This information will help inform this strategic planning process and provide evidence to inform decisions on potential investments in grants for oncology nursing education in LMICs. Additionally, this information will be used in an online, interactive map that is being developed by CGH which will allow external organizations, such as cancer centers, to explore what projects are being done in which countries, which will facilitate collaborations and minimize duplication. The frequency of the data collection will be once per year although respondents may have more than one response if they have up to three projects.

OMB approval is requested for 3 years. There are no costs to respondents other than their time. The total estimated annualized burden hours are 51.

ESTIMATED ANNUALIZED BURDEN HOURS

<table>
<thead>
<tr>
<th>Type of respondents</th>
<th>Number of respondents/ year</th>
<th>Number of responses per respondent</th>
<th>Average burden per response (in hours)</th>
<th>Total annual burden hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directors of Nursing</td>
<td>68</td>
<td>3</td>
<td>15/60</td>
<td>51</td>
</tr>
</tbody>
</table>

Karla Bailey, NCI Project Clearance Liaison, National Institutes of Health.

[FR Doc. 2015–03788 Filed 2–24–15; 8:45 am]

BILLING CODE 4140–01–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Government-Owned Inventions; Availability for Licensing

AGENCY: National Institutes of Health, HHS.

ACTION: Notice.

SUMMARY: The inventions listed below are owned by an agency of the U.S. Government and are available for licensing in the U.S. in accordance with 35 U.S.C. 209 and 37 CFR part 404 to achieve expeditious commercialization of results of federally-funded research and development. Foreign patent applications are filed on selected inventions to extend market coverage for companies and may also be available for licensing.

FOR FURTHER INFORMATION CONTACT: Licensing information and copies of the U.S. patent applications listed below may be obtained by writing to the indicated licensing contact at the Office of Technology Transfer, National Institutes of Health, 6011 Executive Boulevard, Suite 325, Rockville, Maryland 20852–3804; telephone: 301–496–7057; fax: 301–402–0220. A signed Confidential Disclosure Agreement will be required to receive copies of the patent applications.

SUPPLEMENTARY INFORMATION: Technology descriptions follow.

HbF Induction Therapy for Sickle Cell Disease and Thalassemias

Description of Technology: Sickle cell disease and thalassemia are hereditary disorders marked by the disruption in the pathways responsible for carrying oxygen to red blood cells. Symptoms associated with these disorders include anemia, jaundice, and severe pain. It has been shown that mutations during the development of fetal to adult hemoglobin can contribute to a delay in red blood cell maturity underlying sickle cell disease. As a result, there has been an increased focus on treatments that promote the induction of fetal hemoglobin (HbF) to improve clinical symptoms and ameliorate the severity of the diseases. Researchers at the National Institute of Diabetes and Digestive and Kidney Diseases have identified methods of increasing fetal hemoglobin by increasing the expression of Lin28 or decreased expression of let-7 micro-RNAs. The lead inventor and colleagues have developed novel lentiviral expression vectors containing hemoglobin regulators under the control of erythroid-specific promoters that can be used to increase Hbf expression without affecting the maturity of red blood cells. In addition, they have found, through the use of tough decoy inhibition of Let-7 micro-RNAs, a selection of Let-7 genes with greater involvement in Hbf expression. This technology could lead to development of novel Hbf induction therapies that reactivate and reduce the aberrant pathologies associated with human sickle-cell anemia and beta thalassemia. Potential Commercial Applications:

- Ex vivo and in vivo therapeutics for treatment of sickle-cell anemia and beta thalassemias.
- Potential use in combination with other transduction methods for unique therapeutic strategies.

Competitive Advantages:

- Reduced production of symptom-associated adult hemoglobin.
- Lin28 overexpression at defined stage of hematopoietic cell development.
- Therapeutic increases in patient Hbf expression at lower viral titers than current direct transduction methods.
- Improved safety and reduced toxicity as a result of erythroid-specific expression.

Development Stage:

- Early-stage
- In vitro data available
- In vivo data available (animal)

Inventors: Jeffery L. Miller, Yuanwei T. Lee, Jaira F. de Vasconcellos, Colleen K. Byrnes (all of NIDDK)

Licensing Contact: Vince Contreras, Ph.D.; 301–435–4711; contrerasv@mail.nih.gov

Collaborative Research Opportunity: The National Institute of Diabetes and Digestive and Kidney Diseases is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize this technology. For collaboration opportunities, please contact Marguerite J. Miller at millermarg@niddk.nih.gov or 301–496–9003.

T Cell-Based Adoptive Transfer Immunotherapy for Polyomavirus-Associated Pathologies

Description of Technology: Available for licensing are methods to generate T cells responsive to multiple polyomaviruses. The resulting T cell populations could be useful in treating immunosuppressed individuals with polyomavirus infections or polyomavirus-associated pathologies such as Merkel cell carcinoma (MCC), polyomavirus-associated nephropathy (PVAN), hemorrhagic cystitis,
progressive multifocal leukoencephalopathy (PML), and trichodyspyaslasia spinulosa (TS). The methods could also be used to restore polymavirus-specific immunity in immunocompromised individuals.

Potential Commercial Applications: Immunotherapy for immunosuppressed individuals with polymavirus-associated pathologies.

Competitive Advantages: Methods allow development of polymavirus antigen-specific T cells.

