Mr. GILMAN. Mr. Speaker, I rise today to honor a wonderful woman, Sophie Heimbach who will be 100 years old on August 10, 2001. As is the case with most Jews born in the early twentieth century, Sophie's life began very peacefully, and happily. She was born on August 10, 1901 in Ochtrup, Germany. In 1938, with the rising strength of the Nazi party, Sophie was forced to flee Germany. While at first she was able to make a new home in Belgium, the outbreak of World War Two forced her to flee again, this time for France, Spain, Portugal, and finally Casablanca. As if being uprooted from one’s home and having a death marking on one’s chest were not bad enough, Sophie was also separated from her family for a very painful period of time. We have all heard tales of the horrors for the Jews during World War Two, but this woman lived them, and she did it not knowing what would become of her family.

Sophie was reunited with her husband and family in Casablanca, and from that point slowly began to rearrange the small joys in life, even amidst pain. Casablanca led Sophie and her family to Cuba, and then eventually to the United States in 1942. They moved to Gothen, New York where Sophie earned her U.S. citizenship in 1947. Sophie and her husband worked diligently and humbly in their first months in the United States. She worked as a housekeeper for a wealthy landowner, and her husband Arthur as a farm hand. After a mere nine months, Sophie and Arthur had the resources to fulfill their American dream enabling them to purchase the family farm in Wallkill, New York. The Heimbach family flourished during their time in Wallkill, and succeeded in developing their farm to over 400 acres.

Arthur is now deceased, but he and Sophie are followed by two children, Charlotte and Louis, five grandchildren, and six great grandchildren.

Sophie is a woman of great devotion and dedication to her temple, her home and her family. She has lived a full life with as much grief as joy, hardship as luck. I invite my colleagues to join me in honoring her on her milestone 100th birthday.
coup attempt in 1992, Gutiérrez adopted a populist slogan much like Chávez’s own. The presence of such similarities on Chávez’s hemispheric report card has been troubling to Washington.

THREATS TO U.S. INTERESTS

Chávez’s recent association with such U.S. “enemies” as Saddam Hussein and Fidel Castro, has heightened the State Department’s anxiety over his intentions. In particular, his evolving friendship with Castro puts the U.S. in a quandary, given that Venezuela is the third largest foreign supplier of crude oil to this country. Chávez flouted U.S. efforts to isolate Havana in devising a five-year deal with the Cuban leader to provide the island with oil to compensate for Cuba’s lost Soviet aid. Venezuela will supply Cuba with $3,000 barrels of oil a day, at an annual market price of $3 billion. By granting cheap credits and a barter system, the cost to Cuba will be substantially less. Increased oil revenues from growing U.S. imports that fill Chávez’s coffers will also subsidize Cuba’s own consumption. Before his visit to Cuba, Chávez suggested, “We have no choice but to form an ‘axis of power,’” challenging U.S.-hemispheric dominance. Chávez’s declared objective is to generate good will for Venezuela throughout the region by offering similar preferential oil deals to many other Caribbean countries.

Despite climbing oil prices in the past two years, Chávez also expanded his presidential powers to undermine the independent power of the judiciary, legislature, media and civic offices, all of which were known for their corruption under previous regimes. Up to this point, Washington has restrained itself, implicitly adjusting to Chávez’s style of rule, a difficult position to maintain in light of the growing tempo of his socialist rhetoric and his recent controversial policy proposals.

POTENTIAL U.S. ACTION

While the Clinton administration overlooked Chávez’s political maneuvers in Latin America to maintain a semblance of amicable relations, some of his outrages evoked the wrath of Latin-Americans wishing to punish him for pro-Castro activism. This is likely to build up the pressure on the Bush administration to “get tough on Chávez.” Observers in Caracas assert that he has never concealed his goal of a unified Latin America distanced from Washington. It is doubtful whether a tougher response from Washington would hinder Chávez’s defense of such a union. Former State Department official, Bernard Aronson, is already claiming that any disruption of oil agreements with Venezuela could weaken the U.S. economy. Due to economic difficulties and heightened crime, Chávez’s promises of jobs and increased security have had to be delayed. However, it is to note that he has been in office a relatively short period, and appears to have factored in U.S. scorn while seeking his public sector reforms. Whether Washington can long maintain its positive engagement policy towards Chávez’s actions remains to be seen. Nevertheless, it is a certainty that he will continue to champion his messianic vision for Venezuela and Latin America.

EXTENSIONS OF REMARKS

FEDERAL PHOTOVOLTAIC UTILIZATION ACT

HON. JAMES L. OBERSTAR

OF MINNESOTA

IN THE HOUSE OF REPRESENTATIVES

Thursday, June 28, 2001

Mr. OBERSTAR. Mr. Speaker, the recent increase in oil prices has focused national attention on the benefits we could achieve by reducing our dependence on fossil fuels by meeting more of our energy needs from renewable sources, such as solar, wind, biomass and geothermal energy. Today, I am introducing legislation to promote one of the most promising of these technologies, solar photovoltaics.

Quite simple, a photovoltaic, or PV, system converts light energy into electricity. The term “photo” is a stem word from the Greek “phos” which means light. “Volt” is named for Alessandro Volta, a pioneer in the study of electricity. Photovoltaic literally means “light electricity.”

