Construction Object Identification from LADAR Scans: An Experimental Study Using I-Beams

David E. Gilsinn¹ Geraldine S. Cheok² Christoph Witzgall¹ Alan Lytle²

¹Mathematical and Computational Sciences Division Information Technology Laboratory

²Materials and Construction Research Division Building and Fire Research Laboratory

NISTIR 7286

U. S. Department of Commerce Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899

DISCLAIMER

Certain trade names and company products are mentioned in the text or identified in an illustration in order to adequately specify the experimental procedure and equipment used. In no case does such an identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.

ABSTRACT

Laser Scanning devices (a.k.a. LADAR for Laser Detection and Ranging) are primarily used in construction projects to capture as-built data for documentation and re-engineering. These systems can rapidly generate unstructured point clouds of scene data within the field of view and line-of-sight of the LADAR. The Construction Metrology and Automation Group (CMAG) at NIST is interested in using these high-resolution scanned data to identify and locate construction objects of interest. The test operation is large-scale pick-and-place of structural steel, where the data from the scans are used to identify the general pose, position and orientation of a target object for initial positioning of a robotic crane. Close-in control of the crane using high frame-rate flash LADAR is a separate but related area of CMAG research.

This initial study describes an experiment in which an I-beam on a concrete floor surface is scanned, and the resulting point cloud data are used to calculate its pose. Multiple scans of two sizes of I-beams were taken with the I-beam placed at various angles relative to the scanner. Two approaches for segmenting potential target objects are described: binning and triangular irregular networks (TINs). Using the method of principal components analysis, the pose of potential target objects is determined. Bounding boxes are then formed around these objects and compared to an ideal bounding box generated from the known geometric specifications of the I-beam of interest. A measure of best fit is used to determine which scanned object most closely fits the bounding box of the ideal I-beam. A separate laser-based site measurement system (SMS) was used to measure points on the I-beam to measured pose of the I-beam. Three spheres were located in the scan field as a means of registering the scan and SMS axes to one another.

Keywords: binning, bounding boxes, LADAR, object identification, pose, principal axes, triangulated network, principle components analysis, irregular networks.

DISCLAIMER	iii
ABSTRACT	v
CONTENTS	vii
1. INTRODUCTION	1
2. LADAR SYSTEM	
2.1 General Information	
2.2 Characteristics of the ladar used in the experiment	
2.2 problematic aspects of ladar data	
2.2.1 Beam Divergence Problem	
2.2.2 Mixed Pixels	4
3. LADAR SCAN CONFIGURATIONS FOR THE STUDY	7
4. OBJECT IDENTIFICATION	
4.1. Object Segmentation	
4.1.1 Binning	
4.1.2 Triangulation (TIN) methods	
4.2 Principal Axes	
4.3 Bounding Box Comparison	
5. ESTABLISHING A REFERENCE FRAME	
5.1 Target Spheres	
5.2 Determination of Scanner Origin	
5.3 Location of Sphere Centers: Scanner Coordinate Frame	
5.3.1 Method A	
5.3.2 Method B	
5.3.3 Method C	
5.4 Summary: Sphere Centers in Scanner Coordinate Frame	
5.5 Final Transformation	
6 RESULTS	43
6.1 Comparison of Segmentation Methods	
6.2 Errors in object ID and pose	
6.2.1 Binning Segmentation: Pose and Pose Errors of I-Beams	
6.2.2 TIN Segmentation: Pose and Pose Errors	
7. CONCLUSIONS	
REFERENCES	

CONTENTS

APPENDICES	
A.1 Program Listings	
A.1.1 Object Identification by Binning Scripts	
A.1.2 Object Identification by TINs Scripts	
A.2 Pose Tables	
A.2.1 Pose Tables for Binning Segmentation	
A.2.1 Pose Tables for TIN Segmentation	

1. INTRODUCTION

Concerns regarding inefficiencies in component, material, and trades tracking on construction sites have been repeatedly voiced at National Institute of Standards and Technology (NIST) workshops (Automated Steel Construction [64], Data Exchange Standards at the Construction Site. Improved asset tracking systems will enable both leaner construction and enhanced security, as well as lay the foundation for levels of automation envisioned in an Intelligent and Automated Construction Job Site [24]. The combination of LADAR technology, real-time object recognition, automatic identification, and other tracking technologies (e.g., GPS, Ultra-Wide Band, etc.) provide powerful potential mechanisms for assessing real-time status of construction site operations and future autonomous construction systems.

The Construction Metrology and Automation Group (CMAG) of NIST has an ongoing research effort in Construction Object Recognition and Tracking. One element of this project is focused on determining the pose of an object given a point cloud (in the form of x, y, z data) of a scene as obtained from a high resolution LADAR. One objective of these efforts is to determine the pose of a known, targeted object, without user intervention, to provide initial guidance information to an automated crane [74]. Close-in control of the crane for object pick-up and docking using a high frame-rate flash LADAR is a separate but related area of CMAG research.

Automated object recognition from LADAR point cloud data is an ongoing research area, see for example Matoba, et al. [67], Zheng, et al. [91], Weiss and Ray [80], Whitaker and Gregor [82] and Greenberg et al. [30] and other references in those papers. The current experimental effort has concentrated on developing an algorithm to segment the data (i.e. remove data not belonging to potential objects of interest) and to determine the pose of a targeted object, an I-beam in this case. The general project strategy is to obtain experimental LADAR scans of a known object, apply two different algorithms to the data to predict the I-beam pose, and finally use an independent reference system to measure the actual I-beam pose to assess the performance of the pose determination methods.

There were four aspects to this experiment. First, multiple LADAR scans were taken of a simple scene which included an I-beam. Second, two approaches were then taken to segment potential objects of interest in the scan field. The first method employed binning the scan data into voxels while the second method relied on creating a triangular irregular network (TIN). Both methods subsampled the scan data and provided a mechanism to isolate potential objects. The third aspect included creating bounding boxes around potential objects by applying principal components analysis to the segmented scan data. These bounding boxes were compared to an ideal bounding box derived from the I-beam specifications to identify the target object. Finally, the calculated object pose was compared to the measured object pose. The measured object pose was obtained using a laser-based site measurement system (SMS) that was able to locate the I-beam more accurately than with the LADAR. The transformation matrix required to tranform the coordinates in the SMS frame to the LADAR frame was calculated using three spherical targets and the location of the scanner.

This report is organized as follows. Section 2 provides a brief introduction to LADARs and the specifications of the LADAR used for the experiment. Section 3 describes the LADAR settings and scene/scanner geometry. Section 4 describes two methods of segmenting objects, the use of principal components analysis to determine object pose, and the use of bounding boxes to identify the segmented objects. Section 5 discusses three methods of determining the center and radius of reference spheres. Section 6 presents comparative results of the object identification and pose determination using the two segmentation techniques. Section 7 presents some conclusions. The appendices include various tables of data used in the analysis.

2. LADAR SYSTEM

Laser radars have been in use for many years. For example the theory of 2-D pulsed imagers is described in Enders and Shapiro [22]. These early devices returned a range and signal intensity. LADARs were then introduced that provided angular orientation, range, intensity of returned signal, and more recently, color. Early problems and sources of error for these laser radars were studied in the early 90s. See for example Hebert and Krotkov [34] and Hashemi, et al. [33]. A discussion of the design and operation of 3D scanners used in space applications was given in Beraldin et al. [4, 5]. The design and operation of a laser scanning system was also given by Golnabi [27]. An assessment of the performance of a 3D whole body imaging system was given by Marshall et al. [66]. A critical review of laser ranging was reported by Amann et al. [1]. For a review of LADAR technology see Stone et al. [76]. In this section we give a brief discussion of LADAR operation and present the characteristics of the LADAR used in the current study.

2.1 GENERAL INFORMATION

LADAR configurations vary but in general all scanning systems involve the use of an emitted optical signal, a system to point the emitted signal throughout the system's field-of-view, and an optical receiver element to detect and process the returned signal. The optical signal is normally generated from a laser, a laser diode, or an LED (Light Emitting Diode), and the typical pointing system is either a mechanical scanning (e.g., rotating polygonal mirror) or beam-steering system (e.g., acousto-optic, electro-optic). The receiving element is most often integrated in the optical train with the emitter. The received signal can provide spatial, reflectance, and color information. Spatial data is typically provided as r, θ , ϕ from the instrument origin and postprocessed as x, y, z data coordinates in the instrument frame. Range information is obtained by either 'clocking' the signal return in pulsed time-of-flight (TOF) systems or by comparing phase differentials for a modulated emitted signal and its return. The pointing vector data - θ and φ – are derived from scanning mechanism data such as encoder values. Reflectance (intensity) data can be active-illumination reflectance, passive (white-light) reflectance, or both. Color data can be collected from either a co-boresighted CCD (Charge Coupled Device) or a separate imaging system co-registered with the LADAR.

2.2 CHARACTERISTICS OF THE LADAR USED IN THE EXPERIMENT

The manufacturer's specifications for the LADAR used in this study are provided in Table 2.1.

Instrument Characteristic	Manufacturer's Specified Value			
Magguramant Danga ^a	2 m to 350 m for natural targets, $\rho \ge 50$ %			
Measurement Kange	2 m to 150 m for natural targets, $\rho \ge 10$ %			
Measurement Accuracy ^b (1 σ standard deviation)	± 2.5 cm, in the worst case ± 10 cm ^d			
Vertical Field-of-View	80°			
Horizontal Field-of-View	0° to 333 °			
^a Typical values for average conditions. In bright sunlight, the operational range is considerably shorter than under				
an overcast sky. At dawn or night the range is even higher.				
^b Standard deviation, plus distance depending error ≤ 20 ppm.				
^c The conditions which constitute worst case is not specific	ed.			

Table 2.1. Manufacturer's Specifications for LADAR Instrument Characteristics

2.2 PROBLEMATIC ASPECTS OF LADAR DATA

2.2.1 Beam Divergence Problem

The divergence or spread of a beam can produce distortions. An earlier study by Gilsinn et al. [5] indicated that for at least one LADAR, the dispersion could range from 50 mm at 20 m from the LADAR, to 100 mm at 40 m, all to way to about 250 mm at 100 m. This dispersion led to defocusing of the scanned images. A method using image deconvolution to correct for the resulting distortion was investigated. The problem of beam divergence was also noted by Hebert and Krotkov [34] where they point out that the beam subtends a solid angle. They call the area of the beam projected on the target surface the *footprint* of the beam and indicate that every point in the intersection of the footprint and target contribute range values and intensities to the final range and intensity value of the measurement. The effects of beam divergence are alleviated for instruments with smaller beam sizes and those which incorporate methods to reduce beam divergence. The report by Stone et al. [76] includes a discussion of the affects of beam divergence. They point out that due to the divergence of the beam the photons associated with a single "pixel" in a LADAR frame may represent significantly differing range values. This effect can be used for positive good, for example, if multiple photon hits of a single "pixel" beam were recorded then it is possible to penetrate foliage. The divergence of the beam however leads to the problem of mixed pixels for some LADARs.

2.2.2 Mixed Pixels

Errors can occur at locations when the beam footprint is split and there are multiple returns for a given scan direction. For example, this can occur when scanning an object with a sharp edge. Imagine a scenario where the scanned object is a box positioned on a floor. At the box edge, part of the beam hits the box and returns and part of the beam continues on to hit the floor. Both returns are sampled. Various strategies exist for calculating range from the returned energy. These include first pulse, last pulse, or integrating all pulses (with appropriate filtering for determining a valid pulse). Another approach would be to provide the user with all pulse data (i.e. multiple returns per pixel). The LADAR used in this experiment calculates the range by

integrating over the entire projected footprint. This leads to producing a 3D data point that is actually located somewhere between the box and the floor. These points are called *mixed pixels* or sometimes *phantom pixels*. Figure 2.1 shows the point cloud for a box and the mixed pixels formed off of its top and side edges.

Figure 2.1. This image shows the line of mixed pixels extending from the top and side edges of the box.

The mixed pixels complicate the image recognition problem because sharp edges are difficult to detect. Therefore, such standard image processing tools as edge detection or edge following methods cannot be reliably applied without prefiltering the data to remove mixed pixels. For a discussion of this problem and other related laser radar problems see Hebert and Krotkov [34] and Stone et al. [76].

3. LADAR SCAN CONFIGURATIONS FOR THE STUDY

A series of scans were conducted to determine the uncertainty of the pose calculations, the influence of point density on pose determination, the influence of point-of-view of the scanner relative to the object on pose determination, and the ability of the algorithm to differentiate between two objects of similar shape. In these experiments, an I-beam in an uncluttered environment was scanned using the LADAR described in Section 2.2. In order to reduce the point cloud size the data set was visually trimmed to an area-of-interest that included the I-beam and the the tripods holding the reference spheres (see Figure 3.1b).

The dimensions of the two I-beams used in the experiments are given in Table 3.2. The I-beam was oriented at 0°, 30°, 45°, 60°, and 90° relative to the LADAR (see Figure 3.1a). At an orientation of 0°, the center of the I-beam was approximately 7 m from the scanner. This study used three settings of the angular increments. The highest density of points was obtained with an incremental angle of 0.072° (0.08 gon). 1 gon is an angular measure the equivalent of 0.9° . The medium density of points was obtained at an incremental angle setting of 0.108° (0.12 gon) angular increments, and the lowest density was obtained at an angular increment setting of 0.180° (0.20 gon). The further an object is from the scanner the fewer points will hit the target object. Table 3.1 gives estimates of the point increments at 5 m, 10 m, 20 m, and 40 m from the LADAR for the three point densities. Additionally, at each orientation and point density level, 3 scans were obtained to quantify the uncertainty associated with the pose calculation for the given orientation and point density. This resulted in a total of 90 scans being obtained (see Table 3.3). In many of the tables in this report we use the word *density* to refer to the density of sample points generated by the increments above. In particular high density refers to points sampled at 0.072° (0.08 gon), medium density at 0.108° (0.12 gon), and low density at 0.180° (0.20 gon).

Angular	Distance from LADAR (m)				
° (gon)	5 10		20	40	
0.072 (0.08)	6 mm	13 mm	25 mm	50 mm	
0.108 (0.12)	9 mm	19 mm	38 mm	75 mm	
0.180 (0.20)	16 mm	31 mm	63 mm	126 mm	

Table 3.1. Theoretical scan point spacing as a function of range

Table 3.2. I-Beam Dimensions.

	Length m (ft)	Depth, d mm (in)	Flange width, b_f mm (in)	Flange thickness, <i>t_f</i> mm (in)	Web thickness, <i>t_w</i> mm (in)
I-Beam A	3.050 (10.005)	419.1 (16-1/2)	179.4 (7-1/16)	18.3 (23/32)	11.1 (7/16)
I- Beam B	2.134 (7.000)	363.5 (14-5/16)	254.0 (10)	20.6 (13/16)	13.5 (17/32)

a. I-beam orientation.

b. I-Beam at 0°. Spheres used for registration.

- c. Point cloud of a scan.
- Figure 3.1. Experimental set-up. The data in Figure 3.1c was trimmed so that it fell between a radius of 3 m and 10 m around the scanner.

I-Beam A							
Ang Tuan	I-Beam Orientation (°)						
Ang. Incr.	0	30	45	60	90		
0.072° (0.08 gon)	A0-8gon-1 A0-8gon-2 A0-8gon-3	A30-8gon-1 A30-8gon-2 A30-8gon-3	A45-8gon-1 A45-8gon-2 A45-8gon-3	A60-8gon-1 A60-8gon-2 A60-8gon-3	A90-8gon-1 A90-8gon-2 A90-8gon-3		
0.108° (0.12 gon)	A0-12gon-1 A0-12gon-2 A0-12gon-3	A30-12gon-1 A30-12gon-2 A30-12gon-3	A45-12gon-1 A45-12gon-2 A45-12gon-3	A60-12gon-1 A60-12gon-2 A60-12gon-3	A90-12gon-1 A90-12gon-2 A90-12gon-3		
0.180° (0.20 gon)	A0-20gon-1 A0-20gon-2 A0-20gon-3	A30-20gon-1 A30-20gon-2 A30-20gon-3	A45-20gon-1 A45-20gon-2 A45-20gon-3	A60-20gon-1 A60-20gon-2 A60-20gon-3	A90-20gon-1 A90-20gon-2 A90-20gon-3		
		I-Be	am B				
Ang Incr		I-l	Beam Orientation (am Orientation (°)			
Alig. Incl.	0	30	45	60	90		
0.07 2°	B0-8gon-1 B0-8gon-2 B0-8gon-3	B30-8gon-1 B30-8gon-2 B30-8gon-3	B45-8gon-1 B45-8gon-2 B45-8gon-3	B60-8gon-1 B60-8gon-2 B60-8gon-3	B90-8gon-1 B90-8gon-2 B90-8gon-3		
0.108 °	B0-12gon-1 B0-12gon-2 B0-12gon-3	B30-12gon-1 B30-12gon-2 B30-12gon-3	B45-12gon-1 B45-12gon-2 B45-12gon-3	B60-12gon-1 B60-12gon-2 B60-12gon-3	B90-12gon-1 B90-12gon-2 B90-12gon-3		
0.180 °	B0-20gon-1 B0-20gon-2 B0-20gon-3	B30-20gon-1 B30-20gon-2 B30-20gon-3	B45-20gon-1 B45-20gon-2 B45-20gon-3	B60-20gon-1 B60-20gon-2 B60-20gon-3	B90-20gon-1 B90-20gon-2 B90-20gon-3		

Table	e 3.3.	Experimental	Test Matrix.
-------	--------	--------------	--------------

4. OBJECT IDENTIFICATION

Pose determination in this study refers to the ability to recognize a known object in a scan scene and determine its location and orientation relative to the 3D scanner. In this work, target objects in a scanned scene are represented by unstructured (x, y, z) points in 3D space. These are sometimes referred to in the literature as *range images*. The difficulty of recognizing the target object depends on the size and complexity of the scanned scene, the number of objects in the model database, and the amount of a priori information about the scene. In the simplest scenes, objects are un-occluded and appear in a few standard positions. For a literature review of pose determination using range data see Greenspan [31]. Hoover et al. [38] did an experimental comparison of range image segmentation algorithms up to 1996. For a discussion on recognizing 3D objects using surface descriptions see Fan et al. [23], Liang and Todhunter [59], Huttenlocher and Ullman [43], Wurster et al. [88], Johnson, et al. [46], Caelli et al. [13], Zhang and Hebert [89], Johnson and Hebert [47]. Krishnapuram and Casasdent [52] introduced a technique for determining location and orientation of general three-dimensional objects from a single range image. Kim and Kak [50] introduced a graph matching technique for comparing range objects with model objects. Automatic target recognition systems have been studied by Verly et al. [79], Green and Shapiro [29], Zheng et al. [91], Hutchinson et al. [42], Greenberg et al. [30]. Probabilistic methods for object recognition have been used by Wheeler and Ikeuchi [83]. Surface-matching by harmonic maps have been used by Zhang and Hebert [89]. Edge detection has been used by Jiang and Bunke [44]. Cooper et al. [16] studied information theoretic measures, entropy and mutual information, as performance metrics for object recognition. Mirmehdi et al. [68] introduce feedback control strategies for object recognition. Matoba et al. [67] projected 3D objects onto an array of 2D images. Weiss and Ray [80] use geometric invariants to reduce complexity of object recognition problems. Even a quick review of the literature indicates that many of the current techniques depend on an identification of edges, points, and surfaces in the scanned objects and comparing these with similar features in database models. However, many of the previous references required dense object sampling not necessarily available to LADARs at long range. LADAR images often do not provide clear edge contours so that surface features can be identified. It is often necessary to rely on more elementary techniques to gauge an approximate object structure automatically from point clouds.

Once objects have been segmented within point clouds a second task involves modeling them. There is a vast literature on modeling 3D objects and we can only give a sampling of it here. This list covers many of the surface reconstruction methods developed over the last ten years or so. Of those that describe modeling of range data, most give examples of relatively small, nearby objects, such as statues or somewhat standard toy shapes. A few papers described modeling of 3D data acquired from longer range sampling of buildings and entire rooms. The papers describing modeling techniques are the following: Hoppe et al. [39], Welch and Witkin [81], Krishnamurthy and Levoy [51], Zhao and Mohr [90], Lindstrom et al. [60], Leonardis et al. [57], Luebke and Erikson [63], Cignoni et al. [15], Hirsch et al. [37], Dorai and Jain [20], Bors and Pitas [11], Witzgall et al. [85, 86, 87]. There are a number of papers that describe modeling techniques applied to range data. Many, however, involve scans of relatively small objects or modeling of available point cloud datasets. The following references describe some of these methods: Sourlier and Bucher [75], Bajaj, et al. [2], Curless and Levoy [19], Bernardini et al.

[8], Lu and Yun [61], Juarez et al. [48], Boughorbal et al. [12], Chatzis and Pitas [14], Levy and Lindenbaum [58], Marshall et al. [65], Barhak and Fischer [3], Whitaker and Gregor [82]. There are a few references that describe modeling of point clouds obtained from large scale scans, such as buildings and statuary. The following references give some of those details: Beraldin et al. [6], Huber et al. [41], Pollefeys et al. [72], Kanamaru et al. [49], El-Hakim [21].

In this study, the scene was constrained to contain only a few objects in addition to the target object. There were no objects of similar dimension to the target object and the floor was smooth. Data points outside the volume of interest (outside the furthest spherical registration target) were manually removed. A particular difficulty faced in this study was alluded to in the discussion of problems related to mixed pixels in Section 2.4. Edges of objects are not clearly delineated. This is seen in Figure 4.1, which shows an I-beam with three tripods around it. One of them is faintly seen in the llower middle of the figure.

Figure 4.1. Sample 3D scan data set from the LADAR. Eyepoint rotated to give perspective view. Note that objects in the field of view are not well delineated.

For this study we do not use feature identification, but we rely on the use of bounding boxes around segmented data to identify an object. The object is segmented using two approaches. In the first, we use voxel (for definition see Section 4.1.1) binning and in the second we use triangulation. Once potential objects are segmented, we apply a more global idea of determining the principal axes of potential objects and enclosing them in bounding boxes. These box polygons are then matched against box polygons around data set objects using a goodness-of-fit

metric to identify the object. These ideas are expanded in this chapter. An earlier description of some of the methods used in this object recognition study is given in Gilsinn et al. [4].

4.1. OBJECT SEGMENTATION

4.1.1 Binning

In order to make the scanned data sets more manageable, the data points are accumulated into volume cubes or *voxels* that encompass the entire range of the data set. This process is called *binning*. The number of voxels used to model a scanned volume can be determined in multiple ways. The selection tends to be a compromise between the compute time to analyze the resulting mesh and the size or resolution of each voxel. The selection of distances between voxel centers would depend on the nature of the application. In some cases centimeters might be acceptable whereas in others millimeters might be required. In either case, the number of voxels in the mesh must be controlled so that compute time does not become too great. For example, in the analysis of the data obtained in the current study a mesh of ($60 \times 60 \times 60$) voxels was found to be sufficient.

In the binning algorithm, the size of each voxel is calculated as a triplet (dx, dy, dz), e.g.,

$$dx = \frac{\left(x \max - x \min\right)}{\left(\# \text{ partitions in } x\right)}.$$

Each (x, y, z) point is associated with an (i, j, k) value for each bin. In terms of x, for example, this is computed for each point r of the scanned data as i(r) = fix[(x(r) - xmin)/dx] + 1, with due consideration of the boundary voxels. Similar index calculations are performed for j(r) and k(r) for each N points. Once the (i(r), j(r), k(r)) indices are computed for each point, the bin count (number of points) per voxel can be determined. The bin count of all voxels is initially set to zero. Due to the binning, many (x, y, z) points will have the same (i(r), j(r), k(r)) indices. The count algorithm iterates by starting with index triplet (i(1), j(1), k(1)) and finding all matches of this triplet by a simple linear search. The number of matches, M, gives the bin count for the (i(1), j(1), k(1)) voxel. These matched indices are then eliminated from the (i(r), j(r), k(r)) list and a new allocated list is formed of length N-M. The old list is deallocated. This reduces the number of (i(r), j(r), k(r)) triplets that need to be linearly searched. The algorithm then begins again with the new (i(1), j(1), k(1)) triplet, finds the matches, counts them for that voxel and then eliminates those triplets. The process continues until there are no more (i(r), j(r), k(r)) triplets. All voxels would then have a bin count associated with them. Many would have a bin count of zero (empty). For a further discussion of 3D image representation see Nikolaidis and Pitas [71].

The binning process was selected instead of surface fitting for several reasons. It allows objects to be modeled by relatively simple polygon structures which are appropriate for I-beam identification. Polygon models also provide sufficient structure for alignment and they allow fast comparisons with similar polygon models of the ideal structures by only matching a relatively few vertices.

Once the data has been binned into a workable set of voxels, objects can be isolated. First, however, an algorithm is used to eliminate as many mixed pixels as possible. The algorithm is based on the idea that those columns with floor hits or phantom pixels would have a number of voxels with small bin counts and in general very few voxels connected to them in the column. It should be noted that voxels can have more than one phantom pixel in them depending on voxel resolution. By a connected voxel, we mean one with a nonzero bin count either directly above or directly below. These are also referred to as *neighbors*. A vertical string of voxels is defined to be the set of non-zero voxels in one column that are direct neighbors of each other. The most significant vertical voxel string in a column is the longest string in each column. This is determined by examining each vertical column of voxels and associating a value of "1" in a buffer for that column if a bin is non-zero, otherwise the buffer is set to "0". The string length and maximum string length for the column are initialized to "0". Each voxel up the column is examined. If the buffer value is "1", then the string length is incremented and the maximum string length is set to the current string length if it is longer than a previous string length in the column. Once the buffer becomes zero the current string length is reset to zero and the next voxel is examined until the column is finished. The maximum string length per column is automatically produced. Also, the maximum overall string length is the maximum of all of the column string lengths. Columns that include those voxels that are to be eliminated are determined by comparing the maximum string length up a column with the maximum overall string length. If the maximum column string length is less than a prescribed fraction of the maximum overall string length then the bin counts in that column are all set to "0". Currently, that factor is selected by the user, but future algorithm enhancements will include a more general factor determination. Columns with floor hits or phantom pixels usually have maximum column string lengths of one or two as opposed to maximum column string lengths of 40 or 50 or more for tall objects, again depending on voxel resolution.

Once the outlier voxels, such as phantom pixels and ground hits have been eliminated, entities called *objects* can be identified. The basic premise of the object segmentation portion of the overall algorithm is that objects are made of neighboring voxels. Thus, this portion of the algorithm accumulates neighboring voxels into object structures. The sub-algorithm used here is based on one proposed in Nikolaidis and Pitas [71] for calculating the volume of connected components in 3D. The process starts by constructing a three dimensional array, called the *mask array*, of the same size as the voxel array and assigning the value "1" to the mask element (i, j, k)associated with the voxel indexed (i, j, k) if that voxel element is non-zero, otherwise the mask array element is set to "0". The segmentation proceeds by first finding a non-zero mask element and setting it to "0" after storing its voxel information on a stack. It then proceeds with setting to "0" each of the mask array elements for every neighboring non-zero mask element that is found, and then placing the associated voxel information associated with each of those mask elements on a temporary holding stack. For those neighbors, their neighbors are examined in an outward expanding group of neighboring voxels. When there are no more non-zero neighboring mask elements to be set to "0", the stack is unloaded into an object structure. Setting the mask array elements to "0" for all of the voxels in an object is necessary because when the algorithm goes back to the mask array to find another object, it won't find a mask element associated with the object just created.

4.1.2 Triangulation (TIN) methods

The acronym "TIN" stands for "Triangulated Irregular Network", an approach to representing given 3D point clouds by triangulated or TIN surfaces which consists of a connected set of triangles in 3D. A TIN surface thus has vertices and edges, namely, the corners or vertices and the edges of the triangles. The general understanding of the TIN approach, however, is based on a more restricted class of triangulated surfaces. It operates with triangulated surfaces which are also graphs, respectively, of bivariate functions z = z(x, y), and which are usually defined over a rectangular area or "map" in the x,y-plane. As a consequence, each point (x, y, z) on the TIN surface is the sole point with the projection or "footprint" (x, y) in the x, y-plane. Surfaces with the latter property are referred to by various authors as "parametric" or "2.5D". Note that such surfaces may not have switchbacks or overhangs.

It follows, also, that the projections of the 3D triangles of the TIN surface into the map are 2D triangles, which cover the map without overlapping and thus define a "triangulation" of the map area. The 2D vertices of the triangulation are the footprints of the 3D vertices of the TIN surface, and the triangulation thus defines which of these vertices belong together as corners of 3D triangles of the surface. Similarly, the triangulation defines which 3D vertices are neighbors to each other. The triangulation of the 2D vertices can thus be viewed as an irregular net over which a triangulated surface is defined.

In typical applications, and also in the work reported here, the vertices of the TIN surface are – aside from the map corners – actual data points (x_i, y_i, z_i) selected from a given point cloud. The construction of a TIN surface then amounts to constructing a triangulation of their footprints (x_i, y_i) . For the purposes of this work, the "Delaunay triangulation" has been chosen. A triangulation of *S*, where *S* is a set of 2D points, is called Delaunay if the following property holds. Any three points in S describe a triangle if and only if the interior of their circum-circle does not contain points in *S*. The TIN approach is widely understood as Delaunay based.

Many algorithms for constructing Delaunay triangulations are available. At NIST, an adaptive version of the "insertion method" of Lawson [55] has been implemented. For details see Witzgall et al. 2004 [86]. This method proceeds by inserting adaptively selected vertices, one at a time, into previously constructed TIN surfaces, so that from each insertion a new Delaunay triangulation and an associated TIN surface results. In this work, the data point to be inserted at each step is chosen to be the one that deviates the most from the current TIN surface. In the updated TIN surface, that deviation has then been reduced to zero as the point is now included in that surface.

The "adaptive" selection/insertion procedure typically stops before all points have been inserted. This allows intelligent thinning of large data sets, the post-triangulation adjustment of the resulting surface, and to take advantage of specifics of the selective process, as will be seen below. Most TIN methods, in use today, enter all data points into the TIN and delete data points subsequently as needed.

The adaptive selection procedure favors the early insertion of data points in areas of high variation of elevation over those in areas where elevations follow a planar pattern, that is, flat but

not necessarily horizontal. In particular, objects hit by sideway scans exhibit strong variation of elevation in a narrow space. After about 30 % of the data points have been selected for insertion, objects stand out as starkly dense areas in a display of the triangulation (Figure 4.2).

Figure 4.2. Triangulation of scene – Dense areas indicate objects.

The NIST version of the adaptive insertion method is specifically designed for the fastest possible retrieval of all data points whose footprints fall into any specified triangle of the triangulation. This feature facilitates the retrieval of object connected data points.

The goal of object segmentation is to identify and collect those data points in a point cloud that belong to an object of interest in the scene. In this work, point clouds were generated individually by single LADAR scans aimed at I-beams in various positions. The scan region included the I-beam and tripods supporting spheres intended as fiduciary devices. Object segmentation has two aspects:

- separate the data points garnered by the object from those referring to background
- distinguish between objects.

The program package TINsegment had been developed at NIST to accomplish such tasks. It proceeds in three steps.

<u>Step 1</u> Apply the adaptive insertion method for creating a TIN with about 30 % of the data points selected.

This will produce a triangulation with heavy concentrations of small triangles, separated by large triangles (Figure 4.2).

<u>Step 2</u> Delete triangles with an edge length exceeding a specified tolerance. The tolerance should be chosen to be a small multiple of the standard deviation in range measurements associated with the instrument used.

This will produce a set of "islands" of triangles connected by adjacency as shown in Figure 4.3.

<u>Step 3</u> The data points corresponding to each island are collected.

This will produce an output file of data points of each island with separator lines between the data sets corresponding to different islands. The islands are represented by decreasing numbers of data points. An optional cutoff is provided to exclude small spurious islands. In this application, further analysis based on bounding boxes permits automatic recognition of the desired object, namely, the I-beam (see Section 4.3).

Figure 4.3. This figure shows the triangulation shown in Figure 4.2 after deletion of triangles of a specified edge length.

4.2 PRINCIPAL AXES

In order to determine the pose of a defined object, it is useful to identify a set of axes that represent the distribution of the voxel centers about the center of data mass. If an object is defined by a group of voxels, each with a center (x, y, z) associated with it, then a set of orthogonal axes relative to the center of data mass can be determined that extend in the directions of the longest axis of data, the second longest, and the third longest. These are called the *principal axes*. For a further discussion of this algorithm and its other applications in graphics see Lengyel [56]. Objects that are only linear or planar do not have a full set of principal axes and will not be considered as legitimate objects in this study. The principal axes are representative of the directions in which the data varies. To determine the principal axes assume that points P_1, P_2, \ldots, P_N represent N points in 3D Euclidean space. We first calculate the mean position or center of data mass m (a vector) by

$$m = \frac{1}{N} \sum_{i=1}^{N} P_i$$
 (4.1)

We then construct a 3 x 3 matrix, since each P_i is 3D, called the covariance matrix

$$C = \frac{1}{N} \sum_{i=1}^{N} (P_i - m) (P_i - m)^T$$
(4.2)

This covariance matrix is a symmetric matrix that represents the correlation between each pair of $P_i = (x_i, y_i, z_i)$ points. The natural axes of the set of points are determined as follows. First, the eigenvalues of *C* are found and ordered largest to smallest. The associated eigenvectors are then found. The eigenvector associated with the largest eigenvalue points in the direction of the points having the largest variation, generally the longest axis. The eigenvector associated with the next largest eigenvalue points in the direction of the next largest eigenvalue points in the discussion of bounding boxes in the next section we will label the three principal axis eigenvectors as *R*, *S*, and *T* where *R* is the eigenvector associated with the largest eigenvalue, *S* with the second, and *T* with the third. They are centered at the center of data mass. Let these vectors be normalized to unit vectors. The process of developing the principal axes is related to the statistical technique called principal components analysis. For a discussion of this topic see Montgomery et al. [70].

4.3 BOUNDING BOX COMPARISON

Although there are uncertainties in locating the boundaries of LADAR scanned objects, it is possible to establish reference surfaces and vertices that can be used to compare against associated reference surfaces and vertices on the I-beams in the data base. Due to the statistical uncertainties of locating object edges, we use polygons to bound the object. One advantage of this approach is that if a polygon is also constructed around the ideal object from the database, such as an ideal I-beam, then comparisons can be made between well defined polygons. In the case of I-beams, polygons defined as bounding boxes are used. The approach is relatively straightforward. Every legitimate object is defined in terms of voxels and each of the voxels has a center (x, y, z) point. Once an object, in particular the I-beam, has been identified in terms of voxels then the vector from the LADAR scanner origin to each voxel center in the I-beam is projected onto the principal axes. The lengths of the differences between the maximum and minimum values of the projections along each of the principal axes. The vertices of this box are then easily determined.

The construction of a bounding box given here is based on the construction given in Lengyel [56]. In this construction we start with all of the points from the point cloud that are identified as a significant object. Let these points be labeled P_1, P_2, \dots, P_N , where N represents the number of point cloud points associated with the object. These labeled points are vectors from an origin. The projections of these vectors along the principle axes are given by the inner products of the points P_1, P_2, \dots, P_N with the principle axis vectors R, S, T defined above. These are direction vectors relative to the origin. The center Q of the bounding box is the point at which three planes lying halfway between the faces of the box meet. Let

where *a*, *b*, *c* are the average extents in the *R*, *S*, *T* directions. This has been implemented in the main object recognition scripts given in Appendix A.

Next, the specifications for an I-beam in the database can be used to construct the bounding box defining the I-beam. These points can also be used to generate the principal axes for the reference I-beam. Once these principal axes are known and the distance to the center of data mass of the measured I-beam from the scanner is known, it is then possible to construct the X-, Y-, and Z-rotations to transform the reference I-beam model and map it over the bounding box of the measured I-beam data. Then a sum of squared errors function can be used to compute the error between the associated vertices of the reference I-beam model and the measured I-beam bounding box. The segmented object will be associated with the known object which yields the smallest error. Figure 4.4 shows the bounding boxes for an identified object and the bounding box for an ideal object in the database.

Figure 4.4. This figure shows a bounding box with solid lines around a potential object. It is compared with a model bounding box with dotted lines around it.

5. ESTABLISHING A REFERENCE FRAME

In order to determine the accuracy of the predicted pose of the I-beams, measurements at the four corner points of the upper flange of the I-beams were made using a Site Metrology System (SMS). This system is a laser-based system and the 3D coordinates, in the SMS frame of reference, are obtained by touching the tip of a digitizing tool to the point of interest. These coordinates were then converted into coordinates relative to the LADAR scanner frame through registration. Registration is the establishment of a rigid body transformation that brings the coordinate points in one frame into coordinate points in another frame. There is a large literature on the problems of registration. One of the major algorithms for 3D registration is called the Iterative Closest Point (ICP) algorithm by Paul Besl (see Besl and McKay [10]). This is a very general method that seeks a global matching of points or shapes. In our study, however, we use a technique of establishing three reference points in the scan view volume that are also measured by the SMS. These reference points and the measured location of the scanner relative to the SMS provide sufficient data to establish a rigid body transformation. In this chapter we describe the details of this process.

To measure the rotation of the I-beam, the four corners (a, b, c, and d in Figure 5.1) of the top flange were measured with the SMS that has a manufacturer stated accuracy of less than 2 mm. These measurements were taken every time the beam was moved. In an attempt to determine the "ease of use" of spheres for registration purposes, three spheres, nominal diameters of 152 mm (6 in), were located within the scene (see Figures 3.1, 4.1, 5.1, and 5.2). These spheres were used as additional targets for registration purposes, and several points on the surface of each sphere were measured using the SMS. These measurements and those obtained during the scans allow for the determination of the transformation matrix between the two coordinate frames, scanner and SMS.

Points on the scanner were also measured using the SMS to locate the scanner in the SMS coordinate frame. The scanner origin in the SMS coordinate frame was derived from these measurements as described in the next section.

To determine the transformation matrix, the initial intent was to use eight points, measured in both scanner coordinate frame and in SMS coordinate frame. These eight points were: the four corners of the upper flange (points a, b, c, d in Figure 5.1), the center of three spheres (A, B, and C) and the scanner origin. However, upon examining the LADAR data, it was very difficult to accurately isolate the corners of the upper flange in the point cloud due to noise and the phantom points or mixed pixels. The four corners could be determined visually; a method that was felt to be too subjective. However, four points could be used to determine the transformation matrix; they were the three sphere centers and the scanner origin. The reduction of usable control points highlights the need for redundancy of control points.

Figure 5.1. Schematic showing approximate orientation and centers of the SMS and scanner.

5.1 TARGET SPHERES

As alluded to above, the spheres were meant as secondary targets in the determination of the transformation matrix. The inclusion of the spheres was done in an effort to determine a potential sphere size for use in targeted registration and as an artifact for LADAR performance evaluation purposes. As such, the spheres used in these experiments were polystyrene spheres purchased from a hobby store and not machined spheres with tight tolerances on either the diameter and out-of-roundness or sphericity.

The diameters of the polystyrene spheres were measured using a micrometer with a resolution of 0.025 mm (0.001 in). However, since the spheres were not labeled A, B, or C when they were removed from the scene it was not possible to precisely identify measured sphere diameters with the original sphere located at positions A, B, and C in Figure 5.1. However Table 5.1 gives a list of 10 measurements made of the diameters of the three spheres designated as spheres 1, 2, 3, where the numbering does not indicate corresponding spheres to A, B, and C in Figure 5.1.

	Diameter (mm)			
Measurement #	Sphere 1	Sphere 2	Sphere 3	
1	150.724	151.232	152.273	
2	152.121	153.441	152.146	
3	151.460	153.238	152.984	
4	150.089	152.806	151.714	
5	150.038	152.933	152.349	
6	151.435	151.587	152.248	
7	150.089	151.765	152.273	
8	151.308	153.568	152.298	
9	150.851	151.968	152.806	
10	150.851	151.130	152.603	
Average Diameter	150.896	152.367	152.370	
Average Radius	75.448	76.183	76.185	
Std. Dev. (Diameter)	0.695	0.932	0.356	

Table 5.1. Measured Sphere Diameter.

5.2 DETERMINATION OF SCANNER ORIGIN

As there was no physical point on the instrument to designate the center or origin of the scanner, the scanner origin was derived by making several measurements. The scanner was mounted on a survey tripod and aligned over a point (P1) marked on the floor. This point on the floor was measured with the SMS system and yields the X- and Y- values for the scanner origin, in SMS coordinate frame. Four points around a circle on top of the scanner were also measured. A best-fit circle of these points yields an additional set of X- and Y- values of the scanner origin. The Z-value, in SMS coordinate frame, for the scanner was obtained by measuring a visually-located

point on the scanner surface which corresponded to the rotation axis of the mirror. The measured values and derived scanner origin are given in Table 5.2.

X and Y Values of Scanner Origin					
	Point #	X (m)	Y (m)		
	1	15.115	-1.519		
Coordinates of point, P1, on	2	15.115	-1.519		
instrument Z-values are not	3	15.113	-1.520		
relevant and not shown.	4	15.113	-1.520		
	5	15.112	-1.521		
Coordinates of 4 points on	6	15.110	-1.551		
circle on top of instrument.	7	15.090	-1.520		
Z-values are not relevant and	8	15.127	-1.518		
not shown.	9	15.128	-1.518		
Center of best fit circle of Pts. 6-9	10	15.109	-1.529		
Average of Pts. 1-5, 10		15.113	-1.521		
Std. Dev of Pts. 1-5, 10		0.002	0.004		
	Z-Values of Scar	nner Origin			
	Point #	Z	(m)		
Z-coordinate of point	11	-0.128			
corresponding to rotation	12	-0.128			
axis of mirror. X and Y	13	-0.128			
coordinates are not relevant	14	-0.	128		
and not shown.	15	-0.	129		
Average of Pts. 11-15		-0.128			
Std. Dev. of Pts.	11-15	0.0	001		
Instrument Origin in SMS Coordinate Frame: (15.113, -1.521, -0.128) Note: Instrument Origin in Scanner Coordinate Frame is (0, 0, 0)					

Table 5.2. Instrument Origin in the SMS Coordinate Frame.

5.3 LOCATION OF SPHERE CENTERS: SCANNER COORDINATE FRAME

Three methods, A, B, and C, for fitting a sphere to a point cloud were examined. The spheres were 152 mm (6 in) in nominal diameter and made ofpolystyrene . Once a sphere fit had been achieved, the center of the sphere and its radius was determined. Of main interest, in the context of this work, was the center, as the registration of the instrument frame was directly based on these locations.

All methods examined here follow the general paradigm of "fitting" consisting of (i) specifying a parameter model of an object, and (ii) selecting the parameters of the model to minimize the

model error for the point cloud as a whole. This involves the further choice of how to combine the individual errors into a single measure of deviation, such as the RMS (root-mean-square) measure for this purpose, defined as the square root of the mean of the squared model errors.

Two of the methods involved fitting a sphere where the radius of the sphere was constrained (Method A and Method C - fixed) to 76 mm (3 in) and the other method involved fitting a sphere where the radius was not constrained (Method B and Method C - free). It should be noted that all the data points, for each sphere, lie on the "side" of the sphere closest to the scanner and are not, as preferred, randomly scattered around the sphere – see Figure 5.2. This condition will likely adversely affect the goodness of the sphere fit.

Figure 5.2. Data points located on side of sphere closest to scanner.

5.3.1 Method A

The procedure to determine the sphere center in Method A is based on a least squares fitting of a spherical equation with a constrained radius. Before the least squares method was applied, though, the 90 scan files of the I-beam and sphere scenes were preprocessed. In particular, the points associated with each sphere were isolated and saved to a file, i.e., one file contained the points for one sphere. This process yielded 270 files, but only 269 were used because one file became corrupted during the file writing process and could not be recovered. The method assumed that the radius of each of the spheres was 0.0762 m. It then performed a least squares fit based on

$$\min\left(\left(x-c_{1}\right)^{2}+\left(y-c_{2}\right)^{2}+\left(z-c_{3}\right)^{2}-0.0762^{2}\right)^{2}.$$

The scanned data values (x, y, z) were taken from files of measured data at different scan densities for each of the separate spheres, referred to as Sphere A, B, and C (Figure 5.1). The least squares process produced 269 estimates of the centers (c_1, c_2, c_3) for the spheres.

The fitting process for each file was straightforward in that the points for each sphere were read and processed separately. Since the first two digits of all scanned points in a given file were the same, they were shifted out so as to relocate the origin of the data as near to (0,0,0) as possible. This made all of the data used in the fitting the same order of magnitude thus lending to the numerical stability of the fitting algorithm. The sphere function and the shifted data points were provided to a nonlinear least squares software program along with an initial guess for the center. Instead of providing (0,0,0) as the initial guess, each of the shifted data values was used as a

Sphere A						
		Std. Dev.				
Density	X	у	Z	X	у	Z
High	-4.787	3.302	-0.354	0.0168	0.0073	0.0067
Medium	-4.781	3.300	-0.354	0.0120	0.0069	0.0045
Low	-4.779	3.299	-0.358	0.0130	0.0068	0.0064
All Densities	-4.782	3.300	-0.355	0.0144	0.0071	0.0062
		Median				
High	-4.780	3.298	-0.351			
Medium	-4.779	3.298	-0.353	•		
Low	-4.776	3.298	-0.357	-		
All Densities	-4.779	3.298	-0.354			
		Sp	here B			
		Average			Std. Dev.	
Density	X	у	Z	X	у	Z
High	-4.727	7.867	-0.134	0.0059	0.0037	0.0031
Medium	-4.727	7.865	-0.136	0.0075	0.0050	0.0031
Low	-4.724	7.861	-0.140	0.0111	0.0101	0.0063
All Densities	-4.726	7.864	-0.137	0.0085	0.0072	0.0052
		Median				
High	-4.729	7.866	-0.133			
Medium	-4.729	7.865	-0.136			
Low	-4.728	7.862	-0.140			
All Densities	-4.729	7.865	-0.136			
		Sp	here C			
		Average	0	Star	dard Devia	tion
Density	X	у	Z	X	У	Z
High	-1.078	5.843	-0.525	0.0042	0.0042	0.0009
Medium	-1.078	5.842	-0.529	0.0047	0.0057	0.0012
Low	-1.078	5.842	-0.533	0.0049	0.0097	0.0037
All densities	-1.078	5.842	-0.529	0.0046	0.0068	0.0038
Median			4			
Density	X	<u>y</u>	Z	ł		
High	-1.079	5.843	-0.526	-		
Medium	-1.079	5.843	-0.529	-		
Low	-1.079	5.842	-0.533	-		
All Densities	-1.079	5.843	-0.529			

Table 5.3. Method A: Calculated Sphere Centers in Scanner Coordinate Frame.

guess. This generated as many center estimates as there were data values in the given file. To each of these, the offset values were reintroduced to provide a list of potential sphere centers. The mean and the standard deviation of each of the estimated centers for the file were then computed. The final result after processing all of the data files was a list of means and standard deviations for the 269 scan files. The data was then grouped by scan density as shown in Table 5.3.

