ENVIRONMENTAL PROTECTION AGENCY
AGENCY: Environmental Protection Agency (EPA).
ACTION: Proposed rule.
SUMMARY: EPA proposes to approve the State implementation plan (SIP) revision submitted by the State of Utah with a letter dated November 20, 1996. The submittal included the State adoption of a new rule, R307–18–1, which incorporates by reference the Federal new source performance standards (NSPS) in 40 CFR part 60, as in effect on March 12, 1996. In the final rules section of this Federal Register, EPA is acting on the State's SIP revision as a direct final rule without prior proposal because the Agency views this as a noncontroversial revision amendment and anticipates no adverse comments. A detailed rationale for EPA's action is set forth in the direct final rule. If no adverse comments are received in response to the proposed rule, no further activity is contemplated and the direct final rule will become effective. If EPA receives adverse comments, the direct final rule will be withdrawn and all public comments received will be addressed in a subsequent final rule based on this proposed rule. EPA will not institute a second comment period on this action. Any parties interested in commenting on this document should do so at this time.
DATES: Comments on this proposed rule must be received in writing by June 6, 1997.
ADDRESSES: Written comments on this action should be addressed to Vicki Stamper, 8P2–A, at the EPA Regional Office listed below. Copies of the State's submittal and documents relevant to this proposed rule are available for inspection during normal business hours at the following locations: Air Program, Environmental Protection Agency, Region VIII, 999 18th Street, suite 500, Denver, Colorado 80202–2405; and Division of Air Quality, Utah Department of Environmental Quality, 150 North 1950 West, P.O. Box 144820, Salt Lake City, Utah 84114–4820.
FOR FURTHER INFORMATION CONTACT: Vicki Stamper, EPA Region VIII, (303) 312–6445.
SUPPLEMENTARY INFORMATION: See the information provided in the direct final action which is located in the rules section of this Federal Register.
Jack W. McCraw,
Acting Regional Administrator.
[FR Doc. 97–11914 Filed 5–6–97; 8:45 am] BILLING CODE 6560–50–P

ENVIRONMENTAL PROTECTION AGENCY
AGENCY: Environmental Protection Agency (EPA).
ACTION: Proposed rule.
SUMMARY: In response to a petition filed under section 313(e)(1) of the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA), EPA is proposing to add a chemical category that includes dioxin and 27 dioxin-like compounds to the list of toxic chemicals subject to the reporting requirements under EPCRA section 313 and section 6607 of the Pollution Prevention Act of 1990 (PPA). EPA believes that dioxin and the dioxin-like compounds that are included in the petition, meet the criteria for addition to the list of toxic substances as established in EPCRA section 313(d)(2)(B). EPA is also proposing to modify the existing EPCRA section 313 listing for polychlorinated biphenyls (PCBs) in order to exclude those PCBs that are included in the proposed dioxin and dioxin-like compounds category.
DATES: Written comments must be received by July 7, 1997.
ADDRESSES: Written comments should be submitted in triplicate to: OPPT Docket Clerk, TSCA Document Receipt Office (7407?), Office of Pollution Prevention and Toxics, Environmental Protection Agency, 401 M St., SW., Rm. G–099, Washington, DC 20460.
ATTENTION: Docket Control Number OPPTS–400109. Comments containing information claimed as confidential must be clearly marked as confidential business information (CBI). If CBI is claimed, three additional sanitized copies must also be submitted.
Nonconfidential versions of comments on this proposed rule will be placed in the rulemaking record and will be available for public inspection. Comments should include the docket control number for this proposal, OPPTS–400111, and the name of the EPA contact for this proposal. Unit VII. of this preamble contains additional information on submitting comments containing information claimed as CBI.
Comments and data may also be submitted electronically by sending e-mail to: oppt.ncic@epamail.epa.gov. Electronic comments must be submitted as an ASCII file avoiding the use of special characters and any form of encryption. Comments and data will also be accepted on disks in WordPerfect 5.1 file format or ASCII file format. All comments and data in electronic form must be identified by the docket control number OPPTS–400109. No CBI should be submitted through e-mail. Electronic comments on this proposed rule may be filed online at many Federal Depository Libraries. Additional information on electronic submissions can be found in Unit VII. of this preamble.
FOR FURTHER INFORMATION CONTACT: Daniel R. Bushman, Acting Petitions Coordinator, 202–260–3882, e-mail: bushman.daniel@epamail.epa.gov, for specific information on this proposed rule, or for more information on EPCRA section 313, the Emergency Planning and Community Right-to-Know Hotline, Environmental Protection Agency, Mail Code 5101, 401 M St., SW., Washington, DC 20460, Toll free: 1–800–535–0202, in Virginia and Alaska: 703–412–9877 or Toll free TDD: 1–800–553–7672.
SUPPLEMENTARY INFORMATION:
I. Introduction
A. Regulated Entities
 Entities potentially regulated by this action are those which manufacture, process, or otherwise use any of the 28 chemicals included in the proposed category and which are subject to the...
This table is not intended to be exhaustive, but rather provides a guide for readers regarding entities likely to be regulated by this action. This table lists the types of entities that EPA is now aware could potentially be regulated by this action. Other types of entities not listed in the table could also be regulated. To determine whether your facility would be regulated by this action, you should carefully examine the applicability criteria in part 372 subpart B of Title 40 of the Code of Federal Regulations. If you have questions regarding the applicability of this action to a particular entity, consult the person listed in the preceding “FOR FURTHER INFORMATION CONTACT” section.

