FOR FURTHER INFORMATION CONTACT: Taly Jolish, Assistant Regional Counsel, Office of Regional Counsel (ORC–3), Environmental Protection Agency, Region 9, 75 Hawthorne Street, San Francisco, CA 94105; tel: (415) 972–3925; fax: (415) 947–3570; Jolish.Taly@epa.gov.

SUPPLEMENTARY INFORMATION: Sycamore LLC is agreeing to perform a removal action to clean up soil and soil gas contaminated with chlorinated volatile organic compounds (VOCs), including tetrachloroethylene, trichloroethylene, and cis-1,2-dichloroethylene, and with aromatic VOCs, including benzene, toluene, and xylene. The removal action will reduce the risk to future users of the property and the surrounding community from exposure to contamination primarily caused by historical dry cleaning operations at the property. Under the terms of the settlement, Sycamore LLC will complete the removal action and pay EPA’s costs for oversight of the cleanup activities. In exchange, Sycamore LLC will receive a covenant not to sue from the United States.

EPA will consider all comments submitted by the date set forth above and may modify or withdraw its consent to the settlement if comments received disclose facts or considerations that indicate the proposed settlement is inappropriate, improper, or inadequate.

Dated: July 14, 2017.

Enrique Manzaniella, Director, Superfund Division, U.S. Environmental Protection Agency, Region 9.

BILLY CODE 6560–50–P

ENVIRONMENTAL PROTECTION AGENCY

Notice of Opportunity To Comment on an Analysis of the Greenhouse Gas Emissions Attributable to Production and Transport of Beta vulgaris ssp. vulgaris (Sugar Beets) for Use in Biofuel Production

AGENCY: Environmental Protection Agency (EPA).

ACTION: Notice.

SUMMARY: In this notice, the Environmental Protection Agency (EPA) is inviting comment on its analysis of the upstream greenhouse gas emissions attributable to the production of Beta vulgaris ssp. vulgaris (sugar beets) for use as a biofuel feedstock. This notice describes EPA’s greenhouse gas analysis of sugar beets produced for use as a biofuel feedstock, and describes how EPA may apply this analysis in the future to determine whether biofuels produced from sugar beets meet the necessary greenhouse gas reduction threshold required for qualification as renewable fuel under the Renewable Fuel Standard program. This notice considers a scenario in which non-cellulosic beet sugar is extracted for conversion to biofuel and the remaining beet pulp co-product is used as animal feed. Based on this analysis, we anticipate that biofuels produced from sugar beets could qualify as renewable fuel or advanced biofuel, depending on the type and efficiency of the fuel production process technology used.

DATES: Comments must be received on or before August 25, 2017.

ADDRESSES: Submit your comments, identified by Docket ID No. EPA–HQ–OAR–2016–0771, at http://www.regulations.gov. Follow the online instructions for submitting comments. Once submitted, comments cannot be edited or withdrawn from Regulations.gov. The EPA may publish any comment received to its public docket. Do not submit electronically any information you consider to be Confidential Business Information (CBI) or other information whose disclosure is restricted by statute. Multimedia submissions (audio, video, etc.) must be accompanied by a written comment. The written comment is considered the official comment and should include discussion of all points you wish to make. The EPA will generally not consider comments or comment contents located outside of the primary submission (i.e., on the web, cloud, or other file sharing system). For additional submission methods, the full EPA public comment policy, information about CBI or multimedia submissions, and general guidance on making effective comments, please visit https://www.epa.gov/dockets/commenting-epa-dockets.

FOR FURTHER INFORMATION CONTACT: Christopher Ramig, Office of Air and Radiation, Office of Transportation and Air Quality, Mail Code: 6401A, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue NW., Washington, DC 20460; telephone number: 202–564–1372; fax number: 202–564–1177; email address: ramig.christopher@epa.gov.

SUPPLEMENTARY INFORMATION:
This notice is organized as follows:

I. Introduction

II. Analysis of GHG Emissions Associated With Production and Transport of Sugar Beets for Use as a Biofuel Feedstock
A. Overview of Beta vulgaris ssp. vulgaris (Sugar Beets)
B. Analysis of Upstream GHG Emissions
1. Methodology and Scenarios Evaluated
2. Domestic Impacts
3. International Impacts
4. Feedstock Transport
5. Results of Upstream GHG Lifecycle Analysis
6. Fuel Production and Distribution
7. Risk of Potential Invasiveness

III. Summary

I. Introduction

Section 211(o) of the Clean Air Act establishes the renewable fuel standard (“RFS”) program, under which EPA sets annual percentage standards specifying the amount of renewable fuel, as well as three subcategories of renewable fuel, that must be used to reduce or replace fossil fuel present in transportation fuel, heating oil or jet fuel. With limited exceptions, renewable fuel produced at facilities that commenced construction after enactment of the Energy Independence and Security Act of 2007 (“EISA”), must achieve at least a twenty percent reduction in lifecycle greenhouse gas emissions as compared to baseline 2005 transportation fuel. Advanced biofuel and biomass-based diesel must achieve at least a fifty percent reduction, and cellulosic biofuel must achieve at least a sixty percent reduction.

