DEPARTMENT OF HEALTH AND HUMAN SERVICES

Administration for Community Living

Agency Information Collection Activities; Submission for OMB Review; Comment Request; Senior Medicare Patrol (SMP) Program Outcome Measurement

AGENCY: Administration for Community Living, HHS.

ACTION: Notice.

SUMMARY: The Administration for Community Living (ACL) is announcing that the proposed collection of information listed below has been submitted to the Office of Management and Budget (OMB) for review and clearance under the Paperwork Reduction Act of 1995.

DATES: Submit written comments on the collection of information by November 23, 2012.

ADDRESSES: Submit written comments on the collection of information by fax 202.395.5806 or by email to OIRA_submission@omb.eop.gov, Attn: OMB Desk Officer for ACL.

FOR FURTHER INFORMATION CONTACT: Doris Summey at 202.357.3533 or email: doris.summey@aoa.hhs.gov.

SUPPLEMENTARY INFORMATION: In compliance with 44 U.S.C. 3507, ACL has submitted the following proposed collection of information to OMB for review and clearance.

Grantees are required by Congress to provide information for use in program monitoring and for Government Performance and Results Act (GPRA) purposes. This information collection reports the number of active volunteers, issues and inquiries received, other SMP program outreach activities, and the number of Medicare dollars recovered, among other SMP program outcomes. This information is used as the primary method for monitoring the SMP Projects.

ACL estimates the burden of this collection of information as follows: Respondents: 54 SMP grantees at 23 hours per month (276 hours per year, per grantee). Total Estimated Burden Hours: 7,452 hours per year.

Kathy Greenlee, Administrator and Assistant Secretary for Aging.

[FR Doc. 2012–26091 Filed 10–22–12; 8:45 am]

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Government-Owned Inventions; Availability for Licensing

AGENCY: National Institutes of Health, Public Health Service, HHS.

ACTION: Notice.

SUMMARY: The inventions listed below are owned by an agency of the U.S. Government and are available for licensing in the U.S. in accordance with 35 U.S.C. 207 to achieve expeditious commercialization of results of federally-funded research and development. Foreign patent applications are filed on selected inventions to extend market coverage for companies and may also be available for licensing.

FOR FURTHER INFORMATION CONTACT: Licensing information and copies of the U.S. patent applications listed below may be obtained by writing to the indicated licensing contact at the Office of Technology Transfer, National Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, Maryland 20852–3804; telephone: 301–496–7057; fax: 301–402–0220. A signed Confidential Disclosure Agreement will be required to receive copies of the patent applications.

Zuma Mutant Mice as a Tool for Investigating Mammalian Developmental Defects

Description of Technology: In vertebrates, mutations in different ribosomal protein subunits result in a variety of phenotypes, suggesting unique and perhaps extra-ribosomal functions for these proteins. Diamond-Blackfan Anemia (DBA) is a ribosomal protein disease, in which the bone marrow fails to produce red blood cells.

NHGRI investigators recently generated a mouse line with a mutation in small ribosomal protein7 (Rps7), known to be involved in DBA. This line named Zuma (made with the use of the mutagen N-ethyl-N-nitrosourea (ENU)) carries a point mutation in exon 7 of Rps7, which is predicted to cause a substitution of a conserved amino acid (pY177S). The mutation results in the substitution of a conserved amino acid (Rps7, which is predicted to cause a substitution of a conserved amino acid (pY177S). The mutation results in the disruption of ribosomal biogenesis, as well as in abnormal skeletal, melanocyte, and central nervous system development. Thus, the Zuma line can be used as a model of DBA, as well as a tool for investigating other defects of mammalian development.

Potential Commercial Applications:

• Early detection of vascular disease, including aneurysms, calcification, and vascular wall thickness
• Potential use as a model of DBA
• Research in the field of vascular disease

Competitive Advantages: Not available elsewhere.

Development Stage:

• Prototype
• Pre-clinical

In vitro data available.


Publication: Manuscript submitted.


Licensing Contact: Betty B. Dong, Ph.D.; 301–594–6565; tongb@mail.nih.gov.

Collaborative Research Opportunity:

The Mouse Embryology Section of the National Human Genome Research Institute is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize Diamond-Blackfan Anemia therapies. For collaboration opportunities, please contact Claire T. Driscoll, Director, NHGRI Technology Transfer Office, at cdriscoll@mail.nih.gov or 301–594–2235.

