I. General Information

A. Does this action apply to me?

You may be potentially affected by this action if you are an agricultural producer, food manufacturer, or pesticide manufacturer. The following list of North American Industrial Classification System (NAICS) codes is not intended to be exhaustive, but rather provides a guide to help readers determine whether this document applies to them. Potentially affected entities may include:

- Crop production (NAICS code 111).
- Animal production (NAICS code 212).
- Food manufacturing (NAICS code 311).
- Pesticide manufacturing (NAICS code 32532).

B. How can I get electronic access to other related information?

C. How can I file an objection or hearing request?

Under FFDCA section 408(g), 21 U.S.C. 346a, any person may file an objection to any aspect of this regulation in accordance with the instructions provided in 40 CFR part 178. To ensure proper receipt by EPA, you must identify the docket number EPA–HQ–OPP–2015–0695, by one of the following methods:

- Hand Delivery: To make special arrangements for hand delivery or delivery of boxed information, please follow the instructions at http://www.epa.gov/dockets/contacts.html.

Additional instructions on commenting or visiting the docket, along with more information about dockets generally, is available at http://www.epa.gov/dockets.

II. Summary of Petitioned-For Tolerance

In the Federal Register of March 16, 2016 (81 FR 14030) (FRL–9942–86), EPA issued a document pursuant to FFDCA section 408(d)(3), 21 U.S.C. 346a(d)(3), announcing the filing of a pesticide petition (PP 5F8400) by Isagro S.P.A. (d/b/a Isagro USA, Inc.), 430 Davis Drive, Suite 240, Morrisville, NC 27560. That document provided notice that the petition requested that 40 CFR 180.557 be amended by establishing tolerances for residues of the fungicide tetraconazole, in or on Vegetable, Fruiting (Crop Group 8–10) at 0.30 parts per million (ppm) and Vegetable, Cucurbit (Crop Group 9) at 0.15 ppm. In the Federal Register of August 29, 2016 (81 FR 59165) (FRL–9950–22), EPA issued another document pursuant to FFDCA section 408(d)(3), 21 U.S.C. 346a(d)(3), announcing the remainder of that petition requesting revision of the existing tolerances for tetraconazole residues on beet, sugar, root to 0.15 ppm; beet, sugar, dried pulp to 0.20 ppm; and beet, sugar molasses to 0.25 ppm. Those documents referenced a summary of the petition prepared by Isagro S.P.A. (d/b/a Isagro USA, Inc.), the registrant, which is available in the docket, http://www.regulations.gov. There were no comments received in response to those notices of filing.

III. Aggregate Risk Assessment and Determination of Safety

Section 408(b)(2)(A)(i) of FFDCA allows EPA to establish a tolerance (the legal limit for a pesticide chemical residue in or on a food) only if EPA determines that the tolerance is “safe.” Section 408(b)(2)(A)(ii) of FFDCA defines “safe” to mean that “there is a reasonable certainty that no harm will result from aggregate exposure to the pesticide chemical residue, including all anticipated dietary exposures and all...
other exposures for which there is reliable information." This includes exposure through drinking water and in residential settings, but does not include occupational exposure. Section 408(b)(2)(C) of FFDCA requires EPA to give special consideration to exposure of infants and children to the pesticide chemical residue in establishing a tolerance and to "ensure that there is a reasonable certainty that no harm will result to infants and children from aggregate exposure to the pesticide chemical residue..." Consistent with FFDCA section 408(b)(2)(ID), and the factors specified in FFDCA section 408(b)(2)(ID), EPA has reviewed the available scientific data and other relevant information in support of this action. EPA has sufficient data to assess the hazards of and to make a determination on aggregate exposure for tetraconazole including exposure resulting from the tolerances established by this action. EPA’s assessment of exposures and risks associated with tetraconazole follows.

A. Toxicological Profile

EPA has evaluated the available toxicity data and considered its validity, completeness, and reliability as well as the relationship of the results of the studies to human risk. EPA has also considered available information concerning the variability of the sensitivities of major identifiable subgroups of consumers, including infants and children. The liver and kidney are the primary target organs of tetraconazole in all species in oral toxicity studies of sub-chronic and chronic durations. Following long-term oral exposure, tetraconazole caused liver tumors in mice in both sexes. In the acute neurotoxicity study, loss of motor activity in both sexes, and clinical signs including hunched posture, decreased defecation, and/or red or yellow material on various body surfaces were observed in females. There was no evidence of immunotoxicity or neurotoxicity following sub-chronic exposure. There were no systemic effects observed in the 21-day dermal toxicity study up to the highest dose tested. Tetraconazole did not show evidence of mutagenicity in in vitro or in vivo studies.

