functions, such as signaling and cell-to-cell interactions. Glucosylceramide synthase—encoded by the Ugcg gene—controls the first committed step in the major pathway of glycosphingolipid synthesis. Global disruption of the Ugcg gene in mice is lethal during gastrulation. The inventors have established a Ugcg allele flanked byloxP sites (floxed). When cre recombinase was expressed in the nervous system under control of the nestin promoter, the floxed gene underwent recombination, resulting in a substantial reduction of Ugcg expression and of glycosphingolipid ganglio-series levels. The mice deficient in Ugcg expression in the nervous system show a striking loss of Purkinje cells and abnormal neurologic sphingolipid behavior.

The Research Tools available are mice with a floxed Ugcg allele that can be deleted in a conditional manner. These mice carrying floxed Ugcg alleles will be useful for delineating the functional roles of glycosphingolipid synthesis in the nervous system and in other physiologic systems.

Applications
- Study of the functional roles of glycosphingolipid synthesis in the nervous system and other physiologic systems.
- The floxed Ugcg allele will facilitate analysis of the function of glycosphingolipids in development, physiology, and in diseases such as diabetes and cancer.

Development Status: Ready to Use.
Inventors: Richard L. Proia (NIDDK).

Licensing Status: Available for licensing under a Biological Materials license agreement.
Licensing Contact: Suryanarayana (Sury) Vepa, PhD, J.D.; 301–435–5020; vepas@mail.nih.gov.

Collaborative Research Opportunity: The NIDDK Genetics of Development and Disease Branch is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize the sphingolipid metabolism in physiology and disease. Please contact Dr. Proia at proia@nih.gov for more information.

Mutant Nuclear Orphan Receptor for Drug Metabolism Assays

Description of Technology: The constitutively active nuclear orphan receptor (CAR) activates transcription of genes encoding various drug-metabolizing enzymes, such as cytochrome P450, in response to drug exposure. While the direct activation of CAR in response to various drugs has been observed in vivo, CAR is always active in cell-based transfection assays, even in the absence of activating drugs. This constitutive activity of CAR makes it difficult to perform accurate in vitro assays to measure drug metabolism.

The NIH has obtained patent protection for modified CAR proteins that can be directly activated by drugs in vitro. This technology may potentially be used in the development of more efficient and cost-effective cell-based drug metabolism assays.

Applications: Development of improved in vitro assays to measure drug metabolism.

Inventors: Masahiko Negishi et al. (NIEHS).

Publications

Licensing Status: Available for exclusive and non-exclusive licensing.
Licensing Contact: Tara L. Kirby, PhD; 301–435–4426; tarak@mail.nih.gov.

Dated: January 8, 2009.
Richard U. Rodriguez, Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health.

Available

DEPARTMENT OF HEALTH AND HUMAN SERVICES
National Institutes of Health
Government-Owned Inventions; Availability for Licensing
AGENCY: National Institutes of Health, Public Health Service, HHS.
some developed countries. HSV keratitis is the most frequent cause of corneal blindness in the United States, is a leading indication for corneal transplantation, and is the most common cause of infectious blindness in the Western world.

Applications:
- Prevention and treatment of recurrent Herpes simplex virus outbreaks.
- Prevention and treatment of recurrent Varicella zoster infection.
- Treatment of HSV encephalitis.
- Treatment of Herpes keratitis.

Development Status: The investigators intend to do a series of in vivo animal studies on the efficacy of MAOIs in preventing primary infection and/or reactivation of herpes simplex virus in a mouse model system.

Inventors: Thomas M. Kristie et al. (NIAD).

Patent Status:

Licensing Status: Available for non-exclusive or exclusive licensing.

Licensing Contact: Christina Thalhammer-Reyero, PhD; 301–435–4507; thalhamc@nih.gov

Collaborative Research Opportunity: The National Institute of Allergy and Infectious Diseases’ Laboratory of Viral Diseases is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize the use of MAOIs to further develop, evaluate, or commercialize methods of treating herpes simplex virus infections and reactivation from latency. Please contact Marguerite J. Miller at 301–435–8619 or millermay@niaid.nih.gov for more information.