B. Statutory Authority

This action is taken under section 313(d)(1) of EPCRA. EPCRA is also referred to as Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA) (Pub. L. 99-499).

II. Description of Petition

On August 28, 1996, EPA received a petition from Communities For A Better Environment to add dioxin and 27 dioxin-like compounds to the list of chemicals subject to the reporting requirements of EPCRA section 313 and PPA section 6607. The petitioner believes that because dioxin and dioxin-like compounds are highly toxic, persist and bioaccumulate in the environment, and may cause severe adverse health effects, they meet the listing criteria of EPCRA section 313(d)(2). The petitioner also requested that EPA lower the reporting thresholds for these chemicals because under current reporting thresholds no facilities would be required to file a report on these chemicals, and thus the public would not be able to obtain information on releases of these highly toxic and environmentally persistent chemicals. Although the petition to add these chemicals to the EPCRA section 313 list is subject to the 180-day statutory petition response deadline discussed in Unit I.C. of this preamble, the request to lower the reporting thresholds is not subject to this statutory deadline (see EPCRA section 313(f)(2)).

III. Technical Review of the Petition

The technical review of the petition to add dioxin and dioxin-like compounds to the EPCRA section 313 list of toxic chemicals included an analysis of the chemistry (Ref. 1), environmental fate (Ref. 2), and health effects (Ref. 3) data available for dioxin and the 27 dioxin-like compounds identified in the petition. A summary of the review of the available data is provided below and a more detailed discussion can be found in the EPA technical reports (Refs. 1, 2, and 3) and other cited references.

A. Chemistry, Use and Sources

The petitioner requested the addition of dioxin and dioxin-like compounds to the EPCRA section 313 list of toxic chemicals. Dioxin and dioxin-like compounds refers to a group of 28 environmentally stable compounds which includes 7 polychlorinated dibenzo-p-dioxins (CDDs), 10 polychlorinated dibenzo-p-dioxins (CDFs), and 11 co-planar polychlorinated biphenyls (PCBs). The chemical structures and nomenclature for these compounds are discussed below.

The structure of dibenzodioxin and the conventional numbering system for substituent positions are shown below:

Chlorine can be substituted at the 8 possible positions marked on the two benzene rings to give 75 different congeners of chlorinated dibenzo-p-dioxins. Only the seven CDDs, having chlorine substitution at the 2, 3, 7, and 8 positions, are thought to have dioxin-like toxicity (i.e., toxicity similar to 2,3,7,8-tetrachlorodibenzo-p-dioxin which is referred to simply as “dioxin” or 2,3,7,8-TCDD). The seven CDDs included in the petition contain four to seven chlorines. The chemical names for the seven CDDs are listed below with their corresponding Chemical Abstract Service Registry Numbers (CAS No.) in parenthesis.
The structure of biphenyl and the conventional numbering system for substituent positions are shown below.

![Biphenyl structure](image)

Chlorine can be substituted at the 8 possible positions marked on the 2 benzene rings to give 135 different congeners of chlorinated dibenzofurans. Only 10 CDFs, having chlorine substitution at the 2, 3, 7, and 8 positions, are thought to have dioxin-like toxicity. The 10 CDFs included in the petition have 4 to 8 chlorines. The chemical names for the 10 CDFs are listed below with their corresponding CAS Nos. in parenthesis:

1. 2,3,4,6,7,8-hexachlorodibenzofuran, (32598-14-4)
2. 2,3,4,6,7,8,9-octachlorodibenzofuran, (38380-08-4)
3. 2,3,4,6,7,8,9,10-decachlorodibenzofuran, (39635-31-9)
4. 2,3,4,6,7,8,9,10-decachlorodibenzofuran, (52511-76-4)
5. 2,3,7,8-tetrachlorodibenzofuran, (1746-01-6)
6. 2,3,4,7,8-pentachlorodibenzofuran, (19408-73-4)
7. 2,3,4,7,8,9-hexachlorodibenzofuran, (3268-87-9)
8. 2,3,4,6,7,8,9,10-octachlorodibenzofuran, (57653-85-7)
9. 2,3,4,6,7,8,9,10-octachlorodibenzofuran, (57654-86-8)
10. 2,3,4,7,8,9,10-heptachlorodibenzofuran, (38001-02-0)

The structure of dibenzofuran and the conventional numbering system for substituent positions are shown below.

![Dibenzofuran structure](image)

The 10 positions marked on the 2 benzene rings (i.e., 2’, 3’, 3, 4’, 4, 5, 5’, 6, and 6’) can be chlorinated to give 209 different congeners of chlorinated biphenyls. Eleven PCBs believed to have dioxin-like toxicity are included in the petition. These 11 PCBs have 4 to 7 chlorine atoms, but contain no more than 1 chlorine at the 4 ortho positions (i.e., 2, 2’, 6 or 6’) and all have 2 chlorines at the para positions (i.e., 4 and 4’) and at least 2 chlorines at the meta positions (i.e., 3, 3’, 5, or 5’). All 11 are regarded as coplanar PCBs. Coplanar PCBs are those in which the two benzene rings can rotate into the same plane. The two benzene rings can rotate into the same plane since chlorine substitution in only one of the ortho positions does not block the rotation of the two benzene rings over the bond connecting positions 1 and 1’.