Oral rat and rabbit developmental toxicity studies showed no increased susceptibility of fetuses to tetraconazole. Maternal toxicity (decreased body weight gain and food consumption, increased water intake and increased liver and kidney weights) and developmental toxicity (increased incidence of small fetuses, supernumerary ribs and hydrouretert and hydrenephrosis) occurred at the same dose level in the rat study. No developmental toxicity was seen in the rabbit study, whereas maternal toxicity (decreased body weight gain) was noted at the highest dose tested. Similarly, there was no evidence of increased susceptibility of offspring in the 2-generation rat reproduction study.

In contrast to the oral studies where the most sensitive effects were in the liver and kidney, inhalation exposure of tetraconazole to rats resulted in portal-of-effects including: squamous cell metaplasia of the laryngeal mucous, mono-nuclear cell infiltration, goblet cell hyperplasia, hypertrophy of the nasal cavity and nasopharyngeal duct, and follicular hypertrophy of the thyroid in males. At the highest concentration tested, there were treatment-related increases in absolute lung weights in both sexes. Since the last risk assessment, a 28-day in vivo cancer mode-of-action study in mice was submitted and reviewed leading to the re-evaluation of tetraconazole’s cancer potential and classification. EPA has now classified tetraconazole as “Not likely to be carcinogenic to humans at levels that do not cause increased cell proliferation in the liver.” Quantification of carcinogenic potential is not required.

Specific information on the studies received and the nature of the adverse effects caused by tetraconazole as well as the no-observed-adverse-effect-level (NOAEL) and the lowest-observed-adverse-effect-level (LOAEL) from the toxicity studies can be found at http://www.regulations.gov in document “Human Health Risk Assessment for the Section 3 Registration for Application to Fruiting Vegetables (Crop Group 8) and Cucurbit Vegetables (Crop Group 9) and Amending the Sugar Beet Application Scenario and Tolerance” in docket ID number EPA–HQ–OPP–2015–0695.

B. Toxicological Points of Departure/Levels of Concern

Once a pesticide’s toxicological profile is determined, EPA identifies toxicological points of departure (POD) and levels of concern to use in evaluating the risk posed by human exposure to the pesticide. For hazards that have a threshold below which there is no appreciable risk, the toxicological POD is used as the basis for derivation of reference values for risk assessment. PODs are developed based on a careful analysis of the doses in each toxicological study to determine the dose at which no adverse effects are observed (the NOAEL) and the lowest dose at which adverse effects of concern are identified (the LOAEL). Uncertainty/safety factors are used in conjunction with the POD to calculate a safe exposure level—generally referred to as a population-adjusted dose (PAD) or a reference dose (RfD)—and a safe margin of exposure (MOE). For non-threshold risks, the Agency assumes that any amount of exposure will lead to some degree of risk. Thus, the Agency estimates risk in terms of the probability of an occurrence of the adverse effect expected in a lifetime. For more information on the general principles EPA uses in risk characterization and a complete description of the risk assessment process, see http://www.epa.gov/pesticides/factsheets/riskassess.htm.

A summary of the toxicological endpoints for tetraconazole used for human risk assessment is shown in Table 1 of this unit.

<table>
<thead>
<tr>
<th>Exposure/scenario</th>
<th>Point of departure and uncertainty/safety factors</th>
<th>RID, PAD, LOC for risk assessment</th>
<th>Study and toxicological effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute dietary (Females 13–50 years of age).</td>
<td>NOAEL = 22.5 mg/kg/day. UF = 10x UF* = 10x FQPA SF = 1x</td>
<td>Acute RfD = 0.225 mg/kg/day. aPAD = 0.225 mg/kg/day.</td>
<td>Developmental toxicity study (rat). Developmental LOAEL = 100 mg/kg/day based on increased incidence of small fetuses, supernumerary ribs, and hydrourteret and hydrenephrosis.</td>
</tr>
</tbody>
</table>
TABLE 1—SUMMARY OF TOXICOLOGICAL DOSES AND ENDPOINTS FOR TETRACONAZOLE FOR USE IN HUMAN RISK ASSESSMENT—Continued

