Secretary for</td>
<td>24, Subtitle A, VII</td>
</tr>
<tr>
<td>Secretary, Office of</td>
<td>24, II, VIII, X, XX</td>
</tr>
<tr>
<td>Housing—Federal Housing Commissioner, Office of Assistant Secretary for</td>
<td>24, II, VIII, X, XX</td>
</tr>
<tr>
<td>Housing, Office of, and Multifamily Housing Assistance</td>
<td>24, IV</td>
</tr>
<tr>
<td>Restructuring, Office of Immigration and Customs Enforcement Bureau</td>
<td>19, IV</td>
</tr>
<tr>
<td>Immigration Review, Executive Office for</td>
<td>8, V</td>
</tr>
<tr>
<td>Independent Counsel, Office of</td>
<td>28, VII</td>
</tr>
<tr>
<td>Independent Counsel, Offices of</td>
<td>28, VI</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Indian Affairs, Bureau of</td>
<td>25, I, V</td>
</tr>
<tr>
<td>Indian Affairs, Office of the Assistant Secretary</td>
<td>25, VI</td>
</tr>
<tr>
<td>Indian Arts and Crafts Board</td>
<td>25, II</td>
</tr>
<tr>
<td>Indian Health Service</td>
<td>25, V</td>
</tr>
<tr>
<td>Industry and Security, Bureau of</td>
<td>15, VII</td>
</tr>
<tr>
<td>Information Resources Management, Office of</td>
<td>7, XXVII</td>
</tr>
<tr>
<td>Information Security Oversight Office, National Archives and Records Administration</td>
<td>32, XX</td>
</tr>
<tr>
<td>Inspector General</td>
<td></td>
</tr>
<tr>
<td>Agriculture Department</td>
<td>7, XXVI</td>
</tr>
<tr>
<td>Health and Human Services Department</td>
<td>42, V</td>
</tr>
<tr>
<td>Housing and Urban Development Department</td>
<td>24, XII, XV</td>
</tr>
<tr>
<td>Institute of Peace, United States</td>
<td>22, XVII</td>
</tr>
<tr>
<td>Inter-American Foundation</td>
<td>5, LXIII; 22, X</td>
</tr>
<tr>
<td>Interior Department</td>
<td>2, XIV</td>
</tr>
<tr>
<td>American Indians, Office of the Special Trustee</td>
<td>25, VII</td>
</tr>
<tr>
<td>Endangered Species Committee</td>
<td>50, IV</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, I</td>
</tr>
<tr>
<td>Federal Property Management Regulations System</td>
<td>41, I, IV</td>
</tr>
<tr>
<td>Fish and Wildlife Service, United States</td>
<td>50, I, IV</td>
</tr>
<tr>
<td>Geological Survey</td>
<td>30, IV</td>
</tr>
<tr>
<td>Indian Affairs, Bureau of</td>
<td>25, I, V</td>
</tr>
<tr>
<td>Indian Affairs, Office of the Assistant Secretary</td>
<td>25, VI</td>
</tr>
<tr>
<td>Indian Arts and Crafts Board</td>
<td>25, II</td>
</tr>
<tr>
<td>Land Management, Bureau of</td>
<td>43, II</td>
</tr>
<tr>
<td>National Indian Gaming Commission</td>
<td>25, III</td>
</tr>
<tr>
<td>National Park Service</td>
<td>36, I</td>
</tr>
<tr>
<td>Natural Resource Revenue, Office of</td>
<td>30, XII</td>
</tr>
<tr>
<td>Ocean Energy Management, Bureau of</td>
<td>30, V</td>
</tr>
<tr>
<td>Reclamation, Bureau of</td>
<td>43, I</td>
</tr>
<tr>
<td>Safety and Enforcement Bureau, Bureau of</td>
<td>30, II</td>
</tr>
<tr>
<td>Secretary of the Interior, Office of</td>
<td>2, XIV; 43, Subtitle A</td>
</tr>
<tr>
<td>Surface Mining Reclamation and Enforcement, Office of</td>
<td>30, VII</td>
</tr>
<tr>
<td>Internal Revenue Service</td>
<td>26, I</td>
</tr>
<tr>
<td>International Boundary and Water Commission, United States and Mexico, United States Section</td>
<td>22, XI</td>
</tr>
<tr>
<td>International Development, United States Agency for</td>
<td>22, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, V</td>
</tr>
<tr>
<td>International Development Cooperation Agency, United States</td>
<td>22, XII</td>
</tr>
<tr>
<td>International Joint Commission, United States and Canada</td>
<td>22, IV</td>
</tr>
<tr>
<td>International Organizations Employees Loyalty Board</td>
<td>5, V</td>
</tr>
<tr>
<td>International Trade Administration</td>
<td>15, III; 19, III</td>
</tr>
<tr>
<td>International Trade Commission, United States</td>
<td>19, II</td>
</tr>
<tr>
<td>Interstate Commerce Commission</td>
<td>5, XL</td>
</tr>
<tr>
<td>Investment Security, Office of</td>
<td>31, VIII</td>
