personal information you provide. Using the search function of our docket web site, anyone can find and read the comments received into any of our dockets, including the name of the individual sending the comment (or signing the comment for an association, business, labor union, etc.). You may review DOT’s complete Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477–78).

Docket: To read background documents or comments received, go to http://www.regulations.gov at any time or to the Docket Management Facility in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.


Issued in Washington, DC, on April 20, 2102.

Brenda D. Courtney,
Acting Deputy Director, Office of Rulemaking.

PETITION FOR EXEMPTION
Docket No.: FAA–2012–0137
Petitioner: Landmark Aviation
Section of 14 CFR Affected: 14 CFR §§ 135.293(a)(2) and (3), 135.293(b), 135.297, 135.329(b), 135.345(b) and 135.347

Description of Relief Sought: The relief sought would allow Landmark’s wholly-owned subsidiary, Piedmont Aviation, to receive credit for aircraft specific training, testing, and checking by pilots while employed by Landmark Waukegan, another operating unit of Landmark Aviation. In addition the requested relief includes aircraft specific initial new hire ground and flight training written, and oral tests, competency checks, and pilot in command instrument proficiency checks.

[FR Doc. 2012–8983 Filed 4–12–12; 8:45 am]
warning agent in such use or further processing.” Essentially, this exception applies to LPG being transported to industrial end-users.

The Occupational Safety and Health Administration’s requirements regarding the storage and handling of LPG found at 29 CFR 1910.110(b)(1) essentially mirror DOT’s odorization requirements at 49 CFR 173.315(b)(1). In addition to these Federal regulations, the National Fire Protection Association (NFPA) has also established odorization standards that largely mirror the Federal requirements. See NFPA Standard 58, paragraph 1-4.1. In addition, most States have adopted laws, regulations, or codes that incorporate this NFPA standard. Further, it is standard industry practice to exceed the established regulatory minimums and add 1.5 pounds of ethyl mercaptan per 10,000 gallons of LPG in order to combat the effects of odorant fade should a release of material occur.

Odorant Fade

Under-odorization of railroad tank cars containing LPG is sometimes caused by the phenomenon commonly known as odorant fade. While LPG may be satisfactorily odorized in accordance with the above requirements at the source, there are circumstances that may cause the odorant added to the LPG to “fade” and render it virtually undetectable by a person’s sense of smell. Typically, there are three different potential causes of odorant fade: oxidation, container condition, and gas quality.

This safety advisory focuses on recommendations to prevent odorant fade caused by oxidation and/or the condition of the LPG container. First, oxidation can cause odorant fade when the presence of rust in a tank car, or the subsequent formation of rust over time, as a result of the presence of oxygen and moisture, decreases the amount of odorant that is in the LPG in the tank due to a chemical reaction between the odorant and the oxidized (rusted) surface. The presence of rust causes mercaptans to oxidize into other compounds that have a different odor and lower intensity. Residual oxygen from air and moisture that may be in the container can increase the oxidation rate of rust or even cause new rust to form where previously none existed, exasperating the rate at which the odorant fades.

Next, the condition of the LPG container itself can also potentially cause odorant fade. An odorant can adsorb to a metal surface of the container or even potentially be absorbed into the metal surface itself. This process is most likely to occur when the container is new and has not previously contained odorized LPG. It can also occur when the inside of the container has been left open to the air while the container is out of service or after the container has been cleaned and purged (e.g., when a railroad tank car is cleaned and purged for repair or service at a tank car facility and then later placed back into LPG service).

There are existing industry procedures that can passivate (or treat) the interior surface of an LPG container in order to render the surface inactive so that the odorant will not be diminished through oxidation or adsorption/absorption. Also, there are several methods available to detect whether there are adequate amounts of odorant in LPG at any given point. The simplest, and most often used method, is a “sniff test” where a person uses their sense of smell to detect the presence of odorant. The person performing a sniff test should have a normal sense of smell, uncompromised by such factors as olfactory fatigue, sinus congestion, allergies, head colds, smoking, or the recent use of alcohol or drugs. Colorimetric tube testing and the gas chromatography test method provide more quantitative methods to measure the concentration of the odorant in LPG. The colorimetric tube, or stain tube, test method measures the concentration of odorant by pulling a measured amount of LPG through a hermetically sealed glass tube containing a detecting reagent. The odorant causes a chemical reaction resulting in a color change of the tube material. The quantity of odorant can be measured by reading the concentration of the odorant from the calibration scale that is marked on the tube. The gas chromatography test method is the most accurate method because it separates the various components of the LPG and odorant for identification. However, this method is costly and requires sending LPG samples to a location that has the proper equipment and trained personnel to perform these tests.

Railroad Tank Cars

At present, while DOT’s regulation discussed above contains an odorization requirement for LPG transported in cargo and portable tank containers, there is no comparable DOT regulation regarding the transportation of LPG transported in railroad tank cars. FRA is currently reviewing this situation to determine if further action is warranted. During routine inspections at facilities that receive railroad tank cars loaded with LPG, FRA is obtaining data on the LPG odorization testing procedures being used by industry. FRA is also collecting data on the number of LPG shipments that are received yearly, the number of these shipments that are shipped as odorized versus non-odorized, and the number of odorized shipments received that failed odorization testing or were identified as having insufficient odorant.

