GHB is classified as a central nervous system depressant. In 2002, FDA approved a GHB-containing product, Xyrem, for the treatment of excessive daytime sleepiness and cataplexy in patients with narcolepsy under the regulations in 21 CFR part 314, subpart H (21 CFR 314.520). Xyrem was included on the list of products deemed to have an effect on an approved Risk Evaluation and Mitigation Strategy (REMS) under section 505–1 of the Federal Food, Drug, and Cosmetic Act (21 U.S.C. 355–1) at the time of the passage of the Food and Drug Administration Amendments Act of 2007 (FDAAA). The REMS for Xyrem includes a medication guide and healthcare provider education brochure, mandatory patient and prescriber certification through enrollment, and restricted dispensing of the drug through a central pharmacy. Xyrem is controlled domestically in Schedule III of the CSA, while bulk GHB and all other material containing GHB are controlled in Schedule I. In addition, illicit use of Xyrem is subject to Schedule I penalties of the CSA. GHB is controlled internationally in Schedule IV of the Psychotropic Convention. The WHO ECDD pre-reviewed GHB at its Thirty-fourth meeting and recommended it for critical review at a future meeting. The WHO ECDD met in Hammamet, Tunisia, from 4–8 June 2012, critically reviewed GHB, and recommended that it be rescheduled from Schedule IV to Schedule II of the Convention on Psychotropic Substances.

IV. Submission of Comments and Opportunity for Public Meeting

Interested persons may submit either electronic comments regarding this document to http://www.regulations.gov or written comments to the Division of Dockets Management (see ADDRESSES). It is only necessary to send one set of comments. Identify comments with the docket number found in brackets in the heading of this document. Received comments may be seen in the Division of Dockets Management between 9 a.m. and 4 p.m., Monday through Friday, and comments may be seen in the Division of Dockets Management between 9 a.m. and 4 p.m., Monday through Friday, and 8 a.m. to 3 p.m., on the following Saturday, and will be posted to the docket at http://www.regulations.gov.

FDA does not presently plan to hold a public meeting. If any person believes that, in addition to their written comments, a public meeting would contribute to the development of the U.S. position on the substances to be considered for control under the Psychotropic Convention, a request for a public meeting and the reasons for such a request should be sent to James R. Hunter (see FOR FURTHER INFORMATION CONTACT) on or before February 19, 2013.

The short time period for the submission of comments and requests for a public meeting is needed to ensure that HHS may, in a timely fashion, carry out the required action and be responsive to the United Nations.

Dated: February 1, 2013.

Leslie Kux, Assistant Commissioner for Policy.

FOR FURTHER INFORMATION CONTACT:

[FR Doc. 2013–08259 Filed 2–7–13; 8:45 am]

BILLING CODE 4160–01–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Government-Owned Inventions; Availability for Licensing

AGENCY: National Institutes of Health, Public Health Service, HHS.

ACTION: Notice.

SUMMARY: The inventions listed below are owned by an agency of the U.S. Government and are available for licensing in the U.S. in accordance with 35 U.S.C. 207 to achieve expeditious commercialization of results of federally-funded research and development. Foreign patent applications are filed on selected inventions to extend market coverage for companies and may also be available for licensing.

FOR FURTHER INFORMATION CONTACT: Licensing information and copies of the U.S. patent applications listed below may be obtained by writing to the indicated licensing contact at the Office of Technology Transfer, National Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, Maryland 20852–3804; telephone: 301–496–7057; fax: 301–402–0220. A signed Confidential Disclosure Agreement will be required to receive copies of the patent applications.

Therapeutic Hepatitis C Virus Antibodies

Description of Technology: Therapeutic antibodies against Hepatitis C Virus (HCV) have not been very effective in the past and there is evidence that this may result in part from interfering antibodies generated during infection that block the action of neutralizing antibodies. These neutralizing antibodies prevent HCV infection of a host cell. The subject technologies are monoclonal antibodies against HCV that can neutralize different genotypes of HCV. Both antibodies bind to the envelope (E2) protein of HCV found on the surface of the virus. One of the monoclonal antibodies neutralizes HCV genotype 1a, the most prevalent HCV strain in the U.S., infection and in vitro data show that it is not blocked by interfering antibodies. The second antibody binds a conserved region of E2 and can cross neutralize a number of genotypes including genotypes 1a and 2a. The monoclonal antibodies have the potential to be developed either alone or in combination into therapeutic antibodies that prevent or treat HCV infection. These antibodies may be particularly suited for preventing HCV re-infection in HCV patients who undergo liver transplant; a population of patients that is especially vulnerable to the side effects of current treatments for HCV infection.