The chemical names for the 11 PCBs included in the petition are listed below with their corresponding CAS Nos. in parenthesis:

1. 2,3,3,4,4,5,5’, 6, 6’-hexachlorobiphenyl, (39635-31-9)
2. 2,3,3,4,4,5,5’, 6, 6’-pentachlorobiphenyl, (39001-02-0)
3. 2,3,3,4,4,5,5’, 6, 6’-heptachlorobiphenyl, (39635-31-9)
4. 2,3,3,4,4,5,5’, 6, 6’-octachlorobiphenyl, (39001-02-0)
5. 2,3,3,4,4,5,5’, 6, 6’-hexachlorobiphenyl, (39001-02-0)
6. 2,3,3,4,4,5,5’, 6, 6’-heptachlorobiphenyl, (39635-31-9)
7. 2,3,3,4,4,5,5’, 6, 6’-octachlorobiphenyl, (39001-02-0)
8. 2,3,3,4,4,5,5’, 6, 6’-heptachlorobiphenyl, (39635-31-9)
9. 2,3,3,4,4,5,5’, 6, 6’-octachlorobiphenyl, (39001-02-0)
10. 2,3,3,4,4,5,5’, 6, 6’-heptachlorobiphenyl, (39635-31-9)
11. 2,3,3,4,4,5,5’, 6, 6’-octachlorobiphenyl, (39001-02-0)
the presence of a hydrogen donor, PCBs undergo photodechlorination when exposed to sunlight or ultraviolet radiation. With the exception of the vapor pressure for 1 PCB, EPA has identified measured or calculated melting points, vapor pressures, and log K_{ow} for each of the 11 PCBs (Ref. 1).

From 1929 to 1977, PCBs were produced commercially in the U.S. in large quantities by catalytic partial chlorination of biphenyl under heated conditions to produce complex mixtures, each containing 60 to 90 different congeners and a specific percent of chlorine (Refs. 7 and 9). Because of their excellent thermal resistance and dielectric properties, PCBs were used mainly as insulators for transformers and as a dielectric medium for capacitors. PCBs were also used as plasticizers; ingredients in lacquers, printing inks, paints and varnishes, and adhesives; waterproofing compounds in various types of coatings; dye carriers for pressure-sensitive copying paper; lubricants or lubricant additives under extreme conditions and in transfer fluids; fire resistant hydraulic fluids; and as vacuum pump fluids (Refs. 10 and 11). The production of PCBs peaked at 33,000 tons in 1970 (Ref. 7). Although PCBs are no longer produced in the U.S. (except as discussed earlier in this Unit) and other industrialized countries, PCBs continue to be released into the environment through the use and disposal of products containing or contaminated with PCBs, and by the re introduction of PCBs into the air and water by volatilization from soils and sediments. Disposal and use of PCBs and PCB-containing materials have been regulated by EPA under TSCA since 1978 (Ref. 12). Some uses of PCBs are allowed, but the uses are very restrictive (Ref. 13).

CDDs and CDFs are not produced commercially and there are no known commercial uses. CDDs and CDFs are produced in small amounts in laboratories for use in chemical analysis, and they are generated in trace amounts as byproducts from various chemical and combustion processes (Refs. 14 and 15). CDDs and CDFs can be produced from aromatic or potentially aromatic forming compounds in the presence of a chlorine source. The formation is enhanced under alkali conditions at elevated temperatures or in the presence of air upon heating. Industrial products, most likely to be contaminated with CDDs and CDFs, are polychlorinated phenols, polychlorinated diphenyl ethers, and other polychlorinated aromatic compounds (Ref. 15). CDDs and CDFs share most of the same precursor compounds, but chlorinated biphenyls form only corresponding furans and chlorinated 2-hydroxy phenyl ethers form only dioxins.

The largest identified source for CDDs and CDFs is the combustion of waste (municipal, medical, and hazardous) (Refs. 4, 14, 15, and 16). Other sources include pulp and paper mills (from chlorine bleaching processes); oil refineries (catalyst regeneration processes); manufacture of chlorinated organic chemicals (chlorinated phenols and other aromatics, chlorinated aliphatic solvents and monomers, herbicides, etc.); combustion and incineration of wastes; steel production and smelting operations; and energy generation (combustion of coal, wood, petroleum products, tires etc.). The dioxin-like compounds have been found in all environmental media (air, water, soil, sediments) and foods.

B. Environmental Fate

There is a good general understanding of the environmental fate and transport of CDDs, CDFs, and PCBs. CDDs and CDFs are primarily associated with particulate and organic matter in air, water, soil, and sediment, although vapor phase transport and deposition of lower chlorinated CDDs and CDFs does occur and is important to human exposure (Ref. 17). CDDs and CDFs with four or more chlorines are extremely stable in most environmental media and thus may be classified as persistent organic pollutants (POPs).