<table>
<thead>
<tr>
<th>Exposure/scenario</th>
<th>Point of departure and uncertainty/safety factors</th>
<th>RfD, PAD, LOC for risk assessment</th>
<th>Study and toxicological effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute dietary (General population including infants and children).</td>
<td>NOAEL = 50 mg/kg/day, UF = 10x, FOPA SF = 1x</td>
<td>Acute RfD = 0.5 mg/kg/day, aPAD = 0.5 mg/kg/day.</td>
<td>Acute neurotoxicity (rat). LOAEL = 200 mg/kg/day due to decreased motor activity on day 0 in both sexes, and clinical signs in females including hunched posture, decreased defecation, and/or red or yellow material on various body surfaces. Chronic oral toxicity (dog). LOAEL = 2.95/3.33 (M/F) mg/kg/day, based on absolute and relative kidney weights and histopathological changes in the male kidney.</td>
</tr>
<tr>
<td>Chronic dietary (All populations)</td>
<td>NOAEL = 0.73 mg/kg/day, UF = 10x, FOPA SF = 1x</td>
<td>Chronic RfD = 0.0073 mg/kg/day, cPAD = 0.0073 mg/kg/day.</td>
<td>Chronic toxicities. LOAEL = 50 mg/kg/day due to decreased motor activity on day 0 in both sexes, and clinical signs in females including hunched posture, decreased defecation, and/or red or yellow material on various body surfaces. Chronic oral toxicity (dog). LOAEL = 2.95/3.33 (M/F) mg/kg/day, based on absolute and relative kidney weights and histopathological changes in the male kidney.</td>
</tr>
<tr>
<td>Dermal short-term (1 to 30 days) and dermal intermediate-term (1 to 6 months).</td>
<td>NOAEL not established, UF = 5x, UFH = 10x, UFadj = 10x</td>
<td>LOC = 300</td>
<td>28-Day Inhalation toxicity—rat. LOAEL = 1.3 mg/kg/day (0.0048 mg/kg/L, 0.0548 mg/L (rat)) for males and females, based on squamous cell metaplasia of laryngeal mucous, mononuclear cell infiltration, goblet hyperplasia and hypertrophy of nasal cavity and nasopharyngeal duct and follicular hypertrophy of thyroid in males.</td>
</tr>
<tr>
<td>Inhalation short-term (1 to 30 days) and inhalation intermediate-term (1 to 6 months).</td>
<td>NOAEL not established, UF = 5x, UFH = 10x, UFadj = 10x</td>
<td>LOC = 300</td>
<td>28-Day Inhalation toxicity—rat. LOAEL = 1.3 mg/kg/day (0.0048 mg/kg/L, 0.0548 mg/L (rat)) for males and females, based on squamous cell metaplasia of laryngeal mucous, mononuclear cell infiltration, goblet hyperplasia and hypertrophy of nasal cavity and nasopharyngeal duct and follicular hypertrophy of thyroid in males.</td>
</tr>
<tr>
<td>Cancer (Oral, dermal, inhalation).</td>
<td>Classification: “Not likely to be carcinogenic to humans at levels that do not cause increased cell proliferation in the liver.” Quantification of carcinogenic potential is not required (TXR #0056628, J. Rowland et al., 2-Apr-2015).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FQPA SF = Food Quality Protection Act Safety Factor. LOAEL = lowest-observed-adverse-effect-level. LOC = level of concern. mg/kg/day = milligram/kilogram/day. NOAEL = no-observed-adverse-effect-level. PAD = population adjusted dose (a = acute, c = chronic). RfD = reference dose. UFA = extrapolation from animal to human (interspecies). UFH = potential variation in sensitivity among members of the human population (intraspaces). UFadj = use of a LOAEL to extrapolate a FQPA SF.

C. Exposure Assessment

1. Dietary exposure from food and feed uses. In evaluating dietary exposure to tetraconazole, EPA considered exposure under the petitioned-for tolerances as well as all existing tetraconazole tolerances in 40 CFR 180.557. EPA assessed dietary exposures from tetraconazole in food as follows:

 i. Acute exposure. Quantitative acute dietary exposure and risk assessments are performed for a food-use pesticide, if a toxicological study has indicated the possibility of an effect of concern occurring as a result of a 1-day or single exposure. Such effects were identified for tetraconazole. In estimating acute dietary exposure, EPA used food consumption information from the United States Department of Agriculture (USDA) National Health and Nutrition Examination Survey, What We Eat in America, (NHANES/WWEIA). This dietary survey was conducted from 2003 to 2008. As to residue levels in food, EPA utilized residue data from field trials and feeding studies to obtain average anticipated residue levels of pesticide residues in food and the actual levels of pesticide residues that have been measured in food. If EPA relies on such information, EPA must require pursuant to FFDCA section 408(f)(1) that data be provided 5 years after the tolerance is established, modified, or left in effect, demonstrating that the levels in food are not above the levels anticipated. For the present action, EPA will issue such data call-ins as are required by FFDCA section 408(b)(2)(E) and authorized under FFDCA section 408(f)(1). Data will be required to be submitted no later than 5 years from the date of issuance of these tolerances.

 100 PCT were assumed for all food commodities for the acute analysis. The chronic analysis used percent crop treated for new uses (PCTn).

