their discretionary regulatory actions. In particular, the Act addresses actions that may result in the expenditure by a State, local, or tribal government, in the aggregate, or by the private sector of $100,000,000 (adjusted for inflation) or more in any one year. Though this rule will not result in such an expenditure, we do discuss the effects of this rule elsewhere in this preamble.

8. Taking of Private Property

This rule will not cause a taking of private property or otherwise have taking implications under Executive Order 12630, Governmental Actions and Interference with Constitutionally Protected Property Rights.

9. Civil Justice Reform

This rule meets applicable standards in sections 3(a) and 3(b)(2) of Executive Order 12988, Civil Justice Reform, to minimize litigation, eliminate ambiguity, and reduce burden.

10. Protection of Children

We have analyzed this rule under Executive Order 13045, Protection of Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may disproportionately affect children.

11. Indian Tribal Governments

This rule does not have tribal implications under Executive Order 13175, Consultation and Coordination with Indian Tribal Governments, because it does not have a substantial direct effect on one or more Indian tribes, on the relationship between the Federal Government and Indian tribes, or on the distribution of power and responsibilities between the Federal Government and Indian tribes.

12. Energy Effects

This action is not a “significant energy action” under Executive Order 13211, Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use.

13. Technical Standards

This rule does not use technical standards. Therefore, we did not consider the use of voluntary consensus standards.

14. Environment

We have analyzed this rule under Department of Homeland Security Management Directive 023–01 and Commandant Instruction M16475.1D, which guide the Coast Guard in complying with the National Environmental Policy Act of 1969 (NEPA)(42 U.S.C. 4321–4370f), and have determined that this action is one of a category of actions that do not individually or cumulatively have a significant effect on the human environment. This rule involves the establishment of a safety zone, and therefore, it is categorically excluded from further review under paragraph 34(g) of Figure 2–1 of the Commandant Instruction. A final environmental analysis checklist and a categorical exclusion determination are available in the docket where indicated under ADDRESSES. We seek any comments or information that may lead to the discovery of a significant environmental impact from this rule.

List of Subjects in 33 CFR Part 165

Harbors, Marine Safety, Navigation (water), Reporting and record keeping requirements, Security measures, Waterways.

For the reasons discussed in the preamble, the Coast Guard amends 33 CFR parts 165 as follows:

PART 165—REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS

§ 165.09–0814 Safety Zone; Cleveland National Air Show, Cleveland, OH.

(a) Location. The safety zone will encompass a portion of Lake Erie and Cleveland Harbor near Burke Lakefront Airport from position 41°30′20″ N and 81°42′20″ W to 41°30′50″ N and 81°42′49″ W, to 41°32′09″ N and 81°39′49″ W, to 41°31′53″ N and 81°39′24″ W, then return to the original position (NAD 83).

(b) Enforcement Period. This regulation will be enforced from 11:30 a.m. to 4:30 p.m. on August 30, 2012, 10:00 a.m. to 4:30 p.m. on August 31, 2012, and 8:00 a.m. to 6:00 p.m. on September 1 through 3, 2012.

(c) Regulations. (1) In accordance with the general regulations in section 165.23 of this part, entry into, transiting, or anchoring within this safety zone is prohibited unless authorized by the Captain of the Port Buffalo or his designated on-scene representative.

(2) This safety zone is closed to all vessel traffic, except as may be permitted by the Captain of the Port Buffalo or his designated on-scene representative.

(3) The “on-scene representative” of the Captain of the Port Buffalo is any Coast Guard commissioned, warrant or petty officer who has been designated by the Captain of the Port Buffalo to act on his behalf.

(4) Vessel operators desiring to enter or operate within the safety zone shall contact the Captain of the Port Buffalo or his on-scene representative to obtain permission to do so. The Captain of the Port Buffalo or his on-scene representative may be contacted via VHF Channel 16. Vessel operators given permission to enter or operate in the safety zone must comply with all directions given to them by the Captain of the Port Buffalo, or his on-scene representative.

S.M. Wischmann,
Captain, U.S. Coast Guard, Captain of the Port Buffalo.

[FR Doc. 2012–21532 Filed 8–30–12; 8:45 am]
BILLING CODE 9110–04–P

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 180

[EPAGHQ–OPP–2012–0116; FRL–9338–2]

Nitric Acid; Exemption From the Requirement of a Tolerance

AGENCY: Environmental Protection Agency (EPA).

ACTION: Final rule.