As described earlier, for any given data file, Method A computed *n* centers where *n* was the number of data points in that data file. The final "calculated" center was the average of these *n* centers and a corresponding standard deviation was also calculated. In Figures 5.3 to 5.5, the coordinates of the calculated centers for each data file are plotted. It can be seen in Figures 5.3 to 5.5 that the calculated centers for Sphere B have the least variability, especially for the high and medium density data sets. In Figures 5.4a-c, there are cases in which the error bars are not visible because they are hidden by the size of the plotted points. Plots of the *x*-, *y*-, and *z*-coordinates vs. density indicated an overall decreasing trend for the *z*-coordinate as the point density went from high to low. No consistent trends were noted for the *x*- or *y*-coordinates.

Figure 5.3a. The Average $X^{\text{Run #}}$.

Figure 5.3b. The Average Y-coordinate of Sphere A.

Figure 5.3c. The Average Z-coordinate of Sphere A.

Figure 5.4a. The Average X-coordinate of Sphere B. Some error bars are not visible because they are hidden by the data point.

Figure 5.4b. The Average Y-coordinate of Sphere B. Some error bars are not visible because they are hidden by the data point.

Figure 5.4c. The Average Z-coordinate of Sphere B. Some error bars are not visible because they are hidden by the data point.

Figure 5.5a. The Average X-coordinate of Sphere C.

Figure 5.5b. The Average Y-coordinate of Sphere C.

Figure 5.5c. The Average Z-coordinate of Sphere C.

5.3.2 Method B

This method does not fix the radius, but determines it based on the data. It is often referred to as an "algebraic" fit, because the sphere model chosen here is given by the equation below with parameters a_0, a_1, a_2, a_3 :

$$x^{2} + y^{2} + z^{2} + a_{1}x + a_{2}y + a_{3}z + a_{0} = 0,$$
 (Eq. 5.1)

the well-known equation for the sphere. Using the sum of squares to combine individual model errors, the optimization problem

$$\min \sum_{i} \left(x_i^2 + y_i^2 + z_i^2 + a_1 x_i + a_2 y_i + a_3 z_i + a_0 \right)^2$$

results. This is a linear regression problem for the parameters a_0, a_1, a_2, a_3 . It is, therefore, readily solved. In this work the regression feature in MATLAB was used.

Equation 5.1 can be written as

$$\left(x+\frac{a_1}{2}\right)^2 + \left(y+\frac{a_2}{2}\right)^2 + \left(z+\frac{a_3}{2}\right)^2 - \frac{a_1^2}{4} - \frac{a_2^2}{4} - \frac{a_3^2}{4} + a_0 = 0.$$

This provides the center coordinates of the fitted sphere

$$x_0 = -\frac{a_1}{2}, y_0 = -\frac{a_2}{2}, z_0 = -\frac{a_3}{2}$$

and the radius

$$r = \sqrt{\frac{a_1^2}{4} + \frac{a_2^2}{4} + \frac{a_3^2}{4} - a_0}$$

This also points to a relationship between the model formulation in Method A and the algebraic model formulation used here. Only the parameters differ. Note that the parameters chosen here, while enabling regression, preclude fixing the radius.

The results show that almost all of the calculated radii were under or overestimated. The computed radii ranged from 49 mm to 109 mm as compared to a nominal radius of 76 mm. The average of the calculated radii for Sphere B came closest to the nominal value. Those for Sphere A and C did not with the average radius for Sphere A closer to the nominal value than that for Sphere C.

For each sphere, there is a maximum of 90 possible data sets. The radius was used to filter out "bad" sphere fits. The criterion used was to eliminate data sets when the calculated radius did

not fall between 76 mm \pm 5 mm. However, when this criterion was used, only four (4) data sets were valid for Sphere A, 30 for Sphere B, and none for Sphere C.

To increase the number of "valid" sets for Spheres A and C, the criterion was changed. For Sphere A, data were kept when the calculated radius was within 76 mm \pm 10 mm. For Sphere C, the calculated radii, for all 90 data sets, ranged from 50 mm to 56 mm, and data were kept when the calculated radius was greater than 55 mm. The averages and standard deviations of the radii and sphere centers are given in Table 5.4 and shown in Figure 5.6. Due to the limited number of "valid" data sets, the data in Table 5.4 are not sub-divided by densities as is possible in Method A.

	5	Sphere A							
		X (m)	y (m)	Z (m)	Radius				
		(111)	(111)	(111)	(111)				
All data sets	Average	-4.781	3.299	-0.356	0.0562				
(n = 90)	Std. Dev.	0.015	0.007	0.007	0.0090				
Filter by radius, r:	Average	-4.807	3.311	-0.365	0.0714				
$r = 70 \text{ mm} \pm 10 \text{ mm}$ (n = 9)	Std. Dev.	0.006	0.005	0.005	0.0046				
Sphere B									
All data sets	Average	-4.721	7.858	-0.136	0.0688				
(n = 90)	Std. Dev.	0.009	0.009	0.005	0.0059				
Filter by radius, r: $r = 76 \text{ mm} \pm 5 \text{ mm}$	Average	-4.729	7.865	-0.137	0.0745				
(n = 30)	Std. Dev.	0.005	0.006	0.005	0.0028				
	S	Sphere C							
All data sets	Average	-1.118	5.812	-0.527	0.0536				
(n = 90)	Std. Dev.	0.390	0.268	0.019	0.0012				
Filter by radius, r:	Average	-1.077	5.843	-0.528	0.0551				
r > 55 mm ($n = 17$)	Std. Dev.	0.005	0.007	0.004	0.0003				

Table 5.4. Method B: Calculated Sphere Centers in Scanner Coordinate Frame.

Figure 5.6. Method B: Calculated Sphere Centers.

In an effort to further understand why the calculated radius differed from the nominal radius, a plot of the deviations of the radius was made. The radius residual was the difference between the distance from the calculated center to the data point and the calculated radius or

radius residual =
$$\sqrt{(x_i - x_{0_{calc}})^2 + (y_i - y_{0_{calc}})^2 + (z_i - z_{0_{calc}})^2} - r_{calc}$$

As Method B minimizes the deviations from Eq. 5.1, the error of the algebraic fit was determined. The algebraic residual is

algebraic residual =
$$(x_i^2 + y_i^2 + z_i^2) - (a_1x_i + a_2y_i + a_3z_i + a_0).$$

The plots of the radius residuals and the algebraic error for a data file, where the calculated radius was 54 mm, are shown in Figure 5.7. Two things stand out in Figure 5.7. The first being the scalloped pattern for the algebraic residual. The reason for this regular pattern is not known and requires further examination. The second being that the radius residuals are much larger than the algebraic residuals. This is expected as Method B minimizes the algebraic fit and not the geometric fit, that is,

Algebraic Fit :
$$Min[(x_i - x_0)^2 + (y_i - y_0)^2 + (z_i - z_0)^2 - r^2]$$

Geometric Fit, minimizes the orthogonal distance : $Min[\sqrt{(x_i - x_0)^2 + (y_i - y_0)^2 + (z_i - z_0)^2} - r]^2$

Figure 5.7. Plot of Residuals.

5.3.3 Method C

A third method was used to determine the sphere centers. A commercially available software package, Spatial Analyzer, was used to compute the sphere centers and radii. The software allows the user to select if the radius were constrained or unconstrained. Of the 270 sphere data files, the sphere centers and radii were computed for only 192 (64, of a possible 90, each for spheres A, B, and C) of these. Additionally, the software allows the user to ignore data that is greater than a specified fit tolerance. For this method, the tolerance selected was 50 cm which is the manufacturer specified worst case range uncertainty of the LADAR. In almost all of the cases, all of the data points were within the tolerance and were used. Inclusion of the points that were out-of-tolerance did not significantly change the calculated sphere center or radius.

Unlike Method B which consistently resulted in a calculated sphere radius of about 56 mm for Sphere C, the calculated radii for Sphere C were not consistently underestimated, and they ranged in value from 49 mm to 95 mm. The results are summarized in the Table 5.5. As in

Method B, only centers where the radius was 76 mm \pm 10 mm were included in the calculation of the median and average values given in Table 5.5. For Spheres A, 15 of the 64 radii met this criterion. For Sphere B, 57 of the 64 radii met this criterion and for Sphere C, 15 of the 64 radii met this criterion. The calculated radius for Sphere B came closest to the nominal value, and the larger number of "valid" data sets for Sphere B seems to suggest more confidence in the results obtained for Sphere B than for Spheres A or C. This was also observed in Method B.

			Uncor	strained		Constrained (radius = 0.0762 m)			
		x (m)	y (m)	z (m)	Radius (m)	x (m)	y (m)	z (m)	
Sphere A	Median	-4.813	3.312	-0.362	0.071	-4.818	3.313	-0.362	
	Average	-4.814	3.313	-0.364	0.072	-4.796	3.306	-0.358	
	Std. Dev	0.008	0.004	0.006	0.005	0.043	0.018	0.014	
	Median	-4.731	7.870	-0.135	0.075	-4.732	7.870	-0.136	
Sphere B	Average	-4.730	7.870	-0.136	0.076	-4.730	7.871	-0.136	
	Std. Dev.	0.008	0.006	0.005	0.004	0.006	0.004	0.005	
	Median	-1.091	5.876	-0.535	0.070	-1.096	5.883	-0.535	
Sphere C	Average	-1.089	5.870	-0.534	0.069	-1.086	5.861	-0.532	
	Std. Dev	0.009	0.024	0.008	0.003	0.019	0.043	0.009	

Table 5.5. Method C: Calculated Sphere Centers and Radii.

After the software determines the best fit, a plot of the radius residuals is displayed and is shown in Figure 5.8. As seen in Figure 5.8, these residuals have the same pattern as the radius residuals in Figure 5.7.

Figure 5.8. Radius Residuals for Method C - Free.

5.4 SUMMARY: SPHERE CENTERS IN SCANNER COORDINATE FRAME

The sphere centers and radii computed using the methods described in the previous sections are summarized in Table 5.6. In Table 5.6, the terms "Fixed" and "Free" are used to indicate if the radius was constrained or unconstrained in the various methods.

A review of the table shows that the values for Sphere B are the most consistent for all methods as noted in the observations made for the individual methods. The reason for the better results for Sphere B is not clear as the effects of angle of incidence and point of view of target from scanner is minimized by the choice of using spheres as targets. One possible reason for the better results for Sphere B could be due to the distance of Sphere B from the scanner. Both Spheres A and C are located approximately 5 m from the scanner while Sphere B is about 9 m from the scanner. The longer distance to Sphere B would result in a larger region of coverage of the sphere surface and thus a better distribution of the points on the sphere. On the other hand, the sphere that is farther away from the scanner would yield a lesser number of measurements than one that was closer. It appears that in this case, the benefits of better point distribution outweighed benefits of more points. The optimal target distance depends on the size of the sphere and the selected point density of the instrument; the determination of which is not within the scope of this project.

Included in Table 5.6 is a column labeled RMS. The RMS error was defined as:

$$RMS = \sqrt{\frac{\sum_{i=1}^{n} \left(\sqrt{(x_i - x_0_{calc})^2 + (y_i - y_0_{calc})^2 + (z_i - z_0_{calc})^2} - r_{calc}\right)^2}{n}}$$

where x_{0_calc} , y_{0_calc} , z_{0_calc} is the calculated sphere center and r_{calc} is the calculated radius. As seen in Table 5.6, the RMS value is not a good gage of how well the radius was calculated. For Sphere C, Method B - free ($r_{calc.} = 55 \text{ mm vs. } r_{nominal} = 76 \text{ mm}$), the RMS value was equal to or lower than those for Methods A, B and Method C – fixed even though these methods yielded calculated radii closer to the nominal value.

As these spheres are used to determine the transformation matrix between the scanner and the SMS coordinate frame, it is not possible to check (i.e., compare transformed sphere centers to SMS values for the sphere centers) which of the methods, A, B, or C, yielded the best results. A more rigorous test procedure involving well characterized spheres (known diameter and sphericity), a high resolution LADAR and a laser tracker would be necessary to evaluate these methods and is beyond the scope of this project. The authors would like to comment that the algorithm verification procedure and the procedure to determine the optimal distance of the sphere are ideal tasks for a LADAR performance evaluation facility. For this series of experiments, the coordinates of the sphere centers used to determine the transformation matrix were set equal to the average of all the median values obtained from Methods A, B, C and are given at the end of Table 5.6. The median values were used as they are less susceptible to outliers.

		Me	dian Valu	es			Ave	rage Valu	es		
	x (m)	y (m)	z (m)	RMS (m)	Radius (m)	x (m)	y (m)	z (m)	RMS (m)	Radius (m)	
	Sphere A										
Method B - free	-4.805	3.311	-0.364	0.015	0.070	-4.807	3.311	-0.365	0.016	0.071	
Method C - free	-4.813	3.312	-0.362	0.015	0.071	-4.814	3.313	-0.364	0.015	0.072	
Method A - fixed	-4.779	3.298	-0.354	0.029	0.076	-4.782	3.300	-0.355	0.028	0.076	
Method C - fixed	-4.818	3.313	-0.362	0.015	0.076	-4.796	3.306	-0.358	0.022	0.076	
Avg – All	-4.804	3.308	-0.360	0.019	0.073	-4.800	3.307	-0.361	0.020	0.074	
Avg - Fixed	-4.798	3.306	-0.358	0.022	0.076	-4.789	3.303	-0.357	0.025	0.076	
Avg - Free	-4.809	3.311	-0.363	0.015	0.070	-4.811	3.312	-0.365	0.016	0.072	
Std. Dev - All	0.018	0.007	0.005	0.007	0.003	0.014	0.006	0.005	0.006	0.002	
Std. Dev - Fixed	0.028	0.011	0.006	0.010	0.000	0.010	0.004	0.002	0.004	0.000	
Std. Dev - Free	0.006	0.000	0.001	0.000	0.001	0.005	0.001	0.001	0.001	0.001	
Sphere B											
Method B - free	-4.729	7.863	-0.136	0.015	0.074	-4.728	7.865	-0.137	0.015	0.075	
Method C - free	-4.731	7.870	-0.135	0.014	0.075	-4.730	7.870	-0.136	0.014	0.076	
Method A - fixed	-4.729	7.865	-0.136	0.015	0.076	-4.726	7.864	-0.137	0.015	0.076	

Table 5.6. Comparison of Sphere Centers and Radii for All Methods in
Scanner Coordinate Frame.

		Me	dian Valu	es			Ave	rage Valu	es	
	x (m)	y (m)	z (m)	RMS (m)	Radius (m)	x (m)	y (m)	z (m)	RMS (m)	Radius (m)
Method C - fixed	-4.732	7.870	-0.136	0.014	0.076	-4.730	7.871	-0.136	0.014	0.076
Avg – All	-4.730	7.867	-0.136	0.015	0.075	-4.729	7.867	-0.136	0.015	0.076
Avg - Fixed	-4.730	7.867	-0.136	0.015	0.076	-4.728	7.867	-0.136	0.015	0.076
Avg - Free	-4.730	7.866	-0.136	0.015	0.075	-4.729	7.867	-0.136	0.015	0.075
Std. Dev - All	0.001	0.003	0.000	0.001	0.001	0.002	0.003	0.000	0.001	0.001
Std. Dev - Fixed	0.002	0.003	0.000	0.001	0.000	0.003	0.005	0.000	0.001	0.000
Std. Dev - Free	0.001	0.005	0.000	0.001	0.001	0.001	0.004	0.001	0.001	0.001
				Sphe	ere C					
Method B - free	-1.080	5.845	-0.526	0.016	0.055	-1.077	5.843	-0.528	0.016	0.055
Method C - free	-1.091	5.876	-0.535	0.015	0.070	-1.089	5.870	-0.534	0.016	0.069
Method A - fixed	-1.079	5.843	-0.529	0.029	0.076	-1.078	5.842	-0.529	0.029	0.076
Method C - fixed	-1.096	5.883	-0.535	0.016	0.076	-1.086	5.861	-0.532	0.022	0.076
Avg – All	-1.087	5.862	-0.531	0.019	0.069	-1.083	5.854	-0.531	0.021	0.069
Avg - Fixed	-1.088	5.863	-0.532	0.023	0.076	-1.082	5.852	-0.531	0.026	0.076
Avg - Free	-1.086	5.860	-0.530	0.016	0.062	-1.083	5.857	-0.531	0.016	0.062
Std. Dev - All	0.008	0.021	0.004	0.007	0.010	0.006	0.013	0.003	0.006	0.010
Std. Dev - Fixed	0.012	0.028	0.004	0.009	0.000	0.005	0.013	0.002	0.005	0.000
Std. Dev - Free	0.008	0.022	0.006	0.001	0.010	0.008	0.019	0.004	0.000	0.010
Co	ordinate	s used f	or Sphe	re Cent	ters = M	edian val	ues, Av	erage Al	11.	
Sphere A	-4.804	3.308	-0.360							
Sphere B	-4.730	7.867	-0.136							
Sphere C	-1.087	5.862	-0.531							

5.5 FINAL TRANSFORMATION

Using the estimated sphere centers as reference points to transform the SMS coordinates into the scanner frame is an application of range image registration. There is a substantial literature on this topic and only a few references are given here: Haralick et al. [32], Herbin et al. [36], Besl and McKay [10], Turk and Levoy [78], Monga and Benayoun [69], Bergevin et al. [7], Hsieh et al. [40], Soucy and Ferrie [77], Johnson [45], Cunnington and Stoddart [17], Curless [18], Bernardini and Rushmeier [9], Hemayed et al. [35], Williams and Bennamoun [84], Laboureux and Häusler [53], Lucchese et al. [62].

As described earlier in Section 5 the location and pose of the I-beam were determined in the SMS coordinate system during the preparatory phase of the experiment. This information was used to assess the accuracy of determining the location and pose by means of LADAR scanning.

Therefore, the SMS coordinates needed to be registered, that is aligned with the scanner coordinates by a coordinate transformation, T, consisting of a rotation and a translation.

To this end, three spheres were placed in the vicinity of the I-beam and their centers A, B, C determined in the SMS coordinate frame. Similarly, scanning information was used to find the scanner coordinates A', B', C' of the sphere centers. The coordinate transformation T was then selected so as to bring the pairs of target points into their best possible alignment as measured by the sum of squares of the distances between corresponding coordinates:

$$\min_{T} \left[\left\| A' - T(A) \right\|^{2} + \left\| B' - T(B) \right\|^{2} + \left\| C' - T(C) \right\|^{2} \right]$$

A solution to this minimization problem – sometimes called the "Procrustes problem – can be found in the text by Golub and Van Loan [28], Chapter 12, Section 4.1 (also O'Leary [73]). Inhouse developmental software, called "pointreg" produced the transformation.

T: Scanner coords = Rotation*(SMS coords - E) + E'

where

$$E = \frac{A+B+C}{3} = (10.1345, -2.0517, -0.3965)$$
$$E' = \frac{A'+B'+C'}{3} = (-2.6553, 4.2593, -0.2567)$$

are the centroids of the respective target points and

Rotation =
$$\begin{bmatrix} 0.4363 & 0.8998 & 0.0026 \\ -0.8998 & 0.4363 & -0.0012 \\ -0.0022 & -0.0018 & 0.9999 \end{bmatrix}$$

For information about "pointreg" and related issues consult Lawrence and Witzgall [54].

The locations of the spheres in the SMS coordinate frame were then computed using the transformation based upon Table 5.6. The values are given in Table 5.7.

	x (m)	y (m)	z (m)	Radius (m)					
	S	Sphere A							
Method A – fixed	10.073	-4.382	-0.498	0.076					
Method B – free	10.052	-4.396	-0.505	0.083					
Method C – free	10.053	-4.396	-0.505	0.083					
Method C – fixed	10.054	-4.395	-0.505	0.076					
Average	10.058	-4.392	-0.503	0.079					
Std. Dev.	0.010	0.007	0.004	0.004					
Sphere B									
Method A – fixed	5.985	-2.345	-0.285	0.076					
Method B – free	5.995	-2.341	-0.285	0.079					
Method C – free	5.995	-2.341	-0.285	0.079					
Method C – fixed	5.995	-2.342	-0.286	0.076					
Average	5.993	-2.342	-0.285	0.078					
Std. Dev.	0.005	0.002	0.001	0.002					
	-	Sphere C							
Method A – fixed	9.362	0.076	-0.673	0.076					
Method B – free	9.377	0.051	-0.668	0.078					
Method C – free	9.377	0.051	-0.668	0.078					
Method C – fixed	9.376	0.051	-0.667	0.076					
Average	9.373	0.057	-0.669	0.077					
Std. Dev.	0.007	0.013	0.003	0.001					

Table 5.7. SMS Coordinate Frame: Sphere Centers and Radii.

6. RESULTS

This chapter summarizes the results of the pose determination and the associated errors for the experimental study.

6.1 COMPARISON OF SEGMENTATION METHODS

In their current state, both of the binning and TIN methods of segmentation have benefits as well as some difficulties. In the case of binning, there is a single program that runs the segmentation and identification procedures. Currently, the TIN method requires execution of two separate processes: data segmentation and object identification. In future work, these tasks could be combined. Additionally, the binning program has built in graphics display, whereas the TIN method requires a separate graphics display program. Once the data is segmented, either by binning or TINning, the object pose is determined using the method of principal components analysis for determining the principal axes, and the object is identified using the bounding box construction.

In the binning program, object segmentation is done in two steps. In the first step, all potential objects are segmented and in the second step, the groupings of voxels for each potential object are analyzed to determine whether there are three axes present. For example, if a potential object is determined to be a concatenated vertical string of voxels, then that potential object would be dismissed as not satisfying the three axes criterion. In the TIN method, potential objects are determined by the density and size of triangles. The capability of eliminating 2D objects based on the three axes criterion is currently not incorporated but can be easily implemented. Potential objects appear as groups of small triangles. Figure 4.3 shows the triangulation after triangles with sides larger than a specified length are eliminated.

In both methods, it is fairly obvious, visually, where the I-beam is located, but the real challenge is to have it recognized without human intervention, have its pose, relative to the scanner, calculated, and have these tasks done in real-time.

6.2 ERRORS IN OBJECT ID AND POSE

A total of 90 scan files were obtained. The files covered three scan densities for each angular position of the two beams identified as I-Beam A and B. For each scan density three repetition scans were made to estimate scan variability. The angular positions on a floor axis system were set at 0° , 30° , 45° , 60° , 90° . We will refer to these as floor angles, and these are not expected to be the same as the calculated orientation in the scanner coordinate frame. However, the relative differences between the floor angles and the calculated angles should be similar. The measured rotations of the I-beams, based on the SMS data, are given in Table 6.1. In the tables in this chapter, the first letter of the file names indicates the I-beam that was scanned: A or B. The units for the coordinates in these tables are meters and angles are measured in degrees relative to the scanner coordinate system.

File	SMS Ref.	Angle Relative to the
Prefix	Orientation (°)	0° position
A0	32.161	0
A30	62.186	30.025
A45	77.725	45.564
A60	92.208	60.047
A90	121.916	89.755
B0	31.899	0
B30	62.417	30.518
B45	77.964	46.065
B60	92.185	60.286
B90	121.632	89.733
	Average of I-beams A and B	
0	32.030	
30	62.302	
45	77.845	
60	92.197	
90	121.774	

Table 6.1. Orientations of the two I-beams as measured using the SMS data in the scanner coordinate frame.

6.2.1 Binning Segmentation: Pose and Pose Errors of I-Beams

Tables 6.2, 6.3, and 6.4 give the results of the pose determination based on the binning segmentation strategy. Table 6.2 gives the letter of the I-beam identified and a summary of the computed errors between the SMS measured values of the four top flange points and the values estimated using the binning segmentation algorithm. It gives the mean errors and standard deviations of the four flange point errors for each scanned I-beam at each density, repetition, and floor angle.

At the 60° angle for I-beam A, there is an error in identifying the size of the I-beam. This is seen by the large standard deviation of the X error in the medium scan density. Furthermore, at 90° for I-beam A, all of the errors and standard deviation are too large to identify the size of the Ibeam correctly. For I-beam B, at the medium point density at 60° , although the I-beam is correctly identified, the identification is suspect due to the large variation in the Y-coordinate error. A similar conclusion can be raised about the 90° values.

It appears that the binning segmentation process was not able to consistently determine the Ibeam type for low point densities (20 gon) and when the longitudinal axis of the object was aligned with the scan direction, i.e., I-beam rotation of 90°. Identification errors also occurred for a few cases at the medium point density setting. A possible reason for this might have been the sizing of the voxels, but when smaller voxels were used, the I-beam was still incorrectly identified. The mean errors and the standard deviations of the errors of the coordinates of the four corners of the top flange are plotted in Figures 6.1 and 6.2. In the legend in the figures, "X-High-A" refers to the errors of the X-coordinate, high density, I-Beam A – similarly for the remaining notation. The following observations are made:

- *Z*-coordinate has the lowest error, followed by the *X* and then the *Y*-coordinate
- The errors are stable and are generally within ± 5 cm for I-beam rotations of 0° and 30° and increase for angles greater than 30°.
- *Z*-coordinate has the lowest noise (standard deviation)
- For the error and standard deviation, no trends were observed as a function of the object I-beam A or B.
- In general, for I-beam rotations greater than 30° , the errors for all coordinates (x, y, z) for the high density scans are smaller than that those for the medium and low densities.

	Beam	Error Statistics at Top Flange Corners (m)						
File Prefix	Identified as	Point Density	Mean X	Std. Dev. X	Mean Y	Std. Dev. Y	Mean Z	Std. Dev. Z
A0	А	High	-0.0140	0.0164	0.0503	0.0131	-0.0155	0.0021
A0	А	Medium	-0.0332	0.0363	0.0343	0.0230	-0.0128	0.0046
A0	А	Low	-0.0884	0.0604	0.0056	0.0366	-0.0092	0.0035
A30	A	High	-0.0149	0.0151	0.0512	0.0214	-0.0146	0.0042
A30	А	Medium	-0.0157	0.0184	0.0353	0.0154	-0.0096	0.0051
A30	A/B	Low	-0.0173	0.1679	0.0545	0.2730	0.1242	0.1915
A45	A	High	-0.0194	0.0064	0.0383	0.0178	-0.0143	0.0027
A45	A	Medium	-0.0124	0.008	0.0739	0.0138	0.1305	0.2077
A45	В	Low	0.0883	0.1540	0.5425	0.6205	0.3828	0.0069
A60	A	High	-0.0198	0.0170	-0.0834	0.0515	-0.0140	0.0047
A60	A/B	Medium	-0.8254	1.2228	-0.0136	0.6482	-0.1026	0.4676
A60	В	Low	-0.0265	0.0741	0.4016	0.7262	0.3909	0.0090
				ļ				
A90	B	High	-0.1195	1.8327	1.5313	1.8304	-0.0444	1.0683
A90	В	Medium	-0.0681	1.9032	1.5746	1.6468	0.0103	1.0057
A90	В	Low	-1.5099	1.9399	1.1187	2.1873	-0.2969	1.1928
B0	В	High	-0.02314	0.0082	0.01732	0.0089	-0.018	0.0054
B0	В	Medium	-0.02845	0.0093	0.01529	0.0141	-0.0086	0.0078
B0	В	Low	0.006813	0.0163	0.0293	0.0131	-0.0027	0.0107
				[<u> </u>	
B30	В	High	-0.00012	0.0154	0.02036	0.0150	-0.0156	0.0095
B30	В	Medium	0.005069	0.02	0.03992	0.0215	-0.0112	0.0094
B30	В	Low	-0.1321	0.1875	-0.2172	0.3862	0.12996	0.1986
B45	В	High	-0.00109	0.0069	0.06193	0.0171	-0.0117	0.0071
B45	В	Medium	-0.00085	0.0133	0.07232	0.0310	-0.0065	0.0069
B45	В	Low	0.092634	0.0485	0.51586	0.1698	0.12031	0.1778
B60	В	High	-0.01769	0.0432	0.00146	0.0358	0.23773	0.1805
B60	В	Medium	0.249859	0.4234	0.98263	1.3417	0.11587	0.6701
B60	В	Low	-0.05444	0.0447	0.45195	0.0849	0.37554	0.0215
B90	В	High	0.942439	0.4376	-0.5033	2.4195	-0.1828	1.0574
B90	В	Medium	-1.15306	1.7427	0.5291	1.5149	-0.1644	0.9867
B90	В	Low	0.997166	0.6117	2.4117	0.9675	-0.0704	1.1262

 Table 6.2. Binning Method: Summary of mean errors and standard deviations between the computed positions and measured positions at the four top flange corners.

a. Mean Error in X-Coordinate.

b. Mean Error in Y-Coordinate.

Figure 6.1. Binning Method: Mean Error in the Coordinates.

c. Mean Error in Z-Coordinate.

Figure 6.1. (cont.) Binning Method: Mean Errors of the Coordinates.

a. Standard Deviation of Errors in X-Coordinate.

Figure 6.2. Binning Method: Standard Deviation of Errors of the Coordinates.

b. Standard Deviation of Errors in Y-Coordinate.

c. Standard Deviation of Errors in Z-Coordinate.

Figure 6.2. (cont.) Binning Method: Standard Deviation of Errors of the Coordinates.

	Doint	Calculated	Angle (°)	Orientation Error =
File Prefix	Density	Mean	Std. Dev.	(Calc. – Ref. [§]) (°)
A0	High	32.121	0.1209	-0.040
A0	Medium	32.103	0.3186	-0.058
A0	Low	32.124	0.2016	-0.037
A30	High	62.457	0.1275	0.271
A30	Medium	62.562	0.1317	0.376
A30	Low	62.606	1.2439	0.420
A45	High	77.851	0.1643	0.126
A45	Medium	77.558	0.2524	-0.167
A45	Low	78.425	1.0176	0.700
A60	High	91.701	0.4104	-0.507
A60	Medium	108.16	28.897	15.952
A60	Low	90	0	-2.208
A90	High	101.92	85.356	-19.996
A90	Medium	140.49	24.652	18.574
A90	Low	NA	NA	NA
B0	High	32.328	0.3451	0.429
B0	Medium	32.42	0.6283	0.521
B0	Low	32.108	0.6025	0.209
B30	High	63.203	0.1168	0.786
B30	Medium	63.327	0.2738	0.910
B30	Low	64.043	2.2729	1.626
B45	High	78.253	0.1907	0.289
B45	Medium	78.501	0.1438	0.537
B45	Low	79.167	0.8732	1.203
B60	High	94.372	0.4394	2.187
B60	Medium	90.09	5.7058	-2.095
B60	Low	90	0	-2.185
B90	High	108.87	73.112	-12.762
B90	Medium	154.86	17.804	32.228
B90	Low	NA	NA	NA
⁸ Reference	values ta	ken from Table 6.1 fc	or I-beams A and E	3.

 Table 6.3. Binning Method: Estimated orientation relative to the scanner's negative X-axis, the axis pointing directly in front of the scanner.

Table 6.3 gives the predicted angles relative to the scanner coordinates. For both I-beams, both the 60° and the 90° cases are suspect. In the cases marked "NA" the identification procedure could not determine and angle and produced a numerically undefined value.

Table 6.4 contains the same information as Table 6.3 but the information is grouped by I-beam rotations and the values for I-beams A and B are combined. From the table, it can be seen that as the longitudinal axis of the object becomes more parallel to the direction of the scan, there is more noise in the calculated object orientation.

I Boom Potation	Doint	Calculated	Orientation	Orientation Error =	
	Density	Mean	Std. Dev.	(Calc. – Ref. [§])	
()	Density	(°)	(°)	(°)	
0	High	32.225	0.146	0.195	
0	Medium	32.261	0.224	0.231	
0	Low	32.116	0.012	0.086	
30	High	62.830	0.527	0.528	
30	Medium	62.944	0.541	0.642	
30	Low	63.325	1.016	1.023	
45	45 High		0.285	0.207	
45	Medium	78.030	0.667	0.185	
45	Low	78.796	0.525	0.951	
60	High	93.037	1.888	0.840	
60	Medium	99.125	12.778	6.928	
60	Low	90.000	0.000	-2.197	
90	High	105.394	4.918	-16.380	
90	Medium	147.677	10.164	25.903	
90	Low	NA	NA	NA	
[§] Reference values	taken from Ta	ble 6.1 – Average	of I-beams A and	B.	

 Table 6.4. Binning Method: Comparison of the predicted orientation relative to the scanner as a function of I-beam Rotation angle and Point Density.

Table 6.5 summarizes the location of the center-of-mass of the scanned I-beam data for the three scan densities, both I-beams, and the five I-beam rotations. Table 6.6 summarizes the center-of-mass locations by densities.

In Table 6.5, the standard deviation in the medium 60° scan case for the *X*-coordinate is large which may be an indication of outliers in the data. This is consistent with the results from Table 6.2. Furthermore, the 90° values are also suspect for the *X* and *Y* coordinates due to the large

Eilo Duofiu	Doint Donaity	Location of Center-of-Mass (m)					
r ne Prenx	Point Density	X	Std. Dev. X	Y	Std. Dev. Y	Z	Std. Dev. Z
A0	High	-3.6152	0.0169	5.7655	0.0118	-1.4025	0.0011
A0	Medium	-3.5956	0.0368	5.7812	0.0216	-1.4051	0.0005
A0	Low	-3.5423	0.0604	5.8120	0.0367	-1.4088	0.0010
A30	High	-3.6444	0.0133	5.7275	0.0211	-1.4045	0.0017
A30	Medium	-3.6419	0.0153	5.7423	0.0145	-1.4094	0.0018
A30	Low	-3.6424	0.076	5.7239	0.1393	-1.4128	0.0022
A45	High	-3.6371	0.0033	5.7182	0.0177	-1.4053	0.0009
A45	Medium	-3.6451	0.0027	5.6834	0.0138	-1.4104	0.0016
A45	Low	-3.7467	0.0932	5.2158	0.4120	-1.4111	0.0039
A60	High	-3.6462	0.0017	5.8110	0.0514	-1.4052	0.0004
A60	Medium	-2.8303	1.1941	5.6961	0.0831	-1.2854	0.1855
A60	Low	-3.6414	0.0098	5.3262	0.5469	-1.4188	0.0076
A90	High	-3.5153	1.7450	4.1024	1.2659	-1.1985	0.1657
A90	Medium	-3.5036	1.7273	4.0906	1.2579	-1.1838	0.1392
A90	Low	-3.5496	1.7628	4.4097	1.7046	-0.9124	0.4146
B0	High	-3.6218	0.0065	5.8187	0.0018	-1.4297	0.0006
B0	Medium	-3.6173	0.0051	5.8216	0.0063	-1.4392	0.0011
B0	Low	-3.6528	0.0153	5.8063	0.0091	-1.4450	0.0030
B30	High	-3.6823	0.0070	5.7760	0.0131	-1.4317	0.0019
B30	Medium	-3.6869	0.0148	5.7564	0.0206	-1.4360	0.0013
B30	Low	-3.5532	0.1809	6.0119	0.3834	-1.4561	0.0168
B45	High	-3.6932	0.0023	5.6943	0.0169	-1.4356	0.0012
B45	Medium	-3.6947	0.0083	5.6839	0.0313	-1.4408	0.0010
B45	Low	-3.7904	0.0400	5.2396	0.1709	-1.4464	0.0048
B60	High	-3.6741	0.0033	5.7199	0.0354	-1.4432	0.0017
B60	Medium	-3.9936	0.4971	4.7711	1.1425	-1.3811	0.1009
B60	Low	-3.6375	0.0140	5.2742	0.0839	-1.4599	0.0061
B90	High	-4.6523	0.0360	6.2020	2.1903	-1.0560	0.1836
B90	Medium	-2.4241	1.6568	5.0149	1.2996	-1.1562	0.1099
B90	Low	-4.6535	0.0024	3.2007	0.0534	-1.1954	0.1400

Table 6.5. Binning Method: Summary of predicted center-of-mass of I-beams.

variability as indicated by the standard deviation. In the case of I-beam B, the medium 60° scan is suspect in the *Y*-coordinate. Again, the 90° cases are suspect in the *X* and *Y* coordinates.

Point Density	X (m)	Std. Dev. X (m)	Y (m)	Std. Dev. Y (m)	Z (m)	Std. Dev. Z (m)
High	-3.73819	0.3250	5.6336	0.5576	-1.3612	0.1287
Medium	-3.46333	0.4682	5.4041	0.5844	-1.3547	0.1075
Low	-3.74097	0.3308	5.2020	0.8305	-1.3567	0.1740

Table 6.6. Binning Method: Variability of center-of-mass vs. point density.

6.2.2 TIN Segmentation: Pose and Pose Errors

Tables 6.7 through 6.11 give the results of the pose determination based on the TIN segmentation method. These tables parallel Tables 6.2 through 6.6. Table 6.7 shows that segmentation by triangulation performs better at the 60° cases but similar to the Binning method, the results for the 90° cases are suspect. The data in Table 6.7 are shown graphically in Figures 6.3 and 6.4. The scales in these figures were chosen so that they were the same as those in Figures 6.1 and 6.2 so that a comparison between the two methods of segmentation could easily be made. Some observations about the pose and pose errors using the TIN methods are:

- Z-coordinate has the lowest error, followed by the X- and then the Y-coordinate similar to the binning method
- For I-beam rotations from 0° to 60°, the Z-coordinate errors were within ±2 cm and X-coordinate errors were within ±4 cm (excluding the data for 30°).
- Z-coordinate has the lowest noise similar to the binning method
- For the error and standard deviation, no trends were observed as a function of the object, i.e., I-beam A or B similar to the binning method

Some observations based on the comparison of the errors and standard deviations between the binning and TIN methods the data:

- The data coordinates are less noisy when using the TIN method especially for I-beam rotations in the 30° to 60° range. (See Figure 6.5)
- The Z-coordinate errors are smaller for the TIN method vs. the bin method for I-beam rotations in the 30° to 60° range. No clear trends were observed for the X- and Y-coordinate errors.

	I-Beam	Error Statistics at Top Flange Corners (m)							
File Prefix	Identified as	Point Density	Mean X	Std. Dev. X	Mean Y	Std. Dev. Y	Mean Z	Std. Dev. Z	
A0	А	High	-0.0206	0.0031	0.0311	0.004	0.0004	0.1216	
A0	А	Medium	-0.0283	0.0042	0.0285	0.0041	0.0006	0.0090	
A0	А	Low	-0.0204	0.0059	0.0342	0.0059	0.0031	0.0088	
A30	А	High	0.0647	0.0027	0.1771	0.0043	0.0008	0.0094	
A30	А	Medium	0.0620	0.0027	0.1748	0.0027	0.0027	0.0078	
A30	А	Low	0.0635	0.0064	0.1776	0.0080	0.0048	0.0085	
A45	А	High	0.0368	0.1052	0.2733	0.0228	0.0017	0.0101	
A45	А	Medium	0.0369	0.1052	0.2753	0.0229	0.0037	0.0105	
A45	А	Low	0.0382	0.1053	0.2727	0.0258	0.0067	0.0091	
A60	А	High	-0.0363	0.1859	0.3561	0.0079	0.0057	0.0083	
A60	А	Medium	-0.0361	0.186	0.3401	0.0076	0.0077	0.0053	
A60	А	Low	-0.0362	0.1859	0.3580	0.0082	0.0098	0.0071	
A90	В	High	-0.2760	1.8893	-1.5199	1.9585	-0.1333	0.9077	
A90	В	Medium	-1.2228	1.1232	0.4525	1.5728	0.2258	0.3661	
A90	A/B	Low	-0.4795	0.2271	0.7491	0.3281	0.4269	0.0725	
B0	В	High	-0.0125	0.1393	0.0136	0.2207	0.0074	0.0217	
B0	В	Medium	-0.0105	0.1397	0.0170	0.2212	0.0079	0.0180	
B0	В	Low	-0.0133	0.1399	0.0101	0.2209	0.0118	0.0210	
B30	В	High	0.0309	0.0050	0.0943	0.0043	0.0071	0.0212	
B30	В	Medium	0.0300	0.1349	0.0969	0.0697	0.0079	0.0172	
B30	В	Low	0.0307	0.0030	0.0966	0.0070	0.0112	0.0195	
B45	В	High	0.0139	0.0090	0.1520	0.0041	0.0088	0.0185	
B45	В	Medium	0.0126	0.1488	0.1521	0.0315	0.0103	0.0144	
B45	В	Low	0.0131	0.2106	0.1657	0.0448	0.0143	0.0107	
B60	В	High	-0.0278	0.1839	0.2026	0.3909	-0.0044	0.0158	
B60	В	Medium	-0.0310	0.2159	0.2020	0.0090	0.0138	0.0083	
B60	В	Low	-0.0254	0.2157	0.2026	0.0144	0.0168	0.0136	
B90	В	High	-0.2563	0.0194	0.4302	0.0105	0.3829	0.0317	
B90	В	Medium	-0.2929	0.0185	0.4499	0.0121	0.3778	0.0422	
B90	В	Low	0.2396	0.7957	1.0517	0.9920	0.2639	0.6388	

Table 6.7. TIN Method: Summary of mean errors and standard deviations between the computed positions and measured positions at the four top flange corners.

a. Mean Error in X-Coordinate.

b. Mean Error in Y-Coordinate.

Figure 6.3. TIN Method: Mean Error in the Coordinates.

c. Mean Error in Z-Coordinate.

Figure 6.3. (cont.) TIN Method: Mean Error in the Coordinates.

a. Standard Deviation of Error in X-Coordinate.

Figure 6.4. TIN Method: Standard Deviation of Errors of the Coordinates.

b. Standard Deviation of Error in Y-Coordinate.

c. Standard Deviation of Error in Z-Coordinate.

Figure 6.4. (cont.) TIN Method: Standard Deviation of Errors of the Coordinates.

a. Bin Method: Mean Error in Z-Coordinate.

b. TIN Method: Mean Error in Z-Coordinate.

Figure 6.5. Comparison of Bin and TIN Methods: Mean Error in Z-Coordinate – enlarged scale.

		Calculate	d Angle (°)	Orientation Error =			
File Prefix	Point Density	Mean Std. Dev.		(Calc. – Ref. ⁸) (°)			
A0	High	32.271	0.022	0.110			
A0	Medium	32.262	0.002	0.101			
A0	Low	32.103	0.071	-0.058			
A30	High	62.194	0.018	0.008			
A30	Medium	62.221	0.020	0.035			
A30	Low	62.288	0.050	0.102			
A45	High	77.557	0.014	-0.168			
A45	Medium	77.624	0.042	-0.101			
A45	Low	77.596	0.114	-0.129			
A60	High	91.989	0.006	-0.219			
A60	Medium	91.904	0.029	-0.304			
A60	Low	92.056	0.004	-0.152			
A90	High	92.257	5.595	-29.659			
A90	Medium	109.428	16.299	-12.488			
A90	Low	120.644	0.705	-1.272			
B0	High	32.213	0.104	0.314			
B0	Medium	32.233	0.079	0.334			
B0	Low	32.420	0.054	0.521			
B30	High	62.267	0.145	-0.150			
B30	Medium	62.300	0.182	-0.117			
B30	Low	62.481	0.048	0.064			
B45	High	77.461	0.093	-0.503			
B45	Medium	77.612	0.087	-0.352			
B45	Low	77.501	0.239	-0.463			
B60	High	91.387	0.065	-0.798			
B60	Medium	91.434	0.143	-0.751			
B60	Low	91.433	0.182	-0.752			
B90	High	121.516	0.865	-0.116			
B90	Medium	120.634	0.226	-0.998			
B90	Low	129.638	12.196	8.006			
⁸ Reference values taken from Table 6.1 for I-beams A and B.							

 Table 6.8. TIN Method: Estimated orientation relative to the scanner's negative X-axis, the axis pointing directly in front of the scanner.

Table 6.8 parallels Table 6.3 by presenting the I-beam orientation and its variability. Again, the triangulation segmentation performs better in the 60° cases.

Table 6.9 contains the same information as Table 6.8 but the information is grouped by I-beam orientations. From the table, it can be seen that as the longitudinal axis of the object becomes more parallel to the direction of the scan, there is more noise in the calculated object orientation. This trend is also observed for the bin method.

I Boom Potation		Calcula	ted Angle (°)	Orientation Error =	
(°)	Point Density	Mean Std. Dev.		(Calc. – Ref. [§]) (°)	
0	High	32.242	0.041	0.212	
0	Medium	32.247	0.020	0.217	
0	Low	32.261	0.224	0.231	
30	High	62.230	0.052	-0.072	
30	Medium	62.260	0.056	-0.042	
30	Low	62.385	0.136	0.083	
45	High	77.509	0.068	-0.336	
45	Medium	77.618	0.009	-0.227	
45	Low	77.548	0.067	-0.297	
60	High	91.688	0.426	-0.509	
60	Medium	91.669	0.332	-0.528	
60	Low	91.744	0.440	-0.453	
90	High	106.886	20.689	-14.888	
90	Medium	115.031	7.923	-6.743	
90	Low	125.141	6.360	3.367	

Table 6.9. TIN Method: Comparison of the predicted orientation relative to the scanner as a function of I-beam rotation angle and point density.

A comparison of the orientation errors as a function of the I-beam rotation is shown in Figure 6.6. From this figure it can be seen that TIN method appears to result in smaller orientation errors for I-beam rotations of $\geq 30^{\circ}$.

Figure 6.6. Orientation Error vs. I-beam Rotation.

Table 6.10 parallels Table 6.5 and presents the center-of-mass of the scanned data points using the TIN segmentation algorithm. This table shows that the TIN segmentation algorithm performs well in all cases except for the *X*- and *Y*-coordinates in the 90° case for I-beam A in the low resolution scan.

Table 6.11 gives the variability of the center-of-mass as a function of the point density. There is no clear trend to show that the noise increases as the point density decreases.

