Eechnical Note
 ไo. 15

Boulder Laboratories

PREDICTION OF THE CUMULATIVE DISTRIBUTION WITH TIME OF GROUND WAVE AND TROPOSPHERIC WAVE TRANSMISSION LOSS
PART I-THE PREDICTION FORMULA BY P. L. RICE, A. G. LONGLEY, AND K. A. NORTON
U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

NATIONAL BUREAU OF STANDARDS

Technical Note

15
July, 1959

Prediction of the Cumulative Distribution with Time of Ground Wave and Tropospheric Wave Transmission Loss

Part 1 - The Prediction Formula

by

P. L. Rice, A. G. Longley and K. A. Norton

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature. They are for sale by the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C.

This Technical Note was originally given limited distribution as NBS Report No. 5582, dated June 30, 1958. There have been some minor corrections and additions, including more graphs of some functions in order to simplify the calculations. Also added here is a figure showing deviations of all of the currently available forward scatter data from predicted values; the theory itself was used to eliminate, insofar as this is feasible, those long-term median values influenced by diffraction.

The following reports which depend upon the prediction methods described in this Technical Note are now being prepared for publication:
(1) A. P. Barsis, K. A. Norton, and P. L. Rice, "Predicting the Performance of Long Distance Tropospheric Communication Circuits."
(2) A. P. Barsis, P. L. Rice, and K. A. Norton, "The Use of Measurements in Predicting the Performance of Tropospheric Communication Circuits."

The recent report* of the Television Allocations Study Organization to the Federal Communications Commission, "Engineering Aspects of Television Allocations," includes smooth earth curves of field strength versus distance calculated using the methods of this Technical Note, as well as comparisons with data obtained over land at VHF and UHF. This TASO report also includes estimates of long-term variability as a function of distance, antenna height, and frequency, rather than angular distance. For angular distances less than 10 milliradians and for line-of-sight distances, the estimates prepared for TASO are better than those given in this Note.

Within a year it is hoped to submit for publication in the NBS Journal of Research, Part D, a detailed explanation of the prediction methods of this Technical Note, greatly simplified without loss of accuracy, and including a discussion of the theory. At that time, improved estimates of long-term variability will also be made available, with an explanation of how they were obtained from the data.

NBS Technical Note No. 12, "Transmission Loss in Radio Propagation - II", by K. A. Norton and the paper "System Loss in Radio Propagation," by K. A. Norton, J. Research, NBS, 63D, pp. 53-73, July August, 1959, both contain examples of the use of the methods of calculation given in this Technical Note.

[^0]
Prediction of the Cumulative Distribution with Time of Ground Wave and Tropospheric Wave Transmission Loss

Part I - The Prediction Formula

by
P. L. Rice, A. G. Longley, K. A. Norton

This report describes a method for predicting the cumulative distribution with time of transmission loss at frequencies above 10 megacycles per second over paths of arbitrary length. The method makes use of available information about terrain profiles and surface meteorological data, and is based on the CRPL radio standard atmospheres, in which the radio refractive index decreases linearly with height for the first kilometer above ground, and then decreases exponentially with height 1/. Discussion of the theoretical basis for this formula and a demonstration of its accuracy by comparison with experimental data are reserved for later parts of this report.

1. Introduction

Terrain irregularities, climate, and weather play principal roles in determining the strength and fading properties of a tropospheric signal. Estimates of transmission loss $\underline{2}^{/}$and its long-term and shortterm variability are essential to the design and allocation of military and commercial communication links and broadcasting and navigational facilities.

Until fairly recently, distances much beyond the horizon of a radio transmitting antenna were considered too great for useful communication links at frequencies above 100 megacycles per second. This particular range of distance, the extra-diffraction region out to about 1,000 miles, is important in the application of tropospheric forward scatter techniques, and our prediction formula is especially reliable in this range. For propagation paths longer than 1,000 miles, only the ionosphere will support measurable scatter signals. For distances well beyond the horizon in the frequency range above 100 Mc , observed scatter signals are tropospheric. The present usefulness of the
ionospheric scatter mechanism ceases at about $60 \mathrm{Mc} \underline{3 /}$, while tropospheric propagation promises to be useful for communication purposes for frequencies between 40 Mc and about $10,000 \mathrm{Mc} 4 /$.

At these frequencies and out to distances just beyond the radio horizon of a transmitter, the dominant propagation mechanism is diffraction. An earlier report by Norton, Rice, and Vogler 5/ gives a formula for calculating transmission loss due to diffraction over rough terrain profiles.

At greater distances, the dominant propagation mechanism is usually forward scatter 6/, especially during winter afternoon hours when strong ducts or elevated layers are rare. During these hours, observed transmission losses are in excellent agreement with forward scatter theory.

Cften, for other times of day and seasons of the year, the scatter phenomenon may more properly be called reflection, and sometimes no distinction can be made between "forward scatter" from a turbulent atmosphere 6/ and the addition of "incoherent reflections" from patchy elevated layers 7/. The examination of transmission loss variations over a particular path during some period for which detailed information about layer heights and intensities is available can be very illuminating 8/. The prediction method described here gives good estimates of results to be expected over such paths when only surface meteorological data are available. Median diffraction and scatter fields estimated for winter afternoons are combined and then converted empirically to estimates for other periods of time.

2. Definition of Transmission Loss

Transmission loss, L, is defined as the ratio expressed in decibels of the power, p_{r}, radiated from a transmitting antenna to the power, P_{a}, available from the receiving antenna:

$$
\begin{equation*}
\mathrm{L}=10 \log _{10}\left(\mathrm{p}_{\mathrm{r}} / \mathrm{p}_{\mathrm{a}}\right) \tag{2,1}
\end{equation*}
$$

It is convenient to express the results of propagation measurements and theoretical calculations in terms of the "basic transmission loss" expected if isotropic transmitting and receiving antennas were used. This basic transmission loss, L_{b}, may be determined from the measured transmission loss, L, by adding the path antenna gain G_{p} :

$$
\begin{equation*}
L_{b}=L+G_{p} \tag{2.2}
\end{equation*}
$$

When G_{p} is not known, an estimate of L_{b} may be made for short paths by assuming that the free space gains of the transmitting and receiving antennas are realized, i.e., that $G_{p}=G_{t}+G_{r}$. The corresponding value of basic transmission loss will be a little too large. For larger distances, see Section 11 and Reference 9 for methods of estimating G_{p}.

Basic transmission loss L_{b} is related to field strength, E, expressed in decibels above one microvolt per meter for one kilowatt of effective power radiated from a half-wave dipole:

$$
\begin{equation*}
L_{b}=139.367+20 \log _{10}{ }^{f} \mathrm{mc}-E-G_{L} \tag{2,3}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{L}=G_{t}+G_{r}-G_{p} . \tag{2.4}
\end{equation*}
$$

In determining E from measured data it is implicitly assumed that the free space antenna gains are realized; i.e., that $G_{L}=0$. The appendix contains a brief summary of useful relationships between such quantities as transmission loss, field strength, attenuation relative to free space, and the voltage or power available at receiver terminals, including relationships useful for the solution of some systems design problems.

3. Cumulative Distribution of Transmission Loss

This paper considers cumulative distributions of hourly median values of transmission loss. All subsequent discussion and the distributions shown in Figs. 2-12, are concerned with hourly medians of basic transmission loss and their diurnal and seasonal variability. This paper is not concerned with estimating short-term (within-the-hour) variability.

Basic transmission loss $\mathrm{L}_{\text {bd }}$ expected for the diffraction mode of propagation during winter afternoons is calculated according to the formulas in Reference 5, as modified for high antennas in Section 7. For winter afternoons, the median basic transmission loss, $\mathrm{L}_{\mathrm{bms}}$, due to forward scatter, is given by the following:

$$
\begin{align*}
I_{\mathrm{bms}} & =G(\eta)+30 \log _{10} f_{\mathrm{mc}}-20 \log _{10} d_{\mathrm{mi}} \\
& +\mathrm{H}_{0}-F_{o}-F_{s}-F\left(h_{c g}, N_{s}\right)+A_{a} \tag{3.1}
\end{align*}
$$

The radio wave frequency, $f_{m c}$, is in megacycles per second, and the great circle propagation path distance, d, is in statute miles. Other terms are explained in later sections.

Reference 4 gives a less complex formula for calculating $L_{b m s}$, but (3.1) is more reliable for propagation paths with unusual profiles or climatology, for very high antennas, and for the lower frequencies.

Given $L_{b d}$ and $L_{b m s}$, corresponding to diffraction and forward scatter, the resultant median basic transmission loss is

$$
\begin{equation*}
L_{b m}=L_{b d}-R(0.5) \tag{3.2}
\end{equation*}
$$

$R(0.5)$ is given graphically as a function of ($L_{b d}-L_{b m s}$) on Fig. 1 , as determined from a paper by Norton, Vogler, Mansfield and Short $10 /$. Within one-tenth of a decibel, $L_{b m}=L_{b d}$ when ($\left.L_{b d}-L_{b m s}\right)$ is less than -18.1 db , and $L_{b m}=L_{b m s}$ when $L_{b d}-L_{b m s}$ is greater than 17.9 db .

The analysis of transmission loss data was concentrated mainly on times of day, $1 \mathrm{p} . \mathrm{m}$. to $6 \mathrm{p} . \mathrm{m}$., when great departures of refractive index profiles from a linear gradient are least likely, in order to avoid the frequent occurrence of ducting and layer conditions. Field strengths are higher in summer than in winter on an average, and diurnal trends are usually most pronounced between May and October in the northern hemisphere, with minimum fields occurring in the afternoon. To allow for such effects, data were grouped into eight "Time Blocks", defined in the following table:

Table I

Time Blocks

Nov. - Apr.	6 A.M. - 1 P.M.
2. Nov. - Apr.	1 P.M. - 6 P.M.
3. Nov. - Apr.	6 P.M. - 12 Mn .
4. May - Oct.	6 A.M. - l P.M.
5. May - Oct.	1 P.M. - 6 P. M.
6. May - Oct.	$6 \mathrm{P} . \mathrm{M} .-12 \mathrm{Mn}$.
7. May - Cct.	12 Mn . - 6 A. M.
8. Nov. - Apr.	12 Mn . - 6 A. M.

Hourly median distributions for winter (Time Blocks 1, 2, 3, 8) and summer (Time Blocks 4, 5, 6, 7) are shown as Figs. 12 a and 12 b .

