DEPARTMENT OF ENERGY

10 CFR Parts 429 and 430

[Docket No. EERE-2010-BT-CE-0014]
RIN 1904-AC23

Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment; Correction

AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy.
ACTION: Final rule; technical correction.
SUMMARY: This document contains technical corrections to the final rule regarding certification, compliance, and enforcement regulations that was published on March 7, 2011. In that final rule, the U.S. Department of Energy (DOE) adopted regulations that provided for sampling plans used in determining compliance with existing standards, manufacturer submission of compliance statements and certification reports to DOE, maintenance of compliance records by manufacturers, and the availability of enforcement actions for improper certification or noncompliance with an applicable standard. Due to drafting error, language was inadvertently deleted from the rule and certain provisions contained erroneous internal cross references. DATES: This correction is effective May 2, 2011. The technical corrections to $\S \S 429.12$ through 429.54 are effective July 5, 2011.
The corrections to $\S 429.70$, Appendix A to Subpart B of Part 429, Appendix C to Subpart C of Part 429, Appendix A1 to Subpart B of Part 430, and Appendix

B1 to Subpart B of Part 430 are effective as of May 2, 2011.

The corrections to Appendix A to Subpart B of Part 430 and Appendix B to Subpart B of Part 430 are effective November 28, 2011.
FOR FURTHER INFORMATION CONTACT: Ms. Ashley Armstrong, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000
Independence Avenue, SW.,
Washington, DC 20585-0121.
Telephone: 202-586-6590. E-mail: Ashley.Armstrong@ee.doe.gov; and Ms. Laura Barhydt, U.S. Department of Energy, Office of the General Counsel, Forrestal Building, GC-32, 1000 Independence Avenue, SW., Washington, DC 20585. Telephone: 202-287-6122. E-mail:
Laura.Barhydt@hq.doe.gov.

SUPPLEMENTARY INFORMATION:

I. Background

On March 7, 2011, the U.S.
Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) published a final rule titled " Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment." 76 FR 12421. Since the publication of that rule, it has come to DOE's attention that, due to a technical oversight, certain parts of the final regulation were inadvertently deleted by the rule. Additionally, several sections of the regulatory text have internal referencing errors.

II. Need for Correction

In FR Doc. 2011-3146, beginning on page 12421 in the Federal Register of

Monday, March 7, 2011, the following corrections are made:

PART 429-[CORRECTED]

§429.12 [Corrected]

■ 1. On page 12453 , in the second column, correct § 429.12, General requirements applicable to certification reports, paragraph (a), to read as follows:
(a) Certification. Each manufacturer, before distributing in commerce any basic model of a covered product or covered equipment subject to an applicable energy conservation standard set forth in parts 430 or 431, and annually thereafter on or before the dates provided in paragraph (d) of this section, shall submit a certification report to DOE certifying that each basic model meets the applicable energy conservation standard(s). The certification report(s) must be submitted to DOE in accordance with the submission procedures of paragraph (h) of this section.

§429.14 [Corrected]

- 2. On page 12455 , correct the references to "Appendix D" to "Appendix A" in paragraphs (a)(2)(i)(B) and (a)(2)(ii)(B) to read as follows:

§429.14 Residential refrigerators,

 refrigerator-freezers and freezers.(a) * * *
(2) * * *
(i) * * *
(B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.10, where:

$$
U C L=\bar{x}+t_{.95}\left(\frac{S}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of
samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n -

1 degrees of freedom (from Appendix A).

and
(ii) * * *
(B) The lower 95 percent confidence limit (LCL) of the true mean divided by 0.90, where:
$L C L=\bar{x}-t_{.95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).

§429.15 [Corrected]

■ 3. On page 12456, correct the references to "Appendix D" to
"Appendix A" in paragraphs (a)(2)(i)(B) and (a)(2)(ii)(B) to read as follows:
§429.15 Room air conditioners.
(a) * * *
(2) * * *
(i) * * *
(B) The upper $971 / 2$ percent
confidence limit (UCL) of the true mean divided by 1.05 , where:
$U C L=\bar{x}+t_{.975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower $971 / 2$ percent confidence limit (LCL) of the true mean divided by 0.95 , where:
$L C L=\bar{x}-t_{975}\left(\frac{S}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
§429.16 [Corrected]
■ 4. On page 12457, correct the reference to "Appendix D" to "Appendix A" in paragraph (a)(2)(i)(A)(2), and on page 12458, correct the reference to

§ 429.16 Central air conditioners and heat
pumps. pumps.
(a) * * *
$U C L=\bar{x}+t_{290}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.90}$ is the t statistic for a 90% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
and
(B) * * *
(2) The lower 90 percent confidence limit (LCL) of the true mean divided by 0.95 , where:

$$
L C L=\bar{x}-t_{.90}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.90}$ is the t statistic for a 90% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).