Method of Treating Pneumoconiosis With Oligodeoxynucleotides

Description of Technology: The inhalation of dust containing crystalline silica particles causes silicosis, an incurable lung disease that progresses even after dust exposure ceases. The World Health Organization estimates that over a million U.S. workers are exposed to silica dust annually, and that thousands worldwide die each year from silicosis. The pulmonary inflammation caused by silica inhalation is characterized by a cellular infiltrate and the accumulation of chemokines, cytokines (including TNF-alpha, IL–1, and IL–6), and Reactive Oxygen Species (ROS) in bronchoalveolar lavage (BAL) fluid. Macrophages are the predominant immune cell type present in alveolar spaces where they play an important role in the lung pathology associated with silica inhalation. The uptake of silica particles by macrophages triggers the production of ROS (including hydrogen peroxide) via the oxidative stress pathway, which in turn contributes to pulmonary damage and macrophage death.

One potential strategy for limiting the production of proinflammatory cytokines and ROS after silica exposure involves treatment with “suppressive” oligonucleotides (ODN). Suppressive ODN express motifs based on the repetitive TTAGGG hexamers present at high frequency in the telomeric ends of self DNA. Previous studies showed that these motifs (released by injured host cells) block Th1 and proinflammatory cytokine production in vitro and down-modulate over-exuberant/pathologic immune responses in vivo (such as those found in septic shock and autoimmune diseases).

This application claims methods for treating, preventing or reducing the risk of developing occupational lung diseases using. Preclinical in vivo studies show that pretreatment with suppressive (but not control) ODN reduces silica-dependent pulmonary inflammation. Preclinical in vivo studies also showed that treatment with suppressive ODN also reduced disease severity and improved the survival of mice exposed to silica.

Application: Development of ODN-based therapeutics for the treatment of pneumoconiosis.

Development Status: ODNs have been synthesized and preclinical studies in the murine model of acute silicosis have been performed.

Inventors: Dennis M. Klinman (NCI), Takashi Sato (NCI), et al.

Patent Status:

Licensing Status: Available for exclusive or non-exclusive licensing.

Licensing Contact: Peter A. Soukas, J.D.; 301–435–4646; soukas@nih.gov

Collaborative Research Opportunity: The National Cancer Institute, Laboratory of Experimental Immunology, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize methods of treating pneumoconiosis. Please contact John D. Hewes, Ph.D. at 301–435–3121 or hewesj@mail.nih.gov for more information.

Attenuated Salmonella as a Delivery System for siRNA-Based Tumor Therapy

Description of Technology: The discovery that genes vectored by bacteria can be functionally transferred to mammalian cells has suggested the possible use of bacterial vectors as vehicles for gene therapy. Genetically modified, nonpathogenic bacteria have been used as potential anticancer agents, either to elicit direct tumoricidal effects or to deliver tumoricidal molecules. Bioengineered attenuated strains of *Salmonella enterica* serovar *typhimurium* (*S. typhimurium*) have been shown to accumulate preferentially greater than one-thousand fold in tumors than in normal tissues and to disperse homogeneously in tumor tissues. Preferential replication allows the bacteria to reproduce and deliver a variety of anticancer therapeutic agents at high concentrations directly within the tumor, while minimizing toxicity to normal tissues. These attenuated bacteria have been found to be safe in mice, pigs, and monkeys when administered intravenously, and certain live attenuated *Salmonella* strains have been shown to be well tolerated after oral administration in human clinical trials. The *S. typhimurium* phoP/phoQ operon is a typical bacterial two-component regulatory system composed of a membrane-associated sensor kinase (PhoQ) and a cytoplasmic transcriptional regulator. phoP/phoQ is required for virulence, and its deletion results in poor survival of this bacterium in macrophages and a marked attenuation in mice and humans. phoP/phoQ deletion strains have been used as potential antitumor agents, modified, nonpathogenic bacteria have possible use of bacterial vectors as delivery system for small interfering RNA (siRNA)-based tumor therapy. The inventors’ data provide the first convincing evidence that *Salmonella* can be used for delivering plasmid-based siRNAs into tumors growing in vivo. Claimed in the related patent application are methods of inhibiting the growth or reducing the volume of solid cancer tumors using the si-RNA constructs directed against genes that promote tumor survival and cancer cell growth. The Stat3-siRNAs carried by an attenuated *S. typhimurium*
described in the application exhibit tumor suppressive effects not only on the growth of the primary tumor but also on the development of metastases, suggesting that an appropriate attenuated *S. typhimurium* combined with the RNA interference (RNAi) approach may offer a clinically feasible method for cancer therapy.

