Environmental Protection Agency

shall comply with the emission limitations set forth in this section on and after the date on which the initial performance test, required by §60.8, is completed, but not later than 60 days after achieving the maximum production rate at which the affected facility will be operated, or 180 days after initial startup, whichever comes first.

(a) No owner or operator subject to the provisions of this subpart shall:

(1) Burn in any fuel gas combustion device any fuel gas that contains hydrogen sulfide (H_2S) in excess of 230 mg/dscm (0.10 gr/dscf). The combustion in a flare of process upset gases or fuel gas that is released to the flare as a result of relief valve leakage or other emergency malfunctions is exempt from this paragraph.

(2) Discharge or cause the discharge of any gases into the atmosphere from any Claus sulfur recovery plant containing in excess of:

(i) For an oxidation control system or a reduction control system followed by incineration, 250 ppm by volume (dry basis) of sulfur dioxide (SO_2) at zero percent excess air.

(ii) For a reduction control system not followed by incineration, 300 ppm by volume of reduced sulfur compounds and 10 ppm by volume of hydrogen sulfide (H₂S), each calculated as ppm SO_2 by volume (dry basis) at zero percent excess air.

(b) Each owner or operator that is subject to the provisions of this subpart shall comply with one of the following conditions for each affected fluid catalytic cracking unit catalyst regenerator:

(1) With an add-on control device, reduce SO_2 emissions to the atmosphere by 90 percent or maintain SO_2 emissions to the atmosphere less than or equal to 50 ppm by volume (ppmv), whichever is less stringent; or

(2) Without the use of an add-on control device to reduce SO_2 emission, maintain sulfur oxides emissions calculated as SO_2 to the atmosphere less than or equal to 9.8 kg/Mg (20 lb/ton) coke burn-off; or

(3) Process in the fluid catalytic cracking unit fresh feed that has a total sulfur content no greater than 0.30 percent by weight.

(c) Compliance with paragraph (b)(1), (b)(2), or (b)(3) of this section is determined daily on a 7-day rolling average basis using the appropriate procedures outlined in 60.106.

(d) A minimum of 22 valid days of data shall be obtained every 30 rolling successive calendar days when complying with paragraph (b)(1) of this section.

[43 FR 10869, Mar. 15, 1978, as amended at 54
FR 34027, Aug. 17, 1989; 55 FR 40175, Oct. 2, 1990; 65 FR 61754, Oct. 17, 2000; 73 FR 35866, June 24, 2008]

§60.105 Monitoring of emissions and operations.

(a) Continuous monitoring systems shall be installed, calibrated, maintained, and operated by the owner or operator subject to the provisions of this subpart as follows:

(1) For fluid catalytic cracking unit catalyst regenerators subject to \$60.102(a)(2), an instrument for continuously monitoring and recording the opacity of emissions into the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity.

(2) For fluid catalytic cracking unit catalyst regenerators subject to \$60.103(a), an instrument for continuously monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except as provided in paragraph (a)(2) (ii) of this section.

(i) The span value for this instrument is 1,000 ppm CO.

(ii) A CO continuous monitoring system need not be installed if the owner or operator demonstrates that the average CO emissions are less than 50 ppm (dry basis) and also files a written request for exemption to the Administrator and receives such an exemption. The demonstration shall consist of continuously monitoring CO emissions for 30 days using an instrument that shall meet the requirements of Performance Specification 4 of appendix B of this part. The span value shall be 100 ppm CO instead of 1,000 ppm, and the relative accuracy limit shall be 10 percent of the average CO emissions or 5 ppm CO, whichever is greater. For instruments that are identical to Method 10 and employ the sample conditioning system of Method 10A, the alternative

relative accuracy test procedure in §10.1 of Performance Specification 2 may be used in place of the relative accuracy test.