</tr>
<tr>
<td>James Madison Memorial Fellowship Foundation</td>
<td>45, XXIV</td>
</tr>
<tr>
<td>Japan–United States Friendship Commission</td>
<td>22, XVI</td>
</tr>
<tr>
<td>Joint Board for the Enrollment of Actuaries</td>
<td>20, VIII</td>
</tr>
<tr>
<td>Justice Department</td>
<td>2, XXVIII; 5, XXVIII; 28, I, XII, 40, IV</td>
</tr>
<tr>
<td>Alcohol, Tobacco, Firearms, and Explosives, Bureau of</td>
<td>27, II</td>
</tr>
<tr>
<td>Drug Enforcement Administration</td>
<td>21, II</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 28</td>
</tr>
<tr>
<td>Federal Claims Collection Standards</td>
<td>31, IX</td>
</tr>
<tr>
<td>Federal Prison Industries, Inc.</td>
<td>28, III</td>
</tr>
<tr>
<td>Foreign Claims Settlement Commission of the United States</td>
<td>45, V</td>
</tr>
<tr>
<td>Immigration Review, Executive Office for</td>
<td>8, V</td>
</tr>
<tr>
<td>Independent Counsel, Offices of</td>
<td>28, VI</td>
</tr>
<tr>
<td>Prisons, Bureau of</td>
<td>28, V</td>
</tr>
<tr>
<td>Property Management Regulations</td>
<td>41, 129</td>
</tr>
<tr>
<td>Labor Department</td>
<td>2, XXXIX; 5, XLII</td>
</tr>
<tr>
<td>Employee Benefits Security Administration</td>
<td>29, XXV</td>
</tr>
<tr>
<td>Employees’ Compensation Appeals Board</td>
<td>20, IV</td>
</tr>
<tr>
<td>Employment and Training Administration</td>
<td>20, V</td>
</tr>
<tr>
<td>Employment Standards Administration</td>
<td>20, VI</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 29</td>
</tr>
<tr>
<td>Federal Contract Compliance Programs, Office of</td>
<td>41, 60</td>
</tr>
<tr>
<td>Federal Procurement Regulations System</td>
<td>41, 50</td>
</tr>
<tr>
<td>Labor-Management Standards, Office of</td>
<td>29, II, IV</td>
</tr>
<tr>
<td>Mine Safety and Health Administration</td>
<td>30, I</td>
</tr>
<tr>
<td>Occupational Safety and Health Administration</td>
<td>29, XVII</td>
</tr>
<tr>
<td>Public Contracts</td>
<td>41, 50</td>
</tr>
<tr>
<td>Secretary of Labor, Office of</td>
<td>29, Subtitle A</td>
</tr>
<tr>
<td>Veterans’ Employment and Training Service, Office of the Assistant</td>
<td>41, 61; 20, IX</td>
</tr>
<tr>
<td>Secretary for Wage and Hour Division</td>
<td>29, V</td>
</tr>
<tr>
<td>Workers’ Compensation Programs, Office of</td>
<td>20, I, VII</td>
</tr>
<tr>
<td>Labor-Management Standards, Office of</td>
<td>29, II, IV</td>
</tr>
<tr>
<td>Land Management, Bureau of</td>
<td>43, II</td>
</tr>
<tr>
<td>Legal Services Corporation</td>
<td>45, XVI</td>
</tr>
<tr>
<td>Library of Congress</td>
<td>36, VII</td>
</tr>
<tr>
<td>Copyright Royalty Board</td>
<td>37, III</td>
</tr>
<tr>
<td>U.S. Copyright Office</td>
<td>37, II</td>
</tr>
<tr>
<td>Local Television Loan Guarantee Board</td>
<td>7, XXI</td>
</tr>
<tr>
<td>Management and Budget, Office of</td>
<td>5, III, LXXVII; 14, VI; 48, 99</td>
</tr>
<tr>
<td>Marine Mammal Commission</td>
<td>50, V</td>
</tr>
<tr>
<td>Maritime Administration</td>
<td>46, II</td>
</tr>
<tr>
<td>Merit Systems Protection Board</td>
<td>5, II, LXIV</td>
</tr>
<tr>
<td>Micronesian Status Negotiations, Office for</td>
<td>32, XXVII</td>
</tr>
<tr>
<td>Military Compensation and Retirement Modernization Commission</td>
<td>5, XCIX</td>
</tr>
<tr>
<td>Millennium Challenge Corporation</td>
<td>22, XIII</td>
</tr>
<tr>
<td>Mine Safety and Health Administration</td>
<td>30, I</td>
</tr>
<tr>
<td>Minority Business Development Agency</td>
<td>15, XIV</td>
</tr>
<tr>
<td>Miscellaneous Agencies</td>
<td>1, IV</td>
</tr>
<tr>
<td>Monetary Offices</td>
<td>31, I</td>
</tr>
<tr>
<td>Morris K. Udall Scholarship and Excellence in National</td>
<td>36, XVI</td>
</tr>
<tr>
<td>Environmental Policy Foundation</td>
<td>2, XXXI</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration</td>
<td>2, XVIII; 5, LIX; 14, V</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 18</td>
</tr>
<tr>
<td>National Agricultural Library</td>
<td>7, XLI</td>
