adult loses thirty percent of his muscle mass between the ages of 20 and 70.

Development Status: Early stage.
Inventors: Jay H. Chung et al.
(NHLBI).
Publication: In preparation.
Licensing Status: This technology is available for exclusive, co-exclusive, or nonexclusive licensing.
Licensing Contact: Tara L. Kirby, Ph.D.; 301/435–4426; tarak@mail.nih.gov.
Collaborative Research Opportunity:
The National Heart Lung and Blood Institute, Laboratory of Biochemical Genetics, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize DNA-PKcs inhibitors for treatment or prevention of metabolic and degenerative diseases. Please contact Jay Chung (chung@nhlbi.nih.gov) for more information.

Predictive Diagnostic Test for Anti-Depressant Related Suicide Risk
Description of Technology: A number of studies have reported a potential link between antidepressant treatment and suicides. Although the scientific basis for this phenomenon is not known, the Food and Drug Administration (FDA) required a black box warning of worsening depression and/or emergence of suicidality (i.e., development of suicidal thoughts or behavior) in both adult and pediatric patients taking several antidepressants. While use of antidepressants fell subsequent to the black box warning, recent studies suggest that pediatric suicides may currently be rising. This has led to concerns that untreated depression due to the black box warning could potentially result in an overall increase in suicides.

To determine whether a genetic basis for suicidal risk exists for a sub-group of depressed patients, NIH researchers genetically screened patients with major depression treated with the serotonin selective reuptake inhibitor (SSRI) citalopram (Celexa) in the NIMH-funded Sequenced Treatment Alternatives for Depression (STAR*D) trial. Versions of two genes coding for components of the brain’s glutamate chemical messenger system were linked to suicidal thinking associated with antidepressant use. Having both implicated versions increased risk of such thoughts more than 14-fold. By identifying those patients who need close monitoring, alternative treatments and/or specialty care, these genetic tests should prevent the under prescribing of anti-depressant drugs and the resulting possibility of suicide due to sub-optimal treatment.
Applications: Diagnostic tests predicting the likelihood of suicide during anti-depressant treatment.
Market: Depression ranks among the ten leading causes of disability and will become the second-largest cause of the global health burden by 2020. An estimated 121 million people worldwide suffer from a depressive disorder for which they require treatment. It is estimated that 5.8% of all men and 9.5% of all women will suffer from a depressive disorder in any given year and that 17% of all men and women will suffer from a depressive disorder at some point in their lives.
Development Status: Clinical data.
Inventors: Francis J. McMahon et al. (NIMH).
Licensing Status: Available for licensing.
Licensing Contact: Norbert Pontzer, Ph.D., J.D.; 301/435–5502; pontzer@nih.gov.
Collaborative Research Opportunity:
The National Institute of Mental Health Mood and Anxiety Disorders Program Genetics Unit is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize the Predictive Diagnostic Test for Anti-Depressant Related Suicide. Please contact Dr. Francis McMahon at mcmanah@nih.mail.nih.gov for more information.
Steven M. Ferguson,
Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health.
[PR Doc. E7–20483 Filed 10–16–07; 8:45 am]
BILLING CODE 4140–01–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health
Government-Owned Inventions; Availability for Licensing
AGENCY: National Institutes of Health, Public Health Service, HHS.
ACTION: Notice.
SUMMARY: The inventions listed below are owned by an agency of the U.S. Government and are available for licensing in the U.S. in accordance with 35 U.S.C. 207 to achieve expeditious commercialization of results of federally-funded research and development. Foreign patent applications are filed on selected inventions to extend market coverage for companies and may also be available for licensing.
ADDRESSES: Licensing information and copies of the U.S. patent applications listed below may be obtained by writing to the indicated licensing contact at the Office of Technology Transfer, National Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, Maryland 20852–3804; telephone: 301/496–7057; fax: 301/402–0220. A signed Confidential Disclosure Agreement will be required to receive copies of the patent applications.