(3) For fuel gas combustion devices subject to $\S60.104(a)(1)$, either an instrument for continuously monitoring and recording the concentration by volume (dry basis, zero percent excess air) of SO₂ emissions into the atmosphere or monitoring as provided in paragraph (a)(4) of this section). The monitor shall include an oxygen monitor for correcting the data for excess.

(i) The span values for this monitor are 50 ppm SO_2 and 25 percent oxygen (O_2) .

(ii) The SO₂ monitoring level equivalent to the H_2S standard under §60.104(a)(1) shall be 20 ppm (dry basis, zero percent excess air).

(iii) The performance evaluations for this SO₂ monitor under 60.13(c) shall use Performance Specification 2. Methods 6 or 6C and 3 or 3A shall be used for conducting the relative accuracy evaluations. Method 6 samples shall be taken at a flow rate of approximately 2 liters/min for at least 30 minutes. The relative accuracy limit shall be 20 percent or 4 ppm, whichever is greater, and the calibration drift limit shall be 5 percent of the established span value.

(iv) Fuel gas combustion devices having a common source of fuel gas may be monitored at only one location (i.e., after one of the combustion devices), if monitoring at this location accurately represents the SO_2 emissions into the atmosphere from each of the combustion devices.

(4) Instead of the SO₂ monitor in paragraph (a)(3) of this section for fuel gas combustion devices subject to \$60.104(a)(1), an instrument for continuously monitoring and recording the concentration (dry basis) of H₂S in fuel gases before being burned in any fuel gas combustion device.

(i) The span value for this instrument is $425 \text{ mg/dscm } H_2S$.

(ii) Fuel gas combustion devices having a common source of fuel gas may be monitored at only one location, if monitoring at this location accurately represents the concentration of H_2S in the fuel gas being burned.

(iii) The performance evaluations for this H_2S monitor under §60.13(c) shall

40 CFR Ch. I (7–1–19 Edition)

use Performance Specification 7. Method 11, 15, 15A, or 16 shall be used for conducting the relative accuracy evaluations.

(iv) The owner or operator of a fuel gas combustion device is not required to comply with paragraph (a)(3) or (4)of this section for fuel gas streams that are exempt under §60.104(a)(1) and fuel gas streams combusted in a fuel gas combustion device that are inherently low in sulfur content. Fuel gas streams meeting one of the requirements in paragraphs (a)(4)(iv)(A) through (D) of this section will be considered inherently low in sulfur content. If the composition of a fuel gas stream changes such that it is no longer exempt under §60.104(a)(1) or it no longer meets one of the requirements in paragraphs (a)(4)(iv)(A) through (D) of this section, the owner or operator must begin continuous monitoring under paragraph (a)(3) or (4) of this section within 15 days of the change.

(A) Pilot gas for heaters and flares.

(B) Fuel gas streams that meet a commercial-grade product specification for sulfur content of 30 ppmv or less. In the case of a liquefied petroleum gas (LPG) product specification in the pressurized liquid state, the gas phase sulfur content should be evaluated assuming complete vaporization of the LPG and sulfur containing-compounds at the product specification concentration.

(C) Fuel gas streams produced in process units that are intolerant to sulfur contamination, such as fuel gas streams produced in the hydrogen plant, the catalytic reforming unit, the isomerization unit, and HF alkylation process units.

(D) Other fuel gas streams that an owner or operator demonstrates are low-sulfur according to the procedures in paragraph (b) of this section.

(5) For Claus sulfur recovery plants with oxidation control systems or reduction control systems followed by incineration subject to $\S60.104(a)(2)(i)$, an instrument for continuously monitoring and recording the concentration (dry basis, zero percent excess air) of SO₂ emissions into the atmosphere. The monitor shall include an oxygen monitor for correcting the data for excess air.

Environmental Protection Agency

(i) The span values for this monitor are 500 ppm SO₂ and 25 percent O_2 .