Potential Commercial Applications: Therapeutic antibodies for the prevention and/or treatment of HCV infection.

Competitive Advantages

• Therapeutic antibodies have generally fewer side effects than current treatments for HCV infection.
• Potential to be developed into an alternative treatment for HCV infected liver transplant patients, who often cannot tolerate the side effects of current drug treatments.

Development Stage

• Early-stage
• Pre-clinical
• In vitro data available

Inventors: Stephen M. Feinstone, Hongying Duan, Pei Zhang, Marian E. Major, Alla V. Kachko (all of FDA)

Publications

Intellectual Property

Licensing Contact: Kevin W. Chang, Ph.D.; 301–435–5018; changke@mail.nih.gov
Live Attenuated Rubella Vector to Express Vaccine Antigens

Description of Technology: Live attenuated viruses make potent and effective vaccines. Despite the urgent need for an HIV vaccine, this approach has not been feasible because it has not been possible to attenuate the virus reliably and guarantee vaccine safety. Instead, live viral vectors have been proposed that could present HIV vaccine antigens in the most immunogenic way, in the context of an active infection.

The inventors have adapted a rubella vaccine strain as a vector to express HIV and SIV antigen and tested the effect of insert size and composition on vector stability and viral titer. The inventors have identified an acceptor site in the rubella nonstructural gene region, where foreign genes can be expressed as a fusion protein with the nonstructural protein P150 without affecting essential viral functions. The inserts were expressed as early genes of rubella, under control of the rubella genomic promoter. At this site, HIV and SIV antigens were expressed stably for at least seven passages, as the rubella vectors reached high titers. Rubella readily infects rhesus macaques, and these animals will provide an ideal model for testing the new vectors for replication in vivo, immunogenicity and protection against SIV or SHIV challenge.

Potential Commercial Applications
- HIV vaccines
- Bivalent rubella
- Research tools

Competitive Advantages
- Ease of manufacture
- Low cost vaccines

Development Stage
- Pre-clinical
- In vitro data available
- In vivo data available (animal)

Inventors: Ira Berkower and Konstantin Vinkik (FDA/CBER)

Publication

Intellectual Property

Licensing Contact: Peter A. Soukas; 301–435–4646; soukasp@mail.nih.gov

Related Technologies

DNA Promoters and Anthrax Vaccines

Description of Technology: Currently, the only licensed vaccine against anthrax in the United States is AVA BioThrax®, which, although efficacious, suffers from several limitations. This vaccine requires six injectable doses over 18 months to stimulate protective immunity, requires a cold chain for storage, and in many cases has been associated with adverse effects.

This application claims a modified B. anthracis protective antigen (PA) gene for optimal expression and stability, linked to an inducible promoter for maximal expression in the host, and fused to the secretion signal of the Escherichia coli alpha-hemolysin protein (HlyA) on a low-copy-number plasmid. This plasmid was introduced into the licensed typhoid vaccine strain, Salmonella enterica serovar Typhi strain Ty21a, and was found to be genetically stable. Immunization of mice with three vaccine doses elicited a strong PA-specific serum immunoglobulin G response with a geometric mean titer of 30,000 (range, 5,800 to 157,000) and lethal-toxin-neutralizing titers greater than 16,000. Vaccinated mice demonstrated 100% protection against a lethal intranasal challenge with aerosolized spores of B. anthracis 7702.

Potential Commercial Applications: Anthrax vaccines, therapeutics and diagnostics.

Competitive Advantages
- Vector is well-characterized.
- Simple manufacturing process.
- Potential low-cost vaccine.
- Oral vaccine—avoids needles and can be administered rapidly during emergencies.
- Temperature-stable manufacturing allows for vaccine distribution without refrigeration.

Development Stage
- Pre-clinical
- In vitro data available
- In vivo data available (animal)

Publication

Licensing Contact: Peter A. Soukas; 301–435–4646; soukasp@mail.nih.gov

Collaborative Research Opportunity:
The FDA Center for Biologics Evaluation and Research is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize oral anthrax vaccine. For collaboration opportunities, please contact Dr. Dennis J. Kopecko at dennis.kopecko@fda.hhs.gov or 301–661–8839.