SUMMARY: This regulation establishes an exemption from the requirement of a tolerance for residues of nitric acid (CAS Reg. No. 7697–37–2) when used as an inert ingredient in antimicrobial pesticide formulations applied to food-contact surfaces in public eating places, dairy processing equipment, and food-processing equipment and utensils at a maximum level in the end-use concentration of 1,000 parts per million (ppm). Ecolab Inc. submitted a petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting establishment of an exemption from the requirement of a tolerance. This regulation eliminates the need to establish a maximum permissible level for residues of nitric acid.

DATES: This regulation is effective August 31, 2012. Objections and requests for hearings must be received on or before October 30, 2012, and must be filed in accordance with the instructions provided in 40 CFR part
III. Inert Ingredient Definition

Inert ingredients are all ingredients that are not active ingredients as defined in 40 CFR 153.125 and include, but are not limited to, the following types of ingredients (except when they have a pesticidal efficacy of their own):

- Solvents such as alcohols and hydrocarbons; surfactants such as polyoxyethylene polymers and fatty acids; carriers such as clay and diatomaceous earth; thickeners such as carrageenan and modified cellulose; wetting, spreading, and dispersing agents; propellants in aerosol dispensers; microencapsulating agents; and emulsifiers. The term “inert” is not intended to imply nontoxicity; the ingredient may or may not be chemically active. Generally, EPA has exempted inert ingredients from the requirement of a tolerance based on the low toxicity of the individual inert ingredients.

IV. Aggregate Risk Assessment and Determination of Safety

Section 408(c)(2)(A)(i) of FFDCA allows EPA to establish an exemption from the requirement for a tolerance (the legal limit for a pesticide chemical residue in or on a food) only if EPA determines that the tolerance is “safe.” Section 408(b)(2)(A)(ii) of FFDCA defines “safe” to mean that “there is a reasonable certainty that no harm will result from aggregate exposure to the pesticide chemical residue, including all anticipated dietary exposures and all other exposures for which there is reliable information.” This includes exposure through drinking water and in residential settings, but does not include occupational exposure. Section 408(b)(2)(C) of FFDCA requires EPA to give special consideration to exposure of infants and children to the pesticide chemical residue in establishing a tolerance and to “ensure that there is a reasonable certainty that no harm will result from aggregate exposure to the pesticide chemical residue * * *.”

EPA establishes exemptions from the requirement of a tolerance only in those cases where it can be clearly demonstrated that the risks from aggregate exposure to pesticide chemical residues under reasonably foreseeable circumstances will pose no appreciable risks to human health. In order to determine the risks from aggregate exposure to pesticide inert ingredients, the Agency considers the toxicity of the inert in conjunction with possible exposure to residues of the inert ingredient through food, drinking water, and through other exposures that...
occur as a result of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will result from aggregate exposure to the inert ingredient, an exemption from the requirement of a tolerance may be established.

Consistent with section 408(c)(2)(A) of FFDCA, and the factors specified in FFDCA section 408(c)(2)(B), EPA has reviewed the available scientific data and other relevant information in support of this action. EPA has sufficient data to assess the hazards of and to make a determination on aggregate exposure for nitric acid including exposure resulting from the exemption established by this action. EPA’s assessment of exposures and risks associated with nitric acid follows.

A. Toxicological Profile

EPA has evaluated the available toxicity data and considered their validity, completeness, and reliability as well as the relationship of the results of the studies to human risk. EPA has also considered available information concerning the variability of the sensitivities of major identifiable subgroups of consumers, including infants and children. Specific information on the studies received and the nature of the adverse effects caused by nitric acid as well as the no-observed-adverse-effect-level (NOAEL) and the lowest-observed-adverse-effect-level (LOAEL) from the toxicity studies are discussed in this unit.

Nitric acid is a highly corrosive inorganic acid. In a concentrated form, nitric acid is corrosive at the site of contact and does not elicit systemic toxicity. Acute dermal and eye exposures to concentrated forms of nitric acid can result in skin burns and irreversible eye corrosion. Acute inhalation exposure to nitric acid can result in severe respiratory irritation followed by pulmonary edema. Acute ingestion of nitric acid may result in ulceration, hemorrhage and perforation of the esophagus and stomach.

The U.S. Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) for nitric acid as well as the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) for nitric acid is 2 ppm (5 milligrams/meter (mg/m³)).