(ii) The performance evaluations for this SO_2 monitor under §60.13(c) shall use Performance Specification 2. Methods 6 or 6C and 3 or 3A shall be used for conducting the relative accuracy evaluations.

(6) For Claus sulfur recovery plants with reduction control systems not followed by incineration subject to $\S60.104(a)(2)(ii)$, an instrument for continuously monitoring and recording the concentration of reduced sulfur and O₂ emissions into the atmosphere. The reduced sulfur emissions shall be calculated as SO₂ (dry basis, zero percent excess air).

(i) The span values for this monitor are 450 ppm reduced sulfur and 25 percent O_2 .

(ii) The performance evaluations for this reduced sulfur (and O_2) monitor under §60.13(c) shall use Performance Specification 5 of appendix B of this part(and Performance Specification 3 of appendix B of this partfor the O_2 analyzer). Methods 15 or 15A and Method 3 shall be used for conducting the relative accuracy evaluations. If Method 3 yields O_2 concentrations below 0.25 percent during the performance specification test, the O_2 concentration may be assumed to be zero and the reduced sulfur CEMS need not include an O_2 monitor.

(7) In place of the reduced sulfur monitor under paragraph (a)(6) of this section, an instrument using an air or O_2 dilution and oxidation system to convert the reduced sulfur to SO_2 for continuously monitoring and recording the concentration (dry basis, zero percent excess air) of the resultant SO_2 . The monitor shall include an oxygen monitor for correcting the data for excess oxygen.

(i) The span values for this monitor are 375 ppm SO_2 and 25 percent O_2 .

(ii) For reporting purposes, the SO_2 exceedance level for this monitor is 250 ppm (dry basis, zero percent excess air).

(iii) The performance evaluations for this SO_2 (and O_2) monitor under §60.13(c) shall use Performance Specification 5. Methods 15 or 15A and Method 3 shall be used for conducting the relative accuracy evaluations. (8) An instrument for continuously monitoring and recording concentrations of SO_2 in the gases at both the inlet and outlet of the SO_2 control device from any fluid catalytic cracking unit catalyst regenerator for which the owner or operator seeks to comply specifically with the 90 percent reduction option under §60.104(b)(1).

(i) The span value of the inlet monitor shall be set at 125 percent of the maximum estimated hourly potential SO_2 emission concentration entering the control device, and the span value of the outlet monitor shall be set at 50 percent of the maximum estimated hourly potential SO_2 emission concentration entering the control device.

(ii) The performance evaluations for these SO_2 monitors under §60.13(c) shall use Performance Specification 2. Methods 6 or 6C and 3 or 3A shall be used for conducting the relative accuracy evaluations.

(9) An instrument for continuously monitoring and recording concentrations of SO_2 in the gases discharged into the atmosphere from any fluid catalytic cracking unit catalyst regenerator for which the owner or operator seeks to comply specifically with the 50 ppmv emission limit under §60.104 (b)(1).

(i) The span value of the monitor shall be set at 50 percent of the maximum hourly potential SO_2 emission concentration of the control device.

(ii) The performance evaluations for this SO_2 monitor under §60.13 (c) shall use Performance Specification 2. Methods 6 or 6C and 3 or 3A shall be used for conducting the relative accuracy evaluations.

(10) An instrument for continuously monitoring and recording concentrations of oxygen (O_2) in the gases at both the inlet and outlet of the sulfur dioxide control device (or the outlet only if specifically complying with the 50 ppmv standard) from any fluid catalytic cracking unit catalyst regenerator for which the owner or operator elected $_{\mathrm{to}}$ comply has with 60.104(b)(1). The span of this continuous monitoring system shall be set at 10 percent.

(11) The continuous monitoring systems under paragraphs (a)(8), (a)(9), and (a)(10) of this section are operated

and data recorded during all periods of operation of the affected facility including periods of startup, shutdown, or malfunction, except for continuous monitoring system breakdowns, repairs, calibration checks, and zero and span adjustments.