File Prefix	Point Density	Location of Center-of-Mass (m)					
		X	Std. Dev. X	Y	Std. Dev. Y	Ζ	Std. Dev. Z
A0	High	-3.5953	0.0015	5.7665	0.0020	-1.4177	0.0003
A0	Medium	-3.5900	0.0034	5.7721	0.0022	-1.4181	0.0001
A0	Low	-3.5994	0.0063	5.7688	0.0048	-1.4206	0.0004
A30	High	-3.7079	0.0019	5.5889	0.0041	-1.419	0.0006
A30	Medium	-3.7070	0.0014	5.5920	0.0020	-1.421	0.0005
A30	Low	-3.7089	0.0029	5.5894	0.0084	-1.4232	0.0027

Table 6.10. TIN Method: Predicted center-of-mass locations of I-beams.

A45 High -3.6791 0.0003 5.4739 0.0018 -1.4205 0.0036 A45 Medium -3.6807 0.0004 5.4723 0.0036 -1.4226 0.0036 A45 Low -3.6802 0.0016 5.4741 0.0125 -1.4255 0.0036 A60 High -3.6170 0.0008 5.3646 0.0032 -1.4241 0.0027 A60 Medium -3.6170 0.00058 5.3625 0.0036 -1.4282 0.0027 A60 Low -3.6179 0.00058 5.3625 0.0036 -1.4282 0.0036 A60 Low -3.6179 0.00058 5.3625 0.0036 -1.4282 0.0036 A90 High -3.5087 1.7522 7.1705 0.7750 -1.1288 0.00247 4.9221 0.0454 -1.4455 A90 Heigh -3.6179 0.0024 5.7967 0.0039 -1.4521 0					1			
A45 Medium -3.6807 0.0004 5.4723 0.0036 -1.4226 0 A45 Low -3.6802 0.0016 5.4741 0.0125 -1.4255 0 A60 High -3.6170 0.0008 5.3646 0.0032 -1.4241 0 A60 Medium -3.6180 1.81E-05 5.3801 0.0027 -1.4262 0 A60 Low -3.6179 0.00058 5.3625 0.0036 -1.4282 0 A60 Low -3.6179 0.00058 5.3625 0.0036 -1.4282 0 A90 High -3.5087 1.7522 7.1705 0.7750 -1.1288 0 A90 Low -3.1629 0.0247 4.9221 0.0454 -1.445 0 B0 High -3.6111 0.0009 5.7909 0.0006 -1.4521 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4524 0	A45	High	-3.6791	0.0003	5.4739	0.0018	-1.4205	0.0003
A45 Low -3.6802 0.0016 5.4741 0.0125 -1.4255 0 A60 High -3.6170 0.0008 5.3646 0.0032 -1.4241 0 A60 Medium -3.6180 1.81E-05 5.3801 0.0027 -1.4262 0 A60 Low -3.6179 0.00058 5.3625 0.0036 -1.4282 0 A60 High -3.5087 1.7522 7.1705 0.7750 -1.1288 0 A90 Medium -2.4372 0.9615 5.2071 0.6278 -1.3681 0 A90 Low -3.1629 0.0247 4.9221 0.0454 -1.445 0 B0 High -3.6111 0.0009 5.7909 0.0006 -1.4521 0 B0 Low -3.6111 0.0024 5.6851 0.0041 -1.4524 0 B30 High -3.6881 0.0024 5.6838 0.0064 -1.4568 0	A45	Medium	-3.6807	0.0004	5.4723	0.0036	-1.4226	0.0008
A60 High -3.6170 0.0008 5.3646 0.0032 -1.4241 0 A60 Medium -3.6180 1.81E-05 5.3801 0.0027 -1.4262 0 A60 Low -3.6179 0.00058 5.3625 0.0036 -1.4282 0 A60 High -3.5087 1.7522 7.1705 0.7750 -1.1288 0 A90 High -3.5087 1.7522 7.1705 0.7750 -1.1288 0 A90 Medium -2.4372 0.9615 5.2071 0.6278 -1.3681 0 A90 Low -3.1629 0.0247 4.9221 0.0454 -1.445 0 B0 High -3.6111 0.0009 5.7909 0.0006 -1.4521 0 B0 Low -3.6111 0.0024 5.6851 0.0041 -1.4524 0 B30 High -3.6881 0.0024 5.6838 0.0064 -1.4568 0	A45	Low	-3.6802	0.0016	5.4741	0.0125	-1.4255	0.0021
A60 High -3.6170 0.0008 5.3646 0.0032 -1.4241 0 A60 Medium -3.6180 1.81E-05 5.3801 0.0027 -1.4262 0 A60 Low -3.6179 0.00058 5.3625 0.0036 -1.4282 0 A90 High -3.5087 1.7522 7.1705 0.7750 -1.1288 0 A90 Medium -2.4372 0.9615 5.2071 0.6278 -1.3681 0 A90 Low -3.1629 0.0247 4.9221 0.0454 -1.445 0 B0 High -3.6111 0.0009 5.7909 0.0006 -1.4521 0 B0 Medium -3.6159 0.0034 5.7917 0.0020 -1.4534 0 B0 Low -3.6111 0.0024 5.6851 0.0041 -1.4524 0 B30 High -3.6898 0.0007 5.6839 0.0018 -1.4568 0								
A60 Medium -3.6180 1.81E-05 5.3801 0.0027 -1.4262 0 A60 Low -3.6179 0.00058 5.3625 0.0036 -1.4282 0 A90 High -3.5087 1.7522 7.1705 0.7750 -1.1288 0 A90 Medium -2.4372 0.9615 5.2071 0.6278 -1.3681 0 A90 Low -3.1629 0.0247 4.9221 0.0454 -1.445 0 B0 High -3.6111 0.0009 5.7909 0.0006 -1.4521 0 B0 Medium -3.6159 0.0034 5.7917 0.0020 -1.4534 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4559 0 B0 Low -3.6111 0.0024 5.6851 0.0041 -1.4524 0 B30 High -3.6881 0.0024 5.6838 0.0064 -1.4558 0	A60	High	-3.6170	0.0008	5.3646	0.0032	-1.4241	0.0010
A60 Low -3.6179 0.00058 5.3625 0.0036 -1.4282 0 A90 High -3.5087 1.7522 7.1705 0.7750 -1.1288 0 A90 Medium -2.4372 0.9615 5.2071 0.6278 -1.3681 0 A90 Low -3.1629 0.0247 4.9221 0.0454 -1.445 0 A90 High -3.6111 0.0009 5.7909 0.0006 -1.4521 0 B0 High -3.6111 0.0054 5.7917 0.0020 -1.4534 0 B0 Medium -3.6159 0.0034 5.7917 0.0020 -1.4534 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B30 Medium -3.6881 0.0024 5.6851 0.0041 -1.4524 0 B30 Low -3.6900 0.0020 5.6838 0.0064 -1.4562 0	A60	Medium	-3.6180	1.81E-05	5.3801	0.0027	-1.4262	0.0009
A90 High -3.5087 1.7522 7.1705 0.7750 -1.1288 0 A90 Medium -2.4372 0.9615 5.2071 0.6278 -1.3681 0 A90 Low -3.1629 0.0247 4.9221 0.0454 -1.445 0 B0 High -3.6111 0.0009 5.7909 0.0006 -1.4521 0 B0 Medium -3.6159 0.0034 5.7917 0.0020 -1.4534 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B10 Low -3.6881 0.0024 5.6851 0.0041 -1.4559 0 B30 High -3.6890 0.0007 5.6838 0.0064 -1.4568 0 B45 High -3.6872 0.0007 5.5921 0.0023 -1.4562 0 <t< td=""><td>A60</td><td>Low</td><td>-3.6179</td><td>0.00058</td><td>5.3625</td><td>0.0036</td><td>-1.4282</td><td>0.0003</td></t<>	A60	Low	-3.6179	0.00058	5.3625	0.0036	-1.4282	0.0003
A90 High -3.5087 1.7522 7.1705 0.7750 -1.1288 0 A90 Medium -2.4372 0.9615 5.2071 0.6278 -1.3681 0 A90 Low -3.1629 0.0247 4.9221 0.0454 -1.445 0 B0 High -3.6111 0.0009 5.7909 0.0006 -1.4521 0 B0 Medium -3.6159 0.0034 5.7917 0.0020 -1.4534 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B0 Low -3.6111 0.0024 5.6851 0.0041 -1.4524 0 B30 High -3.6888 0.0007 5.6839 0.0018 -1.4535 0 B30 Low -3.6900 0.0020 5.6838 0.0064 -1.4568 0 B45 High -3.6872 0.0007 5.5921 0.0023 -1.4544 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
A90 Medium -2.4372 0.9615 5.2071 0.6278 -1.3681 0 A90 Low -3.1629 0.0247 4.9221 0.0454 -1.445 0 B0 High -3.6111 0.0009 5.7909 0.0006 -1.4521 0 B0 Medium -3.6159 0.0034 5.7917 0.0020 -1.4534 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B30 High -3.6881 0.0024 5.6851 0.0041 -1.4524 0 B30 Medium -3.6898 0.0007 5.6839 0.0018 -1.4535 0 B30 Low -3.6900 0.0020 5.6838 0.0020 -1.4568 0 B45 High -3.6872 0.0007 5.5921 0.0023 -1.4562 0	A90	High	-3.5087	1.7522	7.1705	0.7750	-1.1288	0.0441
A90 Low -3.1629 0.0247 4.9221 0.0454 -1.445 0 B0 High -3.6111 0.0009 5.7909 0.0006 -1.4521 0 B0 Medium -3.6159 0.0034 5.7917 0.0020 -1.4534 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B30 High -3.6881 0.0024 5.6851 0.0041 -1.4524 0 B30 Medium -3.6898 0.0007 5.6839 0.0018 -1.4568 0 B45 High -3.6872 0.0007 5.5921 0.0020 -1.4562 0 B45 Low -3.6929 0.0013 5.5806 0.0037 -1.4605 0	A90	Medium	-2.4372	0.9615	5.2071	0.6278	-1.3681	0.1400
B0 High -3.6111 0.0009 5.7909 0.0006 -1.4521 0.001 B0 Medium -3.6159 0.0034 5.7917 0.0020 -1.4534 0.0039 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0.0039 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0.0011 B30 High -3.6881 0.0024 5.6851 0.0041 -1.4524 0.0011 B30 Medium -3.6898 0.0007 5.6839 0.0018 -1.4535 0.0011 B30 Low -3.6900 0.0020 5.6838 0.0064 -1.4568 0.0011 B45 High -3.6872 0.0007 5.5921 0.0023 -1.4562 0.0011 B45 Medium -3.6890 0.0005 5.5934 0.0020 -1.4562 0.0011 B45 Low -3.6929 0.0013 5.5806 0.0037 -1.4605	A90	Low	-3.1629	0.0247	4.9221	0.0454	-1.445	0.0074
B0 High -3.6111 0.0009 5.7909 0.0006 -1.4521 0 B0 Medium -3.6159 0.0034 5.7917 0.0020 -1.4534 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B30 High -3.6881 0.0024 5.6851 0.0041 -1.4524 0 B30 Medium -3.6898 0.0007 5.6839 0.0018 -1.4535 0 B30 Low -3.6900 0.0020 5.6838 0.0064 -1.4568 0 B45 High -3.6872 0.0007 5.5921 0.0023 -1.4544 0 B45 Medium -3.6890 0.0005 5.5934 0.0020 -1.4562 0 B60 High -3.6431 0.0014 5.5128 0.0004 -1.4607 0								
B0 Medium -3.6159 0.0034 5.7917 0.0020 -1.4534 0 B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B30 High -3.6881 0.0024 5.6851 0.0041 -1.4524 0 B30 Medium -3.6898 0.0007 5.6839 0.0018 -1.4535 0 B30 Low -3.6900 0.0020 5.6838 0.0064 -1.4568 0 B45 High -3.6872 0.0007 5.5921 0.0023 -1.4562 0 B45 Medium -3.6890 0.0005 5.5934 0.0020 -1.4562 0 B45 Low -3.6929 0.0013 5.5806 0.0037 -1.4605 0 B60 High -3.6431 0.0014 5.5128 0.00026 -1.4606 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0	B0	High	-3.6111	0.0009	5.7909	0.0006	-1.4521	0.0004
B0 Low -3.6111 0.0054 5.7967 0.0039 -1.4569 0 B30 High -3.6881 0.0024 5.6851 0.0041 -1.4524 0 B30 Medium -3.6898 0.0007 5.6839 0.0018 -1.4535 0 B30 Medium -3.6898 0.0007 5.6839 0.0018 -1.4568 0 B30 Low -3.6900 0.0020 5.6838 0.0064 -1.4568 0 B45 High -3.6872 0.0007 5.5921 0.0023 -1.4544 0 B45 Medium -3.6890 0.0005 5.5934 0.0020 -1.4562 0 B45 Low -3.6929 0.0013 5.5806 0.0037 -1.4605 0 B60 High -3.6431 0.0014 5.5128 0.0004 -1.4607 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4606 0	B0	Medium	-3.6159	0.0034	5.7917	0.0020	-1.4534	0.0007
B30 High -3.6881 0.0024 5.6851 0.0041 -1.4524 0 B30 Medium -3.6898 0.0007 5.6839 0.0018 -1.4535 0 B30 Low -3.6900 0.0020 5.6838 0.0064 -1.4568 0 B45 High -3.6872 0.0007 5.5921 0.0023 -1.4544 0 B45 Medium -3.6890 0.0005 5.5934 0.0020 -1.4562 0 B45 Medium -3.6929 0.0013 5.5806 0.0037 -1.4605 0 B460 High -3.6431 0.0014 5.5128 0.0004 -1.4607 0 B60 Medium -3.6431 0.0012 5.5132 0.0026 -1.4606 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0	B0	Low	-3.6111	0.0054	5.7967	0.0039	-1.4569	0.0013
B30 High -3.6881 0.0024 5.6851 0.0041 -1.4524 0 B30 Medium -3.6898 0.0007 5.6839 0.0018 -1.4535 0 B30 Low -3.6900 0.0020 5.6839 0.0064 -1.4568 0 B45 High -3.6872 0.0007 5.5921 0.0023 -1.4544 0 B45 Medium -3.6890 0.0005 5.5934 0.0020 -1.4562 0 B45 Low -3.6929 0.0013 5.5806 0.0037 -1.4605 0 B460 High -3.6431 0.0014 5.5128 0.0004 -1.4607 0 B60 Medium -3.6437 0.0012 5.5132 0.0026 -1.4606 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0								
B30 Medium -3.6898 0.0007 5.6839 0.0018 -1.4535 0 B30 Low -3.6900 0.0020 5.6838 0.0064 -1.4568 0 B45 High -3.6872 0.0007 5.5921 0.0023 -1.4544 0 B45 Medium -3.6872 0.0007 5.5921 0.0023 -1.4544 0 B45 Medium -3.6890 0.0005 5.5934 0.0020 -1.4562 0 B45 Low -3.6929 0.0013 5.5806 0.0037 -1.4605 0 B60 High -3.6431 0.0014 5.5128 0.0004 -1.4607 0 B60 Medium -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0	B30	High	-3.6881	0.0024	5.6851	0.0041	-1.4524	0.0011
B30 Low -3.6900 0.0020 5.6838 0.0064 -1.4568 0 B45 High -3.6872 0.0007 5.5921 0.0023 -1.4544 0 B45 Medium -3.6890 0.0005 5.5934 0.0020 -1.4562 0 B45 Medium -3.6890 0.0005 5.5934 0.0020 -1.4562 0 B45 Low -3.6929 0.0013 5.5806 0.0037 -1.4605 0 B60 High -3.6431 0.0014 5.5128 0.0004 -1.4607 0 B60 Medium -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B90 High -3.3871 0.0098 5.2321 0.0086 -1.4664 0	B30	Medium	-3.6898	0.0007	5.6839	0.0018	-1.4535	0.0013
B45 High -3.6872 0.0007 5.5921 0.0023 -1.4544 0 B45 Medium -3.6890 0.0005 5.5934 0.0020 -1.4562 0 B45 Low -3.6929 0.0013 5.5806 0.0037 -1.4605 0 B60 High -3.6431 0.0014 5.5128 0.0004 -1.4607 0 B60 Medium -3.6431 0.0012 5.5132 0.0026 -1.4606 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4606 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0098 5.2321 0.0086 -1.4664 0 B90 High -3.3871 0.0098 5.2321 0.0086 -1.4664 0	B30	Low	-3.6900	0.0020	5.6838	0.0064	-1.4568	0.0009
B45 High -3.6872 0.0007 5.5921 0.0023 -1.4544 0 B45 Medium -3.6890 0.0005 5.5934 0.0020 -1.4562 0 B45 Low -3.6929 0.0013 5.5806 0.0037 -1.4605 0 B60 High -3.6431 0.0014 5.5128 0.0004 -1.4607 0 B60 Medium -3.6431 0.0012 5.5132 0.0026 -1.4606 0 B60 Medium -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B90 High -3.3871 0.0098 5.2321 0.0086 -1.4664 0								
B45 Medium -3.6890 0.0005 5.5934 0.0020 -1.4562 0 B45 Low -3.6929 0.0013 5.5806 0.0037 -1.4605 0 B60 High -3.6431 0.0014 5.5128 0.0004 -1.4607 0 B60 Medium -3.6431 0.0012 5.5132 0.0026 -1.4606 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B90 High -3.3871 0.0098 5.2321 0.0086 -1.4664 0	B45	High	-3.6872	0.0007	5.5921	0.0023	-1.4544	0.0009
B45 Low -3.6929 0.0013 5.5806 0.0037 -1.4605 0 B60 High -3.6431 0.0014 5.5128 0.0004 -1.4607 0 B60 Medium -3.6431 0.00092 5.5132 0.0026 -1.4606 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B90 High -3.3871 0.0098 5.2321 0.0086 -1.4664 0	B45	Medium	-3.6890	0.0005	5.5934	0.0020	-1.4562	0.0006
B60 High -3.6431 0.0014 5.5128 0.0004 -1.4607 0 B60 Medium -3.6431 0.00092 5.5132 0.0026 -1.4606 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B90 High -3.3871 0.0098 5.2321 0.0086 -1.4664 0 B90 High -3.2652 0.0018 5.2063 0.0067 1.4612 0	B45	Low	-3.6929	0.0013	5.5806	0.0037	-1.4605	0.0031
B60 High -3.6431 0.0014 5.5128 0.0004 -1.4607 0 B60 Medium -3.6431 0.00092 5.5132 0.0026 -1.4606 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B90 High -3.3871 0.0098 5.2321 0.0086 -1.4664 0 B90 Madium -3.2652 0.0018 5.2062 0.0067 1.4612 0								
B60 Medium -3.6444 0.00092 5.5132 0.0026 -1.4606 0 B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B90 High -3.3871 0.0098 5.2321 0.0086 -1.4664 0 B90 Madium -3.2652 0.0018 5.2062 0.0067 1.4612 0	B60	High	-3.6431	0.0014	5.5128	0.0004	-1.4607	0.0017
B60 Low -3.6437 0.0012 5.5129 0.0107 -1.4631 0 B90 High -3.3871 0.0098 5.2321 0.0086 -1.4664 0 B90 Madium -3.2652 0.0018 5.2062 0.0067 1.4612 0	B60	Medium	-3.6444	0.00092	5.5132	0.0026	-1.4606	0.0008
B90 High -3.3871 0.0098 5.2321 0.0086 -1.4664 0 D00 Madium 2.2652 0.0018 5.2062 0.0067 1.4612 0	B60	Low	-3.6437	0.0012	5.5129	0.0107	-1.4631	0.0013
B90 High -3.3871 0.0098 5.2321 0.0086 -1.4664 0 D00 Madium 2.2652 0.0018 5.2062 0.0067 1.4612 6								
D00 Madium 222(52 0.0019 520(2 0.00(7 1.4(12 0	B90	High	-3.3871	0.0098	5.2321	0.0086	-1.4664	0.0005
B90 Medium -3.3633 0.0018 3.2063 0.0067 -1.4613 0	B90	Medium	-3.3653	0.0018	5.2063	0.0067	-1.4613	0.0024
B90 Low -3.8440 0.7079 4.5701 0.9346 -1.4271 0	B90	Low	-3.8440	0.7079	4.5701	0.9346	-1.4271	0.0559

Table 6.11. TIN Method: Variability of center-of-mass vs. point density.

Point Density	X (m)	Std. Dev. X (m)	Y (m)	Std. Dev. Y (m)	Z (m)	Std. Dev. Z (m)
High	-3.6125	0.0987	5.7177	0.5389	-1.4096	0.1004
Medium	-3.5037	0.3874	5.5212	0.2090	-1.4341	0.0292
Low	-3.6251	0.1769	5.4261	0.3905	-1.4407	0.0174

7. CONCLUSIONS

The objectives of this study were to segment objects from a point cloud obtained from a LADAR scan, identify the object from a set of known objects, and to develop an algorithm to determine the pose of that object. In this study, two approaches to segmenting data for potential object segmentation are presented: binning and TINs. The object identification involved the use of bounding boxes and a data set of potential objects in a scan region. The identification was made by comparing the bounding box of a potential object with that for the ideal object in the database. The measure-of-fit was the sum of squared errors of the vertices of the bounding box yielded the smallest error. The method of principal axes was used to determine the pose of the object.

The parameters in this study were the point density (three point densities), the object size (two object sizes), and the rotation of the object relative to the scanner's scan direction (five object rotations). To quantify the uncertainty of the pose determination, reference points were obtained using a laser-based site measurement system (SMS). To obtain a common reference frame for the both the SMS and LADAR data, a transformation matrix had to be determined.

The results of this study have shown that classical methods in 3D image analysis can be used in a limited fashion to identify known simple objects. The difference between employing these classic methods in the context of LADAR scans involves first the order of magnitude of data acquired. LADARs can gather millions of points within a short period of time. Second, there is the problem of phantom points or mixed pixels. Third, there is a large amount of noise in the data. The large amount of data dictates the need to decide on a strategy of sub-sampling the data in order to make the computations tractable. The phantom pixels contribute to unwanted data values and require special filtering procedures. They also blur boundary edges in such a way that there is large uncertainty in identifying boundaries. This, of course, makes it difficult to use classic boundary detection algorithms. These algorithms are at the core of classic 3D image analysis.

This study has also shown that using principal components analysis on polygon models of segmented objects, when matched with polygon models of known objects, can be used to identify the pose of single isolated objects, such as I-beams. The success of the procedure depends mainly on the direction with which the object faces the scanner. The most successful identifications are obtained when the longitudinal axis of the object is perpendicular to the direction of scan of the LADAR. The closer the longitudinal axis of the object parallels the scan direction of the LADAR,

- the more difficult it is to determine the length of the object
- the noisier the data in terms of the x, y, z coordinates of the center-of-mass similarly, the coordinates of the vertices of the top of the bounding box.

Based upon a search of the literature, to the authors' knowledge, this has been the first time that principle components analysis has been applied to determine the pose of objects in point clouds of LADAR scanned data.

With respect to point density, the results seem to indicate that, in general, the pose determination is more accurate for higher point densities. There were only 3 instances, about 3 % of all cases, when the I-beam was incorrectly identified, and each of these occurred for the lower point density data sets.

In the process to determine of the transformation matrix, it was found that there is large variability in determining the center of the reference spheres using the LADAR scanner. There is difficulty in fitting a sphere model through a set of points that are only located on one side of a sphere. There is further need to quantify how the uncertainty in identifying the center of the reference spheres propagates into the uncertainty of the object pose relative to the scanner.

REFERENCES

- [1] Amann, M., Bosch, T., Lescure, M., Myllylä, R., and Rioux, M., [2001], "Laser ranging: a critical review of usual techniques for distance measurement," *Opt. Eng.*, 40 (1), 10 19.
- [2] Bajaj, C. L., Bernardini, F., and Xu, G., [1995], 'Automatic Reconstruction of Surfaces and Scalar Fields from 3D Scans," *Computer Graphics Proceedings Annual Conference Series, SIGGRAPH 95*, 109-118.
- [3] Barhak, J. and Fischer, A., [2001], "Parameterization and Reconstruction from 3D Scattered Points Based on Neural Network and PDE Techniques," *IEEE Transactions on Visualization and Computer Graphics*, 7 (1), 1 – 16.
- [4] Beraldin, J. A., Blais, F., Rioux, M., Cournoyer, L., Laurin, D. and MacLean, S. G., [1997],
 "Short and medium range 3-D sensing for space applications," SPIE Aerosense '97, Proc.
 Visual Information Processing VI, 3074, 29 46.
- [5] Beraldin, J. A., Blais, F., Rioux, M., Cournoyer, L., Laurin, D. and MacLean, S. G., [2000], "Eye-safe digital 3-D sensing for space applications", *Opt. Eng.*, 39 (1), 196 – 211.
- [6] Beraldin, J. A., Blais, F., Boulangere, P., Cournoyer, L., Domey, J., El-Hakim, S. F., Godin, G., Rioux, M., and Taylor, J., [2000], "Real world modelling through high resolution digital 3D imaging of objects and structures," *ISPRS Journal of Photogrammetry & Remote Sensing*, 55, 230 – 250.
- [7] Bergevin, R., Laurendeau, D., and Poussart, D., [1995], "Registering Range Views of Multipart Objects," *Computer Vision and Image Processing*, 61 (1), 1-16.
- [8] Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., and Taubin, G., "The Ball-Pivoting Algorithm for Surface Reconstruction," *IEEE Transactions on Visualization and Computer Graphics*, 5 (4), 349 359.
- [9] Bernardini, F. and Rushmeier, H., [2000], "Strategies for registering range images from unknown camera positions," *Three-Dimensional Image Capture and Applications III, Proceedings of SPIE*, 3958, 200 206.
- [10] Besl, P. J. and McKay, N. D., [1992], "A Method for Registration of 3_D Shapes," IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, (2), 239 – 256.
- [11] Bors, A. G. and Pitas, I, [1999], "Object Classification in 3-D Images Using Apha-Trimmed Mean Radial Basis Function Network," *IEEE Transactions on Image Processing*, 8 (12), 1744 – 1756.
- [12] Boughorbal, F., Page, D. L., and Abidi, M. A., [2000], "Automatic reconstruction of large 3D models of real environments from unregistered data-sets," *Three-Dimensional Image Capture and Applications III, Proceedings of SPIE*, 3958, 234 – 241.
- [13] Caelli, T., Osman, E., and West, G., [1998], "3D Shape Matching and Inspection Using Geometric Features and Relational Learning," *Computer Vision and Image Understanding*, 72, (3), 340 – 350.
- [14] Chatzis, V. and Pitas, I., [2000], "A Generalized Fuzzy Mathematical Morphology and its Application in Robust 2-D and 3-D Object Representation," *IEEE Transactions on Image Processing*, 9 (10), 1798 – 1810.
- [15] Cignoni, P., Montani, C., Puppo, E., Scopigno, R., [1997], "Multiresolution Representation and Visualization of Volume Data," *IEEE Transactions on Visualization and Computer Graphics*, 3 (4), 352 – 369.
- [16] Cooper, M., Srivastava, A., and Miller, M., [1999], "Quadratic Analysis of Information Measures for Object Recognition," *Proc. SPIE*, 3721.
- [17] Cunnington and Stoddart, A. J., [1999], "N-View Point Set Registration: A Comparison," *Proc. British Machine Vision Conference*, Nottingham, UK.
- [18] Curless, B., [1999], "From Range Scans to 3D Models," Computer Graphics, 33 (4).
- [19] Curless, B. and Levoy, M., [1996], "A Volumetric Method for Building Complex Models from Range Images," Computer Graphics Proceedings, Annual Conference Series, SIGGRAPH 96, 303 – 312.
- [20] Dorai, C. and Jain, A. K., [1997], "COSMOS A Representation Scheme for 3D Free-Form Objects," *IEEE Transactions on Patteren Analysis and Machine Intelligence*, 19 (10), 1115 – 1130.
- [21] El-Hakim, S., [2000], "A Practical Approach to Creating Precise and Detailed 3D Models from Single and Multiple Views," *IAPRS, Vol. XXXIII*, Amsterdam, Book 5A, 202-209.
- [22] Enders, R. H. and Shapiro, J. H., [1988], "Laser radar tracking theory", *SPIE Laser Radar II*I, 999, 192–215.
- [23] Fan, T., Medioni, G., and Nevatia, R., [1989], "Recognizing 3-D Objects Using Surface Descriptions," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 11, (11), 1140-1157.
- [24] FIATECH, [2004], "Capital Projects Technology Roadmap: Element 4 Tactical Plan, Intelligent and Automated Construction Job Site (IACJS)".

- [25] Gilsinn, D. E., Cheok, G. S., and Lytle, A. M, [2004], "Pose of I-beams for Construction Site Automation," *Proceedings 21st International Symposium on Automation and Robotics in Construction*, September 21-25, Jeju, Korea.
- [26] Gilsinn, D. E., Cheok, G. S., and O'Leary, D. [2004], "Reconstructing Images of Bar Codes for Construction Site Object Recognition," *Automation in Construction*, 13 (1) January.
- [27] Golnabi, H. [2000], "Design and operation of a laser scanning system," *Optics & Laser Technology*, 32, 267 272.
- [28] Golub, G. H. and Van Loan, C. F.[1993], *Matrix Computations*, Johns Hopkins University Press, 4th ed.
- [29] Green, T. J., Jr., and Shapiro, J. H., [1994], "Detecting objects in three-dimensional laser radar range images," *Optical Engineering*, 33 (3), 865 874.
- [30] Greenberg, S., Rotman, S. R., Guterman, H., and Gens, A., [2005], "Region-of-interestbased algorithm for automatic target detection in infrared images," *Optical Engineering*, 44 (7).
- [31] Greenspan, M. A., [2002], "Geometric Probing of Dense Range Data", *IEEE Transactions* on Pattern Analysis and Machine Intelligence, 24, (4), 495 508.
- [32] Haralick, R. M., Joo, H., Lee, C., Zhuang, X., Vaidya, V. G. and Kim, M. B., [1989], "Pose Estimation from Corresponding Point Data," *IEEE Transactions on Systems, Man, and Cybernetics*, 19, (6), 1426 – 1446.
- [33] Hashemi, K. S., Hurst, P. T., and Oliver, J. N., [1994], "Sources of error in a laser range finder", *Rev. Sci. Instrum.*, 65 (10), 3165 -- 3171
- [34] Hebert, M. and Krotkov, E., [1991], "3-D Measurements from Imaging Laser Radars: How Good are They?", *IEEE/RSJ International Workshop on Intelligent Robots and Systems IROS '91*, Nov. 3-5, Osaka, Japan.
- [35] Hemayed, E. E., Mostafa, M. G., and Farag, A. A., [2000], "3D Object Reconstruction from a Sequence of Images Using Voxel Coloring," *Three-Dimensional Image Capture and Applications III, Proceedings of SPIE*, 3958, 207 214.
- [36] Herbin, M. Venot, A., Devaux, J. Y., Walter, E., Lebruchec, J. F., Dubertret, L., and Roucayrol, J. C., [1989], "Automated Registration of Dissimilar Images: Application to Medical Imagery," *Computer Vision, Graphics, and Image Processing*, 47, 77 – 88.
- [37] Hirsch, B. E., Thoben, K. D., Sheng, X., and Joppe, M., [1997], "Reconstruction of Volume Boundary from Layers by Triangulation," *Journal of Manufacturing Systems*, 16 (4), 249 – 259.

- [38] Hoover, A., Jean-Baptiste, G. Jiang, X., Flynn, P. J., Bunke, H., Goldgof, D. B., Bowyer, K., Eggert, D. W., Fitzgibbon, A., and Fisher, R. B., [1996], "An Experimental Comparison of Range Image Segmentation Algorithms," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 18 (7), 673 – 689.
- [39] Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., and Tuetzle, W., "Piecewise Smooth Surface Reconstruction," *Computer Graphics Proceedings, Annual Conference Series, SIGGRAPH 94*, 295 – 302.
- [40] Hsieh, J., Liao, H. M., Fan, K., Ko, M., and Hung, Y., [1997], "Image Registration Using a New Edge-Based Approach," *Computer Vision and Image Understanding*, 67 (2), 112 – 130.
- [41] Huber, D., Carmichael, O., Hebert, M., [2000], "3-D Map Reconstruction from Range Data," Proceedings of the 2000 IEEE International Conference on Robotics & Automation, 891 – 897.
- [42] Hutchinson, B. A., Galbraith, R. L., Stann, B. L. Der, S. Z., [2003], "Simulation-based analysis of range and cross-range resolution requirements for the identification of vehicles in ladar imagery," *Opt. Eng.*, 42 (9) 2734 – 2745.
- [43] Huttenlocher, D. P. and Ullman, S., [1990], "Recognizing Solid Objects by Alignment with an Image," *International Journal of Computer Vision*, 5, (2), 195 212.
- [44] Jiang, X. and Bunke, H., [1999], "Edge Detection in Range Images Based on Scan Line Approximation," *Computer Vision and Image Understanding*, 73 (2), 183 199.
- [45] Johnson, A. E., [1997], "Spin-Images: A Representation for 3-D Surface Matching," Ph. D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 15213.
- [46] Johnson, A. E., Carmichel, O., Huber, D., and Hebert, M., [1998], "Toward a General 3-D Matching Engine: Multiple Models, Complex Scenes, and Efficient Data Filtering, " *Proc. Of the 1998 Image Understanding Workshop (IUW)*, 1097 – 1107.
- [47] Johnson, A. E. and Hebert, M. [1999], "Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 21 (5), 433 – 449.
- [48] Juarez, E. L., Dumont, C., and Abidi, M. A., [2000], "Object Modeling in Multiple-Object 3D Scene Using Deformable Simplex Meshes," *Three-Dimensional Image Capture and Applications III, Proceedings of SPIE*, 3958, 144 – 152.
- [49] Kanamaru, T., Yamada, K., Ichikawa, T., Naemura, T., Aizawa, K., and Saito, T., [200], "Acquisition of 3D Image Representation in Multimedia Ambiance Communication

Using 3D Laser Scanner and Digital Camera," *Three-Dimensional Image Capture and Applications III, Proceedings of SPIE*, 3958, 80 – 89.

- [50] Kim, W. and Kak, A. C., [1991], "3-D Object Recognition Using Bipartite Matching Embedded in Discrete Relaxation," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 13, (3), 224 – 251.
- [51] Krishnamurthy, V. and Levoy, M., [1996], "Fitting Smooth Surfaces to Dense Polygon Meshes," SIGGRAPH 96
- [52] Krishnapuram, R. and Cassasent, D., [1989], "Determination of Three-Dimensional Object Location and Orientation from Range Images," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 11, (11), 1158 – 1167.
- [53] Laboureux, X. and Häusler, G. [2001], "Localization and registration of three-dimensional objects in space where are the limits?" *Applied Optics*, 49 (29), 5206 5216.
- [54] Lawrence, J. and Witzgall, C., [2005] "A trace-Maximization Problem associated with the Registration of Spatial Points Sets," Preliminary draft.
- [55] Lawson, C. L., [1977], "Software for C¹ surface interpolation," Mathematical Software III, J. R. Rice (Ed.), Academic Press, New York, 161 194.
- [56] Lengyel, E., [2002], *Mathematics for 3D Game Programming and Computer Graphics*, Charles River Media, Inc., Hingham, Massachusetts.
- [57] Leonardis, A., Jaklič, A., and Solina, F., [1997], "Superquadrics for Segmenting and Modeling Range Data," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19 (11), 1289 – 1295.
- [58] Levy, A. and Lindenbaum, M., [2000], "Sequential Karhunen Loeve Basis Extraction and its Application to Images," *IEEE Transactions on Image Processing*, 9 (8), 1371 1374.
- [59] Liang, P. and Todhunter, J. S., [1990], "Representation and Recognition of Surface Shapes in Range Images: A Differential Geometry Approach," *Computer Vision, Graphics, and Image Processing*, 52, 78 – 109.
- [60] Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L. F., Faust, N., and Turner, G. A., [1996], *Computer Graphics Proceedings, Annual Conference Series, SIGGRAPH 96.*
- [61] Lu, T. and Yun, D. Y. Y., [2000], "Optimizing Triangular Mesh Generation from Range Images," *Three-Dimensional Image Capture and Applications III, Proceedings of SPIE*, 3958, 161 – 169.

- [62] Lucchese, L., Doretto, G., and Cortelazzo, G. M., [2002], "A Frequency Domain Technique for Range Data Registration," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24 (11), 1468 – 1484.
- [63] Luebke, D. and Erikson, C., [1997], "View-Dependent Simplification of Arbitrary Polygonal Environments," *Computer Graphics Proceedings, Annual Conference Series, SIGGRAPH 97.*
- [64] Lytle, A. M. and Saidi, K. S., [2004], "Proceedings of the Automated Steel Construction Workshop, June 6-7, 2002", *NISTIR* 7108, National Institute of Standards and Technology, Gaithersburg, MD.
- [65] Marshall, D., Lukacs, G., and Martin, R., [2001], "Robust Segmentation of Primitives from Range Data in the Presence of Geometric Degeneracy," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23 (3), 304 – 314.
- [66] Marshall, S. J., Whiteford, D. N., and Rixon, R. C., [2001], "Assessing the Performance of 3D Whole Body Imaging Systems," *Proc.* 6th *Numéisation 3D/Scanning 2001 Congress.*
- [67] Matoba, O. Tajahuerce, E., and Javidi, B., [2001], "Real-time three-dimensional object recognition with multiple perspectives imaging," *Applied Optics*, 40 (20), 3318 3325.
- [68] Mirmehdi, M., Palmer, P. L., Kittler, J., and Dabis, H., [1999], "Feedback Control Strategies for Object Recognition," *IEEE Transactions on Image Processing*, 8 (8), 1084 – 1101.
- [69] Monga, O. and Benayoun, S., [1995], "Using Partial Derivatives of 3D Images to Extract Typical Surface Features," *Computer Vision and Image Processing*, 61 (2), 171 189.
- [70] Montgomery, D. C. and Peck, E. A., [1992], *Introduction to Linear Regression Analysis*, John Wiley &Sons, Inc., New York.
- [71] Nikolaidis, N. and Pitas, I., [2001], 3-D Image Processing Algorithms, John Wiley & Sons, Inc. New York.
- [72] Pollefeys, M., Koch, R., Vergauwen, M., Deknuydt, B., and Van Gool, L., [2000], "Threedimensional scene reconstruction from images," *Three-Dimensional Image Capture and Applications III, Proceedings of SPIE*, 3958, 215 – 226.
- [73] O'Leary, D. P., Oral Communication.
- [74] Saidi, K.S., Lytle, A.M., Scott, N.A. and Stone, W.C., [2005], "Developments Toward Automated Construction," *NISTIR 7264*, National Institute of Standards and Technology, Gaithersburg, MD.

- [75] Surlier, D. and Bucher, A., [1995], "Surface-independent, theoretically exact bestfit for arbitrary sculptured, complex, or standard geometries," *Precision Engineering*, 17, 101 – 113.
- [76] Stone, W. C., Juberts, M., Dagalakis, N, Stone, J, and Gorman, J., [2004], "Performance Analysis of Next-Generation LADAR for Manufacturing, Construction, and Mobility," *NISTIR 7117*, National Institute of Standards and Technology, Gaithersburg, MD, May.
- [77] Soucy, G. and Ferrie, F. P., [1997], "Surface Recovery from Range Images Using Curvature and Motion Consistency," *Computer Vision and Image Understanding*, 65 (1), 1–18.
- [78] Turk, G. and Levoy, M., [1994], "Zippered Polgon Meshes from Range Images," Computer Graphics Proceedings, Annual Conference Series, *SIGGRAPH 94*, 311 318.
- [79] Verly, J. G., Delanoy, R. L., and Dudgeon, D. E., [1992], "Model-based system for automatic target recognition from forward-looking laser-radar imagery," *Optical Engineering*, 31 (12), 2540 – 2552.
- [80] Weiss, I. and Ray, M., [2001], "Model-Based Recognition of 3D Objects from Single Images," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23 (2), 116– 128.
- [81] Welch, W. and Witkin, A., [1994], "Free-Form Shape Design Using Triangulated Surfaces," *Computer Graphics Proceedings, Annual Conference Series, SIGGRAPH* 94, 247 – 256.
- [82] Whitaker, R. T. and Gregor, J., [2002], "A Maximum-Likelihood Surface Estimator for Dense Range Data," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24 (10), 1372 – 1387.
- [83] Wheeler, M. D. and Ikeuchi, K., [1995], "Sensor Modeling, Probabilistic Hypothesis Generation, and Robust Localization for Object Recognition," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 17 (3), 252 265.
- [84] Williams, J. and Bennamoun, M., [2001], "Simultaneous Registration of Multiple Corresponding Point Sets," *Computer Vision and Image Understanding*, 81, 117 142.
- [85] Witzgall, C., Bernal, J., and Cheok, G. S. [2001], "Registering 3D Point Clouds: An Experimental Evaluation," *NISTIR 6743*, National Institute of Standards and Technology, Gaithersburg, MD, May.
- [86] Witzgall, C., Bernal, J., and Cheok, G. S. [2004], "TIN Techniques for Data Analysis and Surface Construction," *NISTIR 7078*, National Institute of Standards and Technology, Gaithersburg, MD, January.

- [87] Witzgall, C., Bernal, J., and Cheok, G. S. [2004], "Triangular Meshing and Volume Determination," *NISTIR* 7142, National Institute of Standards and Technology, Gaithersburg, MD, July.
- [88] Wurster, J., Stark, H., Olsen, E. T., and Kogler, K., [1995], "Remote object recognition by analysis of surface structure," J. Opt. Soc. Am. A, 12 (6), 1242 1253.
- [89] Zhang, D. and Hebert, M., [1999], "Harmonic Maps and Their Applications in Surface Matching," *IEEE Conf. on Computer Vision and Pattern Recognition (CVPR '99)*.
- [90] Zhao, C. and Mohr, R., [1996], "Global Three-Dimensional Surface Reconstruction from Occluding Contours," *Computer Vision and Image Understanding*, 64 (1), 62 96.
- [91] Zheng, Q., Der, S. Z., and Mahmoud, H. I., [2001], "Model-Based Target Recognition in Pulsed Ladar Imagery," *IEEE Transactions on Image Processing*, 10 (4), 565 572.

APPENDICES

A.1 PROGRAM LISTINGS

A.1.1 Object Identification by Binning Scripts

The first script is the main driver script for the entire binning segmentation of objects. The main script uses functions bin3d.m, princ_axes.m, get_vertical_string.m, Segment_objects.m, Object_test.m. The function Segment_objects calls functions push.m and pop.m for stack manipulation.