While there are no data on the toxicity of dilute forms of nitric acid following oral exposure, the toxicity of dilute nitric acid is expected to be comparable to the toxicity of the NO₃⁻ anion known as nitrate. Sodium nitrate. Several studies were available for sodium nitrate. These studies included a 6-week oral toxicity range-finding study, chronic/carcinogenicity studies in rodents and a 2-generation toxicity study in rabbits. In a 6-week oral toxicity study in F344 rats, sodium nitrate was administered in the diet. Signs of toxicity were manifested as decreased body weight gain at ≥5% (approximately 2,500 milligrams/kilograms/day (mg/kg/day)). In the International Agency for Research On Cancer (IARC) Monographs on the Evaluation of Carcinogenic Risks to Humans (Vol 94), the carcinogenic potential of sodium nitrate was evaluated in several studies in rodents. In two studies in mice, no evidence of carcinogenic activity of sodium nitrate alone was observed in the drinking water at concentrations up to approximately 5,000 mg/kg/day. In four studies in rats, no increased incidence of tumors was observed when sodium nitrate alone was administered in the drinking water or in the diet at concentrations up to approximately 2,500 mg/kg/day. Therefore, IARC concluded that there is inadequate evidence in humans for the carcinogenicity of nitrate in food or drinking water.

There were no treatment related effects observed in the 2-generation reproduction study in rabbits. In addition, the Food and Drug Administration (FDA) sponsored several reproductive and developmental studies in rodents, hamsters and rabbits treated with sodium nitrate. No adverse effects were observed in maternal reproductive parameters nor was there fetotoxicity or fetal malformations up to the maximum doses tested in each species (41 mg/kg/day in mice and hamsters and 66 mg/kg/day in rats and rabbits).

Immunotoxicity studies for nitric acid were not available for review. However, there was no evidence of potential immunity toxicity in any of the submitted studies. Therefore, nitric acid is not expected to be immunotoxic.

There were three human epidemiological studies available for review. These epidemiological studies reported that cases of infant methemoglobinemia are associated with exposure to nitrate in drinking water. The American Public Health Association (APHA) conducted a survey to identify clinical cases of infantile methemoglobinemia that were associated with ingestion of nitrate-contaminated water. They concluded that greater incidences of methemoglobinemia were observed in infants consuming >1.8 mg/kg/day of sodium nitrate. Methemoglobinemia was not observed in any of the studies where infants consumed water containing less than 1.6 mg/kg/day of sodium nitrate.

Specific information on the studies received and the nature of the adverse effects caused by nitric acid as well as the no-observed-adverse-effect-level (NOAEL) and the lowest-observed-adverse-effect-level (LOAEL) from the toxicity studies can be found at http://www.regulations.gov in document “Nitric Acid; Human Health Risk Assessment and Ecological Effects Assessment to Support Proposed Exemption from the Requirement of a Tolerance When Used as Inert Ingredients in Pesticide Formulations,” pp. 9–26 in docket ID number EPA–HQ–OPP–2012–0116.

B. Toxicological Points of Departure/Levels of Concern

Once a pesticide’s toxicological profile is determined, EPA identifies toxicological points of departure (POD) and levels of concern to use in evaluating the risk posed by human exposure to the pesticide. For hazards that have a threshold below which there is no appreciable risk, the toxicological POD is used as the basis for derivation of reference values for risk assessment. PODs are developed based on a careful analysis of the doses in each toxicological study to determine the dose at which no adverse effects are observed (the NOAEL) and the lowest dose at which adverse effects of concern are identified (the LOAEL). Uncertainty/safety factors are used in conjunction with the POD to calculate a safe exposure level—generally referred to as a population-adjusted dose (PAD) or a reference dose (RFD)—and a safe margin of exposure (MOE). For non-threshold risks, the Agency assumes that any amount of exposure will lead to some degree of risk. Thus, the Agency estimates risk in terms of the probability of an occurrence of the adverse effect expected in a lifetime. For more information on the general principles EPA uses in risk characterization and a complete description of the risk assessment process, see http://www.epa.gov/pesticides/factsheets/riskasses.htm.

The chronic reference dose (cRFD) of 1.6 mg/kg/day and an uncertainty factor of 1X were established based on the results of the American Public Health Association’s epidemiology study in infants. The endpoint was based on the concentration of sodium nitrate (1.6 mg/kg/day) in water at which methemoglobinemia was not observed in infants. Data from this study represented the most sensitive endpoint
in the most sensitive population; therefore, the standard uncertainty factors were reduced to 1X.

A summary of the toxicological endpoints for nitric acid used for human risk assessment is shown in the Table of this unit.

