levels of expression are achieved through use of a specific promoter, known as CMV/R, in which the Human T-Lymphotropic Virus (HTLV–1) Long Terminal Repeat (LTR) R–U5 region is substituted for a portion of the intron downstream of the CMV immediate early region 1 enhancer (Barouch et al., 2005). Sequences of 95% or better homology to CMV/R can be used as well. CMV/R vectors are currently being used in number of clinical trials, including vaccines against West Nile Virus, Ebola virus, and HIV and achieving promising results. The related HIV vaccine technology is available for licensing, as is the Ebola DNA vaccine technology (non-exclusive licensing only). The CMV/R vector can be used for any DNA vaccine or for the production of recombinant proteins in high yields.

Applications: Vector for DNA vaccines; High yield expression of recombinant proteins.

Inventors: Gary Nabel and Zhi-yong Yang (NIH).

Licensing Status: Available for non-exclusive licensing.

Contact: Peter A. Soukas, J.D.; 301/435–4646; soukas@mail.nih.gov

Collaborative Research Opportunity: The NICHDIR/LDMI is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize Vibrio cholera O139 or O1 conjugate vaccines. Please contact John D. Hewes, Ph.D. at 301–435–3804 or hewes@mail.nih.gov for more information.

Chemokine Receptor 5 DNA, New Animal Models and Therapeutic Agents for HIV Infection

Description of Technology:

Chemokine receptors are expressed by many cells, including lymphoid cells, and function to mediate cell trafficking and localization. CC chemokine receptor 5 (CCR5) is a seven-transmembrane, G protein-coupled receptor (GPCR) which regulates trafficking and effector functions of memory/effector T lymphocytes, macrophages, and immature dendritic cells. Chemokine binding to CCR5 leads to cellular activation through pertussis toxin-sensitive heterotrimeric G proteins as well as G protein-independent signalling pathways. Like many other GPCRs, CCR5 is regulated by agonist-dependent processes which involve G protein coupled receptor kinase (GRK)-dependent phosphorylation, beta-arrestin-mediated desensitization and internalization.

Human CCR5 also functions as the main coreceptor for the fusion and entry of many strains of human immunodeficiency virus (HIV–1, HIV–2). HIV–1 transmission almost invariably involves such CCR5-specific variants (designated R5); individuals lacking functional CCR5 (by virtue of homozygosity for a defective CCR5 allele) are almost completely resistant to HIV–1 infection. Specific blocking of CCR5 (e.g. with chemokine ligands, anti-CCR5 antibodies, CCR5-blocking low MW inhibitors, etc.) inhibits entry/infection of target cells by R5 HIV strains. Cells expressing CCR5 and CD4 are useful for screening for agents that inhibit HIV by binding to CCR5. Such agents represent potential new
approaches to block HIV transmission and to treat infected people. A small animal expressing both human CCR5 along with human CD4 supports entry of HIV into target cells, a necessary hurdle that must be overcome for development of a small animal model (e.g. transgenic mouse, rat, rabbit, mink) to study HIV infection and its inhibition.

The invention embodies the CCR5 genetic sequence, cell lines and transgenic animals, the cells of which coexpress human CD4 and CCR5, and which may represent valuable tools for the study of HIV infection and for screening anti-HIV agents. The invention also embodies anti-CCR5 agents that block HIV env-mediated membrane fusion associated with HIV entry into human CD4-positive target cells or between HIV-infected cells and uninfected human CD4-positive target cells.

Inventors: Christophe Combadiere, Yu Feng, Ghaleb Alkahatib, Edward A. Berger, Philip M. Murphy, Christopher C. Broder, Paul E. Kennedy (NIAID).

Publication: This technology was reported in Alkahatib et al., “CC CR5: a RANTES, MIP–1alpha, MIP–1beta receptor as a fusin cofactor for macrophage-tropic HIV–1.” Science 1996 Jun 28;272(5270):1955–1958.

Patent Status:

License Status: The technology is available for exclusive or nonexclusive licensing.

License Contact: Peter Soukas; 301/435–4646; soukasp@mail.nih.gov.

Collaborative Research Opportunity: The NIAID Laboratory of Molecular Immunology and Laboratory of Viral Diseases are seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize CCR5-related products. Please contact Philip Murphy (301–496–8616, pmu@nih.gov) or Edward Berger (301–402–2481, edward.berger@nih.gov) for more information.

Steven M. Ferguson, Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health.

[FR Doc. E7–11854 Filed 6–19–07; 8:45 am]

BILLING CODE 4140–01–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes on Health

National Institute on Drug Abuse; Notice of Closed Meetings

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. Appendix 2), notice is hereby given of the following meetings.

The meetings will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: National Institute on Drug Abuse Special Emphasis Panel, NIDA–K Conflicts.

Date: July 17, 2007.

Time: 5 p.m. to 6 p.m.

Agenda: To review and evaluate grant applications.

Place: Doubletree Bethesda, 8120 Wisconsin Ave., Bethesda, MD 20814.

Contact Person: Mark Swietor, PhD, Chief, Training and Special Projects Review Branch, Office of Extramural Affairs, National Institute on Drug Abuse, NIH, DHHS, Suite 220, 6101 Executive Boulevard, Bethesda, MD 20892–8401, (301) 435–1389. ms80x@nih.gov.

(Catalogue of Federal Domestic Assistance Program Nos. 93.279, Drug Abuse and Addiction Research Programs, National Institutes of Health, NIH).

Jennifer Spaeth, Director, Office of Federal Advisory Committee Policy.

[FR Doc. 07–3012 Filed 6–19–07; 8:45 am]

BILLING CODE 4140–01–M

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Institute of Allergy and Infectious Diseases; Notice of Closed Meetings

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. Appendix 2), notice is hereby given of the following meetings.

The meetings will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: National Institute of Allergy and Infectious Diseases Special Emphasis Panel, T–Cell Immunology.

Date: July 10, 2007.

Time: 11 a.m. to 3 p.m.

Agenda: To review and evaluate grant applications.