As part of changes to the RFS program regulations published on March 26, 2010 1 (the “March 2010 RFS rule”) to implement EISA amendments to the RFS program, EPA identified a number of renewable fuel production pathways that satisfy the greenhouse gas reduction requirements of the Act. Table 1 to 40 CFR 80.1426 of the RFS regulations lists three critical components of approved fuel pathways: (1) Fuel type; (2) feedstock; and (3) production process. In addition, for each pathway, the regulations specify a “D code” that indicates whether fuel produced by the specified pathway meets the requirements for renewable fuel or one of the three renewable fuel subcategories. EPA may independently approve additional fuel pathways not currently listed in Table 1 to 40 CFR 80.1426 for participation in the RFS program, or a party may petition for EPA to evaluate a new fuel pathway in accordance with 40 CFR 80.1416. Pursuant to 40 CFR 80.1416, EPA received petitions from Green Vision Group, Tracy Renewable Energy, and Plant Sensory Systems, submitted under
partial claims of confidential business information (CBI), requesting that EPA evaluate the GHG emissions associated with biofuels produced using sugar beets as feedstock, and that EPA provide a determination of the renewable fuel categories, if any, for which such biofuels may be eligible.

EPA’s lifecycle analyses are used to assess the overall GHG impacts of a fuel throughout each stage of its production and use. The results of these analyses, considering uncertainty and the weight of available evidence, are used to determine whether a fuel meets the necessary GHG reductions required under the CAA for it to be considered renewable fuel or one of the subsets of renewable fuel. Lifecycle analysis includes an assessment of emissions related to the full fuel lifecycle, including feedstock production, feedstock transportation, fuel production, fuel transportation and distribution, and tailpipe emissions. Per the CAA definition of lifecycle GHG emissions, EPA’s lifecycle analyses also include an assessment of significant indirect emissions, such as indirect emissions from land use changes and agricultural sector impacts.

This document describes EPA’s analysis of the GHG emissions from feedstock production and feedstock transport associated with sugar beets when used to produce biofuel, including significant indirect impacts. This notice considers a scenario in which non-cellulosic beet sugar (primarily sucrose, glucose and/or fructose) is extracted for conversion to biofuel and the remaining beet pulp co-product is used as animal feed. As will be described in Section II, we estimate the GHG emissions associated with production and transport of sugar beets for use as a biofuel feedstock are approximately 45 kilograms of CO₂-equivalent per wet ton (kgCO₂e per wet ton) of sugar beets. Based on these results, we believe biofuels produced from sugar beets through recognized conversion processes can qualify as advanced biofuel and/or conventional (non-advanced) renewable fuel, depending on the type and efficiency of the fuel production process technology used. EPA is seeking public comment on its analysis of greenhouse gas emissions related to sugar beet feedstock production and transport. If appropriate, EPA will update this analysis based on comments received in response to this notice. EPA will use this updated analysis as part of the evaluation of facility-specific petitions received pursuant to 40 CFR 80.1416 that propose to use sugar beets as a feedstock for the production of biofuel.

Based on this information, EPA will determine the GHG emissions associated with petitioners’ biofuel production processes, as well as emissions associated with the transport and use of the finished biofuel. EPA will combine these assessments into a full lifecycle GHG analysis used to determine whether the fuel produced at an individual facility satisfies the CAA GHG emission reduction requirements necessary to qualify as renewable fuel or one of the subcategories of renewable fuel under the RFS program.

II. Analysis of GHG Emissions Associated With Production and Transport of Sugar Beets for Use as a Biofuel Feedstock

A. Overview of Beta vulgaris ssp. vulgaris (Sugar Beets)

Beta vulgaris ssp. vulgaris (commonly known as sugar beets) of the order Caryophyllales, is a widely cultivated plant of the Altissima group. Sugar beets are cultivated for their high percentage concentration of sucrose in their root mass. Domestication of the plant group took place approximately 200 years ago in Europe to selectively breed for sugar content from crosses between Beta vulgaris cultivars, including chard plants and fodder beets.

Sugar beets are a biennial crop species grown across a wide tolerance of soil conditions in areas of temperate climate, and tend to be grown in rotation with other plant varieties. Sugar beets are grown for their relatively high sugar content, approximately 13 to 18 percent of the plant’s total mass, with around three quarters of the plant mass comprised of water. Once harvested, sugar beets are highly perishable and need to be processed in a short period of time.

According to the U.S. Department of Agriculture (USDA), the largest region for sugar beet production is the area of the Red River Valley of western Minnesota and eastern North Dakota, and sugar beets are commonly grown at agricultural scale across five regions of the country, encompassing 11 states. Western regions tend to require more irrigation while sugar beets grown in the eastern U.S. region make greater use of natural rainfall.