Development Stage:

• Early-stage

• In vitro data available

Inventors: John A. Barrett (NHLBI), Dhanalakshmi Chinnasamy (NHLBI), Pawel J. Muranski (NHLBI), Christopher B. Buck (NCI)

Related Technologies:

• HHS RefReference No. E–168–2011

• HHS Reference No. E–549–2013

Licensing Contact: Patrick McCue, Ph.D.; 301–435–5560; mccuepat@od.nih.gov

Collaborative Research Opportunity: The National Heart, Lung, and Blood Institute is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize methods to generate T cells responsive to multiple polymaviruses. For collaboration opportunities, please contact Dr. Vincent Kolesnitchenko at kolesniv@nmlb.nih.gov

89Zr-Oxine Complex for In Vivo PET Imaging of Labelled Cells and Associated Methods

Description of Technology: This technology relates to a Zirconium-89 (**89**Zr)-oxine complex for cell labeling, tracking of labeled cells by whole-body positron emission tomography (PET) computed tomography (PET/CT) imaging, and associated methods. A long half-life of **89**Zr (78.4 hours), high sensitivity of PET and absence of background signal in the recipient enable tracking cells over a week using low levels of labeling radioactivity, without causing cellular toxicity. The **89**Zr-oxine complex is synthesized quickly by mixing components at room temperature and produces high yields. Cell labeling is achieved by a short, room temperature incubation. The **89**Zr-oxine complex is capable of labeling a wide range of cell types of therapeutic or pathogenic relevance (natural, disease, engineered cells), independent of factors such as cell cycle or receptor expression. The label is retained during cell division. **89**Zr-oxine labeled cells can also be easily cross labeled (for example, optically or magnetically) for multi-modality imaging and analysis. Labeled cell migration and kinetics can be analyzed and quantified in vivo over a week, improving research strategies and ability to develop and improve cell therapies and diagnostics.

Potential Commercial Applications: Cell therapies and diagnostics.

Competitive Advantages: Simple preparation, broadly applicable cell label, high resolution imaging and monitoring over period of a week, low toxicity, easily combined with labeling technologies and cell therapies.

Development Stage: In vivo data available (animal).

Inventors: Noriko Sato (NCI), Haitao Wu (NHLBI), Gary L. Griffiths (NCI), Peter L. Choyke (NCI)

Publications:

Licensing Contact: Edward (Tedd) Fenn: 424–297–0336; Tedd.fenn@nih.gov

Collaborative Research Opportunity: The National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate or commercialize cell labeling, cell tracking, cell trafficking, cell-based therapy. PET imaging. For collaboration opportunities, please contact John D. Hewes, Ph.D. at john.hewes@nih.gov or 240–276–5515.

Dated: February 18, 2015.

Richard U. Rodriguez,
Acting Director, Office of Technology Transfer, National Institutes of Health.

[FR Doc. 2015–03779 Filed 2–24–15; 8:45 am]
BILLING CODE 4140–01–P

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Center for Scientific Review; Notice of Closed Meetings

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of the following meetings.

The meetings will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: Center for Scientific Review Special Emphasis Panel; Member Contact: Autoimmunity Transplantation Intolerance.

Date: March 11, 2015.

Time: 3:00 p.m. to 7:00 p.m.

Agenda: To review and evaluate grant applications.

Place: National Institutes of Health, 6701 Rockledge Drive, Bethesda, MD 20892, (Telephone Conference Call).

Contact Person: Betty Hayden, Ph.D., Scientific Review Officer, Center for Scientific Review, National Institutes of Health, 6701 Rockledge Drive, Room 4206, MSC 7812, Bethesda, MD 20892, 301–435–1223, haydenb@csr.nih.gov.

Name of Committee: Center for Scientific Review Special Emphasis Panel; Topics in Drug Discovery and Mechanisms of Antimicrobial Resistance.

Date: March 13, 2015.

Time: 8:00 a.m. to 6:00 p.m.

Agenda: To review and evaluate grant applications.

Place: Residence Inn Bethesda, 7335 Wisconsin Avenue, Bethesda, MD 20814.

Contact Person: Guangyong Ji, Ph.D., Scientific Review Officer, Center for Scientific Review, National Institutes of Health, 6701 Rockledge Drive, Room 3211, MSC 7808, Bethesda, MD 20892, 301–435–1146, jgj@csr.nih.gov.

Name of Committee: Center for Scientific Review Special Emphasis Panel; Skeletal Muscle related SIBR/STTR.

Date: March 17, 2015.

Time: 1:00 p.m. to 4:00 p.m.

Agenda: To review and evaluate grant applications.

Place: National Institutes of Health, 6701 Rockledge Drive, Bethesda, MD 20892, (Telephone Conference Call).

Contact Person: Richard Ingraham, Ph.D., Scientific Review Officer, Center for Scientific Review, National Institutes of Health, 6701 Rockledge Drive, Room 4116, MSC 7814, Bethesda, MD 20892, 301–496–8551, ingrahamrh@mail.nih.gov.

Name of Committee: Center for Scientific Review Special Emphasis Panel; Program Project: Regulation of Cell Survival and Death Pathways by P53 Proteins.

Date: March 19–20, 2015.

Time: 11:00 a.m. to 5:00 p.m.

Agenda: To review and evaluate grant applications.

Place: National Institutes of Health, 6701 Rockledge Drive, Bethesda, MD 20892, (Virtual Meeting).