§429.17 [Corrected]

■ 5. On page 12459, correct the references to "Appendix D" to

$U C L=\bar{x}+t_{.95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower 95 percent confidence limit (LCL) of the true mean divided by 0.90 , where:

$$
L C L=\bar{x}-t_{.95}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n -

1 degrees of freedom (from Appendix A).

§429.18 [Corrected]

■ 6.a. On page 12460, correct the reference to "Appendix D" to "Appendix A" in paragraph (a)(2)(i)(B)(2); ■ b. On page 12461, correct the references to "Appendix D" to "Appendix A" in paragraphs (a)(2)(ii)(A)(2) and (a)(2)(ii)(B)(2);

■ c. On page 12462, correct the references to "Appendix D" to
"Appendix A" in paragraphs
(a)(2)(iii)(A)(2) and (a)(2)(iii)(B)(2); and

■ d. On page 12463, correct the references to "Appendix D" to
"Appendix A" in paragraphs
(a)(2)(iv)(B)(1)(ii) and (a)(2)(iv)(B)(2)(ii).

The corrections read as follows:

§429.18 Residential furnaces.

(a) * * *
(2)(i) * * *
(B) * * *
(2) The lower $971 / 2$ percent confidence limit (LCL) of the true mean divided by 0.95, where:
$L C L=\bar{x}-t_{975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
(ii) * * *
(A) * * *
(2) The upper $971 / 2$ percent confidence limit (UCL) of the true mean divided by 1.05, where:
$\boldsymbol{U C L}=\bar{x}+t_{.975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
and
(B) * * *
$L C L=\bar{x}-t_{.975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
(iii) * * *
(A) * * *
(2) The lower $97 \frac{1}{2}$ percent confidence limit (LCL) of the true mean divided by 0.95 , where:
$U C L=\bar{x}+t_{.975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
(2) The upper $971 / 2$ percent confidence limit (UCL) of the true mean divided by 1.05 , where:
(2) The lower $971 / 2$ percent confidence limit (LCL) of the true mean divided by 0.95 , where:
$L C L=\bar{x}-t_{.975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $t_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with n-1 degrees of freedom (from Appendix A).
(iv) * * *
(B) * * *
(1) * *
(ii) The upper $97^{11 / 2}$ percent confidence limit (UCL) of the true mean divided by 1.05, where:
$U C L=\bar{x}+t_{975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
and
(2) * * *
(ii) The lower $971 / 2$ percent
confidence limit (LCL) of the true mean divided by 0.95 , where:
$L C L=\bar{x}-t_{9975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
§429.19 [Corrected]
■ 7. On page 12464, correct the reference to "Appendix D" to "Appendix A " in paragraph (a)(2)(i)(B), and on page

12465, correct the reference to "Appendix D" to "Appendix A" in paragraph (a)(2)(ii)(B) to read as follows:
§429.19 Dishwashers.
(a) * * *
(2) * * *
(i) * * *
(B) The upper $971 / 2$ percent confidence limit (UCL) of the true mean divided by 1.05 , where:
$U C L=\bar{x}+t_{975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower $971 / 2$ percent confidence limit (LCL) of the true mean divided by 0.95 , where:
$L C L=\bar{x}-t_{.975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).

§429.20 [Corrected]

■ 8. On page 12465, correct the reference to "Appendix D" to "Appendix A " in paragraph (a)(2)(i)(B), and on page

12466, correct the reference to "Appendix D" to "Appendix A" in paragraph (a)(2)(ii)(B) to read as follows:
§429.20 Residential clothes washers.
(a) * * *
(2) * * *
(i) * * *
(B) The upper $971 / 2$ percent confidence limit (UCL) of the true mean divided by 1.05 , where:
$U C L=\bar{x}+t_{.975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower $971 / 2$ percent confidence limit (LCL) of the true mean divided by 0.95 , where:
$L C L=\bar{x}-t_{.975}\left(\frac{S}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).