As noted above, there are currently Federal regulations, State laws, and accepted industry standards and testing methods in place to ensure proper LPG odorization. FRA encourages industry members to comply with all applicable requirements and standards. In order to help prevent odorant fade incidents involving LPG transported by railroad tank car, and to facilitate compliance with existing requirements and standards, this safety advisory makes several recommendations below.

Recommended Action: In an effort to encourage industry members to take actions to ensure that a sufficient level of odorant remains in odorized LPG shipped via railroad tank car throughout the entire transportation cycle, FRA recommends that:

1. Facilities that load, offer, receive, or offload railroad tank cars containing LPG review their procedures to ensure they are adequate to address the issue of “odorant fade” and its various potential causes, and that those procedures ensure that tank car shipments of odorized LPG are odorized to meet applicable regulatory and industry requirements and maintain sufficient levels of odorant throughout the entire transportation cycle. FRA recommends that:

2. Facilities that load odorized LPG into railroad tank cars have adequate procedures in place to identify if a tank car received for loading of odorized LPG has been out of LPG product service for any extended length of time, is coming from a tank car repair or cleaning facility, or has been subjected to any condition that could lead to corrosion of the tank.

3. Facilities that load odorized LPG into railroad tank cars inspect, to the degree possible, railcars they receive for signs of oxidation or corrosion, which can lead to the loss of odorant.

4. Facilities that load odorized LPG into tank cars take any other corrective actions needed to ensure sufficient levels of odorization remain in the shipment throughout the entire transportation cycle, such as increasing the amount of odorant injected into the LPG, if necessary. FRA encourages industry members to take actions consistent with the
DEPARTMENT OF TRANSPORTATION

National Highway Traffic Safety Administration

Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; TESLA

AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation (DOT).

ACTION: Grant of petition for exemption.

SUMMARY: This document grants in full the petition of Tesla Motors Inc.'s (Tesla) for an exemption of the Model S vehicle line beginning with MY 2012. Key components of the antitheft device include an engine immobilizer, security controller, gateway function, drive inverter and a passive entry transponder (PET). Tesla stated that its immobilizer device, which will be installed beginning with MY 2012 vehicle line, will be an upgraded version with a more robust design than the antitheft device already installed as standard equipment on its MYs 2008–2011 Tesla roadsters. Tesla stated that the new design of its immobilizer device will have enhanced communications between components, prevent tampering and also provide additional features to enhance its overall effectiveness.

In addition to Tesla's immobilizer device, an audible alarm (horn) will be incorporated as standard equipment, but no visual feature will be provided with the alarm system. Tesla stated that its alarm system will activate with any unauthorized attempt to break in the front and rear cargo areas. Tesla also stated that any unauthorized entry without the correct PET will trigger the audible alarm. Tesla stated that its antitheft device has a two-step activation process with a vehicle code query being conducted at each stage. The first stage allows access to the vehicle when an authorization cycle occurs between the PET and the Security Controller as long as the PET is in close proximity to the car and the driver either pushes the lock/unlock button on the key fob, pushes the exterior door handle to activate the handle sensors or inserts a hand into the handle to trigger the latch release. During the second stage, vehicle operation will be enabled when the driver has depressed the brake pedal and moves the gear selection stalk to drive or reverse. When one of these actions is performed, the security controller will poll to verify if the appropriate PET is inside the vehicle. Upon location of the PET, the security controller will run an authentication cycle with the key confirming the correct PET is being used inside the vehicle. Tesla stated that once authentication is successful, the security controller initiates an encrypted message through the gateway enabling the drive inverter to receive the encrypted message which then processes the message generating an encrypted response posting the message back to the security controller. If the encrypted exchange yields a result that meets the security code’s expectations of the security controller, the correct exchange will authorize the drive inverter to deactivate immobilization allowing the vehicle to be driven under its own power. Tesla stated that if the results are not correct and there is no response to the drive inverter from the security controller, the vehicle will remain immobilized and the drive inverter will retry the exchange until there is a proper response or it times out. Tesla's submission is considered a complete petition as required by 49 CFR 543.7 in that it meets the general requirements contained in 543.5 and the specific content requirements of 543.6. Tesla stated that the immobilizer functions will ensure maximum theft protection when the immobilizer is active, the vehicle is off and the doors are locked. Tesla stated that it will incorporate an additional security measure that performs when the car is unlocked and immobilization is deactivated. Specifically, immobilization will reactivate when there are no user inputs to the vehicle within a programmed period of time. Tesla stated that any attempt to operate the vehicle without performing and completing each task, will render the vehicle inoperable.

In addressing the specific content requirements of 543.6, Tesla provided information on the reliability and durability of its proposed device. To ensure reliability and durability of the device, Tesla conducted tests based on its own specified standards. Tesla provided a detailed list of the test conducted and stated that it believes that its device is reliable and durable because it complied with its own specific design standards. Additionally, Tesla stated that it has incorporated other measures of ensuring reliability and durability of the device. Those measures include the inaccessible location of all immobilizer device components within the passenger compartment of the vehicle or their containment in other vehicle...