A.1.1.1 MAIN BINNING SEGMENTATION SCRIPT

% Begin segmentation algorithm by binning clear all: ********* %****** % % A Pose Algorithm for I-beams % % Although this script is constructed to identify and isolated % I-beam in a point cloud of data obtained by a LADAR scan, % the principles used are quite general. % % 1. Automatic object recognition from a set of unstructured % data points requires the provision of some prior data % of what potential objects could possibly be in the % scene. % 2. The massive amont of raw data provided by the LADAR % usually does not provide determination of edges of % objects due to the uncertainty of mixed pixels % 3. The raw data needs to be binned into appropriately % selected 3D cells or voxels. % 4. Once the data is binned into 3D voxels then it is % possible to eliminate voxels that contain mixed % pixels and other outlying data, such as ground hits. % 5. Once these voxels have been eliminated by setting % their bin count to zero, the remaining voxels with % non-zero bin counts can be grouped into objects by % joining neighboring voxels with non-zero counts. % 6. The objects can then be tested for having 3 % dimensions. The assumption here is that a legitimate % I-beam has 3 definite dimensions. If an object fails % the 3 dimension test it's voxels are also eliminated. % The test is based on whether 4 points lay on a plane % or not. % 7. Once legitimate 3D objects are determined then their % princpal axes can be determined. These identify the % longest, next longest, etc. axes. The directions

% of these axes specify the pose of the object relative % to the scanner. % 8. Once principal axes are determined for an object then % a bounding box can be placed around it that encloses all % of its voxel centers. % 9. Data from a database of I-beams can be read and corners % determined so that bounding boxes can be formed around % the ideal beams. % 10. These ideal bounding boxes can then be compared to the % bounding boxes of the scanned objects to determine which I-beams have been scanned by size comparison % of bounding boxes. % % % °/_____ % %Open file for Excel comma separated output fid3 = fopen('All scanfile voxel output 1.txt','w'); % set up header lines for the Excel file fprintf(fid3, 'File, I-Beam, 8 Point, Location, of, CM, Pose from, Site,, Metrology, System, ,Bounding, Box, , ,Error\n'); fprintf(fid3,'Name, Selected, Error, x,y,z, neg x axis (deg),Point,x,y,z,Point,x,y,z,dx,dy,dz\n'); % % % A Site Metrology System (SMS) was used to determine reference % (x,y) values at 4 points on the top flange of each I-beam for % each angular position on the floor. These points are initially % stored in the coordinate system of the SMS but are converted to % the coordinate system of the scanner. This was done using three % reference spheres. A transformation was developed to convert the % SMS coordinates to scanner coordinates. The SMS to scanner % coordinate transformation is based on reference sphere % centers. The transformation is given by: % % Scanner coord = Transform*(sms coord - cg) + cf % % The transformation is not restricted to rotation but includes a shift. % cg = [10.13450; -2.051750; -0.3965000]; cf = [-2.655250; 4.259250; -0.2567500]; Transform = [0.4362677 0.8998131 0.0026162; -0.8998142 0.4362716 -0.0011596; -0.0021848 -0.0018482 0.9999958]; % % Read in the database of I-beams and generate ideal I-beam % points. These values need only be read once. % % The database values defined in inches to conform to usual % Engineering practice. % % The database has an entry record for each I-beam. The records % are structured as follows: % Number of I-beams in the database %

```
% For each I-beam
%
% Name of the I-beam
% Length of the I-beam
% Depth of the I-beam
% Flange Width
% Flange thickness
% Web thickness
%
            %*
fid db = fopen('I beam database.txt','r');
no beams = fscanf(fid db, '\%d', 1);
%
% Create points that define the I-beams with the zero located at the center
% of mass, convert to meters by multiplying by 0.0254 in/m.
%
% Structures will be used to store and reference I-beam data
%
max\_length = 0.0;
min_length = 1e6;
max depth = 0.0;
min_depth = 1e6;
max width = 0.0;
min width = 1e6;
%
% Loop over all of the I-beams in the database
%
for i = 1:no_beams
  I beam(i).name = fscanf(fid db,'%s',1);
  I_beam(i).length = fscanf(fid_db,'%f',1);
  if (I_beam(i).length >= max_length)
    max length = I beam(i).length;
  end
  if (I_beam(i).length <= min_length)</pre>
    min length = I beam(i).length;
  end
  I_beam(i).depth = fscanf(fid_db,'%f',1);
  if (I beam(i).depth >= max depth)
    max_depth = I_beam(i).depth;
  end
  if (I beam(i).depth <= min depth)
    min_depth = l_beam(i).depth;
  end
  I beam(i).flange width = fscanf(fid db,'%f',1);
  if (I beam(i).flange width >= max width)
    max width = I beam(i).flange width;
  end
  if (I beam(i).flange width <= min width)
    min width = I beam(i).flange width;
  end
  %
  %convert inches to meters
  %
  max_beam_length = max_length*0.0254;
  min_beam_length = min_length*0.0254;
```

max_beam_depth = max_depth*0.0254; min beam depth = min depth*0.0254; max beam width = max width*0.0254: min_beam_width = min_width*0.0254; I beam(i).flange thick = fscanf(fid db,'%f',1); I beam(i).web thick = fscanf(fid db, '%f', 1); I_beam(i).web_height = I_beam(i).depth - 2*I_beam(i).flange_thick; % % Compute twenty four points describing each I-beam % I beam(i). $x(1) = 0.5^{*}$ I beam(i).flange width; I beam(i).y(1) = 0.5*I beam(i).length; I beam(i).z(1) = -0.5*I beam(i).depth; $I_beam(i).x(2) = -0.5*I_beam(i).flange_width;$ I beam(i).y(2) = 0.5*I beam(i).length; I beam(i).z(2) = -0.5*I beam(i).depth; I beam(i). $x(3) = 0.5^{*}$ I beam(i).flange width; I beam(i).y(3) = 0.5*I beam(i).length; I beam(i).z(3) = -0.5*I beam(i).web height; $I_beam(i).x(4) = -0.5*I_beam(i).flange_width;$ I beam(i).y(4) = 0.5*I beam(i).length; I beam(i).z(4) = -0.5*I beam(i).web height; $I_beam(i).x(5) = 0.5*I_beam(i).web_thick;$ I beam(i).y(5) = 0.5*I beam(i).length; I beam(i).z(5) = -0.5*I beam(i).web height; $I_beam(i).x(6) = -0.5*I_beam(i).web_thick;$ I beam(i).y(6) = 0.5*I beam(i).length; I beam(i).z(6) = -0.5*I beam(i).web height; $I_beam(i).x(7) = 0.5*I_beam(i).web_thick;$ I beam(i). $y(7) = 0.5^{*}$ I beam(i).length; $I_beam(i).z(7) = 0.5*I_beam(i).web_height;$ $I_beam(i).x(8) = -0.5*I_beam(i).web_thick;$ I beam(i).y(8) = 0.5*I beam(i).length; $I_beam(i).z(8) = 0.5*I_beam(i).web height:$ I beam(i). $x(9) = 0.5^{*}$ I beam(i).flange width; 1 beam(i).v(9) = 0.5*1 beam(i).length:I beam(i).z(9) = 0.5*I beam(i).web height; $I_beam(i).x(10) = -0.5*I_beam(i).flange_width;$ l beam(i).v(10) = 0.5*l beam(i).length:I beam(i).z(10) = 0.5*I beam(i).web height; $I_beam(i).x(11) = 0.5*I_beam(i).flange_width;$ I beam(i). $y(11) = 0.5^{*}$ I beam(i).length; $I_beam(i).z(11) = 0.5*I_beam(i).depth;$ $I_beam(i).x(12) = -0.5*I_beam(i).flange_width;$ I beam(i). $y(12) = 0.5^{*}$ I beam(i).length; I beam(i). $z(12) = 0.5^{*}$ I beam(i).depth; I beam(i). $x(13) = 0.5^{*}$ I beam(i).flange width; I beam(i).y(13) = -0.5*I beam(i).length; I beam(i).z(13) = -0.5*I beam(i).depth; I beam(i).x(14) = -0.5*I beam(i).flange width; I beam(i).y(14) = -0.5*I beam(i).length; $I_beam(i).z(14) = -0.5*I_beam(i).depth;$ I beam(i). $x(15) = 0.5^{*}$ I beam(i).flange width; $I_beam(i).y(15) = -0.5*I_beam(i).length;$ $I_beam(i).z(15) = -0.5*I_beam(i).web_height;$ $I_beam(i).x(16) = -0.5*I_beam(i).flange_width;$

```
I_beam(i).y(16) = -0.5*I_beam(i).length;
I beam(i).z(16) = -0.5*I beam(i).web height;
I beam(i).x(17) = 0.5^{*} beam(i).web thick;
I_beam(i).y(17) = -0.5*I_beam(i).length;
I beam(i).z(17) = -0.5^{*} beam(i).web height;
I beam(i).x(18) = -0.5*I beam(i).web thick;
I_beam(i).y(18) = -0.5*I_beam(i).length;
I_beam(i).z(18) = -0.5*I_beam(i).web_height;
I_beam(i).x(19) = 0.5*I_beam(i).web_thick;
I_beam(i).y(19) = -0.5*I_beam(i).length;
I_beam(i).z(19) = 0.5*I_beam(i).web_height;
I beam(i).x(20) = -0.5^{*}I beam(i).web thick;
I beam(i).y(20) = -0.5*I beam(i).length;
I beam(i).z(20) = 0.5^{*} beam(i).web height;
I beam(i).x(21) = 0.5^{*}I beam(i).flange width;
I beam(i).v(21) = -0.5*I beam(i).length;
I beam(i).z(21) = 0.5*I beam(i).web height;
I_beam(i).x(22) = -0.5*I_beam(i).flange_width;
I beam(i).y(22) = -0.5*I beam(i).length;
I_beam(i).z(22) = 0.5*I_beam(i).web_height;
I_beam(i).x(23) = 0.5*I_beam(i).flange_width;
I beam(i).v(23) = -0.5*I beam(i).length;
I_beam(i).z(23) = 0.5*I_beam(i).depth;
I beam(i).x(24) = -0.5^{*}I beam(i).flange width;
I beam(i).y(24) = -0.5*I beam(i).length;
I_beam(i).z(24) = 0.5*I_beam(i).depth;
%
% Convert the coordinates from inches to meters
%
I \text{ beam}(i).x(:) = I \text{ beam}(i).x(:)*0.0254;
I_beam(i).y(:) = I_beam(i).y(:)*0.0254;
I_beam(i).z(:) = I_beam(i).z(:)*0.0254;
nn ib = 24;
xx ib = 1 beam(i).x;
vy ib = 1 beam(i).y;
zz ib = 1 beam(i).z:
%
% Get the center of mass and principle axes of each
% I-beam. This is the first step in creating a
% bounding box around each I-beam.
%
[cm_ib,pr_ax_ib] = princ_axes(nn_ib,xx_ib',yy_ib',zz_ib');
%
% Store the center of mass in the I-beam structure
%
I beam(i).ctr mass.x = cm ib(1,1);
I beam(i).ctr mass.y = cm ib(2,1);
I beam(i).ctr mass.z = cm ib(3,1);
%
% Store the vectors representing the principal axes
% in the I-beam Structure. The R vector represents
% the vector along the longest exis, S the next
% longest, and T the third. In the case of I-beams
% R points along the I-beam length, S along the height,
% and T across the flange.
%
```

 $I_beam(i).R.x = pr_ax_ib(1,1);$ I beam(i).R.y = pr ax ib(2,1); $I_beam(i).R.z = pr_ax_ib(3,1);$ $I_beam(i).S.x = pr_ax_ib(1,2);$ I beam(i).S.y = pr ax ib(2,2); I beam(i).S.z = $pr_ax_ib(3,2)$; $I_beam(i).T.x = pr_ax_ib(1,3);$ $I_beam(i).T.y = pr_ax_ib(2,3);$ $I_beam(i).T.z = pr_ax_ib(3,3);$ % % Compute the inner products of points and principle axes. This is done % to find the maximum and minimum extents of the bounding box around % the I-beam. Essentially all of the projetions of the data vectors % describin the I-beam are examined for maximum and minimum length. % for np = 1:nn ib $R_dot_P(np) = I_beam(i).R.x * xx_ib(np) + I_beam(i).R.y * yy_ib(np)...$ + I_beam(i).R.z * zz_ib(np); $S_dot_P(np) = I_beam(i).S.x * xx_ib(np) + I_beam(i).S.y * yy_ib(np)...$ + I_beam(i).S.z * zz_ib(np); $T_dot_P(np) = I_beam(i).T.x * xx_ib(np) + I_beam(i).T.y * yy_ib(np)...$ + I_beam(i).T.z * zz_ib(np); end max R dot P = max(R dot P); min R dot P = min(R dot P); $max_S_dot_P = max(S_dot_P); min_S_dot_P = min(S_dot_P);$ $max_T_dot_P = max(T_dot_P); min_T_dot_P = min(T_dot_P);$ % % Compute the extent multipliers % $aa = (max_R_dot_P - min_R_dot_P)/2;$ bb = (max_S_dot_P - min_S_dot_P)/2; $cc = (max_T_dot_P - min_T_dot_P)/2;$ % % Compute the bounding box center % I beam(i).Q.x = cm ib(1.1): $I_beam(i).Q.y = cm_ib(2,1);$ $I_beam(i).Q.z = cm_ib(3,1);$ % % Get the eight corners of the box relative to the box % center. % $xt = I_beam(i).Q.x + aa^{I}_beam(i).R.x...$ + bb*l_beam(i).S.x + cc*l_beam(i).T.x; I beam(i).corner(1).x1 =xt; $yt = I_beam(i).Q.y + aa^I_beam(i).R.y...$ + bb*l beam(i).S.y + cc*l beam(i).T.y; I beam(i).corner(1).y1 = yt; zt = I beam(i).Q.z + aa*I beam(i).R.z... + bb^{1} beam(i).S.z + cc¹ beam(i).T.z; I beam(i).corner(1).z1 = zt; xt = I beam(i).Q.x + aa*I beam(i).R.x... + bb*l_beam(i).S.x - cc*l_beam(i).T.x; $I_beam(i).corner(2).x1 = xt;$ $yt = I_beam(i).Q.y + aa^I_beam(i).R.y...$ + bb*l_beam(i).S.y - cc*l_beam(i).T.y;

```
I_beam(i).corner(2).y1 = yt;
zt = I beam(i).Q.z + aa*I beam(i).R.z...
  + bb*l beam(i).S.z - cc*l beam(i).T.z;
I_beam(i).corner(2).z1 = zt;
xt = 1 beam(i).Q.x + aa*1 beam(i).R.x...
  - bb*l beam(i).S.x + cc*l beam(i).T.x;
I_beam(i).corner(3).x1 = xt;
yt = I_beam(i).Q.y + aa^I_beam(i).R.y...
  - bb*l_beam(i).S.y + cc*l_beam(i).T.y;
I_beam(i).corner(3).y1 = yt;
zt = I_beam(i).Q.z + aa^{I_beam(i).R.z...}
  - bb*l beam(i).S.z + cc*l beam(i).T.z;
I beam(i).corner(3).z1 = zt;
xt = 1 beam(i).Q.x + aa*1 beam(i).R.x...
  - bb*l beam(i).S.x - cc*l beam(i).T.x;
I beam(i).corner(4).x1 = xt;
yt = I beam(i).Q.y + aa^{*}I beam(i).R.y...
  - bb*l beam(i).S.y - cc*l beam(i).T.y;
I beam(i).corner(4).y1 = yt;
zt = I_beam(i).Q.z + aa*I_beam(i).R.z...
  - bb*l_beam(i).S.z - cc*l_beam(i).T.z;
I_beam(i).corner(4).z1 = zt;
xt = I_beam(i).Q.x - aa*I_beam(i).R.x...
  + bb*l beam(i).S.x + cc*l beam(i).T.x;
I beam(i).corner(5).x1 = xt;
yt = I_beam(i).Q.y - aa^I_beam(i).R.y...
  + bb^{1} beam(i).S.y + cc<sup>1</sup> beam(i).T.y;
I_beam(i).corner(5).y1 = yt;
zt = I_beam(i).Q.z - aa*I_beam(i).R.z...
   + bb*l beam(i).S.z + cc*l beam(i).T.z;
l beam(i).corner(5).z1 = zt;
xt = I_beam(i).Q.x - aa^I_beam(i).R.x...
  + bb*l beam(i).S.x - cc*l beam(i).T.x;
I beam(i).corner(6).x1 = xt;
yt = I_beam(i).Q.y - aa^{I_beam(i).R.y...}
  + bb*l beam(i).S.y - cc*l_beam(i).T.y;
I_beam(i).corner(6).y1 = yt;
zt = I_beam(i).Q.z - aa*I_beam(i).R.z...
  + bb*l beam(i).S.z - cc*l beam(i).T.z;
I_beam(i).corner(6).z1 = zt;
xt = I_beam(i).Q.x - aa*I_beam(i).R.x...
   - bb*l beam(i).S.x + cc*l beam(i).T.x;
I_beam(i).corner(7).x1 = xt;
yt = I_beam(i).Q.y - aa^I_beam(i).R.y...
  - bb*l beam(i).S.y + cc*l beam(i).T.y;
I beam(i).corner(7).y1 = yt;
zt = I_beam(i).Q.z - aa*I_beam(i).R.z...
  - bb*l beam(i).S.z + cc*l beam(i).T.z;
I\_beam(i).corner(7).z1 = zt;
xt = I beam(i).Q.x - aa^{*}I beam(i).R.x...
  - bb*l beam(i).S.x - cc*l beam(i).T.x;
I_beam(i).corner(8).x1 = xt;
yt = I_beam(i).Q.y - aa^I_beam(i).R.y...
  - bb*l_beam(i).S.y - cc*l_beam(i).T.y;
I_beam(i).corner(8).y1 = yt;
zt = I_beam(i).Q.z - aa*I_beam(i).R.z...
```

```
- bb*l_beam(i).S.z - cc*l_beam(i).T.z;
  I beam(i).corner(8).z1 = zt;
end
fclose(fid_db);
%*
%
% Load the SMS Flange Corner Point file. These are the reference
% measurements in the SMS coordinate system of the four corner
% points of the top flange for each of the different I-beams in
% the database. The file format consists of records with the
% fields: The first field is a number idntifying the beam, e.g. 1 or 2.
% The second field is the corner number of the points describing the
% I-beam. The third field is the rotation angle of the I-beam in the
% floor coordinate sysstem, e. g. 0, 30, 45, 60, 90. The third
% field. The fourth, fifth, and sixth fields are the x, y, z values
% of the corner point in the SMS coordinate frame.
%
sms_file = 'SMS_I_beam_points.txt';
sms = load(sms_file);
[sm,sn] = size(sms);
beam no = zeros(sm, 1);
corner_no = zeros(sm, 1);
rot angle = zeros(sm, 1);
sms x = zeros(sm, 1);
sms_y = zeros(sm, 1);
sms z = zeros(sm, 1);
beam_no(:,1) = sms(:,1);
corner_no(:,1) = sms(:,2);
rot angle(:,1) = sms(:,3);
sms_x(:,1) = sms(:,4);
sms_y(:,1) = sms(:,5);
sms z(:,1) = sms(:,6);
%*****
%
% Open the file that has all of the names of the scan files.
% In a while loop open each scan file for reading.
% The Ladar data file is % assumed to be in a 3 column
% format of x, y, z data values in meters.
%
%
fid1 = fopen('All scanfile files 1.txt','r');
while feof(fid1)==0 %see end for end statement
  % clear variables before reading each scan file since the sysstem may
  % retain undesirable values and produce unexpected results.
  clear ladar file max x min x max y min y max z min z ncellx ncelly ncellz
  clear del cellx del celly del cellz cell x dx cell y dy cell z dz bin count
  clear nz i bins nz j binx nz k bins count lnz nz i bins x nz j bins y nz k bins z
  clear Max_string_length Max_L nz_i_bins_new nz_j_bins_new nz_k_bins_new
  clear nz_i_bins_x_new nz_j_bins_y_new nz_k_bins_z_new potential_object obj no
  clear n_obj object R_dot_P S_dot_P T_dot_P max_R_dot_P min_R_dot_P max_S_dot_P
  clear min_S_dot_P max_T_dot_P min_T_dot_P aa bb cc cc1 AA rt Rot T H mpt trmpt
  clear comparison error min error i min obj min
  ladar_file = fgetl(fid1); % read the scan file name
  disp(sprintf('Processing file = %s\n',ladar_file));
  a = load(ladar_file); % load the scan file data into a matrix
```

```
%strip off the .txt extension and use clear() to clear variable
  %with string name
  place = findstr(ladar file,'.txt');
  ladar_file_minus_txt = ladar_file(1:place-1);
  clear(ladar file minus txt);
  [m,n] = size(a);
  xtemp = zeros(m, 1);
  ytemp = zeros(m, 1);
  ztemp = zeros(m,1);
  xtemp(:,1) = a(:,1);
  ytemp(:,1) = a(:,2);
  ztemp(:,1) = a(:,3);
  x = xtemp; % store the x, y, z scan coordinates in the scanner
  y = ytemp; % coordinate frame. The units are in meters.
  z = ztemp;
  max x = max(x);
  min_x = min(x);
  max_y = max(y);
  min_y = min(y);
  max_z = max(z);
  min z = min(z);
                 *****
%****
%
% In preparation for binning of data get the number of cells or
% voxels that will be used to bin the scan data points.
% Get the number of cells in each direction. 60x60x60 is a good
% compromise for the I-beam data sets.
%
ncellx = 60;
  ncelly = 60;
  ncellz = 60;
  del cellx = abs(max x - min x);
  del_celly = abs(max_y - min_y);
del_cellz = abs(max_z - min_z);
                               ****
%
% Bin the data into ncellx x ncelly x ncellz voxels. All the
% binned data in one voxel will be identified by the center
% of the voxel.
%
%
  [cell_x,dx,cell_y,dy,cell_z,dz,bin_count] = bin3d(ncellx,ncelly,ncellz,x,y,z);
%
% Get indices and center coordinates of the voxels with bin counts > 1.
% Also get the voxel x, y, z center points.
% This is a first step to reducing the phantom pixels.
%
%
  ind = 1;
  for i = 1:ncellx
    for j = 1:ncelly
```

```
for k = 1:ncellz
       if (bin count(i,j,k) > 1)
         nz i bins(ind) = i;
         nz_j_bins(ind) = j;
         nz k bins(ind) = k;
         count(ind) = bin_count(i,j,k);
         ind = ind +1;
       else
         bin_count(i,j,k) = 0;
       end
     end
   end
 end
 lnz = length(nz_i_bins);
 for r = 1:lnz
   nz_i_bins_x(r) = cell_x(nz_i_bins(r));
   nz_j_bins_y(r) = cell_y(nz_j_bins(r));
   nz_k_bins_z(r) = cell_z(nz_k_bins(r));
 end
%
% Compute string lengths up the columns of non-zero bin count voxels.
% The strategy here involves grouping or concatenating voxels together
% so that these groups can be compared against some minimal length related
% to the height of the I-beam.
%
[Max_string_length,Max_L]=get_vertical_string_length(ncellx,ncelly,ncellz,bin_count);
%
% If the max length of nonzero entries in a column is less than a
% specified amount make the column all zero. The product of the maximum
% string length and the voxel height must be less than the minmum depth
% of the I-beams for the column to be zeroed.
%
for i = 1:ncellx
 for i = 1:ncelly
   if (Max_L(i,j)*del_cellz < min_depth)
     bin count(i,j,:) = 0;
   end
 end
end
%
% Recompute max lengths lengths.
%
[Max_string_length,Max_L]=get_vertical_string_length(ncellx,ncelly,ncellz,bin_count);
%
```

[%] At this point we begin the object segmentation algorithm.

```
% The segmentation algorithm works with an associated array called a
% mask array that has the same dimension os the number of voxels along each
% axis. The mask array has entrie of 1 if the associated voxel has data
% points within and 0 otherwise. The use of this mask array and the
% segmentation algorithm are described in the function Segment objects.
%
          ******************
%****
  mask = zeros(ncellx,ncelly,ncellz);
  ind = 1;
  for i = 1:ncellx
    for i = 1:ncelly
      for k = 1:ncellz
        if (bin count(i,j,k) > 0)
           nz i bins new(ind) = i;
           nz j bins new(ind) = j;
           nz k bins new(ind) = k;
           ind = ind +1;
           mask(i,j,k) = 1;
         end
      end
    end
  end
  tot_nz_bins = ind-1;
              ****
%*******
%
% Asociate x, y, z values with these bins
%
Inz1 = length(nz_i_bins_new);
  nz i bins x new = zeros(lnz1);
  nz_j_bins_y_new = zeros(lnz1);
  nz k bins z new = zeros(lnz1);
  for r = 1:lnz1
    nz i bins x new(r) = cell x(nz i bins new(r));
    nz j bins y new(r) = cell y(nz j bins new(r));
    nz k bins z new(r) = cell z(nz k bins new(r));
  end
       ************
%**
%
% This section segments all potential objects. They are segmented using
% the mask array. After all potential objects are found a matrix test is
% performed to determine if an object is a significant 3D object. Any
% objects returned with only 1 (point), 2 (line), or 3 (plane) points will
% be immediately deleted from consideration as legitimate objects. For
% objects with more that 3 points tests have to be performed.
%
%potential object is an array of sructures defined as follow:
%potential object(obj no).size is the number of voxels in the object = count
%potential object(obj no).index(count,1) = ii; i index for current voxel
%potential_object(obj_no).index(count,2) = jj; j index for current voxel
%potential object(obj no).index(count,3) = kk; k index for current voxel
%potential_object(obj_no).coord(count,1) = cell_x(ii); center x for current voxel
%potential_object(obj_no).coord(count,2) = cell_y(jj); center y for current voxel
%potential_object(obj_n0).coord(count,3) = cell_z(kk); ccenter z for current voxel
```

[obj_no,

```
potential object]=Segment objects(Inz1,nz i bins new,nz j bins new,nz k bins new,mask,cell x,cell
v,cell z,ncellx,ncelly,ncellz);
%
% Select objects that have three dimensions to them otherwise the bounding
% boxes are not constructable.
%
[n obj.object]=Object test(obj no.potential object);
%
% Build bounding boxes around objects. Loop over the objects. The algorithm
% here is the same as that used to create bounding boxes around the ideal
% I-beams in the database.
%
for obj = 1:n_obj
    nn = object(obj).size;
    coord = zeros(nn.3);
    x coord = zeros(nn,1);
    y coord = zeros(nn,1);
    z \text{ coord} = zeros(nn, 1);
    coord = object(obj).coord;
    x \text{ coord}(:,1) = \text{coord}(:,1);
    y\_coord(:,1) = coord(:,2);
    z_{coord(:,1)} = coord(:,3);
    [cm,pr ax] = princ axes(nn,x coord,y coord,z coord); %get center of mass and principle axes
    object(obj).ctr_mass.x = cm(1,1);
    object(obj).ctr_mass.y = cm(2,1);
    object(obj).ctr mass.z = cm(3.1):
    object(obj).R.x = pr_ax(1,1);
    object(obj).R.y = pr_ax(2,1);
    obiect(obi).R.z = pr_ax(3,1);
    object(obj).S.x = pr_ax(1,2);
    object(obj).S.y = pr_ax(2,2);
    object(obj).S.z = pr_ax(3,2);
    object(obj).T.x = pr_ax(1,3);
    object(obj).T.y = pr_ax(2,3);
    object(obj).T.z = pr ax(3,3);
    for np = 1:nn %compute inner products of points to determine principle axes extents
      R dot P(np) = object(obj).R.x * x coord(np) + object(obj).R.y * y coord(np)...
         + object(obj).R.z * z_coord(np);
      S_dot_P(np) = object(obj).S.x * x_coord(np) + object(obj).S.y * y_coord(np)...
         + object(obj).S.z * z coord(np);
      T dot P(np) = object(obj).T.x * x coord(np) + object(obj).T.y * y coord(np)...
         + object(obj).T.z * z_coord(np);
    end
    max_R_dot_P = max(R_dot_P); min_R_dot_P = min(R_dot_P);
    max_S_dot_P = max(S_dot_P); min_S_dot_P = min(S_dot_P);
    max_T_dot_P = max(T_dot_P); min_T_dot_P = min(T_dot_P);
```

```
aa = (max_R_dot_P - min_R_dot_P)/2;
  bb = (max_S_dot_P - min_S_dot_P)/2;
  cc = (max T dot P - min T dot P)/2;
% Compute the bounding box center
  object(obj).Q.x = cm(1,1);
  object(obj).Q.y = cm(2,1);
  object(obj).Q.z = cm(3,1);
% Get the eight corners of the box.
  object(obj).corner(1).x = object(obj).Q.x + aa*object(obj).R.x...
     + bb*object(obj).S.x + cc*object(obj).T.x;
  object(obj).corner(1).y = object(obj).Q.y + aa*object(obj).R.y...
     + bb*object(obj).S.y + cc*object(obj).T.y;
  object(obj).corner(1).z = object(obj).Q.z + aa*object(obj).R.z...
     + bb*object(obj).S.z + cc*object(obj).T.z;
  object(obj).corner(2).x = object(obj).Q.x + aa*object(obj).R.x...
     + bb*object(obj).S.x - cc*object(obj).T.x;
  object(obj).corner(2).y = object(obj).Q.y + aa*object(obj).R.y...
     + bb*object(obj).S.y - cc*object(obj).T.y;
  object(obj).corner(2).z = object(obj).Q.z + aa*object(obj).R.z...
     + bb*object(obj).S.z - cc*object(obj).T.z;
  object(obj).corner(3).x = object(obj).Q.x + aa*object(obj).R.x...

    bb*object(obj).S.x + cc*object(obj).T.x;

  object(obj).corner(3).y = object(obj).Q.y + aa*object(obj).R.y...

    bb*object(obj).S.y + cc*object(obj).T.y;

  object(obj).corner(3).z = object(obj).Q.z + aa*object(obj).R.z...

    bb*object(obj).S.z + cc*object(obj).T.z;

  object(obj).corner(4).x = object(obj).Q.x + aa*object(obj).R.x...
     - bb*object(obj).S.x - cc*object(obj).T.x;
  object(obj).corner(4).y = object(obj).Q.y + aa*object(obj).R.y...

    bb*object(obj).S.y - cc*object(obj).T.y;

  object(obj).corner(4).z = object(obj).Q.z + aa*object(obj).R.z...
     - bb*object(obj).S.z - cc*object(obj).T.z;
  object(obj).corner(5).x = object(obj).Q.x - aa*object(obj).R.x...
     + bb*object(obj).S.x + cc*object(obj).T.x;
  object(obj).corner(5).y = object(obj).Q.y - aa*object(obj).R.y...
     + bb*object(obj).S.y + cc*object(obj).T.y;
  object(obj).corner(5).z = object(obj).Q.z - aa*object(obj).R.z...
     + bb*object(obj).S.z + cc*object(obj).T.z;
  object(obj).corner(6).x = object(obj).Q.x - aa*object(obj).R.x...
     + bb*object(obj).S.x - cc*object(obj).T.x;
  object(obj).corner(6).y = object(obj).Q.y - aa*object(obj).R.y...
     + bb*object(obj).S.y - cc*object(obj).T.y;
  object(obj).corner(6).z = object(obj).Q.z - aa*object(obj).R.z...
     + bb*object(obj).S.z - cc*object(obj).T.z;
  object(obj).corner(7).x = object(obj).Q.x - aa*object(obj).R.x...

    bb*object(obj).S.x + cc*object(obj).T.x;

  object(obj).corner(7).y = object(obj).Q.y - aa*object(obj).R.y...
     - bb*object(obj).S.y + cc*object(obj).T.y;
  object(obj).corner(7).z = object(obj).Q.z - aa*object(obj).R.z...

    bb*object(obj).S.z + cc*object(obj).T.z;

  object(obj).corner(8).x = object(obj).Q.x - aa*object(obj).R.x...

    bb*object(obj).S.x - cc*object(obj).T.x;

  object(obj).corner(8).y = object(obj).Q.y - aa*object(obj).R.y...
     - bb*object(obj).S.y - cc*object(obj).T.y;
  object(obj).corner(8).z = object(obj).Q.z - aa*object(obj).R.z...

    bb*object(obj).S.z - cc*object(obj).T.z;
```

end %** % % Now compare the bounding boxes of the true objects with the % ideal bounding boxes of the database I-beams. The outer loop indexes % the ideal I-beam models. % for i = 1:no_beams for $obj = 1:n_obj$ %Next find the rotation that aligns the principal axes %of the model I beam box with the object box cc1 = zeros(9,1);%set up the right hand side of the object eigenvectors cc1(1,1) = object(obj).R.x;cc1(2,1) = object(obj).R.y;cc1(3,1) = object(obj).R.z;cc1(4,1) = object(obj).S.x;cc1(5,1) = object(obj).S.y;cc1(6,1) = object(obj).S.z;cc1(7,1) = object(obj).T.x;cc1(8,1) = object(obj).T.y;cc1(9,1) = object(obj).T.z;%set up the 9 x 9 matrix of model eigenvectors AA = zeros(9,9): $AA(1,1) = I_beam(i).R.x;$ AA(1,2) = I beam(i).R.y;AA(1,3) = I beam(i).R.z; $AA(2,4) = I_beam(i).R.x;$ AA(2,5) = I beam(i).R.y; $AA(2,6) = I_beam(i).R.z;$ $AA(3,7) = I_beam(i).R.x;$ AA(3,8) = I beam(i).R.y;AA(3,9) = I beam(i).R.z;AA(4,1) = I beam(i).S.x; AA(4,2) = I beam(i).S.y; $AA(4,3) = I_beam(i).S.z;$ $AA(5,4) = I_beam(i).S.x;$ AA(5,5) = I beam(i).S.y; $AA(5,6) = I_beam(i).S.z;$ $AA(6,7) = I_beam(i).S.x;$ $AA(6,8) = I_beam(i).S.y;$ $AA(6,9) = I_beam(i).S.z;$ $AA(7,1) = I_beam(i).T.x;$ AA(7,2) = I beam(i).T.y; AA(7,3) = I beam(i).T.z;AA(8,4) = I beam(i).T.x;AA(8,5) = I beam(i).T.y; $AA(8,6) = I_beam(i).T.z;$ AA(9,7) = I beam(i).T.x; $AA(9,8) = I_beam(i).T.y;$ $AA(9,9) = I_beam(i).T.z;$ %solve least squares for the rotation matrix rt = zeros(9,1);Rot = zeros(3,3);rt = AA cc1;

```
%Make the rotation matrix a 2D array
       for ii = 1:3
          for jj = 1:3
            kk = (ii-1)^*3 + jj;
             Rot(ii,jj) = rt(kk,1);
          end
       end
       % Apply the translation and rotation to the model data with a homogeneous
       %transformation
       T(1,1) = object(obj).ctr_mass.x;
       T(2,1) = object(obj).ctr_mass.y;
       T(3,1) = object(obj).ctr mass.z;
       %Set up homogeneous transformation
       H = zeros(4,4);
       for ii = 1:3
          for ii = 1:3
             H(ii,jj) = Rot(ii,jj);
          end
        end
       H(1,4) = T(1,1);
       H(2,4) = T(2,1);
       H(3,4) = T(3,1);
       H(4,4) = 1.0;
       %Rotate and translate the bounding box for each beam model
       %Compute the sum of squares differences between the true object
       %and the beam
       error = 0:
       for v = 1:8
          mpt(1,1) = I\_beam(i).corner(v).x1;
          mpt(2,1) = I beam(i).corner(v).y1;
          mpt(3,1) = I\_beam(i).corner(v).z1;
          mpt(4,1) = 1.0;
          trmpt = H*mpt; %apply homogeneous transformation
          L_beam(i).corner(v).trrot(obj,1).x2 = trmpt(1,1);
          L_beam(i).corner(v).trrot(obj,1).y2 = trmpt(2,1);
          L beam(i).corner(v).trrot(obj,1).z2 = trmpt(3,1);
          error = error + (object(obj).corner(v).x -...
            I_beam(i).corner(v).trrot(obj,1).x2)^2 + (object(obj).corner(v).y -...
            1 beam(i).corner(v).trrot(obj,1).v2)^2 + (object(obj).corner(v).z -...
            I_beam(i).corner(v).trrot(obj,1).z2)^2;
          comparison_error(i,obj) = sqrt(error);
       end
     end
  end
%first of all find the true object and I-beam model that produces the
%minimum error. Initialize min error to a large number
  min error = 1e+10;
  for i = 1:no beams
     for obj = 1:n obj
       disp(sprintf(beam = \% d obj = \% d comp err = \% n', i, obj, comparison error(i, obj)));
       if (comparison error(i,obj) < min error)
          min_error = comparison_error(i,obj);
          i min = i;
          obj_min = obj;
       end
     end
```

end i min obj min I beam(i_min).name ****** % Compute the pose angle of the object relative to the scanner %** pose_angle = zeros(n_obj,1); pose_angle(obj_min) = (180/pi)* atan(object(obj_min).R.y/object(obj_min).R.x); if $(pose_angle(obj_min) < 0)$ pose_angle(obj_min) = 180 + pose_angle(obj_min); end %*** % Section to compare bounding box points with reference points % Reading the sms measurements for the four top flange corners % sms point a = bounding box corner 5 % sms point b = bounding box corner 6 % sms point c = bounding box corner 1 % sms point d = bounding box corner 2 %******** % Getting table entry for sms point a (bounding box corner 5) $if((ladar_file(1) == A') \& (ladar_file(2) == 0'))$ entry = 1; elseif((ladar file(1) =='A') & (ladar file(2) == '3') & (ladar file(3) == '0')) entry = 5: elseif((ladar file(1) == A') & (ladar file(2) == A') & (ladar file(3) == S'))entrv = 9: $elseif((ladar_file(1) == A') \& (ladar_file(2) == b') \& (ladar_file(3) == b'))$ entry = 13; elseif((ladar_file(1) == 'A') & (ladar_file(2) == '9') & (ladar_file(3) == '0')) entry = 17; $elseif((ladar_file(1) == B')\& (ladar_file(2) == 0'))$ entry = 21; elseif((ladar_file(1) == 'B') & (ladar_file(2) == '3') & (ladar_file(3) == '0')) entrv = 25: elseif((ladar file(1) == B') & (ladar file(2) == 4') & (ladar file(3) == 5'))entry = 29: elseif((ladar file(1) == B') & (ladar file(2) == 6') & (ladar file(3) == 0'))entry = 33; elseif((ladar_file(1) == 'B') & (ladar_file(2) == '9') & (ladar_file(3) == '0')) entry = 37: end %** % % Put sms points into scanner frame for comparison. File name provides the % entry point into the sms corner measurement file. % At this point we need to determine which points to compare % The four sms points are defined as a, b, c, and d. The four top bounding % box points are 1,2, 5, and 6. We either (1) compare a to 1, b to 2, c to 5, % and d to 6 or (2) we compare a to 5, b to 6, c to 1, and d to 2 % To determine which set of comparisons to make we will generate two unit % vectors, one between sms points c to a and one from bounding box point 5 % to 1. We then take the inner product. If it is negative then we do % comparison (2) otherwise (1). %

```
scanner pt = zeros(3,1);
sms pt = zeros(3.1):
ca = [sms_x(entry, 1) - sms_x(entry+2, 1); sms_y(entry, 1) - sms_y(entry+2, 1)];
normca = norm(ca);
cau = ca/normca;
v51 = [l_beam(i_min).corner(1).trrot(obj_min,1).x2-
I_beam(i_min).corner(5).trrot(obj_min,1).x2;I_beam(i_min).corner(1).trrot(obj_min,1).y2-
L_beam(i_min).corner(5).trrot(obj_min,1).y2];
norm51 = norm(v51);
v51u = v51/norm51;
inner prod = cau(1)*v51u(1) + cau(2)*v51u(2);
if (inner prod < 0)
  index(1) = 5;
  index(2) = 6;
  index(3) = 1;
  index(4) = 2;
else
  index(1) = 1;
  index(2) = 2;
  index(3) = 5;
  index(4) = 6;
end
%generate a line of blank cells
% sms point a to scanner point index(1) comparison. First transform to scanner frame.
sms pt(1,1) = sms x(entry,1);
sms pt(2,1) = sms y(entry,1);
sms_pt(3,1) = sms_z(entry,1);
scanner pt = Transform^*(sms pt - cg) + cf;
error_x = scanner_pt(1,1) - I_beam(i_min).corner(index(1)).trrot(obj_min,1).x2;
error_y = scanner_pt(2,1) - I_beam(i_min).corner(index(1)).trrot(obj_min,1).y2;
error z = scanner pt(3,1) - I beam(i min).corner(index(1)).trrot(obj min,1).z2;
fprintf(fid3,'%s, %s, %f, %f, %f, %f, %f, %f, %s, %f, %f, %f, %d, %f, %f, %f, %f, %f, %f, %f, n',...
ladar file.I beam(i min).name,comparison_error(i_min,obj_min),object(obj_min).ctr_mass.x,object(obj_m
in).ctr mass.y,...
```

```
object(obj_min).ctr_mass.z,pose_angle(obj_min),'a',scanner_pt(1,1),scanner_pt(2,1),scanner_pt(3,1),inde x(1),...
```

L_beam(i_min).corner(index(1)).trrot(obj_min,1).x2,L_beam(i_min).corner(index(1)).trrot(obj_min,1).y2,... L_beam(i_min).corner(index(1)).trrot(obj_min,1).z2,error_x,error_y,error_z);

ladar_file,I_beam(i_min).name,comparison_error(i_min,obj_min),object(obj_min).ctr_mass.x,object(obj_m in).ctr_mass.y,...

object(obj_min).ctr_mass.z,pose_angle(obj_min),'b',scanner_pt(1,1),scanner_pt(2,1),scanner_pt(3,1),inde x(2),...

ladar_file,l_beam(i_min).name,comparison_error(i_min,obj_min),object(obj_min).ctr_mass.x,object(obj_m in).ctr_mass.y,...

object(obj_min).ctr_mass.z,pose_angle(obj_min),'c',scanner_pt(1,1),scanner_pt(2,1),scanner_pt(3,1),inde x(3),...

ladar_file,l_beam(i_min).name,comparison_error(i_min,obj_min),object(obj_min).ctr_mass.x,object(obj_m in).ctr_mass.y,...

object(obj_min).ctr_mass.z,pose_angle(obj_min),'d',scanner_pt(1,1),scanner_pt(2,1),scanner_pt(3,1),inde x(4),...

L_beam(i_min).corner(index(4)).trrot(obj_min,1).x2,L_beam(i_min).corner(index(4)).trrot(obj_min,1).y2,... L_beam(i_min).corner(index(4)).trrot(obj_min,1).z2,error_x,error_y,error_z);

end fclose(fid1); fclose(fid3); % End the main segmentation algorithm by binning

A.1.1.2 BIN3D SCRIPT

function [cell_x,dx,cell_y,dy,cell_z,dz,bin_count] = bin3d(ncellx,ncelly,ncellz,x,y,z) %BIN3D - bins a set of x, y, z points into a 3d cellarray of siz ncellx x

%ncelly x ncellz. The algorithm proceeds by getting the integer indices of %the 3d voxel to which each point belongs. It then conts numbers of index %matches. The function also returns the center coordinates of each of the %voxels in cell_x, cell_y, cellz.

```
%Initialize arrays
Npts = length(x);
Ix = zeros(Npts, 1);
Iy = zeros(Npts, 1);
Iz = zeros(Npts, 1);
bin_count=zeros(ncellx,ncelly,ncellz);
%get voxel dimensions
maxx=max(x);minx=min(x);
maxy=max(y);miny=min(y);
maxz=max(z);minz=min(z);
dx = (maxx - minx)/ncellx;
dy = (maxy - miny)/ncelly;
dz = (maxz - minz)/ncellz;
%get vectors of cell indices
%fix up boundary cells
for r = 1:Npts
  Ix(r) = fix((x(r)-minx)/dx)+1;
  if (lx(r)==(ncelly+1))
           Ix(r) = ncellx;
  end
  ly(r) = fix((y(r)-miny)/dy)+1;
  if (ly(r) = (ncelly+1))
          ly(r) = ncelly;
  end
  Iz(r) = fix((z(r)-minz)/dz)+1;
  if (Iz(r)==(ncellz+1))
           Iz(r) = ncellz;
  end
end
%Get the bin counts by finding matches, counting them, and deleting them
%from the indes lists
remainpts = Npts;
while 0<remainpts
        %begins with current first pt. in each array.
        Inx = Ix(1);
  lny = ly(1);
  \ln z = lz(1);
        k = find((Ix==Inx)\&(Iy==Iny)\&(Iz==Inz));
        lgthk = length(k);
        bin count(Inx,Iny,Inz) = Igthk;
        %eliminate already counted elements
        Ix(k) = [];
        ly(k) = [];
        Iz(k) = [];
        %compute remaining points in these arrays
        remainpts = remainpts - lgthk;
        %go back with reduced arrays
```

end

```
%compute voxel center coordinates
cell x = zeros(ncellx, 1);
cell_y = zeros(ncelly, 1);
cell z = zeros(ncellz, 1);
cell_x(1) = minx + dx/2;
for i = 2:ncellx
  cell_x(i) = cell_x(i-1) + dx;
end
cell_y(1) = miny + dy/2;
for i = 2:ncelly
  cell y(i) = cell y(i-1) + dy;
end
cell_z(1) = minz + dz/2;
for i = 2:ncellz
  cell_z(i) = cell_z(i-1) + dz;
end
```

A.1.1.3 PRINC_AXES SCRIPT

function [cm,p_axis] = princ_axes(n,x,y,z)
%PRINC_AXES - This function produces the principal axes of a set of n points
%given as x, y, z vectors. The method used is principal components
%analysis. The method is given in the text
%
% E. Lengyel, "Mathematics for 3D Game Programming & Computer Graphics",

% Charles River Media, Inc. Hingham, Massachusetts, 2001 %

%The function returns the center of mass in the vector cm, where the first %component is the x component, the second the y and the third the z. The %3 x 3 array p_axis has the principal axis vectors arranged so that the %first column is the first principal axis (longest dimension of a bounding %box), the other two columns have the other axes directions in descending %order of eigenvalues.

%First, compute the center of mass sx = 0; sy = 0; sz = 0;

n = length(x): for r = 1:nsx = sx + x(r, 1);sy = sy + y(r, 1);sz = sz + z(r,1);end cm = zeros(3,1);cm(1,1) = sx/n;cm(2,1) = sy/n;cm(3,1) = sz/n;%Form the Covariance Matrix cv = zeros(3,3);for r = 1:na(1,1) = x(r,1) - cm(1,1);a(2,1) = y(r,1) - cm(2,1);a(3,1) = z(r,1) - cm(3,1);

```
av = [a(1,1);a(2,1);a(3,1)];
cv = cv + av*av';
end
cv = cv/n;
```

%The principal axes are associated with the eigenvectors of the %covariance matrix, which is real symmetric in this case. %The eigenvalues are real and in general distinct. The function %eig returns a diagonal matrix eig_val of eigenvalues and a %matrix of eigenvectors associated with the eigenvalues.