EXPECTED SIGNAL LEVEL,V(p, $)$, EXCEEDED BY p PERCENT OF ALL HOURLY MEDIANS IN TIME BLOCK NO. I

EXPECTED SIGNAL LEVEL, V(p, θ), EXCEEDED BY p PERCENT OF ALL HOURLY MEDIANS IN TIME BLOCK NO. 2
 \circ
\circ
\circ
o
o
0

EXPECTED SIGNAL LEVEL, $\mathrm{V}(\mathrm{p}, \theta)$, EXCEEDED BY p PERCENT OF ALL HOURLY MEDIANS IN TIME BLOCK NO. 3 NOVEMBER-APRIL, 6P.M-I2MIDNIGHT $L_{b}(p)=L_{b m}-V(p, \theta)$

EXPECTED SIGNAL LEVEL,V(p, θ), EXCEEDED BY p PERCENT OF

EXPECTED SIGNAL LEVEL,V(p, θ), EXCEEDED BY p PERCENT OF ALL HOURLY MEDIANS IN TIME BLOCK NO. 5

EXPECTED SIGNAL LEVEL,V(p, $\theta)$, EXCEEDED BY p PERCENT OF ALL HOURLY MEDIANS IN TIME BLOCK NO. 6
CTOBER, 6 P.M. - 12 MIDNIGHT
$L_{b}(p)=L_{b m}-V(p, \theta)$

EXPECTED SIGNAL LEVEL，V（p，θ ），EXCEEDED BY p PERCENT OF

100
EXPECTED SIGNAL LEVEL, V(p, θ), EXCEEDED BY p PERCENT OF in time block no. 8
 $-\mathrm{V}(\mathrm{p}, \theta)$

EXPECTED SIGNAL LEVEL, V(p, θ), EXCEEDED BY p PERCENT OF

EXPECTED SIGNAL LEVEL,V(p, $)$, EXCEEDED BY p PERCENT OF ALL HOURLY MEDIANS IN TIME BLOCKS 3 AND 6 ALL YEAR, 6 P.M.- MIDNIGHT
$L_{b}(p)=L_{b m}-V(p, \theta)$

EXPECTED SIGNAL LEVEL, $V(p, \theta)$, EXCEEDED BY p PERCENT OF ALL HOURLY MEDIANS OBSERVED AT ANGULAR DISTANCE θ DURING ALL HOURS OF THE YEAR $V(p, \theta)$ shows the deviation of all-day, all-year values, $L_{b}(p, \theta)$, relative to median basic transmission loss, $L_{b m}$, for the period November-April, I P.M.-6 P.M. (Time Block No. 2)
$L_{b}(p, \theta)=L_{b m}-V(p, \theta)$ decibels

EXPECTED SIGNAL LEVEL, $V(p, \theta)$, EXCEEDED BY p PERCENT

OF ALL HOURS, WINTER November-April, All Hours $L_{b}(p, \theta)=L_{b m}-V(p, \theta)$ decibels

EXPECTED SIGNAL LEVEL. $V(p, \theta)$, EXCEEDED BY p PERCENT

Empirical curves, given in Figs. 2-12, define a set of time variability factors $V(p, \theta)$ which show, as a function of angular distance, the difference between median fields and fields for other percentages of the time within each time block and for all hours in a year. The angular distance, θ, is the angle between horizon rays from transmitter and receiver; methods for its determination are given in Section 5. The field strength $E(p)$ exceeded by per cent of the hourly medians in a given time block is given by

$$
\begin{equation*}
E(p)=E_{m}(\text { Time Block } 2)+V(p, \theta) \tag{3.3}
\end{equation*}
$$

and the corresponding transmission loss $L(p)$ is given by

$$
\begin{equation*}
L(p)=L_{m}(\text { Time Block 2) }-V(p, \theta) \tag{3.4}
\end{equation*}
$$

where E_{m} and L_{m} are median field strength and median transmission loss estimated for winter afternoons, and $V(p, \theta)$ is the time variability factor appropriate for the period of time for which $E(p)$ or $L(p)$ is desired.

Summarizing,

$$
\begin{equation*}
L(p)=L_{b d}-R(0.5)-G_{p}-V(p, \theta) \tag{3.5}
\end{equation*}
$$

$R(0.5)$ as given by Fig. 1 requires (1) the calculation of $L_{\text {bd }}$ by methods explained in Reference 5 and Section 7, and (2) the calculation of $\mathrm{L}_{\mathrm{bms}}$ as given by (3.1) and explained in Section 9. Formulas for estimating G_{p} are given for the general case in Reference 9, and in Section 11 of this report for the special case where free space antenna gains are the same for both transmitting and receiving antennas. $V(p, \theta)$ for all hours of the year, winter and summer, appropriately combining the time blocks, is shown in Figs. 12, 12a, 12b. Varying p, (3.5) provides a prediction for the entire cumulative distribution of radio transmission loss for all hours of the year.

A comparison of measured and calculated values for KIXL-FM in Dallas, Texas, recorded by the University of Texas at Austin is shown in Fig. 13 for each time block and for all hours of the year. Several measured cumulative distributions are shown for each calculated one; the station was monitored all day and all night for three and a half years. From Fig. 13 it may be noted that medians for
CUMULATIVE DISTRIBUTION OF HOURLY MEDIAN TRANSMISSION LOSS

 $d=175.9$ miles $, f m c=104.5 \mathrm{Mc}, N_{S}=306.5$
 PERCENT OF TIME
Figure 13

MEDIAN FORWARD SCATTER RADIO TRANSMISSION LOSS RELATIVE TO FREE SPACE CORRESPONDING TO WINTER AFTERNOON CONDITIONS

DEVIATION OF THE ABOVE RECORDED MEDIANS FROM VALUES PREDICTED FOR AN EXPONENTIAL ATMOSPHERE USING NBS REPORT No. 5582

Figure $13 a$

Observed median values of attenuation relative to free space are plotted versus distance in Fig. I 3a for a large, heterogeneous sample of data, obtained in most cases with broad beam antennas. No normalization for the effects of frequency, antenna height, loss of antenna gain, terrain or meteorological parameters is included. Almost all recordings were made in the wintertime, and correspond to conditions where tropospheric forward scatter is expected to be the dominant propagation mechanism. Two points are indicated where ionospheric rather than tropospheric scatter may have been recorded at 100 Mc . No data are included for cases where diffraction is expected to be more impor tant than forward scatter, such as short paths where the angular distance is small.

Fig. 13 a also shows deviations of data from the point-to-point transmission loss prediction method of this technical note; these deviations are plotted versus distance, using the same data and the same scale. The NRL overwater 50 -minute medians shown in Fig. $13 a$ were excluded in calculating the r.m.s. deviation of 6.75 db from the empirical curve and the r.m.s. deviation of 5.77 db from the theoretical values.

The data include 80 paths from a special experiment conducted in Ohio with randomly selected receiving sites at 85 and 125 miles. For these paths, long-term median observed transmission loss is slightly greater than when antenna sites are carefully selected to be unobstructed. The prediction method in this report indicates an increase in transmission loss of about 12 db per degree of increase in horizon elevation angles, and these angles were often large for the randomly selected "Ohio mobile" receiving sites.

Time Block No. 4 vary by as much as three and a half decibels from year to year, even though each value represents almost 1300 hours from the same season and time of day each year. Note that our predicted values, for this particular path, depart from the observed values no more than the observed values depart from each other from year to year. In a subsequent part of this report a comparison of our predicted values will be made for all of the paths for which we have both transmission loss and profile information. We conclude from an examination of these data that it is usually safer to base the design of a point-to-point radio relaying system on the transmission losses predicted by our formula than to base this design on a set of transmission loss measurements made over a period of only a few months. It should be noted in this connection that path loss tests are seldom made at the precise locations or with the same antennas as are used in the final systems, and consequently really provide very little pertinent information as to the final performance of the system over a long period of time. Furthermore the prediction formula cannot be used without precise profile information and, when this is obtained, it often leads to the choice of an alternate site which the prediction formula may indicate is somewhat better.

As an example of the use of the formulas in this report, the detailed calculations required to reproduce the theoretical curves of Fig. 13 are given in Section 12.

4. Description of Radio Standard Atmospheres

The forward scatter theory which provides a basis for prediction of radio transmission loss at great distances depends upon work done by Booker and Gordon to explain scattering from the stratosphere. 11 The scattered power is assumed proportional to the square of the mean gradient, ($\mathrm{dn} / \mathrm{dh}$), of the refractive index of the atmosphere. In what follows we will use the refractivity $N=(n-1) \times 10^{6}$ as a measure of n. Recent work by Bean and Thayer 1/ has led to the definition of a set of standard atmospheres which agree with average measured refractivity profiles from the ground to great heights, and which depend upon the average value of the surface refractivity, N_{s}, and the height of the surface above sea level, h_{s}. Each of the new standard atmospheres has a linear refractive index gradient for the first kilometer above ground. Refractivity decreases exponentially from this height above the surface to a value $N=105$ at a height $h=9$ kilometers above sea level. For greater heights the standard atmospheres are the same, with an exponential gradient independent of the surface values of refractivity.

\bigcirc		\bigcirc						
	0	a		∞		\cdots	M	
1.	+	\bigcirc		U	$\stackrel{-1}{ }$	\bigcirc		

in miles $\begin{aligned} 0 & \text { to } 0.463 \\ 0.463 & \text { to } 4.00 \\ > & 4.00\end{aligned}$

M
0
0
0
0
0 0.463 to 4.83
>4.83
Table II
Range of ${ }^{h} c g$
thousands of fee
0 to 3.28
3.28 to 24.5
>24.5
0 to 3.28
3.28 to 28.5
>28.5

∞	10	
N	0	$1 n$
\cdots	∞	0
0	0	
0	0	N
0	∞	Λ
0	∞	
n	n	

$\begin{array}{lll}\infty & n & \\ n & 0 & 1 \\ m & n & 0 \\ 0 & 0 & n \\ + & + & n \\ 0 & \infty & \\ n & n & \\ n & & \end{array}$
a
in miles
4878.50
5280.00
5896.66
1
0
0
0
0
0
0
Reference Atmosphere
$\mathrm{N}_{\mathrm{s}} \quad \Delta \mathrm{N} / \mathrm{km}$ Assumed
$250-29.51 \quad 5000^{\circ}$
-39.231000^{\prime}
-51.55
-68.13
-
0
a
$0 G^{\circ} 8 L 87$
-29.51

301
350
400

The average refractivity gradient near the ground, $\Delta N / \mathrm{km}$, is specified by the following empirical relationship in terms of the average surface refractivity, N_{s} :

$$
\begin{equation*}
\Delta \mathbb{N} \text { per kilometer }=-7.32 \exp \left(0.005577 \mathrm{~N}_{\mathrm{s}}\right) \tag{4.1a}
\end{equation*}
$$

When a good estimate of the average gradient $\Delta \mathrm{N}$ is available from refractivity profiles, the average surface refractivity N_{S} to be used in the calculations should be obtained from (4.1b):

$$
\begin{equation*}
N_{s}^{\prime}=412.87 \log _{10}|\Delta N / \mathrm{km}|-356.93 \tag{4.1b}
\end{equation*}
$$

rather than using the observed average value of N_{S} in case it differs appreciably from N_{s}^{\prime}. Transmission loss $L(p)$ is obtained for a given N_{s} by linear db interpolation or extrapolation from calculations for two adjacent values selected from the four reference values, $N_{s}=250$, 301,350 , and 400 .

The refractivity gradient, ΔN, largely determines radio ray bending through the atmosphere. For each $\Delta \mathbb{N}$, an effective earth's radius, a, is defined in such a way that rays drawn above an earth with this effective radius will not bend until they reach heights exceeding one kilometer. I'able II shows for the four reference atmospheres the values of the effective earth's radius, a, in statute miles, and the corresponding linear gradient, $\Delta N / k m$, for the first kilometer above the surface. Also tabulated are the logarithmic gradients, γ, appropriate for greater heights where the refractivity N decreases exponentially with height.