(12) The owner or operator shall use the following procedures to evaluate the continuous monitoring systems under paragraphs (a)(8), (a)(9), and (a)(10) of this section.

(i) Method 3 or 3A and Method 6 or 6C for the relative accuracy evaluations under the 60.13(e) performance evaluation.

(ii) Appendix F, Procedure 1, including quarterly accuracy determinations and daily calibration drift tests.

(13) When seeking to comply with §60.104(b)(1), when emission data are not obtained because of continuous monitoring system breakdowns, repairs, calibration checks and zero and span adjustments, emission data will be obtained by using one of the following methods to provide emission data for a minimum of 18 hours per day in at least 22 out of 30 rolling successive calendar days.

(i) The test methods as described in §60.106(k);

(ii) A spare continuous monitoring system; or

(iii) Other monitoring systems as approved by the Administrator.

(b) An owner or operator may demonstrate that a fuel gas stream combusted in a fuel gas combustion device subject to $\S60.104(a)(1)$ that is not specifically exempted in $\S60.105(a)(4)(iv)$ is inherently low in sulfur. A fuel gas stream that is determined to be lowsulfur is exempt from the monitoring requirements in paragraphs (a)(3) and (4) of this section until there are changes in operating conditions or stream composition.

(1) The owner or operator shall submit to the Administrator a written application for an exemption from monitoring. The application must contain the following information:

(i) A description of the fuel gas stream/system to be considered, including submission of a portion of the appropriate piping diagrams indicating the boundaries of the fuel gas stream/ 40 CFR Ch. I (7–1–19 Edition)

system, and the affected fuel gas combustion device(s) to be considered;

(ii) A statement that there are no crossover or entry points for sour gas (high H_2S content) to be introduced into the fuel gas stream/system (this should be shown in the piping diagrams);

(iii) An explanation of the conditions that ensure low amounts of sulfur in the fuel gas stream (i.e., control equipment or product specifications) at all times;

(iv) The supporting test results from sampling the requested fuel gas stream/ system demonstrating that the sulfur content is less than 5 ppmv. Sampling data must include, at minimum, 2 weeks of daily monitoring (14 grab samples) for frequently operated fuel gas streams/systems; for infrequently operated fuel gas streams/systems, seven grab samples must be collected unless other additional information would support reduced sampling. The owner or operator shall use detector tubes ("length-of-stain tube" type measurement) following the "Gas Processors Association Standard 2377-86 (incorporated by reference—see §60.17), using tubes with a maximum span between 10 and 40 ppmv inclusive when $1 \le N \le 10$, where N = number of pump strokes, to test the applicant fuel gas stream for H_2S ; and

(v) A description of how the 2 weeks (or seven samples for infrequently operated fuel gas streams/systems) of monitoring results compares to the typical range of H₂S concentration (fuel quality) expected for the fuel gas stream/system going to the affected fuel gas combustion device (e.g., the 2 weeks of daily detector tube results for a frequently operated loading rack included the entire range of products loaded out, and, therefore, should be representative of typical operating conditions affecting H₂S content in the fuel gas stream going to the loading rack flare).

(2) The effective date of the exemption is the date of submission of the information required in paragraph (b)(1) of this section).

(3) No further action is required unless refinery operating conditions change in such a way that affects the exempt fuel gas stream/system (e.g.,

Environmental Protection Agency

the stream composition changes). If such a change occurs, the owner or operator will follow the procedures in paragraph (b)(3)(i), (b)(3)(ii), or (b)(3)(iii) of this section.

(i) If the operation change results in a sulfur content that is still within the range of concentrations included in the original application, the owner or operator shall conduct an H_2S test on a grab sample and record the results as proof that the concentration is still within the range.

(ii) If the operation change results in a sulfur content that is outside the range of concentrations included in the original application, the owner or operator may submit new information following the procedures of paragraph (b)(1) of this section within 60 days (or within 30 days after the seventh grab sample is tested for infrequently operated process units).

