detecting retroviruses within a patient blood sample and discriminating HIV–1 samples within serum specimens. HIV–1 can be genetically classified into two major groups, group M (major) and Group O (outlier) with group O comprising all divergent viruses that do not cluster with group M. The identification of group O infections raised public health concerns about the safety of the blood supply because HIV–1 screening by group M-based serologic tests does not consistently detect group O infection.

The assay is based on the selective inhibition of Amp-RT reactivity of Group M viruses by nevirapine, a non-nucleoside RT inhibitor. Group O viruses can be generically identified by the resistance of their Amp-RT activity to nevirapine. The assay can be used to screen of the blood supply and to rapidly differentiate group M from group O virus.

Potential Commercial Applications:
- Clinical monitoring of individual patient antiretroviral therapy
- HIV/AIDS public health programs
- Surveillance of retroviral drug resistance
- Screening of blood donations

Competitive Advantages:
- Rapid diagnostic which greatly reduces time and labor for improved clinical monitoring of HIV treatment
- Ready for commercialization
- Easily adapted to kit format
- Assists continued usefulness of common antiretroviral therapeutics
- Useful for high-throughput serum samples screening

Development Stage: In vitro data available

Inventors: Thomas M. Folks, Wald Heneine, William Marshall Switzer, Shinji Yamamoto (all of CDC)

Publications:
Potential Commercial Applications:
- Selective killing of cells that express mesothelin, such as those seen with particular cancers.
- Specific cancers include malignant mesothelioma, pancreatic cancer and ovarian cancer.

Competitive Advantages:
- Targeted therapy decreases non-specific killing of healthy, essential cells, resulting in fewer non-specific side-effects and healthier patients.
- Use of human IL12 as the payload may reduce formation of neutralizing antibodies against the molecule, increasing therapeutic effectiveness.

Development Stage:
- In vitro data available
- In vivo data available (animal)

Inventors: Mitchell Ho, et al. (NCI)

Inventors at the NIH have identified a process to select highly tumor-reactive T cells from a peripheral blood sample derived from peripheral blood sample obtained from a patient’s peripheral blood sample. This process is based on isolation tumor-reactive T cells from the tumor, as it reduces the cost and complications of tumor resection, as well as provides a T cell product for patients without resectable lesions.

This new method for selecting tumor-reactive T cells from peripheral blood samples should help ACT immunotherapy become more GMP compliant and allow greater standardized of the production process to enable more widespread utilization of this personalized cancer treatment approach outside of NIH.

Potential Commercial Applications:
- Personalized ACT immunotherapy to treat cancers using T cells obtained from a peripheral blood.
- Possible integration into a standard procedure for obtaining tumor-reactive T cells from a peripheral blood as part of a GMP-compliant manufacturing process that gains regulatory approval as a personalized cancer treatment option.
- The immunotherapy component of a combination cancer therapy regimen targeting specific tumor antigens in individual patients.
- More rapid tumor-reactive T cell culturing process for laboratory testing.

Improved Personalized Cancer Immunotherapy: Rapid Selection of Tumor Reactive T Cells Based on Expression of Specific Cell Surface Markers From Peripheral Blood

Description of Technology: Scientists at NIH have identified a process to select highly tumor-reactive T cells from a patient’s peripheral blood sample based on the expression of two specific T cell surface markers: programmed cell death protein 1 (PD-1; CD279) and/or T cell Ig- and mucin-domain-containing protein-3 (TIM-3). After this enriched population of tumor-reactive T cells is selected and expanded to large quantities, it gets re-infused into the patient to fight the tumor.

Development Stage:
- Early-stage
- In vitro data available

Inventors: Alena Gros and Steven A. Rosenberg (NIH)

Inventors at the NIH have created an immunocytokine targeting mesothelin for treating cancers that express mesothelin, such as those seen with particular cancers. The IL12–SS1 immunoconjugate is able to inhibit the growth human malignant mesothelioma in mouse xenograft models, suggesting it has significant potential as a cancer therapeutic.
DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Institute on Drug Abuse; Notice of Closed Meetings

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of the following meetings.

The meetings will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable materials, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: National Institute on Drug Abuse Special Emphasis Panel; R13 Conference Grant Review (PA12–212).

Date: March 6, 2014.

Time: 1:00 a.m. to 3:00 p.m.

Agenda: To review and evaluate grant applications.

Location: TownePlace Suites Marriott, Albany Downtown/Medical Center, 22 Holland Avenue, Albany, NY.

Contact Person: Whitney A. Hastings; 301–451–7337; hastingw@mail.nih.gov.

Richard U. Rodriguez,
Director, Division of Technology Development and Transfer, Office of Technology Transfer, National Institutes of Health.

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Institute on Drug Abuse; Notice of Closed Meetings

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of the following meetings.

The meetings will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C., as amended. The contract proposals and the discussions could disclose confidential trade secrets or commercial property such as patentable materials, and personal information concerning individuals associated with the contract proposals, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: National Institute on Drug Abuse Special Emphasis Panel; NIDAMED: Outreach and Education to Health Care Providers on Substance Use (1152).

Date: March 30, 2014.

Time: 10:00 a.m. to 2:00 p.m.

Agenda: To review and evaluate contract proposals.

Location: National Institutes of Health, Neuroscience Center, 6001 Executive Boulevard, Rockville, MD 20852, (Telephonic Conference Call).

Contact Person: Lyle Furr, Scientific Review Officer, Office of Extramural Affairs, National Institute on Drug Abuse, NIH, DHHS, Room 4227, MSC 9550, 6001 Executive Boulevard, Bethesda, MD 20892–9550, (301) 435–1439, lj33c.nih.gov.

Dated: January 30, 2014.

Michelle Trout,
Program Analyst, Office of Federal Advisory Committee Policy.

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

National Institute of Biomedical Imaging And Bioengineering; Notice of Closed Meeting

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of the following meeting.

The meeting will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special Emphasis Panel; P41 BTRC Review.

Date: March 7–8, 2014.

Time: 8:30 a.m. to 1:00 p.m.

Agenda: To review and evaluate contract proposals.

Location: National Institutes of Health, Neuroscience Center, 6001 Executive Boulevard, Rockville, MD 20852, (Telephonic Conference Call).

Contact Person: Lyle Furr, Scientific Review Officer, Office of Extramural Affairs, National Institute of Biomedical Imaging and Bioengineering, NIH, DHHS, Room 4227, MSC 9550, 6001 Executive Boulevard, Bethesda, MD 20892–9550, (301) 435–1439, lj33c.nih.gov.

Michelle Trout,
Program Analyst, Office of Federal Advisory Committee Policy.

Contact Person: Lyle Furr, Scientific Review Officer, Office of Extramural Affairs, National Institute on Drug Abuse, NIH, DHHS, Room 4227, MSC 9550, 6001 Executive Boulevard, Bethesda, MD 20892–9550, (301) 435–1439, lj33c.nih.gov.

Dated: January 30, 2014.

Michelle Trout,
Program Analyst, Office of Federal Advisory Committee Policy.

Dated: January 30, 2014.

BILLING CODE 4140–01–P