[eig_vect,eig_val] = eig(cv);

%In the current case eig_val is a 3 x 3 diagonal matrix and %eig_vect is a 3 x 3 matrix with each column an eigenvector %associated with the appropriate eigenvalue in eig_val. The eigenvectors %are normalized to 1 in the Euclidean norm. The eigenvectors are the %principal axis directions ordered by the eigenvalues. That is, the first %principal axis is associated with the largest eigenvalue, etc. To return %the eigenvectors in the order of the principal axes we sort the %eigenvalues using sort which produces an ascending order sort. We have to %reverse the associated eigenvectors on return.

eg = [eig_val(1,1);eig_val(2,2);eig_val(3,3)]; [eigv,I] = sort(eg);

%This produces eigv(I(1)) < eigv(I(2)) < eigv(I(3)) %The associated eigenvectors are eig_vect(:,I(1)), etc. Return the %eigenvectors in a matrix in reverse order.

p_axis = zeros(3,3); p_axis(:,1) = eig_vect(:,I(3)); p_axis(:,2) = eig_vect(:,I(2)); p_axis(:,3) = eig_vect(:,I(1));

A.1.1.4 GET_VERTICAL_STRING_LENGTH.M

```
function [Max string length.Max L]=get vertical string length(ncellx.ncelly.ncellz.bin count)
%GET VERTICAL STRING LENGTH - A vertical string of voxels is defined to be
%those voxels with non-zero bin count that are direct neighbors of each
%other. This function finds the maximum string lengths in each column of
%voxels as well as the overall maximum string length.
Max_L = zeros(ncellx,ncelly);
for i = 1:ncellx
  for j = 1:ncelly
     buf = zeros(ncellz, 1);
     for k = 1:ncellz
       if (bin count(i,j,k) > 0)
       buf(k) = 1;
       end
     end
     max_length = 0;
     string_length = 0:
     for k = 1:ncellz
```

```
if (buf(k) == 1)
    string_length = string_length + 1;
    if (string_length >= max_length)
        max_length = string_length;
    end
    else
        string_length = 0;
    end
    Max_L(i,j) = max_length;
    end
end
Max string_length = max(max(Max_L));
```

A.1.1.5 SEGMENT_OBJECTS.M

function [obj_no,

```
object]=Segment objects(Inz1,nz i bins new,nz j bins new,nz k bins new,mask,cell x,cell y,cell z,n
cellx,ncelly,ncellz)
                   ***********
%**************
%Here we segment the objects in the filtered image and put bounding
%boxes around them. We will compare the box sizes against the I-beam
%specifications
%
%The basic idea of the object segmentation algorithm is to accumulate
%neighboring voxels into an object structure. The technique involves
%zeroing out the mask array for every neighboring point that is found
% and put on a stack. When there are no more nonzero neighboring mask
%elements to be zeroed out the stack is unloaded into an object structure.
%The algorithm then goes to the next object.
%
%Functions called: push, pop
%
%Ref: Nikolaidis, N., Pita, I., 3-D Image Processing Algorithms, John Wiley
% & Sons. Inc., New York, 2001.
%
    %*
%Initialize the stack
stack(1).i(1,1) = 0;
stack(1).j(1,1) = 0;
stack(1).k(1,1) = 0;
stack(1).x(1,1) = 0.0;
stack(1).y(1,1) = 0.0;
stack(1).z(1,1) = 0.0;
obj_no = 0; %Initialize the object number
for nz vox = 1:\ln z1
  ii = nz i bins new(nz vox);
  ij = nz j bins new(nz vox);
  kk = nz k bins new(nz vox);
  if(mask(ii,jj,kk) > 0) %find the next voxel with non-zero mask value
    obj_no = obj_no + 1; %Create a new object
    mask(ii,jj,kk) = 0; %Zero out the current object seed point
    object(obj_no).size = 1; %Initialize the object structure
    object(obj_no).index(1,1) = ii;
```

```
object(obj_no).index(1,2) = jj;
object(obj no).index(1,3) = kk;
object(obj no).coord(1,1) = cell x(ii);
object(obj_no).coord(1,2) = cell_y(jj);
object(obj no).coord(1,3) = cell z(kk);
cur stack top = 0; %Set the current stack top and push the first element onto the stack
[new_stack_top,stack] = push(ii,jj,kk,cell_x(ii),cell_y(jj),cell_z(kk),cur_stack_top,stack);
cur_stack_top = new_stack_top; %Update the stack top pointer
first step = 1;
%step into a loop that builds the object from neighborhood voxels
%by expanded search using a LIFO stack to store voxel hits
while (cur stack top > 0)
  new stack top = pop(cur stack top);
  if (first step > 0)
     object(obj no).size = 1;
     count = 1; %This counts number of voxels in object
     first step = 0:
  else
     object(obj_no).size = object(obj_no).size + 1;
     count = count + 1;
  end
  %unroll the stack and put them into the object
  i_cur = stack(cur_stack_top).i(1,1);
  object(obj no).index(count,1) = i cur;
  i cur = stack(cur_stack_top).j(1,1);
  object(obj_no).index(count,2) = j_cur;
  k cur = stack(cur stack top).k(1,1);
  object(obj no).index(count.3) = k cur;
  object(obj_no).coord(count,1) = stack(cur_stack_top).x(1,1);
  object(obj no).coord(count,2) = stack(cur stack top).y(1,1);
  object(obj_no).coord(count,3) = stack(cur_stack_top).z(1,1);
  cur_stack_top = new_stack_top;
  %put neighbor nonzero voxels onto the stack
  for p = -1:1
     for q = -1:1
       for r = -1:1
          if((p~=0)|(q~=0)|(r~=0)) %skip center it has been stored above
            f = i_cur + p;
            q = i cur + q;
            h = k cur + r;
            if ((f<1)|(f>ncellx)|(g<1)|(g>ncelly)|(h<1)|(h>ncellz))
               continue:
            else
               if (mask(f,g,h) > 0) %push nonzero neighbors onto the stack
                 mask(f,g,h) = 0;
                 fx = cell x(f);
                 gy = cell_y(g);
                 hz = cell z(h):
                 [new stack top,stack] = push(f,g,h,fx,gy,hz,cur stack top,stack);
                 cur stack top = new stack top;
               end %end if
            end %end if else
          end %end if
       end %end for r
     end %end for q
  end %end for p
```

end %end while end %end if end %end for nz_vox

A.1.1.6 OBJECT_TEST.M

function [true obj no, true object]=Object test(obj no,object) %OBJECT TEST - True objects in a scanned scene are assumed to have % three dimensions. This function extracts from the % array of potential objects those that have a three dimensional structure of voxels. % % %%Object is an array of sructures defined as follow: %object(obj no).size is the number of voxels in the object = count %object(obj no).index(count,1) = ii; i index for current voxel %object(obj_no).index(count,2) = jj; j index for current voxel %object(obj_no).index(count,3) = kk; k index for current voxel %object(obj no).coord(count,1) = cell x(ii); center x for current voxel %object(obj_no).coord(count,2) = cell_y(jj); center y for current voxel %object(obj_n0).coord(count,3) = cell_z(kk); ccenter z for current voxel % %obj_no is the number of potential objects % % % % In this function we will use the object indices as surrogate coordinates % The algorithm will proceed as follows: % For each object we test object(obj).size. If object(obj).size = 1,2,or 3 % we proceed to the next object in the list since these could be at most % a point, a line, and a plane. For an object with 4 points we generate the % matrix test mat = [i1 j1 k1 1;i2 j2 k2 1;i3 j3 k3 1;i4 j4 k4 1] and % compute the condition number cond(test mat). If cond(test mat) < 1/eps % then the points form a three dimensional object. If not the points % can form at most a plane. If there are more than 4 points then we proceed % as follows: We begin building the test mat by setting i1 j1 k1 as the % first triple ii ji kk for the object, then set i2 j2 k2 as the second % triple for the object. This produces a line. In order to produce a plane % we need to find a non-collinear point. This can be done by examining inner % products. Once a non-collinear point is found we have i3 j3 k3 and we % test the condition of test mat = [i1 j1 k1 1; i2 j2 k2 1; i3 j3 k3 1; ii j]% kk 1] for each ii jj kk triple after i3 j3 k3 is found. If the condition % test passes then this object is three dimensional and can be identified % as a true object. % % This function also includes a fall through in case there are no identifiable three % dimensional objects % %* % true_obj_no = 0; for obj = 1:obj no object_size = object(obj).size; if (object_size > 3)

```
if (object_size == 4)
  for r = 1:4
     ii(r) = object(obj).index(r, 1);
     jj(r) = object(obj).index(r,2);
     kk(r) = object(obj).index(r.3);
  end % for r = 1:4
  test_mat = [ii(1) jj(1) kk(1) 1;ii(2) jj(2) kk(2) 1;...
        ii(3) jj(3) kk(3) 1;ii(4) jj(4) kk(4) 1];
  if (cond(test_mat) < (1/eps))
     true_obj_no = true_obj_no + 1;
     true_object(true_obj_no).size = 4;
       for rr = 1:4
          true object(true obj no).index(rr, 1) = object(obj).index(rr, 1);
          true_object(true_obj_no).index(rr,2) = object(obj).index(rr,2);
          true object(true obj no).index(rr,3) = object(obj).index(rr,3);
          true object(true obj no).coord(rr,1) = object(obj).coord(rr,1);
          true object(true obj no).coord(rr,2) = object(obj).coord(rr,2);
          true object(true obj no).coord(rr,3) = object(obj).coord(rr,3);
        end % for rr = 1:4
  end %if (cond(test_mat) < (1/eps))
else %object size > 4
  for r = 1:2
     ii(r) = object(obj).index(r, 1);
     jj(r) = object(obj).index(r,2);
     kk(r) = object(obj).index(r.3);
  end % for r = 1:2
  % Form the unit vector from point 1 to 2
  v = [ii(2)-ii(1);jj(2)-jj(1);kk(2)-kk(1)];
  v = v/norm(v);
  % Find a non-collinear point and test other points for
  % non-coplanarity
  found3 = 0;
  found4 = 0;
  for r = 3:object size
     if (((found3 == 0)&(found4 == 0)) | ((found3 == 1)&(found4 == 0)))
        ii(r) = object(obj).index(r,1):
       jj(r) = object(obj).index(r,2);
       kk(r) = object(obj).index(r,3);
       if (found3 == 0)
          % Form a unit vector between point r and 1
          p = [ii(r)-ii(1);ij(r)-ij(1);kk(r)-kk(1)];
          p = p/norm(p);
          % Form the inner product and test whether its absolute
          % value is near 1, i.e collinear
          v dot p = v(1)*p(1) + v(2)*p(2) + v(3)*p(3);
          if (abs(abs(v dot p)-1) > 10^{(-8)})
             ii(3) = object(obj).index(r,1);
             jj(3) = object(obj).index(r,2);
             kk(3) = object(obj).index(r,3);
             found3 = 1;
          end %if (abs(abs(v_dot_p)-1) > 10^(-8))
          if (found3 == 1)
             continue:
          end % if (found 3 == 1)
       else
          % Form test matrix and check condition
```

```
test_mat = [ii(1) jj(1) kk(1) 1; ii(2) jj(2) kk(2) 1;...
                     ii(3) jj(3) kk(3) 1; ii(r) jj(r) kk(r) 1];
               if (cond(test mat) < (1/eps))
                  % Increment the true object number and add to
                  % the new structure
                  true obj no = true obj no + 1;
                  true_object(true_obj_no).size = object(obj).size;
                  for rr = 1:true object(true obj no).size
                     true_object(true_obj_no).index(rr,1) = object(obj).index(rr,1);
                     true_object(true_obj_no).index(rr,2) = object(obj).index(rr,2);
                     true_object(true_obj_no).index(rr,3) = object(obj).index(rr,3);
                     true object(true obj no).coord(rr,1) = object(obj).coord(rr,1);
                     true object(true obj no).coord(rr,2) = object(obj).coord(rr,2);
                     true object(true obj no).coord(rr,3) = object(obj).coord(rr,3);
                  end %for rr = 1:true object(true obj no).size
                     found4 = 1:
               end % if (cond(test mat) < (1/eps))
             end % if (found 3 == 0)
          elseif ((found3 == 1)&(found4 == 1))
             break:
          end %if (((found3 == 0)&(found4 == 0)) | ((found3 == 1)&(found4 == 0)))
       end % for r = 3: object size
     end %if (object_size == 4)
  end % if ( object size > 3)
end % for obj = 1:obj no
if (true_obj_no == 0) % if there are no identifiable 3D objects then pass back the input params
  true obj no = obj no;
  for obj = 1:obj no
  true_object(obj).size = object(obj).size;
     for rr = 1:true object(obj).size
       true_object(obj).index(rr,1) = object(obj).index(rr,1);
       true_object(obj).index(rr,2) = object(obj).index(rr,2);
       true object(obj).index(rr,3) = object(obj).index(rr,3);
       true object(obj).coord(rr,1) = object(obj).coord(rr,1);
       true object(obj).coord(rr,2) = object(obj).coord(rr,2);
       true object(obj).coord(rr.3) = object(obj).coord(rr.3):
     end % for rr = 1:true object(obj).size
  end
```

```
end
```

A.1.1.7 PUSH.M

```
function [new_stack_top, stack] = push(ii,jj,kk,xx,yy,zz,cur_stack_top,stack)
%PUSH - pushes voxel identification onto the stack
m = cur_stack_top;
m = m+1;
stack(m).i(1,1) = ii;
stack(m).j(1,1) = jj;
stack(m).k(1,1) = kk;
stack(m).k(1,1) = kk;
stack(m).x(1,1) = xx;
stack(m).y(1,1) = yy;
stack(m).z(1,1) = zz;
new_stack_top = m;
```

A.1.1.8 POP.M

```
function new_stack_top = pop(cur_stack_top)
%POP - pop an element off the stack
new_stack_top = cur_stack_top - 1;
```

A.1.2 Object Identification by TINs Scripts

The script included here assumes that there is an input file of data points associated with predefined potential objects. The data points associated with potential objects are separated in the file by a row of 9's. The current script is essentially a copy of the main script for binning segmentation but eliminates the portion of that script involved with potential object segmentation.

```
clear all;
%Open file for Excel comma separated output
fid3 = fopen('All seg output.txt','w');
% set up header lines
fprintf(fid3, 'File, I-Beam, 8 Point, Location, of, CM, Pose from, Site,,
Metrology, System, ,Bounding, Box, , ,Error\n');
fprintf(fid3,'Name, Selected, Error, x,y,z, neg x axis
(deg),Point,x,y,z,Point,x,y,z,dx,dy,dz\n');
% SMS to scanner coordinate transformation based on reference sphere
% centers
% Transformation is given by:
% Scanner_coord = Transform*(sms_coord - cg) + cf
% Transformation is not restricted to rotation
cg = [10.13450; -2.051750; -0.3965000];
cf = [-2.655250; 4.259250; -0.2567500];
Transform = [0.4362677 0.8998131 0.0026162; -0.8998142 0.4362716 -0.0011596;
-0.0021848 -0.0018482 0.9999958];
% Read in the database of I-beams and generate points
beam_database = 'I_beam_database.txt';
%Database values defined in inches
fid_db = fopen(beam_database,'r');
no_beams = fscanf(fid_db,'%d',1);
cv_ib = zeros(3,3);
%Create points that define the I-beams with the zero located at the center
%of mass, convert to meters by multiplying by 0.0254 in/m
for i = 1:no_beams
   I beam(i,1).name = fscanf(fid db,'%s',1);
   I beam(i,1).length = fscanf(fid db,'%f',1);
   I_beam(i,1).depth = fscanf(fid_db,'%f',1);
   I beam(i,1).flange width = fscanf(fid db,'%f',1);
   I_beam(i,1).flange_thick = fscanf(fid_db,'%f',1);
   I_beam(i,1).web_thick = fscanf(fid_db,'%f',1);
   I_beam(i,1).web_height = I_beam(i,1).depth - 2*I_beam(i,1).flange_thick;
   I_beam(i,1).x(1,1) = 0.5*I_beam(i,1).flange_width;
```

I_beam(i,1).y(1,1)	=	0.5*I_beam(i,1).length;
$I_beam(i,1).z(1,1)$	=	-0.5*I_beam(i,1).depth;
$I_beam(i,1).x(2,1)$	=	-0.5*I_beam(i,1).flange_width;
$I_beam(i,1).y(2,1)$	=	0.5*I_beam(i,1).length;
I = beam(i,1).z(2,1)	=	-0.5*I beam(i,1).depth;
I beam(i,1).x(3,1)	=	0.5*I beam(i,1),flange width;
T beam(1,1) v(3,1)	=	0 5*T beam(i,1) length;
$T_{\text{beam}(i,1)} = 7(3,1)$	-	-0.5*T beam(i 1) web height:
1_0	_	$-0.5 \times I$ beam(i, 1) flange width:
$1_0 = 0 = 0 = 0 = 0$	_	$0.51_beam(1,1).11ange_widen(1,1)$
$1_beam(1,1).y(4,1)$	=	0.5"1_Deam(1,1).1ength,
$1_beam(1,1).z(4,1)$	=	-0.5^1_beam(1,1).web_neight;
$1_beam(1,1).x(5,1)$	=	0.5*1_beam(1,1).web_thick;
$I_{beam(1,1)}.y(5,1)$	=	0.5*1_beam(1,1).length;
$I_{beam(1,1).z(5,1)}$	=	-0.5*I_beam(1,1).web_height;
$I_beam(1,1).x(6,1)$	=	-0.5*I_beam(i,1).web_thick;
$I_beam(i,1).y(6,1)$	=	0.5*I_beam(i,1).length;
$I_beam(i,1).z(6,1)$	=	-0.5*I_beam(i,1).web_height;
$I_beam(i,1).x(7,1)$	=	0.5*I_beam(i,1).web_thick;
$I_beam(i,1).y(7,1)$	=	0.5*I_beam(i,1).length;
$I_beam(i,1).z(7,1)$	=	0.5*I_beam(i,1).web_height;
$I_beam(i,1).x(8,1)$	=	-0.5*I_beam(i,1).web_thick;
<pre>I_beam(i,1).y(8,1)</pre>	=	0.5*I_beam(i,1).length;
<pre>I_beam(i,1).z(8,1)</pre>	=	0.5*I_beam(i,1).web_height;
$I_beam(i,1).x(9,1)$	=	0.5*I_beam(i,1).flange_width;
<pre>I_beam(i,1).y(9,1)</pre>	=	0.5*I_beam(i,1).length;
I beam(i,1).z(9,1)	=	0.5*I beam(i,1).web height;
<pre>I beam(i,1).x(10,1</pre>	_) =	= -0.5*I beam(i,1).flange width;
<pre>I beam(i,1).y(10,1</pre>	_) =	= $0.5*I$ beam(i,1).length;
I beam(i,1).z(10,1	_) =	= 0.5*I beam(i,1).web height;
I beam(i,1).x(11,1	_) =	= 0.5*I beam(i,1).flange width;
$I = beam(i, 1) \cdot y(11, 1)$	_) =	= 0.5*I beam(i,1).length;
$I = beam(i, 1) \cdot z(11, 1)$) =	= $0.5 \times I$ beam(i,1).depth;
$I \text{ beam}(i, 1) \cdot x(12, 1)$) =	= -0.5*I beam(i,1).flange width;
$I \text{ beam}(i, 1) \cdot v(12, 1)$) =	= 0.5*I beam(i,1).length;
T beam(i 1) z(12)) =	= 0.5*T beam(i 1) depth;
$T_{\text{beam}(i,1)} \times (13,1)$) =	= 0.5×1 beam(1,1) flange width;
$T_{\text{beam}(i,1)} \times (13,1)$) =	$= -0.5 \times T \text{ beam(i,1) length:}$
$T_{point} = 0.000 \text{ m}(1, 1) \text{ m}(13, 1)$	- / -	0.5*I beam(1,1) depth:
$1_0 = 0$	- / -	$= 0.5 \text{ I}_{\text{beam}(1,1)} \cdot \text{depend}$
$1_{\text{Deam}(1,1)}$	- / -	$- 0.51_\text{beam}(1,1).11amge_widdin- 0.5*T_beam(1,1)_length:$
$1_{\text{Deam}(1,1)}$, $y(14,1)$	- / -	$= 0.5 \text{ L} \text{ Deam}(1,1) \cdot \text{Lengen}(1,1)$
$1_{\text{Deam}(1,1)}$	- / -	- 0 5*I boom(i 1) flongo width:
$1_{\text{Deam}(1,1)} \times (15,1)$	_) =	= 0.5 "
$1_{\text{Deam}(1,1)}$, $y(15,1)$	_) =	= -0.5^1_beam(1,1).length;
$1_beam(1,1).z(15,1)$	_) =	= -0.5*1_beam(1,1).web_neight;
$1_beam(1,1).x(16,1)$	_) =	= -0.5*1_beam(1,1).flange_width;
$I_beam(1,1).y(16,1)$	_) =	= -0.5*I_beam(1,1).length;
$I_beam(i,1).z(16,1)$	_) =	= -0.5*I_beam(i,1).web_height;
$I_beam(i,1).x(17,1)$	_) =	= 0.5*I_beam(i,1).web_thick;
$I_beam(i,1).y(17,1)$	_) =	= -0.5*I_beam(i,1).length;
$I_beam(i,1).z(17,1)$	_) =	= -0.5*I_beam(i,1).web_height;
$I_beam(i,1).x(18,1)$	_) =	= -0.5*I_beam(i,1).web_thick;
I_beam(i,1).y(18,1	_) =	= -0.5*I_beam(i,1).length;
$I_beam(i,1).z(18,1)$	_) =	= -0.5*I_beam(i,1).web_height;
$I_beam(i,1).x(19,1)$	_) =	= 0.5*I_beam(i,1).web_thick;
<pre>I_beam(i,1).y(19,1</pre>	_) =	= -0.5*I_beam(i,1).length;
$I_beam(i,1).z(19,1)$	_) =	= 0.5*I_beam(i,1).web_height;
<pre>I_beam(i,1).x(20,1</pre>	_) =	<pre>= -0.5*I_beam(i,1).web_thick;</pre>

```
I_beam(i,1).y(20,1) = -0.5*I_beam(i,1).length;
    I_beam(i,1).z(20,1) = 0.5*I_beam(i,1).web_height;
    I_beam(i,1).x(21,1) = 0.5*I_beam(i,1).flange_width;
    I_beam(i,1).y(21,1) = -0.5*I_beam(i,1).length;
    I_beam(i,1).z(21,1) = 0.5*I_beam(i,1).web_height;
    I beam(i,1).x(22,1) = -0.5*I beam(i,1).flange width;
    I beam(i,1).y(22,1) = -0.5*I beam(i,1).length;
    I_beam(i,1).z(22,1) = 0.5*I_beam(i,1).web_height;
    I_beam(i,1).x(23,1) = 0.5*I_beam(i,1).flange_width;
    I_beam(i,1).y(23,1) = -0.5*I_beam(i,1).length;
    I_beam(i,1).z(23,1) = 0.5*I_beam(i,1).depth;
    I\_beam(i,1).x(24,1) = -0.5*I\_beam(i,1).flange\_width;
    I_beam(i,1).y(24,1) = -0.5*I_beam(i,1).length;
    I_beam(i,1).z(24,1) = 0.5*I_beam(i,1).depth;
    %convert to meters
    I_beam(i,1).x(:,1) = I_beam(i,1).x(:,1)*0.0254;
    I_beam(i,1).y(:,1) = I_beam(i,1).y(:,1)*0.0254;
    I_beam(i,1).z(:,1) = I_beam(i,1).z(:,1)*0.0254;
    nn_ib = 24;
    xx_ib = I_beam(i,1).x;
    yy_{ib} = I_{beam(i,1).y};
    zz_{ib} = I_{beam(i,1).z};
    [cm_ib,pr_ax_ib,cv_ib,eigvec_ib,eigval_ib] =
princ_axes(nn_ib,xx_ib,yy_ib,zz_ib); %get center of mass and principle axes
    I\_beam(i,1).ctr\_mass.x = cm\_ib(1,1);
    I\_beam(i,1).ctr\_mass.y = cm\_ib(2,1);
    I beam(i,1).ctr mass.z = cm ib(3,1);
    I\_beam(i,1).R.x = pr\_ax\_ib(1,1);
    I\_beam(i,1).R.y = pr\_ax\_ib(2,1);
    I\_beam(i,1).R.z = pr\_ax\_ib(3,1);
    I\_beam(i,1).S.x = pr\_ax\_ib(1,2);
    I_beam(i,1).S.y = pr_ax_ib(2,2);
    I\_beam(i,1).S.z = pr\_ax\_ib(3,2);
    L_beam(i,1).T.x = pr_ax_ib(1,3);
    I_beam(i,1).T.y = pr_ax_ib(2,3);
    I_beam(i,1).T.z = pr_ax_ib(3,3);
    for np = 1:nn ib %compute inner products of points and principle axes
        R_dot_P_I(np,1) = I_beam(i,1).R.x * xx_ib(np,1) + I_beam(i,1).R.y *
yy_ib(np,1)...
            + I_beam(i,1).R.z * zz_ib(np,1);
        S_dot_P_I(np,1) = I_beam(i,1).S.x * xx_ib(np,1) + I_beam(i,1).S.y *
yy_ib(np,1)...
            + I_beam(i,1).S.z * zz_ib(np,1);
        T_dot_P_I(np,1) = I_beam(i,1).T.x * xx_ib(np,1) + I_beam(i,1).T.y *
yy_ib(np,1)...
            + I_beam(i,1).T.z * zz_ib(np,1);
    end
    max_R_dot_P_I = max(R_dot_P_I); min_R_dot_P_I = min(R_dot_P_I);
    max_S_dot_P_I = max(S_dot_P_I); min_S_dot_P_I = min(S_dot_P_I);
   max_T_dot_P_I = max(T_dot_P_I); min_T_dot_P_I = min(T_dot_P_I);
    aa = ( max_R_dot_P_I - min_R_dot_P_I)/2;
   bb = (max_S_dot_P_I - min_S_dot_P_I)/2;
    cc = (max_T_dot_P_I - min_T_dot_P_I)/2;
    % Compute the bounding box center
    I beam(i,1).Q.x = cm ib(1,1);
    I_beam(i,1).Q.y = cm_ib(2,1);
    I_beam(i,1).Q.z = cm_ib(3,1);
```
```
% Get the eight corners of the box.
xt = I\_beam(i,1).Q.x + aa*I\_beam(i,1).R.x...
    + bb*I_beam(i,1).S.x + cc*I_beam(i,1).T.x;
I_beam(i,1).corner(1,1).x1 =xt;
yt = I\_beam(i,1).Q.y + aa*I\_beam(i,1).R.y...
    + bb*I beam(i,1).S.y + cc*I beam(i,1).T.y;
I_beam(i,1).corner(1,1).y1 = yt;
zt = I_beam(i,1).Q.z + aa*I_beam(i,1).R.z...
    + bb*I_beam(i,1).S.z + cc*I_beam(i,1).T.z;
I_beam(i,1).corner(1,1).z1 = zt;
xt = I_beam(i,1).Q.x + aa*I_beam(i,1).R.x...
    + bb*I_beam(i,1).S.x - cc*I_beam(i,1).T.x;
I\_beam(i,1).corner(2,1).x1 = xt;
yt = I_beam(i,1).Q.y + aa*I_beam(i,1).R.y...
    + bb*I_beam(i,1).S.y - cc*I_beam(i,1).T.y;
I\_beam(i,1).corner(2,1).y1 = yt;
zt = I_beam(i,1).Q.z + aa*I_beam(i,1).R.z...
    + bb*I_beam(i,1).S.z - cc*I_beam(i,1).T.z;
I\_beam(i,1).corner(2,1).z1 = zt;
xt = I\_beam(i,1).Q.x + aa*I\_beam(i,1).R.x...
    - bb*I_beam(i,1).S.x + cc*I_beam(i,1).T.x;
L_beam(i,1).corner(3,1).x1 = xt;
yt = I_beam(i,1).Q.y + aa*I_beam(i,1).R.y...
    - bb*I_beam(i,1).S.y + cc*I_beam(i,1).T.y;
I\_beam(i,1).corner(3,1).y1 = yt;
zt = I_beam(i,1).Q.z + aa*I_beam(i,1).R.z...
    - bb*I beam(i,1).S.z + cc*I beam(i,1).T.z;
I\_beam(i,1).corner(3,1).z1 = zt;
xt = I_beam(i,1).Q.x + aa*I_beam(i,1).R.x...
    - bb*I_beam(i,1).S.x - cc*I_beam(i,1).T.x;
I\_beam(i,1).corner(4,1).x1 = xt;
yt = I_beam(i,1).Q.y + aa*I_beam(i,1).R.y...
    - bb*I_beam(i,1).S.y - cc*I_beam(i,1).T.y;
I\_beam(i,1).corner(4,1).y1 = yt;
zt = I_beam(i,1).Q.z + aa*I_beam(i,1).R.z...
    - bb*I_beam(i,1).S.z - cc*I_beam(i,1).T.z;
I beam(i,1).corner(4,1).z1 = zt;
xt = I_beam(i,1).Q.x - aa*I_beam(i,1).R.x...
    + bb*I_beam(i,1).S.x + cc*I_beam(i,1).T.x;
I\_beam(i,1).corner(5,1).x1 = xt;
yt = I_beam(i,1).Q.y - aa*I_beam(i,1).R.y...
    + bb*I_beam(i,1).S.y + cc*I_beam(i,1).T.y;
I\_beam(i,1).corner(5,1).y1 = yt;
zt = I_beam(i,1).Q.z - aa*I_beam(i,1).R.z...
    + bb*I_beam(i,1).S.z + cc*I_beam(i,1).T.z;
I\_beam(i,1).corner(5,1).z1 = zt;
xt = I_beam(i,1).Q.x - aa*I_beam(i,1).R.x...
    + bb*I_beam(i,1).S.x - cc*I_beam(i,1).T.x;
I\_beam(i,1).corner(6,1).x1 = xt;
yt = I_beam(i,1).Q.y - aa*I_beam(i,1).R.y...
    + bb*I_beam(i,1).S.y - cc*I_beam(i,1).T.y;
I\_beam(i,1).corner(6,1).y1 = yt;
zt = I_beam(i,1).Q.z - aa*I_beam(i,1).R.z...
    + bb*I beam(i,1).S.z - cc*I beam(i,1).T.z;
I beam(i, 1).corner(6, 1).z1 = zt;
xt = I_beam(i,1).Q.x - aa*I_beam(i,1).R.x...
    - bb*I_beam(i,1).S.x + cc*I_beam(i,1).T.x;
```

```
I\_beam(i,1).corner(7,1).x1 = xt;
   yt = I_beam(i,1).Q.y - aa*I_beam(i,1).R.y...
       - bb*I_beam(i,1).S.y + cc*I_beam(i,1).T.y;
   L_beam(i,1).corner(7,1).y1 = yt;
   zt = I_beam(i,1).Q.z - aa*I_beam(i,1).R.z...
       - bb*I beam(i,1).S.z + cc*I beam(i,1).T.z;
   I\_beam(i,1).corner(7,1).z1 = zt;
   xt = I\_beam(i,1).Q.x - aa*I\_beam(i,1).R.x...
       - bb*I_beam(i,1).S.x - cc*I_beam(i,1).T.x;
   I\_beam(i,1).corner(8,1).x1 = xt;
   yt = I_beam(i,1).Q.y - aa*I_beam(i,1).R.y...
       - bb*I_beam(i,1).S.y - cc*I_beam(i,1).T.y;
   I_beam(i,1).corner(8,1).y1 = yt;
   zt = I_beam(i,1).Q.z - aa*I_beam(i,1).R.z...
       - bb*I_beam(i,1).S.z - cc*I_beam(i,1).T.z;
   I\_beam(i,1).corner(8,1).z1 = zt;
end
fclose(fid_db);
% Load the SMS Flange Corner Point file
sms_file = 'SMS_I_beam_points.txt';
sms = load(sms_file);
[sm,sn] = size(sms);
beam_no = zeros(sm,1);
corner_no = zeros(sm,1);
rot angle = zeros(sm,1);
sms_x = zeros(sm, 1);
sms_y = zeros(sm,1);
sms_z = zeros(sm, 1);
beam_no(:,1) = sms(:,1);
corner_no(:,1) = sms(:,2);
rot_angle(:,1) = sms(:,3);
sms_x(:,1) = sms(:,4);
sms_y(:,1) = sms(:,5);
sms_z(:,1) = sms(:,6);
%Load the segment file list and process each file
fid1 = fopen('All_seg_files.txt','r');
while feof(fid1)==0 %see end for end statenebt
   %clear variables
   clear ladar_file max_x min_x max_y min_y max_z min_z ncellx ncelly ncellz
   clear del cellx del celly del cellz cell x dx cell y dy cell z dz
bin_count
   clear nz_i_bins nz_j_binx nz_k_bins count lnz nz_i_bins_x nz_j_bins_y
nz_k_bins_z
   clear Max_string_length Max_L nz_i_bins_new nz_j_bins_new nz_k_bins_new
   clear nz_i_bins_x_new nz_j_bins_y_new nz_k_bins_z_new potential_object
obj_no
   clear n_obj object R_dot_P S_dot_P T_dot_P max_R_dot_P min_R_dot_P
max_S_dot_P
   clear min_S_dot_P max_T_dot_P min_T_dot_P aa bb cc ccl AA rt Rot T H mpt
trmpt
   clear comparison_error min_error i_min obj_min
ladar_file = fgetl(fid1);
disp(sprintf('Processing file = %s\n',ladar_file));
```

```
a = load(ladar_file);
[m,n] = size(a);
xtemp = zeros(m, 1);
ytemp = zeros(m,1);
ztemp = zeros(m, 1);
xtemp(:,1) = a(:,1);
ytemp(:,1) = a(:,2);
ztemp(:,1) = a(:,3);
x = xtemp;
y = ytemp;
z = ztemp;
separators = find(xtemp > 9e6);
n_obj = length(separators);
cv_obj = zeros(3,3);
for obj = 1:n_obj
    if (obj == 1)
        nn = separators(1) - 1;
        coord = zeros(nn,3);
        x_coord = zeros(nn,1);
        y\_coord = zeros(nn,1);
        z_{coord} = zeros(nn, 1);
        object(obj,1).size = nn;
        object(obj,1).coord(1:nn,1) = xtemp(1:nn,1);
        object(obj,1).coord(1:nn,2) = ytemp(1:nn,1);
        object(obj,1).coord(1:nn,3) = ztemp(1:nn,1);
    else
        nn = separators(obj)-separators(obj-1)-1;
        n1 = separators(obj-1);
        coord = zeros(nn,3);
        x\_coord = zeros(nn,1);
        y_coord = zeros(nn,1);
        z_coord = zeros(nn,1);
        object(obj,1).size = nn;
        object(obj,1).coord(1:nn,1) = xtemp(n1+1:n1+nn,1);
        object(obj,1).coord(1:nn,2) = ytemp(n1+1:n1+nn,1);
        object(obj,1).coord(1:nn,3) = ztemp(n1+1:n1+nn,1);
    end
    coord = zeros(nn,3);
    coord = object(obj,1).coord;
    x_coord(1:nn,1) = coord(1:nn,1);
    v coord(1:nn,1) = coord(1:nn,2);
    z\_coord(1:nn,1) = coord(1:nn,3);
    [cm,pr_ax,cv_obj,eigvec_obj,eigval_obj] =
princ axes(nn,x coord,y coord,z coord); %get center of mass and principle
axes
    object(obj,1).ctr_mass.x = cm(1,1);
    object(obj,1).ctr_mass.y = cm(2,1);
    object(obj,1).ctr_mass.z = cm(3,1);
    object(obj,1).R.x = pr_ax(1,1);
    object(obj,1).R.y = pr_ax(2,1);
    object(obj,1).R.z = pr_ax(3,1);
    object(obj,1).S.x = pr_ax(1,2);
    object(obj,1).S.y = pr_ax(2,2);
    object(obj,1).S.z = pr ax(3,2);
    object(obj,1).T.x = pr ax(1,3);
    object(obj,1).T.y = pr_ax(2,3);
    object(obj,1).T.z = pr_ax(3,3);
```

```
if (det(eigvec_obj) < 0)</pre>
        object(obj,1).R.x = -object(obj,1).R.x;
        object(obj,1).R.y = -object(obj,1).R.y;
        object(obj,1).R.z = -object(obj,1).R.z;
    end
    R dot P = zeros(nn,1);
    S dot P = zeros(nn,1);
    T_dot_P = zeros(nn,1);
     %compute inner products of points and principle axes
        R_dot_P(:,1) = object(obj,1).R.x * x_coord(:,1) + object(obj,1).R.y *
y_coord(:,1)...
            + object(obj,1).R.z * z_coord(:,1);
        S_dot_P(:,1) = object(obj,1).S.x * x_coord(:,1) + object(obj,1).S.y *
y_coord(:,1)...
            + object(obj,1).S.z * z_coord(:,1);
        T_dot_P(:,1) = object(obj,1).T.x * x_coord(:,1) + object(obj,1).T.y *
y_coord(:,1)...
            + object(obj,1).T.z * z_coord(:,1);
    max_R_dot_P(obj,1) = max(R_dot_P); min_R_dot_P(obj,1) = min(R_dot_P);
    max_S_dot_P(obj,1) = max(S_dot_P); min_S_dot_P(obj,1) = min(S_dot_P);
    max_T_dot_P(obj,1) = max(T_dot_P); min_T_dot_P(obj,1) = min(T_dot_P);
    a(obj,1) = ( max_R_dot_P(obj,1) - min_R_dot_P(obj,1))/2;
    b(obj,1) = ( max_S_dot_P(obj,1) - min_S_dot_P(obj,1))/2;
    c(obj,1) = ( max_T_dot_P(obj,1) - min_T_dot_P(obj,1))/2;
    aa = a(obj,1);
   bb = b(obj,1);
    cc = c(obj, 1);
    % Compute the bounding box center
    object(obj,1).Q.x = cm(1,1);
    object(obj,1).Q.y = cm(2,1);
    object(obj,1).Q.z = cm(3,1);
    % Get the eight corners of the box.
    object(obj,1).corner(1,1).x = object(obj,1).Q.x + aa*object(obj,1).R.x...
        + bb*object(obj,1).S.x + cc*object(obj,1).T.x;
    object(obj,1).corner(1,1).y = object(obj,1).Q.y + aa*object(obj,1).R.y...
        + bb*object(obj,1).S.y + cc*object(obj,1).T.y;
    object(obj,1).corner(1,1).z = object(obj,1).Q.z + aa*object(obj,1).R.z...
        + bb*object(obj,1).S.z + cc*object(obj,1).T.z;
    object(obj,1).corner(2,1).x = object(obj,1).Q.x + aa*object(obj,1).R.x...
        + bb*object(obj,1).S.x - cc*object(obj,1).T.x;
    object(obj,1).corner(2,1).y = object(obj,1).Q.y + aa*object(obj,1).R.y...
        + bb*object(obj,1).S.y - cc*object(obj,1).T.y;
    object(obj,1).corner(2,1).z = object(obj,1).Q.z + aa*object(obj,1).R.z...
        + bb*object(obj,1).S.z - cc*object(obj,1).T.z;
    object(obj,1).corner(3,1).x = object(obj,1).Q.x + aa*object(obj,1).R.x...
        - bb*object(obj,1).S.x + cc*object(obj,1).T.x;
    object(obj,1).corner(3,1).y = object(obj,1).Q.y + aa*object(obj,1).R.y...
        - bb*object(obj,1).S.y + cc*object(obj,1).T.y;
    object(obj,1).corner(3,1).z = object(obj,1).Q.z + aa*object(obj,1).R.z...
        - bb*object(obj,1).S.z + cc*object(obj,1).T.z;
    object(obj,1).corner(4,1).x = object(obj,1).Q.x + aa*object(obj,1).R.x...
        - bb*object(obj,1).S.x - cc*object(obj,1).T.x;
    object(obj,1).corner(4,1).y = object(obj,1).Q.y + aa*object(obj,1).R.y...
        - bb*object(obj,1).S.y - cc*object(obj,1).T.y;
    object(obj,1).corner(4,1).z = object(obj,1).Q.z + aa*object(obj,1).R.z...
        - bb*object(obj,1).S.z - cc*object(obj,1).T.z;
    object(obj,1).corner(5,1).x = object(obj,1).Q.x - aa*object(obj,1).R.x...
```

```
+ bb*object(obj,1).S.x + cc*object(obj,1).T.x;
    object(obj,1).corner(5,1).y = object(obj,1).Q.y - aa*object(obj,1).R.y...
        + bb*object(obj,1).S.y + cc*object(obj,1).T.y;
    object(obj,1).corner(5,1).z = object(obj,1).Q.z - aa*object(obj,1).R.z...
        + bb*object(obj,1).S.z + cc*object(obj,1).T.z;
    object(obj,1).corner(6,1).x = object(obj,1).Q.x - aa*object(obj,1).R.x...
        + bb*object(obj,1).S.x - cc*object(obj,1).T.x;
    object(obj,1).corner(6,1).y = object(obj,1).Q.y - aa*object(obj,1).R.y...
        + bb*object(obj,1).S.y - cc*object(obj,1).T.y;
    object(obj,1).corner(6,1).z = object(obj,1).Q.z - aa*object(obj,1).R.z...
        + bb*object(obj,1).S.z - cc*object(obj,1).T.z;
    object(obj,1).corner(7,1).x = object(obj,1).Q.x - aa*object(obj,1).R.x...
        - bb*object(obj,1).S.x + cc*object(obj,1).T.x;
    object(obj,1).corner(7,1).y = object(obj,1).Q.y - aa*object(obj,1).R.y...
        - bb*object(obj,1).S.y + cc*object(obj,1).T.y;
    object(obj,1).corner(7,1).z = object(obj,1).Q.z - aa*object(obj,1).R.z...
        - bb*object(obj,1).S.z + cc*object(obj,1).T.z;
    object(obj,1).corner(8,1).x = object(obj,1).Q.x - aa*object(obj,1).R.x...
        - bb*object(obj,1).S.x - cc*object(obj,1).T.x;
    object(obj,1).corner(8,1).y = object(obj,1).Q.y - aa*object(obj,1).R.y...
        - bb*object(obj,1).S.y - cc*object(obj,1).T.y;
    object(obj,1).corner(8,1).z = object(obj,1).Q.z - aa*object(obj,1).R.z...
        - bb*object(obj,1).S.z - cc*object(obj,1).T.z;
end
for i = 1:no_beams
    for obj = 1:n obj
        %Next find the rotation that aligns the principal axes
        %of the model I_beam box with the object box
            cc1 = zeros(9,1);
            %set up the right hand side of the object eigenvectors
            ccl(1,1) = object(obj,1).R.x;
            cc1(2,1) = object(obj,1).R.y;
            cc1(3,1) = object(obj,1).R.z;
            ccl(4,1) = object(obj,1).S.x;
            cc1(5,1) = object(obj,1).S.y;
            ccl(6,1) = object(obj,1).S.z;
            ccl(7,1) = object(obj,1).T.x;
            cc1(8,1) = object(obj,1).T.y;
            cc1(9,1) = object(obj,1).T.z;
            %set up the 9 x 9 matrix of model eigenvectors
            AA = zeros(9,9);
            AA(1,1) = I\_beam(i).R.x;
            AA(1,2) = I\_beam(i).R.y;
            AA(1,3) = I\_beam(i).R.z;
            AA(2,4) = I\_beam(i).R.x;
            AA(2,5) = I\_beam(i).R.y;
            AA(2,6) = I\_beam(i).R.z;
            AA(3,7) = I\_beam(i).R.x;
            AA(3,8) = I\_beam(i).R.y;
            AA(3,9) = I\_beam(i).R.z;
            AA(4,1) = I\_beam(i).S.x;
            AA(4,2) = I\_beam(i).S.y;
            AA(4,3) = I beam(i).S.z;
            AA(5,4) = I beam(i).S.x;
            AA(5,5) = I beam(i).S.y;
            AA(5,6) = I\_beam(i).S.z;
```

```
AA(6,7) = I\_beam(i).S.x;
```

```
AA(6,8) = I\_beam(i).S.y;
            AA(6,9) = I\_beam(i).S.z;
            AA(7,1) = I\_beam(i).T.x;
            AA(7,2) = I\_beam(i).T.y;
            AA(7,3) = I\_beam(i).T.z;
            AA(8,4) = I beam(i).T.x;
            AA(8,5) = I beam(i).T.y;
            AA(8,6) = I\_beam(i).T.z;
            AA(9,7) = I\_beam(i).T.x;
            AA(9,8) = I\_beam(i).T.y;
            AA(9,9) = I\_beam(i).T.z;
            %solve least squares for the rotation matrix
            rt = zeros(9,1);
            Rot = zeros(3,3);
            rt = AA\cc1;
            %Make the rotation matrix a 2D array
            for ii = 1:3
                for jj = 1:3
                    kk = (ii-1)*3 + jj;
                    Rot(ii,jj) = rt(kk,1);
                end
            end
            %Apply the translation and rotation to the model data with a
homogeneous
            %transformation
            T(1,1) = object(obj,1).ctr_mass.x;
            T(2,1) = object(obj,1).ctr mass.y;
            T(3,1) = object(obj,1).ctr_mass.z;
            %Set up homogeneous transformation
            H = zeros(4,4);
            for ii = 1:3
                for jj = 1:3
                    H(ii,jj) = Rot(ii,jj);
                end
            end
            H(1,4) = T(1,1);
            H(2,4) = T(2,1);
            H(3,4) = T(3,1);
            H(4,4) = 1.0;
            %Rotate and translate the bounding box for each beam model
            %Compute the sum of squares differences between the true object
            %and the beam
            error = 0;
            for v = 1:8
                mpt(1,1) = I_beam(i).corner(v).x1;
                mpt(2,1) = I_beam(i).corner(v).y1;
                mpt(3,1) = I_beam(i).corner(v).z1;
                mpt(4,1) = 1.0;
                trmpt = H*mpt; %apply homogeneous transformation
                I_beam(i).corner(v).trrot(obj,1).x2 = trmpt(1,1);
                I_beam(i).corner(v).trrot(obj,1).y2 = trmpt(2,1);
                I_beam(i).corner(v).trrot(obj,1).z2 = trmpt(3,1);
                error = error + (object(obj,1).corner(v).x -...
                    I beam(i).corner(v).trrot(obj,1).x2)^2 +
(object(obj,1).corner(v).y -...
                    I_beam(i).corner(v).trrot(obj,1).y2)^2 +
(object(obj,1).corner(v).z -...
```

```
I_beam(i).corner(v).trrot(obj,1).z2)^2;
           end
           comparison_error(i,obj) = sqrt(error);
   end
end
min error = 1e+10;
for i = 1:no beams
   for obj = 1:n_obj
       if (comparison_error(i,obj) < min_error)</pre>
           min_error = comparison_error(i,obj);
           i_min = i;
           obj_min = obj;
       end
   end
end
pose_angle = zeros(n_obj,1);
pose_angle(obj_min) = (180/pi)*
atan(object(obj_min).R.y/object(obj_min).R.x);
if (pose_angle(obj_min) < 0)</pre>
   pose_angle(obj_min) = 180 + pose_angle(obj_min);
end
% Reading the sms measurements for the four top flange corners
% sms point a = bounding box corner 5
% sms point b = bounding box corner 6
% sms point c = bounding box corner 1
% sms point d = bounding box corner 2
% Getting table entry for sms point a (bounding box corner 5)
if((ladar_file(1) == 'A')& (ladar_file(2) == '0'))
   entry = 1;
elseif((ladar_file(1) =='A') & (ladar_file(2) == '3') & (ladar_file(3) ==
'0'))
   entry = 5;
elseif((ladar_file(1) =='A') & (ladar_file(2) == '4') & (ladar_file(3) ==
'5'))
    entry = 9;
elseif((ladar_file(1) =='A') & (ladar_file(2) == '6') & (ladar_file(3) ==
'0'))
    entry = 13;
elseif((ladar_file(1) =='A') & (ladar_file(2) == '9') & (ladar_file(3) ==
'0'))
    entry = 17;
elseif((ladar_file(1) == 'B')& (ladar_file(2) == '0'))
    entry = 21;
elseif((ladar_file(1) =='B') & (ladar_file(2) == '3') & (ladar_file(3) ==
'0'))
    entry = 25;
elseif((ladar_file(1) =='B') & (ladar_file(2) == '4') & (ladar_file(3) ==
'5'))
    entry = 29;
elseif((ladar file(1) == 'B') & (ladar file(2) == '6') & (ladar file(3) ==
'0'))
    entry = 33;
elseif((ladar_file(1) =='B') & (ladar_file(2) == '9') & (ladar_file(3) ==
'0'))
```

```
entry = 37;
end
% Put sms points into scanner frame for comparison. File name provides the
% entry point into the sms corner measurement file
scanner pt = zeros(3,1);
sms pt = zeros(3,1);
%At this point we need to determine which points to compare
% The four sms points are defined as a, b, c, and d. The four top bounding
% box points are 1,2, 5,and 6. We either (1) compare a to 1, b to 2, c to 5,
 and d to 6 or (2) we compare a to 5, b to 6, c to 1, and d to 2
% To determine which set of comparisons to make we will generate two unit
% vectors, one between sms points c to a and one from bounding box point 5
% to 1. We then take the inner product. If it is negative then we do
% comparison (2) otherwise (1).
ca = [sms_x(entry,1)-sms_x(entry+2,1);sms_y(entry,1)-sms_y(entry+2,1)];
normca = norm(ca);
cau = ca/normca;
v51 = [I_beam(i_min).corner(1).trrot(obj_min,1).x2-
I_beam(i_min).corner(5).trrot(obj_min,1).x2;I_beam(i_min).corner(1).trrot(obj
_min,1).y2-I_beam(i_min).corner(5).trrot(obj_min,1).y2];
norm51 = norm(v51);
v51u = v51/norm51;
inner_prod = cau(1)*v51u(1) + cau(2)*v51u(2);
if (inner_prod < 0)</pre>
   index(1) = 5;
    index(2) = 6;
    index(3) = 1;
   index(4) = 2;
else
    index(1) = 1;
    index(2) = 2i
    index(3) = 5;
    index(4) = 6;
end
%generate a line of blank cells
% sms point a to scanner point index(1) comparison. First transform to
scanner frame.
sms_pt(1,1) = sms_x(entry,1);
sms_pt(2,1) = sms_y(entry,1);
sms_pt(3,1) = sms_z(entry,1);
scanner_pt = Transform*(sms_pt - cg) + cf;
error_x = scanner_pt(1,1) -
I_beam(i_min).corner(index(1)).trrot(obj_min,1).x2;
error_y = scanner_pt(2,1) -
I_beam(i_min).corner(index(1)).trrot(obj_min,1).y2;
error_z = scanner_pt(3,1) -
I_beam(i_min).corner(index(1)).trrot(obj_min,1).z2;
, %f , %f , %f , %f , %f
\n',...
ladar_file,I_beam(i_min).name,comparison_error(i_min,obj_min),object(obj_min)
.ctr_mass.x,object(obj_min).ctr_mass.y,...
```

```
object(obj_min).ctr_mass.z,pose_angle(obj_min),'a',scanner_pt(1,1),scanner_pt
(2,1),scanner_pt(3,1),index(1),...
```

I_beam(i_min).corner(index(1)).trrot(obj_min,1).x2,I_beam(i_min).corner(index (1)).trrot(obj_min,1).y2,... I beam(i min).corner(index(1)).trrot(obj min,1).z2,error x,error y,error z); % sms point b to scanner point index(2) comparison. First transform to scanner frame. sms_pt(1,1) = sms_x(entry+1,1); sms_pt(2,1) = sms_y(entry+1,1); sms_pt(3,1) = sms_z(entry+1,1); scanner_pt = Transform*(sms_pt - cg) + cf; $error_x = scanner_pt(1,1) -$ I_beam(i_min).corner(index(2)).trrot(obj_min,1).x2; $error_y = scanner_pt(2,1) -$ I_beam(i_min).corner(index(2)).trrot(obj_min,1).y2; $error_z = scanner_pt(3,1) -$ I_beam(i_min).corner(index(2)).trrot(obj_min,1).z2; , %f , %f , %f , %f \n',... ladar_file,I_beam(i_min).name,comparison_error(i_min,obj_min),object(obj_min) .ctr_mass.x,object(obj_min).ctr_mass.y,... object(obj_min).ctr_mass.z,pose_angle(obj_min),'b',scanner_pt(1,1),scanner_pt (2,1),scanner_pt(3,1),index(2),... I_beam(i_min).corner(index(2)).trrot(obj_min,1).x2,I_beam(i_min).corner(index (2)).trrot(obj_min,1).y2,... I_beam(i_min).corner(index(2)).trrot(obj_min,1).z2,error_x,error_y,error_z); % sms point c to scanner point index(3) comparison. First transform to scanner frame. sms_pt(1,1) = sms_x(entry+2,1); sms_pt(2,1) = sms_y(entry+2,1); $sms_pt(3,1) = sms_z(entry+2,1);$ scanner_pt = Transform*(sms_pt - cg) + cf; error x = scanner pt(1,1) -I_beam(i_min).corner(index(3)).trrot(obj_min,1).x2; $error_y = scanner_pt(2,1) -$ I_beam(i_min).corner(index(3)).trrot(obj_min,1).y2; $error_z = scanner_pt(3,1) -$ I_beam(i_min).corner(index(3)).trrot(obj_min,1).z2; , %f , %f , %f , %f \n',... ladar_file,I_beam(i_min).name,comparison_error(i_min,obj_min),object(obj_min) .ctr_mass.x,object(obj_min).ctr_mass.y,... object(obj_min).ctr_mass.z,pose_angle(obj_min),'c',scanner_pt(1,1),scanner_pt (2,1),scanner_pt(3,1),index(3),... I_beam(i_min).corner(index(3)).trrot(obj_min,1).x2,I_beam(i_min).corner(index (3)).trrot(obj min,1).y2,... I beam(i min).corner(index(3)).trrot(obj min,1).z2,error x,error y,error z); % sms point d to scanner point index(4) comparison. First transform to scanner frame.

```
sms_pt(1,1) = sms_x(entry+3,1);
sms_pt(2,1) = sms_y(entry+3,1);
sms_pt(3,1) = sms_z(entry+3,1);
scanner_pt = Transform*(sms_pt - cg) + cf;
error_x = scanner_pt(1,1) -
I beam(i min).corner(index(4)).trrot(obj min,1).x2;
error_y = scanner_pt(2,1) -
I_beam(i_min).corner(index(4)).trrot(obj_min,1).y2;
error_z = scanner_pt(3,1) -
I_beam(i_min).corner(index(4)).trrot(obj_min,1).z2;
, %f , %f , %f , %f \n',...
ladar_file,I_beam(i_min).name,comparison_error(i_min,obj_min),object(obj_min)
.ctr_mass.x,object(obj_min).ctr_mass.y,...
object(obj_min).ctr_mass.z,pose_angle(obj_min),'d',scanner_pt(1,1),scanner_pt
(2,1),scanner_pt(3,1),index(4),...
I_beam(i_min).corner(index(4)).trrot(obj_min,1).x2,I_beam(i_min).corner(index
(4)).trrot(obj_min,1).y2,...
I_beam(i_min).corner(index(4)).trrot(obj_min,1).z2,error_x,error_y,error_z);
end %while feof(fid1)==0
fclose(fid1);
```

```
fclose(fid3);
```

A.2 POSE TABLES

A.2.1 Pose Tables for Binning Segmentation

Table A.1 gives the computed center-of-data-mass and the estimated orientation relative to the scanner frame as computed by the binning algorithm for each of the scan files. Column 1 of the table gives the name of the scan file of (x, y, z) point cloud points. Note that the first letter of the file name gives the I-beam identifier of the beam scanned. The second column gives the I-beam selected by the binning identification algorithm. If the I-beam letter selected is the same as the leading character of the scan file name then a correct identification is indicated. The next three columns give the estimated center-of-data-mass for the identified I-beam. The units are meters from the scan file data and does not necessarily represent the physical center-of-mass of the I-beam. The final column gives the orientation of the I-beam in degrees relative to the negative *X*-axis of the scanner coordinates, which lies in the scan direction.