 Section 408(b)(2)(F) of FFDCA states that the Agency may use data on the actual percent of food treated for assessing chronic dietary risk only if:

 • Condition a: The data used are reliable and provide a valid basis to show what percentage of the food derived from such crop is likely to contain the pesticide residue.

 • Condition b: The exposure estimate does not underestimate exposure for any significant subpopulation group.

 • Condition c: Data are available on pesticide use and food consumption in a particular area, the exposure estimate does not underestimate exposure for the population in such area.

 In addition, the Agency must provide for periodic evaluation of any estimates used. To provide for the periodic evaluation of the estimate of PCT as required by FFDCA section 408(b)(2)(F), EPA may require registrants to submit data on PCT.
The Agency estimated the PCT for existing uses as follows:

Sugarbeet, 70%; field corn, 9%; and soybean, 5%.

In most cases, EPA uses available data from United States Department of Agriculture/National Agricultural Statistics Service (USDA/NASS), proprietary market surveys, and the National Pesticide Use Database for the chemical/crop combination for the most recent 6–7 years. EPA uses an average PCT for chronic dietary risk analysis. The average PCT for each existing use is derived by combining available public and private market survey data for that use, averaging across all observations, and rounding to the nearest 5%, except for those situations in which the average PCT is less than one. In those cases, 1% is used as the average PCT and 2.5% is used as the maximum PCT.

The Agency believes that the three conditions discussed in Unit III.C.1.iv. have been met. With respect to Condition a, PCT estimates are derived from Federal and private market survey data, which are reliable and have a valid basis. The Agency is reasonably certain that the percentage of the food treated is not likely to be an underestimation. As to Conditions b and c, regional consumption information and consumption information for significant subpopulations is taken into account through EPA’s computer-based model for evaluating the exposure of significant subpopulations including several regional groups. Use of this consumption information in EPA’s risk assessment process ensures that EPA’s exposure estimate does not understate exposure for any significant subpopulation group and allows the Agency to reasonably certain that no regional population is exposed to residue levels higher than those estimated by the Agency. Other than the data available through national food consumption surveys, EPA does not have available reliable information on the regional consumption of food to which tetaconazole may be applied in a particular area.

2. Dietary exposure from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for tetaconazole in drinking water. These simulation models take into account data on the physical, chemical, and fate/transport characteristics of tetaconazole. Further information regarding EPA drinking water models used in the exposure assessment can be found at http://www.epa.gov/oppefed1/models/water/index.htm.

Based on the Pesticide Root Zone Model/Exposure Analysis Modeling System (PRZM/EXAMS) and Pesticide Root Zone Model Ground Water (PRZM GW), the estimated drinking water concentrations (EDWCs) of tetaconazole for acute exposures are estimated to be 11 parts per billion (ppb) for surface water and 120 ppb for ground water. The estimated EDWCs of tetaconazole for chronic exposures for non-cancer assessments are estimated to be 5.5 ppb for surface water and 118 ppb for ground water.

Modeled estimates of drinking water concentrations were directly entered into the dietary exposure model.

For acute dietary risk assessment, the water concentration value of 120 ppb was used to assess the contribution to drinking water.

For chronic dietary risk assessment, the water concentration value of 118 ppb was used to assess the contribution to drinking water.

3. From non-dietary exposure. The term “residential exposure” is used in this document to refer to non-occupational, non-dietary exposure (e.g., for lawn and garden pest control, indoor pest control, termiteicides, and flea and tick control on pets). Tetaconazole is not registered for any specific use patterns that would result in residential exposure.

4. Cumulative effects from substances with a common mechanism of toxicity. Section 408(b)(2)(D)(v) of FFDCA requires that, when considering whether to establish, modify, or revoke a tolerance, the Agency consider “available information” concerning the cumulative effects of a particular pesticide’s residues and “other substances that have a common mechanism of toxicity.”

Tetaconazole is a member of the triazole-containing class of pesticides. Although conozoles act similarly in plants (fungi) by inhibiting sterol biosynthesis, there is not necessarily a relationship between their pesticidal activity and their mechanism of toxicity in mammals. Structural similarities do not constitute a common mechanism of toxicity. Evidence is needed to establish that the chemicals operate by the same, or essentially the same, sequence of major biochemical events (EPA, 2002). In the case of conozoles, however, a variable pattern of toxicological responses is found. Some are hepatotoxic and hepatocarcinogenic in mice. Some induce thyroid tumors in rats. Some induce developmental, reproductive, and neurological effects in rodents. Furthermore, the conozoles produce a diverse range of biochemical events including altered cholesterol levels, stress responses, and altered DNA methylation. It is not clearly understood whether these biochemical events are directly connected to their toxicological outcomes. Thus, there is currently no evidence to indicate that tetaconazole shares a common mechanism of toxicity with any other conazole pesticide, and EPA is not following a cumulative risk approach for this tolerance action. For information regarding EPA’s procedures for cumulating effects from substances found to have a common mechanism of toxicity, see EPA’s Web site at http://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/cumulative-assessment-risk-pesticides.