§429.21 [Corrected]

■ 9. On page 12466, correct the reference to "Appendix D" to "Appendix A " in paragraph (a)(2)(i)(B), and on page

12467, correct the reference to "Appendix D" to "Appendix A" in paragraph (a)(2)(ii)(B) to read as follows:
§429.21 Residential clothes dryers.
(a) * * *
(2) * * *
(i) * * *
(B) The upper $97^{1 / 2}$ percent
confidence limit (UCL) of the true mean divided by 1.05 , where:
$\boldsymbol{U C L}=\overline{\boldsymbol{x}}+t_{975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower $971 / 2$ percent confidence limit (LCL) of the true mean divided by 0.95 , where:
$L C L=\bar{x}-t_{975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).

§429.22 [Corrected]

■ 10. On page 12467, correct the reference to "Appendix D" to "Appendix A " in paragraph $(a)(2)(i)(A)(2)$, and on
"age 12468, correct the reference to "Appendix D" to "Appendix A" in paragraph (a)(2)(i)(B)(2) to read as follows:
§429.22 Direct heating equipment. (a) * * *

(2) The upper $971 / 2$ percent confidence limit (UCL) of the true mean divided by 1.05 , where:
$U C L=\bar{x}+t_{.975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with n -1 degrees of freedom (from Appendix A).
and
(B) * * *
(2) The lower $971 / 2$ percent confidence
limit (LCL) of the true mean divided by 0.95 , where:
$L C L=\bar{x}-t_{.975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with n-1 degrees of freedom (from Appendix A).

§429.23 [Corrected]

■ 11. On page 12468, correct the reference to "Appendix D" to "Appendix A " in paragraph (a)(2)(i)(B), and on page

12469, correct the reference to
"Appendix D" to "Appendix A" in paragraph (a)(2)(ii)(B) to read as follows:
§429.23 Conventional cooking tops, conventional ovens, microwave ovens.
(a) * * *
(2) * * *
(i) * * *
(B) The upper $97^{11 / 2}$ percent confidence limit (UCL) of the true mean divided by 1.05, where:
$U C L=\bar{x}+t_{975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower $971 / 2$ percent confidence limit (LCL) of the true mean divided by 0.95 , where:

$$
L C L=\bar{x}-t_{.975}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
§429.24 [Corrected]
■ 12. On page 12469, correct the reference to "Appendix D" to "Appendix

A" in paragraph (a)(2)(ii) to read as follows:
§ 429.24 Pool heaters.
(a) * * *
(2) * * *
(ii) The lower $971 / 2$ percent confidence limit (LCL) of the true mean divided by 0.95 , where:

$$
L C L=\bar{x}-t_{.975}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).

§429.26 [Corrected]

■ 13. On page 12470, correct the references to "Appendix D" to
"Appendix A" in paragraphs (a)(2)(i)(B) and (a)(2)(ii)(B) to read as follows:
§429.26 Fluorescent lamp ballasts.
(a) * * *
(2) * * *
(i) * * *
(B) The upper 99 percent confidence limit (UCL) of the true mean divided by 1.01, where:
$U C L=\bar{x}+t_{.99}\left(\frac{S}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.99}$ is the t statistic for a 99% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower 99 percent confidence limit (LCL) of the true mean divided by 0.99 , where:
$L C L=\bar{x}-t_{.99}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.99}$ is the t statistic for a 99% one-tailed confidence interval with n -

1 degrees of freedom (from Appendix A).

§429.27 [Corrected]
■ 14. On page 12471, correct the references to "Appendix D" to

> "Appendix A" in paragraphs (a)(2)(i)(B) and (a)(2)(ii)(B) to read as follows:
§429.27 General service fluorescent lamps, general service incandescent lamps, and incandescent reflector lamps.
(a) * * *
$L C L=\bar{x}-t_{\star 95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
(ii) * * *
(B) The lower 95 percent confidence limit (LCL) of the true mean divided by .97, where:
$L C L=\bar{x}-t_{i 95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).

A" in paragraph (a)(2)(ii) to read as follows:
§429.28 Faucets.
(a) * * *
(2) * * *
(ii) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.05, where:

■ 15. On page 12472, correct the reference to "Appendix D" to "Appendix
$U C L=\bar{x}+t_{.95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).