<table>
<thead>
<tr>
<th>Exposure/scenario</th>
<th>Point of departure and uncertainty/safety factors</th>
<th>RID, PAD, LOC for risk assessment</th>
<th>Study and toxicological effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute dietary (all populations).</td>
<td>There were no effects that could be attributed to a single dose in the database. Therefore, an acute dietary assessment was not necessary. NOAEL= 1.6 mg/kg/day</td>
<td>Chronic RID = 1.6 mg/kg/day (Dietary intake that is based upon conservative assumptions related to the amount of residues that can be transferred to foods as a result of the proposed use of nitric acid in non-food contact sanitizing pesticide products. This same methodology has been utilized by EPA in estimating dietary exposures to antimicrobial pesticides used in food-handling settings. A complete description of the approach used to assess dietary exposures resulting from food contact sanitizing solution uses of nitric acid can be found at http://www.regulations.gov in document “Nitric Acid; Human Health Risk Assessment and Ecological Effects Assessment to Support Proposed Exemption from the Requirement of a Tolerance When Used as Inert Ingredients in Pesticide Formulations,” pp. 9–26 in docket ID number EPA–HQ–OPP–2012–0116.</td>
<td>APHA Human Epidemiological Survey LOAEL = 1.8–3.2 mg/kg/day based on early clinical signs of methemoglobinemia in excess of 10% in 0–3 months old infants. APHA Human Epidemiological Survey LOAEL = 1.8–3.2 mg/kg/day based on early clinical signs of methemoglobinemia in excess of 10% in 0–3 months old infants. APHA Human Epidemiological Survey LOAEL = 1.8–3.2 mg/kg/day based on early clinical signs of methemoglobinemia in excess of 10% in 0–3 months old infants. APHA Human Epidemiological Survey LOAEL = 1.8–3.2 mg/kg/day based on early clinical signs of methemoglobinemia in excess of 10% in 0–3 months old infants.</td>
</tr>
<tr>
<td>Chronic dietary (All populations).</td>
<td>NOAEL= 1.6 mg/kg/day</td>
<td>Chronic RID = 1.6 mg/kg/day</td>
<td>APHA Human Epidemiological Survey LOAEL = 1.8–3.2 mg/kg/day based on early clinical signs of methemoglobinemia in excess of 10% in 0–3 months old infants.</td>
</tr>
<tr>
<td>Incidental oral short-term (1 to 30 days).</td>
<td>NOAEL= 1.6 mg/kg/day</td>
<td>LOC for MOE = 1</td>
<td>APHA Human Epidemiological Survey LOAEL = 1.8–3.2 mg/kg/day based on early clinical signs of methemoglobinemia in excess of 10% in 0–3 months old infants.</td>
</tr>
<tr>
<td>Incidental oral intermediate-term (1 to 6 months).</td>
<td>NOAEL= 1.6 mg/kg/day</td>
<td>LOC for MOE = 1</td>
<td>APHA Human Epidemiological Survey LOAEL = 1.8–3.2 mg/kg/day based on early clinical signs of methemoglobinemia in excess of 10% in 0–3 months old infants.</td>
</tr>
<tr>
<td>Dermal short-term (1 to 30 days).</td>
<td>NOAEL= 1.6 mg/kg/day</td>
<td>LOC for MOE = 1</td>
<td>APHA Human Epidemiological Survey LOAEL = 1.8–3.2 mg/kg/day based on early clinical signs of methemoglobinemia in excess of 10% in 0–3 months old infants.</td>
</tr>
<tr>
<td>Dermal intermediate-term (1 to 6 months).</td>
<td>NOAEL= 1.6 mg/kg/day (inhalation absorption rate = 100%)</td>
<td>LOC for MOE = 1</td>
<td>APHA Human Epidemiological Survey LOAEL = 1.8–3.2 mg/kg/day based on early clinical signs of methemoglobinemia in excess of 10% in 0–3 months old infants.</td>
</tr>
<tr>
<td>Inhalation short-term (1 to 30 days).</td>
<td>NOAEL= 1.6 mg/kg/day (inhalation absorption rate = 100%)</td>
<td>LOC for MOE = 1</td>
<td>APHA Human Epidemiological Survey LOAEL = 1.8–3.2 mg/kg/day based on early clinical signs of methemoglobinemia in excess of 10% in 0–3 months old infants.</td>
</tr>
<tr>
<td>Inhalation (1 to 6 months) ...</td>
<td>NOAEL= 1.6 mg/kg/day (inhalation absorption rate = 100%)</td>
<td>LOC for MOE = 1</td>
<td>APHA Human Epidemiological Survey LOAEL = 1.8–3.2 mg/kg/day based on early clinical signs of methemoglobinemia in excess of 10% in 0–3 months old infants.</td>
</tr>
<tr>
<td>Cancer (Oral, dermal, inhalation).</td>
<td>Not likely to be carcinogenic based on the lack of evidence of carcinogenicity in the submitted studies.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UF_a = extrapolation from animal to human (interspecies). UF_f = potential variation in sensitivity among members of the human population (intraspecies). UF_i = use of a LOAEL to extrapolate a NOAEL. UF_k = use of a short-term study for long-term risk assessment. UF_{DF} = to account for the absence of data or other data deficiency. FQPA SF = Food Quality Protection Act Safety Factor. PAD = population adjusted dose (a = acute, c = chronic). RID = reference dose. MOE = margin of exposure. LOC = level of concern.