Table A.2 gives the location of four corner points measured by the SMS system on the top flange of the I-beams as well as the estimates of these points using the binning algorithm. The units are in meters in the scanner coordinate frame. The points are labeled as a, b, c, and d and are shown schematically in Figure 4.1. The first two columns are similar to those of Table A. 1. The third column identifies the corner points. The next three columns give the SMS measured values in the scanner coordinate frame. The next three columns give the estimates of the points using the binning algorithm.

Table A.3 gives the errors, in meters, between the SMS measurements in Table A.2 and the coordinates computed by the binning algorithm.

Tables A.4, A.5, and A.6 are formatted the same as in Tables A.1, A.2, and A.3, respectively, but the values in these tables were obtained using the TIN segmentation algorithm.

	I-Beam Location of I-Beam Data Center (m			a Center (m)	Orientation from		
File Name	Selected	x	У	Z	neg X-axis (°)		
A0_12gon_1_xyz.txt	I-Beam-A	-3.571	5.791	-1.406	32.209		
A0-12gon-2_xyz.txt	I-Beam-A	-3.645	5.752	-1.405	31.744		
A0-12gon-3_xyz.txt	I-Beam-A	-3.570	5.800	-1.405	32.355		
A0-20gon-1_xyz.txt	I-Beam-A	-3.498	5.836	-1.408	32.223		
A0-20gon-2_xyz.txt	I-Beam-A	-3.505	5.837	-1.408	31.893		
A0-20gon-3_xyz.txt	I-Beam-A	-3.624	5.762	-1.410	32.258		
A0-8gon-1_xyz.txt	I-Beam-A	-3.637	5.751	-1.404	31.986		
A0-8gon-2_xyz.txt	I-Beam-A	-3.611	5.767	-1.401	32.159		
A0-8gon-3_xyz.txt	I-Beam-A	-3.598	5.779	-1.403	32.219		
A30-12gon-1_xyz.txt	I-Beam-A	-3.662	5.723	-1.407	62.420		
A30-12gon-2_xyz.txt	I-Beam-A	-3.628	5.751	-1.410	62.585		
A30-12gon-3_xyz.txt	I-Beam-A	-3.636	5.753	-1.411	62.680		
A30-20gon-1_xyz.txt	I-Beam-A	-3.700	5.618	-1.412	62.143		
A30-20gon-2_xyz.txt	I-Beam-A	-3.688	5.641	-1.416	61.660		
A30-20gon-3_xyz.txt	I-Beam-B	-3.540	5.912	-1.411	64.015		
A30-8gon-1_xyz.txt	I-Beam-A	-3.631	5.748	-1.406	62.550		
A30-8gon-2_xyz.txt	I-Beam-A	-3.662	5.700	-1.406	62.511		
A30-8gon-3_xyz.txt	I-Beam-A	-3.641	5.735	-1.402	62.312		
A45-12gon-1_xyz.txt	I-Beam-A	-3.642	5.700	-1.412	77.288		
A45-12gon-2_xyz.txt	I-Beam-A	-3.648	5.668	-1.408	77.598		
A45-12gon-3_xyz.txt	I-Beam-A	-3.645	5.682	-1.411	77.788		
A45-20gon-1_xyz.txt	I-Beam-B	-3.825	4.900	-1.408	77.487		
A45-20gon-2_xyz.txt	I-Beam-B	-3.622	5.772	-1.416	79.507		
A45-20gon-3_xyz.txt	I-Beam-B	-3.794	4.975	-1.410	78.280		
A45-8gon-1_xyz.txt	I-Beam-A	-3.638	5.718	-1.405	77.781		
A45-8gon-2_xyz.txt	I-Beam-A	-3.640	5.698	-1.407	77.733		
A45-8gon-3_xyz.txt	I-Beam-A	-3.633	5.739	-1.405	78.038		
A60-12gon-1_xyz.txt	I-Beam-A	-3.640	5.658	-1.409	91.967		
A60-12gon-2_xyz.txt	I-Beam-B	-1.214	5.807	-1.034	141.523		
A60-12gon-3_xyz.txt	I-Beam-A	-3.637	5.624	-1.413	90.990		
A60-20gon-1_xyz.txt	I-Beam-B	-3.655	6.066	-1.429	90.000		
A60-20gon-2_xyz.txt	I-Beam-B	-3.636	4.993	-1.412	90.000		
A60-20gon-3_xyz.txt	I-Beam-B	-3.633	4.920	-1.416	90.000		
A60-8gon-1_xyz.txt	I-Beam-A	-3.648	5.880	-1.405	91.518		
A60-8gon-2_xyz.txt	I-Beam-A	-3.645	5.781	-1.405	92.171		
A60-8gon-3_xyz.txt	I-Beam-A	-3.645	5.772	-1.406	91.415		
A90-12gon-1_xyz.txt	I-Beam-B	-4.650	3.224	-1.283	159.762		
A90-12gon-2_xyz.txt	I-Beam-B	-1.165	5.794	-0.995	148.996		
A90-12gon-3_xyz.txt	I-Beam-B	-4.696	3.254	-1.273	112.711		

 Table A.1. Binning Method:
 I-Beam ID, Center of Mass, I-beam Orientation in Scanner Coordinate Frame.

Filo Nomo	Orientation from				
File Ivallie	Selected	X	У	Z	neg X-axis (°)
A90-20gon-1_xyz.txt	I-Beam-B	2.032	-4.747	3.257	NaN
A90-20gon-2_xyz.txt	I-Beam-B	2.451	-4.739	3.254	45.000
A90-20gon-3_xyz.txt	I-Beam-B	-1.163	6.718	-1.252	NaN
A90-8gon-1_xyz.txt	I-Beam-B	-4.710	3.261	-1.326	141.863
A90-8gon-2_xyz.txt	I-Beam-B	-4.684	3.229	-1.295	3.911
A90-8gon-3_xyz.txt	I-Beam-B	-1.153	5.816	-0.975	159.973
B0-12gon-1_xyz.txt	I-Beam-B	-3.615	5.829	-1.440	32.744
B0-12gon-2_xyz.txt	I-Beam-B	-3.624	5.814	-1.438	31.696
B0-12gon-3_xyz.txt	I-Beam-B	-3.613	5.822	-1.440	32.820
B0-20gon-1_xyz.txt	I-Beam-B	-3.651	5.800	-1.448	31.825
B0-20gon-2_xyz.txt	I-Beam-B	-3.636	5.819	-1.446	31.699
B0-20gon-3_xyz.txt	I-Beam-B	-3.671	5.801	-1.441	32.800
B0-8gon-1_xyz.txt	I-Beam-B	-3.629	5.817	-1.430	32.708
B0-8gon-2_xyz.txt	I-Beam-B	-3.622	5.819	-1.429	32.244
B0-8gon-3_xyz.txt	I-Beam-B	-3.614	5.821	-1.429	32.033
B30-12gon-1_xyz.txt	I-Beam-B	-3.669	5.776	-1.437	62.782
B30-12gon-2_xyz.txt	I-Beam-B	-3.689	5.763	-1.436	63.327
B30-12gon-3_xyz.txt	I-Beam-B	-3.703	5.730	-1.434	63.006
B30-20gon-1_xyz.txt	I-Beam-B	-3.685	5.752	-1.445	62.654
B30-20gon-2_xyz.txt	I-Beam-B	-3.666	5.753	-1.445	62.809
B30-20gon-3_xyz.txt	I-Beam-B	-3.308	6.531	-1.479	66.666
B30-8gon-1_xyz.txt	I-Beam-B	-3.684	5.772	-1.433	63.231
B30-8gon-2_xyz.txt	I-Beam-B	-3.674	5.793	-1.429	63.075
B30-8gon-3_xyz.txt	I-Beam-B	-3.690	5.763	-1.433	63.304
B45-12gon-1_xyz.txt	I-Beam-B	-3.696	5.667	-1.442	78.667
B45-12gon-2_xyz.txt	I-Beam-B	-3.704	5.659	-1.441	78.414
B45-12gon-3_xyz.txt	I-Beam-B	-3.684	5.726	-1.440	78.423
B45-20gon-1_xyz.txt	I-Beam-B	-3.737	5.469	-1.453	78.579
B45-20gon-2_xyz.txt	I-Beam-B	-3.822	5.097	-1.442	78.753
B45-20gon-3_xyz.txt	I-Beam-B	-3.813	5.153	-1.444	80.171
B45-8gon-1_xyz.txt	I-Beam-B	-3.695	5.684	-1.437	78.156
B45-8gon-2_xyz.txt	I-Beam-B	-3.695	5.682	-1.434	78.131
B45-8gon-3_xyz.txt	I-Beam-B	-3.690	5.717	-1.435	78.473
B60-12gon-1_xyz.txt	I-Beam-B	-3.675	5.679	-1.446	94.947
B60-12gon-2_xyz.txt	I-Beam-B	-4.666	3.232	-1.245	83.806
B60-12gon-3_xyz.txt	I-Beam-B	-3.639	5.402	-1.453	91.515
B60-20gon-1_xyz.txt	I-Beam-B	-3.656	5.387	-1.452	90.000
B60-20gon-2_xyz.txt	I-Beam-B	-3.632	5.229	-1.466	90.000
B60-20gon-3_xyz.txt	I-Beam-B	-3.625	5.207	-1.462	90.000
B60-8gon-1_xyz.txt	I-Beam-B	-3.670	5.755	-1.445	93.867
B60-8gon-2_xyz.txt	I-Beam-B	-3.677	5.731	-1.442	94.583
B60-8gon-3_xyz.txt	I-Beam-B	-3.676	5.674	-1.442	94.665

Table A.1. Continued.

File Nome	I-Beam	Location of	' I-Beam Dat	a Center (m)	Orientation from
r ne maine	Selected	X	У	Z	neg X- axis (°)
B90-12gon-1_xyz.txt	I-Beam-B	-4.666	3.258	-1.260	174.570
B90-12gon-2_xyz.txt	I-Beam-B	-1.224	5.815	-1.012	139.937
B90-12gon-3_xyz.txt	I-Beam-B	-1.383	5.973	-1.196	150.085
B90-20gon-1_xyz.txt	I-Beam-B	-4.650	3.163	-1.108	0.000
B90-20gon-2_xyz.txt	I-Beam-B	-4.655	3.273	-1.385	NaN
B90-20gon-3_xyz.txt	I-Beam-B	-4.655	3.166	-1.094	0.000
B90-8gon-1_xyz.txt	I-Beam-B	-4.664	3.237	-1.270	28.167
B90-8gon-2_xyz.txt	I-Beam-B	-4.605	7.720	-0.839	170.683
B90-8gon-3_xyz.txt	I-Beam-B	-4.687	7.649	-1.059	127.764

Table A.1. Continued.

File Nome	I-Beam	Site	SMS	Coordinat	es (m)	Bounding Box Coordinates (m)			
r ne Ivaine	Selected	Point	Х	У	Z	Х	У	Z	
A0_12gon_1_xyz.txt	I-Beam-A	а	-4.872	4.931	-1.200	-4.814	4.903	-1.195	
A0_12gon_1_xyz.txt	I-Beam-A	b	-4.968	5.079	-1.202	-4.910	5.055	-1.196	
A0_12gon_1_xyz.txt	I-Beam-A	c	-2.290	6.554	-1.215	-2.234	6.529	-1.197	
A0_12gon_1_xyz.txt	I-Beam-A	d	-2.385	6.704	-1.216	-2.330	6.681	-1.197	
A0-12gon-2_xyz.txt	I-Beam-A	а	-4.872	4.931	-1.200	-4.894	4.875	-1.185	
A0-12gon-2_xyz.txt	I-Beam-A	b	-4.968	5.079	-1.202	-4.988	5.028	-1.185	
A0-12gon-2_xyz.txt	I-Beam-A	с	-2.290	6.554	-1.215	-2.301	6.480	-1.205	
A0-12gon-2_xyz.txt	I-Beam-A	d	-2.385	6.704	-1.216	-2.395	6.632	-1.205	
A0-12gon-3_xyz.txt	I-Beam-A	а	-4.872	4.931	-1.200	-4.811	4.911	-1.190	
A0-12gon-3_xyz.txt	I-Beam-A	b	-4.968	5.079	-1.202	-4.907	5.062	-1.192	
A0-12gon-3_xyz.txt	I-Beam-A	с	-2.290	6.554	-1.215	-2.235	6.543	-1.200	
A0-12gon-3_xyz.txt	I-Beam-A	d	-2.385	6.704	-1.216	-2.331	6.694	-1.202	
A0-20gon-1_xyz.txt	I-Beam-A	а	-4.872	4.931	-1.200	-4.738	4.947	-1.189	
A0-20gon-1_xyz.txt	I-Beam-A	b	-4.968	5.079	-1.202	-4.834	5.099	-1.188	
A0-20gon-1_xyz.txt	I-Beam-A	с	-2.290	6.554	-1.215	-2.159	6.573	-1.208	
A0-20gon-1_xyz.txt	I-Beam-A	d	-2.385	6.704	-1.216	-2.254	6.725	-1.207	
A0-20gon-2_xyz.txt	I-Beam-A	а	-4.872	4.931	-1.200	-4.750	4.954	-1.195	
A0-20gon-2_xyz.txt	I-Beam-A	b	-4.968	5.079	-1.202	-4.845	5.107	-1.193	
A0-20gon-2_xyz.txt	I-Beam-A	с	-2.290	6.554	-1.215	-2.161	6.566	-1.204	
A0-20gon-2_xyz.txt	I-Beam-A	d	-2.385	6.704	-1.216	-2.256	6.718	-1.203	
A0-20gon-3_xyz.txt	I-Beam-A	а	-4.872	4.931	-1.200	-4.864	4.873	-1.190	
A0-20gon-3_xyz.txt	I-Beam-A	b	-4.968	5.079	-1.202	-4.960	5.024	-1.189	
A0-20gon-3_xyz.txt	I-Beam-A	с	-2.290	6.554	-1.215	-2.285	6.500	-1.212	
A0-20gon-3_xyz.txt	I-Beam-A	d	-2.385	6.704	-1.216	-2.381	6.652	-1.211	
A0-8gon-1_xyz.txt	I-Beam-A	а	-4.872	4.931	-1.200	-4.882	4.868	-1.188	
A0-8gon-1_xyz.txt	I-Beam-A	b	-4.968	5.079	-1.202	-4.977	5.020	-1.188	
A0-8gon-1_xyz.txt	I-Beam-A	с	-2.290	6.554	-1.215	-2.295	6.483	-1.200	
A0-8gon-1_xyz.txt	I-Beam-A	d	-2.385	6.704	-1.216	-2.390	6.635	-1.200	
A0-8gon-2_xyz.txt	I-Beam-A	а	-4.872	4.931	-1.200	-4.854	4.880	-1.183	
A0-8gon-2_xyz.txt	I-Beam-A	b	-4.968	5.079	-1.202	-4.949	5.032	-1.184	
A0-8gon-2_xyz.txt	I-Beam-A	с	-2.290	6.554	-1.215	-2.272	6.504	-1.199	
A0-8gon-2_xyz.txt	I-Beam-A	d	-2.385	6.704	-1.216	-2.368	6.656	-1.200	

 Table A.2. SMS measurements of the four flange points and computed coordinates using the binning process.

File Nome	I-Beam	Site	SMS	Coordinat	es (m)	Bounding Box Coordinates (m)			
r ne tvanie	Selected	Point	X	у	Z	х	у	Z	
				-					
A0-8gon-3_xyz.txt	I-Beam-A	а	-4.872	4.931	-1.200	-4.841	4.892	-1.187	
A0-8gon-3_xyz.txt	I-Beam-A	b	-4.968	5.079	-1.202	-4.936	5.044	-1.189	
A0-8gon-3_xyz.txt	I-Beam-A	с	-2.290	6.554	-1.215	-2.261	6.518	-1.198	
A0-8gon-3_xyz.txt	I-Beam-A	d	-2.385	6.704	-1.216	-2.356	6.670	-1.200	
A30-12gon-1_xyz.txt	I-Beam-A	а	-4.292	4.390	-1.203	-4.290	4.332	-1.188	
A30-12gon-1_xyz.txt	I-Beam-A	b	-4.448	4.472	-1.203	-4.449	4.415	-1.190	
A30-12gon-1_xyz.txt	I-Beam-A	c	-2.869	7.088	-1.217	-2.878	7.035	-1.205	
A30-12gon-1_xyz.txt	I-Beam-A	d	-3.026	7.169	-1.215	-3.037	7.118	-1.207	
A30-12gon-2_xyz.txt	I-Beam-A	а	-4.292	4.390	-1.203	-4.251	4.358	-1.189	
A30-12gon-2_xyz.txt	I-Beam-A	b	-4.448	4.472	-1.203	-4.410	4.441	-1.190	
A30-12gon-2_xyz.txt	I-Beam-A	с	-2.869	7.088	-1.217	-2.847	7.065	-1.212	
A30-12gon-2_xyz.txt	I-Beam-A	d	-3.026	7.169	-1.215	-3.006	7.148	-1.213	
A30-12gon-3_xyz.txt	I-Beam-A	а	-4.292	4.390	-1.203	-4.257	4.360	-1.189	
A30-12gon-3_xyz.txt	I-Beam-A	b	-4.448	4.472	-1.203	-4.417	4.442	-1.191	
A30-12gon-3_xyz.txt	I-Beam-A	с	-2.869	7.088	-1.217	-2.858	7.069	-1.212	
A30-12gon-3_xyz.txt	I-Beam-A	d	-3.026	7.169	-1.215	-3.017	7.151	-1.213	
A30-20gon-1_xyz.txt	I-Beam-A	а	-4.292	4.390	-1.203	-4.333	4.231	-1.185	
A30-20gon-1_xyz.txt	I-Beam-A	b	-4.448	4.472	-1.203	-4.491	4.315	-1.186	
A30-20gon-1_xyz.txt	I-Beam-A	с	-2.869	7.088	-1.217	-2.908	6.927	-1.219	
A30-20gon-1_xyz.txt	I-Beam-A	d	-3.026	7.169	-1.215	-3.066	7.011	-1.220	
A30-20gon-2_xyz.txt	I-Beam-A	а	-4.292	4.390	-1.203	-4.333	4.258	-1.199	
A30-20gon-2_xyz.txt	I-Beam-A	b	-4.448	4.472	-1.203	-4.491	4.343	-1.200	
A30-20gon-2_xyz.txt	I-Beam-A	с	-2.869	7.088	-1.217	-2.885	6.942	-1.213	
A30-20gon-2_xyz.txt	I-Beam-A	d	-3.026	7.169	-1.215	-3.043	7.027	-1.213	
A30-20gon-3_xyz.txt	I-Beam-B	а	-4.292	4.390	-1.203	-3.890	4.898	-1.602	
A30-20gon-3_xyz.txt	I-Beam-B	b	-4.448	4.472	-1.203	-4.118	5.010	-1.605	
A30-20gon-3 xyz.txt	I-Beam-B	с	-2.869	7.088	-1.217	-2.955	6.816	-1.579	
A30-20gon-3 xyz.txt	I-Beam-B	d	-3.026	7.169	-1.215	-3.184	6.927	-1.582	
0 _ 1									
A30-8gon-1 xyz.txt	I-Beam-A	а	-4.292	4.390	-1.203	-4.254	4.355	-1.187	
A30-8gon-1 xyz.txt	I-Beam-A	b	-4.448	4.472	-1.203	-4.413	4.437	-1.188	
A30-8gon-1 xyz.txt	I-Beam-A	с	-2.869	7.088	-1.217	-2.849	7.061	-1.205	
A30-8gon-1_xyz.txt	I-Beam-A	d	-3.026	7.169	-1.215	-3.008	7.144	-1.205	

Table A.2. Continued.

	I-Beam	Site	SMS	Coordinat	es (m)	Bounding	Box Coore	dinates (m)
File Name	Selected	Point	X	У	Z	x	у	Z
				•				
A30-8gon-2_xyz.txt	I-Beam-A	а	-4.292	4.390	-1.203	-4.285	4.307	-1.186
A30-8gon-2_xyz.txt	I-Beam-A	b	-4.448	4.472	-1.203	-4.445	4.390	-1.186
A30-8gon-2_xyz.txt	I-Beam-A	с	-2.869	7.088	-1.217	-2.878	7.012	-1.206
A30-8gon-2_xyz.txt	I-Beam-A	d	-3.026	7.169	-1.215	-3.037	7.095	-1.206
A30-8gon-3_xyz.txt	I-Beam-A	а	-4.292	4.390	-1.203	-4.268	4.344	-1.182
A30-8gon-3_xyz.txt	I-Beam-A	b	-4.448	4.472	-1.203	-4.427	4.427	-1.182
A30-8gon-3_xyz.txt	I-Beam-A	с	-2.869	7.088	-1.217	-2.851	7.044	-1.204
A30-8gon-3_xyz.txt	I-Beam-A	d	-3.026	7.169	-1.215	-3.010	7.128	-1.203
A30_12gon_1_xyz.txt	I-Beam-A	а	-4.292	4.390	-1.203	-4.290	4.332	-1.188
A30_12gon_1_xyz.txt	I-Beam-A	b	-4.448	4.472	-1.203	-4.449	4.415	-1.190
A30_12gon_1_xyz.txt	I-Beam-A	c	-2.869	7.088	-1.217	-2.878	7.035	-1.205
A30_12gon_1_xyz.txt	I-Beam-A	d	-3.026	7.169	-1.215	-3.037	7.118	-1.207
A45-12gon-1_xyz.txt	I-Beam-A	а	-3.895	4.250	-1.206	-3.890	4.193	-1.623
A45-12gon-1_xyz.txt	I-Beam-A	b	-4.070	4.286	-1.205	-4.065	4.233	-1.623
A45-12gon-1_xyz.txt	I-Beam-A	с	-3.248	7.229	-1.216	-3.219	7.168	-1.620
A45-12gon-1_xyz.txt	I-Beam-A	d	-3.421	7.266	-1.214	-3.394	7.208	-1.620
A45-12gon-2_xyz.txt	I-Beam-A	а	-3.895	4.250	-1.206	-3.889	4.160	-1.196
A45-12gon-2_xyz.txt	I-Beam-A	b	-4.070	4.286	-1.205	-4.065	4.199	-1.197
A45-12gon-2_xyz.txt	I-Beam-A	c	-3.248	7.229	-1.216	-3.234	7.139	-1.200
A45-12gon-2_xyz.txt	I-Beam-A	d	-3.421	7.266	-1.214	-3.410	7.177	-1.201
A45-12gon-3_xyz.txt	I-Beam-A	а	-3.895	4.250	-1.206	-3.882	4.173	-1.199
A45-12gon-3_xyz.txt	I-Beam-A	b	-4.070	4.286	-1.205	-4.057	4.211	-1.201
A45-12gon-3_xyz.txt	I-Beam-A	c	-3.248	7.229	-1.216	-3.237	7.154	-1.202
A45-12gon-3_xyz.txt	I-Beam-A	d	-3.421	7.266	-1.214	-3.412	7.192	-1.203
A45-20gon-1_xyz.txt	I-Beam-B	а	-3.895	4.250	-1.206	-3.932	3.831	-1.586
A45-20gon-1_xyz.txt	I-Beam-B	b	-4.070	4.286	-1.205	-4.180	3.886	-1.586
A45-20gon-1_xyz.txt	I-Beam-B	с	-3.248	7.229	-1.216	-3.470	5.914	-1.593
A45-20gon-1_xyz.txt	I-Beam-B	d	-3.421	7.266	-1.214	-3.718	5.969	-1.593
A45-20gon-2_xyz.txt	I-Beam-B	а	-3.895	4.250	-1.206	-3.691	4.698	-1.588
A45-20gon-2_xyz.txt	I-Beam-B	b	-4.070	4.286	-1.205	-3.941	4.745	-1.588
A45-20gon-2_xyz.txt	I-Beam-B	с	-3.248	7.229	-1.216	-3.303	6.796	-1.608
A45-20gon-2_xyz.txt	I-Beam-B	d	-3.421	7.266	-1.214	-3.552	6.842	-1.608

Table A.2. Continued

E 9. No	I-Beam	Site	SMS	Coordinat	es (m)	Bounding	Box Coord	linates (m)
File Name	Selected	Point	X	У	Z	X	У	Z
A45-20gon-3_xyz.txt	I-Beam-B	а	-3.895	4.250	-1.206	-3.886	3.905	-1.594
A45-20gon-3_xyz.txt	I-Beam-B	b	-4.070	4.286	-1.205	-4.135	3.957	-1.594
A45-20gon-3_xyz.txt	I-Beam-B	с	-3.248	7.229	-1.216	-3.452	5.994	-1.588
A45-20gon-3_xyz.txt	I-Beam-B	d	-3.421	7.266	-1.214	-3.701	6.046	-1.588
A45-8gon-1_xyz.txt	I-Beam-A	а	-3.895	4.250	-1.206	-3.875	4.210	-1.187
A45-8gon-1_xyz.txt	I-Beam-A	b	-4.070	4.286	-1.205	-4.050	4.248	-1.189
A45-8gon-1_xyz.txt	I-Beam-A	c	-3.248	7.229	-1.216	-3.230	7.191	-1.201
A45-8gon-1_xyz.txt	I-Beam-A	d	-3.421	7.266	-1.214	-3.405	7.229	-1.203
A45-8gon-2_xyz.txt	I-Beam-A	а	-3.895	4.250	-1.206	-3.879	4.190	-1.192
A45-8gon-2_xyz.txt	I-Beam-A	b	-4.070	4.286	-1.205	-4.055	4.228	-1.195
A45-8gon-2_xyz.txt	I-Beam-A	с	-3.248	7.229	-1.216	-3.231	7.170	-1.199
A45-8gon-2_xyz.txt	I-Beam-A	d	-3.421	7.266	-1.214	-3.407	7.208	-1.202
A45-8gon-3_xyz.txt	I-Beam-A	а	-3.895	4.250	-1.206	-3.862	4.230	-1.189
A45-8gon-3_xyz.txt	I-Beam-A	b	-4.070	4.286	-1.205	-4.038	4.267	-1.190
A45-8gon-3_xyz.txt	I-Beam-A	с	-3.248	7.229	-1.216	-3.230	7.213	-1.200
A45-8gon-3_xyz.txt	I-Beam-A	d	-3.421	7.266	-1.214	-3.406	7.251	-1.202
A45_12gon_1_xyz.txt	I-Beam-A	а	-3.895	4.250	-1.206	-3.890	4.193	-1.623
A45_12gon_1_xyz.txt	I-Beam-A	b	-4.070	4.286	-1.205	-4.065	4.233	-1.623
A45_12gon_1_xyz.txt	I-Beam-A	с	-3.248	7.229	-1.216	-3.219	7.168	-1.620
A45 12gon 1 xyz.txt	I-Beam-A	d	-3.421	7.266	-1.214	-3.394	7.208	-1.620
A60-12gon-1_xyz.txt	I-Beam-A	а	-3.521	4.208	-1.211	-3.499	4.137	-1.199
A60-12gon-1 xyz.txt	I-Beam-A	b	-3.697	4.200	-1.210	-3.678	4.131	-1.199
A60-12gon-1 xyz.txt	I-Beam-A	с	-3.638	7.255	-1.210	-3.604	7.185	-1.199
A60-12gon-1 xyz.txt	I-Beam-A	d	-3.815	7.248	-1.207	-3.783	7.179	-1.200
0 _ 1								
A60-12gon-2 xyz.txt	I-Beam-B	а	-3.521	4.208	-1.211	-0.543	5.526	-0.223
A60-12gon-2 xyz.txt	I-Beam-B	b	-3.697	4.200	-1.210	-0.747	5.401	-0.137
A60-12gon-2 xyz.txt	I-Beam-B	с	-3.638	7.255	-1.210	-1.749	6.484	-1.699
A60-12gon-2 xyz.txt	I-Beam-B	d	-3.815	7.248	-1.207	-1.953	6.359	-1.614
A60-12gon-3 xyz.txt	I-Beam-A	а	-3.521	4.208	-1.211	-3.522	4.101	-1.198
A60-12gon-3 xyz.txt	I-Beam-A	b	-3.697	4.200	-1.210	-3.702	4.098	-1.199
A60-12gon-3 xyz.txt	I-Beam-A	с	-3.638	7.255	-1.210	-3.575	7.150	-1.208
A60-12gon-3 xyz.txt	I-Beam-A	d	-3.815	7.248	-1.207	-3.755	7.147	-1.209

Table A.2. Continued.

	I-Beam	Site	SMS	Coordinat	es (m)	Bounding	Box Coord	linates (m)
File Name	Selected	Point	X	у	Z	x	у	Z
				•			•	
A60-20gon-1_xyz.txt	I-Beam-B	а	-3.521	4.208	-1.211	-3.528	4.999	-1.615
A60-20gon-1_xyz.txt	I-Beam-B	b	-3.697	4.200	-1.210	-3.782	4.999	-1.615
A60-20gon-1_xyz.txt	I-Beam-B	с	-3.638	7.255	-1.210	-3.528	7.133	-1.607
A60-20gon-1_xyz.txt	I-Beam-B	d	-3.815	7.248	-1.207	-3.782	7.133	-1.607
A60-20gon-2_xyz.txt	I-Beam-B	а	-3.521	4.208	-1.211	-3.509	3.925	-1.588
A60-20gon-2_xyz.txt	I-Beam-B	b	-3.697	4.200	-1.210	-3.763	3.925	-1.588
A60-20gon-2_xyz.txt	I-Beam-B	с	-3.638	7.255	-1.210	-3.509	6.058	-1.599
A60-20gon-2_xyz.txt	I-Beam-B	d	-3.815	7.248	-1.207	-3.763	6.058	-1.599
A60-20gon-3_xyz.txt	I-Beam-B	а	-3.521	4.208	-1.211	-3.506	3.854	-1.602
A60-20gon-3_xyz.txt	I-Beam-B	b	-3.697	4.200	-1.210	-3.760	3.854	-1.602
A60-20gon-3_xyz.txt	I-Beam-B	с	-3.638	7.255	-1.210	-3.506	5.988	-1.593
A60-20gon-3_xyz.txt	I-Beam-B	d	-3.815	7.248	-1.207	-3.760	5.988	-1.593
A60-8gon-1_xyz.txt	I-Beam-A	а	-3.521	4.208	-1.211	-3.520	4.359	-1.190
A60-8gon-1_xyz.txt	I-Beam-A	b	-3.697	4.200	-1.210	-3.699	4.354	-1.192
A60-8gon-1_xyz.txt	I-Beam-A	с	-3.638	7.255	-1.210	-3.601	7.408	-1.199
A60-8gon-1_xyz.txt	I-Beam-A	d	-3.815	7.248	-1.207	-3.780	7.403	-1.200
A60-8gon-2_xyz.txt	I-Beam-A	а	-3.521	4.208	-1.211	-3.499	4.261	-1.192
A60-8gon-2_xyz.txt	I-Beam-A	b	-3.697	4.200	-1.210	-3.678	4.254	-1.194
A60-8gon-2 xyz.txt	I-Beam-A	с	-3.638	7.255	-1.210	-3.615	7.308	-1.198
A60-8gon-2 xyz.txt	I-Beam-A	d	-3.815	7.248	-1.207	-3.794	7.302	-1.199
A60-8gon-3_xyz.txt	I-Beam-A	а	-3.521	4.208	-1.211	-3.520	4.250	-1.192
A60-8gon-3_xyz.txt	I-Beam-A	b	-3.697	4.200	-1.210	-3.700	4.245	-1.194
A60-8gon-3_xyz.txt	I-Beam-A	с	-3.638	7.255	-1.210	-3.595	7.299	-1.198
A60-8gon-3 xyz.txt	I-Beam-A	d	-3.815	7.248	-1.207	-3.775	7.294	-1.200
A90-12gon-1 xyz.txt	I-Beam-B	а	-2.770	4.445	-1.213	-4.686	3.378	-2.361
A90-12gon-1 xyz.txt	I-Beam-B	b	-2.918	4.350	-1.213	-4.780	3.142	-2.362
A90-12gon-1 xyz.txt	I-Beam-B	с	-4.381	7.033	-1.207	-4.856	3.440	-0.235
A90-12gon-1 xyz.txt	I-Beam-B	d	-4.532	6.940	-1.204	-4.950	3.204	-0.236
/								
A90-12gon-2_xyz.txt	I-Beam-B	а	-2.770	4.445	-1.213	-0.369	5.268	-0.469
A90-12gon-2_xyz.txt	I-Beam-B	b	-2.918	4.350	-1.213	-0.561	5.176	-0.331
A90-12gon-2_xyz.txt	I-Beam-B	с	-4.381	7.033	-1.207	-1.760	6.104	-1.854
A90-12gon-2_xyz.txt	I-Beam-B	d	-4.532	6.940	-1.204	-1.953	6.012	-1.716

Table A.2. Continued

File Nome	I-Beam	Site	SMS	Coordinat	es (m)	Bounding Box Coordinates (m)			
r ne maine	Selected	Point	Х	У	Z	Х	У	Z	
A90-12gon-3_xyz.txt	I-Beam-B	а	-2.770	4.445	-1.213	-4.639	3.443	-0.201	
A90-12gon-3_xyz.txt	I-Beam-B	b	-2.918	4.350	-1.213	-4.873	3.343	-0.201	
A90-12gon-3_xyz.txt	I-Beam-B	c	-4.381	7.033	-1.207	-4.662	3.499	-2.334	
A90-12gon-3_xyz.txt	I-Beam-B	d	-4.532	6.940	-1.204	-4.896	3.399	-2.334	
A90-20gon-1_xyz.txt	I-Beam-B	а	-2.770	4.445	-1.213	-4.620	3.439	0.711	
A90-20gon-1_xyz.txt	I-Beam-B	b	-2.918	4.350	-1.213	-4.874	3.439	0.711	
A90-20gon-1_xyz.txt	I-Beam-B	с	-4.381	7.033	-1.207	-4.620	3.439	-1.422	
A90-20gon-1_xyz.txt	I-Beam-B	d	-4.532	6.940	-1.204	-4.874	3.439	-1.422	
A90-20gon-2_xyz.txt	I-Beam-B	а	-2.770	4.445	-1.213	-4.521	3.293	-0.063	
A90-20gon-2_xyz.txt	I-Beam-B	b	-2.918	4.350	-1.213	-4.701	3.472	-0.063	
A90-20gon-2_xyz.txt	I-Beam-B	с	-4.381	7.033	-1.207	-4.521	3.293	-2.196	
A90-20gon-2_xyz.txt	I-Beam-B	d	-4.532	6.940	-1.204	-4.701	3.472	-2.196	
A90-20gon-3_xyz.txt	I-Beam-B	а	-2.770	4.445	-1.213	-1.266	6.914	-0.185	
A90-20gon-3_xyz.txt	I-Beam-B	b	-2.918	4.350	-1.213	-1.014	6.882	-0.185	
A90-20gon-3_xyz.txt	I-Beam-B	с	-4.381	7.033	-1.207	-1.266	6.914	-2.319	
A90-20gon-3_xyz.txt	I-Beam-B	d	-4.532	6.940	-1.204	-1.014	6.882	-2.319	
A90-8gon-1_xyz.txt	I-Beam-B	а	-2.770	4.445	-1.213	-4.661	3.336	-0.240	
A90-8gon-1_xyz.txt	I-Beam-B	b	-2.918	4.350	-1.213	-4.776	3.109	-0.249	
A90-8gon-1_xyz.txt	I-Beam-B	с	-4.381	7.033	-1.207	-4.964	3.573	-2.338	
A90-8gon-1_xyz.txt	I-Beam-B	d	-4.532	6.940	-1.204	-5.078	3.347	-2.347	
A90-8gon-2_xyz.txt	I-Beam-B	а	-2.770	4.445	-1.213	-4.520	3.051	-0.233	
A90-8gon-2_xyz.txt	I-Beam-B	b	-2.918	4.350	-1.213	-4.435	3.291	-0.236	
A90-8gon-2_xyz.txt	I-Beam-B	с	-4.381	7.033	-1.207	-4.590	3.047	-2.365	
A90-8gon-2_xyz.txt	I-Beam-B	d	-4.532	6.940	-1.204	-4.505	3.286	-2.368	
A90-8gon-3_xyz.txt	I-Beam-B	а	-2.770	4.445	-1.213	-0.540	5.825	-0.074	
A90-8gon-3_xyz.txt	I-Beam-B	b	-2.918	4.350	-1.213	-0.739	5.704	0.027	
A90-8gon-3_xyz.txt	I-Beam-B	с	-4.381	7.033	-1.207	-1.681	6.241	-1.828	
A90-8gon-3_xyz.txt	I-Beam-B	d	-4.532	6.940	-1.204	-1.880	6.119	-1.727	
B0-12gon-1_xyz.txt	I-Beam-B	а	-4.486	5.171	-1.262	-4.443	5.149	-1.239	
B0-12gon-1_xyz.txt	I-Beam-B	b	-4.618	5.381	-1.258	-4.580	5.363	-1.244	
B0-12gon-1_xyz.txt	I-Beam-B	c	-2.673	6.298	-1.274	-2.648	6.303	-1.272	
B0-12gon-1_xyz.txt	I-Beam-B	d	-2.807	6.510	-1.270	-2.786	6.517	-1.277	

Table A.2. Continued.

Ette Norree	I-Beam	Site	SMS	Coordinat	es (m)	Bounding Box Coordinates (m)			
File Name	Selected	Point	X	У	Z	X	у	Z	
B0-12gon-2_xyz.txt	I-Beam-B	а	-4.486	5.171	-1.262	-4.465	5.147	-1.246	
B0-12gon-2_xyz.txt	I-Beam-B	b	-4.618	5.381	-1.258	-4.598	5.363	-1.248	
B0-12gon-2_xyz.txt	I-Beam-B	с	-2.673	6.298	-1.274	-2.649	6.268	-1.264	
B0-12gon-2_xyz.txt	I-Beam-B	d	-2.807	6.510	-1.270	-2.783	6.484	-1.266	
B0-12gon-3_xyz.txt	I-Beam-B	а	-4.486	5.171	-1.262	-4.442	5.141	-1.252	
B0-12gon-3_xyz.txt	I-Beam-B	b	-4.618	5.381	-1.258	-4.580	5.354	-1.257	
B0-12gon-3_xyz.txt	I-Beam-B	c	-2.673	6.298	-1.274	-2.649	6.297	-1.260	
B0-12gon-3_xyz.txt	I-Beam-B	d	-2.807	6.510	-1.270	-2.787	6.511	-1.265	
B0-20gon-1_xyz.txt	I-Beam-B	а	-4.486	5.171	-1.262	-4.489	5.134	-1.246	
B0-20gon-1_xyz.txt	I-Beam-B	b	-4.618	5.381	-1.258	-4.623	5.349	-1.250	
B0-20gon-1_xyz.txt	I-Beam-B	с	-2.673	6.298	-1.274	-2.677	6.259	-1.282	
B0-20gon-1_xyz.txt	I-Beam-B	d	-2.807	6.510	-1.270	-2.811	6.474	-1.287	
B0-20gon-2_xyz.txt	I-Beam-B	а	-4.486	5.171	-1.262	-4.477	5.155	-1.248	
B0-20gon-2_xyz.txt	I-Beam-B	b	-4.618	5.381	-1.258	-4.611	5.371	-1.255	
B0-20gon-2_xyz.txt	I-Beam-B	c	-2.673	6.298	-1.274	-2.662	6.276	-1.274	
B0-20gon-2_xyz.txt	I-Beam-B	d	-2.807	6.510	-1.270	-2.796	6.492	-1.280	
B0-20gon-3_xyz.txt	I-Beam-B	а	-4.486	5.171	-1.262	-4.500	5.120	-1.245	
B0-20gon-3_xyz.txt	I-Beam-B	b	-4.618	5.381	-1.258	-4.637	5.334	-1.251	
B0-20gon-3_xyz.txt	I-Beam-B	c	-2.673	6.298	-1.274	-2.706	6.276	-1.268	
B0-20gon-3_xyz.txt	I-Beam-B	d	-2.807	6.510	-1.270	-2.844	6.489	-1.274	
B0-8gon-1_xyz.txt	I-Beam-B	а	-4.486	5.171	-1.262	-4.458	5.136	-1.238	
B0-8gon-1_xyz.txt	I-Beam-B	b	-4.618	5.381	-1.258	-4.596	5.350	-1.241	
B0-8gon-1_xyz.txt	I-Beam-B	c	-2.673	6.298	-1.274	-2.663	6.289	-1.256	
B0-8gon-1_xyz.txt	I-Beam-B	d	-2.807	6.510	-1.270	-2.800	6.503	-1.260	
B0-8gon-2_xyz.txt	I-Beam-B	а	-4.486	5.171	-1.262	-4.458	5.147	-1.237	
B0-8gon-2_xyz.txt	I-Beam-B	b	-4.618	5.381	-1.258	-4.593	5.362	-1.244	
B0-8gon-2_xyz.txt	I-Beam-B	с	-2.673	6.298	-1.274	-2.653	6.285	-1.251	
B0-8gon-2_xyz.txt	I-Beam-B	d	-2.807	6.510	-1.270	-2.789	6.500	-1.258	
B0-8gon-3_xyz.txt	I-Beam-B	а	-4.486	5.171	-1.262	-4.453	5.152	-1.237	
B0-8gon-3_xyz.txt	I-Beam-B	b	-4.618	5.381	-1.258	-4.587	5.367	-1.244	
B0-8gon-3_xyz.txt	I-Beam-B	с	-2.673	6.298	-1.274	-2.644	6.284	-1.251	
B0-8gon-3_xyz.txt	I-Beam-B	d	-2.807	6.510	-1.270	-2.779	6.499	-1.258	

Table A.2. Continued.