§429.29 [Corrected]

■ 16. On page 12473, correct the reference to "Appendix D" to "Appendix A" in paragraph (a)(2)(ii), and add at the
end of the last sentence in paragraph
(b)(3) ", 7.4.4(a)".

The correction reads as follows:
§429.29 Showerheads.
(a) * * *
(2) * * *
(ii) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.05, where:

$$
U C L=\bar{x}+t_{95}\left(\frac{S}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).

ASME/ANSI A112.18.1M-1996,
7.4.4(a).

§429.30 [Corrected]

■ 17. On page 12473, correct the reference to "Appendix D" to "Appendix A" in paragraph (a)(2)(ii) to read as follows:

§429.30 Water closets.

(a) * * *
(2) * * *
(ii) The upper 90 percent confidence limit (UCL) of the true mean divided by 1.1, where:

$$
U C L=\bar{x}+t_{90}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.90}$ is the t statistic for a 90% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).

§429.31 [Corrected]

■ 18. On page 12474, correct the reference to "Appendix D" to "Appendix

A" in paragraph (a)(2)(ii) to read as follows:
§429.31 Urinals.
(a) * * *
(2) * * *
(ii) The upper 90 percent confidence limit (UCL) of the true mean divided by 1.1, where:
$U C L=\bar{x}+\mathrm{t}_{.90}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.90}$ is the t statistic for a 90% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).

§429.33 [Corrected]

■ 19. On page 12474, correct the reference to "Appendix D" to "Appendix A" in paragraph (a)(2)(i)(B), and on page

12475, correct the reference to
"Appendix D" to "Appendix A" in paragraph (a)(2)(ii)(B) to read as follows:
§429.33 Ceiling fan light kits.
(a) * * *
(2) * * *
(i) * * *
(B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.1, where:

$$
U C L=\bar{x}+t_{.95}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower 95 percent confidence
limit (LCL) of the true mean divided by 0.9 , where:
$L C L=\bar{x}-t_{.95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
§429.35 [Corrected]
■ 20. On page 12476, correct the reference to "Appendix D" to "Appendix

A" in paragraph (a)(2)(i)(B) to read as follows:
§429.35 Bare or covered (no reflector) medium base compact fluorescent lamps.
(a) * * *
(2) * * *
(i) * * *
(B) The lower 97.5 percent confidence limit (LCL) of the true mean divided by 0.95 , where:

$$
L C L=\bar{x}-t_{.975}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).

§429.36 [Corrected]

- 21. On page 12476, correct the reference to "Appendix D" to "Appendix A" in paragraph (a)(2)(i)(B), and on page

12477, correct the reference to
"Appendix D" to "Appendix A" in paragraph (a)(2)(ii)(B) to read as follows:
§429.36 Dehumidifiers.
(a) * * *
(2) * * *
(i) * * *
(B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.10, where:
$U C L=\bar{x}+t_{.95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower 95 percent confidence limit (LCL) of the true mean divided by 0.90 , where:

$$
L C L=\bar{x}-t_{995}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).

§429.37 [Corrected]

■ 22. On page 12477, correct the reference to "Appendix D" to "Appendix A" in paragraph (a)(2)(i)(B), and on page

> 12478, correct the reference to
> "Appendix D" to "Appendix A" in
> paragraph (a)(2)(ii)(B) to read as follows:
§429.37 Class A external power supplies.
(a) * * *
(2) * * *
(i) * * *
(B) The upper 97.5 percent confidence limit (UCL) of the true mean divided by 1.05, where:

$$
U C L=\bar{x}+t_{.975}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower 97.5 percent confidence limit (LCL) of the true mean divided by 0.95 , where:
$L C L=\bar{x}-t_{975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with n-1 degrees of freedom (from Appendix A).