Since the mid-1990s, sugar beets have accounted for about 55 percent of sugar production in the U.S. Sugar beets are included in the U.S. sugar program, designed to support domestic sugar prices through loans to sugar processors. The U.S. sugar program also includes a marketing allotment that sets the amount of sugar that domestic processors can sell in the U.S. for human consumption, and provides quotas on the amount of sugar that can be imported into the U.S. Sugar produced under the program cannot be used for biofuel purposes with an exception for surplus sugar made available under the USDA Feedstock Flexibility Program that specifically directs the excess sugar to be used for the purpose of domestic biofuel production.

Like other sugars, beet sugar can be fermented and used as a feedstock for biofuel production. The non-cellulosic sugars of sugar beets, the vast majority of which is sucrose, can be converted directly into a refined sugar available for processes such as alcoholic fermentation to produce biofuels (e.g., ethanol). Much of the water needed

2 For purposes of this notice, we assume that sugar beets have an average moisture content of 76%. See Food and Agriculture Organization, 1999, “Agriculture Handbooks Vol. 4 Sugar Beets/White Sugar”, http://www.responsibleagroinvestment.org/sites/responsibleagroinvestment.org/files/FAO_Aghbiz%20handbook_White%20Sugar_0.pdf (Last Accessed: January 4, 2017).

3 Assuming the fuel pathway proposed in such petitions involve extraction of non-cellulosic beet sugar for conversion to biofuel and use of the resulting beet pulp co-product as animal feed.

8 Michael J. McConnell, “USDA ERS—Background.”

9 Michael J. McConnell, “USDA ERS—Background.”

10 The U.S. sugar program is managed by USDA and supports domestic sugar prices through loans to sugar processors, a marketing allotment program, and quotas on the amount of sugar that can be imported to the U.S. Farm Security and Rural Investment Act of 2002. Public Law 107–171, Sec. 1401–1403.

for the fermentation process is provided by the sugar beets themselves. Sugar beet pulp is a fibrous co-product of the beet sugar extraction process. The sugar beet pulp is often dried to reduce transportation costs and is widely sold as feed supplement for cattle and other livestock. While biofuel production from beet sugar has historically been limited in the U.S., sugar beets accounted for about 17 percent of European ethanol production in 2014.

B. Analysis of Upstream GHG Emissions

EPA evaluated the upstream GHG emissions associated with using sugar beets as a biofuel feedstock based on information provided by USDA, petitioners, and other data sources. Upstream GHG emissions include emissions from production and transport of sugar beets used as a biofuel feedstock. The methodology EPA used for this analysis is generally the same approach used for the March 2010 RFS rule for lifecycle analyses of several other biofuel feedstocks, such as corn, soybean oil, and sugarcane. The subsections below describe this methodology, including assumptions and results of our analysis.

1. Methodology and Scenarios Evaluated

The analysis EPA prepared for sugar beets used the same set of models that were used for the March 2010 RFS rule, including the Forestry and Agricultural Sector Optimization Model (FASOM) developed by Texas A&M University for domestic impacts, and the Food and Agricultural Policy and Research Institute international models as maintained by the Center for Agricultural and Rural Development (FAPRI–CARD) at Iowa State University for international impacts. For more information on the FASOM and FAPRI–CARD models, refer to the March 2010 RFS rule preamble (75 FR 14670) and Regulatory Impact Analysis (RIA).

Several modifications were made to the domestic and international agricultural economic modeling that differed from previous analyses in order to accurately represent the U.S. sugar program. Memoranda to the docket include detailed information on model inputs, assumptions, calculations, and the results of our assessment of the upstream GHG emissions for sugar beet biofuels. We invite comments on the scenarios and assumptions used for this analysis, in particular on the key assumptions described in this section.

Sugar beets grown under the U.S. sugar program cannot be used for the purpose of biofuel production, except under very limited conditions specified in the Feedstock Flexibility Program. Therefore, for this analysis, EPA assumed that there would be no change in sugar production on U.S. sugar program-designated acres because of demand for beet sugar for biofuel feedstock use. In our modeling, growers selling sugar beets to sugar processors under the U.S. sugar program in the control case continued to do so regardless of new demand for sugar beets as a biofuel feedstock in the test case. As a result of this assumption, in our modeling, demand for acreage to grow sugar beets for biofuel feedstock could only be fulfilled by converting acres from other crops besides sugar beets, and/or from other land uses besides crop production (e.g., pastureland, Conservation Reserve Program land).

Our analysis also considers the significant restrictions on the trade of sugar beets between the U.S. and other countries. The U.S. does not export beet sugar, as this would violate the terms of the sugar program. While the U.S. does import cane sugar under international agreements, it does not import raw beet sugar.