</tr>
<tr>
<td>National Agricultural Statistics Service</td>
<td>7, XXXVI</td>
</tr>
<tr>
<td>National and Community Service, Corporation for</td>
<td>2, XXII; 45, XII, XXV</td>
</tr>
<tr>
<td>National Archives and Records Administration</td>
<td>2, XXVI; 5, LXVI; 36, XII</td>
</tr>
<tr>
<td>Information Security Oversight Office</td>
<td>32, XX</td>
</tr>
<tr>
<td>National Capital Planning Commission</td>
<td>1, IV</td>
</tr>
<tr>
<td>National Commission for Employment Policy</td>
<td>1, IV</td>
</tr>
<tr>
<td>National Commission on Libraries and Information Science</td>
<td>45, XVII</td>
</tr>
<tr>
<td>National Council on Disability</td>
<td>5, C; 31, XII</td>
</tr>
<tr>
<td>National Counterintelligence Center</td>
<td>32, XVIII</td>
</tr>
<tr>
<td>National Credit Union Administration</td>
<td>5, LXXXVI; 12, VII</td>
</tr>
<tr>
<td>National Crime Prevention and Privacy Compact Council</td>
<td>32, I</td>
</tr>
<tr>
<td>National Drug Control Policy, Office of</td>
<td>2, XXXVI; 21, III</td>
</tr>
<tr>
<td>National Endowment for the Arts</td>
<td>2, XXXII</td>
</tr>
<tr>
<td>National Endowment for the Humanities</td>
<td>2, XXXIII</td>
</tr>
<tr>
<td>National Foundation on the Arts and the Humanities</td>
<td>45, XI</td>
</tr>
<tr>
<td>National Geospatial-Intelligence Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>National Highway Traffic Safety Administration</td>
<td>23, II, III; 47, VI; 49, V</td>
</tr>
<tr>
<td>National Imagery and Mapping Agency</td>
<td>32, I</td>
</tr>
<tr>
<td>National Indian Gaming Commission</td>
<td>25, III</td>
</tr>
<tr>
<td>National Institute of Food and Agriculture</td>
<td>7, XXXIV</td>
</tr>
<tr>
<td>National Institute of Standards and Technology</td>
<td>15, II</td>
</tr>
<tr>
<td>National Intelligence, Office of Director of</td>
<td>5, IV; 32, XVII</td>
</tr>
<tr>
<td>National Labor Relations Board</td>
<td>5, LXI; 29, I</td>
</tr>
<tr>
<td>National Marine Fisheries Service</td>
<td>50, II, IV</td>
</tr>
<tr>
<td>National Mediation Board</td>
<td>29, X</td>
</tr>
<tr>
<td>National Oceanic and Atmospheric Administration</td>
<td>15, IX; 50, II, III, IV, VI</td>
</tr>
<tr>
<td>National Park Service</td>
<td>36, I</td>
</tr>
<tr>
<td>National Railroad Adjustment Board</td>
<td>29, III</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>National Railroad Passenger Corporation (AMTRAK)</td>
<td>49, VII</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>2, XXV; 5, XLIII; 45, VI</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 25</td>
</tr>
<tr>
<td>National Security Council</td>
<td>32, XXI</td>
</tr>
<tr>
<td>National Security Council and Office of Science and Technology Policy</td>
<td>47, II</td>
</tr>
<tr>
<td>National Telecommunications and Information Administration</td>
<td>15, XXIII; 47, III, IV</td>
</tr>
<tr>
<td>National Transportation Safety Board</td>
<td>49, VIII</td>
</tr>
<tr>
<td>Natural Resources Conservation Service</td>
<td>7, VI</td>
</tr>
<tr>
<td>Natural Resources Revenue, Office of</td>
<td>30, XII</td>
</tr>
<tr>
<td>Navajo and Hopi Indian Relocation, Office of</td>
<td>25, IV</td>
</tr>
<tr>
<td>Navy Department</td>
<td>32, VI</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 52</td>
</tr>
<tr>
<td>Neighborhood Reinvestment Corporation</td>
<td>24, XXV</td>
</tr>
<tr>
<td>Northeast Interstate Low-Level Radioactive Waste Commission</td>
<td>10, XVIII</td>
</tr>
<tr>
<td>Nuclear Regulatory Commission</td>
<td>2, XX; 5, XLVIII; 10, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 20</td>
</tr>
<tr>
<td>Occupational Safety and Health Administration</td>
<td>29, XVII</td>
</tr>
<tr>
<td>Occupational Safety and Health Review Commission</td>
<td>29, XX</td>
</tr>
<tr>
<td>Ocean Energy Management, Bureau of</td>
<td>30, V</td>
</tr>
<tr>
<td>Oklahoma City National Memorial Trust</td>
<td>36, XV</td>
</tr>
<tr>
<td>Operations Office</td>