CDDs and CDFs entering the atmosphere are removed by either photodegradation or wet/dry deposition (Refs. 18 and 19). For CDDs and CDFs sorbed to soil, burial in place or movement to water bodies by erosion of the soil are the predominant fate. CDDs and CDFs entering the aquatic environment primarily undergo sedimentation and burial. Resuspension of sediments can be an important route of exposure to fish and other aquatic organisms. Benthic sediments are believed to be the ultimate environmental sink (Ref. 20).

Coplanar PCBs, like CDDs and CDFs, have very low water solubilities and tend to sorb strongly to organic matter in soils and sediments. However, they have somewhat higher vapor pressures than the CDDs and CDFs. Atmospheric transport and deposition are thought to be the principal mechanisms that account for the widespread environmental distribution of CDDs, CDFs, and PCBs (Ref. 21).

Like CDDs and CDFs, PCBs are quite stable and thus classified as POPs. Soil erosion and sediment transport in water bodies and volatilization from soil and water with subsequent atmospheric transport and deposition are believed to be the dominant transport mechanisms, and account for the widespread environmental occurrence of PCBs (Ref. 22). Photodegradation of the more highly chlorinated congeners to less chlorinated products can be a significant transformation process for PCBs exposed to light (Ref. 23). There is now a substantial body of evidence indicating that microbial dehalogenation resulting in less chlorinated PCBs also occurs and may be a significant fate process under anaerobic conditions, principally in sediments (Refs. 22, 24, and 25). However, dehalogenation is a slow process that occurs over a time frame of years.

CDDs, CDFs, and PCBs are very hydrophobic and this is reflected by their high estimated or measured octanol/water partition coefficients. Because of their high lipophilic nature, these compounds accumulate to a significant level in the fatty tissues of biota. This phenomenon has been amply documented in both experimental and monitoring studies for many of the compounds. Measured bioconcentration factors (BCFs) for all the CDDs, CDFs, and PCBs included in the petition consistently exceed 1,000 (and may be much higher), indicating that they are all bioaccumulative (Refs. 26 and 27).

CDDs, CDFs, and PCBs are found in measurable levels in human tissues across the general population. Typical levels for U.S. adults determined from literature data (Ref. 28) are 30 ppt toxic equivalents (TEQ) for CDDs and CDFs and 20 ppt TEQ for PCBs. TEQs are determined by summing the products of multiplying concentrations of individual dioxin-like compounds times the corresponding toxicity equivalence factor (TEF) for that compound (TEFs are discussed in Unit III.C. of this preamble). The principal route of human exposure is thought to be consumption of animal fats (e.g., beef, pork, poultry, milk, dairy products, and fish) (Ref. 29). For many food products, the mechanism by which these foods become contaminated is thought to be air deposition onto plants which are then eaten by livestock (Refs. 21 and 30). Fish absorb these compounds directly from water or contact with sediments (Ref. 27).

C. Toxicity Evaluation

EPA has done extensive risk and hazard assessments over the years for dioxin and dioxin-like compounds and is in the final stages of reassessment of these compounds based on up-to-date
data. The reassessment is looking at many things including the sources of these chemicals and potential exposures. While not yet final, nothing in the current reassessment indicates less than high hazard levels for these compounds. Therefore, the reassessment will not change the toxicity determination as it relates to the EPCRA section 313 listing criteria.

An extensive data base exists showing that 2,3,7,8-TCDD is a potent toxicant in animals and has the potential to produce a wide spectrum of toxic effects in humans. There is sufficient evidence to conclude that 2,3,7,8-TCDD is carcinogenic in experimental animals (Refs. 31, 32, and 33). Long-term studies in rats, mice, hamsters and Medaka (a small fish) using various routes of administration all produced positive results at dose levels well below the maximum tolerated dose (MTD), leading to the conclusion that 2,3,7,8-TCDD is a potent carcinogen. Depending on the species of the animal, the principal target organs are the liver, lung, thyroid gland, and nasal-oral cavities by oral administration. When administered topically, 2,3,7,8-TCDD induced skin tumors in mice. Available human data cannot clearly demonstrate whether a cause and effect relationship exists between 2,3,7,8-TCDD exposure and increased incidence of cancer. However, there are a number of epidemiological studies associating exposure to 2,3,7,8-TCDD with increased cancer mortality (Refs. 4 and 32). Based on the EPA weight-of-evidence classification criteria, there is sufficient evidence to conclude that 2,3,7,8-TCDD is a probable human carcinogen. It has been listed by the National Institute of Environmental Health Sciences/National Toxicology Program (NI/NT) as a substance which may reasonably be anticipated to be a human carcinogen (Ref. 31). Based on the 1985 slope factor (Ref. 4) 2,3,7,8-TCDD is the most potent chemical carcinogen that EPA has regulated.