PV generated power offers distinct advantages over diesel generators, primary batteries, and in some instances, over conventional utility power lines. PV systems are highly reliable, and have no moving parts, so the need for maintenance is virtually non-existent. This is one of the main reasons they are used in satellites today, for which maintenance is both costly and time consuming. In addition, PV cells use sunlight to produce electricity—and sunlight is free!

The potential for photovoltaics is boundless. By way of illustration, solar panels in 1% of the Mojave Desert would provide enough energy to meet California’s expected electric shortfall. The electricity needs of the entire United States could be met by panels in a 100 by 100 mile area in the South-Western United States.

PV cells are ideal for supplying power to remote communication stations, such as those in our National Park system, and on navigational buoys. Transmission and distribution systems instead of traditional power lines are therefore unnecessary. This means a lower cost to the consumer and a reduction in energy waste. The electricity is produced at the source, and sunlight is free! It is easy to see why photovoltaics is a very attractive technology.

PV systems are preferred over traditional utility power lines. PV systems are high efficiency, and in some instances, over conventional utility power lines. PV systems offer a lower cost of ownership. In addition, PV systems are easy to install, require no fuel, and have no moving parts. PV systems are clean and silent. Compared to the alternative of burning kerosene and diesel fuels that contribute to global warming, this quiet, clean source of power becomes even more attractive.

Another important feature of PV systems is their modularity—they can easily be adapted to any size, based on energy consumption. Homeowners can add modules as their needs expand, and ranchers, for example, can use mobile stations to produce electricity for pumps to water cattle as the animals are rotated to different grazing areas. After Hurricane Andrew in 1992 the Florida Solar Energy Center deployed several PV emergency systems right at the disaster locations where the energy was needed.

Because a PV system can be placed closer to the user, shorter power lines can be used if power were brought in from a grid. Shorter lines, lower construction costs, and reduced paper work make PV systems especially attractive. Transmission and distribution upgrades are kept to a minimum, which is especially important in urban areas. PV systems can be sized, sited, and installed faster than traditional energy systems.

I have had a longstanding interest in promoting the development of this technology. In June 1997 I introduced H.R. 7629, which established a program for the Federal government to encourage the development of PV technology by using it in federal facilities. At that time, photovoltaic technology was in its early developmental stage, and produced energy at a cost of more than $1 per watt hour, compared to less than $0.10 a hour for energy from fossil fuels. In these circumstances, there is a “chicken and egg” problem: because the technology is expensive, consumers will not purchase it, but, unless there are purchases, the producers will not be able to make the investments and engage in the large-scale production needed to bring the cost down.

The Federal government, which purchases billions of dollars of energy each year, is in a unique position of facilitating a breakthrough for photovoltaics. Under my 1977 bill, the Federal government would have purchased substantial quantities of photovoltaic technology. These purchases would have given industry the research and development technology and mass production efficiencies necessary to make photovoltaics competitive.

My 1977 bill became part of a larger bill to establish a comprehensive national energy policy, PL 95-619. Most unfortunately, the Reagan administration chose not to fund the bill, resulting in not only a lackluster renewable energy program but also a serious deterioration of national focus.

The collapse of the oil cartel and the return of low oil prices in the early 1980’s had a chilling effect on federal renewable energy programs. Despite Congress’ consistent support for a broader, more aggressive renewable energy program than either the Reagan or George H.W. Bush administrations supported, federal spending fell steadily through 1990. Funding for renewable energy R&D grew from less than $1 million on the early 1970’s to over $1.3 billion in FY 1997, but then nose-dived during the Reagan and Bush administrations. Funding steadily declined during the 1970’s to $136 million in FY 1980 and then nose-dived during the Reagan and Bush administrations. Funding steadily declined during the early 1980’s to $136 million in FY 1980 and then nose-dived during the Reagan and Bush administrations. Funding steadily declined during the early 1980’s to $136 million in FY 1980 and then nose-dived during the Reagan and Bush administrations. Funding steadily declined during the early 1980’s to $136 million in FY 1980 and then nose-dived during the Reagan and Bush administrations. Funding steadily declined during the early 1980’s to $136 million in FY 1980 and then nose-dived during the Reagan and Bush administrations. Funding steadily declined during the early 1980’s to $136 million in FY 1980.

The trend was reversed during the Clinton administration. In June 1997 President Clinton announced the Million Solar Roofs Initiative. The program called for the installation of one million solar energy systems on homes and other buildings by 2010. In October 1997, President Clinton committed to placing 20,000 solar energy systems on Federal Buildings. So far the results have been encouraging—over 2000 solar systems have been installed in federal facilities through the year 2000. For example, the U.S. Coast Guard Air Station in San Francisco developed a solar hot water heating project, which qualified as part of the Federal commitment. The project was completed easily and quickly, cost less than $10,000 and has energy savings of $1,100 per year, which means that has a 9-year payback period.

Just across the Anacostia River, here in the Nation’s Capitol, at the Suitland Federal Center, the General Services Administration has installed a large PV system to supply electricity for the Federal center. From the Presidio in San Francisco to Fort Dix in New Jersey, the Federal government has installed numerous effective PV systems. Solar power is used