<td>7, XXVIII</td>
</tr>
<tr>
<td>Overseas Private Investment Corporation</td>
<td>5, XXXIII; 22, VII</td>
</tr>
<tr>
<td>Patent and Trademark Office, United States</td>
<td>37, I</td>
</tr>
<tr>
<td>Payment From a Non-Federal Source for Travel Expenses</td>
<td>41, 304</td>
</tr>
<tr>
<td>Payment of Expenses Connected With the Death of Certain Employees</td>
<td>41, 303</td>
</tr>
<tr>
<td>Peace Corps</td>
<td>2, XXXVII; 22, III</td>
</tr>
<tr>
<td>Pennsylvania Avenue Development Corporation</td>
<td>36, IX</td>
</tr>
<tr>
<td>Pension Benefit Guaranty Corporation</td>
<td>29, XL</td>
</tr>
<tr>
<td>Personnel Management, Office of</td>
<td>5, I; XXXV; 5, IV; 45, VIII</td>
</tr>
<tr>
<td>Human Resources Management and Labor Relations</td>
<td>5, XCVII</td>
</tr>
<tr>
<td>Systems, Department of Homeland Security</td>
<td></td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 17</td>
</tr>
<tr>
<td>Federal Employees Group Life Insurance Federal Acquisition Regulation</td>
<td>48, 21</td>
</tr>
<tr>
<td>Federal Employees Health Benefits Acquisition Regulation</td>
<td>48, 16</td>
</tr>
<tr>
<td>Pipeline and Hazardous Materials Safety Administration</td>
<td>49, I</td>
</tr>
<tr>
<td>Postal Regulatory Commission</td>
<td>5, XLVI; 39, III</td>
</tr>
<tr>
<td>Postal Service, United States</td>
<td>5, LX; 39, I</td>
</tr>
<tr>
<td>Postsecondary Education, Office of</td>
<td>34, VI</td>
</tr>
<tr>
<td>President’s Commission on White House Fellowships</td>
<td>1, IV</td>
</tr>
<tr>
<td>Presidential Documents</td>
<td>3</td>
</tr>
<tr>
<td>Presidio Trust</td>
<td>36, X</td>
</tr>
<tr>
<td>Prisons, Bureau of</td>
<td>28, V</td>
</tr>
<tr>
<td>Privacy and Civil Liberties Oversight Board</td>
<td>6, X</td>
</tr>
<tr>
<td>Procurement and Property Management, Office of</td>
<td>7, XXXII</td>
</tr>
<tr>
<td>Productivity, Technology and Innovation, Assistant Secretary</td>
<td>37, IV</td>
</tr>
<tr>
<td>Secretary</td>
<td></td>
</tr>
<tr>
<td>Public Contracts, Department of Labor</td>
<td>41, 50</td>
</tr>
<tr>
<td>Public and Indian Housing, Office of Assistant Secretary for</td>
<td>24, IX</td>
</tr>
<tr>
<td>Public Health Service</td>
<td>42, I</td>
</tr>
<tr>
<td>Railroad Retirement Board</td>
<td>20, II</td>
</tr>
<tr>
<td>Reclamation, Bureau of</td>
<td>43, I</td>
</tr>
<tr>
<td>Refugee Resettlement, Office of</td>
<td>45, IV</td>
</tr>
<tr>
<td>Relocation Allowances</td>
<td>41, 302</td>
</tr>
<tr>
<td>Research and Innovative Technology Administration</td>
<td>49, XI</td>
</tr>
<tr>
<td>Rural Business-Cooperative Service</td>
<td>7, XVIII, XLII</td>
</tr>
<tr>
<td>Rural Development Administration</td>
<td>7, XLI</td>
</tr>
<tr>
<td>Rural Housing Service</td>
<td>7, XVIII, XXXV</td>
</tr>
<tr>
<td>Rural Telephone Bank</td>
<td>7, XVI</td>
</tr>
<tr>
<td>Rural Utilities Service</td>
<td>7, XVII, XVIII, XLI</td>
</tr>
<tr>
<td>Safety and Environmental Enforcement, Bureau of</td>
<td>30, II</td>
</tr>
<tr>
<td>Saint Lawrence Seaway Development Corporation</td>
<td>33, IV</td>
</tr>
<tr>
<td>Agency</td>
<td>CFR Title, Subtitle or Chapter</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Science and Technology Policy, Office of</td>
<td>32, XXIV</td>
</tr>
<tr>
<td>Science and Technology Policy, Office of, and National Security Council</td>
<td>47, II</td>
</tr>
<tr>
<td>Secret Service</td>
<td></td>
</tr>
<tr>
<td>Securities and Exchange Commission</td>
<td>5, XXXIV; 17, II</td>
</tr>
<tr>
<td>Selective Service System</td>
<td>32, XVI</td>
</tr>
<tr>
<td>Small Business Administration</td>
<td>2, XXVII; 13, I</td>
</tr>
<tr>
<td>Smithsonian Institution</td>
<td>36, V</td>
</tr>
<tr>
<td>Social Security Administration</td>
<td>2, XXXIII; 20, III; 48, 23</td>
</tr>
<tr>
<td>Soldiers’ and Airmen’s Home, United States</td>
<td>5, XI</td>
</tr>
<tr>
<td>Special Counsel, Office of</td>
<td>5, VIII</td>
</tr>
<tr>