(iii) If the operation change results in a sulfur content that is outside the range of concentrations included in the original application and the owner or operator chooses not to submit new information to support an exemption, the owner or operator must begin H₂S monitoring using daily stain sampling to demonstrate compliance using lengthof stain tubes with a maximum span between 200 and 400 ppmv inclusive when $1 \le N \le 5$, where N = number of pump strokes. The owner or operator must begin monitoring according to the requirements in paragraph (a)(1) or (2) of this section as soon as practicable but in no case later than 180 days after the operation change. During daily stain tube sampling, a daily sample exceeding 162 ppmv is an exceedance of the 3hour H_2S concentration limit.

(c) The average coke burn-off rate (Mg (tons) per hour) and hours of operation shall be recorded daily for any fluid catalytic cracking unit catalyst regenerator subject to 60.102, 60.103, or 60.104(b)(2).

(d) For any fluid catalytic cracking unit catalyst regenerator under §60.102 that uses an incinerator-waste heat boiler to combust the exhaust gases from the catalyst regenerator, the owner or operator shall record daily the rate of combustion of liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are combusted in the incinerator-waste heat boiler.

(e) For the purpose of reports under §60.7(c), periods of excess emissions that shall be determined and reported are defined as follows:

NOTE: All averages, except for opacity, shall be determined as the arithmetic average of the applicable 1-hour averages, e.g., the rolling 3-hour average shall be determined as the arithmetic average of three contiguous 1-hour averages.

(1) Opacity. All 1-hour periods that contain two or more 6-minute periods during which the average opacity as measured by the continuous monitoring system under 60.105(a)(1) exceeds 30 percent.

(2) Carbon monoxide. All 1-hour periods during which the average CO concentration as measured by the CO continuous monitoring system under §60.105(a)(2) exceeds 500 ppm.

(3) Sulfur dioxide from fuel gas combustion. (i) All rolling 3-hour periods during which the average concentration of SO_2 as measured by the SO_2 continuous monitoring system under §60.105(a)(3) exceeds 20 ppm (dry basis, zero percent excess air); or

(ii) All rolling 3-hour periods during which the average concentration of H_2S as measured by the H_2S continuous monitoring system under 60.105(a)(4) exceeds 230 mg/dscm (0.10 gr/dscf).

(4) Sulfur dioxide from Claus sulfur recovery plants. (i) All 12-hour periods during which the average concentration of SO_2 as measured by the SO_2 continuous monitoring system under §60.105(a)(5) exceeds 250 ppm (dry basis, zero percent excess air); or

(ii) All 12-hour periods during which the average concentration of reduced sulfur (as SO_2) as measured by the reduced sulfur continuous monitoring system under (0.105(a))(6) exceeds 300 ppm; or

(iii) All 12-hour periods during which the average concentration of SO_2 as

§60.106

measured by the SO_2 continuous monitoring system under 60.105(a)(7) exceeds 250 ppm (dry basis, zero percent excess air).

[39 FR 9315, Mar. 8, 1974, as amended at 40 FR 46259, Oct. 6, 1975; 42 FR 32427, June 24, 1977; 42 FR 39389, Aug. 4, 1977; 43 FR 10869, Mar. 15, 1978; 48 FR 23611, May 25, 1983; 50 FR 31701, Aug. 5, 1985; 54 FR 34028, Aug. 17, 1989; 55 FR 40175, Oct. 2, 1990; 65 FR 61754, Oct. 17, 2000; 73 FR 35866, June 24, 2008; 80 FR 75229, Dec. 1, 2015]

§60.106 Test methods and procedures.

(a) In conducting the performance tests required in 60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in 60.8(b).