Fig. 14 illustrates for both rough and smooth earth conditions the geometry of a forward scatter link in a linear gradient atmosphere. The most important parameters shown are the propagation path distance, d, and elevation angles of the radio horizons, a_{00} and β_{00},

GEOMETRY FOR A LINEAR GRADIENT ATMOSPHERE

Distances are measured in statute miles along a great circle arc

$$
\theta_{00}=\frac{D_{s}}{a}+\theta_{0 t}+\theta_{\text {or }}
$$

Figure 14
for a linear gradient atmosphere. Section 5 of this report shows how the true elevation angles a_{o} and β_{o} are obtained for the longer paths and for very large antenna heights, using the standard exponential atmospheres of Table II.

Within the scattering volume pictured in Fig. 14, the relationship between refractivity, N, and height above ground, $h-h_{s}$, is taken to be

$$
\begin{equation*}
N\left(h-h_{s}\right)=N_{e} \exp \left[-\gamma\left(h-h_{s}\right)\right] \tag{4.2}
\end{equation*}
$$

where h is the height of a scatterer above sea level and h is the average height of the surface above sea level:

$$
\begin{equation*}
h_{s}=\left(h_{L t}+h_{L_{r}}\right) / 2 \tag{4.3}
\end{equation*}
$$

Where h_{s} cannot be determined, the values assumed in Table II may be used. The parameters $h_{L t}$ and $h_{\text {Lr }}$ are heights of radio horizon obstacles above sea level, as illustrated in Fig. 14. Extrapolated refractivity values, N_{e}, and the logarithmic gradients, $\quad \gamma$ permile, are listed in Table II for various ranges of the height of the "scattering center" above ground, $h_{c g}$. An approximation to this height has been derived in terms of the height, h_{o}, of the crossover of radio horizon rays above the reference axis $A_{1} A_{2}$ from transmitter to receiver:

$$
\begin{equation*}
h_{\mathrm{cg}} \cong 6 \mathrm{~h}_{\mathrm{o}}+0.5 \tag{4.4}
\end{equation*}
$$

Here, h is in thousands of feet and h is in miles; note the difference in units. ${ }^{c g}$ Section 8 contains a further ${ }^{0}$ iscussion of these parameters.

5. Path Geometry

The steps required to obtain accurate estimates of the geometrical parameters defined in Fig. 14 for an equivalent earth of radius a are as follows:
a. Plotting a Terrain Profile

Plot a great circle path terrain profile between transmitter and receiver locations. If topographic maps are used, denote by $\left(N_{1}, W_{1}\right)$ and $\left(N_{2}, W_{2}\right)$ the latitude and longitude of antennas at
A_{1} and A_{2} on the surface of a spherical earth of radius 3960 miles. Let (N, W) be the geographical coordinates of any point on the great circle between A_{1} and A_{2}. Then,
$A \cos \left(W-W_{1}\right) \cos N+B \sin \left(W-W_{1}\right) \cos N+\sin N=0$
is the general equation for a plane through the center of the earth and a point (x, y, z), where $x=\cos \left(W-W_{1}\right) \cos N$, $y=\sin \left(W-W_{1}\right) \cos N, z=\sin N$. This is a cartesian coordinate system with z in the direction of the earth's axis, $x-y$ the equatorial plane, and the $\mathrm{x}-\mathrm{z}$ plane passing through the antenna location A_{1}. Geographical coordinates of (x, y, z) and (N, W), and the constants A and B are evaluated by substituting the known coordinates $\left(N_{1}, W_{1}\right)$ and ($\left.\mathrm{N}_{2}, \mathrm{~W}_{2}\right)$ in (5.1):

$$
\begin{gather*}
A=-\tan N_{1} \tag{5.2}\\
B=\tan N_{1} \cot \left(W_{2}-W_{1}\right)-\tan N_{2} \csc \left(W_{2}-W_{1}\right) .
\end{gather*}
$$

A great circle path is plotted on a contour map by choosing values for N and solving (5.1) for W , or vice versa. The great circle distance d between points with coordinates ($\mathrm{N}_{\mathrm{o}} \mathrm{W}$) and ($\mathrm{N}^{\prime}, \mathrm{W}^{\prime}$) is given by

$$
\begin{equation*}
\cos \left(d / a^{\prime}\right)=\sin N \sin N^{\prime}+\cos N \cos N^{\prime} \cos \left(W-W^{\prime}\right) \tag{5.4}
\end{equation*}
$$

where a^{\prime} is the actual earth's radius.
b. Determining Radio Horizons

Having obtained a great circle path terrain profile, the next step is to determine the location of radio horizon obstacles at each end of the path. Where a smooth earth is involved, over the sea for instance, the methods described in subsection (5d) for calculating a_{o} and β_{o} are easier than methods described in subsections (5b) and (5c). For an antenna less than one kilometer above ground, the location of the equivalent earth radio horizon is used in the calculations. The correct horizons maximize the horizon elevation angles $\theta_{e t}$ and $\theta_{e r}$:

$$
\begin{equation*}
\theta_{e t}=\frac{h_{L t}-h_{t s}}{5280 d_{L t}}-\frac{d_{L t}}{2 a} \text { radians, } \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{e r}=\frac{h_{L_{r}}-h_{r s}}{5280 d_{L_{r}}}-\frac{d_{L_{r}}}{2 a} \text { radians } \tag{5.6}
\end{equation*}
$$

where heights are in feet and distances in miles. Having approximately located the radio horizons by inspection, the values of $h_{L t}$ and $d_{L t}$ or $h_{L r}$ and $d_{L r}$ corresponding to nearby high points are substituted into (5.5) and (5.6); values which maximize $\theta_{e t}$ and $\theta_{e r}$ are the correct ones. If $\theta_{e t}$ or $\theta_{e r}$ is negative, choose the value nearest zero.

As illustrated in Fig. 14, $h_{t s}$ and $h_{r s}$ are transmitting and receiving antenna heights above sea level, and $d_{L t}$ and $d_{L r}$ are distances to radio horizon obstacles from transmitting and receiving antennas. The effective earth's radius, a, is found in Table II.

c. Computation of Angular Distance

The angles α_{0}, β_{0}, and $\theta=\alpha_{0}+\beta_{0}$ for a reference atmosphere are in general larger than the angles $a_{o o}, \beta_{o o}$, and $\theta_{\text {oo }}$ computed for the corresponding linear gradient atmosphere if either antenna or the scatter volume is more than one kilometer above the surface. Accordingly, θ is computed in two steps; first, $\alpha_{o O}$ and $\beta_{0 O}$ are calculated for a linear gradient atmosphere, and then α_{o} and β_{o} are obtained by adding small corrections, $\Delta \alpha_{0}$ and $\Delta \beta_{0}$ to α_{00} and β_{00}. It will be seen that these corrections are either zero or negligible for short paths if $\left|h_{t s}-h_{L t}\right|$ and $\left|h_{r s}-h_{L r}\right|$ are less than one kilometer.

$$
\begin{align*}
& a_{o O}=\frac{d}{2 a}+\theta_{e t}+\frac{h_{t s}-h_{r s}}{5280 d} \text { radians } \tag{5.7}\\
& \beta_{o O}=\frac{d}{2 a}+\theta_{e r}-\frac{h_{t s}-h_{r s}}{5280 d} \text { radians }
\end{align*}
$$

These angles $\alpha_{o o}$ and $\beta_{o o}$ are positive for beyond-the-horizon paths.

$$
\begin{equation*}
\theta_{\text {ot }}=\theta_{e t}+\frac{d_{L t}}{a} \text { radians } \tag{5.9}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{\text {or }}=\theta_{e r}+\frac{d_{L r}}{a} \text { radians } \tag{5.10}
\end{equation*}
$$

These angles may be positive or negative, and over a smooth spherical earth are zero, as may be seen from Fig. 14.

$$
\begin{gather*}
D_{s}=d-d_{L t}-d_{L r} \tag{5.11}\\
\theta_{o o}=a_{o o}+\beta_{o o}=\frac{D_{s}}{a}+\theta_{o t}+\theta_{o r}=\frac{d}{a}+\theta_{e t}+\theta_{e r} \text { radians } \tag{5.12}
\end{gather*}
$$

Over a smooth spherical earth,

$$
\begin{align*}
& d_{L t}=\sqrt{(a / 5280)\left(2 \mathrm{~h}_{\mathrm{te}}\right),} \tag{5.13}\\
& \mathrm{d}_{\mathrm{Lr}}=\sqrt{(\mathrm{a} / 5280)\left(2 \mathrm{~h}_{\mathrm{re}}\right)} \tag{5.14}
\end{align*}
$$

and the angular distance, $\theta_{o o^{\prime}}$ is the distance between radio horizons, D_{s}, divided by the effective earth's radius, a, as may be seen using (5.12). Exact expressions relating $d_{L t}, d_{L r}$ and $h_{t e}, h_{r e}$ in a linear gradient atmosphere are given by (7.3) and (7.4) in Section 7.

Next, correcting $a_{o o}$ and $\beta_{o o}$ to values expected in a reference atmosphere:

$$
\begin{align*}
& a_{o}=a_{o o}+\Delta a_{o}\left(d_{s t^{\prime}}, \theta_{o t}, N_{s}\right) \tag{5.15}\\
& \beta_{o}=\beta_{o o}+\Delta \beta_{o}\left(d_{s r^{\prime}}, \theta_{o r}, N_{s}\right) \tag{5.16}
\end{align*}
$$

The correction Δa_{0} in milliradians is plotted in Figs. 15-22 for the four reference atmospheres of Table II, as a function of $d_{s t}$, $\theta_{\text {ot }}$, and N_{s}. These same figures are used to read $\Delta \beta_{0}$, given d_{sr} in statute miles and $\theta_{o r}$ in milliradians.

$$
\begin{equation*}
d_{s t}=\frac{d \beta_{o}}{\theta}-d_{L t} \cong \frac{d \beta_{o o}}{\theta_{o o}}-d_{L t} \tag{5.17}
\end{equation*}
$$

Figure 15

Figure 17

Figure 18

Figure 19

Figure 21

Figure 23

ANGULAR DISTANCE, θ, OVER A SMOOTH EARTH AS A FUNCTION OF THE DISTANCE, D_{S}, BETWEEN HORIZONS

Figure 24

$$
\begin{equation*}
d_{s r}=\frac{d_{o}}{\theta}-d_{L r} \cong \frac{d_{o o}}{\theta_{o o}}-d_{L r} \tag{5.18}
\end{equation*}
$$

In practice, the approximate expressions in (5.17) and (5.18) are used to find distances $d_{s t}$ or $d_{s r}$ from a horizon obstacle to the crossover of radio horizon rays.