Tetaconazole is a triazole-derived pesticide. This class of compounds can form the common metabolite 1,2,4-triazole and two triazole conjugates (triazolylalanine and triazolylactic acid). To support existing tolerances and to establish new tolerances for triazole-derivative pesticides, including tetaconazole, EPA conducted a human health risk assessment for exposure to 1.2,4-triazole, triazolylalanine, and triazolylactic acid resulting from the use of all current and pending uses of any triazole-derived fungicide. The risk assessment is a highly conservative, screening-level evaluation in terms of hazards associated with common metabolites (e.g., use of a maximum combination of uncertainty factors) and potential dietary and non-dietary exposures (i.e., high end estimates of both dietary and non-dietary exposures).

The Agency retained a 3X for the LOAEL to NOAEL safety factor when the reproduction study was used. In addition, the Agency retained a 10X for the lack of studies including a developmental neurotoxicity (DNT) study. The assessment includes evaluations of risks for various subgroups, including those comprised of infants and children. The Agency’s complete risk assessment is found in the propiconazole reregistration docket at http://www.regulations.gov/, Docket Identification (ID) Number EPA–HQ–OPP–2005–0497.

An updated dietary exposure and risk analysis for the common triazole metabolites 1,2,4-triazole (T), triazolylalanine (TA), triazolylactic acid (TAA), and triazolylpyruvic acid (TP) was completed on April 9, 2015, in association with registration requests for several triazole fungicides, propiconazole, difenoconazole, and fluotriafol. The requested new uses of tetaconazole did not significantly change the dietary exposure estimates for free triazole or conjugated triazoles. Therefore, an updated dietary exposure...
analysis was not conducted. The April 9, 2015 update for triazoles may be found in docket ID number EPA–HQ–OPP–2014–0788.

D. Safety Factor for Infants and Children

1. In general. Section 408(b)(2)(C) of FFDCA provides that EPA shall apply an additional tenfold (10X) margin of safety for infants and children in the case of threshold effects to account for prenatal and postnatal toxicity and the completeness of the database on toxicity and exposure unless EPA determines based on reliable data that a different margin of safety will be safe for infants and children. This additional margin of safety is commonly referred to as the FQPA Safety Factor (SF). In applying this provision, EPA either retains the default value of 10X, or uses a different additional safety factor when reliable data available to EPA support the choice of a different factor.

2. Prenatal and postnatal sensitivity. There are no residual uncertainties for pre- and post-natal toxicity. There is no evidence of increased quantitative susceptibility of rat or rabbit fetuses to in utero exposure to tetraconazole. There is evidence of increased qualitative susceptibility to fetuses in the rat prenatal developmental toxicity study (increased incidences of supernumerary ribs, and hydroureter and hydronephrosis). The LOC is low however because the fetal effects were seen at the same dose as the maternal effects. Therefore, the FQPA SF was reduced to 1X. That decision is adequate to protect if the FQPA SF is no need for a developmental neurotoxicity study or additional uncertainty factors (UFs) to account for neurotoxicity.

iii. There is no evidence that tetraconazole results in increased susceptibility in in utero rats or rabbits in the prenatal developmental studies or in young rats in the 2-generation reproduction study. There is evidence of increased qualitative susceptibility to fetuses in the rat prenatal developmental toxicity study (increased incidences of supernumerary ribs, and hydroureter and hydronephrosis). The LOC is low however because:

- The fetal effects were seen at the same dose as the maternal effects,
- a clear NOAEL was established,
- the developmental NOAEL from a study in rats is being used as the POD for the acute dietary endpoint (females 13–49 years of age), and
- there were no developmental effects in the rabbit study. There is also no evidence of increased quantitative or qualitative susceptibility to offspring in the two-generation reproduction study.

iv. There are no residual uncertainties identified in the exposure databases. There are no residual uncertainties identified for pre- and post-natal toxicity in the exposure databases. Tolerance-level residues, 100 PCT, and modeled water estimates were incorporated into the acute dietary exposure analysis. Therefore, the acute analysis is highly conservative. The chronic and cancer dietary exposure analyses utilized empirical processing factors, average field trial residues, average residues from the feeding studies, percent crop treated estimates, and modeled drinking water estimates. EPA made conservative (protective) assumptions in the ground and surface water modeling used to assess exposure to tetraconazole in drinking water. These assessments will not underestimate the exposure and risks posed by tetraconazole.