25 To assess the impacts of an increase in renewable fuel volume from business-as-usual (what is likely to have occurred without the RFS biofuel mandates) to levels required by the statute, we established a control case and other cases for a number of biofuels. The control case included a projection of renewable fuel volumes that might be used to comply with the RFS renewable fuel volume mandates in full. The case is designed such that the only difference between the scenario case and the control case is the volume of an individual biofuel, all other volumes remaining the same. In the March 2010 RFS rule, for each individual biofuel, we analyzed the incremental GHG emission impacts of increasing the volume of that fuel from business as usual levels to the level of that biofuel projected to be used in 2022, together with other biofuels, to fully meet the CAA requirements. Rather than focus on the GHG emissions impacts associated with a specific gallon of fuel and tracking inputs and output lifecycle stages, we determined the overall aggregate impacts across sectors of the economy in response to a given volume change in the amount of biofuel produced. For this analysis we used the control case to the impacts in a new sugar beets case. The control case used for the March 2010 RFS rule, and used for this analysis, has zero gallons of sugar beet biofuel production.
and (2) a sugar beet biofuel case where 300 million ethanol-equivalent gallons of biofuels are assumed to be from beet sugar in 2022, requiring the use of 12 million wet short tons of sugar beets for biofuel production. The analysis presented in this notice considered all GHG emissions associated with the cultivation and production of sugar beets intended for biofuel feedstock use, as well as emissions from transporting these sugar beets to a biofuel production facility. In lifecycle analysis literature these emissions are often referred to as the “upstream” emissions, because they occur upstream of the fuel production facility (i.e., before the biofuel feedstock arrives at that facility).

The analysis presented in this notice does not include fuel production or “downstream” emissions, which consists of emissions associated with fuel transport and fuel combustion. Once comments on the upstream emissions described in this notice have been considered, we intend to combine the upstream analysis with the fuel production and downstream emissions associated with fuel produced at an individual biofuel facility to determine the lifecycle GHG emissions associated with that fuel. This lifecycle analysis would reflect any differences in emissions that may exist between producing different types of biofuels from sugar beets. Our analysis of the upstream emissions associated with sugar beets assumed that non-cellulosic sugars are extracted from the beets before the sugars are converted, and that the beet pulp would then be sold into feed markets. Fuel production methods that also convert the pulp into fuel (e.g., through pyrolysis of the beet) or use the pulp for other purposes may not be compatible with this analysis.

We evaluated a scenario with biofuels produced from this amount of sugar beets for multiple reasons. Although biofuel production from sugar beets is currently small in the U.S., recent trends in domestic sugar beet yields and acreage indicate that 12 million wet short tons of sugar beets could be produced as biofuel feedstocks if a significant market demand emerged. An additional 12 million wet short tons of sugar beets would represent a 34 percent increase in U.S. sugar beet cultivation compared to 2015 levels.26 According to USDA data, harvested acres of sugar beets since 2010 were, on average, about 30 percent lower than their most recent peak levels in the 1990s, an average difference of approximately 360,000 harvested acres.27 Increasing beet yields over time has reduced the number of acres needed to satisfy production targets under the U.S. sugar program.28 National average sugar beet yields since 2010 have been approximately 25 percent higher than yields during the 1990s, and reached almost 31 wet short tons per acre in the 2015 crop year.29 Were beet acres to return to their 1990s peak, the additional approximately 360,000 harvested acres would produce about 11.2 million wet short tons of beets at these 2015 yield levels. However, based on the steady increase in yields over time, it seems likely that beet yields will continue to increase between now and 2022. If national average beet yields reach at least 33.4 wet short tons per acre by 2022, a fairly modest increase of about 8 percent over 2015 levels, an additional 12 million wet short tons of beets could be produced on these additional 360,000 acres. Since further expansion of beet area beyond the historical peak is also possible, an increase in beet production of 12 million wet short tons appears to be very feasible. We welcome comment on this assumption.

In our analysis, FASOM allowed for sugar beet production in all areas of the continental 48 states where sugar beets had been grown historically, including states and areas that do not currently take part in the U.S. sugar program. The model was allowed to determine which of these regions would be optimal for growing sugar beet for biofuel feedstock, based on least cost of production and transport, and considering the opportunity cost of using that land for other uses (e.g., to produce other crops, grazing, forestry). The factors that contributed to these crop production choices include crop yield, input quantities, and growing strategies. Following the methodology established in the March 2010 RFS rule, EPA used the FAPRI model to evaluate the international impacts of producing and transporting 12 million wet short tons of sugar beets for biofuel production in the U.S. The FAPRI model included a representation of the U.S. sugar program, and modeled domestic sugar production as a function of this program. Production and consumption levels in the U.S. were set according to the parameters of the sugar program and were not affected by market forces. Because the existing U.S. sugar production module in FAPRI did not respond to market forces, for modeling purposes EPA had to make assumptions regarding in which regions sugar beets for biofuel feedstock use would be grown. Crop yields and the quantity of crop area displaced by expanded sugar beet production also had to be set by assumption, since the U.S. sugar module in FAPRI lacks market forces to create demand-pull for new beet acres. In order to derive the quantity of crop area displaced, EPA used a crop yield of approximately 26 wet short tons per acre, the 10-year national average yield for sugar beets (for crop years 2005 through 2014).30 Actual yields on any given acre may be higher or lower than this assumed value, based on factors such as location, annual variation in growing conditions, growing practices, and crop rotation strategies. Because the FAPRI analysis assumed to displace acres in North Dakota and California, we did not believe that it was appropriate to use the USDA 2022 national average projections for sugar beets yield. As an alternative, EPA believes using the 10-year national average was a reasonable assumption for our international agricultural sector modeling. The increase in sugar yield trends over the last few decades suggests that future yields are unlikely to be lower than the 10-year average. As further support for our yield assumptions in FAPRI, we note that FASOM projected sugar beet yields in 2022 that are close to the assumptions used in FAPRI.31 We welcome comment on this assumption.