<td>Special Education and Rehabilitative Services, Office of State Department</td>
<td>2, VI; 22, I; 28, XI</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 6</td>
</tr>
<tr>
<td>Surface Mining Reclamation and Enforcement, Office of</td>
<td>30, VII</td>
</tr>
<tr>
<td>Susquehanna River Basin Commission</td>
<td>49, X</td>
</tr>
<tr>
<td>Technology Administration</td>
<td>15, XI</td>
</tr>
<tr>
<td>Technology Policy, Assistant Secretary for</td>
<td>37, IV</td>
</tr>
<tr>
<td>Tennessee Valley Authority</td>
<td>5, LIXIX; 18, XIII</td>
</tr>
<tr>
<td>Thrift Supervision Office, Department of the Treasury</td>
<td>12, V</td>
</tr>
<tr>
<td>Trade Representative, United States, Office of</td>
<td>15, XX</td>
</tr>
<tr>
<td>Transportation, Department of</td>
<td>2, XII; 5, L</td>
</tr>
<tr>
<td>Commercial Space Transportation</td>
<td>14, III</td>
</tr>
<tr>
<td>Contract Appeals, Board of</td>
<td>48, 63</td>
</tr>
<tr>
<td>Emergency Management and Assistance</td>
<td>44, IV</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 12</td>
</tr>
<tr>
<td>Federal Aviation Administration</td>
<td>14, I</td>
</tr>
<tr>
<td>Federal Highway Administration</td>
<td>23, I, II</td>
</tr>
<tr>
<td>Federal Motor Carrier Safety Administration</td>
<td>49, III</td>
</tr>
<tr>
<td>Federal Railroad Administration</td>
<td>49, II</td>
</tr>
<tr>
<td>Federal Transit Administration</td>
<td>49, VI</td>
</tr>
<tr>
<td>Maritime Administration</td>
<td>46, II</td>
</tr>
<tr>
<td>National Highway Traffic Safety Administration</td>
<td>23, II, III; 47, IV; 49, V</td>
</tr>
<tr>
<td>Pipeline and Hazardous Materials Safety Administration</td>
<td>49, I</td>
</tr>
<tr>
<td>Saint Lawrence Seaway Development Corporation</td>
<td>33, IV</td>
</tr>
<tr>
<td>Secretary of Transportation, Office of</td>
<td>14, II; 49, Subtitle A</td>
</tr>
<tr>
<td>Transportation Statistics Bureau</td>
<td>49, XI</td>
</tr>
<tr>
<td>Transportation, Office of</td>
<td>7, XXXIII</td>
</tr>
<tr>
<td>Transportation Security Administration</td>
<td>49, XII</td>
</tr>
<tr>
<td>Transportation Statistics Bureau</td>
<td>49, XI</td>
</tr>
<tr>
<td>Travel Allowances, Temporary Duty (TDY)</td>
<td>41, 301</td>
</tr>
<tr>
<td>Treasury Department</td>
<td>2, X; 3, XXI; 12, XV; 17, IV; 31, IX</td>
</tr>
<tr>
<td>Alcohol and Tobacco Tax and Trade Bureau</td>
<td>27, I</td>
</tr>
<tr>
<td>Community Development Financial Institutions Fund</td>
<td>12, XVIII</td>
</tr>
<tr>
<td>Comptroller of the Currency</td>
<td>12, I</td>
</tr>
<tr>
<td>Customs and Border Protection</td>
<td>19, I</td>
</tr>
<tr>
<td>Engraving and Printing, Bureau of</td>
<td>31, VI</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 10</td>
</tr>
<tr>
<td>Federal Claims Collection Standards</td>
<td>31, IX</td>
</tr>
<tr>
<td>Federal Law Enforcement Training Center</td>
<td>31, VII</td>
</tr>
<tr>
<td>Financial Crimes Enforcement Network</td>
<td>31, X</td>
</tr>
<tr>
<td>Fiscal Service</td>
<td>31, II</td>
</tr>
<tr>
<td>Foreign Assets Control, Office of</td>
<td>31, V</td>
</tr>
<tr>
<td>Internal Revenue Service</td>
<td>26, I</td>
</tr>
<tr>
<td>Investment Security, Office of</td>
<td>31, VIII</td>
</tr>
<tr>
<td>Monetary Offices</td>
<td>31, I</td>
</tr>
<tr>
<td>Secret Service</td>
<td>31, IV</td>
</tr>
<tr>
<td>Secretary of the Treasury, Office of</td>
<td>31, Subtitle A</td>
</tr>
<tr>
<td>Thrift Supervision, Office of</td>
<td>12, V</td>
</tr>
<tr>
<td>Truman, Harry S. Scholarship Foundation</td>
<td>45, XVIII</td>
</tr>
<tr>
<td>United States and Canada, International Joint Commission</td>
<td>22, IV</td>
</tr>
<tr>
<td>United States and Mexico, International Boundary and Water Commission, United States Section</td>
<td>22, XI</td>
</tr>
<tr>
<td>U.S. Copyright Office</td>
<td>37, II</td>
</tr>
<tr>
<td>Utah Reclamation Mitigation and Conservation Commission</td>
<td>43, III</td>
</tr>
</tbody>
</table>