Ella Norma I-Beam		Site	SMS	Coordinat	es (m)	Bounding Box Coordinates (m)			
File Name	Selected	Point	X	У	Z	X	У	Z	
B30-12gon-1_xyz.txt	I-Beam-B	а	-4.065	4.797	-1.265	-4.042	4.772	-1.241	
B30-12gon-1_xyz.txt	I-Beam-B	b	-4.288	4.911	-1.257	-4.268	4.888	-1.241	
B30-12gon-1_xyz.txt	I-Beam-B	c	-3.078	6.687	-1.273	-3.067	6.669	-1.270	
B30-12gon-1_xyz.txt	I-Beam-B	d	-3.301	6.801	-1.266	-3.292	6.785	-1.270	
B30-12gon-2_xyz.txt	I-Beam-B	а	-4.065	4.797	-1.265	-4.056	4.756	-1.242	
B30-12gon-2_xyz.txt	I-Beam-B	b	-4.288	4.911	-1.257	-4.283	4.870	-1.246	
B30-12gon-2_xyz.txt	I-Beam-B	с	-3.078	6.687	-1.273	-3.098	6.662	-1.263	
B30-12gon-2_xyz.txt	I-Beam-B	d	-3.301	6.801	-1.266	-3.325	6.776	-1.267	
B30-12gon-3_xyz.txt	I-Beam-B	а	-4.065	4.797	-1.265	-4.077	4.724	-1.245	
B30-12gon-3_xyz.txt	I-Beam-B	b	-4.288	4.911	-1.257	-4.303	4.839	-1.250	
B30-12gon-3_xyz.txt	I-Beam-B	с	-3.078	6.687	-1.273	-3.109	6.625	-1.256	
B30-12gon-3_xyz.txt	I-Beam-B	d	-3.301	6.801	-1.266	-3.335	6.740	-1.261	
B30-20gon-1_xyz.txt	I-Beam-B	а	-4.065	4.797	-1.265	-4.060	4.748	-1.249	
B30-20gon-1_xyz.txt	I-Beam-B	b	-4.288	4.911	-1.257	-4.286	4.864	-1.248	
B30-20gon-1_xyz.txt	I-Beam-B	с	-3.078	6.687	-1.273	-3.080	6.643	-1.278	
B30-20gon-1_xyz.txt	I-Beam-B	d	-3.301	6.801	-1.266	-3.306	6.759	-1.277	
B30-20gon-2_xyz.txt	I-Beam-B	а	-4.065	4.797	-1.265	-4.039	4.749	-1.244	
B30-20gon-2_xyz.txt	I-Beam-B	b	-4.288	4.911	-1.257	-4.265	4.865	-1.244	
B30-20gon-2_xyz.txt	I-Beam-B	c	-3.078	6.687	-1.273	-3.065	6.647	-1.281	
B30-20gon-2_xyz.txt	I-Beam-B	d	-3.301	6.801	-1.266	-3.291	6.763	-1.281	
B30-20gon-3_xyz.txt	I-Beam-B	а	-4.065	4.797	-1.265	-3.610	5.509	-1.708	
B30-20gon-3_xyz.txt	I-Beam-B	b	-4.288	4.911	-1.257	-3.843	5.610	-1.710	
B30-20gon-3_xyz.txt	I-Beam-B	c	-3.078	6.687	-1.273	-2.765	7.466	-1.611	
B30-20gon-3_xyz.txt	I-Beam-B	d	-3.301	6.801	-1.266	-2.999	7.567	-1.612	
B30-8gon-1_xyz.txt	I-Beam-B	а	-4.065	4.797	-1.265	-4.052	4.764	-1.241	
B30-8gon-1_xyz.txt	I-Beam-B	b	-4.288	4.911	-1.257	-4.278	4.879	-1.244	
B30-8gon-1_xyz.txt	I-Beam-B	c	-3.078	6.687	-1.273	-3.091	6.669	-1.260	
B30-8gon-1_xyz.txt	I-Beam-B	d	-3.301	6.801	-1.266	-3.317	6.783	-1.262	
B30-8gon-2_xyz.txt	I-Beam-B	а	-4.065	4.797	-1.265	-4.043	4.787	-1.235	
B30-8gon-2_xyz.txt	I-Beam-B	b	-4.288	4.911	-1.257	-4.270	4.902	-1.236	
B30-8gon-2_xyz.txt	I-Beam-B	с	-3.078	6.687	-1.273	-3.077	6.689	-1.258	
B30-8gon-2_xyz.txt	I-Beam-B	d	-3.301	6.801	-1.266	-3.304	6.804	-1.260	

Table A.2. Continued.

File Nome	I-Beam	Site Point	SMS	SMS Coordinates (m)			Bounding Box Coordinates (m)		
гистуание	Selected	Site I Unit	X	у	Z	X	у	Z	
B30-8gon-3_xyz.txt	I-Beam-B	а	-4.065	4.797	-1.265	-4.056	4.756	-1.237	
B30-8gon-3_xyz.txt	I-Beam-B	b	-4.288	4.911	-1.257	-4.283	4.870	-1.239	
B30-8gon-3_xyz.txt	I-Beam-B	с	-3.078	6.687	-1.273	-3.098	6.662	-1.262	
B30-8gon-3_xyz.txt	I-Beam-B	d	-3.301	6.801	-1.266	-3.324	6.776	-1.265	
B45-12gon-1_xyz.txt	I-Beam-B	а	-3.797	4.690	-1.267	-3.782	4.598	-1.252	
B45-12gon-1_xyz.txt	I-Beam-B	b	-4.043	4.739	-1.258	-4.031	4.648	-1.254	
B45-12gon-1_xyz.txt	I-Beam-B	с	-3.352	6.776	-1.272	-3.363	6.690	-1.266	
B45-12gon-1_xyz.txt	I-Beam-B	d	-3.598	6.826	-1.265	-3.612	6.739	-1.268	
B45-12gon-2_xyz.txt	I-Beam-B	а	-3.797	4.690	-1.267	-3.796	4.590	-1.251	
B45-12gon-2_xyz.txt	I-Beam-B	b	-4.043	4.739	-1.258	-4.045	4.641	-1.255	
B45-12gon-2_xyz.txt	I-Beam-B	с	-3.352	6.776	-1.272	-3.368	6.680	-1.263	
B45-12gon-2_xyz.txt	I-Beam-B	d	-3.598	6.826	-1.265	-3.617	6.731	-1.267	
B45-12gon-3_xyz.txt	I-Beam-B	а	-3.797	4.690	-1.267	-3.777	4.656	-1.255	
B45-12gon-3_xyz.txt	I-Beam-B	b	-4.043	4.739	-1.258	-4.026	4.707	-1.259	
B45-12gon-3_xyz.txt	I-Beam-B	с	-3.352	6.776	-1.272	-3.349	6.746	-1.257	
B45-12gon-3_xyz.txt	I-Beam-B	d	-3.598	6.826	-1.265	-3.598	6.797	-1.261	
B45-20gon-1_xyz.txt	I-Beam-B	а	-3.797	4.690	-1.267	-3.823	4.399	-1.267	
B45-20gon-1_xyz.txt	I-Beam-B	b	-4.043	4.739	-1.258	-4.072	4.449	-1.266	
B45-20gon-1_xyz.txt	I-Beam-B	с	-3.352	6.776	-1.272	-3.400	6.490	-1.276	
B45-20gon-1_xyz.txt	I-Beam-B	d	-3.598	6.826	-1.265	-3.649	6.540	-1.275	
B45-20gon-2_xyz.txt	I-Beam-B	а	-3.797	4.690	-1.267	-3.908	4.031	-1.235	
B45-20gon-2_xyz.txt	I-Beam-B	b	-4.043	4.739	-1.258	-4.157	4.080	-1.241	
B45-20gon-2_xyz.txt	I-Beam-B	с	-3.352	6.776	-1.272	-3.492	6.123	-1.281	
B45-20gon-2_xyz.txt	I-Beam-B	d	-3.598	6.826	-1.265	-3.741	6.172	-1.286	
B45-20gon-3_xyz.txt	I-Beam-B	а	-3.797	4.690	-1.267	-3.867	4.081	-1.631	
B45-20gon-3_xyz.txt	I-Beam-B	b	-4.043	4.739	-1.258	-4.118	4.125	-1.635	
B45-20gon-3_xyz.txt	I-Beam-B	с	-3.352	6.776	-1.272	-3.503	6.184	-1.616	
B45-20gon-3_xyz.txt	I-Beam-B	d	-3.598	6.826	-1.265	-3.753	6.227	-1.620	
B45-8gon-1_xyz.txt	I-Beam-B	а	-3.797	4.690	-1.267	-3.792	4.615	-1.250	
B45-8gon-1_xyz.txt	I-Beam-B	b	-4.043	4.739	-1.258	-4.040	4.667	-1.253	
B45-8gon-1_xyz.txt	I-Beam-B	с	-3.352	6.776	-1.272	-3.354	6.703	-1.257	
B45-8gon-1_xyz.txt	I-Beam-B	d	-3.598	6.826	-1.265	-3.603	6.755	-1.261	

Table A.2. Continued.

E 9. No	I-Beam	C!4. D. !	SMS Coordinates (m)			Bounding Box Coordinates (m)		
File Name	Selected	Site Point	X	У	Z	X	У	Z
B45-8gon-2_xyz.txt	I-Beam-B	а	-3.797	4.690	-1.267	-3.795	4.613	-1.248
B45-8gon-2_xyz.txt	I-Beam-B	b	-4.043	4.739	-1.258	-4.043	4.665	-1.255
B45-8gon-2_xyz.txt	I-Beam-B	с	-3.352	6.776	-1.272	-3.356	6.701	-1.251
B45-8gon-2_xyz.txt	I-Beam-B	d	-3.598	6.826	-1.265	-3.604	6.753	-1.258
B45-8gon-3_xyz.txt	I-Beam-B	а	-3.797	4.690	-1.267	-3.782	4.648	-1.247
B45-8gon-3_xyz.txt	I-Beam-B	b	-4.043	4.739	-1.258	-4.031	4.699	-1.251
B45-8gon-3_xyz.txt	I-Beam-B	с	-3.352	6.776	-1.272	-3.355	6.738	-1.256
B45-8gon-3_xyz.txt	I-Beam-B	d	-3.598	6.826	-1.265	-3.604	6.789	-1.260
B60-12gon-1_xyz.txt	I-Beam-B	а	-3.525	4.664	-1.271	-3.459	4.627	-1.262
B60-12gon-1_xyz.txt	I-Beam-B	b	-3.778	4.650	-1.263	-3.712	4.605	-1.265
B60-12gon-1_xyz.txt	I-Beam-B	с	-3.607	6.795	-1.270	-3.643	6.753	-1.263
B60-12gon-1_xyz.txt	I-Beam-B	d	-3.858	6.783	-1.260	-3.896	6.731	-1.266
B60-12gon-2_xyz.txt	I-Beam-B	а	-3.525	4.664	-1.271	-4.449	3.214	-0.177
B60-12gon-2_xyz.txt	I-Beam-B	b	-3.778	4.650	-1.263	-4.578	2.995	-0.185
B60-12gon-2_xyz.txt	I-Beam-B	с	-3.607	6.795	-1.270	-4.441	3.286	-2.309
B60-12gon-2_xyz.txt	I-Beam-B	d	-3.858	6.783	-1.260	-4.570	3.067	-2.317
B60-12gon-3_xyz.txt	I-Beam-B	а	-3.525	4.664	-1.271	-3.483	4.340	-1.638
B60-12gon-3_xyz.txt	I-Beam-B	b	-3.778	4.650	-1.263	-3.737	4.333	-1.640
B60-12gon-3_xyz.txt	I-Beam-B	с	-3.607	6.795	-1.270	-3.540	6.472	-1.630
B60-12gon-3_xyz.txt	I-Beam-B	d	-3.858	6.783	-1.260	-3.793	6.466	-1.631
B60-20gon-1_xyz.txt	I-Beam-B	а	-3.525	4.664	-1.271	-3.529	4.318	-1.621
B60-20gon-1_xyz.txt	I-Beam-B	b	-3.778	4.650	-1.263	-3.783	4.318	-1.621
B60-20gon-1_xyz.txt	I-Beam-B	с	-3.607	6.795	-1.270	-3.529	6.452	-1.646
B60-20gon-1_xyz.txt	I-Beam-B	d	-3.858	6.783	-1.260	-3.783	6.452	-1.646
B60-20gon-2_xyz.txt	I-Beam-B	а	-3.525	4.664	-1.271	-3.505	4.160	-1.634
B60-20gon-2_xyz.txt	I-Beam-B	b	-3.778	4.650	-1.263	-3.759	4.160	-1.634
B60-20gon-2_xyz.txt	I-Beam-B	с	-3.607	6.795	-1.270	-3.505	6.293	-1.660
B60-20gon-2_xyz.txt	I-Beam-B	d	-3.858	6.783	-1.260	-3.759	6.293	-1.660
B60-20gon-3_xyz.txt	I-Beam-B	а	-3.525	4.664	-1.271	-3.498	4.136	-1.618
B60-20gon-3_xyz.txt	I-Beam-B	b	-3.778	4.650	-1.263	-3.752	4.136	-1.618
B60-20gon-3_xyz.txt	I-Beam-B	c	-3.607	6.795	-1.270	-3.498	6.269	-1.670
B60-20gon-3_xyz.txt	I-Beam-B	d	-3.858	6.783	-1.260	-3.752	6.269	-1.670

Table A.2. Continued.

File Nome	I-Beam	Site Point	SMS Coordinates (m)			Bounding Box Coordinates (m)		
File Ivallie	Selected	Site I ollit	X	у	Z	X	у	Z
B60-8gon-1_xyz.txt	I-Beam-B	а	-3.525	4.664	-1.271	-3.471	4.701	-1.638
B60-8gon-1_xyz.txt	I-Beam-B	b	-3.778	4.650	-1.263	-3.724	4.684	-1.638
B60-8gon-1_xyz.txt	I-Beam-B	с	-3.607	6.795	-1.270	-3.615	6.830	-1.616
B60-8gon-1_xyz.txt	I-Beam-B	d	-3.858	6.783	-1.260	-3.868	6.812	-1.616
B60-8gon-2_xyz.txt	I-Beam-B	а	-3.525	4.664	-1.271	-3.464	4.680	-1.635
B60-8gon-2_xyz.txt	I-Beam-B	b	-3.778	4.650	-1.263	-3.717	4.660	-1.636
B60-8gon-2_xyz.txt	I-Beam-B	c	-3.607	6.795	-1.270	-3.635	6.806	-1.612
B60-8gon-2_xyz.txt	I-Beam-B	d	-3.858	6.783	-1.260	-3.888	6.786	-1.613
B60-8gon-3_xyz.txt	I-Beam-B	а	-3.525	4.664	-1.271	-3.464	4.623	-1.250
B60-8gon-3_xyz.txt	I-Beam-B	b	-3.778	4.650	-1.263	-3.717	4.602	-1.251
B60-8gon-3_xyz.txt	I-Beam-B	c	-3.607	6.795	-1.270	-3.637	6.749	-1.269
B60-8gon-3_xyz.txt	I-Beam-B	d	-3.858	6.783	-1.260	-3.890	6.729	-1.270
B90-12gon-1_xyz.txt	I-Beam-B	а	-2.991	4.832	-1.273	-4.684	3.449	-2.333
B90-12gon-1_xyz.txt	I-Beam-B	b	-3.203	4.698	-1.265	-4.806	3.226	-2.340
B90-12gon-1_xyz.txt	I-Beam-B	с	-4.109	6.648	-1.267	-4.843	3.464	-0.205
B90-12gon-1_xyz.txt	I-Beam-B	d	-4.322	6.513	-1.258	-4.965	3.241	-0.213
B90-12gon-2_xyz.txt	I-Beam-B	а	-2.991	4.832	-1.273	-0.573	5.517	-0.190
B90-12gon-2_xyz.txt	I-Beam-B	b	-3.203	4.698	-1.265	-0.778	5.388	-0.114
B90-12gon-2_xyz.txt	I-Beam-B	c	-4.109	6.648	-1.267	-1.748	6.505	-1.672
B90-12gon-2_xyz.txt	I-Beam-B	d	-4.322	6.513	-1.258	-1.952	6.376	-1.596
B90-12gon-3_xyz.txt	I-Beam-B	а	-2.991	4.832	-1.273	-0.900	5.946	-0.220
B90-12gon-3_xyz.txt	I-Beam-B	b	-3.203	4.698	-1.265	-1.128	5.865	-0.142
B90-12gon-3_xyz.txt	I-Beam-B	c	-4.109	6.648	-1.267	-1.717	6.415	-2.134
B90-12gon-3_xyz.txt	I-Beam-B	d	-4.322	6.513	-1.258	-1.945	6.335	-2.057
B90-20gon-1_xyz.txt	I-Beam-B	а	-2.991	4.832	-1.273	-4.468	3.036	-0.041
B90-20gon-1_xyz.txt	I-Beam-B	b	-3.203	4.698	-1.265	-4.468	3.290	-0.041
B90-20gon-1_xyz.txt	I-Beam-B	с	-4.109	6.648	-1.267	-4.468	3.036	-2.174
B90-20gon-1_xyz.txt	I-Beam-B	d	-4.322	6.513	-1.258	-4.468	3.290	-2.174
B90-20gon-2_xyz.txt	I-Beam-B	а	-2.991	4.832	-1.273	-4.528	3.455	-0.318
B90-20gon-2_xyz.txt	I-Beam-B	b	-3.203	4.698	-1.265	-4.782	3.455	-0.318
B90-20gon-2_xyz.txt	I-Beam-B	c	-4.109	6.648	-1.267	-4.528	3.455	-2.452
B90-20gon-2_xyz.txt	I-Beam-B	d	-4.322	6.513	-1.258	-4.782	3.455	-2.452

File Nome	I-Beam	Site	SMS	SMS Coordinates (m)			Bounding Box Coordinates (m)		
r ne manie	Selected	Point	Х	У	Z	Х	У	Z	
B90-20gon-3_xyz.txt	I-Beam-B	а	-2.991	4.832	-1.273	-4.837	3.293	-0.027	
B90-20gon-3_xyz.txt	I-Beam-B	b	-3.203	4.698	-1.265	-4.837	3.039	-0.027	
B90-20gon-3_xyz.txt	I-Beam-B	с	-4.109	6.648	-1.267	-4.837	3.293	-2.161	
B90-20gon-3_xyz.txt	I-Beam-B	d	-4.322	6.513	-1.258	-4.837	3.039	-2.161	
B90-8gon-1_xyz.txt	I-Beam-B	а	-2.991	4.832	-1.273	-4.420	3.231	-2.332	
B90-8gon-1_xyz.txt	I-Beam-B	b	-3.203	4.698	-1.265	-4.582	3.035	-2.338	
B90-8gon-1_xyz.txt	I-Beam-B	с	-4.109	6.648	-1.267	-4.466	3.206	-0.199	
B90-8gon-1_xyz.txt	I-Beam-B	d	-4.322	6.513	-1.258	-4.628	3.011	-0.205	
B90-8gon-2_xyz.txt	I-Beam-B	а	-2.991	4.832	-1.273	-4.191	7.741	-1.847	
B90-8gon-2_xyz.txt	I-Beam-B	b	-3.203	4.698	-1.265	-4.189	7.489	-1.819	
B90-8gon-2_xyz.txt	I-Beam-B	с	-4.109	6.648	-1.267	-5.329	7.928	-0.052	
B90-8gon-2_xyz.txt	I-Beam-B	d	-4.322	6.513	-1.258	-5.327	7.676	-0.025	
B90-8gon-3_xyz.txt	I-Beam-B	а	-2.991	4.832	-1.273	-4.348	7.409	-2.066	
B90-8gon-3_xyz.txt	I-Beam-B	b	-3.203	4.698	-1.265	-4.414	7.650	-2.113	
B90-8gon-3_xyz.txt	I-Beam-B	с	-4.109	6.648	-1.267	-4.612	7.749	0.024	
B90-8gon-3_xyz.txt	I-Beam-B	d	-4.322	6.513	-1.258	-4.678	7.990	-0.024	

Table A.2. Continued.

File Nome	I-Beam	Site	Error (m)			
r ne Name	Selected	Point	dx	dy	dz	
A0_12gon_1_xyz.txt	I-Beam-A	a	-0.058	0.028	-0.005	
A0_12gon_1_xyz.txt	I-Beam-A	b	-0.058	0.024	-0.007	
A0_12gon_1_xyz.txt	I-Beam-A	c	-0.056	0.025	-0.019	
A0_12gon_1_xyz.txt	I-Beam-A	d	-0.056	0.024	-0.019	
A0-12gon-2_xyz.txt	I-Beam-A	а	0.022	0.056	-0.015	
A0-12gon-2_xyz.txt	I-Beam-A	b	0.020	0.051	-0.017	
A0-12gon-2_xyz.txt	I-Beam-A	с	0.011	0.075	-0.011	
A0-12gon-2_xyz.txt	I-Beam-A	d	0.010	0.072	-0.011	
A0-12gon-3_xyz.txt	I-Beam-A	а	-0.062	0.021	-0.010	
A0-12gon-3_xyz.txt	I-Beam-A	b	-0.061	0.016	-0.011	
A0-12gon-3_xyz.txt	I-Beam-A	c	-0.055	0.011	-0.016	
A0-12gon-3_xyz.txt	I-Beam-A	d	-0.054	0.010	-0.014	
A0-20gon-1_xyz.txt	I-Beam-A	а	-0.134	-0.016	-0.010	
A0-20gon-1 xyz.txt	I-Beam-A	b	-0.134	-0.020	-0.014	
A0-20gon-1 xyz.txt	I-Beam-A	с	-0.131	-0.019	-0.007	
A0-20gon-1_xyz.txt	I-Beam-A	d	-0.131	-0.021	-0.009	
A0-20gon-2_xyz.txt	I-Beam-A	а	-0.122	-0.023	-0.004	
A0-20gon-2_xyz.txt	I-Beam-A	b	-0.123	-0.028	-0.009	
A0-20gon-2_xyz.txt	I-Beam-A	c	-0.129	-0.011	-0.011	
A0-20gon-2_xyz.txt	I-Beam-A	d	-0.129	-0.014	-0.014	
A0-20gon-3 xyz.txt	I-Beam-A	а	-0.009	0.059	-0.009	
A0-20gon-3 xyz.txt	I-Beam-A	b	-0.009	0.054	-0.013	
A0-20gon-3 xyz.txt	I-Beam-A	с	-0.005	0.054	-0.004	
A0-20gon-3_xyz.txt	I-Beam-A	d	-0.004	0.052	-0.005	
A0-8gon-1 xyz.txt	I-Beam-A	а	0.009	0.064	-0.011	
A0-8gon-1 xyz.txt	I-Beam-A	b	0.008	0.059	-0.014	
A0-8gon-1 xyz.txt	I-Beam-A	с	0.005	0.071	-0.015	
A0-8gon-1_xyz.txt	I-Beam-A	d	0.005	0.069	-0.016	
A0-8gon-2 xyz.txt	I-Beam-A	а	-0.019	0.051	-0.016	
A0-8gon-2 xyz.txt	I-Beam-A	b	-0.019	0.046	-0.018	
A0-8gon-2 xyz.txt	I-Beam-A	с	-0.018	0.050	-0.017	
A0-8gon-2_xyz.txt	I-Beam-A	d	-0.017	0.049	-0.017	

 Table A.3. Errors between SMS measured locations of four flange points and the computed values using the binning process.

File Nome	I-Beam	Site	Error (m)			
r ne Name	Selected	Point	dx	dy	dz	
A0-8gon-3_xyz.txt	I-Beam-A	а	-0.032	0.039	-0.013	
A0-8gon-3_xyz.txt	I-Beam-A	b	-0.032	0.035	-0.014	
A0-8gon-3_xyz.txt	I-Beam-A	с	-0.029	0.036	-0.018	
A0-8gon-3_xyz.txt	I-Beam-A	d	-0.029	0.034	-0.017	
A30-12gon-1_xyz.txt	I-Beam-A	а	-0.002	0.058	-0.016	
A30-12gon-1_xyz.txt	I-Beam-A	b	0.001	0.057	-0.013	
A30-12gon-1_xyz.txt	I-Beam-A	с	0.009	0.053	-0.011	
A30-12gon-1_xyz.txt	I-Beam-A	d	0.011	0.051	-0.008	
A30-12gon-2_xyz.txt	I-Beam-A	а	-0.041	0.032	-0.015	
A30-12gon-2_xyz.txt	I-Beam-A	b	-0.038	0.031	-0.013	
A30-12gon-2_xyz.txt	I-Beam-A	с	-0.022	0.023	-0.005	
A30-12gon-2_xyz.txt	I-Beam-A	d	-0.020	0.021	-0.002	
A30-12gon-3 xvz.txt	I-Beam-A	а	-0.035	0.031	-0.014	
A30-12gon-3 $xyz.txt$	I-Beam-A	b	-0.031	0.030	-0.012	
A30-12gon-3 xvz.txt	I-Beam-A	с	-0.011	0.019	-0.005	
A30-12gon-3_xyz.txt	I-Beam-A	d	-0.009	0.017	-0.002	
A30-20gon-1_xyz.txt	I-Beam-A	а	0.040	0.159	-0.018	
A30-20gon-1_xyz.txt	I-Beam-A	b	0.043	0.158	-0.017	
A30-20gon-1_xyz.txt	I-Beam-A	с	0.039	0.161	0.002	
A30-20gon-1_xyz.txt	I-Beam-A	d	0.041	0.158	0.005	
A30-20gon-2_xyz.txt	I-Beam-A	а	0.041	0.132	-0.004	
A30-20gon-2_xyz.txt	I-Beam-A	b	0.043	0.129	-0.003	
A30-20gon-2_xyz.txt	I-Beam-A	с	0.016	0.146	-0.004	
A30-20gon-2_xyz.txt	I-Beam-A	d	0.017	0.142	-0.002	
A 30-20gon-3 xyz tyt	I-Beam-B	а	-0 402	-0 508	0 399	
A30-20gon-3 xyz txt	I-Beam-B	b	-0.330	-0.537	0.399	
A 30-20 gon -3 xyz txt	I-Beam-B	c	0.086	0.272	0.363	
A30-20gon-3 xyz txt	I-Beam-B	d	0.158	0.272	0.367	
7150 20g0h 5_xy2.txt	I Dealli D	u	0.150	0.241	0.507	
A30-8gon-1_xyz.txt	I-Beam-A	а	-0.038	0.036	-0.016	
A30-8gon-1_xyz.txt	I-Beam-A	b	-0.035	0.035	-0.015	
A30-8gon-1_xyz.txt	I-Beam-A	с	-0.020	0.027	-0.012	
A30-8gon-1_xyz.txt	I-Beam-A	d	-0.018	0.025	-0.010	

Table A.3. Continued.

Table A.3. Continued.

File Nome	I-Beam	Site	Error (m)			
r ne Ivanie	Selected	Point	dx	dy	dz	
A30-8gon-2_xyz.txt	I-Beam-A	а	-0.007	0.083	-0.017	
A30-8gon-2_xyz.txt	I-Beam-A	b	-0.004	0.082	-0.017	
A30-8gon-2_xyz.txt	I-Beam-A	с	0.009	0.076	-0.011	
A30-8gon-2_xyz.txt	I-Beam-A	d	0.011	0.074	-0.009	
A30-8gon-3_xyz.txt	I-Beam-A	а	-0.024	0.046	-0.021	
A30-8gon-3_xyz.txt	I-Beam-A	b	-0.021	0.045	-0.021	
A30-8gon-3_xyz.txt	I-Beam-A	с	-0.017	0.044	-0.013	
A30-8gon-3_xyz.txt	I-Beam-A	d	-0.015	0.041	-0.012	
A30_12gon_1_xyz.txt	I-Beam-A	а	-0.002	0.058	-0.016	
A30_12gon_1_xyz.txt	I-Beam-A	b	0.001	0.057	-0.013	
A30_12gon_1_xyz.txt	I-Beam-A	с	0.009	0.053	-0.011	
A30_12gon_1_xyz.txt	I-Beam-A	d	0.011	0.051	-0.008	
A45-12gon-1_xyz.txt	I-Beam-A	а	-0.005	0.057	0.417	
A45-12gon-1_xyz.txt	I-Beam-A	b	-0.005	0.053	0.419	
A45-12gon-1_xyz.txt	I-Beam-A	с	-0.029	0.061	0.404	
A45-12gon-1_xyz.txt	I-Beam-A	d	-0.027	0.058	0.406	
A45-12gon-2_xyz.txt	I-Beam-A	а	-0.006	0.090	-0.010	
A45-12gon-2_xyz.txt	I-Beam-A	b	-0.005	0.087	-0.007	
A45-12gon-2_xyz.txt	I-Beam-A	с	-0.013	0.090	-0.015	
A45-12gon-2_xyz.txt	I-Beam-A	d	-0.011	0.089	-0.012	
A45-12gon-3_xyz.txt	I-Beam-A	а	-0.014	0.077	-0.007	
A45-12gon-3_xyz.txt	I-Beam-A	b	-0.013	0.075	-0.004	
A45-12gon-3_xyz.txt	I-Beam-A	с	-0.011	0.075	-0.014	
A45-12gon-3_xyz.txt	I-Beam-A	d	-0.009	0.074	-0.011	
A45-20gon-1_xyz.txt	I-Beam-B	а	0.037	0.419	0.380	
A45-20gon-1_xyz.txt	I-Beam-B	b	0.110	0.400	0.381	
A45-20gon-1_xyz.txt	I-Beam-B	с	0.222	1.315	0.377	
A45-20gon-1_xyz.txt	I-Beam-B	d	0.297	1.297	0.379	
A45-20gon-2_xyz.txt	I-Beam-B	а	-0.204	-0.448	0.382	
A45-20gon-2_xyz.txt	I-Beam-B	b	-0.129	-0.459	0.384	
A45-20gon-2_xyz.txt	I-Beam-B	с	0.055	0.433	0.392	
A45-20gon-2_xyz.txt	I-Beam-B	d	0.132	0.424	0.394	

File Nome	I-Beam	Site	ite Error (m		ı)	
File Ivallie	Selected	Point	dx	dy	dz	
A45-20gon-3_xyz.txt	I-Beam-B	a	-0.009	0.345	0.388	
A45-20gon-3_xyz.txt	I-Beam-B	b	0.065	0.329	0.389	
A45-20gon-3_xyz.txt	I-Beam-B	c	0.205	1.235	0.373	
A45-20gon-3_xyz.txt	I-Beam-B	d	0.280	1.220	0.374	
A45-8gon-1 xyz.txt	I-Beam-A	а	-0.020	0.040	-0.019	
A45-8gon-1 xyz.txt	I-Beam-A	b	-0.019	0.038	-0.016	
A45-8gon-1 xvz.txt	I-Beam-A	c	-0.018	0.038	-0.014	
A45-8gon-1_xyz.txt	I-Beam-A	d	-0.016	0.037	-0.011	
A45-8gon-2 xvz.txt	I-Beam-A	а	-0.016	0.060	-0.014	
A45-8gon-2 xvz.txt	I-Beam-A	b	-0.015	0.058	-0.010	
A45-8gon-2 xyz.txt	I-Beam-A	с	-0.016	0.059	-0.016	
A45-8gon-2_xyz.txt	I-Beam-A	d	-0.014	0.058	-0.012	
A45-890n-3 xyz txt	I-Beam-A	а	-0.033	0.020	-0.017	
A45-8gon-3 xyz txt	I-Beam-A	h	-0.032	0.019	-0.015	
A45-8gon-3 xyz txt	I-Beam-A	c	-0.017	0.015	-0.015	
A45-8gon-3_xyz.txt	I-Beam-A	d	-0.015	0.016	-0.012	
A45 12gon 1 xyz txt	I-Beam-A	а	-0.005	0.057	0.417	
A45_12gon_1_xyz.txt	I-Beam-A	h	-0.005	0.053	0.419	
A45_12gon_1_xyz.txt	I-Beam-A	c	-0.029	0.061	0.404	
A45_12gon_1_xyz.txt	I-Beam-A	d	-0.027	0.058	0.406	
A60-12 gop 1 yyz tyt	I-Beam-A	2	-0.022	0.071	-0.012	
A60 12gon 1 yyz tyt	I Beam A	a b	-0.022	0.071	-0.012	
A60-12gon-1 xyz.txt	I-Deam-A		-0.019	0.009	-0.011	
A60-12gon-1_xyz.txt	I-Beam-A	d	-0.034	0.069	-0.008	
A60-12gon-2_xyz.txt	I-Beam-B	a	-2.978	-1.317	-0.988	
A60-12gon-2_xyz.txt	I-Beam-B	b	-2.951	-1.201	-1.073	
A60-12gon-2_xyz.txt	I-Beam-B	с	-1.889	0.771	0.489	
A60-12gon-2_xyz.txt	I-Beam-B	d	-1.862	0.889	0.406	
A60-12gon-3_xyz.txt	I-Beam-A	а	0.002	0.107	-0.013	
A60-12gon-3_xyz.txt	I-Beam-A	b	0.004	0.102	-0.011	
A60-12gon-3_xyz.txt	I-Beam-A	c	-0.063	0.105	-0.002	
A60-12gon-3_xyz.txt	I-Beam-A	d	-0.061	0.101	0.002	

Table A.3. Continued.

File Nome	I-Beam	Site	Error (m)			
File Maine	Selected	Point	dx	dy	dz	
A60-20gon-1_xyz.txt	I-Beam-B	a	0.007	-0.791	0.404	
A60-20gon-1_xyz.txt	I-Beam-B	b	0.084	-0.800	0.404	
A60-20gon-1_xyz.txt	I-Beam-B	с	-0.111	0.122	0.396	
A60-20gon-1_xyz.txt	I-Beam-B	d	-0.034	0.115	0.399	
A60-20gon-2_xyz.txt	I-Beam-B	а	-0.011	0.284	0.377	
A60-20gon-2_xyz.txt	I-Beam-B	b	0.066	0.275	0.378	
A60-20gon-2_xyz.txt	I-Beam-B	c	-0.129	1.197	0.389	
A60-20gon-2_xyz.txt	I-Beam-B	d	-0.052	1.190	0.392	
A60-20gon-3_xyz.txt	I-Beam-B	а	-0.015	0.354	0.391	
A60-20gon-3_xyz.txt	I-Beam-B	b	0.063	0.346	0.391	
A60-20gon-3_xyz.txt	I-Beam-B	с	-0.132	1.267	0.383	
A60-20gon-3_xyz.txt	I-Beam-B	d	-0.055	1.260	0.386	
A60-8gon-1_xyz.txt	I-Beam-A	а	-0.001	-0.151	-0.020	
A60-8gon-1_xyz.txt	I-Beam-A	b	0.002	-0.154	-0.019	
A60-8gon-1_xyz.txt	I-Beam-A	c	-0.037	-0.152	-0.012	
A60-8gon-1_xyz.txt	I-Beam-A	d	-0.035	-0.154	-0.007	
A60-8gon-2_xyz.txt	I-Beam-A	а	-0.022	-0.053	-0.018	
A60-8gon-2_xyz.txt	I-Beam-A	b	-0.019	-0.054	-0.017	
A60-8gon-2_xyz.txt	I-Beam-A	c	-0.023	-0.053	-0.013	
A60-8gon-2_xyz.txt	I-Beam-A	d	-0.021	-0.053	-0.008	
A60-8gon-3_xyz.txt	I-Beam-A	а	-0.001	-0.041	-0.018	
A60-8gon-3_xyz.txt	I-Beam-A	b	0.002	-0.046	-0.016	
A60-8gon-3_xyz.txt	I-Beam-A	c	-0.043	-0.043	-0.012	
A60-8gon-3_xyz.txt	I-Beam-A	d	-0.040	-0.046	-0.007	
A90-12gon-1_xyz.txt	I-Beam-B	а	1.916	1.067	1.148	
A90-12gon-1_xyz.txt	I-Beam-B	b	1.862	1.209	1.149	
A90-12gon-1_xyz.txt	I-Beam-B	с	0.475	3.593	-0.971	
A90-12gon-1_xyz.txt	I-Beam-B	d	0.419	3.735	-0.968	
A90-12gon-2_xyz.txt	I-Beam-B	a	-2.401	-0.823	-0.744	
A90-12gon-2_xyz.txt	I-Beam-B	b	-2.356	-0.826	-0.882	
A90-12gon-2_xyz.txt	I-Beam-B	c	-2.621	0.929	0.647	
A90-12gon-2_xyz.txt	I-Beam-B	d	-2.579	0.927	0.512	

Table A	A.3.	Continued.

Eilo Nomo	I-Beam	eam Site Er		Error (m)	rror (m)	
r ne maine	Selected	Point	dx	dy	dz	
A90-12gon-3_xyz.txt	I-Beam-B	а	1.869	1.002	-1.012	
A90-12gon-3_xyz.txt	I-Beam-B	b	1.955	1.007	-1.012	
A90-12gon-3_xyz.txt	I-Beam-B	c	0.281	3.534	1.128	
A90-12gon-3_xyz.txt	I-Beam-B	d	0.364	3.541	1.130	
A90-20gon-1 xyz.txt	I-Beam-B	а	1.850	1.006	-1.925	
A90-20gon-1 xyz.txt	I-Beam-B	b	1.956	0.911	-1.924	
A90-20gon-1 xyz.txt	I-Beam-B	с	0.239	3.594	0.216	
A90-20gon-1_xyz.txt	I-Beam-B	d	0.342	3.500	0.218	
A90-20gon-2 xyz.txt	I-Beam-B	а	1.751	1.152	-1.151	
A90-20gon-2 xyz.txt	I-Beam-B	b	1.783	0.878	-1.150	
A90-20gon-2 xyz.txt	I-Beam-B	с	0.140	3.740	0.990	
A90-20gon-2_xyz.txt	I-Beam-B	d	0.169	3.467	0.992	
A90-20gon-3 xyz txt	I-Beam-B	а	-1 504	-2 469	-1 028	
A90-20gon-3 xyz txt	I-Beam-B	h	-1 904	-2 532	-1.028	
A 90-20gon-3 xyz txt	I-Beam-B	C	-3 115	0.119	1.020	
A90-20gon-3_xyz.txt	I-Beam-B	d	-3.517	0.057	1.115	
A90-890n-1 xyz tyt	I-Beam-B	а	1 891	1 109	-0 974	
A 90-8 gon 1_xyz .txt	I-Beam-B	h	1.858	1.109	-0.964	
A90-8gon-1 xyz txt	I-Beam-B	C	0.583	3 460	1 132	
A90-8gon-1_xyz.txt	I-Beam-B	d	0.547	3.593	1.143	
A 00 Prop 2 was test	I Doom D		1 750	1 204	0.021	
$A90-8gon-2_xyz.txt$	I-Dealii-D	a h	1.730	1.394	-0.981	
$A90-8gon-2_xyz.txt$	I-Dealii-D	0	1.317	1.000	-0.977	
A90-8gon-2 xyz.txt A90-8gon-2 xyz txt	I-Beam-B	d	-0.027	3.987	1.139	
	i Bouin B	u	0.027	5.001	1.101	
A90-8gon-3_xyz.txt	I-Beam-B	а	-2.230	-1.380	-1.139	
A90-8gon-3_xyz.txt	I-Beam-B	b	-2.179	-1.353	-1.240	
A90-8gon-3_xyz.txt	I-Beam-B	c	-2.700	0.792	0.622	
A90-8gon-3_xyz.txt	I-Beam-B	d	-2.652	0.820	0.523	
B0-12gon-1 xyz.txt	I-Beam-B	а	-0.043	0.022	-0.023	
B0-12gon-1 xyz.txt	I-Beam-B	b	-0.038	0.018	-0.014	
B0-12gon-1 xyz.txt	I-Beam-B	с	-0.024	-0.005	-0.002	
B0-12gon-1_xyz.txt	I-Beam-B	d	-0.021	-0.007	0.006	

Table A	A.3. Co	ontinuec	l.

File Name	I-Beam	Site		Error (m)	
	Selected	Point	dx	dy	dz
B0-12gon-2_xyz.txt	I-Beam-B	а	-0.021	0.024	-0.016
B0-12gon-2_xyz.txt	I-Beam-B	b	-0.020	0.018	-0.010
B0-12gon-2_xyz.txt	I-Beam-B	с	-0.024	0.030	-0.010
B0-12gon-2_xyz.txt	I-Beam-B	d	-0.024	0.026	-0.005
B0-12gon-3_xyz.txt	I-Beam-B	а	-0.044	0.030	-0.010
B0-12gon-3_xyz.txt	I-Beam-B	b	-0.039	0.027	-0.001
B0-12gon-3_xyz.txt	I-Beam-B	с	-0.024	0.001	-0.014
B0-12gon-3_xyz.txt	I-Beam-B	d	-0.020	-0.001	-0.005
B0-20gon-1_xyz.txt	I-Beam-B	а	0.004	0.037	-0.016
B0-20gon-1_xyz.txt	I-Beam-B	b	0.005	0.032	-0.008
B0-20gon-1_xyz.txt	I-Beam-B	с	0.004	0.040	0.009
B0-20gon-1_xyz.txt	I-Beam-B	d	0.004	0.036	0.016
B0-20gon-2_xyz.txt	I-Beam-B	а	-0.008	0.016	-0.014
B0-20gon-2_xyz.txt	I-Beam-B	b	-0.008	0.010	-0.003
B0-20gon-2_xyz.txt	I-Beam-B	с	-0.011	0.022	0.000
B0-20gon-2_xyz.txt	I-Beam-B	d	-0.011	0.018	0.010
B0-20gon-3_xyz.txt	I-Beam-B	а	0.014	0.051	-0.017
B0-20gon-3_xyz.txt	I-Beam-B	b	0.019	0.048	-0.007
B0-20gon-3_xyz.txt	I-Beam-B	с	0.033	0.022	-0.005
B0-20gon-3_xyz.txt	I-Beam-B	d	0.037	0.020	0.003
B0-8gon-1_xyz.txt	I-Beam-B	а	-0.027	0.035	-0.024
B0-8gon-1_xyz.txt	I-Beam-B	b	-0.023	0.031	-0.017
B0-8gon-1_xyz.txt	I-Beam-B	с	-0.010	0.009	-0.017
B0-8gon-1_xyz.txt	I-Beam-B	d	-0.007	0.007	-0.011
B0-8gon-2_xyz.txt	I-Beam-B	а	-0.028	0.024	-0.025
B0-8gon-2_xyz.txt	I-Beam-B	b	-0.025	0.020	-0.014
B0-8gon-2_xyz.txt	I-Beam-B	с	-0.020	0.013	-0.022
B0-8gon-2_xyz.txt	I-Beam-B	d	-0.018	0.010	-0.012
B0-8gon-3_xyz.txt	I-Beam-B	а	-0.033	0.019	-0.025
B0-8gon-3_xyz.txt	I-Beam-B	b	-0.031	0.014	-0.014
B0-8gon-3_xyz.txt	I-Beam-B	с	-0.029	0.015	-0.023
B0-8gon-3_xyz.txt	I-Beam-B	d	-0.028	0.011	-0.013

File Name	I-Beam Selected	Site	Error (m)			
		Point	dx	dy	dz	
B30-12gon-1_xyz.txt	I-Beam-B	а	-0.023	0.025	-0.024	
B30-12gon-1_xyz.txt	I-Beam-B	b	-0.020	0.023	-0.016	
B30-12gon-1_xyz.txt	I-Beam-B	c	-0.011	0.018	-0.003	
B30-12gon-1_xyz.txt	I-Beam-B	d	-0.008	0.016	0.004	
B30-12gon-2_xyz.txt	I-Beam-B	а	-0.009	0.041	-0.023	
B30-12gon-2_xyz.txt	I-Beam-B	b	-0.005	0.041	-0.011	
B30-12gon-2_xyz.txt	I-Beam-B	с	0.021	0.024	-0.010	
B30-12gon-2_xyz.txt	I-Beam-B	d	0.024	0.024	0.001	
B30-12gon-3_xyz.txt	I-Beam-B	а	0.012	0.073	-0.021	
B30-12gon-3_xyz.txt	I-Beam-B	b	0.015	0.072	-0.008	
B30-12gon-3_xyz.txt	I-Beam-B	с	0.031	0.062	-0.018	
B30-12gon-3_xyz.txt	I-Beam-B	d	0.034	0.061	-0.005	
B30-20gon-1_xyz.txt	I-Beam-B	а	-0.005	0.049	-0.017	
B30-20gon-1_xyz.txt	I-Beam-B	b	-0.002	0.046	-0.009	
B30-20gon-1_xyz.txt	I-Beam-B	с	0.003	0.044	0.004	
B30-20gon-1_xyz.txt	I-Beam-B	d	0.005	0.041	0.011	
B30-20gon-2_xyz.txt	I-Beam-B	а	-0.026	0.047	-0.021	
B30-20gon-2_xyz.txt	I-Beam-B	b	-0.023	0.045	-0.013	
B30-20gon-2_xyz.txt	I-Beam-B	c	-0.013	0.040	0.008	
B30-20gon-2_xyz.txt	I-Beam-B	d	-0.010	0.038	0.016	
B30-20gon-3_xyz.txt	I-Beam-B	а	-0.456	-0.713	0.443	
B30-20gon-3_xyz.txt	I-Beam-B	b	-0.445	-0.699	0.453	
B30-20gon-3_xyz.txt	I-Beam-B	с	-0.312	-0.779	0.337	
B30-20gon-3_xyz.txt	I-Beam-B	d	-0.302	-0.766	0.347	
B30-8gon-1_xyz.txt	I-Beam-B	а	-0.014	0.033	-0.024	
B30-8gon-1_xyz.txt	I-Beam-B	b	-0.010	0.032	-0.014	
B30-8gon-1_xyz.txt	I-Beam-B	c	0.013	0.018	-0.014	
B30-8gon-1_xyz.txt	I-Beam-B	d	0.017	0.017	-0.004	
B30-8gon-2_xyz.txt	I-Beam-B	а	-0.022	0.010	-0.031	
B30-8gon-2_xyz.txt	I-Beam-B	b	-0.018	0.009	-0.021	
B30-8gon-2_xyz.txt	I-Beam-B	c	0.000	-0.002	-0.015	
B30-8gon-2_xyz.txt	I-Beam-B	d	0.003	-0.003	-0.006	

Table A.3. Continued.