For the purposes of FAPRI modeling, EPA assumed that sugar beets for fuel use would be produced in equal amounts in North Dakota and California for the following reasons: At the onset of our analysis, these were the regions with indications of significant sugar beet biofuel interest.32 They are also

31 See “Sugar Beets for Biofuel Upstream Analysis Technical Memorandum” in the docket for details.
32 At the time of this modeling we had received the petitions from Green Vision Group proposing to produce ethanol from sugar beets grown in North Dakota and Tracy Renewable Energy proposing to produce ethanol from sugar beets grown in California but we had not received the petition from... Continued
both regions with a long history of sugar beet production. As a simplifying assumption, EPA assumed that all crops grown in each of these regions were displaced by sugar beets proportionally to their crop area in the control case. We recognize there are significant differences in the way the sugar beet biofuel scenarios were implemented in FASOM and FAPRI for this analysis. For example, FASOM chose to produce all sugar beets for biofuels in North Dakota, whereas in FAPRI we modeled this production in North Dakota and California by assumption. Since these modeling exercises occurred concurrently, not sequentially, we could not anticipate what choices FASOM would make at the outset of our FAPRI modeling. This led to some differences in the regions utilized to produce beets. However, the nationwide agricultural market results projected by FASOM and FAPRI were similar, due to similar dominant trends in feed markets and crop exports at the national level. The similarity of these relevant national market results between the two models, despite differences in U.S. growing regions, indicates that the international impacts projected by the FAPRI model would not have been significantly different if we had applied the growing assumptions from FASOM. These results are discussed below and are available in the docket for this notice.33 We welcome comment on these assumptions and our results.

The sugar beet scenario modeled included a number of key assumptions, such as biofuel and pulp yields per wet short ton of beets, and the amount of corn livestock feed displaced per pound of pulp. These key assumptions are discussed below. Information on additional assumptions, including sugar beet crop inputs (e.g., fertilizer, energy) is available in the docket for this notice.

In conducting research for this analysis, we located sources for beet pulp yield of 0.06 short tons of sugar beet pulp per wet short tons of sugar beets and displacement rates of 0.9 pounds of corn feed displaced in cattle diets,35 for every pound of sugar beet pulp. In livestock production, the fibrous sugar beet pulp is used as a roughage replacement making it of use primarily for ruminants rather than other types of livestock.36 In our analysis, sugar beet pulp use by the livestock market was an important factor leading to GHG reductions. Therefore this notice evaluates only the use of non-cellulosic portion of sugar beets for biofuel production.

2. Domestic Impacts

On the basis of least cost, FASOM chose to grow all sugar beets in North Dakota, with approximately 477,000 acres of land required to grow the additional sugar beets.

The vast majority of the new sugar beet acres in North Dakota was from displacement of other crops rather than from new cropland (432,000 acres from displaced crops, or nearly 91 percent of needed acres). Increasing sugar beet production in North Dakota primarily displaced wheat acreage, but also soybeans, corn, and hay among other crops.37 Most of these displaced crops shifted to other U.S. regions, and some crops, such as soybeans, shifted to new acreage that was more productive than the North Dakota acres from where they were displaced. Table II.1 indicates that production levels for hay, soy, and most other crops are maintained.38 However, national crop area and production for wheat and corn declined significantly.

![Table II.1—Changes in U.S. Production (Million Pounds) and Harvested Area (Thousand Acres) in 2022 Relative to Control Case](image)

<table>
<thead>
<tr>
<th>Crop</th>
<th>Production Difference from Control Case (Million Pounds)</th>
<th>Harvested Area Difference from Control Case (Thousand Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar Beets</td>
<td>+23,976</td>
<td>+477</td>
</tr>
<tr>
<td>Hay</td>
<td>+8</td>
<td>-106</td>
</tr>
<tr>
<td>Corn</td>
<td>-867</td>
<td>-96</td>
</tr>
<tr>
<td>Wheat</td>
<td>-352</td>
<td>-98</td>
</tr>
<tr>
<td>All Else</td>
<td>-3</td>
<td>-56</td>
</tr>
<tr>
<td>Total</td>
<td>+22,768</td>
<td>+121</td>
</tr>
</tbody>
</table>

3. International Impacts

In the FAPRI model, the expansion of sugar beet cropland used to produce biofuel feedstock also led to increases in corn exports and decreases in wheat exports. Similar to the drivers of the

33 Totals may differ from subtotals due to rounding.
35 To make a simplifying assumption, we averaged the value from corn in backgrounding diets and finishing diets. Lardy, Greg, and Rebecca Schahar, “Feeding Sugar Beet Byproducts to Cattle,” North Dakota State University, May 2008, pp. 2.
37 Soy is captured in the “All Else” category in Table II.1. See “FASOM Sugar Beets Results” in the docket EPA–HQ–OAR–2016–0771 for more detail.
domestic results discussed in Section II.B.2, best production displaced wheat acres, but the beet pulp co-product reduced domestic demand for corn. Further, the magnitude of these export impacts was quite similar between the two models, as shown in Table II.2 below.40