C. Exposure Assessment

In evaluating dietary exposure to nitric acid, EPA considered exposure under the petitioned-for exemption from the requirement of a tolerance. EPA assessed dietary exposures from nitric acid in food as follows:

1. Dietary exposure from food and feed uses. In evaluating dietary exposure to nitric acid, EPA considered exposure under the proposed exemption from the requirement of a tolerance. In the absence of actual dietary exposure data resulting from this use, the EPA has utilized a conservative, health-protective method of estimating dietary intake that is based upon conservative assumptions related to the amount of residues that can be transferred to foods as a result of the proposed use of nitric acid in non-food contact sanitizing pesticide products. This same methodology has been utilized by EPA in estimating dietary exposures to antimicrobial pesticides used in food-handling settings. A complete description of the approach used to assess dietary exposures resulting from food contact sanitizing solution uses of nitric acid can be found at http://www.regulations.gov in document “Nitric Acid; Human Health Risk Assessment and Ecological Effects Assessment to Support Proposed Exemption from the Requirement of a Tolerance When Used as Inert Ingredients in Pesticide Formulations,” pp. 9–26 in docket ID number EPA–HQ–OPP–2012–0116.

EPA assessed dietary exposures from nitric acid in food as follows:

i. Acute exposure. No adverse effects attributable to a single exposure of nitric acid were seen in the toxicity databases. Therefore, an acute dietary exposure assessment for nitric acid is not necessary.

ii. Chronic exposure. In conducting the chronic dietary exposure assessment, the Agency believes the assumptions used to estimate chronic dietary exposures lead to an extremely conservative assessment of chronic dietary risk due to a series of compounded conservatism. First, when a surface is treated with a disinfectant, a quantity of the disinfectant remains on the surface (Residual Solution). In the absence of any other data, EPA has used...
an estimated worst-case concentration of 1 mg of solution per square centimeter (cm) of treated surface area for this quantity.

Second, the conservatism of this methodology is compounded by EPA’s decision to assume a worst case scenario that all food that an individual consumes will come into contact with 4,000 cm² of sanitized non-porous food-contact surfaces. This contact area represents all the surface area from silverware, china, and glass used by a person who regularly eats three meals per day at an institutional or public facility. The surface area of counter tops that comes in contact with food is expected to be smaller than the surface area for food utensils. As a conservative estimate, EPA assumed that 2,000 cm² of treated counter top surface area comes into contact with an individual’s food per day.

Third, EPA assumes that 100% of the material present on food contact surfaces will migrate to food.

Chlorine nitrate did not cause an increase in tumors in rodents at doses up to 2,500 mg/kg/day. Therefore, based on the weight of evidence, nitric acid is not likely to cause cancer in humans and a cancer dietary exposure assessment is not necessary to assess cancer risk.

2. Dietary exposure from drinking water. The proposed use of nitric acid will not result in its presence in surface water or ground water and therefore not contribute to dietary exposure.

3. From non-dietary exposure. The term “residential exposure” is used in this document to refer to non-occupational, non-dietary exposure (e.g., textiles (clothing and diapers), carpets, swimming pools, and hard surface disinfection on walls, floors, tables).

Nitric acid is not used as an inert ingredient in pesticide products that are registered for specific uses that may result in both indoor and outdoor residential exposures. Therefore, a residential exposure and risk assessment was not conducted for nitric acid.

4. Cumulative effects from substances with a common mechanism of toxicity. Section 408(b)(2)(D)(v) of FFDCA requires that, when considering whether to establish, modify, or revoke a tolerance, the Agency consider “available information” concerning the cumulative effects of a particular pesticide’s residues and “other substances that have a common mechanism of toxicity.” The EPA has not found nitric acid to share a common mechanism of toxicity with any other substances, and nitric acid does not appear to produce a toxic metabolite produced by other substances. For the purposes of this tolerance action, therefore, EPA has assumed that nitric acid does not have a common mechanism of toxicity with other substances. For information regarding EPA’s efforts to determine which chemicals have a common mechanism of toxicity and to evaluate the cumulative effects of such chemicals, see EPA’s Web site at http://www.epa.gov/pesticides/cumulative.