§429.39 [Corrected]

■ 23. On page 12479, correct the references to "Appendix D" to
"Appendix A" in paragraphs (a)(2)(i)(B) and (a)(2)(ii)(B) to read as follows:
§429.39 Battery chargers.
(a) * * *
(2) * * *
(i) * * *
(B) The upper 97.5 percent confidence limit (UCL) of the true mean divided by 1.05, where:

$$
U C L=\bar{x}+t_{, 975}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with n-1 degrees of freedom (from Appendix A).
and
(ii)
(B) The lower 97.5 percent confidence
limit (LCL) of the true mean divided by 0.95 , where:
$L C L=\bar{x}-t_{.975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $t_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A of this part).
§429.40 [Corrected]
■ 24. On page 12480, correct the reference to "Appendix D" to "Appendix

A" in paragraph (a)(2)(ii) to read as follows:
§429.40 Candelabra base incandescent lamps and intermediate base incandescent lamps.
(a) * * *

$$
L C L=\bar{x}-t_{975}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A of this part).

§429.42 [Corrected]

$■ 25$. On page 12480, correct the reference to "Appendix D" to "Appendix A" in paragraph (a)(2)(i)(B), and on page

12481, correct the reference to
"Appendix D" to "Appendix A" in paragraph (a)(2)(ii)(B) to read as follows:
§429.42 Commercial refrigerators, freezers, and refrigerator-freezers.
(a) * * *
(2) * * *
(i) * * *
(B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.10, where:
$U C L=\bar{x}+t_{.95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower 95 percent confidence limit (LCL) of the true mean divided by 0.90, where:
$L C L=\bar{x}-t_{95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).

§429.43 [Corrected]

■ 26. On page 12482, correct the references to "Appendix D" to
"Appendix A" in paragraphs (a)(2)(i)(B) and (a)(2)(ii)(B) to read as follows:
§429.43 Commercial heating, ventilating, air conditioning (HVAC) equipment.
(a) * * *
(2) * * *
(i) * * *
(B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.05, where:
$U C L=\bar{x}+t_{.95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n 1 degrees of freedom (from Appendix A).

and

(ii) * * *
(B) The lower 95 percent confidence
limit (LCL) of the true mean divided by 0.95 , where:
$L C L=\bar{x}-t_{.95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n -

1 degrees of freedom (from Appendix A).

§429.44 [Corrected]

■ 27. On page 12483, correct the reference to "Appendix D" to "Appendix A " in paragraph (a)(2)(i)(B), and on page

(2) * * *
(i) * * *
(B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.05, where:

$$
U C L=\bar{x}+t_{95}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n -

1 degrees of freedom (from Appendix A).

and
(ii) * * *
(B) The lower 95 percent confidence
limit (LCL) of the true mean divided by 0.95 , where:
$L C L=\bar{x}-t_{.95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{X} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% one-tailed confidence interval with n -

1 degrees of freedom (from Appendix A).

§429.45 [Corrected]

■ 28. On page 12484, correct the reference to "Appendix D" to "Appendix A " in paragraph (a)(2)(i)(B), and on page

(2) * * *
(i) * * *
(B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.10, where:
$U C L=\bar{x}+t_{95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower 95 percent confidence
limit (LCL) of the true mean divided by 0.90, where:
$L C L=\bar{x}-t_{.95}\left(\frac{5}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
§429.46 [Corrected]
■ 29. On page 12485, correct the reference to "Appendix D" to "Appendix A " in paragraph (a)(2)(i)(B), and on page

(2) * * *
(i) * * *
(B) The upper $97^{11 / 2}$ percent
confidence limit (UCL) of the true mean divided by 1.05, where:
$U C L=\bar{x}+t_{.975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with $\mathrm{n}-1$ degrees of freedom (from Appendix A$)$.
and
(ii) * * *
(B) The lower $971 / 2$ percent confidence limit (LCL) of the true mean divided by 0.95 , where:
$L C L=\bar{x}-t_{975}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with n -1 degrees of freedom (from Appendix A).

§ 429.48 [Corrected]

■ 30. On page 12487, correct the references to "Appendix D" to
"Appendix A" in paragraphs (a)(2)(i)(B) and (a)(2)(ii)(B) to read as follows:
§429.48 Illuminated exit signs.
(a) * * *
(2) * * *
(i) * * *
(B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.10, where

$$
U C L=\bar{x}+t_{.95}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower 95 percent confidence
limit (LCL) of the true mean divided by 0.90 , where
$L C L=\bar{x}-t_{.95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n -

1 degrees of freedom (from Appendix A).