1133
<table>
<thead>
<tr>
<th>Agency</th>
<th>CFR Title, Subtitle or Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veterans Affairs Department</td>
<td>2, VIII; 38, I</td>
</tr>
<tr>
<td>Federal Acquisition Regulation</td>
<td>48, 8</td>
</tr>
<tr>
<td>Veterans’ Employment and Training Service, Office of the Assistant Secretary for</td>
<td>41, 61; 20, IX</td>
</tr>
<tr>
<td>Vice President of the United States, Office of Wage and Hour Division</td>
<td>32, XXVIII</td>
</tr>
<tr>
<td>Water Resources Council</td>
<td>29, V</td>
</tr>
<tr>
<td>Workers’ Compensation Programs, Office of</td>
<td>18, VI</td>
</tr>
<tr>
<td>World Agricultural Outlook Board</td>
<td>20, I, VII</td>
</tr>
<tr>
<td></td>
<td>7, XXXVIII</td>
</tr>
<tr>
<td>CFR Section</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>450</td>
<td>Authority citation revised</td>
</tr>
<tr>
<td>451</td>
<td>Authority citation revised</td>
</tr>
<tr>
<td>452</td>
<td>Authority citation revised</td>
</tr>
<tr>
<td>453</td>
<td>Authority citation revised</td>
</tr>
<tr>
<td>523.2</td>
<td>Revised; eff. 11–14–11</td>
</tr>
<tr>
<td>523.6</td>
<td>Added; eff. 11–14–11</td>
</tr>
<tr>
<td>523.7</td>
<td>Added; eff. 11–14–11</td>
</tr>
<tr>
<td>523.8</td>
<td>Added; eff. 11–14–11</td>
</tr>
<tr>
<td>523.9</td>
<td>Added; eff. 11–14–11</td>
</tr>
<tr>
<td>534.1</td>
<td>Revised; eff. 11–14–11</td>
</tr>
<tr>
<td>534.2</td>
<td>Revised; eff. 11–14–11</td>
</tr>
<tr>
<td>534.4</td>
<td>Revised; eff. 11–14–11</td>
</tr>
<tr>
<td>534.5</td>
<td>(a), (c) and (d) revised; eff. 11–14–11</td>
</tr>
<tr>
<td>535.2</td>
<td>Revised; eff. 11–14–11</td>
</tr>
<tr>
<td>535.4</td>
<td>Correctly amended</td>
</tr>
<tr>
<td>535.6</td>
<td>(a)(4)(ii) and (c)(4)(ii) correctly revised</td>
</tr>
<tr>
<td>541.5</td>
<td>(e)(3) amended</td>
</tr>
<tr>
<td>541.6</td>
<td>Appendix A–revised</td>
</tr>
<tr>
<td>541.7</td>
<td>(a) Table I and (b) Table II revised; eff. 10–4–11</td>
</tr>
<tr>
<td>545.5</td>
<td>Table IV revised</td>
</tr>
<tr>
<td>545.6</td>
<td>Amended; eff. 10–11–11</td>
</tr>
<tr>
<td>545.7</td>
<td>Amended; eff. 12–27–11</td>
</tr>
<tr>
<td>545.8</td>
<td>Amended; eff. 5–13–13</td>
</tr>
<tr>
<td>545.9</td>
<td>Corrected</td>
</tr>
<tr>
<td>545.10</td>
<td>Correctly amended</td>
</tr>
<tr>
<td>545.11</td>
<td>(a) and (d) amended</td>
</tr>
<tr>
<td>545.12</td>
<td>(a) amended</td>
</tr>
<tr>
<td>545.13</td>
<td>(a) through (d) amended</td>
</tr>
<tr>
<td>545.14</td>
<td>(a)(3) and (3) amended</td>
</tr>
<tr>
<td>545.15</td>
<td>(a) amended</td>
</tr>
<tr>
<td>545.16</td>
<td>(a) introductory text and (b) introductory text amended</td>
</tr>
</tbody>
</table>
49 CFR (10-1-16 Edition)