In Figs. 15-22, when $\theta_{\text {ot }}$ is negative, replace $d_{s t}$ by $\left|d_{\text {st }}-a\left(\left|\theta_{o t}\right|\right)\right|$ and read the curve for $\theta_{o t}=0$ to obtain Δa_{o}. Similarly, if $\theta_{o r}$ is negative and $\Delta \beta_{o}$ is required, replace $d_{s r}$ by $\left|d_{s r}-\mathrm{a}\left(\left|\theta_{\mathrm{or}}\right|\right)\right|$ and read the curve for $\theta_{o r}=0$. In these formulas $\theta_{\text {ot }}$ and $\theta_{\text {or }}$ are expressed in radians.
d. Computation of θ with Very High Antennas Over a Smooth Earth

If the difference $\left|h_{t s}-h_{L t}\right|$ or $\left|h_{r s}-h_{L r}\right|$ greatly exceeds one kilometer, equivalent earth geometry may not locate the radio horizon correctly. In this case, refraction between the antenna and its horizon departs from what is expected in a linear gradient atmosphere. The problem is still simple for a smooth earth, but becomes quite complex over a very rough terrain profile. Fig. 23 shows $d_{L t}$ plotted versus $h_{t s}-h_{L t}$ for each of the four reference atmospheres of Table II, for the case $\theta_{0 t}=0$. For a smooth earth and $h_{t s}>h_{L t}$, read $d_{L t}$ from Fig. 23, compute d_{Lr}, and compute D_{s} from (5.11). For a smooth earth, $\theta_{\text {ot }}=\theta_{\text {or }}=0, d_{s t}=d_{s r}=D_{s} / 2$, and θ may be read from Fig. 24 as a function of $D_{s} / 2$. Then,

$$
\begin{array}{ll}
d_{1}=d_{L t}+D_{s} / 2, & d_{2}=d_{L r}+D_{s} / 2, \\
s=d_{2} / d_{1}, \quad a_{0}=s \theta /(1+s), & \beta_{0}=\theta /(1+s) . \tag{5.19}
\end{array}
$$

This subsection (d) should apply for the case of aircraft flying high over rough terrain, wherever the assumption of an average smooth earth seems reasonable. Figs. 23 and 24, with (5.19) make the computation of a_{0} and β_{o} easier than it is when terrain profiles must be plotted.
e. Computation of θ with Very High Antennas over a Rough Earth

Over a rough terrain profile with either $\left|h_{t s}-h_{L t}\right|$ or $\left|h_{r s}-h_{L r}\right|$ greater than one kilometer, it is possible to trace rays carefully in any one of the four reference atmospheres by using one of Figs. 26-29. This was necessary in only one situation among paths analyzed by CRPL, where one antenna was located on top of Pike's Peak in Colorado. Fig. 25 shows the path of a radio ray and the parameters used in Figs. 26-29. Figs. $30-33$ are helpful for interpolating values from Figs. 26 29.

Only extreme situations should require the use of this latter set of figures, so their use is not explained in detail. Tracing a ray from the transmitting antenna to its horizon, identify $h_{t s}-h_{L t}$ with h, $d_{L t}$ with d, and $\theta_{\text {ot }}$ with a. The figures are also used to trace a ray from this horizon to the crossover of horizon rays.

6. Determination of Surface Refractivity, $\mathrm{N}_{\mathbf{s}}$

Where measured values of N_{s} are not available, estimates of N_{S} for the U.S. may be obtained for Time Block 2 from Fig. 34. For other areas, refer to a recent report by Bean and Horn 12/. In Fig. 34, N_{s} is not plotted directly, but is obtained from the reduced-to-sea-level refractivity, N_{o} :

$$
\begin{equation*}
N_{s}=N_{o} \exp \left(-0.03222 h_{s}\right) \tag{6.1}
\end{equation*}
$$

where h_{s} is the elevation of the ground above mean sea level, in thousands of feet, as given by (4.3). A world map of minimum monthly mean N_{0} values is shown as Fig. 34a; these values may be substituted for Time Block 2 values if the latter are not available.
7. Effective Antenna Heights, $h_{\text {te }}$ and $h_{r e}$

The definition of $h_{\text {te }}$ and $h_{r e}$ given in this section is used in this paper to calculate L_{bm}, and in Reference 5 to calculate L_{bd}.

Figure 25
RAY TRACING IN A REFERENCE ATMOSPHERE

RAY TRACING \mathbb{N} A REFERENCE ATMOSPHERE

RAY TRACING IN A REFERENCE ATMOSPHERE

RAY TRACING IN A REFERENCE ATMOSPHERE
with $N_{s}=400$ and $h_{s}=0$ feet

E
8
"
"
(h), $\frac{\mathrm{h}=20 \mathrm{~km}}{\mathrm{~h}}$

1
8
8
8
8
8
1

E

DISTANCE
Figure 29
RAY TRACING IN A REFERENCE ATMOSPHERE With $N_{S}=250$ and $h_{S}=5000$ feet

distance，d，in statute miles

Figure 30

RAY TRACING IN A REFERENCE ATMOSPHERE

RAY TRACING IN A REFERENCE ATMOSPHERE

RAY TRACING IN A REFERENCE ATMOSPHERE

SURFACE REFRACTIVITY, NOVEMBER - APRIL, I P.M-6 P.M. (TIME BLOCK No. 2)

MINIMUM MONTHLY MEAN $\overline{N_{0}}$

a. Antenna Heights $h_{\text {te }}^{\prime}$ and $h_{r e}^{\prime}$ Less than One Kilometer Above the Surface

For antennas elevated more than a hundred feet above ground, the effective height was defined as the height of the antenna above a circular arc fitted by least squares to a portion of the terrain. This was chosen to be eight-tenths of the terrain along the great circle path extending from the antenna to its four-thirds earth radio horizon. It is assumed that critical ground reflection lobery in the lower regions of the scattering volume is unaffected by terrain near either the antenna or its radio horizon.

This definition of effective antenna height is not satisfactory for most receiving antennas if their height above ground is small with respect to average terrain irregularities. Some effective heights in such cases are an order of magnitude greater than the structural antenna heights. The structural height is used, therefore, for receiving antennas, and the more complicated definition of effective antenna height is used for antennas higher than 100 feet above ground.

Except for the ambiguity of such a definition, the structural height of an antenna, sometimes including a building, cliff, or hill as part of the structure, might have been used to define $h_{\text {te }}^{p}$ and $h_{r e}^{\prime}$ for both high and low antennas.
b. Antennas More than One Kilometer above the Surface

If $h_{t e}^{\prime}$ as defined in subsection (a) is less than one kilometer, it is used as the effective transmitting antenna height $h_{t e}$ in the prediction formulas, since radio ray refraction from the antenna to its horizon is then what is expected in a linear gradient atmosphere. For higher antennas, Fig. 35 is used to obtain a correction Δh, which reduces $h_{\text {te }}$ to the value $h_{\text {te }}$ to be used in the formulas of Reference 5 and this report. The same comments apply to $h_{r e}^{\prime}$ and $h_{r e}$:

$$
\begin{align*}
h_{t e} & =h_{t e}^{\prime}-\Delta h\left(h_{t e}^{\prime}, N_{s}\right) \tag{7.1}\\
h_{r e} & =h_{r e}^{p}-\Delta h\left(h_{r e}^{\prime}, N_{s}\right) \tag{7.2}
\end{align*}
$$

Over a smooth earth, the actual antenna heights, $h_{\text {te }}^{\prime}$ and $h_{r e}$ correspond to horizon distances $d_{L t}$ and $d_{L r}$ in a reference atmosphere. Effective antenna heights $h_{t e}$ and $h_{r e}$ are defined
in such a way as to preserve these correct horizon distances over a smooth earth in a linear gradient atmosphere. Except for extremely high antennas, (5.13) and (5.14) show the simple relationship that holds between antenna height and horizon distance over a smooth earth in a linear gradient atmosphere; exact expressions are

$$
\begin{align*}
& h_{t e}=a\left[\sec \left(d_{L t} / a\right)-1\right] \tag{7.3}\\
& h_{r e}=a\left[\sec \left(d_{L r} / a\right)-1\right] \tag{7.4}
\end{align*}
$$

8. Parameters Required to Compute $L_{\text {bms }}$

Tabulate the following parameters, for use in Section 9. Refer to Fig. 14 for illustrations of path geometry. Section 9 explains the individual terms in (3.1), used to calculate $L_{\text {bms }}$ for each of two reference atmospheres.
$N_{S}=$ surface refractivity, obtained from (4.1b) if possible, or from direct measurement of winter afternoon conditions, or from Fig. 34 and (6.1), or from Reference 12.
$a=$ equivalent earth's radius. Choose two values from Table II, for reference atmospheres corresponding to N_{s} values above and below the correct N_{s}. Calculate the following parameters for each reference atmosphere.
$\theta=$ angular distance. (Tabulate two values.)
$s=$ path asymmetry parameter:

$$
\begin{equation*}
s=a_{0} / \beta_{0} \tag{8.1}
\end{equation*}
$$

It is helpful to identify antennas in such a way that $s \leq 1$.
$h_{0}=$ height of horizon ray crossover above a straight line between the antennas:

$$
\begin{equation*}
h_{0}=\operatorname{sd} \theta /(1+s)^{2}=\alpha_{0} \beta_{0} d / \theta=d_{1} \alpha_{0}=d_{2} \beta_{0} \text { miles } \tag{8,2}
\end{equation*}
$$

where $d_{,} d_{1}, d_{2}$ are in statute miles, and angles a_{0}, β_{0}, θ are in radians. (5.19) defines d_{1} and d_{2}.

REDUCTION Δh OF EFFECTIVE ANTENNA HEIGHT

 for very high antennas $h_{\text {te }}=h_{\text {te }}^{\prime}-\Delta h\left(h_{\text {te }}^{\prime}, N_{s}\right)$$h_{r e}=h_{r e}^{\prime}-\Delta h\left(h_{r e}^{\prime}, N_{s}\right)$

Figure 35
$h_{1}=$ height of horizon ray crossover above a straight line between the radio horizons:

$$
\begin{equation*}
h_{1}=d_{s t} d_{s r} \theta / D_{s} \text { miles } \tag{8,3}
\end{equation*}
$$

where $d_{s t}$ and $d_{s r}$ as illustrated in Fig. 14 are defined by (5.17) and (5.18). θ is in radians in (8.3)
$h_{c g}=$ height of scattering center above ground, in thousands of feet. Accuracy of this determination is not important for the formulas in this paper, so a careful derivation of h is not given. Use (4.4) from Section 4 when no better estimate of $h_{c g}$ is available.
γ per mile = logarithmic gradient of refractivity with height, determined from Table III as a function of N_{s} and h_{cg}.
$h_{s}=$ average height of a propagation path above mean sea level. Where terrain profiles are available, use (4.3); otherwise, use the values in Table II.

$$
\begin{equation*}
h_{s}=\left(h_{L t}+h_{L r}\right) / 2 \tag{4.3}
\end{equation*}
$$

$\eta_{s}=$ normalized height of horizon ray crossover:

$$
\begin{equation*}
\eta_{\mathrm{s}}=4 \gamma \mathrm{~h}_{\mathrm{o}}, \tag{8.4}
\end{equation*}
$$

a dimensionless parameter. Use γ per mile and h_{o} in miles in (8.4).

$$
\begin{equation*}
\eta=\gamma d \theta \tag{8.5}
\end{equation*}
$$

This is another dimensionless parameter, the most important one in the theory. Use γ per mile, path distance d in miles, and angular distance θ in radians in (8.5). If the asymmetry parameter $s=1$, then $\eta=\eta_{s}$. Note that equal antenna heights do not necessarily imply a symmetrical path, except over a smooth earth.