§429.49 [Corrected]

■ 31. On page 12488, correct the references to "Appendix D" to
"Appendix A" in paragraphs (a)(2)(i)(B)
and (a)(2)(ii)(B) to read as follows:
§429.49 Traffic signal modules and pedestrian modules.
(a) * * *
(2) * * *
(i) * * *
(B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.10, where:

$$
U C L=\bar{x}+t_{, 95}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower 95 percent confidence
limit (LCL) of the true mean divided by 0.90 , where:
$L C L=\bar{x}-t_{95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
§429.51 [Corrected]
■ 32. On page 12489, correct the references to "Appendix D" to
"Appendix A" in paragraphs (a)(2)(i)(B) and (a)(2)(ii)(B) to read as follows:
§429.51 Commercial pre-rinse spray valves.
(a) * * *
(2) * * *
(i) * * *
(B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.10, where:
$U C L=\bar{x}+t_{95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower 95 percent confidence
limit (LCL) of the true mean divided by 0.90 , where:
$L C L=\bar{x}-t_{95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
§429.52 [Corrected]
■ 33. On page 12490, correct the references to "Appendix D" to
"Appendix A" in paragraphs (a)(2)(i)(B) and (a)(2)(ii)(B) to read as follows:
§429.52 Refrigerated bottled or canned beverage vending machines.
(a) * * *
(2) * * *
(i) * * *
(B) The upper 95 percent confidence limit (UCL) of the true mean divided by 1.10, where:

$$
U C L=\bar{x}+t_{.95}\left(\frac{s}{\sqrt{n}}\right)
$$

And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n 1 degrees of freedom (from Appendix A).
and
(ii) * * *
(B) The lower 95 percent confidence
limit (LCL) of the true mean divided by 0.90, where:
$L C L=\bar{x}-t .95\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n -

1 degrees of freedom (from Appendix A).

§429.54 [Corrected]

■ 34. On page 12491, correct the reference to "Appendix D" to "Appendix

A" in paragraph (a)(2)(i)(B) to read as follows:
§ 429.54 Metal halide lamp ballasts and fixtures.
(a) * * *
(2) * * *
(i) * * *
(B) The lower 99-percent confidence limit (LCL) of the true mean divided by 0.99 .
$L C L=\bar{x}-t_{.95}\left(\frac{s}{\sqrt{n}}\right)$
And \bar{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $\mathrm{t}_{0.95}$ is the t statistic for a 95% two-tailed confidence interval with n -

1 degrees of freedom (from Appendix A).

	35. On page 12494, cor reference to "Appendix A" in Figure 1 to read as Figure 1-T-Distribution Values [One-sided	he "Append ws: Certific	PART 429 DISTRIBUT CERTIFICA on Testing	UDENT'S t N VALUES ON TESTIN	
	Degrees of freedom		Confidenc	erval	
	(from Appendix A)	90\%	95\%	97.5\%	99\%
1	$\ldots . . .$.	3.078	6.314	12.71	31.82
2		1.886	2.920	4.303	6.965
3	1.638	2.353	3.182	4.541
4	1.533	2.132	2.776	3.747
5	1.476	2.015	2.571	3.365
6	1.440	1.943	2.447	3.143
7	1.415	1.895	2.365	2.998
8		1.397	1.860	2.306	2.896
9	1.383	1.833	2.262	2.821
10	1.372	1.812	2.228	2.764
11	1.363	1.796	2.201	2.718
12		1.356	1.782	2.179	2.681
13		1.350	1.771	2.160	2.650
14		1.345	1.761	2.145	2.624
15		1.341	1.753	2.131	2.602
16	1.337	1.746	2.120	2.583
17		1.333	1.740	2.110	2.567
18	1.330	1.734	2.101	2.552
19		1.328	1.729	2.093	2.539
20	1.325	1.725	2.086	2.528

APPENDIX C-[Corrected]

$■$ 36. On page 12501, in the first column, correct the reference to "Appendix D" to "Appendix A" in paragraph (b)(5) to read as follows:

APPENDIX C TO SUBPART C OF PART 429-SAMPLING PLAN FOR ENFORCEMENT TESTING OF DISTRIBUTION TRANSFORMERS

(b) * * *
(5) Compute the lower control limit $\left(\mathrm{LCL}_{1}\right)$ for the mean of the first sample as follows:

$$
L C L_{1}=\operatorname{SSD}\left(m_{1}\right)-t S E\left(\bar{X}_{1}\right)
$$

Where t is statistic based on a 97.5 percent one-tailed t test with degrees of freedom

$$
\left(\text { from Appendix A) } \mathrm{n}_{1}-1 .\right.
$$

* * * * *

■ 37. On page 12502, second column, correct amendatory instruction 6 to read as follows:
6. "In Appendix A to subpart B of part 430, revise paragraph 5.1, introductory text, to read as follows:".
■ 38. On page 12502, third column, correct amendatory instruction 8 to read as follows:
8. "In Appendix B to subpart B of part 430, revise paragraph 5.1, introductory text, to read as follows:".