Magnetic Resonance Arterial Wall Imaging Methods That Compensate for Patient Aperiodic Intrinsic Cardiac, Chest Wall, and Blood Flow-Induced Motions

Description of Technology: The technology includes MRI methods, systems, and software for reliably imaging vasculature and vascular wall thickness while compensating for aperiodic intrinsic motion of a patient during respiration. To overcome the loss of the orthogonality due to uncompensated residual motions and after a lapse of time equal to the trigger delay commenced at the cardiac cycle, the system acquires multiple consecutive time-resolved images of the arterial wall. The cine images are processed offline and a wall thickness measurement is produced.

The method improves arterial wall imaging by increasing the success rate of obtaining good and excellent quality images and imaging slice-vessel orthogonality. The method also provides more precise wall measurements and a more distinct difference between healthy subjects and patients.

The methodology and system can be applied to any commercially available MRI scanner.

Potential Commercial Applications:

• Early detection of vascular disease
• Research in the field of vascular disease
• Non-invasive assessment of the efficacy of medication and/or lifestyle changes in vascular health status in a particular subject, and
• Assessment of the efficacy of new medications or new uses of existing medications to treat vascular disease.

Competitive Advantages: Existing techniques suffer from image degradation due to aperiodic intrinsic cardiac, chest wall motions, or other bulk motion that often cause image blur and reduced wall sharpness. These techniques do not adequately address the time-dependent angular orientation of the arteries, whereby mispositioning of the imaged slice may cause disappearance of the lumen-wall interface altogether.

In the new technology time-resolved arterial wall imaging overcomes the loss of the orthogonality due to uncompensated residual motion.

Development Stage:
• Prototype.
• Early-stage.
• Pre-clinical.
• In vivo data available (human).

Inventors: Khaled Z. Abd-Elmoniem (NIDDK), Ahmed Gharib (NIDDK), Roderic Pettigrew (NIBIB).

Publications:


Licensing Contact: Michael Shmilovich; 301–435–5019; shmilovm@mail.nih.gov.

Collaborative Research Opportunity: The Biomedical and Metabolic Imaging Branch, NIDDK, NIH, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize time-resolved arterial wall imaging. For collaboration opportunities, please contact Khaled Z. Abd-Elmoniem at abdelmonienkz@mail.nih.gov.

Topical Antibiotic With Immune Stimulating Oligodeoxynucleotide Molecules To Speed Wound Healing

Description of Technology: The present technology provides a mean of improving the activity of topical antibiotics. Currently available topical antibiotic formulations effectively eliminate bacteria at a wound site. But in eliminating bacteria in the wound, such antibiotics also eliminate the molecular signals present in bacterial DNA that stimulate immune system’s wound healing processes. Without these signals the rate of wound healing is diminished. It would be desirable for topical antibiotics to remove infectious bacteria but also provide the immune stimulating signals needed to promote and accelerate healing. The present formulation accomplishes these goals by supplementing the antibiotic formulation with immunostimulatory oligodeoxynucleotides (ODN). These ODN express the CpG motifs present in bacterial DNA and safely mimic the immune stimulation induced by bacterial DNA. The formulation may be applied directly to a wide variety of wounds to skin (such as traumatic, burn, or surgical wound), or the eyes (such as corneal abrasions) to effectively eliminate infection and stimulate rapid healing of the wound.

Potential Commercial Applications: Topical antibiotic.

Competitive Advantages: Eliminates wound site bacteria while retaining immune stimulating properties that promote faster wound healing.

Development Stage:
• Early-stage.
• In vivo data available (animal).

Inventors: Dennis Klinman, Hiroyasu Ito, Noriho Iida (all of NCI).

Publications:

Antimarial Inhibitors That Target the Plasmodial Surface Anion Channel (PSAC) Protein and Development of the PSAC Protein as Vaccine Targets

Description of Technology: There are two related technologies, the first being small molecule inhibitors of the malarial plasmodial surface anion channel (PSAC) and the second being the PSAC protein itself as a vaccine candidate. The PSAC protein is produced by the malaria parasite within host erythrocytes and is crucial for mediating nutrient uptake. In vitro data show that the PSAC inhibitors are able to inhibit growth of malaria parasites, have high specificity, and low toxicity. Portions of the PSAC protein are found on the outer surface of infected host erythrocytes and the protein was recently shown to be encoded by the clag3 gene. This discovery opens the possibility of developing the PSAC protein as a potential vaccine candidate against malaria.

Potential Commercial Applications:
• Antimalarial Drugs.
• Malaria Vaccine.

Competitive Advantages:
• Novel target against malaria.
• Small molecule inhibitors of PSAC inhibit malarial parasite growth, have low toxicity, and high specificity.
• PSAC protein is exposed on the surface of the infected host erythrocytes, making it an attractive vaccine candidate.

Development Stage:
• Early-stage.
• Pre-clinical.
• In vitro data available.