Similarly, there is sufficient evidence for the carcinogenicity of PCBs in experimental animals (Refs. 34 and 35). Based on the evidence from animal studies and inadequate/limited evidence for carcinogenicity to humans, PCBs are classified as group B2, probable human carcinogens by EPA (Ref. 36) and are listed as substances which may reasonably be anticipated to be human carcinogens in the NIEHS/NT Annual Report on Carcinogens (Ref. 31). In addition to carcinogenic effects, 2,3,7,8-TCDD and PCBs have been shown to cause a variety of adverse effects in laboratory animals (Refs. 32, 33, and 35). Humans exposed to 2,3,7,8-TCDD or PCBs in a number of incidents have been reported to develop chloracne, liver disorders, porphyria, and neurological changes (Refs. 4, 33, and 35). In a number of animal species tested, including fish, birds, and mammals, 2,3,7,8-TCDD has been shown to induce various reproductive, fetotoxic and teratogenic responses. With No Observed Effect Level (NOEL) of about 0.001 micrograms per kilogram (µg/kg) in reproductive toxicity studies in rats, and a Maximum Effective Dose (MED) of about 0.1 µg/kg/day in teratogenicity studies in rats and mice, 2,3,7,8-TCDD is one of the most, if not the most, potent reproductive/developmental toxicant known. Studies in various animal species have also demonstrated that the immune system is a target for toxicity of 2,3,7,8-TCDD. 2,3,7,8-TCDD has been shown to cause decreases in thymic and splenic weights, and alterations in serum immunoglobulin levels in mice at oral doses as low as 0.01 µg/kg/week (Refs. 32, 33, and 35). The 11 dioxin-like PCBs are believed to have toxicities similar to CDDs and CDFs. In addition, PCBs as a class display a variety of adverse human health effects. Reproductive dysfunction due to exposure to PCBs has been documented in a wide variety of animal species including the rat, mouse, rabbit, monkey, and mink. Irregular menstrual cycle, decreased mating performance, early abortion, as well as resorption are the most commonly observed effects. Teratogenic effects have been noted in mice, dogs, and chickens which showed various skeletal deformities. Data from animal studies suggest that the immune system is also a sensitive target for toxicity of PCBs. Thymic atrophy, cellular alterations in the spleen and lymph nodes accompanied by reduced antibody production have been observed in rats, rabbits, and monkeys exposed to PCBs by various routes (Refs. 8 and 35).

There are more limited data for other dioxin-like compounds. However, many of these compounds, especially those with chlorine or bromine substitution at the 2,3,7,8-positions, are generally recognized to exhibit toxicity and carcinogenicity similar to 2,3,7,8-TCDD. Indeed, carcinogenicity bioassays of a mixture of 1,2,3,6,7,8- and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin have shown that these compounds are carcinogenic, inducing liver tumors in both sexes of rats and mice (Ref. 37). Presently, there is considerable evidence that the initial event involved in carcinogenesis and toxicity of dioxin and dioxin-like compounds is their stereospecific interaction with a cytosolic receptor (Ah receptor) (Ref. 38). Because of their common mechanism of action, Toxicity Equivalence Factors (TEFs) have been established for dioxin-like compounds. TEFs represent order of magnitude estimates of the relative potency of dioxin-like compounds compared to 2,3,7,8-TCDD, and have been considered by EPA and the international scientific community to be a valid and scientifically sound approach for assessing the likely health hazard of dioxin-like compounds (Ref. 39). Structure-activity relationship analysis of halogenated dibenzo-p-dioxin, dibenzofuran, and related compounds indicates that the degree of toxicity of these dioxin-like compounds is dependent on the number and positions of chlorine substitutions; all the lateral positions (2, 3, 7, and 8) must be chlorinated to achieve the greatest degree of toxicity. Examination of all the dioxin and dioxin-like compounds (7 CDDs and 10 CDFs) specified in the petition revealed that they all contain chlorine at the 2, 3, 7, and 8 positions. The range of the TEFs for CDDs and CDFs is between 0.5 and 0.001, indicating that they are estimated to be about half to three orders of magnitude less toxic than 2,3,7,8-TCDD. The PCBs included in this proposal also have proposed TEF values which range from 0.1 to 0.00001 (Ref. 40). Nonetheless, all of these dioxin-like compounds are potent carcinogens and highly toxic compounds given the level of toxicity of 2,3,7,8-TCDD (Refs. 32, 33, and 35). Therefore, based on the available toxicity data, it is concluded that the 7 CDDs, 10 CDFs, and 11 PCBs specified in this petition are highly toxic and are reasonably anticipated to cause serious adverse health effects, including cancer, in humans.

IV. Technical Summary

EPA’s technical review revealed that dioxin and dioxin-like compounds are known to cause chloracne, immunotoxicity, reproductive developmental effects, and cancer in experimental animals, and that it is reasonable to anticipate that these chemicals will also cause cancer and other serious adverse chronic health effects in humans. The review also shows that dioxin and dioxin-like compounds are chemically stable compounds that persist and bioaccumulate in the environment.

V. Petition Response and Rationale

EPA is proposing to grant the petition to add dioxin and dioxin-like compounds to the EPCRA section 313
list of toxic chemicals. However, as discussed in Unit V.C. of this preamble, EPA is not proposing to lower reporting thresholds for these compounds at this time.