List of Subjects

10 CFR Part 429

Confidential business information, Energy conservation, Household appliances, Imports, Reporting and recordkeeping requirements.

10 CFR Part 430

Administrative practice and procedure, Confidential business information, Energy conservation, Household appliances, Imports, Intergovernmental relations, Small businesses.

Accordingly, 10 CFR parts 429 and 430, are corrected by making the following correcting amendments:

PART 429-CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT

■ 1. The authority citation for Part 429 continues to read as follows:

Authority: 42 U.S.C. 6291-6317.

§ 429.70 [Corrected]

- 2. Section 429.70 is amended:
a. In paragraph (d)(2)(ii) by correcting the reference to "§ 429.42 " to read "§ 429.47"; and
- b. In paragraphs (d)(2)(iii) and
(d)(2)(iv) by correcting the references to "(c)(2)(i)" to read "(d)(2)(i)", and by correcting the references to "(c)(2)(ii)" to read "(d)(2)(ii)".

PART 430-ENERGY CONSERVATION
PROGRAM FOR CONSUMER PRODUCTS

■ 3. The authority citation for Part 430 continues to read as follows:

Authority: 42 U.S.C. 6291-6309; 28 U.S.C. 2461 note.
Appendix A1 [Corrected]

- 4. In Appendix A1 to subpart B of part 430, revise introductory paragraph 5.1 to read as follows:
Appendix A1 to Subpart B of Part 430Uniform Test Method for Measuring the Energy Consumption of Electric
Refrigerators and Electric RegrigeratorFreezers

5. Test Measurements

5.1 Temperature Measurements. Temperature measurements shall be made at the locations prescribed in Figures 7.1 and 7.2 of HRF-1-1979 (incorporated by reference; see § 430.3) and shall be accurate to within $\pm 0.5^{\circ} \mathrm{F}\left(0.3^{\circ} \mathrm{C}\right)$. No freezer temperature measurements need be taken in an all-refrigerator model. If the interior arrangements of the cabinet do not conform with those shown in Figure 7.1 and 7.2 of HRF-1-1979, the product may be tested by relocating the temperature sensors from the locations specified in the figures to avoid interference with hardware or components within the cabinet, in which case the specific locations used for the temperature sensors shall be noted in the test data records maintained by the manufacturer in
accordance with 10 CFR 429.14, and the certification report shall indicate that nonstandard sensor locations were used.
5.1.1 Measured Temperature. The measured temperature of a compartment is to be the average of all sensor temperature readings taken in that compartment at a particular time. Measurements shall be taken at regular intervals not to exceed four minutes.
5.1.2 Compartment Temperature. The compartment temperature for each test period shall be an average of the measured temperatures taken in a compartment during one or more complete compressor cycles. One compressor cycle is one complete motor "on" and one complete motor "off" period. For long-time automatic defrost models, compartment temperatures shall be those measured in the first part of the test period specified in section 4.2.1. For models with variable defrost controls, compartment temperatures shall be those measured in the first part of the test period specified in section 4.2.2.
5.1.2.1 The number of complete compressor cycles over which the measured temperatures in a compartment are to be averaged to determine compartment temperature shall be equal to the number of minutes between measured temperature readings, rounded up to the next whole minute or a number of complete compressor cycles over a time period exceeding 1 hour, whichever is greater. One of the compressor cycles shall be the last complete compressor cycle during the test period.
5.1.2.2 If no compressor cycling occurs, the compartment temperature shall be the average of the measured temperatures taken during the last 32 minutes of the test period.
5.1.2.3 If incomplete compressor cycling occurs, the compartment temperatures shall be the average of the measured temperatures taken during the last three hours of the last complete compressor "on" period.
5.1.3 Fresh Food Compartment Temperature. The fresh food compartment temperature shall be calculated as:

$$
T R=\frac{\sum_{i=1}^{R}\left(T R_{i}\right) \times\left(V R_{i}\right)}{\sum_{i=1}^{R}\left(V R_{i}\right)}
$$