Comparing (8.4) and (8.5):

$$
\begin{equation*}
\eta_{s}=4 \mathrm{~s} \eta /(1+s)^{2} \tag{8.6}
\end{equation*}
$$

Effects of energy reflected from the ground are a function of η_{s} and of effective antenna height in wavelengths multiplied by the el ${ }^{\mathrm{s}}$ evation angle of the radio horizon:

$$
\begin{align*}
v_{t} & =4 \pi h_{t e} a_{o} / \lambda, \tag{8.7}\\
v_{r} & =4 \pi h_{r e} \beta_{0} / \lambda, \tag{8.8}
\end{align*}
$$

where $h_{\text {te }}$ and $h_{r e}$ are effective antenna heights above the reflecting surface between each antenna and its radio horizon, as discussed in Section 7. These heights and the free space radio wavelength, λ, are expressed in feet in this report, and the angles α_{o} and β_{0} are in radians.

Computations described in the next section also require

$$
\begin{equation*}
q=v_{r} / v_{t}, \quad r_{1}=v_{t}[1+(1 / s)], \quad r_{2}=q s r_{1}=v_{r}(1+s) \tag{8.9}
\end{equation*}
$$

These parameters are required only when $\eta_{s}<1$.

9. The Scatter Prediction Formula

Repeating (3.1), median basic transmission loss due to forward scatter in Time Block No. 2, winter afternoons, is given by

$$
\begin{align*}
L_{b m s} & =G(\eta)+30 \log _{10} f_{m c}-20 \log _{10} d_{m i}+A_{a} \\
& +H_{o}-F_{o}-F_{s}-F\left(h_{c g^{\prime}} N_{s}\right) . \tag{3.1}
\end{align*}
$$

In this section, terms of (3.1) are explained in detail.
a. The Attenuation Function, $G(\eta)$
$G(\eta)$ shows the decibel attenuation of field strength with increasing $\gamma d \theta$, and is the most important term in (3.1). At very great distances, the last four terms are negligible. For 500' and 30^{\prime} antennas at 100 Mc , (3.1) corresponds to an attenuation rate of about 0.12 db per mile from two to five hundred miles over a smooth earth.

$$
\begin{equation*}
G(\eta)=G_{0}(\eta)+\Delta G \tag{9.1}
\end{equation*}
$$

$G_{0}(\eta)$ is plotted as Fig. 36, η is given by (8.5), and ΔG is tabulated for the reference atmospheres in Table II for various ranges of the height of the scattering center $h_{c g}$ above ground, given in thousands of feet.

THE ATTENUATION FUNCTION $G_{0}(\eta)$

Figure 36
b. The Sea Level Correction, F_{o}

The "sea level correction", F_{o}, allows for increased fields expected when $h_{1}<h_{o}$. See Fig. 14. For antenna both at sea level, $h_{1}=h_{o}$ and $F_{o}=0$; in general,

$$
\begin{equation*}
F_{o}=4.343 \gamma\left(h_{o}-h_{1}\right) \tag{9.2}
\end{equation*}
$$

where γ per mile is tabulated in Table II, h_{o} and h_{1} are given in miles by (8.2) and (8.3). The terms F_{o} and F_{s} are usually negligible.
c. The Asymmetry Correction, F_{s}

The "asymmetry correction", F_{s}, allows for departures of the asymmetry parameter s from unity. $F(s)$ is the product of the functions $C(s)$ and $M(\eta)$ shown in Figs. 37 and 38. Note that $C(1 / s)=C(s)$.
d. The Frequency Gain Function, H_{o}

The "frequency gain function", H_{o}, in (3.1) is a measure of how much energy is sent well above the crossover of radio horizon rays by reflection from the earth. Scattering efficiency is reduced at higher altitudes. For most commonly occurring antenna heights, the field strength at the horizon ray crossover should be 10 to 20 decibels below free space $13 /$, corresponding to maximum values for H_{0} of 16 to 26 db at great distances. For low antennas and short paths, H_{o} may be much larger.

The computation of H_{O} is different for the two special cases, $\eta_{\mathrm{s}} \geq 1$ and $\eta_{\mathrm{S}}<1$, corresponding to large and small distances. In either case, values $H_{o}\left(v_{t}\right)$ and $H_{o}\left(v_{r}\right)$ are read from Fig. 39 as a function of η_{s}, v_{t}, and v_{r} as defined by (8.4), (8.7), (8.8), and these readings are averaged:

$$
\begin{align*}
& H_{o}\left(\eta_{s} \geq 1\right)=\frac{1}{2}\left[H_{o}\left(v_{t}\right)+H_{o}\left(v_{r}\right)\right]+\Delta H_{o} \tag{9.3}\\
& \Delta H_{o}=6\left(0.6-\log _{10} \eta_{s}\right) \log _{10} s \log _{10} q \tag{9.4}
\end{align*}
$$

ΔH_{o} is defined only for $\eta_{s} \geq 1$. For $\eta_{s}<1, \Delta H_{o}$ is calculated from (9.4) with η_{s} set equal to 1 .
$C(s)=\frac{50(1-s)^{2}}{(1+s)^{2}}=C(1 / s)$

Figure 37

THE FUNCTION M (η)

Figure 38
[See (8.1) and (8.9) for definitions of sand q.] ΔH_{o} is an approximate correction factor, valid if s and q are each within the limits 0.1 to 10 . For values of s or q outside these limits, use the nearest limit for s or q in (9.4). The frequency gain, H_{O}, is always positive, so if $\Delta \mathrm{H}_{\mathrm{o}}$ overcorrects, assume $\mathrm{H}_{\mathrm{o}}=0$. Also, $\Delta \mathrm{H}_{\mathrm{o}}$ must not exceed $1 / 2\left[\mathrm{H}_{\mathrm{o}}\left(\mathrm{v}_{\mathrm{t}}\right)+\mathrm{H}_{\mathrm{o}}\left(\mathrm{v}_{\mathrm{r}}\right)\right]$.

Fig. 39 is drawn for the special case where $s=1$ and $q=1$, and (9.3) implicitly assumes that frequency gain effects at the two ends of a propagation path are independent. This is nearly true for $\eta_{s} \geq 1$ (large distances), but at the shorter distances it is not true. Accordingly, an asymptotic expression which is exact for $\gamma=0$ (no bending of radio rays) is evaluated, and $\mathrm{H}_{\mathrm{o}}\left(\eta_{\mathrm{s}}<1\right)$ is obtained by linear db interpolation between $H_{o}(1) \equiv H_{o}\left(\eta_{s}=1\right)$ and $H_{o}(0) \equiv H_{o}\left(\eta_{s}=0\right)$:

$$
\begin{equation*}
\mathrm{H}_{0}(0)=10 \log _{10} \frac{2\left(1-\mathrm{s}^{2} \mathrm{q}^{2}\right)}{\mathrm{r}_{2}^{2}\left[\mathrm{~h}\left(\mathrm{r}_{1}\right)-\mathrm{h}\left(\mathrm{r}_{2}\right)\right]} . \tag{9.5}
\end{equation*}
$$

where $h\left(\mathrm{r}_{1}\right)$ and $\mathrm{h}\left(\mathrm{r}_{2}\right)$ are read from Fig. 40, and $\mathrm{r}_{1}, \mathrm{r}_{2}$, and q are defined by (8.9). The function $h(r)$ is also shown on Fig. 40a.

If $\mathrm{sq}=1$, read $\mathrm{H}_{\mathrm{o}}(0)$ from Fig. 41. For $\mathrm{v}_{\mathrm{t}}>10, \mathrm{v}_{\mathrm{r}}>10$, $H_{0}(0)=0$.

Then, for $\eta_{s}<1$,

$$
\begin{equation*}
H_{0}\left(\eta_{s}\right)=H_{0}(0)+\eta_{s}\left[H_{0}(1)-H_{0}(0)\right] \tag{9.6}
\end{equation*}
$$

where $H_{0}(1)$ is determined from (9.3) and Fig. 39, with $\eta_{s}=1$, and $\mathrm{H}_{0}(0)$ is determined from (9.5).

For equal effective antenna heights, sq $=1$. Graphs of H_{o} versus $\mathbf{v}_{\mathfrak{t}}, \eta_{\mathrm{s}}$, and s are given in Figs. 39a-39f. This special case occurs frequently in system design calculations.
e. Atmospheric Absorption, A_{a}

Atmospheric absorption is important at long distances and at frequencies above 1000 Mc . Table III, Section 10 , lists values of A_{a} appropriate for the calculation of weak fields, $\mathrm{E}(99)$, corresponding to $L(p)$ for $p=99 \%$.

THE FREQUENCY GAIN FUNCTION H_{0} FOR $\eta_{s} \geq 1$ for $\alpha_{0}=\beta_{0}$ and $v_{\dagger}=v_{r} \quad(s=1, q=1)$ $v_{t}=4 \pi h_{t e} \alpha_{o} / \lambda, v_{r}=4 \pi h_{r e} \beta_{0} / \lambda$
 $\eta_{\mathrm{s}}=4 \gamma h_{0}$ has the values indicated on the curves

V_{f} or V_{r}

Figure 39
THE FREQUENCY GAIN FUNCTION H_{0} FOR $h_{\text {te }}=h_{r e}(s q=1)$

THE FREQUENCY GAIN FUNCTION H_{0} FOR $h_{\text {te }}=h_{r e}(s q=1)$

Figure $39 b$
THE FREQUENCY GAIN FUNCTION H_{0} FOR $h_{\text {te }}=h_{r e}(s q=1)$

THE FREQUENCY GAIN FUNCTION H_{o} FOR $h_{t e}=h_{r e}(s q=1)$

THE FREQUENCY GAIN FUNCTION H_{o} FOR $h_{\text {te }}=h_{r e}(s q=1)$

						-					
10,	1										
1											
11	-				-	-					
$1 /$											
$1 / 4$,						
-					-	-					
-											
-											
-											
						-					
-						${ }^{+1}$					
$-$											
4											
						-					
$-$									-		
边						TITH					
	5		10		20	${ }^{2}$			50		10
v_{1}											
Figure 39 e											

THE FREQUENCY GAIN FUNCTION H_{0} FOR $h_{\text {te }}=h_{r e}(s q=1)$

THE FUNCTION h(r)

Figure 40
THE FUNCTION $h(r)$

(1) 4

AND
 FOR $\eta_{\mathrm{s}}=0$ FUNCTION H_{0} $h_{\text {te }}=h_{\text {re }}(q s=1)$
 GAIN FOR
 FREQUENCY
 THE

f. The Empirical Correction, $F\left(h_{c g}{ }^{9} N_{s}\right)$

This completes the discussion of terms in the prediction formula (3.1), except for the last term, $F\left(h_{c g}{ }^{9} N_{S}\right)$. This empirical correction, evaluated from radio transmission loss data, represents the variance of refractivity turbulence. 14/ The origin of this term will be further discussed in Part III. $F\left(h_{c g}, N_{s}\right)$ is plotted as Fig. 42 for the reference atmospheres of Table II.