Inventor: Sanjay Desai (NIAID).

Publications:
1. Pillai AD, et al. Solute restriction reveals an essential role for clag3-associated
channels in malaria parasite nutrient acquisition. Mol Pharmacol. 2012 Sep 4;Epub ahead of print. [PMID 22949525]


Licensing Contact: Kevin W. Chang, Ph.D.; 301–435–5018; changke@mail.nih.gov.

Collaborative Research Opportunity: The National Institute of Allergy and Infectious Diseases is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize Antimalarial Inhibitors that Target the Plasmodial Surface Anion Channel (PSAC) Protein. For collaboration opportunities, please contact Dana Hsu at dhsu@niaid.nih.gov or 301–451–3521.

Fluorescent Magnesium Indicators

Description of Technology: A noninvasive approach in which Magnesium (Mg2+) ion levels can be measured in real-time. Mg2+ is essential to many physio-chemical processes and plays a central role in the biochemistry of all cells. Many epidemiological studies have established close association between plasma magnesium levels and various diseases including cardiovascular disease and hypertension. However, methods and tools to selectively measure cellular magnesium levels in the body with accuracy and reliability are still lacking in the market today. The present invention provides novel fluorescent indicators (carboxy-quinolizones) that are selective for Mg2+ and can be easily detected using fluorescence spectroscopy.

Current approaches used to measure intracellular magnesium in the body generally involve magnetic resonance spectroscopy, which is extremely expensive and subject to very poor accuracy. Unlike these other methods, the fluorescence indicators of this invention provide a more accurate way to measure intracellular and extracellular Mg2+ levels in a wide variety of biological settings and have potential to be developed into diagnostic reagents.

Potential Commercial Applications:

• Tool for measuring intracellular and extracellular magnesium levels.
• Diagnostic reagent for measuring magnesium levels in a human or animal.

Competitive Advantages:

• Increased accuracy compared to what is available on the market.
• Detection is noninvasive.
• Ease of use.

Development Stage:

• Early-stage.
• In vitro data available.


Publications:


Licensing Contact: Suryanarayana Vepa, Ph.D., J.D.; 301–435–5020; vepas@mail.nih.gov.

Collaborative Research Opportunity: The NIEHS is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize the fluorescent magnesium indicators. For collaboration opportunities, please contact Elizabeth M. Denholm, Ph.D. at denholm@niehs.nih.gov.

Dated October 18, 2012.

Richard U. Rodriguez, Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health.

BILLING CODE 4140–01–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Institute of General Medical Sciences; Notice of Closed Meetings

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C., App.), notice is hereby given of the following meetings. The meetings will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: National Institute of General Medical Sciences Special Emphasis Panel; Peer Review of SCORE Grant Applications.

Date: November 15–16, 2012.

Time: 8:00 a.m. to 5:00 p.m.

Agenda: To review and evaluate grant applications.

Place: DoubleTree by Hilton Bethesda, 8120 Wisconsin Avenue, Bethesda, MD 20814.

Contact Person: Saraswathy Seetharam, Ph.D., Scientific Review Officer, Office of Scientific Review, National Institute of General Medical Sciences, National Institutes of Health, 45 Center Drive, Room 3Am12C, Bethesda, MD 20892, 301–594–2763, seetharams@nigms.nih.gov.

Name of Committee: National Institute of General Medical Sciences Special Emphasis Panel; NIGMS Predoctoral T32 Review SEP.

Date: November 16, 2012.

Time: 1:00 p.m. to 3:00 p.m.

Agenda: To review and evaluate grant applications.

Place: National Institutes of Health, Natcher Building, 45 Center Drive, Room 3Am18, Bethesda, MD 20892 (Telephone Conference Call).

Contact Person: Brian R. Pike, Ph.D., Scientific Review Officer, Office of Scientific Review, National Institute of General Medical Sciences, National Institutes of Health, Natcher Building, Room 3Am18, Bethesda, MD 20892, 301–594–3907, pikebr@mail.nih.gov.

(Catalogue of Federal Domestic Assistance Program Nos. 93.375, Minority Biomedical Research Support; 93.821, Cell Biology and Biophysics Research; 93.859, Pharmacology, Physiology, and Biological Chemistry Research; 93.862, Genetics and Developmental Biology Research; 93.88, Minority Access to Research Careers; 93.96, Special Minority Initiatives; National Institutes of Health, HHS)

Dated: October 17, 2012.

Melanie J. Gray, Program Analyst, Office of Federal Advisory Committee Policy.

[FR Doc. 2012–26012 Filed 10–22–12; 8:45 am]

BILLING CODE 4140–01–P