Use to Treat Cancer

Novel Furoquinolinediones as Inhibitors of TDP2 and Their Potential Use to Treat Cancer

Description of Technology: The invention relates to novel Furoquinolinediones derivatives and their ability to inhibit the enzyme tyrosyl-DNA phosphodiesterase 2 (TDP2), and therefore to serve as anti-cancer agents. Furthermore, these compounds can be used in combination with topoisomerase II (Top2) inhibitors, such as etoposide or doxorubicin, to more effectively kill cancer cells in a synergistic fashion.

Pharmaceutical compositions containing these novel Furoquinolinediones and methods of treatment comprising administering of such compositions are disclosed in the invention.

Potential Commercial Applications: Furoquinolinediones derivatives can potentially be utilized for cancer treatment either as stand alone or in combination with other drugs such as Top2 inhibitors.

Competitive Advantages: Combination therapies based on the association of a TDP2 and a Top2 inhibitor because of their synergistic effect should allow the decrease of the effective dosage. Their therapeutic benefit should be observed at non-toxic concentrations for normal cells as it has already been demonstrated for PARP inhibitors in BRCA-deficient tumors.

Development Stage: In vitro data available

Inventors: Christophe R. Marchand, Likun An, Yves G. Pommier (all of NCI)

Licensing Contact: Kevin Chang, Ph.D.; 301–435–5018; changke@mail.nih.gov

Transgenic Mouse Model of Human Open Angle Glaucoma

Description of Technology: Glaucoma is a group of chronic neurodegenerative disorders, which is characterized by progressive loss of retinal ganglion cells (RGC) and results in irreversible damage to optic nerve and thereby loss of vision. Primary open angle glaucoma (POAG) is the most common form of glaucoma; mutations in MYOC gene are the most common genetically defined cause of POAG. As such, MYOC transgenic mouse models are very useful to study MYOC-associated glaucoma and to develop therapies to treat these diseases.

The NIH inventors generated a new MYOC mouse model carrying a mutant human MYOC (Y437H) gene. The Y437H mutation is associated with a severe form of glaucoma among the identified MYOC mutations.

Potential Commercial Applications:
- Research tools
- Drug development for glaucoma

Development Stage: Prototype.

Inventors: Stanislav Tomarev (NEI), Yu Zhou (former NEI), Oleg Grinchuk (former NEI)

Publications:

DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Center for Scientific Review; Notice of Closed Meeting

Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of the following meeting.

The meeting will be closed to the public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated with the grant applications, the disclosure of which would constitute a clearly unwarranted invasion of personal privacy.

Name of Committee: Center for Scientific Review Special Emphasis Panel; PAR–12–095: Special Review

Date: May 6, 2015

Time: 11:00 a.m. to 12:00 p.m.

Agenda: To review and evaluate grant applications.

Place: National Institutes of Health, 6701 Rockledge Drive, Bethesda, MD 20892, (Telephone Conference Call)

Contact Person: Angela Y. Ng, Ph.D., MBA, Scientific Review Officer, Center for Scientific Review, National Institutes of Health, 6701 Rockledge Drive, Room 6200, MSC 7804, Bethesda, MD 20892, 301–435–1715, ng@csr.nih.gov

This notice is being published less than 15 days prior to the meeting due to the timing limitations imposed by the review and funding cycle.

Dated: April 28, 2015

Michelle Trout,

Program Analyst, Office of Federal Advisory Committee Policy.

[FR Doc. 2015–10272 Filed 5–1–15; 8:45 am]

BILLING CODE 4140–01–P