A. Proposed Addition of a Chemical Category

EPA is proposing to add a delimited chemical category entitled “Dioxin and Dioxin-like Compounds” to the EPCRA section 313 list of toxic chemicals. This delimited category will include the 28 individual chemicals identified by name and CAS number under Unit III.A. of this preamble. The technical review of dioxin and dioxin-like compounds indicates that these chemicals are highly toxic and persist and bioaccumulate in the environment. EPA believes that the toxicity data for these chemicals clearly indicate that these chemicals are known to cause or can reasonably be anticipated to cause cancer and other serious chronic health effects in humans. Therefore, EPA believes that dioxin and dioxin-like compounds meet the EPCRA section 313(d)(2)(B) criteria for listing. In addition, because dioxin and dioxin-like compounds can reasonably be anticipated to cause high chronic toxicity and cancer, EPA does not believe that an exposure assessment is necessary to conclude that these compounds meet the toxicity criterion of EPCRA section 313(d)(2)(B). For a discussion of the use of exposure in EPCRA section 313 listing/delisting decisions, see 59 FR 61432, November 30, 1994.

As EPA has explained in the past (59 FR 61432, November 30, 1994), the Agency believes that EPCRA allows a chemical category to be added to the list, where EPA identifies the toxic effect of concern for at least one member of the category and then shows why that effect can reasonably be expected to be caused by all other members of the category. Here, individual toxicity data do not exist for each member of the proposed category; however, as discussed in Unit III.C. of this preamble, there is sufficient information to conclude that all of these chemicals are highly toxic based on structural and physical/chemical property similarities to those members of the category for which data are available.

For purposes of EPCRA section 313, threshold determinations for chemical categories must be based on the total of all chemicals in the category (see 40 CFR 372.25(d)). For example, a facility that manufactures three members of a chemical category would count the total amount of all chemicals manufactured towards the manufacturing threshold for that category. When filing reports for chemical categories, the releases are determined in the same manner as the thresholds. One report is filed for the category and all releases are reported on form R (the form for filing reports under EPCRA section 313 and PPA section 6607).

B. Modification of Current Listing for PCBs

The current, EPCRA section 313 list of toxic chemicals includes a listing for polychlorinated biphenyls (PCBs) under the CAS No. 1336–36–3. This is a broad listing that includes all chlorinated 1,1'-biphenyls, not just the ones that are proposed to be included in the dioxin and dioxin-like compounds category. The non-dioxin-like PCBs are also toxic and EPA is not proposing to remove them from the EPCRA section 313 list. However, EPA is proposing to modify the current PCB listing to exclude those PCBs that are listed as part of the new category in order to avoid having some PCBs that are identified under two listings, which might lead to double reporting. EPA is proposing to modify the current PCB listing to read “polychlorinated biphenyls (PCBs) (excluding those PCBs listed under the dioxin and dioxin-like compounds category).”

C. Deferral of Lower Reporting Thresholds

The petitioner also requested that EPA lower the reporting thresholds for dioxin and dioxin-like compounds. This request is not subject to the statutory 180-day petition response deadline in EPCRA section 313(e)(1) and EPA intends to address this request as part of the Agency’s ongoing project to assess the utility and impacts of lowering reporting thresholds for EPCRA section 313 listed toxic chemicals that persist and bioaccumulate in the environment. EPA has initiated this project in response to concerns that chemicals that persist and bioaccumulate in the environment can have a cumulative effect and therefore it is important for the public to be able to track even low releases of such chemicals. The current reporting thresholds of 25,000 pounds for manufacturing or processing and 10,000 pounds for otherwise use are high enough that many biologically significant releases of persistent bioaccumulative chemicals are usually not reported.

EPA believes that rather than proposing lower reporting thresholds for dioxin and dioxin-like compounds at this time, this issue should be considered within the context of lower reporting thresholds for all EPCRA section 313 listed toxic chemicals that persist and bioaccumulate in the environment. Taking this approach will provide adequate time for EPA to evaluate and address issues pertaining to the use of lower reporting thresholds for these chemicals. Therefore, EPA is not proposing to lower the reporting thresholds for the dioxin and dioxin-like compounds category as part of today’s petition response. However, EPA is requesting comment on the issue of lower reporting thresholds for these compounds.

D. Schedule for Final Rule

Based on what EPA knows about the sources of the chemicals in the proposed dioxin and dioxin-like compounds category, EPA believes that, under current reporting thresholds, it is highly unlikely that any reports would be filed for the category if it were added to the EPCRA section 313 list. EPA believes that delaying final action to add this category to the EPCRA section 313 list will not result in a loss of significant information. Therefore, if after consideration of comments received on this proposed rule, EPA decides to finalize the addition of the category, EPA will postpone that action until a rule lowering the reporting thresholds for the category is ready to be finalized. EPA intends to address the issue of lower reporting thresholds for the dioxin and dioxin-like compounds category within the next year.

VI. Request for Public Comment

EPA requests general comments on this proposal to add the delimited dioxin and dioxin-like compounds category to the list of toxic chemicals subject to the reporting requirements under EPCRA section 313 and PPA section 6607. Further, EPA requests comment on the issue of lowering the EPCRA section 313 reporting thresholds for the proposed dioxin and dioxin-like compounds category. Comments should be submitted to the address listed under the ADDRESSES unit at the front of this document. All comments must be received by July 7, 1997.