Table II.2—Changes in U.S. Corn and Wheat Exports in 2022 Relative to Control Case by Model

<table>
<thead>
<tr>
<th></th>
<th>Difference from control case in FASOM</th>
<th>Difference from control case in FAPRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>+307</td>
<td>+355</td>
</tr>
<tr>
<td>Wheat</td>
<td>-292</td>
<td>-281</td>
</tr>
</tbody>
</table>

With sugar beet pulp displacing corn feed, FAPRI modeling indicated that in 2022, both corn production and acreage would decline globally. Production outside the U.S. of certain other crops however increased in response to U.S. increasing demand for sugar beets; most significantly wheat and soybeans. Wheat increased internationally in terms of both production and acreage, with a strong response particularly in India. Soybean acres and production also increased, particularly in Brazil. Table II.3 below summarizes the non-U.S. increases in harvested area by crop type, while Table II.4 shows which countries had the largest impacts.

Table II.3—Non-U.S. Harvested Area by Crop in 2022 Relative to Control Case—Continued

<table>
<thead>
<tr>
<th></th>
<th>[Thousand acres]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybeans</td>
<td>+20</td>
</tr>
<tr>
<td>All Else</td>
<td>+37</td>
</tr>
<tr>
<td>Total</td>
<td>+55</td>
</tr>
</tbody>
</table>

As increasing sugar beet pulp use for livestock feed in the U.S. freed up more corn for export, international livestock feed prices declined modestly, and with it a small rise in meat production globally. Many of these changes occurred in Brazil and this caused some expansion in grazing land, including in the Amazon region. This caused further international land use change impacts, as shown in Table II.4 below.

Table II.4—Non-U.S. Changes in Agricultural Land by Region in 2022 Relative to Control Case

<table>
<thead>
<tr>
<th></th>
<th>Change in area harvested</th>
<th>Change in pasture acres</th>
<th>Total change in acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>+9</td>
<td>+20</td>
<td>+29</td>
</tr>
<tr>
<td>India</td>
<td>+15</td>
<td></td>
<td>+15</td>
</tr>
<tr>
<td>Rest of Non-USA</td>
<td>+32</td>
<td></td>
<td>+32</td>
</tr>
<tr>
<td>Total Non-USA</td>
<td></td>
<td></td>
<td>+75</td>
</tr>
</tbody>
</table>

4. Feedstock Transport

When harvested, sugar beets are heavy and perishable; therefore, transport of sugar beets from field to processing site is expected to occur over short distances. Information from stakeholders and literature states that sugar beets used for biofuels are shipped by truck from point of production to the plant with typical distances for transport around 30 miles.43 GHG emissions for the transport of sugar beets are based on emission factors developed for the March 2010 RFS rule for trucks including capacity, fuel economy, and type of fuel used.44

5. Results of Upstream GHG Lifecycle Analysis

As described above, EPA analyzed the GHG emissions associated with feedstock production and transport. Table II.5 below breaks down by stage the calculated GHG upstream emissions for producing biofuels from sugar beets in 2022.

Table II.5—Upstream GHG Lifecycle Emissions for Sugar Beets

<table>
<thead>
<tr>
<th>Process</th>
<th>Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Agriculture (w/o land use change)</td>
<td>+21,615</td>
</tr>
<tr>
<td>Domestic Land Use Change</td>
<td>-882</td>
</tr>
<tr>
<td>International Land Use Change, Mean (Low/High)</td>
<td>+16,038</td>
</tr>
</tbody>
</table>

40 Impacts on the exports of other crops were relatively minor, but interested readers can examine the full set of FAPRI crop trade impacts in the docket.
41 These totals do not include pastureland in Brazil. Totals may differ from subtotals due to rounding.
Net agricultural emissions included domestic and international impacts related to changes in crop inputs such as fertilizer, energy used in agriculture, livestock production, and other agricultural changes in the scenario modeled. Increased demand for sugar beets resulted in positive net agricultural emissions relative to the control case. Compared with other crops, sugar beets required relatively high levels of agricultural chemical inputs (e.g., herbicides and pesticides). Domestic land use change emissions were close to zero for sugar beets, as described in Section II.B.2.

International land use change emissions increased as a result of demand for sugar beets. The increase in international land use change emissions for sugar beets was significantly larger than the decrease in domestic land use change emissions. This is because increased demand for sugar beets led to a significant reduction in key U.S. crop exports (e.g., wheat exports), but very little change in domestic consumption of agricultural goods. These greater international emissions led to a net increase in global land use change emissions. Feedstock transport included emissions from moving sugar beets from the farm to a biofuel production facility, as described in Section II.B.4 above.