E. Aggregate Risks and Determination of Safety

EPA determines whether acute and chronic dietary pesticide exposures are safe by comparing aggregate exposure estimates to the acute PAD (aPAD) and chronic PAD (cPAD). For linear cancer risks, EPA calculates the lifetime probability of acquiring cancer given the estimated aggregate exposure. Short-, intermediate-, and chronic-term risks are evaluated by comparing the estimated aggregate food, water, and residential exposure to the appropriate PODs to ensure that an adequate MOE exists.

1. Acute risk. Using the exposure assumptions discussed in this unit for acute exposure, the acute dietary exposure from food and water to tetraconazole will occupy 4.6% of the residential exposure to the appropriate PODs to ensure that an adequate MOE exists.

2. Chronic risk. Using the exposure assumptions described in this unit for chronic exposure, EPA has concluded that chronic exposure to tetraconazole from food and water will utilize 92% of the cPAD for all infants (<1 year old), the population group receiving the greatest exposure.

3. Short-term risk. Short-term aggregate exposure takes into account short-term residential exposure plus chronic exposure to food and water (considered to be a background exposure level). A short-term adverse effect was identified; however, tetraconazole is not registered for any use patterns that would result in short-term residential exposure. Short-term risk is assessed based on short-term residential exposure plus chronic dietary exposure. Because there is no short-term residual exposure and chronic dietary exposure has already been assessed under the appropriately protective cPAD (which is at least as protective as the POD used to assess short-term risk), no further assessment of short-term risk is necessary, and EPA relies on the chronic dietary risk assessment for evaluating short-term risk for tetraconazole.

4. Intermediate-term risk. Intermediate-term aggregate exposure takes into account intermediate-term residential exposure plus chronic exposure to food and water (considered to be a background exposure level). An intermediate-term adverse effect was identified; however, tetraconazole is not registered for any use patterns that would result in intermediate-term residential exposure. Intermediate-term risk is assessed based on intermediate-term residential exposure plus chronic dietary exposure. Because there is no intermediate-term residual exposure and chronic dietary exposure has already been assessed under the appropriately protective cPAD (which is at least as protective as the POD used to assess intermediate-term risk), no further assessment of intermediate-term risk is necessary, and EPA relies on the chronic dietary risk assessment for evaluating intermediate-term risk for tetraconazole.
5. Aggregate cancer risk for U.S. population. As discussed in Unit III.A., EPA has concluded that tetraconazole is “Not likely to be carcinogenic to humans at levels that do not cause increased cell proliferation in the liver.” Because the chronic endpoint is protective of cell proliferation in the liver, there is not likely to be a cancer risk from exposure to tetraconazole.

6. Determination of safety. Based on these risk assessments, EPA concludes that there is a reasonable certainty that no harm will result to the general population, or to infants and children from aggregate exposure to tetraconazole residues.

IV. Other Considerations

A. Analytical Enforcement Methodology

Adequate analytical methods are available to enforce the currently established tetraconazole plant and livestock tolerances (D280006, W. Donovan, 10-Jan-2002, D267481, 12-Oct-2000; D278236, W. Donovan, 22-Oct-2001). Iisago has also submitted adequate method validation and independent laboratory validation (ILV) data which indicates that the QuEChERS multi-residue method L00.00–115 (48135104.der) is capable of quantifying tetraconazole residues in/on a variety of fruit, cereal grain, root, oilseed, and livestock commodities.

The method may be requested from:
Chief, Analytical Chemistry Branch, Environmental Science Center, 701 Maps Rd., Ft. Meade, MD 20755–5350; telephone number: (410) 305–2905; email address: residumethods@epa.gov.

B. International Residue Limits

In making its tolerance decisions, EPA seeks to harmonize U.S. tolerances with international standards whenever possible, consistent with U.S. food safety standards and agricultural practices. EPA considers the international maximum residue limits (MRLs) established by the Codex Alimentarius Commission (Codex), as required by FFDCA section 408(b)(4). The Codex Alimentarius is a joint United Nations Food and Agriculture Organization/World Health Organization food standards program, and it is recognized as an international food safety standards-setting organization in trade agreements to which the United States is a party. EPA may establish a tolerance that is different from a Codex MRL; however, FFDCA section 408(b)(4) requires that EPA explain the reasons for departing from the Codex level.

The Codex has not established a MRL for tetraconazole.

C. Revisions to Petitioned-for Tolerances

EPA revised two commodity definitions for vegetable, fruiting, group 8–10 and vegetable, cucurbit, group 9.

V. Conclusion

Therefore, tolerances are established for residues of tetraconazole, in or on vegetable, fruiting, group 8–10 at 0.30 ppm and vegetable, cucurbit, group 9 at 0.15 ppm and revised for beet, sugar, root; beet, sugar, dried pulp; and beet, sugar, molasses.