VII. Rulemaking Record

A record, that includes the references in Unit VIII. of this preamble, has been established for this rulemaking under docket control number OPPTS–400111 (including comments and data submitted electronically as described below). A public version of this record, including printed, paper versions of electronic comments, which does not include any information claimed as CBI, is available for inspection from noon to 4 p.m., Monday through Friday, excluding legal holidays. The public
VI. References

37. NTP, 1980. “Bioassy of a mixture of 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin and 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (Gavage) for Possible Carcinogenicity.” National Toxicology Program, Research Triangle Park, North Carolina. NTPB-12, NIH Publ. No. 80-1754, 1980.

List of Subjects in 40 CFR Part 372

Environmental protection, Community right-to-know, Reporting and recordkeeping requirements, Toxic chemicals.

Lynn R. Goldman,
Assistant Administrator for Prevention, Pesticides and Toxic Substances.

Therefore, it is proposed that 40 CFR part 372 be amended as follows:

1. The authority citation for part 372 would continue to read as follows:

Authority: 42 U.S.C. 11013 and 11028.

2. Section 372.65 is amended by revising the entry for polychlorinated biphenyls under paragraph (a), revising the CAS number entry for 1336-36-3 under paragraph (b), and by adding alphabetically one category to paragraph (c) to read as follows:

§372.65 Chemicals and chemical categories to which the part applies.

(a) * * * *

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>CAS No.</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychlorinated biphenyls (PCBs) (excluding those PCBs listed under the dioxin and dioxin-like compounds category)</td>
<td>1336-36-3</td>
<td>1/1/87</td>
</tr>
</tbody>
</table>

(b) * * *

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Chemical name</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1336-36-3</td>
<td>Polychlorinated biphenyls (PCBs) (excluding those PCBs listed under the dioxin and dioxin-like compounds category)</td>
<td>1/1/87</td>
</tr>
</tbody>
</table>

(c) * * *

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>CAS No.</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxin and Dioxin-Like Compounds: (This category includes only those chemicals listed below)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39635-31-9</td>
<td>2,3,3′,4,4′,5,5′-Hexachlorobiphenyl</td>
<td></td>
</tr>
<tr>
<td>67562-39-4</td>
<td>1,2,3,4,6,7,8-Heptachlorodibenzo[43]</td>
<td></td>
</tr>
<tr>
<td>55673-89-7</td>
<td>1,2,3,4,7,8,9-Heptachlorodibenzo[43]</td>
<td></td>
</tr>
<tr>
<td>38380-08-4</td>
<td>2,3,3′,4,4′,5-Hexachlorobiphenyl</td>
<td></td>
</tr>
<tr>
<td>69782-90-7</td>
<td>2,3,3′,4,4′,5′-Hexachlorobiphenyl</td>
<td></td>
</tr>
<tr>
<td>52663-72-6</td>
<td>2,3′,4,4′,5′-Hexachlorobiphenyl</td>
<td></td>
</tr>
<tr>
<td>32774-16-6</td>
<td>3,3′,4,4′,5,5′-Hexachlorobiphenyl</td>
<td></td>
</tr>
<tr>
<td>70648-26-9</td>
<td>1,2,3,4,7,8-Hexachlorodibenzofuran</td>
<td></td>
</tr>
<tr>
<td>57117-44-9</td>
<td>1,2,3,6,7,8-Hexachlorodibenzofuran</td>
<td></td>
</tr>
<tr>
<td>72918-21-9</td>
<td>1,2,3,7,8,9-Hexachlorodibenzofuran</td>
<td></td>
</tr>
<tr>
<td>60851-34-5</td>
<td>2,3,4,6,7,8-Hexachlorodibenzofuran</td>
<td></td>
</tr>
<tr>
<td>39227-28-6</td>
<td>1,2,3,4,7,8-Hexachlorodibenzof-p-dioxin</td>
<td></td>
</tr>
<tr>
<td>57653-85-7</td>
<td>1,2,3,6,7,8-Hexachlorodibenzof-p-dioxin</td>
<td></td>
</tr>
<tr>
<td>19408-74-3</td>
<td>1,2,3,7,8,9-Hexachlorodibenzof-p-dioxin</td>
<td></td>
</tr>
<tr>
<td>35022-46-9</td>
<td>1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin</td>
<td></td>
</tr>
<tr>
<td>39001-02-0</td>
<td>1,2,3,4,6,7,8,9-Octachlorodibenzo[43]</td>
<td></td>
</tr>
<tr>
<td>57795-36-4</td>
<td>1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin</td>
<td></td>
</tr>
<tr>
<td>32598-14-4</td>
<td>2,3′,4,4′-Pentachlorobiphenyl</td>
<td></td>
</tr>
<tr>
<td>74472-37-0</td>
<td>2,3′,4,4′-Pentachlorobiphenyl</td>
<td></td>
</tr>
<tr>
<td>31508-00-6</td>
<td>2,3′,4,4′-Pentachlorobiphenyl</td>
<td></td>
</tr>
<tr>
<td>65510-44-3</td>
<td>2,3′,4,4′,5-Pentachlorobiphenyl</td>
<td></td>
</tr>
<tr>
<td>57465-28-8</td>
<td>3,3′,4,4′-Pentachlorobiphenyl</td>
<td></td>
</tr>
<tr>
<td>57117-41-6</td>
<td>1,2,3,7,8-Pentachlorodibenzo[43]</td>
<td></td>
</tr>
<tr>
<td>57117-31-4</td>
<td>1,2,3,7,8-Pentachlorodibenzo[43]</td>
<td></td>
</tr>
<tr>
<td>40321-76-4</td>
<td>1,2,3,7,8-Pentachlorodibenzo-p-dioxin</td>
<td></td>
</tr>
<tr>
<td>32598-13-3</td>
<td>3,3′,4,4′-Tetrachlorobiphenyl</td>
<td></td>
</tr>
<tr>
<td>51207-31-9</td>
<td>2,3,7,8-Tetrachlorodibenzo[43]</td>
<td></td>
</tr>
<tr>
<td>01746-01-6</td>
<td>2,3,7,8-Tetrachlorodibenzo-p-dioxin</td>
<td></td>
</tr>
</tbody>
</table>
FEDERAL COMMUNICATIONS COMMISSION