Application: Development of live attenuated bacterial cancer vaccines, cancer therapeutics and diagnostics.

Development Status: Vaccines have been prepared and preclinical studies have been performed.

Inventors: Dennis Kopecko (FDA/CBER), DeQi Xu (FDA/CBER), et al.

Related Publications:

Patent Status:

Licensing Status: Available for exclusive or non-exclusive licensing.

Licensing Contact: Peter A. Soukas, J.D.; 301–435–4646; soukas@mail.nih.gov.

Collaborative Research Opportunity: FDA–CBER Division of Bacterial, Parasitic, and Allergenic Products is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize *Salmonella*-delivered anti-tumor therapies or *Salmonella*-vectored vaccines. Please contact Alice Welch at Alice.Welch@fda.hhs.gov for more information.

Dated: January 8, 2009.

Richard U. Rodriguez, Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health.

[FR Doc. E9–997 Filed 1–16–09; 8:45 am]

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Cancer Institute; Notice of Meeting

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. Appendix 2), notice is hereby given of the meeting of the National Cancer Advisory Board. The meeting will be open to the public as indicated below, with attendance limited to space available. Individuals who plan to attend and need special assistance, such as sign language interpretation or other reasonable accommodations, should notify the Contact Person listed below in advance of the meeting.

A portion of the meeting will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4), and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: National Cancer Advisory Board; Ad Hoc Subcommittee on Communications.

Open: February 2, 2009, 6:30 p.m. to 8 p.m.

Agenda: Discussion on cancer communications.

Place: Bethesda Marriott Suites, 6711 Democracy Boulevard, Bethesda, Maryland 20817.

Contact Person: Dr. Paulette S. Gray, Executive Secretary, National Cancer Institute, National Institutes of Health, 6116 Executive Boulevard, 6th Floor, Room 8001, Bethesda, MD 20892–8327, (301) 496–5147.

Name of Committee: National Cancer Advisory Board.

Open: February 3, 2009, 8 a.m. to 4 p.m.

Agenda: Program reports and presentations; business of the Board.

Place: National Institutes of Health, 9000 Rockville Pike, Building 31, C Wing, 6th Floor, Conference Room 6, Bethesda, MD 20892.

Contact Person: Dr. Paulette S. Gray, Executive Secretary, National Cancer Institute, National Institutes of Health, 6116 Executive Boulevard, 6th Floor, Room 8001, Bethesda, MD 20892–8327, (301) 496–5147.

Any interested person may file written comments with the committee by forwarding the statement to the Contact Person listed on this notice. The statement should include the name, address, telephone number and when applicable, the business or professional affiliation of the interested person.

In the interest of security, NIH has instituted stringent procedures for entrance onto the NIH campus. All visitor vehicles, including taxicabs, hotel, and airport shuttles will be inspected before being allowed on campus. Visitors will be asked to show one form of identification (for example, a government-issued photo ID, driver’s license, or passport) and to state the purpose of their visit.

Information is also available on the Institute’s/Center’s home page: deainfo.nci.nih.gov/advisory/ncab.htm, where an agenda and any additional information for the meeting will be posted when available.

(Catalogue of Federal Domestic Assistance Program Nos. 93.392, Cancer Construction; 93.393, Cancer Cause and Prevention Research; 93.394, Cancer Detection and Diagnosis Research; 93.395, Cancer Treatment Research; 93.396, Cancer Biology Research; 93.397, Cancer Centers Support; 93.398, Cancer Research Manpower; 93.399, Cancer Control, National Institutes of Health, HHS)

Dated: January 9, 2009.

Jennifer Spaeth,
Director, Office of Federal Advisory Committee Policy.

[FR Doc. E9–996 Filed 1–16–09; 8:45 am]

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Center for Research Resources; Notice of Closed Meetings

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. Appendix 2), notice is hereby given of the following meetings.