10. Atmospheric Absorption

For a recent study involving sixty-foot parabolic dishes at each end of propagation paths from 100 to 1000 miles long, the oxygen and water vapor absorption, A_{a}, exceeded 1% of the time was estimated, using methods described by B. R. Bean and R. Abbott in recent papers. $15 / 16$ Table III lists these values for frequencies from 100 Mc to $10,000 \mathrm{Mc}$. They are appropriate for the climate of Washington, D. C. in August, and take account of the decreasing rate of absorption as a ray is traced from an antenna to the high elevations corresponding to a "scattering volume." (See Fig. 14).

Table III

$$
A_{a} \text { in } d b
$$

Distance in Miles

$f \mathrm{mc}$	100	200	500	700	1000
100	0.03	0.1	0.1	0.1	0.1
200	0.1	0.3	0.4	0.5	0.6
500	0.4	0.6	1.0	1.1	1.3
1000	0.6	1.2	1.6	1.8	2.0
2000	0.8	1.6	2.3	2.6	2.8
5000	1.2	2.4	3.3	3.7	4.1
10000	2.0	3.7	5.0	5.4	6.0

THE EMPIRICAL FUNCTION F($\left.\mathrm{h}_{\mathrm{cg}}, \mathrm{N}_{\mathrm{S}}\right)$

The path antenna gain, G_{p}, may be determined from Fig. 43, which shows the loss in antenna ${ }^{p}$ gain, $G_{L}=G_{t}+G_{r}-G_{p}$, as a function of η_{s} and the ratio of angular distance, θ, to the half-power beamwidth, n, of each antenna. Note that θ and Ω are to be expressed in the same units.

The results shown in Fig. 43 correspond to the case $G_{t}=G_{r}$, $\Omega_{\mathrm{t}}=\Omega_{\mathrm{r}}=\Omega$, and $\mathrm{s}=1$; however, G_{L} is not very sensitive to changes in s. For more general results, the reader is referred to Reference 9.

A good engineering approximation relating half-power beamwidth, Ω_{t}, in milliradians to the free space gain G_{t} in decibels above an isotropic radiator is given by

$$
\begin{align*}
& \mathrm{G}_{\mathrm{t}}=69.12-20 \log _{10} \Omega_{\mathrm{t}}, \tag{11.1}\\
& \mathrm{G}_{\mathrm{r}}=69.12-20 \log _{10} \Omega_{\mathrm{r}}, \tag{11.2}
\end{align*}
$$

from which it follows that

$$
\begin{equation*}
\theta / \Omega=\left[350 \theta \times 10^{\left(\mathrm{G}_{\mathrm{t}}+\mathrm{G}_{\mathrm{r}}\right) / 40}\right] \times 10^{-6} \tag{11.3}
\end{equation*}
$$

where θ and Ω are in milliradians. The parameter η_{s} is defined by (8.4).
These formulas are derived for a parabolic dish of diameter D. At a frequency $f_{m c}$ megacycles,

$$
\begin{equation*}
G_{t} \cong 20 \log _{10} D_{f t}+20 \log _{10} f_{m c}-52.43 \tag{11.4}
\end{equation*}
$$

in decibels above an isotropic radiator, where the actual diarneter of the dish, D_{ft}, is expressed in feet, and it has been assumed that the effective area of the dish is 56% of its actual area. The gain is that expected with a 10 db tapered illumination, where the feed illuminates the edge of the dish with 10 db less signal than its center.

LOSS IN ANTENNA GAIN, GL assuming equal free space gains G_{γ} and G_{r} at the terminals of a symmetrical path

$1 ヨ \exists コ$ NI NOI $\perp \forall \wedge \exists า \exists$
เヨヨ」 NI NOI $\forall \vee \wedge \exists า ヨ ~$

12．Calculations for Figure 13

The great circle path profile for the 176－mile KIXL－FM path is illustrated in Fig． 44 for the reference atmosphere corresponding to surface refractivity $N_{s}=301$ ．For the first kilometer above the sur－ face，this is the same as a＂four－thirds earth＂atmosphere，as may be seen from Table II．Only the parameters shown in Fig． 44 are needed from the terrain profile for each N_{S} value．

In this section are tabulated calculations of the theoretical curves of Fig． 13 for each time block and for all－day，all－year conditions． The reduced－to－sea level surface refractivity，No，for Time Block No． 2 is read from Fig． 34 at the location of each four－thirds earth radio horizon．These values，$N_{O}=313.0$ and $N_{O}=316.3$ ，correspond to heights above sea level $\mathrm{h}_{\mathrm{Lt}}=720^{\prime}$ and $\mathrm{h}_{\mathrm{Lr}}=900^{\prime}$ ，and to surface refractivity values $N_{S}=305.8$ and $N_{S}=307.2$ ，using（6．1）from Section 6．The average，$N_{s}=306.5$ ，is taken to represent winter afternoon conditions along this path，and basic transmission less， $\mathrm{L}_{\mathrm{b}}(\mathrm{p})$ is calculated for $p=1,10,50,90$ ，and 99 per cent for $N_{S}=301$ and for $N_{S}=350$ ；the predicted values of $\mathrm{L}_{\mathrm{b}}(\mathrm{p})$ in Fig． 13 for $\mathrm{N}_{\mathrm{S}}=306.5$ are then obtained by linear interpolation．

For KIXL－FM， $\mathrm{d}=175.9$ miles， $\mathrm{f}_{\mathrm{mc}}=104.5$ megacycles， $\mathrm{h}_{\text {te }}=$ 553 feet，and $\mathrm{h}_{\mathrm{re}}=32$ feet．See Section 7．Table IV shows calculations of $L_{b m s}$ for $a=5280$ miles $\left(N_{s}=301\right)$ and $a=5896.66 \mathrm{miles}\left(N_{s}=350\right)$ ， using（3．1）．An appropriate section，equation，or figure is referenced on each line of the table．

Table IV

Symbol	Value for $\mathrm{N}_{\mathrm{s}}=301$	Value for $\mathrm{N}_{\mathbf{S}}=350$	Reference
$\mathrm{d}_{\mathrm{L}} \mathrm{t}$	24.60 mi ．	24.60 mi ．	Fig． 44
$\mathrm{d}_{\mathbb{L} \mathrm{r}}$	5：48 mi．	5.48 mi 。	Fig． 44
$\mathrm{h}_{\text {Lt }}$	7201	720^{\prime}	Fig． 44
h_{Lr}	900^{\prime}	900^{\prime}	Fig． 44
$\theta_{\text {et }}$	－3．869 mr．	－3．626mr．	Eq．（5．5）
$\theta_{\text {er }}$	2.937 mr 。	2.991 mr 。	Eq．（5．6）
$\left(\mathrm{h}_{\mathrm{ts}}-\mathrm{h}_{\mathrm{rs}}\right) / 5.28 \mathrm{~d}$	0.129 mr 。	0.129 mr 。	Eq．（5．7）
d／2a	16.657 mr ．	14.916 mr 。	Eq．（5．7）
a_{0}	12.917 mr 。	11.419 mr 。	Eq．（5．7）
β	19.465 mr 。	17.778 mr 。	Eq．（5．8）
$\theta_{\text {ot }}$	0.789 mr 。	0.546 mr 。	Eq．（5．9）

Table IV（Continued）
Symbol
$\theta_{o r}$
D_{s}
$1000 D_{s} / a$
$\theta_{o o}$
$d_{s t}$
$d_{s r}$
$\Delta \alpha_{o}$
$\Delta \beta_{o}$
a_{o}
β_{o}
θ
s
$s /(1+s)^{2}$
$d_{m i} \theta_{r a d}$
h_{o}
h_{1}
h_{cg}
γ
η
η_{S}
$G_{O}(\eta)$
ΔG
$G(\eta)$
$h_{0}-h_{1}$

F_{0}	0.17	db
$\mathrm{C}(\mathrm{s})$	2.08	
$\mathrm{M}(\eta)$	0.01	
$\mathrm{~F}_{\mathrm{S}}$	0.02	db
v_{t}	9.58	
v_{r}	0.833	
q	0.0870	
$\Delta \mathrm{H}_{\mathrm{O}}$	0.6	db
H_{0}	6.5	db

$F\left(h_{c g}, N_{s}\right)$
Lbms
$30 \log _{10} f_{m c}-20 \log _{10} d=15.7 \mathrm{db}$
Value for $N_{S}=301$ Value for $N_{S}=350$
3.921 mr 。
145.82 mi ．
24.730 mr 。
29.197 mr 。
82.5 mi ．
63.3 mi ．
0.001 mr 。
0.000 mr 。
11.420 mr 。
17.777 mr 。
29.197 mr 。
0.6424
0.2381
5.1358 mi ．
1.2228 mi ．
1.0456 mi ．

7， 840 feet
$\begin{array}{cc}0.1907 / \mathrm{mi} . \\ 1.0891 & \\ 1.0451 & \\ 164.2 & \mathrm{db} \\ 5.8 & \mathrm{db} \\ 170.0 & \mathrm{db} \\ 0.2017 \mathrm{mi}\end{array}$
$0.2102 / \mathrm{mi}$ ．
1． 0796
1.0282
164.0 db
2.8 db
166.8 db
0.1772 mi 。
0.16 db

2． 35
0.01
0.02 db
8.43
0.760
0.09015
0.7 db
6.9 db
$\begin{array}{rrrr}6.0 & \mathrm{db} & 9.2 & \mathrm{db} \\ 186.0 & \mathrm{db} & 180.0 & \mathrm{db}\end{array}$

Reference
Eq．（5．10）
Eq．（5．11）
Eq．（5．12）
Eq．（5．12）
E．q．（5．17）
Eq．（5．18）
Figs． 16 \＆ 17
Figs． 16 \＆ 17
Eq．（5．15）
Eq．（5．16）
Section 5c
Eq．（8．1）
Eq．（8．2）
Eq．(8.2)
Eq．（8．2）
Eq．（8．3）
Eq．（4．4）

Table II
Eq．(8.5)
Eq．(8.6)
Fig． 36
Table II
Eq．（9．1）
Eq．（9．2）
Eq．（9．2）
Fig． 37
Fig． 38
Section 9c
Eq．（8．7）
Eq．（8．8）
Eq．（8．9）
Eq．（9．4）
Eq．（9．3）

Fig． 42
Eq．（3．1）

At this point, $L_{b d}$ is calculated by the methods of Reference 5. For such a long path, $L_{b d} \gg L_{b m s}$, so that $L_{b m}=L_{b m s}$. [See (3.2)] Calculations of Lbd are listed in Table VII, however.

Because η_{S} is greater than 1, in Table IV it was not necessary to calculate $H_{0}(0)$. For $\mathrm{N}_{\mathrm{s}}=301, \mathrm{r}_{1}=23.97$ qs $=0.0579$, and $\mathrm{r}_{2}=1.388$ using (8.9). Then, $h\left(r_{1}\right)=1, h\left(r_{2}\right)=0 .{ }^{7} 15$ from Fig. 40, and $H_{0}(0)=$ 5.6 db , from (9.5). For $\mathrm{N}_{\mathrm{S}}=350, \mathrm{H}_{\mathrm{o}}(0)=6.2 \mathrm{db}$.

Table V lists $V(p, \theta)$ as read from each time block (Table I) and for all hours, using Figs. 2 - 12 .