6. Fuel Production and Distribution

Sugar beets are suitable for the same biofuel conversion processes as sugarcane. In Europe, where sugar beets are widely used as biofuel feedstock, virtually all of the fuel is non-cellulosic beet sugar ethanol produced through fermentation with the beet pulp sold into the feed markets. Based on these data, and on information from our petitioners and other stakeholders, EPA anticipates that most biofuel produced from sugar beets in the U.S. would also be from the non-cellulosic sugars via fermentation. Our upstream analysis would apply for all facilities where non-cellulosic beet sugar is converted to biofuel and the co-product beet pulp is used as animal feed.

Given the importance of the beet pulp co-product on the upstream GHG emissions associated with beet pulp, pathways that do not produce a beet pulp feed coproduct, or use it for purposes other than animal feed, may not be compatible with our analysis. EPA would likely need to conduct supplemental upstream GHG analysis in order to determine the lifecycle GHG emissions associated with fuels produced under these types of pathways.

After reviewing comments received in response to this action, EPA will combine the evaluation of upstream GHG emissions associated with the use of sugar beet feedstock with an evaluation of the GHG emissions associated with individual producers’ production processes and finished fuels to determine whether fuel produced at petioners’ facilities from the sugar in sugar beets satisfy the CAA lifecycle GHG emissions reduction requirements for renewable fuels. Each biofuel producer seeking to generate Renewable Identification Numbers (RINs) for non-grandfathered volumes of biofuel from sugar beets will need to submit a petition requesting EPA’s evaluation of their new renewable fuel pathway pursuant to 40 CFR 80.1416 of the RFS regulations, and include all of the information specified at 40 CFR 80.1416(b)[1]. Because EPA is evaluating the GHG emissions associated with the production and transport of sugar beet feedstock through this notice and comment process, petitioners requesting EPA’s evaluation of biofuel pathways involving sugar beet feedstock need not include the information for new feedstocks specified at 40 CFR 80.1416(b)[2]. Based on our evaluation of the upstream GHG emissions attributable to the production and transport of sugar beet feedstock, including our assumptions regarding the average yield of ethanol in mmBtu per wet short ton of sugar beets used, EPA anticipates that if a facility produces emissions of no more than approximately 23 kgCO2e/mmBtu of ethanol, the fuel produced would meet the 50 percent advanced biofuel GHG reduction threshold. If a facility produces no more than 53 kgCO2e/mmBtu of ethanol, EPA anticipates it would meet the 20 percent renewable fuel GHG reduction threshold. EPA will evaluate petitions for fuel produced from sugar beet feedstock on a case-by-case basis, and will make adjustments as necessary for each facility including consideration of differences in the yield of ethanol per wet short ton of sugar beets used.

7. Risk of Potential Invasiveness

Sugar beets were not listed on the Federal noxious weed list nor did they appear on USDA’s composite listing of introduced, invasive, and noxious plants by U.S. state. Based on consultation with USDA, EPA does not believe sugar beets pose a risk of invasiveness at this time. Current cultivars of sugar beets require extensive weed management to survive. However, USDA notes that future cross breeding, hybridization, and genetic manipulation could change the

<table>
<thead>
<tr>
<th>Feedstock Transport</th>
<th>Total Upstream Emissions, Mean</th>
<th>Process Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(gCO2-eq/wet short ton)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+8,183</td>
</tr>
<tr>
<td>(Low/High)</td>
<td></td>
<td>(+38,210/+52,588)</td>
</tr>
</tbody>
</table>

TABLE II.5—UPSTREAM GHG LIFECYCLE EMISSIONS FOR SUGAR BEETS

Notes:

46 Petitioners with pending petitions involving use of sugar from sugar beets as feedstock will not be required to submit new petitions. However, if any information has changed from their original petitions, EPA will request that they update that information.

47 In this case, emissions produced by the facility refers to fuel production emissions, including emissions associated with energy used for fuel, feedstock and co-product operations at the facility. For more details on the assumptions used in this analysis, see “Sugar Beets for Biofuel Upstream Analysis Technical Memorandum” in the docket. EPA–HQ–OAR–2016–0771.

48 For example, EPA may need to consider additional feedstock transportation emissions in cases where beet sugar extraction and biofuel production do not occur in the same location, as may be the case for biofuel produced under the USDA Feedstock Flexibility Program.

invasiveness potential of beets, in which case a re-evaluation may be required. Based on currently available information, EPA does not believe monitoring and reporting of data for invasiveness concerns would be a requirement for biofuel producers generating fuel from sugar beets at this time.

III. Summary
EPA invites public comment on its analysis of GHG emissions associated with the production and transport of sugar beets as a feedstock for biofuel production. This notice analyzes a non-cellulosic sugar beet-to-biofuel production process. Although EPA has not received a petition for cellulosic sugar beet biofuel production, the agency is aware of interest in this process and invites comment on the analysis of beet pulp and its effect on agricultural markets. EPA will consider public comments received when evaluating petitions received pursuant to 40 CFR 60.1416 that involve pathways using sugar beets as a feedstock.

Christopher Grundler,
Director, Office of Transportation and Air Quality. Office of Air and Radiation.