VI. Statutory and Executive Order Reviews

This action establishes tolerances under FFDCA section 408(d) in response to a petition submitted to the Agency. The Office of Management and Budget (OMB) has exempted these types of actions from review under Executive Order 12866, entitled “Regulatory Planning and Review” (58 FR 51735, October 4, 1993). Because this action has been exempted from review under Executive Order 12866, this action is not subject to Executive Order 13211, entitled “Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use” (66 FR 26355, May 22, 2001) or Executive Order 13045, entitled “Protection of Children from Environmental Health Risks and Safety Risks” (62 FR 19885, April 23, 1997). This action does not contain any information collections subject to OMB approval under the Paperwork Reduction Act (PRA) (44 U.S.C. 3501 et seq.), nor does it require any special considerations under Executive Order 12898, entitled “Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations” (59 FR 7629, February 16, 1994).

Since tolerances and exemptions that are established on the basis of a petition under FFDCA section 408(d), such as the tolerance in this final rule, do not require the issuance of a proposed rule, the requirements of the Regulatory Flexibility Act (RFA) (5 U.S.C. 301 et seq.), do not apply. This action directly regulates growers, food processors, food handlers, and food retailers, not States or tribes, nor does this action alter the relationships or distribution of power and responsibilities established by Congress in the preemption provisions of FFDCA section 408(a)(4). As such, the Agency has determined that this action will not have a substantial direct effect on States or tribal governments, on the relationship between the national government and the States or tribal governments, or on the distribution of power and responsibilities among the various levels of government or between the Federal Government and Indian tribes. Thus, the Agency has determined that Executive Order 13132, entitled “Federalism” (64 FR 43255, August 10, 1999) and Executive Order 13175, entitled “Consultation and Coordination with Indian Tribal Governments” (65 FR 67249, November 9, 2000) do not apply to this action. In addition, this action does not impose any enforceable duty or contain any unfunded mandate as described under Title II of the Unfunded Mandates Reform Act (UMRA) (2 U.S.C. 1501 et seq.).

This action does not involve any technical standards that would require Agency consideration of voluntary consensus standards pursuant to section 12(d) of the National Technology Transfer and Advancement Act (NTTAA) (15 U.S.C. 272 note).

VII. Congressional Review Act

Pursuant to the Congressional Review Act (5 U.S.C. 801 et seq.), EPA will submit a report containing this rule and other required information to the U.S. Senate, the U.S. House of Representatives, and the Comptroller General of the United States prior to publication of the rule in the Federal Register. This action is not a “major rule” as defined by 5 U.S.C. 804(2).

List of Subjects in 40 CFR Part 180

Environmental protection, Administrative practice and procedure, Agricultural commodities, Pesticides and pests, Reporting and recordkeeping requirements.

Dated: December 14, 2016.
Daniel J. Rosenblat,
Acting Director, Registration Division, Office of Pesticide Programs.

Therefore, 40 CFR chapter I is amended as follows:

PART 180—[AMENDED]

1. The authority citation for part 180 continues to read as follows:

2. In the table in paragraph (a) of § 180.557:

a. Revise the commodities of “Beet, sugar, dried pulp”, “Beet, sugar, molasses”, and “Beet, sugar, root”; and

b. Add alphabetically the commodities of “Vegetable, cucurbit, group 9” and “Vegetable, fruiting, group 8–10” to read as follows:
§ 180.557 Tetraconazole; tolerances for residues.

(a) * * *

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Parts per million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beet, sugar, dried pulp</td>
<td>0.20</td>
</tr>
<tr>
<td>Beet, sugar, molasses</td>
<td>0.25</td>
</tr>
<tr>
<td>Beet, sugar, root</td>
<td>0.15</td>
</tr>
<tr>
<td>Vegetable, cucurbit, group 9</td>
<td>0.15</td>
</tr>
<tr>
<td>Vegetable, frutting, group 8–10</td>
<td>0.30</td>
</tr>
</tbody>
</table>

* * *

[FR Doc. 2016–31824 Filed 1–9–17; 8:45 am]
BILLING CODE 6560–50–P

DEPARTMENT OF THE INTERIOR
Bureau of Land Management

43 CFR Part 3160

[WO–300–L13100000.PP0000]

RIN 1004–AE37

Onshore Oil and Gas Operations; Federal and Indian Oil and Gas Leases; Onshore Oil and Gas Order Number 1, Approval of Operations

AGENCY: Bureau of Land Management, Interior.

ACTION: Final order.

SUMMARY: The Bureau of Land Management (BLM) hereby amends its existing Onshore Oil and Gas Order Number 1 (Onshore Order 1) to require the electronic filing (or e-filing) of all Applications for Permit to Drill (APD) and Notices of Staking (NOS).