49 CFR—Continued

Chapter IV—Continued

451.3 (a) amended..........................59790
451.5 (b) amended..........................59790
451.18 (a) amended59790
452.7 (a) amended59790
453.7 (a), (b), (d) and (e) amended59790

Chapter V

523.2 Revised63187
523.5 (a) introductory text, (b), (c) and (d) revised; (e) redesignated as (f); new (e) added................63189
530.6 Revised63191
531 Appendix A revised63191
533.5 (a) and (f) through (l) revised; (j) and (k) added..................63193
533.6 (b) revised; (c) added..............63195
533 Appendix A revised63196
536 Authority citation revised63197
536.4 (c) revised63197
536.9 (c) revised.............................63198
536.10 (b) and (c) revised; (d) added,63198
537.5 (c)(4) revised63198
537.7 (b)(3), (a)(4) and (5) revised;
(c)(7) added63198
537.8 (a)(3) revised63199
541 Theft data56500
541 Appendix A–I revised32904
563.8 (a) Table III revised, eff. 10-9-1247556
563.10 (a) Table III corrected59566
567 Authority citation revised71717
567.4 (g)(5)(iv) added71717
571 Authority citation revised752, 70914

Actions on petitions48105
571.3 (b) amended20567

Chapter V—Continued

571.119 Table II corrected; CFR correction54836
571.121 Amended759
571.122 Amended760
571.122a Redesignated as 571.122a; new
571.122a added; eff. 10-23-1251671
571.122a Amended and eff. 10-23-1251671
571.125 Amended760
571.126 Amended760
571.131 Amended760
571.135 Amended760
571.139 Amended760
571.201 Amended760
571.202 Amended761
571.202a Amended761
571.203 Amended762
571.205 Amended762
571.206 Amended763
571.208 Amended767
571.209 Amended767
571.210 Amended767
571.213 Amended767

Amended; eff. 2-27-1411647
571.214 Amended767
Correctly amended70914
571.216a Amended768
571.217 Amended; eff. 4-1-1319136
571.218 Amended768
571.221 Amended768
571.222 Amended768
571.225 Amended768
571.301 Amended769
571.403 Amended769, 20567
571.404 Amended20571

2013

49 CFR

Chapter IV

450.11 (a) amended60165
451.1 (a) amended60166
452.7 (a) amended60166

Chapter V

501 Revised23159
523 Authority citation revised36401
523.2 Amended36401
523.7 Revised36401
535 Authority citation revised36402
535.3 (b) and (c) revised36402
535.4 Amended36402

1136
List of CFR Sections Affected

49 CFR—Continued

<table>
<thead>
<tr>
<th>CFR Section</th>
<th>Revisions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>535.5</td>
<td>(a)(4)(i), (6), (b)(2)(i) and (c)(2)(i) revised; (a)(4)(v), (vi), (b)(2)(iii), (iv) and (c)(2)(i) revised; (a)(4)(v), (vi), (b)(2)(iii), (iv), (c)(2)(iii), (iv) and (5) added</td>
<td>36402</td>
</tr>
<tr>
<td></td>
<td>Regulation at 78 FR 36402 withdrawn: (a)(4)(i), (b)(2)(i), (c)(2)(i) and (5) revised; (a)(4)(v), (vi), (b)(2)(iii), (iv), (c)(2)(iii) and (iv) added</td>
<td>49966</td>
</tr>
<tr>
<td>535.6</td>
<td>(b)(3) revised</td>
<td>36403</td>
</tr>
<tr>
<td>535.7</td>
<td>(a), (b)(9), (c)(11)(i), (d)(11)(i), (e)(1)(i), (1)(A) introductory text, (1), (2) and (B) revised</td>
<td>36403</td>
</tr>
<tr>
<td>535.8</td>
<td>(a)(4) added; (d) introductory text, (2), (e) introductory text and (2) revised</td>
<td>36405</td>
</tr>
<tr>
<td>541</td>
<td>Appendix A-I revised</td>
<td>44032</td>
</tr>
<tr>
<td>544</td>
<td>Removed</td>
<td>12625</td>
</tr>
<tr>
<td>571.5</td>
<td>(d)(28) revised</td>
<td>21852</td>
</tr>
<tr>
<td></td>
<td>(b)(1)(1), (2), (c)(1)(i) and (2)(i) revised; (c)(1)(i), (1)(i) and (i) added</td>
<td>68756</td>
</tr>
<tr>
<td>571.109</td>
<td>Amended</td>
<td>3847</td>
</tr>
<tr>
<td>571.121</td>
<td>Table II and Table IIIA revised</td>
<td>9628</td>
</tr>
<tr>
<td></td>
<td>Amended</td>
<td>21853</td>
</tr>
<tr>
<td>571.202a</td>
<td>Amended</td>
<td>21853</td>
</tr>
<tr>
<td>571.208</td>
<td>Amended; eff. 11-28-16</td>
<td>70472</td>
</tr>
<tr>
<td></td>
<td>Amended</td>
<td>21853</td>
</tr>
<tr>
<td>571.210</td>
<td>Amended</td>
<td>68757</td>
</tr>
<tr>
<td>571.222</td>
<td>Amended; eff. 11-28-16</td>
<td>70474</td>
</tr>
<tr>
<td>571.236</td>
<td>Amended; eff. 10-9-15</td>
<td>55165</td>
</tr>
<tr>
<td>571.301</td>
<td>Amended</td>
<td>21853</td>
</tr>
</tbody>
</table>