47 CFR Part 73

Radio Broadcasting Services; Saint Florian, AL

AGENCY: Federal Communications Commission.

ACTION: Proposed rule.

SUMMARY: This document requests comments on a petition for rule making filed on behalf of Fredrick A. Biddle dba Power Valley Enterprises, requesting the allotment of Channel 274A to Saint Florian, Alabama, as that community’s first local aural transmission service. Petitioner is requested to provide additional documented information to establish Saint Florian’s status as a community for allotment purposes. Coordinates used for Channel 274A at Saint Florian are 34°57’-08” and 87°39’-30”.

DATES: Comments must be filed on or before June 23, 1997, and reply comments on or before July 8, 1997.

ADDRESSES: Secretary, Federal Communications Commission, Washington, DC 20554. In addition to filing comments with the FCC, interested parties should serve the petitioner’s consultant, as follows: Kirk A. Tollett, Commsouth Media, Inc., 716 North Miller Avenue, P.O. Box 810, Crossville, TN 38557-0810.

FOR FURTHER INFORMATION CONTACT: Crossville, TN 38557±0810. North Miller Avenue, P.O. Box 810, A. Tollett, Commsouth Media, Inc., 716 Power Valley Enterprises, requesting the establishment of Saint Florian’s status as a community for allotment purposes. Petitioner is requested to provide additional documented information to establish Saint Florian’s status as a community for allotment purposes. Coordinates used for Channel 274A at Saint Florian are 34°57’-08” and 87°39’-30”.

FEDERAL COMMUNICATIONS COMMISSION

47 CFR Part 73

Radio Broadcasting Services; Moorcroft, WY

AGENCY: Federal Communications Commission.

ACTION: Proposed rule.

SUMMARY: The Commission requests comments on a petition filed by Mountain Tower Broadcasting, proposing the allotment of Channel A at Moorcroft, Wyoming, as the community’s first local aural transmission service. Channel A can be allotted to Moorcroft in compliance with the Commission’s minimum distance separation requirements at city reference coordinates. The coordinates for Channel A at Moorcroft are North Latitude 44°15’-54” and West Longitude 104°57’-06”.

DATES: Comments must be filed on or before June 23, 1997, and reply comments on or before July 8, 1997.

ADDRESSES: Federal Communications Commission, Washington, DC 20554. In addition to filing comments with the FCC, interested parties should serve the petitioner, or its counsel or consultant, as follows: Victor A. Michael, Jr., President, Mountain Tower Broadcasting, c/o Magic City Media, 1912 Capitol Avenue, Suite 300, Cheyenne, Wyoming 82001 (Counsel for Petitioner).

FOR FURTHER INFORMATION CONTACT: Sharon P. McDonald, Mass Media Bureau, (202) 418±2180.

SUPPLEMENTARY INFORMATION: This is a synopsis of the Commission’s Notice of Proposed Rule Making, MM Docket No. 97±127, adopted April 23, 1997, and released May 2, 1997. The full text of this Commission decision is available for inspection and copying during normal business hours in the FCC Reference Center (Room 239), 1919 M Street, NW., Washington, DC. The complete text of this decision may also be purchased from the Commission’s copy contractors, International Transcription Service, Inc., (202) 857-3800, 2100 M Street, NW., Suite 140, Washington, DC 20037.

Provisions of the Regulatory Flexibility Act of 1980 do not apply to this proceeding.

Members of the public should note that from the time a Notice of Proposed Rule Making is issued until the matter is no longer subject to Commission consideration or court review, all ex parte contacts are prohibited in Commission proceedings, such as this one, which involve channel allotments. See 47 CFR 1.1204(b) for rules governing permissible ex parte contacts.

For information regarding proper filing procedures for comments, see 47 CFR 1.415 and 1.420.

List of Subjects in 47 CFR Part 73

Radio broadcasting.

49 CFR Chapter X

Service Obligations Over Excepted Track

AGENCY: Surface Transportation Board, DOT.

ACTION: Notice of proposed rulemaking.

SUMMARY: The Board seeks comments from all interested persons on the circumstances under which it should require a railroad to operate over excepted track that does not meet Federal Railroad Administration (FRA)