Where:
R is the total number of applicable fresh food compartments, which include the first fresh food compartment and any number of separate auxiliary fresh food compartments (including separate
auxiliary convertible compartments tested as fresh food compartments in accordance with section 2.7);
TR_{i} is the compartment temperature of fresh food compartment " i " determined in accordance with section 5.1.2; and
VR_{i} is the volume of fresh food compartment "i".
5.1.4 Freezer Compartment Temperature. The freezer compartment temperature shall be calculated as:

$$
T F=\frac{\sum_{i=1}^{F}\left(T F_{i}\right) \times\left(V F_{i}\right)}{\sum_{i=1}^{F}\left(V F_{i}\right)}
$$

Where:
F is the total number of applicable freezer compartments, which include the first freezer compartment and any number of separate auxiliary freezer compartments (including separate auxiliary convertible compartments tested as freezer compartments in accordance with section 2.7);
TF_{i} is the compartment temperature of freezer compartment "i" determined in accordance with section 5.1.2; and
VF_{i} is the volume of freezer compartment "i".

Appendix B1 [Corrected]

- 5. In Appendix B1 to subpart B of part 430, revise introductory paragraph 5.1 to read as follows:

5.1 Temperature Measurements.

Temperature measurements shall be made at the locations prescribed in Figure 7.2 of HRF-1-1979 (incorporated by reference; see $\S 430.3$) and shall be accurate to within ± 0.5 ${ }^{\circ} \mathrm{F}\left(0.3^{\circ} \mathrm{C}\right)$. If the interior arrangements of the cabinet do not conform with those shown in Figure 7.2 of HRF-1-1979, the product may be tested by relocating the temperature sensors from the locations specified in the figures to avoid interference with hardware or components within the cabinet, in which case the specific locations used for the temperature sensors shall be noted in the test data records maintained by the manufacturer in accordance with 10 CFR 429.14, and the certification report shall indicate that nonstandard sensor locations were used.
5.1.1 Measured Temperature. The measured temperature is to be the average of all sensor temperature readings taken at a particular time. Measurements shall be taken at regular intervals not to exceed four minutes.
5.1.2 Compartment Temperature. The compartment temperature for each test period shall be an average of the measured temperatures taken during one or more complete compressor cycles. One compressor cycle is one complete motor "on" and one complete motor "off" period. For long-time automatic defrost models, compartment
temperature shall be that measured in the first part of the test period specified in 4.2.1. For models equipped with variable defrost controls, compartment temperatures shall be those measured in the first part of the test period specified in 4.2.2.
5.1.2.1 The number of complete compressor motor cycles over which the measured temperatures in a compartment are to be averaged to determine compartment temperature shall be equal to the number of minutes between measured temperature readings rounded up to the next whole minute or a number of complete cycles over a time period exceeding one hour. One of the compressor cycles shall be the last complete compressor cycle during the test period before start of the defrost control sequence for products with automatic defrost.
5.1.2.2 If no compressor motor cycling occurs, the compartment temperature shall be the average of the measured temperatures taken during the last thirty-two minutes of the test period.
5.1.2.3 If incomplete cycling occurs (less than one compressor cycle), the compartment temperature shall be the average of all readings taken during the last 3 hours of the last complete compressor "on" period.
5.1.3 Freezer Compartment Temperature. The freezer compartment temperature shall be calculated as:

$$
T F=\frac{\sum_{i=1}^{F}\left(T F_{i}\right) \times\left(V F_{i}\right)}{\sum_{i=1}^{F}\left(V F_{i}\right)}
$$

Where:
F is the total number of applicable freezer compartments, which include the first freezer compartment and any number of separate auxiliary freezer compartments;
TF_{i} is the compartment temperature of freezer compartment "i" determined in accordance with section 5.1.2; and VF_{i} is the volume of freezer compartment " i ".

Issued in Washington, DC, on April 22, 2011.

Kathleen Hogan,

Deputy Assistant Secretary for Energy
Efficiency, Office of Technology
Development, Energy Efficiency and Renewable Energy.
[FR Doc. 2011-10401 Filed 4-29-11; 8:45 am]
BILLING CODE 6450-01-P