HIV–1 Integrase Inhibitors for the Treatment of Retroviral Infections
Description of Technology: This technology describes the structure and activity of N-benzyl derivatives of 2,3-dihydro-6,7-dihydroxy-1H-isooindol-1-ones and 2,3-dihydro-6,7-dihydroxy-1H-isooindole-1,3(2H)-diones as new HIV–1 integrase inhibitors. HIV, as well as other retroviruses, requires three key viral enzymes for replication: Reverse transcriptase, protease and integrase (IN). A significant number of patients fail to respond to combination therapies consisting of reverse transcriptase and protease inhibitors, due to the development of viral resistance. IN functions by initial processing of viral cDNA in a cleavage step termed 3’-processing (3’-P). This is followed by insertion of the cleaved cDNA into the host genome in a reaction known as “strand transfer” (ST). Certain agents covered under the subject technology have been shown to exhibit selective inhibition of ST reactions relative to 3’-P reactions. These compounds inhibit purified IN vitro and are also active against HIV–1 derived vectors in cell-based assay. These inhibitors may have a potential therapeutic value for retroviral infections, including AIDS, especially for patients exhibiting drug resistance to current therapy regimes.
Applications: The treatment and prevention of HIV infections.
Development Status: In vitro data available.
Inventors: Terrence R. Burke Jr., Xue Zhi Zhao, Yves Pommier, and Elena Semenova (NCI).
Quinoline Inhibitors of Retroviral Integrase

Description of Technology: The subject invention describes certain diketo quinolin-4-1 derivatives and their use as integrase inhibitors in the treatment of HIV infection. The results of in vitro integrase inhibition studies show that these derivatives have significant anti-integrase activity (e.g., an IC50 for strand transfer inhibition of not greater than 2 μM). Thus, these derivatives might be potentially important lead compounds for the development of integrase inhibitors. Since HIV integrase is an essential enzyme for effective viral replication, the development of such inhibitors of HIV integrase would thus potentially be useful and effective in the treatment of HIV infection.

Inventors: Yves Pommier et al. (NCI).

Licensing Contact: Sally Hu, Ph.D., M.B.A.; 301/435–5606; HuS@mail.nih.gov.

**Discovery of Tropolone Inhibitors of HIV–1 Integrase that can be Used for the Treatment of Retroviral Infection, Including AIDS

Description of Technology: This invention provides pharmaceutical compositions comprising one or more HIV–1 integrase inhibitor compounds, as well as methods for treatment or prevention of HIV infection. These compounds are alpha-hydroxypolopone or its salt, solvate or hydrate, and have been shown to inhibit the integrase by interfering with the enzyme catalytic site by chelating magnesium ions, and have been shown to inhibit the strand transfer reaction. Integrase is an important target for AIDS therapy since it is critical for viral replication, and does not have cellular counterparts, which can potentially reduce toxic side effects. Thus, the compounds of this invention can be developed as novel anti-viral agents that can be used in combinatorial therapy, especially since they might be less toxic than other anti-viral agents.

In addition to licensing, the technology is available for further development through collaborative research opportunities with the inventors.

Inventors: Yves Pommier et al. (NCI).

Licensing Contact: Sally Hu, Ph.D., M.B.A.; 301/435–5606; HuS@mail.nih.gov.
DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Government-Owned Inventions; Availability for Licensing

AGENCY: National Institutes of Health, Public Health Service, HHS.

ACTION: Notice.

SUMMARY: The inventions listed below are owned by an agency of the U.S. Government and are available for licensing in the U.S. in accordance with 35 U.S.C. 207 to achieve expeditious commercialization of results of federally-funded research and development. Foreign patent applications are filed on selected inventions to extend market coverage for companies and may also be available for licensing.

ADDRESSES: Licensing information and copies of the U.S. patent applications listed below may be obtained by writing to the indicated licensing contact at the Office of Technology Transfer, National Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, Maryland 20852–3804; telephone: 301/496–7057; fax: 301/402–0220. A signed Confidential Disclosure Agreement will be required to receive copies of the patent applications.

Alpha 1-3 N-Acetylgalactosaminyltransferases With Altered Donor and Acceptor Specificities, Compositions, and Methods of Use

Description of Invention: The present invention relates to the field of glycobiology, specifically to glycosyltransferases. The present invention provides structure-based design of novel glycosyltransferases and their biological applications.