Table V
$V(p, \theta)$ in decibels
$\mathrm{N}_{\mathrm{s}}=301, \theta=32.47$ milliradians:
Time Blocks

p	p	2	3	4	5	6	7	8	All hours
1%	15.5	12.0	14.9	21.8	12.3	18.3	22.1	18.1	19.1
10%	8.3	6.0	8.0	14.1	7.5	11.8	15.7	9.9	11.8
50%	1.0	0.0	1.1	6.7	2.7	5.1	9.5	1.5	3.5
90%	-4.5	-4.3	-4.3	0.5	-1.7	-0.6	1.8	-4.8	-3.0
99%	-8.8	-7.8	-8.6	-4.4	-5.4	-5.4	-4.5	-9.9	-7.7

$\mathrm{N}_{\mathrm{S}}=350, \theta=29.20$ milliradians:

1%	17.0	13.0	16.0	22.5	12.6	19.6	24.3	19.4	20.3
10%	9.2	6.5	18.5	14.4	7.6	12.5	16.8	10.7	12.2
50%	1.1	0.0	1.3	6.5	2.5	5.3	9.6	1.9	3.5
90%	-4.9	-4.9	-5.2	-0.1	-2.1	-1.0	1.5	-5.3	-3.4
99%	-9.5	-8.7	-10.4	-4.9	-5.9	-6.0	-5.1	-11.1	-8.8

Table VIlists $L_{b}(p)$ for each time block and all hours for $\mathbb{N}_{s}=301$. 350, and as obtained by linear db interpolation for $N_{S}=306.5$. These values are plotted in Fig. 13.

$$
\mathrm{N}_{\mathrm{s}}=301 \quad \mathrm{~L}_{\mathrm{b}}(\mathrm{p}) \text { in } \mathrm{db}
$$

Time Blocks

p	1	2	3	4	5	6	7	8	All hours
1%	170.5	174.0	171.1	164.2	173.7	167.7	163.9	167.9	166.9
10%	177.7	180.0	178.0	171.9	178.5	174.2	170.3	176.1	174.2
50%	185.0	186.0	184.9	179.3	183.3	180.9	176.5	184.5	182.5
90%	190.5	190.3	190.3	185.5	187.7	186.6	184.2	190.8	189.0
99%	194.8	193.8	194.6	190.4	191.4	191.4	190.5	195.9	193.7

$N_{s}=350$

1%	163.0	167.0	164.0	157.5	167.4	160.4	155.7	160.6	159.7
10%	170.8	173.5	171.5	165.6	172.4	167.5	163.2	169.3	167.8
50%	178.9	180.0	178.7	173.5	177.5	174.7	170.4	178.1	176.5
90%	184.9	184.9	185.2	180.1	182.1	181.0	178.5	185.3	183.4
99%	189.5	188.7	190.4	184.9	185.9	186.0	185.1	191.1	188.8

$N_{s}=306.5$

1%	169.7	173.2	170.3	163.4	173.0	166.9	163.0	167.1	166.1
10%	176.9	179.3	177.3	171.2	177.8	173.4	169.5	175.3	173.5
50%	184.3	185.3	184.2	178.6	182.6	180.2	175.8	183.8	181.8
90%	189.8	189.7	189.7	184.9	187.1	186.0	183.6	190.2	188.4
99%	194.2	193.2	194.1	189.8	190.8	190.8	189.9	195.4	193.1

In Table VII, calculations of $L_{b d}$ from Section III and Appendix I of Reference 5 are summarized. There is an error at the top of page 1513 of this reference, where the formula $b^{0}=2 b^{\prime \prime}-b^{\prime}$ refers only to vertical polarization. The parameters in Table VII are for horizontal polarization, where $b^{\circ}=180^{\circ}-b^{\prime}$. References in this table are from Reference 5. Parameters also used in calculating L_{bms} are not repeated. L_{bd} is calculated from (43) of Appendix I, where $a^{\prime}=3960$ miles.

Symbol Value for $N_{s}=301$ Value for $N_{s}=350$ Reference

$\mathrm{k}=\mathrm{a} / 3960$	4/3	1.48905	App. I, Ref. 5
${ }^{\text {a }} 1$	0.014433 rad.	0.012679 rad.	Sect. III, (18)*
β_{1}	0.018035 rad .	0.016518 rad .	Sect. III, (19) *
k_{t}	1.4172	1.6433	Sect. III, (16)*
k_{r}	0.9076	0.9681	Sect. III, (17) *
$\mathrm{k}_{\text {te }}$	0.7295	0.7295	Sect. III, (20) *
k_{re}	0.6256	0.6256	Sect. III, (21)*
$\mathrm{C}_{0}\left(k_{t}\right)$	1.0205	1.0721	App. I, (37) *
$\mathrm{C}_{0}\left(\mathrm{k}_{\mathrm{r}}\right)$	0.8797	0.8988	App. I, (37)
$\mathrm{Co}_{0}\left(k_{t e}\right)$	0.8179	0.8179	App. I, (37)
$\mathrm{C}_{0}\left(\mathrm{k}_{\mathrm{re}}\right)$	0.7771	0.7771	App. I, (37) *
K(4/3)	0.0010	0.0010	App. I, Fig. 30%

The figure heading for Fig. 30, Appendix I, on page 1512 of Reference 5 is misleading: The factor $\left[4 / 3 k^{\prime}\right]^{1 / 3}$ should read $\left[4 /\left(3 k^{\prime}\right)\right]^{1 / 3}$ or $1 / \mathrm{C}_{\mathrm{o}}\left(k^{\prime}\right)$.

$\mathrm{K}\left(k_{t}\right)$	0.00098	0.00093	Fig. 30
$\mathrm{K}\left(\mathrm{k}_{\mathrm{r}}\right)$	0.00114	0.00111	Fig. 30
$\mathrm{K}\left(\mathrm{k}_{\text {te }}\right)$	0.00122	0.00122	Fig. 30 *
$\mathrm{K}\left(\mathrm{k}_{\mathrm{re}}\right)$	0.00129	0.00129	Fig. 30 *
$\mathrm{C}\left[\mathrm{K}\left(\mathrm{k}_{\mathrm{te}}\right), \mathrm{b}^{\circ}\right]$	61.63 db	61.63 db	Fig. 33 *
$\mathrm{C}\left[\mathrm{K}\left(\mathrm{k}_{\mathrm{re}}\right), \mathrm{b}^{0}\right]$	61.63 db	61.63 db	Fig. 33 *
$16.667 \log _{10} \mathrm{f}_{\mathrm{mc}}$	33.65 db	33.65 db	(43)
$10 \log _{10} \mathrm{~d}_{\mathrm{mi}}$	22.45 db	22.45 db	(43) *
$\beta_{0}\left(k_{t}\right)$	1.6061	1.6061	Fig. 32(a)*
$\beta_{0}\left(k_{r}\right)$	1.6060	1.6060	Fig. 32(a)*
$\beta_{0}\left(k_{t e}\right)$	1.6060	1.6060	Fig. 32(a)*
$\beta_{0}\left(k_{r e}\right)$	1.6059	1.6059	Fig. 32(a)*

Denote the last term in (43) by the symbol D:

$$
\begin{equation*}
D=488.69 \mathrm{f}_{\mathrm{mc}}^{1 / 3}\left\{\beta_{o}\left(\mathrm{k}_{\mathrm{t}}\right) \mathrm{C}_{\mathrm{o}}\left(\mathrm{k}_{\mathrm{t}}\right) \alpha_{1}+\beta_{\mathrm{o}}\left(\mathrm{k}_{\mathrm{r}}\right) \mathrm{C}_{\mathrm{o}}\left(\mathrm{k}_{\mathrm{r}}\right) \beta_{1}\right\} \tag{12.1}
\end{equation*}
$$

D
113.10 db
105.14 db
(43) *

* See Reference 5.

Table VII (Continued)

Symbol
$\beta_{o}^{2}\left(k_{t e}\right) / C_{o}\left(k_{t e}\right)$
3. 153
3. 319
1.290
0.0786
$-8.2 \mathrm{db}$
$-16.7 \mathrm{db}$
0.09 db
$-0.56 \mathrm{db}$
255.3 db

Value for $N_{S}=350$
3. 153
3.319
1.290
0.0786
$-8.2 \mathrm{db}$
$-16.7 d b$
0.30 db
$-0.46 \mathrm{db}$
247.6 db

Reference

$$
(40) \quad *
$$

(40) *
(40) *
(40) *

Fig. 35(c)* Fig. 35(c)* (43) *
(43) *
(43) *

For $\mathrm{N}_{\mathrm{s}}=306.5, \mathrm{~L}_{\mathrm{bd}}=254.4 \mathrm{db}$, as compared with $\mathrm{L}_{\mathrm{b}}(50)=185.2 \mathrm{db}$ in Time Block No. 2. (See Table VI).

ACKNOW LEDGMENT

Initial phases of the theoretical development and organization of data analysis for this paper were under the supervision of Mrs. Frances T. Daniel. Most of the detailed theoretical work was done by R. L. Abbott, A. P. Barsis, H. K. Hansen, W. J. Hartman, L. E. Vogler, and R. E. Wilkerson, under the direction of P.L. Rice. Terrain profile data were obtained at various times under the direction of W. V. Mansfield, P. H. Elder, A. M. Ozanich, and J. H. Longbotham. Most of the detailed calculation was supervised by Mrs. M. A. Schafer under the direction of Mrs. Longley. R. P. Baptist, V. D. Brand, S. A. Buckel, M. W. Clark, M. M. Coyle, C. S. Hays, R. V. Lisle, and V. H. Weitzel helped with calculations and graph plotting.

[^1]1. B.R. Bean and G.D. Thayer, "On models of the atmospheric radio refractive index, " Proc. IRE, 47(5) , 740-755 (1959).
2. K.A. Norton, "Transmission loss in radio propagation," Proc. IRE, 41, 146-152, (1953). See also: K.A. Norton, "System loss in radio wave propagation," J. Research NBS, 63-D (Radio Propagation), 53, (1959) .
3. R.C. Kirby, "VHF propagation by ionospheric scattering - a survey of experimental results, " IRE Trans. Comm. Syst. CS-4 (1), 17-27, (1956).
4. K.A. Norton, "Point-to-point radio relaying via the scatter mode of tropospheric propagation, " IRE Trans. Comm. Syst. CS-4 (1), 39-49, (1956).
5. K.A. Norton, P.L. Rice, and L.E. Vogler, "The use of angular distance in estimating transmission loss and fading range for propagation through a turbulent atmosphere over irregular terrain, " Proc. IRE, 43, 1488-1526, (1955).
6. H. G. Booker and W.E. Gordon, "A theory of radio scattering in the troposphere," Proc. IRE, 38, 401-412, (1950).
7. H. T. Friis, A. B. Crawford, D. C. Hogg, "A reflection theory for propagation behind the horizon, "Bell Telephone System Technical Journal, 36, 627-644, (1957) (Monograph No. 2823).
8. B. Josephson and F. Eklund, "Some microwave propagation experiences from a just-below-horizon path, " IRE Trans.
Antenn. Prop. AP-6, 176-178, (1958).
9. W. J. Hartman and R. E. Wilkerson, "Path antenna gain in an exponential atmosphere," to be published in J. Research NBS, 63-D, November, 1959.
10. K. A. Norton, L. E. Vogler, W. V. Mansfield and P. J. Short, "The probability distribution of the amplitude of a constant vector plus a Rayleigh distributed vector, "Proc. IRE, 43(10), 1354, (1955).
11. H. G. Booker and W.E. Gordon, "The role of stratospheric scattering in radio communication," Cornell University Research Report EE 308; September, 1956.
12. B. R. Bean and J. D. Horn, "On the climatology of the surface values of radio refractivity of the earth's atmosphere," to be published in J. Research NBS, 63-D, (Radio Propagation), September 1959.
13. CCIR, "Atlas of ground-wave propagation curves for frequencies between $30 \mathrm{Mc} / \mathrm{s}$ and $300 \mathrm{Mc} / \mathrm{s}$, " published by l'Union internationale des Telecommunications in accordance with CCIR Resolution No. 11, Geneva, 1955.
14. Note added July 28, 1956, to Reference 4.
15. B. R. Bean and R. L. Abbott, "Oxygen and water vapor absorption of radio waves in the atmosphere," Geofis. Pura e Appl.. 37 (2), 127-144, (1957).
16. Bradford R. Bean, "Some meteorological effects on scattered radio waves, " IRE Trans., PGCS-4, 32-38, (1956).

