Neutralizing, Anti-HIV Antibody (35O22) That Binds a Novel Epitope

Description of Technology: Millions of people are infected with HIV–1 worldwide. In the U.S., there are about 30,000 new cases of HIV infection reported annually. Researchers at NIAID are actively investigating broadly neutralizing anti-HIV–1 antibodies which can be used as therapeutics or prophylactics for HIV infection.

NIAID and Scripps researchers have discovered a potent anti-HIV antibody (35O22) that binds a novel HIV epitope. This antibody neutralizes at least 80% of HIV isolates tested so far. The unique binding of 35O22 makes it an attractive candidate to combine with other HIV antibodies or antivirals in treating or preventing HIV infection.

This technology is available for licensing for commercial development in accordance with 35 U.S.C. 209 and 37 CFR part 404, as well as for further development and evaluation under a collaborative research.

Potential Commercial Applications:
• HIV–1 therapeutics
• HIV–1 prophylactics

Competitive Advantages:
• Unique epitope
• Broad neutralization of HIV isolates

Development Stage: Pre-Clinical.

Inventors: Mark Connors, John Mascola, Peter Kwong, Tongqing Zhou, Jinghe Huang, Byong Ha Kang, all of NIAID, NIH; Andrew Ward, Scripps Research Institute.


Intellectual Property: Not applicable.

Licensing Contact: Chris Kornak, 240–627–3705, chris.kornak@nih.gov.

Collaborative Research Opportunity: The Technology Transfer and Intellectual Property Office (TTIPO) is seeking parties interested in collaborative research to further develop 35O22 in combination with other NIAID antibodies. For collaboration opportunities, please contact Chris Kornak, 240–627–3705, chris.kornak@nih.gov.

Dated: September 12, 2017.

Suzanne Frisbie, Deputy Director, Technology Transfer and Intellectual Property Office. National Institute of Allergy and Infectious Diseases.