The structural information of glycosyltransferases has revealed that the specificity of the sugar donor in these enzymes is determined by a few residues in the sugar-nucleotide binding pocket of the enzyme, which is conserved among the family members from different species. This conservation has made it possible to reengineer the existing glycosyltransferases with broader sugar donor specificities. Mutation of these residues generates novel glycosyltransferases that can transfer a sugar residue with a chemically reactive functional group to N-acetylglucosamine (GlcNAc), galactose (Gal) and xylose residues of glycoproteins, glycolipids and proteoglycans (glycoconjugates). Thus, there is potential to develop mutant glycosyltransferases to produce glycoconjugates carrying sugar moieties with reactive groups that can be used in the assembly of bio-nanoparticles to develop targeted-drug delivery systems or contrast agents for medical uses.

Accordingly, methods to synthesize N-acetylgalactosamine linkages have many applications in research and medicine, including in the development of pharmaceutical agents and improved vaccines that can be used to treat disease.

This application claims compositions and methods based on the structure-based design of alpha 1-3 N-Acetylgalactosaminyltransferase (alpha 3 GalNAc-T) mutants from alpha 1-3galactosyltransferase (a3Gal-T) that can transfer 2′-modified galactose from the corresponding UDP-derivatives due to mutations that broaden the alpha 3GalT donor specificity and make the enzyme alpha3 GalNAc-T.

Application: Development of pharmaceutical agents and improved vaccines.

Developmental Status: Enzymes have been synthesized and preclinical studies have been performed.

Inventors: Pradman Qasba, Boopathi Ramakrishnan, Elizabeth Boeggman, Marta Pasek (NCI).

Licensing Status: Available for exclusive or non-exclusive licensing.

Licensing Contact: Peter A. Soukas, J.D.; 301/435–4646; soukas@mail.nih.gov.

Collaborative Research Opportunity: The National Cancer Institute's Nanobiology Program is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize structure-based design of novel glycosyltransferases. Please contact John D. Hewes, Ph.D. at 301–435–3121 or hewes@mail.nih.gov for more information.

Beta 1,4-Galactosyltransferases With Altered Donor and Acceptor Specificities, Compositions and Methods of Use

Description of Invention: The present invention relates to the field of glycobiology, specifically to glycosyltransferases. The present invention provides structure-based design of novel glycosyltransferases and their biological applications.

The structural information of glycosyltransferases has revealed that the specificity of the sugar donor in these enzymes is determined by a few residues in the sugar-nucleotide binding pocket of the enzyme, which is conserved among the family members from different species. This conservation has made it possible to reengineer the existing glycosyltransferases with broader sugar donor specificities. Mutation of these residues generates novel glycosyltransferases that can transfer a sugar residue with a chemically reactive functional group to N-acetylglucosamine (GlcNAc), galactose (Gal) and xylose residues of glycoproteins, glycolipids and proteoglycans (glycoconjugates). Thus, there is potential to develop mutant glycosyltransferases to produce glycoconjugates carrying sugar moieties with reactive groups that can be used in the assembly of bio-nanoparticles to develop targeted-drug delivery systems or contrast agents for medical uses.

Accordingly, methods to synthesize N-acetylgalactosamine linkages have many applications in research and medicine, including in the development of pharmaceutical agents and improved vaccines that can be used to treat disease.

The invention claims beta (1,4)-galactosyltransferase I mutants having altered donor and acceptor and metal ion specificities, and methods of use thereof. In addition, the invention claims methods for synthesizing oligosaccharides using the beta (1,4)-galactosyltransferase I mutants and to using the beta (1,4)-galactosyltransferase I mutants to conjugate agents, such as therapeutic agents or diagnostic agents, to acceptor molecules. More specifically, the invention claims a double mutant beta 1,4 galactosyltransferase, human beta-1,4-Tyr289Leu-Met344His-Gal-T1, constructed from the individual mutants, Tyr289Leu-Gal-T1 and Met344His-Gal-T1, that transfers modified galactose in the presence of magnesium ion, in contrast to the wild-type enzyme which requires manganese ion.

Application: Development of pharmaceutical agents and improved vaccines.

Developmental Status: Enzymes have been synthesized and preclinical studies have been performed.