Live Oral Shigella Dysenteriae Vaccine

Description of Technology: This application claims a Salmonella typhi Ty21a construct comprising a Shigella dysenteriae O-specific polysaccharide (O-Ps) inserted into the Salmonella typhi Ty21a chromosome, where heterologous Shigella dysenteriae serotype 1 O-antigen is stably expressed together with homologous Salmonella typhi O-antigen. The constructs of this invention elicit immune protection against virulent Shigella dysenteriae challenge, as well as Salmonella typhi challenge. Also claimed in this application are methods of making the constructs of this invention and methods for inducing an immune response.

Shigella cause millions of cases of dysentery every year, which result in about seven hundred thousand deaths worldwide. **Shigella dysenteriae** serotype 1, one of about forty serotypes of Shigella, causes a more severe disease with a much higher mortality rate than other serotypes. There are no licensed vaccines available for protection against Shigella. The fact that many isolates exhibit multiple antibiotic resistance complicates the management of dysentery infections.

Potential Commercial Applications
- One component of a multivalent anti-shigellosis vaccine under development.
Shigella vaccines, therapeutics and diagnostics.

Competitive Advantages
- Vector is well-characterized.
- Simple manufacturing process.
- Potential low-cost vaccine.
- Oral vaccine—avoids need for needles.
- Temperature-stable formulation allows for vaccine distribution without refrigeration.

Development Stage
- Pre-clinical
- In vitro data available
- In vivo data available (animal)

Inventors: Dennis J. Kopecko and De Qi Xu (FDA/CBER)

Publication

- EP Application No. 05754091.6 filed 24 May 2005
- EP Application No. 12186545.5 filed 24 May 2005
- US Patent No. 8,071,113 issued 06 Dec 2011
- US Application No. 13/687,797 filed 28 Nov 2012

Licensing Contact: Peter A. Soukas; soukasp@mail.nih.gov Collaborative Research Opportunity: The FDA Center for Biologics Evaluation and Research is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize combination typhoid-Shigellosis oral vaccine. For collaboration opportunities, please contact Dr. Dennis J. Kopecko at dennis.kopecko@fda.hhs.gov or 301–661–8839.

Oral Shigellosis Vaccine

Description of Technology: This application claims a Salmonella typhi Ty21a construct comprising a Shigella sonnei O-antigen biosynthetic gene region inserted into the Salmonella typhi Ty21a chromosome, where heterologous Shigella sonnei form 1 O-antigen is stably expressed together with homologous Salmonella typhi O-antigen. The constructs of this invention elicit immune protection against virulent Shigella sonnei challenge, as well as Salmonella Typhi challenge.

Also claimed in this application are methods of recombining a large antigenic gene region into a bacterial chromosome.

Bacillary dysentery and enteric fevers continue to be important causes of morbidity in both developed and developing nations. Shigellosis cause greater than one hundred and fifty million cases of dysentery and enteric fever occurs in greater than twenty-seven million people annually. Currently, there is no licensed vaccine to prevent the occurrence of shigellosis. Increasing multiple resistance in Shigella commonly thwarts local therapies.

Potential Commercial Applications
- One component of a multivalent Shigellosis vaccine under development
- Research tool

Competitive Advantages
- Low cost production
- Lower cost vaccine
- Oral vaccine—no needles required
- Temperature-stable manufacturing process—avoids need for refrigeration during vaccine distribution

Development Stage
- Pre-clinical
- In vitro data available
- In vivo data available (animal)

Inventors: Dennis J. Kopecko and Madushini N. Dharmasena (FDA/CBER)

Publication

Licensing Contact: Peter A. Soukas; soukasp@mail.nih.gov Collaborative Research Opportunity: The FDA Center for Biologics Evaluation and Research is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize oral Shigellosis vaccine. For collaboration opportunities, please contact Dr. Dennis J. Kopecko at dennis.kopecko@fda.hhs.gov or 301–661–8839.

Deborah: February 1, 2013.

Richard U. Rodriguez, Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health. [FR Doc. 2013–02834 Filed 2–7–13; 8:45 am]