[FR Doc. 2017–15721 Filed 7–25–17; 8:45 am]
BILLING CODE 6560–50–P

ENVIRONMENTAL PROTECTION AGENCY

[FRL–9965–17–OA]

Notification of a Public Meeting of the Chartered Science Advisory Board

AGENCY: Environmental Protection Agency (EPA).

ACTION: Notice.

SUMMARY: The Environmental Protection Agency (EPA) Science Advisory Board (SAB) Staff Office announces a public meeting of the chartered SAB to: Conduct three quality reviews of (1) the SAB peer review of EPA’s Draft Assessment entitled Toxico logical Review of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX); (2) the draft SAB report on Economy-wide Modeling of the Benefits and Costs of Environmental Regulation and (3) the draft SAB review of the EPA’s Framework for Assessing Biogenic CO2 Emissions from Stationary Sources (2014); and receive briefings on SAB projects and future topics from the EPA.

DATE: The public meeting will be held on Tuesday, August 29, 2017, from 10:30 a.m. to 5:00 p.m. and Wednesday, August 30, 2017, from 9:00 a.m. to 1:00 p.m.

ADDRESS: The meeting will be held at the Residence Inn Arlington Capital View, 2850 South Potomac Ave., Arlington, VA 22202.

FOR FURTHER INFORMATION CONTACT: Any member of the public who wants further information concerning the meeting may contact Mr. Thomas Carpenter, Designated Federal Officer (DFO), EPA Science Advisory Board (1400R), U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue NW., Washington, DC 20460; via telephone/voice mail (202) 564–4885, or email at carpenter.thomas@epa.gov. General information concerning the SAB can be found on the EPA Web site at http://www.epa.gov/sab.

SUPPLEMENTARY INFORMATION:

Background: The SAB was established pursuant to the Environmental Research, Development, and Demonstration Authorization Act (ERDDAA), codified at 42 U.S.C. 4365, to provide independent scientific and technical advice to the Administrator on the scientific and technical basis for Agency positions and regulations. The SAB is a Federal Advisory Committee chartered under the Federal Advisory Committee Act (FACA), 5 U.S.C., App. 2. The SAB will comply with the provisions of FACA and all appropriate SAB Staff Office procedural policies. Pursuant to FACA and EPA policy, notice is hereby given that the SAB will hold a public meeting to discuss and deliberate on the topics below. The chartered SAB will conduct quality reviews of three draft reports. The SAB quality review process ensures that all draft reports developed by SAB panels, committees or workgroups are reviewed and approved by the Chartered SAB before being finalized and transmitted to the EPA Administrator. These reviews are conducted in a public meeting as required by FACA.

Quality Review of the draft SAB Review of EPA’s Draft Assessment entitled Toxico logical Review of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX): The National Center for Environmental Assessment (NCEA) in the EPA’s Office of Research and Development (ORD) develops toxico logical reviews/assessments for various chemicals for IRIS. NCEA is developing a draft IRIS assessment for Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and has asked the SAB to peer review the draft document. The draft will be a reassessment of RDX. NCEA’s draft Toxico logical Review of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) currently posted to the IRIS database includes an oral reference dose (RfD) (posted in 1988), and a cancer descriptor and oral cancer slope factor (posted in 1990). Epidemiological data, experimental animal data, and other relevant data from studies of the noncancer and cancer effects of RDX are being evaluated in this reassessment. The reassessment is expected to include an updated RfD and oral cancer assessment. Background on the current advisory activity, IRIS Assessment for Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) can be found on the SAB Web site at https://yosemite.epa.gov/sab/sabproduct.nsf/LookupWebProjects/CurrentBOARD/07e67cf754734285257b0004f784ed?OpenDocument.

Quality Review of the draft SAB report on Economy-wide Modeling of the Benefits and Costs of Environmental Regulation: The EPA requested that the SAB provide review of the EPA’s modeling and ability to measure full regulatory impacts and to make recommendations on the use of economy-wide modeling frameworks to characterize the social costs, benefits, and economic impacts of air regulations with the aim of improving benefit-cost and economic impact analyses used to inform decision-making at the agency. As a first step, the EPA has asked the SAB to provide feedback on its draft charge questions and analytic blueprint. Background on the current advisory activity, Economy-wide Modeling of the Benefits and Costs of Environmental Regulation can be found on the SAB Web site at https://yosemite.epa.gov/sab/sabproduct.nsf/lookupWebProjects/CurrentBOARD/07e67cf754734285257b0004f784ed?OpenDocument&TableRow=2.182.

Quality review of a draft SAB review report on the Framework for Assessing Biogenic CO2 Emissions from Stationary Sources: In 2012, the SAB completed a review of the first draft accounting framework addressing scientific and technical issues associated with biogenic carbon dioxide (CO2) emissions. Accounting Framework for Biogenic CO2 Emissions from Stationary Sources (September 2011). The EPA subsequently revised the 2011 framework and requested the SAB to conduct a review of the Framework for Assessing Biogenic CO2 Emissions from Stationary Sources (November 2014). The purpose of the 2014 framework is to develop a method for calculating the adjustment, or Biogenic Assessment Factor (BAF), for carbon emissions associated with the combustion of biogenic feedstocks taking into account the biological carbon cycle effects.