D. Safety Factor for Infants and Children

1. In general. Section 408(b)(2)(C) of FFDCA provides that EPA shall apply an additional tenfold (10X) margin of safety for infants and children in the case of threshold effects to account for prenatal and postnatal toxicity and the completeness of the database on toxicity and exposure unless EPA determines based on reliable data that a different margin of safety will be safe for infants and children. This additional margin of safety is commonly referred to as the Food Quality Protection Act (FQPA) Safety Factor (SF). In applying this provision, EPA either retains the default value of 10X, or uses a different additional safety factor when reliable data available to EPA support the choice of a different factor.

2. Prenatal and postnatal sensitivity. There is no concern for fetal susceptibility. There were no treatment related effects observed in the 2-generation reproduction study in rabbits. Also, the FDA sponsored several reproductive and developmental studies in rodents, hamsters and rabbits treated with sodium nitrate. No adverse effects were observed in maternal reproductive parameters nor was there fetotoxicity or fetal malformations up to the maximum doses tested in each species (41 mg/kg/day in mice and hamsters and 66 mg/kg/day in rats and rabbits). Fetal susceptibility was not observed in these any of these studies. Therefore, there are no concerns for residual uncertainties concerning prenatal and postnatal toxicity.

3. Conclusion. EPA has determined that reliable data show the safety of infants and children would be adequately protected if the FQPA SF were reduced to 1X. That decision is based on the following findings:

i. There is no indication that nitric acid is a neurotoxic chemical and there is no need for a developmental neurotoxicity study or additional UF’s to account for neurotoxicity.

ii. There is no indication that nitric acid is an immunotoxic chemical and there is no need additional UF’s to account for immunotoxicity.

iii. There is no evidence that nitric acid results in increased susceptibility in utero rodents. Several reproductive and developmental studies in rodents, hamsters and rabbits showed no evidence of increased fetal susceptibility at doses as high as 41 mg/kg/day in mice and hamsters and 66 mg/kg/day in rats and rabbits. Further, although effects in infants were found in an epidemiological study, the cRfD (1.6 mg/kg/day) is based on a clear NOAEL established in that study.

iv. There are no residual uncertainties identified in the exposure databases. EPA made conservative (protective) assumptions regarding dietary exposure to nitric acid. This assessment will not underestimate the exposure and risks posed by nitric acid.

E. Aggregate Risks and Determination of Safety

EPA determines whether acute and chronic pesticide exposures are safe by comparing aggregate exposure estimates to the aPAD and cPAD. The aPAD and cPAD represent the highest safe exposures, taking into account all appropriate SF’s. EPA calculates the aPAD and cPAD by dividing the POD by all applicable UF’s. For linear cancer risks, EPA calculates the probability of additional cancer cases given the estimated aggregate exposure. Short-, intermediate-, and chronic-term risks are evaluated by comparing the estimated aggregate food, water, and residential exposure to the POD to ensure that the MOE called for by the product of all applicable UF’s is not exceeded.

1. Acute risk. An acute aggregate risk assessment takes into account acute exposure estimates from dietary consumption of food and drinking water. No adverse effect resulting from a single oral exposure was identified and no acute dietary endpoint was selected. Therefore, nitric acid is not expected to pose an acute risk.

2. Chronic risk. Using the exposure assumptions described in this unit for chronic exposure, EPA has concluded that chronic exposure to nitric acid from dietary exposure will utilize 24% of the cPAD for children 1–2 years old, the population group receiving the greatest exposure. There are no residential uses for nitric acid.
3. Short-term risk. Short-term aggregate exposure takes into account short-term residential exposure plus chronic exposure to food and water (considered to be a background exposure level).

Because no short-term adverse effect was identified, nitric acid is not expected to pose a short-term risk.

4. Intermediate-term risk. Intermediate-term aggregate exposure takes into account intermediate-term residential exposure plus chronic exposure to food and water (considered to be a background exposure level).

Because no intermediate-term adverse effect was identified, nitric acid is not expected to pose an intermediate-term risk.

5. Aggregate cancer risk for U.S. population. Based on the lack of evidence of carcinogenicity in adequate rodent carcinogenicity studies, nitric acid is not expected to pose a cancer risk to humans.