(b) The owner or operator shall determine compliance with the particulate matter (PM) standards in §60.102(a) as follows:

(1) The emission rate (E) of PM shall be computed for each run using the following equation:

$$E = \frac{c_s Q_{sd}}{KR_a}$$

Where:

- E = Emission rate of PM, kg/Mg (lb/ton) of coke burn-off.
- c_s = Concentration of PM, g/dscm (gr/dscf).
- Q_{sd} = Volumetric flow rate of effluent gas, dscm/hr (dscf/hr).
- $$\label{eq:Rc} \begin{split} R_c &= \text{Coke burn-off rate, Mg/hr (ton/hr) coke}.\\ K &= \text{Conversion factor, 1,000 g/kg (7,000 gr/lb)}. \end{split}$$

(2) Method 5B or 5F is to be used to determine particulate matter emissions and associated moisture content from affected facilities without wet FGD systems; only Method 5B is to be used after wet FGD systems. The sampling time for each run shall be at least 60 minutes and the sampling rate shall be at least 0.015 dscm/min (0.53 dscf/ min), except that shorter sampling times may be approved by the Administrator when process variables or other factors preclude sampling for at least 60 minutes.

(3) The coke burn-off rate (R_c) shall be computed for each run using the following equation:

40 CFR Ch. I (7–1–19 Edition)

 $\begin{array}{l} R_{c} = K_{1}Q_{r} \ (\%CO_{2} + \%CO) + K_{2}Q_{a} - K_{3}Q_{r} \\ (\%CO/2 + \%CO_{2} + \%O_{2}) + K_{3}Q_{oxy} \\ (\%O_{oxy}) \end{array}$

Where:

- R_c = Coke burn-off rate, kilograms per hour (kg/hr) (lb/hr).
- Q_r = Volumetric flow rate of exhaust gas from fluid catalytic cracking unit regenerator before entering the emission control system, dscm/min (dscf/min).
- Qa = Volumetric flow rate of air to fluid catalytic cracking unit regenerator, as determined from the fluid catalytic cracking unit control room instrumentation, dscm/min (dscf/min).
- Q_{oxy} = Volumetric flow rate of O₂ enriched air to fluid catalytic cracking unit regenerator, as determined from the fluid catalytic cracking unit control room instrumentation, dscm/min (dscf/min).
- %CO₂ = Carbon dioxide concentration in fluid catalytic cracking unit regenerator exhaust, percent by volume (dry basis).
- %CO = CO concentration in FCCU regenerator exhaust, percent by volume (dry basis).
- $%O_2 = O_2$ concentration in fluid catalytic cracking unit regenerator exhaust, percent by volume (dry basis).
- $O_{oxy} = O_2$ concentration in O_2 enriched air stream inlet to the fluid catalytic cracking unit regenerator, percent by volume (dry basis).
- $\begin{array}{ll} K_1 = \mbox{Material balance and conversion factor}, \\ 0.2982 & (\mbox{kg-min})/(\mbox{hr-dscm-\%}) & [0.0186 & (\mbox{lb-min})/(\mbox{hr-dscf-\%})]. \end{array}$
- K₂ = Material balance and conversion factor, 2.088 (kg-min)/(hr-dscm) [0.1303 (lb-min)/ (hr-dscf)].
- K₃ = Material balance and conversion factor, 0.0994 (kg-min)/(hr-dscm-%) [0.00624 (lbmin)/(hr-dscf-%)].

(i) Method 2 shall be used to determine the volumetric flow rate (Q_r) .

(ii) The emission correction factor, integrated sampling and analysis procedure of Method 3B shall be used to determine CO_2 , CO, and O_2 concentrations.

(4) Method 9 and the procedures of 60.11 shall be used to determine opacity.

(c) If auxiliary liquid or solid fossilfuels are burned in an incineratorwaste heat boiler, the owner or operator shall determine the emission rate of PM permitted in §60.102(b) as follows:

(1) The allowable emission rate $(E_{\rm s})$ of PM shall be computed for each run using the following equation:

 $E_s = F + A (H/R_c)$