The Calculation of the Power Required for a Specified Grade of a Given Type of Service

The body of this report presents methods for predicting the basic transmission loss, $L_{b}(p)$, exceeded by p per cent of the hourly medians in a given time. Within each hour, signal variations may exhibit many different types of fading, depending on equipment and antenna characteristics and upon what propagation mechanisms are dominant during that hour. Various kinds of communication links (telegraph, teletype, voice, facsimile, data links), and broadcasting and navigation facilities are affected differently by various types of signal fading. For instance, an hourly median signal-to-noise ratio of 38 db is listed in a recent report by Norton $1 /$ as desirable for good quality U.S. standard television reception of a severely fading Rayleigh distributed signal; service fields near a television broadcast station would not require such a large hourly median signal-to-noise ratio, since there would be little fading within an hour. Other types of service, such as FM voice, can get by with much smaller hourly median predetection signal-to-noise ratios, even where the same post-detection signal-to-noise ratio is desired.

Concepts represented by the following symbols are explained in other papers $2,3,4 /$. Capital letters refer to quantities expressed in decibels:
$P_{t} \quad=$ transmitter power in decibels above one watt, or dbw.
$L_{t} \quad=$ transmission line and matching network losses between trans mitter and antenna. When the antennas are very near the surface, then radiation resistance changes and this results in an additional loss with vertical dipoles or gain with horizontal dipoles which may be included in L_{t}; a discussion of these additional transmission loss terms is given in Appendix III of Reference 3.
$\mathrm{G}_{\mathrm{t}} \quad=$ transmitting antenna gain in decibels above a theoretical isotropic radiator. (G_{t} or G_{r} for half-wave dipole is 2.15 db) $G_{r} \quad=r e c e i v i n g$ antenna gain in $d b$ above an isotropic radiator.
$L_{r} \quad=$ transmission line and matching network losses between receiving antenna and receiver input terminals. (See also Appendix III of Reference 3.)
v = volts available across receiver input.

[^2]considered relatively constant, except for the rapid, Rayleigh type, of fading 5/. The factor R may be reduced substantially by the use of diversity reception, this reduction being larger, the larger the reliability required. For discussions of the expected diversity gain, reference may be made to papers by Montgomery 6,7/, Mack 8/, Brennan9/, and Staras $10 /$.
$=$ effective bandwidth of the receiver in cycles per second, including allowance for differences between transmitter and receiver oscillator frequencies and including the component of the baseband required to accommodate the received modulation.

B $\quad=10 \log _{10} b$ (An absolute lower limit for the noise level is the "Johnson noise" or "ktb noise". At 60° Fahrenheit, the ktb noise level is equal to $B-204 \mathrm{db}$).

F = effective noise figure, referred to the receiving antenna terminals. This noise figure is the difference, or decibel ratio, between the actual noise level ($P_{m}-R$) decibels and the ktb noise level. Where external noise picked up by the receiving system is negligible, F is simply the decibel sum of the receiver noise figure F_{r} and the transmission line and matching network losses L_{r}. For carefully designed receivers at 100 Mc or at $1000 \mathrm{Mc}, \mathrm{Fr}_{\mathrm{r}}$ equals about 5 db or 10 db , respectively. $F=\left(10 \log _{10} f_{m c}-5\right)$ decibels, approximately.

Noises originating within and external to the receiving system add directly when expressed in watts, so in this case it is not permissible to add decibels. F includes the effects of the antenna noise (cosmic and man-made noise, for example) as well as the receiver noise, together with the receiving antenna circuit and transmission line loss. The proper method for estimating the expected value of F is discussed in detail in a recent National Bureau of Standards circular 11/. It is assumed that the receiver incorporates gain adequate to ensure that the first circuit noise is detectable. As a practical matter, F is within 3 db equal to whichever is greater, $F_{r}+L_{r}$ or $P_{n}-(B-204)$, where P_{n} is the external noise picked up by the system, expressed in dbw.

Having once determined a value for P_{m} either from information about a minimum useful signal or from information about R, F, and B, it is a simple matter to compute the maximum allowable transmission
loss, L, the maximum allowable attenuation relative to free space, A, or the minimum allowable field strength, E. The following relationships are useful:

$$
\begin{align*}
& P_{a}=P_{m}=R+F+B-204 \mathrm{dbw} . \tag{I-1}\\
& P_{r}=P_{t}-L_{t} d b w . \tag{I-2}\\
& L=P_{r}-P_{a} \tag{I-3}
\end{align*}
$$

where this is interpreted as a maximum allowable transmission loss if $P_{a}=P_{m}$. Definitions of P_{a} and P_{m} assume a matched load.

The difference (decibel ratio) between transmission loss L and basic transmission loss L_{b} is the path antenna gain G_{p}, which is equal to or less than the sum of free space gains G_{t} and G_{r}. In free space, the difference between L_{f} and $L_{b f}$ is $G_{t}+G_{r}$:

$$
\begin{align*}
& L=L_{b}-G_{p} \tag{I-4}\\
& L_{f}=L_{b f}-\left(G_{t}+G_{r}\right) \tag{I-5}
\end{align*}
$$

Attenuation relative to free space is defined in terms of the measured transmission loss L and the loss L_{f} expected in free space. Thus, this quantity, A, includes any effects of path antenna gain degradation (antenna-to-medium coupling loss), and is in general greater than the theoretical attenuation relative to free space for isotropic antennas. Subtracting (I-5) from (I-4):

$$
\begin{equation*}
A=L-L_{f}=L_{b}-L_{b f}+G_{L} \tag{I-6}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{L}=G_{t}+G_{r}-G_{p} \geq 0 \tag{I-7}
\end{equation*}
$$

Basic transmission loss in free space is known when frequency and distance are given:

$$
\begin{equation*}
L_{b f}=36.58+20 \log _{10} f_{\mathrm{mc}}+20 \log _{10} \mathrm{~d}_{\mathrm{mi}} \tag{I-8}
\end{equation*}
$$

Similarly, the free space field strength $E_{b f}$ dbu for one kw E. R. P. using half-wave dipoles at both ends of a path is known:

$$
\begin{equation*}
E_{b f}=102.79-20 \log _{10}{ }^{d_{m i}} \tag{I-9}
\end{equation*}
$$

Assuming $G_{L}=0$ for transmission between dipoles, the correlatives of (I-4) through (I-7) may be written:

$$
\begin{equation*}
E=E_{b}-G_{L} \tag{I-10}
\end{equation*}
$$

Here is seen a major advantage of the concept of transmission loss, which is a measurable quantity, while field strength is not, except where a coherent wave front exists at the antenna and $G_{L}=0$. Both E and E_{b} are plane wave field strengths that would have to exist at the receiving antenna to produce the voltages measured at its terminals, assuming antenna gains realized. E corresponds to the case where antenna gains are not realized and E_{b} to the case where gains are realized; other things being equal, antenna terminal voltages are less in the one case than in the other, so E is less than E_{b} by G_{L} decibels.

The correlative to (I-5) is

$$
\begin{equation*}
E_{f}=E_{b f}, \tag{I-11}
\end{equation*}
$$

which says simply that in free space, free space gains are realized. Attenuation relative to free space is obtained by subtracting (I-10) from. (I-11):

$$
\begin{equation*}
A=E_{f}-E=E_{b f}-E_{b}+G_{L} \tag{I-12}
\end{equation*}
$$

Compare (I-12) with (I-6). Equating these expressions and making use of (I-8), (I-9), and (I-10), a relationship emerges between L_{b} and E :

$$
\begin{align*}
L_{b} & =139.37+20 \log _{10} f_{m c}-E_{b} \\
& =139.37+20 \log _{10} f_{m c}-\left(E+G_{L}\right) . \tag{I-13}
\end{align*}
$$

The meaning of (I-13) is the same as that of (5) in Reference 4, where G_{L} is set equal to zero and in effect the statement is made that E underestimates E_{b} by the amount G_{L}.

APPENDIX REFERENCES

1. K. A. Norton, "Point-to-point radio relaying via the scatter mode of tropospheric propagation, " IRE Trans. Comm. Syst., CS-4 (1), 39-49, (1956).
2. K. A. Norton, "Transmission loss in radio wave propagation," Proc. IRE, 41, 146-152, (1953).
3. K. A. Norton, "Transmission loss in radio wave propagation: II," NBS Technical Note No. 12, June, 1959. See also K. A. Norton, "System loss in radio wave propagation," J. Research NBS, 63-D (Radio Propagation), 53, (1959).
4. K. A. Norton, P. L. Rice, and L. E. Vogler, "The use of angular distance in estimating transmission loss and fading range for propagation through a turbulent atmosphere over irregular terrain, " Proc. IRE, 43, (10), 1488-1526, (1955).
5. G. Franklin Montgomery, "A comparison of amplitude and angle modulation for narrow-band communication of binary-coded messages in fluctuation noise," Proc. IRE, 42, 447-454, (1954).
6. G. Franklin Montgomery, 'Message error in diversity frequencyshift reception," Proc. IRE, 42, 1184-1187, (1954).
7. G. Franklin Montgomery, "Ultrasonic switch aids diversity reception," Electronics, 28, 169, (1955).
8. C. L. Mack, "Diversity reception in UHF long-range communications, " Proc. IRE, 43, 1281-1289, (1955).
9. D. G. Brennan, "On the maximum signal-to-noise ratio realizable from several noise signals, " Proc. IRE, 43, 1530, (1955).
10. H. Staras, "The statistics of combiner diversity," Proc. IRE, 44, (8), 1057-1058, (1956).
11. W. Q. Crichlow, D. F. Smith, R. N. Morton and W. R. Corliss, "World-wide radio noise levels expected in the frequency band from 10 kilocycles to 100 megacycles," NBS Circular 557, August 25, 1955; available from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C., at 30 cents.

[^0]: * This report may be obtained from Dr. G. R. Town, Ames, Iowa at a cost of $\$ 10.00$.

[^1]: * See Reference 5

[^2]: * This definition differs from that used in Reference 2.