6. Determination of safety. Based on these risk assessments, EPA concludes that there is a reasonable certainty that no harm will result to the general population, or to infants and children from aggregate exposure to nitric acid residues under reasonably foreseeable circumstances. Therefore, the establishment of an exemption from tolerance under 40 CFR 180.940(a) for residues of nitric acid when used as an inert ingredient in pesticide formulations applied to food-contact surfaces in public eating places, dairy processing equipment, and food-processing equipment and utensils at a maximum level in the end-use concentration of 1,000 ppm, is safe under FFDCA section 408.

V. Other Considerations

A. Analytical Enforcement Methodology

An analytical method is not required for enforcement purposes since the Agency is establishing an exemption from the requirement of a tolerance without any numerical limitation.

B. International Residue Limits

In making its tolerance decisions, EPA seeks to harmonize U.S. tolerances with international standards whenever possible, consistent with U.S. food safety standards and agricultural practices. EPA considers the international maximum residue limits (MRLs) established by the Codex Alimentarius Commission (Codex), as required by FFDCA section 408(b)(4). The Codex Alimentarius is a joint U.N. Food and Agriculture Organization/World Health Organization food standards program, and it is recognized as an international food safety standards-setting organization in trade agreements to which the United States is a party. EPA may establish a tolerance that is different from a Codex MRL; however, FFDCA section 408(b)(4) requires that EPA explain the reasons for departing from the Codex level.

The Codex has not established a MRL for nitric acid.

VI. Conclusions

Therefore, an exemption from the requirement of a tolerance is established under 40 CFR 180.940(a) for nitric acid (CAS No. 7697–37–2) when used as an inert ingredient in pesticide formulations applied to food-contact surfaces in public eating places, dairy processing equipment, and food-processing equipment and utensils at a maximum level in the end-use concentration of 1,000 ppm.

VII. Statutory and Executive Order Reviews

This final rule establishes a tolerance under section 408(d) of FFDCA in response to a petition submitted to the Agency. The Office of Management and Budget (OMB) has exempted these types of actions from review under Executive Order 12866, entitled Regulatory Planning and Review (58 FR 51735, October 4, 1993). Because this final rule has been exempted from review under Executive Order 12866, this final rule is not subject to Executive Order 13211, entitled Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use (66 FR 28355, May 22, 2001) or Executive Order 13045, entitled Protection of Children from Environmental Health Risks and Safety Risks (62 FR 19885, April 23, 1997).

This final rule does not contain any information collections subject to OMB approval under the Paperwork Reduction Act (PRA), 44 U.S.C. 3501 et seq., nor does it require any special considerations under Executive Order 12898, entitled Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (59 FR 7629, February 16, 1994).

Since tolerances and exemptions that are established on the basis of a petition under section 408(d) of FFDCA, such as the tolerance in this final rule, do not require the issuance of a proposed rule, the requirements of the Regulatory Flexibility Act (RFA) (5 U.S.C. 601 et seq.) do not apply. This final rule directly regulates growers, food processors, food handlers, and food retailers, not States or tribes, nor does this action alter the relationships or distribution of power and responsibilities established by Congress in the preemption provisions of section 408(n)(4) of FFDCA. As such, the Agency has determined that this action will not have a substantial direct effect on States or tribal governments, on the relationship between the national government and the States or tribal governments, or on the distribution of power and responsibilities among the various levels of government or between the Federal Government and Indian tribes. Thus, the Agency has determined that Executive Order 13132, entitled Federalism (64 FR 43255, August 10, 1999) and Executive Order 13175, entitled Consultation and Coordination with Indian Tribal Governments (65 FR 67249, November 9, 2000) do not apply to this final rule. In addition, this final rule does not impose any enforceable duty or contain any unfunded mandate as described under Title II of the Unfunded Mandates Reform Act of 1995 (UMRA) (Pub. L. 104–4).

This action does not involve any technical standards that would require Agency consideration of voluntary consensus standards pursuant to section 12(d) of the National Technology Transfer and Advancement Act of 1995 (NTTAA), Public Law 104–113, section 12(d) (15 U.S.C. 272 note).

VIII. Congressional Review Act

The Congressional Review Act, 5 U.S.C. 801 et seq., generally provides that before a rule may take effect, the agency promulgating the rule must submit a rule report to each House of Congress and to the Comptroller General of the United States. EPA will submit a report containing this rule and other required information to the U.S. Senate, the U.S. House of Representatives, and the Comptroller General of the United States prior to publication of this final rule in the Federal Register. This final rule is not a “major rule” as defined by 5 U.S.C. 804(2).

List of Subjects in 40 CFR Part 180

Environmental protection, Administrative practice and procedure, Agricultural commodities, Pesticides and pests, Reporting and recordkeeping requirements.