Previously, Onshore Order 1 stated that an “operator must file an APD or any other required documents in the BLM Field Office having jurisdiction over the lands described in the application,” but allowed for e-filing of such documents as an alternative. This change makes e-filing the required method of submission, subject to limited exceptions. The BLM is making this change to improve the efficiency and transparency of the APD and NOS processes.

DATES: The final Order is effective on February 9, 2017.

FOR FURTHER INFORMATION CONTACT: Steven Wells, Division Chief, Fluid Minerals Division, 202–912–7143 for information regarding the substance of the final Order or information about the BLM’s Fluid Minerals Program. Persons who use a telecommunications device for the deaf (TDD) may call the Federal Relay Service at 1–800–877–8339 to contact the above individuals during normal business hours. The Service is available 24 hours a day, 7 days a week to leave a message or question with the above individuals. You will receive a reply during normal business hours.

SUPPLEMENTARY INFORMATION:

I. Background

The BLM regulations governing onshore oil and gas operations are found at 43 Code of Federal Regulations (CFR) part 3160, Onshore Oil and Gas Operations. Section 3164.1 provides for the issuance of Onshore Oil and Gas Orders to implement and supplement the regulations found in part 3160. Onshore Order 1 has been in effect since October 21, 1983, and was most recently revised in 2007 (see 72 FR 10308 (March 7, 2007)) as part of a joint effort with the Department of Agriculture and the Forest Service (FS), in response to new requirements imposed under Section 366 of the Energy Policy Act of 2005.

On July 29, 2016, the BLM published in the Federal Register a proposed Order that would revise sections III.A., III.C., III.E., and III.I. in Onshore Order 1. The Order proposed to require e-filing of all APDs and NOSs. The comment period for the proposed Order closed on August 28, 2016. This final Order adopts all of the revisions identified in the proposed Order.

Through this change, the BLM modifies Onshore Order 1 to require operators to submit NOSs and APDs through the e-filing system, Automated Fluid Mineral’s Support System (AFMSS II), as opposed to the previous system, which allowed either hardcopy or electronic submission. Under the final Order, the BLM will consider granting waivers to the e-filing requirement for individuals who request a waiver because they would experience hardship if required to e-file (e.g., if an operator is prevented from e-filing or is in a situation that would make e-filing so difficult to perform that it would significantly delay an operator’s APD submission).

The change to Onshore Order 1 that the BLM is implementing in this final Order will not affect other provisions of Onshore Order 1 that are not discussed in this preamble or the final rule. The e-filing of Onshore Order 1 provisions relating to the roles and responsibilities of the FS that are outlined in the 2007 rule. As a matter of practice, the FS will have the same access to the BLM’s e-filing system and the same user privileges as BLM employees to process APDs and NOSs electronically for wells proposed on National Forest Service (NFS) lands.

An APD is a request to drill an oil or gas well on Federal or Indian lands. An operator must have an approved APD prior to drilling. Prior to submitting an APD, an applicant may file an NOS requesting the BLM to conduct an onsite review of an operator’s proposed oil and gas drilling project. The purpose of an NOS is to provide the operator with an opportunity to gather information and better address site-specific resource concerns associated with a project while preparing its APD package. Operators are not required to submit an NOS prior to filing an APD.

The BLM has recently experienced a decrease in the number of APDs received due to changes in market conditions. Since 2009, the BLM received an average of about 5,000 APDs per year for wells on Federal and Indian lands, of which Indian lands account for about 16%. In FY 2015, the BLM received approximately 4,500 APDs. From October 1, 2015, through the end of September 2016 (FY 2016), the BLM estimates that it received only approximately 1,600 APDs. In coming years, due to the recent drop in oil prices and persistently low natural gas prices, the BLM conservatively estimates that an average of 3,000 APDs will be submitted per year. The BLM anticipates these market conditions to continue for the near term.

The available data show that use of the BLM’s e-filing system for APDs and NOSs is common and broad-based among operators, and therefore is not a novel concept. Specifically, over the last few years, roughly half of the APDs submitted to the BLM were submitted using the e-filing system (Well Information System, or WIS). The other half of the APDs were submitted in hard copy. More importantly, the data show that the use of e-filing has increased over time, with the rate nearly doubling from 26 percent in FY 2010 to 51 percent in FY 2014. As of 2014, approximately 411 operators had used the BLM’s WIS to e-file NOSs, APDs, well completion reports, sundry notices, and other application materials. Those operators represent an estimated 85 percent of the operators that conduct drilling and completion operations on Federal and Indian leases nationwide.

The BLM’s WIS system is a web-based application that operators could use to submit permit applications and other types of information electronically over