49 CFR—Continued

<table>
<thead>
<tr>
<th>CFR Section</th>
<th>Revisions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>Hearings; comment period extended</td>
<td>44863</td>
</tr>
<tr>
<td>523</td>
<td>Hearings; comment period extended</td>
<td>44863</td>
</tr>
<tr>
<td>534</td>
<td>Hearings; comment period extended</td>
<td>44863</td>
</tr>
<tr>
<td>535</td>
<td>Hearings; comment period extended</td>
<td>44863</td>
</tr>
<tr>
<td>537</td>
<td>Hearings; comment period extended</td>
<td>44863</td>
</tr>
<tr>
<td>535.9</td>
<td>Reinstated; CFR correction</td>
<td>43631</td>
</tr>
<tr>
<td>541</td>
<td>Theft data</td>
<td>72929</td>
</tr>
<tr>
<td>541</td>
<td>Appendix A-I revised</td>
<td>60557</td>
</tr>
<tr>
<td>553</td>
<td>Authority citation revised</td>
<td>36492</td>
</tr>
<tr>
<td>553.14</td>
<td>Added</td>
<td>36492</td>
</tr>
<tr>
<td>553.15</td>
<td>Heading, (a), (b)(1) and (3) revised</td>
<td>36492</td>
</tr>
<tr>
<td>553.23</td>
<td>Revised</td>
<td>36492</td>
</tr>
<tr>
<td>571</td>
<td>Actions on petitions</td>
<td>62487</td>
</tr>
<tr>
<td>571.5</td>
<td>(d)(33) and (34) revised</td>
<td>36100</td>
</tr>
<tr>
<td>571.101</td>
<td>Table I revised</td>
<td>36100</td>
</tr>
<tr>
<td></td>
<td>Table I corrected</td>
<td>54733</td>
</tr>
<tr>
<td>571.108</td>
<td>Amended</td>
<td>78670</td>
</tr>
<tr>
<td>571.126</td>
<td>Heading revised</td>
<td>36105</td>
</tr>
<tr>
<td>571.136</td>
<td>Added</td>
<td>36105</td>
</tr>
<tr>
<td>571.305</td>
<td>Amended</td>
<td>2325</td>
</tr>
</tbody>
</table>

2015

<table>
<thead>
<tr>
<th>CFR Section</th>
<th>Revisions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>571.5</td>
<td>(d)(5) and (k)(26) revised</td>
<td>19243</td>
</tr>
<tr>
<td>571.10</td>
<td>(b)(2) revised</td>
<td>57830</td>
</tr>
<tr>
<td>571.111</td>
<td>Amended</td>
<td>19243</td>
</tr>
<tr>
<td>571.213</td>
<td>Amended</td>
<td>16411</td>
</tr>
<tr>
<td>571.500</td>
<td>Amended</td>
<td>19249</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2016 (Regulations published from</td>
<td>Chapter V—Continued</td>
<td></td>
</tr>
<tr>
<td>January 1, 2016, through October</td>
<td>Redesignated as 543.9; redesignated from 543.7; (f)</td>
<td></td>
</tr>
<tr>
<td>1, 2016)</td>
<td>revised; (g) added; eff. 11-28-1666841</td>
<td></td>
</tr>
<tr>
<td>49 CFR</td>
<td>Redesignated as 543.10; redesigned from 543.8 and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>revised; eff. 11-28-1666841</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appendix A added; eff. 11-28-16.........................66841</td>
<td></td>
</tr>
<tr>
<td>Chapter V</td>
<td>543.8 Redesignated as 543.9; redesignated from 543.7;</td>
<td></td>
</tr>
<tr>
<td>Revised5938</td>
<td>(f) revised; (g) added; eff. 11-28-1666841</td>
<td></td>
</tr>
<tr>
<td>543.4 (b) amended; eff. 11-28-16....66841</td>
<td>543.9 Redesignated as 543.10; redesigned from 543.8</td>
<td></td>
</tr>
<tr>
<td>543.5 (b)(2), (6) and (7) revised;</td>
<td>543.10 Redesignated from 543.9; eff. 11-28-1666841</td>
<td></td>
</tr>
<tr>
<td>(b)(8) and (9) added; eff. 11-28-</td>
<td>Appendix A added; eff. 11-28-16..........................66841</td>
<td></td>
</tr>
<tr>
<td>16...66841</td>
<td>562 Added ..40533</td>
<td></td>
</tr>
<tr>
<td>543.7 Redesignated as 543.8;</td>
<td>571 Actions on petitions19902</td>
<td></td>
</tr>
<tr>
<td>added; eff. 11-28-1666841</td>
<td>571.108 Amended ...6458</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5938</td>
<td>5993</td>
</tr>
<tr>
<td>66841</td>
<td>66841</td>
</tr>
<tr>
<td>66841</td>
<td>66841</td>
</tr>
<tr>
<td>66841</td>
<td>66841</td>
</tr>
<tr>
<td>66841</td>
<td>66841</td>
</tr>
<tr>
<td>40533</td>
<td>19902</td>
</tr>
<tr>
<td>6458</td>
<td></td>
</tr>
</tbody>
</table>