Dated: August 17, 2012.

Lois Rossi,
Director, Registration Division, Office of Pesticide Programs.

Therefore, 40 CFR chapter I is amended as follows:

PART 180—[AMENDED]

1. The authority citation for part 180 continues to read as follows:
DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
50 CFR Part 635
[Docket No. 120306154–2241–02]
RIN 0648–XC162
Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.

ACTION: Temporary rule; inseason General category retention limit adjustment.

SUMMARY: NMFS is adjusting the Atlantic tunas General category daily Atlantic bluefin tuna (BFT) retention limit from one to three large medium or giant BFT for the September, October, November, and December time periods of the 2012 fishing year, based on consideration of the regulatory determination criteria regarding inseason adjustments. This action applies to Atlantic tunas General category permitted vessels and to Highly Migratory Species (HMS) Charter/Headboat category permitted vessels when fishing commercially for BFT.

FOR FURTHER INFORMATION CONTACT: Sarah McLaughlin or Brad McHale, 978–281–9260.

SUPPLEMENTARY INFORMATION: Regulations implemented under the authority of the Atlantic Tunas Convention Act (ATCA; 16 U.S.C. 971 et seq.) and the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act; 16 U.S.C. 1801 et seq.) governing the harvest of BFT by persons and vessels subject to U.S. jurisdiction are found at 50 CFR part 635. Section 635.27 subdivides the U.S. BFT quota recommended by the International Commission for the Conservation of Atlantic Tunas (ICCAT) among the various domestic fishing categories, per the allocations established in the 2006 Consolidated Atlantic HMS Fishery Management Plan (Consolidated HMS FMP) (71 FR 58058, October 2, 2006) and in accordance with implementing regulations. NMFS is required under ATCA and the Magnuson-Stevens Act to provide U.S. fishing vessels with a reasonable opportunity to harvest the ICCAT-recommended quota.

The 2010 ICCAT recommendation regarding western BFT management resulted in baseline U.S. quotas for 2011 and for 2012 of 923.7 mt (not including the 25 mt ICCAT allocated to the United States to account for bycatch of BFT in pelagic longline fisheries in the Northeast Distant Gear Restricted Area). The 2011 BFT quota rule (76 FR 39019, July 5, 2011) established a quota of 435.1 mt for the General category fishery (the commercial tunas fishery in which handgear is used). Each of the General category time periods (January, June through August, September, October through November, and December) is allocated a portion of the annual General category quota. Through a November 2011 final rule implementing adjustments to the BFT General and Harpoon category regulations (76 FR 74903, November 30, 2011), the January BFT fishery may remain open until the January subquota is reached or March 31 (whichever happens first). Consistent with the allocation scheme established in the Consolidated HMS FMP and implementing regulations, the baseline category subquotas were established in the 2011 BFT quota rule as follows: 23.1 mt for January; 217.6 mt for June through August; 115.3 mt for September; 56.6 mt for October through November; and 22.6 mt for January. Although NMFS published quota specifications for 2012 (77 FR 44161, July 27, 2012), the baseline General category quota and subquotas as codified have not changed from the amounts established for the 2011 fishing year.

Unless changed, the General category daily retention limit starting on September 1 would be the default retention limit of one large medium or giant BFT (measuring 73 inches (185 cm) curved fork length (CFL) or greater) per vessel per day/trip (§ 635.23(a)(2)). This default retention limit applies to General category permitted vessels and to HMS Charter/Headboat category permitted vessels when fishing commercially for BFT.

Adjustment of General Category Daily Retention Limit

Under § 635.23(a)(4), NMFS may increase or decrease the daily retention limit of large medium and giant BFT over a range of zero to a maximum of five per vessel based on consideration of the relevant criteria provided under § 635.27(a)(8), which include: The usefulness of information obtained from catches in the particular category for biological sampling and monitoring of the status of the stock; effects of the adjustment on BFT rebuilding and overfishing; effects of the adjustment on accomplishing the objectives of the fishery management plan; variations in seasonal BFT distribution, abundance, or migration patterns; effects of catch rates in one area precluding vessels in another area from having a reasonable opportunity to harvest a portion of the category’s quota; and review of dealer reports, daily landing trends, and the availability of the BFT on the fishing grounds. Unused General category quota rolls forward within a fishing year to the subsequent subquota time period, e.g., from the June through August period to the September period, and so on.

For the 2011 fishing year, NMFS adjusted the General category limit from the default level of one large medium or giant BFT as follows: Two large medium or giant BFT for the January subquota period (75 FR 79309, December 20,