Eile Nome	I-Beam	Site	e Error (m)		
	Selected	Point	dx	dy	dz
B30-8gon-3_xyz.txt	I-Beam-B	а	-0.009	0.041	-0.029
B30-8gon-3_xyz.txt	I-Beam-B	b	-0.005	0.041	-0.018
B30-8gon-3_xyz.txt	I-Beam-B	с	0.020	0.025	-0.011
B30-8gon-3_xyz.txt	I-Beam-B	d	0.024	0.025	-0.001
B45-12gon-1 yyz tyt	I-Beam-B	9	-0.015	0.092	-0.014
B45-12gon-1 xyz tyt	I-Beam-B	a h	-0.013	0.092	-0.014
B45-12gon-1 xyz.txt	I-Beam-B	0	0.012	0.091	-0.007
B45 + 12gon + 1 xyz txt	I Beam B	d	0.010	0.086	-0.007
D45-12g0II-1_XyZ.tXt	І-Беаш-Б	u	0.015	0.080	0.003
B45-12gon-2_xyz.txt	I-Beam-B	а	-0.001	0.100	-0.016
B45-12gon-2_xyz.txt	I-Beam-B	b	0.002	0.098	-0.003
B45-12gon-2_xyz.txt	I-Beam-B	с	0.016	0.096	-0.009
B45-12gon-2_xyz.txt	I-Beam-B	d	0.018	0.095	0.003
B45-12gon-3 yyz tyt	I-Beam-B	9	-0.020	0.034	-0.012
B45-12gon-3 xyz tyt	I-Beam-B	a h	-0.020	0.034	0.0012
B45-12gon-3 xyz tyt	I-Beam-B	C C	-0.017	0.032	-0.015
B45-12gon-3 xyz tyt	I-Beam-B	d	-0.003	0.029	-0.013
D45-12g011-5_XyZ.txt	I-Dealli-D	u	-0.001	0.028	-0.004
B45-20gon-1_xyz.txt	I-Beam-B	а	0.026	0.291	0.000
B45-20gon-1_xyz.txt	I-Beam-B	b	0.029	0.290	0.008
B45-20gon-1 xyz.txt	I-Beam-B	с	0.048	0.286	0.003
B45-20gon-1_xyz.txt	I-Beam-B	d	0.051	0.285	0.011
B45.20 gop 2 yyz tyt	I Boom B	2	0.111	0.660	0.032
$D45-20g0II-2_xyz.txt$ $D45-20gon-2_xyz.txt$	I-Dealli-D	a h	0.111	0.000	-0.032
$B45-20gon-2_xyz.txt$	I-Dealli-D	0	0.114	0.039	-0.018
D45-20g0II-2_XyZ.tXt	I-Deam-D	C J	0.140	0.033	0.009
B45-20gon-2_xyz.txt	I-Beam-В	a	0.145	0.055	0.022
B45-20gon-3_xyz.txt	I-Beam-B	а	0.070	0.609	0.364
B45-20gon-3_xyz.txt	I-Beam-B	b	0.074	0.614	0.377
B45-20gon-3 xyz.txt	I-Beam-B	с	0.151	0.592	0.344
B45-20gon-3_xyz.txt	I-Beam-B	d	0.155	0.599	0.356
D45 9mm 1 tt	I Darm D		0.005	0.075	0.017
D45-8gon-1_xyz.txt	I-Beam-B	a L	-0.005	0.073	-0.01/
B45-8gon-1_xyz.txt	I-Beam-B	D	-0.003	0.072	-0.005
B45-8gon-1_xyz.txt	I-Beam-B	C 1	0.002	0.073	-0.015
B45-8gon-1_xyz.txt	I-Beam-B	d	0.004	0.071	-0.003

Table A.3. Continued.

File Name	I-Beam	Site		Error (m)	
	Selected	Point	dx	dy	dz
B45-8gon-2_xyz.txt	I-Beam-B	а	-0.002	0.077	-0.019
B45-8gon-2_xyz.txt	I-Beam-B	b	0.000	0.073	-0.004
B45-8gon-2_xyz.txt	I-Beam-B	c	0.004	0.074	-0.022
B45-8gon-2_xyz.txt	I-Beam-B	d	0.006	0.072	-0.007
B45-8gon-3_xyz.txt	I-Beam-B	а	-0.015	0.042	-0.020
B45-8gon-3_xyz.txt	I-Beam-B	b	-0.012	0.040	-0.007
B45-8gon-3_xyz.txt	I-Beam-B	с	0.003	0.037	-0.017
B45-8gon-3_xyz.txt	I-Beam-B	d	0.006	0.036	-0.004
B60-12gon-1_xyz.txt	I-Beam-B	а	-0.066	0.037	-0.010
B60-12gon-1_xyz.txt	I-Beam-B	b	-0.066	0.045	0.002
B60-12gon-1_xyz.txt	I-Beam-B	c	0.036	0.042	-0.007
B60-12gon-1_xyz.txt	I-Beam-B	d	0.038	0.053	0.006
B60-12gon-2_xyz.txt	I-Beam-B	а	0.924	1.450	-1.094
B60-12gon-2_xyz.txt	I-Beam-B	b	0.800	1.656	-1.078
B60-12gon-2_xyz.txt	I-Beam-B	с	0.834	3.509	1.039
B60-12gon-2_xyz.txt	I-Beam-B	d	0.712	3.716	1.057
B60-12gon-3_xyz.txt	I-Beam-B	а	-0.042	0.324	0.367
B60-12gon-3_xyz.txt	I-Beam-B	b	-0.041	0.318	0.377
B60-12gon-3_xyz.txt	I-Beam-B	с	-0.068	0.323	0.360
B60-12gon-3_xyz.txt	I-Beam-B	d	-0.065	0.318	0.371
B60-20gon-1_xyz.txt	I-Beam-B	а	0.004	0.346	0.350
B60-20gon-1_xyz.txt	I-Beam-B	b	0.005	0.332	0.359
B60-20gon-1_xyz.txt	I-Beam-B	с	-0.078	0.343	0.376
B60-20gon-1_xyz.txt	I-Beam-B	d	-0.075	0.332	0.386
B60-20gon-2_xyz.txt	I-Beam-B	а	-0.020	0.504	0.363
B60-20gon-2_xyz.txt	I-Beam-B	b	-0.019	0.491	0.372
B60-20gon-2_xyz.txt	I-Beam-B	c	-0.102	0.502	0.391
B60-20gon-2_xyz.txt	I-Beam-B	d	-0.099	0.490	0.400
B60-20gon-3_xyz.txt	I-Beam-B	a	-0.027	0.528	0.346
B60-20gon-3_xyz.txt	I-Beam-B	b	-0.026	0.515	0.355
B60-20gon-3_xyz.txt	I-Beam-B	c	-0.109	0.526	0.400
B60-20gon-3_xyz.txt	I-Beam-B	d	-0.107	0.515	0.410
Table A.3. Continued.

File Nome	I-Beam	Site	Error (m)					
File Ivallie	Selected	Point	dx	dy	dz			
B60-8gon-1_xyz.txt	I-Beam-B	а	-0.054	-0.037	0.367			
B60-8gon-1_xyz.txt	I-Beam-B	b	-0.053	-0.033	0.376			
B60-8gon-1_xyz.txt	I-Beam-B	с	0.008	-0.034	0.346			
B60-8gon-1_xyz.txt	I-Beam-B	d	0.010	-0.029	0.356			
B60-8gon-2_xyz.txt	I-Beam-B	а	-0.061	-0.016	0.364			
B60-8gon-2_xyz.txt	I-Beam-B	b	-0.060	-0.009	0.373			
B60-8gon-2_xyz.txt	I-Beam-B	с	0.028	-0.011	0.342			
B60-8gon-2_xyz.txt	I-Beam-B	d	0.030	-0.003	0.353			
B60-8gon-3_xyz.txt	I-Beam-B	а	-0.061	0.041	-0.022			
B60-8gon-3_xyz.txt	I-Beam-B	b	-0.061	0.048	-0.012			
B60-8gon-3_xyz.txt	I-Beam-B	с	0.030	0.046	-0.001			
B60-8gon-3_xyz.txt	I-Beam-B	d	0.032	0.055	0.010			
B90-12gon-1_xyz.txt	I-Beam-B	а	1.693	1.384	1.060			
B90-12gon-1_xyz.txt	I-Beam-B	b	1.603	1.472	1.076			
B90-12gon-1_xyz.txt	I-Beam-B	c	0.734	3.184	-1.062			
B90-12gon-1_xyz.txt	I-Beam-B	d	0.643	3.272	-1.046			
B90-12gon-2_xyz.txt	I-Beam-B	а	-2.418	-0.685	-1.083			
B90-12gon-2_xyz.txt	I-Beam-B	b	-2.425	-0.690	-1.150			
B90-12gon-2_xyz.txt	I-Beam-B	c	-2.361	0.143	0.405			
B90-12gon-2_xyz.txt	I-Beam-B	d	-2.370	0.138	0.338			
B90-12gon-3_xyz.txt	I-Beam-B	а	-2.091	-1.113	-1.053			
B90-12gon-3_xyz.txt	I-Beam-B	b	-2.075	-1.167	-1.122			
B90-12gon-3_xyz.txt	I-Beam-B	с	-2.392	0.233	0.867			
B90-12gon-3_xyz.txt	I-Beam-B	d	-2.377	0.178	0.798			
B90-20gon-1_xyz.txt	I-Beam-B	а	1.477	1.796	-1.232			
B90-20gon-1_xyz.txt	I-Beam-B	b	1.265	1.408	-1.224			
B90-20gon-1_xyz.txt	I-Beam-B	с	0.359	3.612	0.907			
B90-20gon-1_xyz.txt	I-Beam-B	d	0.146	3.223	0.916			
B90-20gon-2_xyz.txt	I-Beam-B	а	1.537	1.377	-0.955			
B90-20gon-2_xyz.txt	I-Beam-B	b	1.579	1.243	-0.947			
B90-20gon-2_xyz.txt	I-Beam-B	c	0.420	3.193	1.185			
B90-20gon-2_xyz.txt	I-Beam-B	d	0.460	3.059	1.193			

Table A.3. Continued.

Ella Norma	I-Beam	Site		Error (m)	
File Name	Selected	Point	dx	dy	dz
B90-20gon-3_xyz.txt	I-Beam-B	а	1.845	1.539	-1.246
B90-20gon-3_xyz.txt	I-Beam-B	b	1.633	1.659	-1.238
B90-20gon-3_xyz.txt	I-Beam-B	с	0.728	3.355	0.894
B90-20gon-3_xyz.txt	I-Beam-B	d	0.514	3.475	0.902
B90-8gon-1_xyz.txt	I-Beam-B	а	1.429	1.601	1.059
B90-8gon-1_xyz.txt	I-Beam-B	b	1.379	1.663	1.073
B90-8gon-1_xyz.txt	I-Beam-B	с	0.357	3.442	-1.068
B90-8gon-1_xyz.txt	I-Beam-B	d	0.306	3.503	-1.054
B90-8gon-2_xyz.txt	I-Beam-B	а	1.200	-2.909	0.574
B90-8gon-2_xyz.txt	I-Beam-B	b	0.986	-2.791	0.555
B90-8gon-2_xyz.txt	I-Beam-B	с	1.220	-1.280	-1.215
B90-8gon-2_xyz.txt	I-Beam-B	d	1.005	-1.162	-1.234
B90-8gon-3_xyz.txt	I-Beam-B	а	1.357	-2.577	0.793
B90-8gon-3_xyz.txt	I-Beam-B	b	1.211	-2.952	0.849
B90-8gon-3_xyz.txt	I-Beam-B	c	0.503	-1.101	-1.291
B90-8gon-3_xyz.txt	I-Beam-B	d	0.356	-1.476	-1.235

A.2.1 Pose Tables for TIN Segmentation

	I-Beam	Locatio	Location of Data Center (m)						
File Name	Selected	x	v	Z	from neg. X-axis				
			5	-	(°)				
A0 12 mm 1 mm and	I Daama A	2 500	5 772	1 410	22.220				
A0-12gon-1_xyz.seg	I-Beam-A	-3.590	5.112	-1.418	32.239				
A0-12gon-2_xyz.seg	I-Beam-A	-3.586	5.775	-1.418	32.280				
A0-12gon-3_xyz.seg	I-Beam-A	-3.594	5.770	-1.418	32.266				
A0-20gon-1_xyz.seg	I-Beam-A	-3.604	5.765	-1.420	32.096				
A0-20gon-2_xyz.seg	I-Beam-A	-3.591	5.775	-1.421	32.189				
A0-20gon-3_xyz.seg	I-Beam-A	-3.603	5.766	-1.421	32.024				
A0-8gon-1_xyz.seg	I-Beam-A	-3.594	5.764	-1.418	32.241				
A0-8gon-2_xyz.seg	I-Beam-A	-3.594	5.767	-1.418	32.291				
A0-8gon-3_xyz.seg	I-Beam-A	-3.597	5.769	-1.417	32.279				
A30-12gon-1_xyz.seg	I-Beam-A	-3.706	5.592	-1.421	62.233				
A30-12gon-2_xyz.seg	I-Beam-A	-3.709	5.589	-1.420	62.235				
A30-12gon-3_xyz.seg	I-Beam-A	-3.706	5.594	-1.422	62.194				
A30-20gon-1_xyz.seg	I-Beam-A	-3.706	5.599	-1.419	62.225				
A30-20gon-2_xyz.seg	I-Beam-A	-3.713	5.579	-1.425	62.341				
A30-20gon-3_xyz.seg	I-Beam-A	-3.708	5.590	-1.425	62.299				
A30-8gon-1_xyz.seg	I-Beam-A	-3.710	5.584	-1.419	62.206				
A30-8gon-2_xyz.seg	I-Beam-A	-3.706	5.590	-1.420	62.206				
A30-8gon-3_xyz.seg	I-Beam-A	-3.707	5.593	-1.418	62.169				
A45-12gon-1 xyz.seg	I-Beam-A	-3.680	5.473	-1.423	77.583				
A45-12gon-2 xyz.seg	I-Beam-A	-3.681	5.468	-1.423	77.679				
A45-12gon-3 xyz.seg	I-Beam-A	-3.681	5.476	-1.422	77.610				
A45-20gon-1 xyz.seg	I-Beam-A	-3.678	5.491	-1.423	77.517				
A45-20gon-2 xyz.seg	I-Beam-A	-3.682	5.466	-1.426	77.750				
A45-20gon-3 xyz.seg	I-Beam-A	-3.680	5.466	-1.428	77.520				
A45-8gon-1 xyz.seg	I-Beam-A	-3.679	5.474	-1.421	77.563				
A45-8gon-2 xyz.seg	I-Beam-A	-3.679	5.472	-1.421	77.570				
A45-8gon-3 xvz.seg	I-Beam-A	-3.679	5.476	-1.420	77.538				
A60-12gon-1 xvz.seg	I-Beam-A	-3.618	5.382	-1.425	91,906				
A60-12gon-2 xyz seg	I-Beam-A	-3 618	5 376	-1 427	91 869				
A60-12gon-3 xyz seg	I-Beam-A	-3 618	5 382	-1 426	91 938				
A60-20gon-1 xyz seg	I-Beam-A	-3 618	5 361	-1 429	92.061				
A60-20gon-2 xyz seg	I-Beam-A	-3 618	5 367	-1 428	92.001				
A60-20gon-3 xvz seg	I-Beam-A	-3 617	5 360	-1 428	92.052				
A60-800n-1 vvz seg	I-Beam-A	-3 616	5 364	-1 425	91 985				
A60-8gon-7 vvz seg	I_Beam_A	-3 617	5 368	_1 473	91 997				
A60-8gon-3 xvz seg	I-Beam-A	-3 618	5 361	-1 423	91 986				

 Table A.4.
 I-beam segmented using TIN procedure, its center-of-scan-data-mass, and the final orientation relative to the scanner.

	I-Ream	Locatio	Orientation		
File Name	Selected	x	V	Z	from neg X-axis
			5	-	(*)
100 12 con 1 www.coc	I Doom D	2 080	1 750	1 470	110 141
A90-12gon-1_xyz.seg	I-Beam-B	-3.080	4.752	-1.470	119.141
A90-12gon-2_xyz.seg	I-Beam-B	-1.135	0.050	-1.1/9	87.410
A90-12gon-3_xyz.seg	I-Beam-B	-3.096	4.813	-1.456	121.734
A90-20gon-1_xyz.seg	I-Beam-B	-3.138	4.879	-1.453	119.925
A90-20gon-2_xyz.seg	I-Beam-A	-3.195	4.981	-1.446	120.459
A90-20gon-3_xyz.seg	I-Beam-B	-3.156	4.906	-1.436	121.547
A90-8gon-1_xyz.seg	I-Beam-B	-4.693	7.692	-1.085	99.791
A90-8gon-2_xyz.seg	I-Beam-B	-4.696	7.699	-1.116	89.177
A90-8gon-3_xyz.seg	I-Beam-B	-1.136	6.121	-1.186	87.804
B0-12gon-1_xyz.seg	I-Beam-B	-3.613	5.793	-1.453	32.270
B0-12gon-2_xyz.seg	I-Beam-B	-3.620	5.789	-1.454	32.302
B0-12gon-3_xyz.seg	I-Beam-B	-3.614	5.793	-1.454	32.127
B0-20gon-1_xyz.seg	I-Beam-B	-3.608	5.800	-1.456	32.426
B0-20gon-2_xyz.seg	I-Beam-B	-3.618	5.791	-1.459	32.353
B0-20gon-3 xyz.seg	I-Beam-B	-3.607	5.799	-1.457	32.480
B0-8gon-1 xyz.seg	I-Beam-B	-3.610	5.792	-1.453	32.163
B0-8gon-2 xyz.seg	I-Beam-B	-3.612	5.790	-1.452	32.352
B0-8gon-3 xyz.seg	I-Beam-B	-3.612	5.791	-1.452	32.125
B30-12gon-1 xyz.seg	I-Beam-B	-3.689	5.684	-1.455	62.186
B30-12gon-2 xvz.seg	I-Beam-B	-3.691	5.682	-1.454	62.547
B30-12gon-3 xvz.seg	I-Beam-B	-3.690	5.686	-1.452	62.168
B30-20gon-1 xvz.seg	I-Beam-B	-3.688	5.691	-1.456	62.442
B30-20gon-2 xvz seg	I-Beam-B	-3 693	5 676	-1 457	62.545
B30-20gon-3 xyz seg	I-Beam-B	-3 689	5 684	-1 458	62.456
B30-8gon-1 xyz seg	I-Beam-B	-3 687	5 688	-1 451	62,196
B30-8gon-2 xyz seg	I-Beam-B	-3 691	5 680	-1 452	62.462
B30-8gon-3 xyz seg	I-Beam-B	-3 686	5.688	-1 454	62.102
B45-12gon-1 yyz seg	I_Beam_B	-3 688	5 596	-1 456	77 521
B45-12gon-2 yyz seg	I_Beam_B	-3 689	5 593	-1.456	77.721
B45 = 12 gon 3 yvz seg	I Boom B	-3.089	5.595	-1.450	77.504
B45 = 20 gop 1 yyz seg	I Boom B	-3.090	5.592	-1.457	77 760
P45-20gon-1_xyz.seg	I Deam D	-3.091	5.500	-1.403	77.709
B45-20gon-2_xyz.seg	I-Dealli-D	-3.094	5.505 5.577	-1.430	77.322
$D43-20g0II-3_XyZ.seg$	I-Deam-B	-3.094	5.501	-1.402	77.200
D45-8gon-1_xyz.seg	I-Beam-B	-3.080	5.594	-1.430	//.388
B45-8gon-2_xyz.seg	I-Beam-B	-3.68/	5.594	-1.454	//.58/
B45-8gon-3_xyz.seg	I-Beam-B	-3.688	5.589	-1.454	//.408
B60-12gon-1_xyz.seg	I-Beam-B	-3.645	5.516	-1.460	91.240
B60-12gon-2_xyz.seg	I-Beam-B	-3.643	5.514	-1.461	91.531
B60-12gon-3 xyz.seg	I-Beam-B	-3.645	5.510	-1.461	91.531

Table A.4. Continued.

	I-Beam	Locatio	n of Data Ce	enter (m)	Orientation
File Name	Selected	X	У	Z	from neg X-axis (°)
B60-20gon-1_xyz.seg	I-Beam-B	-3.645	5.499	-1.462	91.598
B60-20gon-2_xyz.seg	I-Beam-B	-3.643	5.522	-1.463	91.193
B60-20gon-3_xyz.seg	I-Beam-B	-3.643	5.519	-1.465	91.509
B60-8gon-1_xyz.seg	I-Beam-A	-3.641	5.512	-1.462	91.414
B60-8gon-2_xyz.seg	I-Beam-B	-3.644	5.513	-1.458	91.301
B60-8gon-3_xyz.seg	I-Beam-A	-3.644	5.513	-1.462	91.445
B90-12gon-1_xyz.seg	I-Beam-B	-3.366	5.203	-1.460	120.925
B90-12gon-2_xyz.seg	I-Beam-B	-3.367	5.215	-1.464	120.406
B90-12gon-3_xyz.seg	I-Beam-B	-3.363	5.200	-1.459	120.570
B90-20gon-1_xyz.seg	I-Beam-B	-3.344	5.166	-1.470	121.639
B90-20gon-2_xyz.seg	I-Beam-B	-3.386	5.239	-1.460	121.126
B90-20gon-3_xyz.seg	I-Beam-B	-4.802	3.305	-1.352	146.149
B90-8gon-1_xyz.seg	I-Beam-B	-3.400	5.242	-1.467	122.684
B90-8gon-2_xyz.seg	I-Beam-B	-3.380	5.222	-1.466	120.996
B90-8gon-3_xyz.seg	I-Beam-B	-3.381	5.232	-1.467	120.866

Table A.4. Continued.

File Nome	I-Beam	Site	SMS	Coordina	tes (m)	Bounding Box Coordinates (m)		
r ne manie	Selected	Point	Х	У	Z	Х	У	Z
A0-12gon-1_xyz.seg	I-Beam-A	а	-4.866	4.924	-1.192	-4.836	4.891	-1.197
A0-12gon-1_xyz.seg	I-Beam-A	b	-4.962	5.071	-1.195	-4.932	5.043	-1.206
A0-12gon-1_xyz.seg	I-Beam-A	c	-2.283	6.545	-1.222	-2.256	6.518	-1.212
A0-12gon-1_xyz.seg	I-Beam-A	d	-2.378	6.695	-1.223	-2.352	6.670	-1.220
A0-12gon-2_xyz.seg	I-Beam-A	а	-4.866	4.924	-1.192	-4.832	4.893	-1.200
A0-12gon-2_xyz.seg	I-Beam-A	b	-4.962	5.071	-1.195	-4.927	5.044	-1.208
A0-12gon-2_xyz.seg	I-Beam-A	с	-2.283	6.545	-1.222	-2.253	6.521	-1.210
A0-12gon-2_xyz.seg	I-Beam-A	d	-2.378	6.695	-1.223	-2.349	6.673	-1.218
A0-12gon-3_xyz.seg	I-Beam-A	а	-4.866	4.924	-1.192	-4.839	4.888	-1.198
A0-12gon-3_xyz.seg	I-Beam-A	b	-4.962	5.071	-1.195	-4.935	5.039	-1.205
A0-12gon-3_xyz.seg	I-Beam-A	с	-2.283	6.545	-1.222	-2.261	6.516	-1.212
A0-12gon-3_xyz.seg	I-Beam-A	d	-2.378	6.695	-1.223	-2.356	6.667	-1.220
A0-20gon-1_xyz.seg	I-Beam-A	а	-4.866	4.924	-1.192	-4.850	4.884	-1.202
A0-20gon-1_xyz.seg	I-Beam-A	b	-4.962	5.071	-1.195	-4.945	5.036	-1.207
A0-20gon-1_xyz.seg	I-Beam-A	c	-2.283	6.545	-1.222	-2.267	6.504	-1.214
A0-20gon-1_xyz.seg	I-Beam-A	d	-2.378	6.695	-1.223	-2.362	6.656	-1.219
A0-20gon-2_xyz.seg	I-Beam-A	а	-4.866	4.924	-1.192	-4.837	4.893	-1.204
A0-20gon-2_xyz.seg	I-Beam-A	b	-4.962	5.071	-1.195	-4.932	5.045	-1.210
A0-20gon-2_xyz.seg	I-Beam-A	c	-2.283	6.545	-1.222	-2.256	6.518	-1.214
A0-20gon-2_xyz.seg	I-Beam-A	d	-2.378	6.695	-1.223	-2.351	6.670	-1.220
A0-20gon-3_xyz.seg	I-Beam-A	а	-4.866	4.924	-1.192	-4.851	4.887	-1.201
A0-20gon-3_xyz.seg	I-Beam-A	b	-4.962	5.071	-1.195	-4.946	5.039	-1.206
A0-20gon-3_xyz.seg	I-Beam-A	с	-2.283	6.545	-1.222	-2.265	6.504	-1.217
A0-20gon-3_xyz.seg	I-Beam-A	d	-2.378	6.695	-1.223	-2.361	6.656	-1.222
A0-8gon-1_xyz.seg	I-Beam-A	а	-4.866	4.924	-1.192	-4.843	4.886	-1.198
A0-8gon-1_xyz.seg	I-Beam-A	b	-4.962	5.071	-1.195	-4.938	5.038	-1.209
A0-8gon-1_xyz.seg	I-Beam-A	c	-2.283	6.545	-1.222	-2.263	6.513	-1.208
A0-8gon-1_xyz.seg	I-Beam-A	d	-2.378	6.695	-1.223	-2.359	6.665	-1.219

Table A.5. SMS measurements of the four flange points and the computed values using the TIN segmentation process.

Eile Nome	I-Beam	Site	SMS (Coordinat	es (m)	Bounding Box Coordinates (m)		
Flie Name	Selected	Point	X	У	Z	X	У	Z
A0-8gon-2_xyz.seg	I-Beam-A	а	-4.866	4.924	-1.192	-4.842	4.888	-1.199
A0-8gon-2_xyz.seg	I-Beam-A	b	-4.962	5.071	-1.195	-4.938	5.040	-1.211
A0-8gon-2_xyz.seg	I-Beam-A	с	-2.283	6.545	-1.222	-2.264	6.517	-1.207
A0-8gon-2_xyz.seg	I-Beam-A	d	-2.378	6.695	-1.223	-2.360	6.669	-1.219
A0-8gon-3_xyz.seg	I-Beam-A	а	-4.866	4.924	-1.192	-4.845	4.889	-1.200
A0-8gon-3_xyz.seg	I-Beam-A	b	-4.962	5.071	-1.195	-4.940	5.040	-1.210
A0-8gon-3_xyz.seg	I-Beam-A	c	-2.283	6.545	-1.222	-2.266	6.518	-1.206
A0-8gon-3_xyz.seg	I-Beam-A	d	-2.378	6.695	-1.223	-2.362	6.669	-1.216
A30-12gon-1_xyz.seg	I-Beam-A	а	-4.287	4.383	-1.197	-4.345	4.206	-1.202
A30-12gon-1_xyz.seg	I-Beam-A	b	-4.443	4.465	-1.196	-4.503	4.290	-1.210
A30-12gon-1_xyz.seg	I-Beam-A	c	-2.861	7.079	-1.222	-2.924	6.905	-1.214
A30-12gon-1_xyz.seg	I-Beam-A	d	-3.018	7.160	-1.220	-3.083	6.988	-1.221
A30-12gon-2_xyz.seg	I-Beam-A	а	-4.287	4.383	-1.197	-4.347	4.203	-1.202
A30-12gon-2_xyz.seg	I-Beam-A	b	-4.443	4.465	-1.196	-4.505	4.286	-1.210
A30-12gon-2_xyz.seg	I-Beam-A	c	-2.861	7.079	-1.222	-2.926	6.901	-1.213
A30-12gon-2_xyz.seg	I-Beam-A	d	-3.018	7.160	-1.220	-3.085	6.985	-1.220
A30-12gon-3_xyz.seg	I-Beam-A	а	-4.287	4.383	-1.197	-4.345	4.208	-1.200
A30-12gon-3_xyz.seg	I-Beam-A	b	-4.443	4.465	-1.196	-4.503	4.292	-1.208
A30-12gon-3_xyz.seg	I-Beam-A	c	-2.861	7.079	-1.222	-2.922	6.906	-1.217
A30-12gon-3_xyz.seg	I-Beam-A	d	-3.018	7.160	-1.220	-3.081	6.989	-1.224
A30-20gon-1_xyz.seg	I-Beam-A	а	-4.287	4.383	-1.197	-4.340	4.211	-1.199
A30-20gon-1_xyz.seg	I-Beam-A	b	-4.443	4.465	-1.196	-4.499	4.295	-1.203
A30-20gon-1_xyz.seg	I-Beam-A	c	-2.861	7.079	-1.222	-2.919	6.909	-1.217
A30-20gon-1_xyz.seg	I-Beam-A	d	-3.018	7.160	-1.220	-3.078	6.993	-1.221
A30-20gon-2_xyz.seg	I-Beam-A	а	-4.287	4.383	-1.197	-4.349	4.192	-1.206
A30-20gon-2_xyz.seg	I-Beam-A	b	-4.443	4.465	-1.196	-4.508	4.275	-1.214
A30-20gon-2_xyz.seg	I-Beam-A	c	-2.861	7.079	-1.222	-2.933	6.893	-1.217
A30-20gon-2_xyz.seg	I-Beam-A	d	-3.018	7.160	-1.220	-3.092	6.976	-1.225
A30-20gon-3_xyz.seg	I-Beam-A	а	-4.287	4.383	-1.197	-4.347	4.204	-1.207
A30-20gon-3_xyz.seg	I-Beam-A	b	-4.443	4.465	-1.196	-4.505	4.287	-1.216
A30-20gon-3_xyz.seg	I-Beam-A	с	-2.861	7.079	-1.222	-2.929	6.904	-1.215
A30-20gon-3_xyz.seg	I-Beam-A	d	-3.018	7.160	-1.220	-3.088	6.987	-1.224

Table A.5. Continued.

I-Beam		Site	SMS	Coordinat	es (m)	Bounding Box Coordinates (m)		
r ne name	Selected	Point	X	У	Z	X	У	Z
A30-8gon-1_xyz.seg	I-Beam-A	а	-4.287	4.383	-1.197	-4.351	4.198	-1.202
A30-8gon-1_xyz.seg	I-Beam-A	b	-4.443	4.465	-1.196	-4.510	4.282	-1.211
A30-8gon-1_xyz.seg	I-Beam-A	c	-2.861	7.079	-1.222	-2.929	6.896	-1.209
A30-8gon-1_xyz.seg	I-Beam-A	d	-3.018	7.160	-1.220	-3.088	6.980	-1.218
A30-8gon-2_xyz.seg	I-Beam-A	а	-4.287	4.383	-1.197	-4.348	4.206	-1.199
A30-8gon-2_xyz.seg	I-Beam-A	b	-4.443	4.465	-1.196	-4.506	4.289	-1.209
A30-8gon-2_xyz.seg	I-Beam-A	c	-2.861	7.079	-1.222	-2.926	6.903	-1.212
A30-8gon-2_xyz.seg	I-Beam-A	d	-3.018	7.160	-1.220	-3.084	6.987	-1.222
A30-8gon-3_xyz.seg	I-Beam-A	а	-4.287	4.383	-1.197	-4.348	4.208	-1.200
A30-8gon-3_xyz.seg	I-Beam-A	b	-4.443	4.465	-1.196	-4.506	4.292	-1.208
A30-8gon-3_xyz.seg	I-Beam-A	c	-2.861	7.079	-1.222	-2.924	6.905	-1.210
A30-8gon-3_xyz.seg	I-Beam-A	d	-3.018	7.160	-1.220	-3.082	6.988	-1.218
A45-12gon-1_xyz.seg	I-Beam-A	а	-3.890	4.242	-1.201	-3.929	3.967	-1.209
A45-12gon-1_xyz.seg	I-Beam-A	b	-4.064	4.278	-1.200	-4.104	4.005	-1.217
A45-12gon-1_xyz.seg	I-Beam-A	c	-3.240	7.220	-1.220	-3.273	6.945	-1.211
A45-12gon-1_xyz.seg	I-Beam-A	d	-3.413	7.258	-1.217	-3.448	6.983	-1.218
A45-12gon-2_xyz.seg	I-Beam-A	а	-3.890	4.242	-1.201	-4.102	3.999	-1.219
A45-12gon-2_xyz.seg	I-Beam-A	b	-4.064	4.278	-1.200	-3.927	3.961	-1.212
A45-12gon-2_xyz.seg	I-Beam-A	c	-3.240	7.220	-1.220	-3.452	6.978	-1.216
A45-12gon-2_xyz.seg	I-Beam-A	d	-3.413	7.258	-1.217	-3.277	6.940	-1.209
A45-12gon-3_xyz.seg	I-Beam-A	а	-3.890	4.242	-1.201	-3.928	3.969	-1.208
A45-12gon-3_xyz.seg	I-Beam-A	b	-4.064	4.278	-1.200	-4.103	4.008	-1.215
A45-12gon-3_xyz.seg	I-Beam-A	c	-3.240	7.220	-1.220	-3.273	6.948	-1.209
A45-12gon-3_xyz.seg	I-Beam-A	d	-3.413	7.258	-1.217	-3.448	6.986	-1.216
A45-20gon-1_xyz.seg	I-Beam-A	а	-3.890	4.242	-1.201	-3.928	3.986	-1.203
A45-20gon-1_xyz.seg	I-Beam-A	b	-4.064	4.278	-1.200	-4.103	4.024	-1.210
A45-20gon-1_xyz.seg	I-Beam-A	c	-3.240	7.220	-1.220	-3.268	6.963	-1.217
A45-20gon-1_xyz.seg	I-Beam-A	d	-3.413	7.258	-1.217	-3.443	7.002	-1.224
A45-20gon-2_xyz.seg	I-Beam-A	а	-3.890	4.242	-1.201	-4.102	3.996	-1.222
A45-20gon-2_xyz.seg	I-Beam-A	b	-4.064	4.278	-1.200	-3.927	3.958	-1.214
A45-20gon-2_xyz.seg	I-Beam-A	c	-3.240	7.220	-1.220	-3.455	6.976	-1.220
A45-20gon-2_xyz.seg	I-Beam-A	d	-3.413	7.258	-1.217	-3.280	6.938	-1.212

Table A.5. Continued.

Eilo Nome I-Bear		Site	SMS	Coordinat	es (m)	Bounding Box Coordinates (m)		
r ne manie	Selected	Point	Х	У	Z	Х	у	Z
A45-20gon-3_xyz.seg	I-Beam-A	а	-3.890	4.242	-1.201	-3.936	3.961	-1.209
A45-20gon-3_xyz.seg	I-Beam-A	b	-4.064	4.278	-1.200	-4.111	4.000	-1.221
A45-20gon-3_xyz.seg	I-Beam-A	c	-3.240	7.220	-1.220	-3.277	6.939	-1.216
A45-20gon-3_xyz.seg	I-Beam-A	d	-3.413	7.258	-1.217	-3.452	6.977	-1.228
A45-8gon-1_xyz.seg	I-Beam-A	а	-3.890	4.242	-1.201	-3.930	3.968	-1.206
A45-8gon-1_xyz.seg	I-Beam-A	b	-4.064	4.278	-1.200	-4.105	4.007	-1.215
A45-8gon-1_xyz.seg	I-Beam-A	с	-3.240	7.220	-1.220	-3.273	6.946	-1.208
A45-8gon-1_xyz.seg	I-Beam-A	d	-3.413	7.258	-1.217	-3.448	6.985	-1.216
A45-8gon-2_xyz.seg	I-Beam-A	а	-3.890	4.242	-1.201	-4.105	4.004	-1.216
A45-8gon-2_xyz.seg	I-Beam-A	b	-4.064	4.278	-1.200	-3.930	3.965	-1.208
A45-8gon-2_xyz.seg	I-Beam-A	с	-3.240	7.220	-1.220	-3.448	6.982	-1.215
A45-8gon-2_xyz.seg	I-Beam-A	d	-3.413	7.258	-1.217	-3.273	6.943	-1.207
A45-8gon-3_xyz.seg	I-Beam-A	а	-3.890	4.242	-1.201	-3.930	3.970	-1.205
A45-8gon-3_xyz.seg	I-Beam-A	b	-4.064	4.278	-1.200	-4.105	4.009	-1.213
A45-8gon-3_xyz.seg	I-Beam-A	c	-3.240	7.220	-1.220	-3.272	6.948	-1.208
A45-8gon-3_xyz.seg	I-Beam-A	d	-3.413	7.258	-1.217	-3.447	6.986	-1.217
A60-12gon-1_xyz.seg	I-Beam-A	а	-3.515	4.200	-1.207	-3.664	3.854	-1.222
A60-12gon-1_xyz.seg	I-Beam-A	b	-3.692	4.192	-1.206	-3.485	3.860	-1.216
A60-12gon-1_xyz.seg	I-Beam-A	с	-3.630	7.247	-1.213	-3.765	6.902	-1.216
A60-12gon-1_xyz.seg	I-Beam-A	d	-3.807	7.240	-1.209	-3.586	6.908	-1.210
A60-12gon-2_xyz.seg	I-Beam-A	а	-3.515	4.200	-1.207	-3.664	3.849	-1.222
A60-12gon-2_xyz.seg	I-Beam-A	b	-3.692	4.192	-1.206	-3.485	3.855	-1.217
A60-12gon-2_xyz.seg	I-Beam-A	c	-3.630	7.247	-1.213	-3.763	6.897	-1.218
A60-12gon-2_xyz.seg	I-Beam-A	d	-3.807	7.240	-1.209	-3.584	6.903	-1.213
A60-12gon-3_xyz.seg	I-Beam-A	а	-3.515	4.200	-1.207	-3.664	3.855	-1.223
A60-12gon-3_xyz.seg	I-Beam-A	b	-3.692	4.192	-1.206	-3.485	3.861	-1.216
A60-12gon-3_xyz.seg	I-Beam-A	c	-3.630	7.247	-1.213	-3.768	6.903	-1.218
A60-12gon-3_xyz.seg	I-Beam-A	d	-3.807	7.240	-1.209	-3.588	6.909	-1.211
A60-20gon-1_xyz.seg	I-Beam-A	а	-3.515	4.200	-1.207	-3.661	3.833	-1.226
A60-20gon-1_xyz.seg	I-Beam-A	b	-3.692	4.192	-1.206	-3.481	3.839	-1.220
A60-20gon-1_xyz.seg	I-Beam-A	c	-3.630	7.247	-1.213	-3.770	6.880	-1.219
A60-20gon-1_xyz.seg	I-Beam-A	d	-3.807	7.240	-1.209	-3.591	6.887	-1.212

Table A.5. Continued.

Elle Marine I-Beam		Site	SMS	Coordinat	es (m)	Bounding Box Coordinates (m)		
rne name	Selected	Point	X	У	Z	X	У	Z
A60-20gon-2_xyz.seg	I-Beam-A	а	-3.515	4.200	-1.207	-3.658	3.840	-1.225
A60-20gon-2_xyz.seg	I-Beam-A	b	-3.692	4.192	-1.206	-3.479	3.846	-1.220
A60-20gon-2_xyz.seg	I-Beam-A	c	-3.630	7.247	-1.213	-3.768	6.887	-1.217
A60-20gon-2_xyz.seg	I-Beam-A	d	-3.807	7.240	-1.209	-3.588	6.894	-1.213
A60-20gon-3_xyz.seg	I-Beam-A	а	-3.515	4.200	-1.207	-3.661	3.832	-1.228
A60-20gon-3_xyz.seg	I-Beam-A	b	-3.692	4.192	-1.206	-3.482	3.838	-1.220
A60-20gon-3_xyz.seg	I-Beam-A	c	-3.630	7.247	-1.213	-3.770	6.879	-1.217
A60-20gon-3_xyz.seg	I-Beam-A	d	-3.807	7.240	-1.209	-3.591	6.886	-1.210
A60-8gon-1_xyz.seg	I-Beam-A	а	-3.515	4.200	-1.207	-3.662	3.836	-1.225
A60-8gon-1_xyz.seg	I-Beam-A	b	-3.692	4.192	-1.206	-3.483	3.842	-1.217
A60-8gon-1_xyz.seg	I-Beam-A	c	-3.630	7.247	-1.213	-3.768	6.884	-1.215
A60-8gon-1_xyz.seg	I-Beam-A	d	-3.807	7.240	-1.209	-3.589	6.890	-1.207
A60-8gon-2_xyz.seg	I-Beam-A	а	-3.515	4.200	-1.207	-3.661	3.841	-1.222
A60-8gon-2_xyz.seg	I-Beam-A	b	-3.692	4.192	-1.206	-3.482	3.847	-1.216
A60-8gon-2_xyz.seg	I-Beam-A	c	-3.630	7.247	-1.213	-3.767	6.888	-1.212
A60-8gon-2_xyz.seg	I-Beam-A	d	-3.807	7.240	-1.209	-3.588	6.895	-1.206
A60-8gon-3_xyz.seg	I-Beam-A	а	-3.515	4.200	-1.207	-3.662	3.833	-1.223
A60-8gon-3_xyz.seg	I-Beam-A	b	-3.692	4.192	-1.206	-3.482	3.839	-1.217
A60-8gon-3_xyz.seg	I-Beam-A	c	-3.630	7.247	-1.213	-3.767	6.881	-1.211
A60-8gon-3_xyz.seg	I-Beam-A	d	-3.807	7.240	-1.209	-3.588	6.887	-1.205
A90-12gon-1_xyz.seg	I-Beam-B	а	-2.765	4.436	-1.214	-2.468	3.900	-1.763
A90-12gon-1_xyz.seg	I-Beam-B	b	-2.912	4.341	-1.213	-2.689	3.775	-1.754
A90-12gon-1_xyz.seg	I-Beam-B	c	-4.373	7.025	-1.206	-3.501	5.754	-1.547
A90-12gon-1_xyz.seg	I-Beam-B	d	-4.524	6.932	-1.202	-3.723	5.629	-1.538
A90-12gon-2_xyz.seg	I-Beam-B	а	-2.765	4.436	-1.214	-0.904	7.106	-1.359
A90-12gon-2_xyz.seg	I-Beam-B	b	-2.912	4.341	-1.213	-1.139	7.142	-1.271
A90-12gon-2_xyz.seg	I-Beam-B	c	-4.373	7.025	-1.206	-0.996	5.060	-0.761
A90-12gon-2_xyz.seg	I-Beam-B	d	-4.524	6.932	-1.202	-1.232	5.096	-0.673
A90-12gon-3_xyz.seg	I-Beam-B	а	-2.765	4.436	-1.214	-2.432	3.990	-1.718
A90-12gon-3_xyz.seg	I-Beam-B	b	-2.912	4.341	-1.213	-2.648	3.857	-1.724
A90-12gon-3_xyz.seg	I-Beam-B	c	-4.373	7.025	-1.206	-3.551	5.799	-1.549
A90-12gon-3_xyz.seg	I-Beam-B	d	-4.524	6.932	-1.202	-3.767	5.666	-1.555

Table A.5. Continued.

Eile Nome	I-Beam	Site	SMS (Coordinat	es (m)	Bounding Box Coordinates (m)		
r ne maine	Selected	Point	X	у	Z	X	у	Z
A90-20gon-1_xyz.seg	I-Beam-B	а	-2.765	4.436	-1.214	-2.499	4.028	-1.687
A90-20gon-1_xyz.seg	I-Beam-B	b	-2.912	4.341	-1.213	-2.719	3.902	-1.692
A90-20gon-1_xyz.seg	I-Beam-B	c	-4.373	7.025	-1.206	-3.562	5.875	-1.577
A90-20gon-1_xyz.seg	I-Beam-B	d	-4.524	6.932	-1.202	-3.782	5.748	-1.582
A90-20gon-2_xyz.seg	I-Beam-A	а	-2.765	4.436	-1.214	-2.345	3.725	-1.722
A90-20gon-2_xyz.seg	I-Beam-A	b	-2.912	4.341	-1.213	-2.500	3.634	-1.727
A90-20gon-2_xyz.seg	I-Beam-A	c	-4.373	7.025	-1.206	-3.889	6.351	-1.584
A90-20gon-2_xyz.seg	I-Beam-A	d	-4.524	6.932	-1.202	-4.044	6.260	-1.589
A90-20gon-3_xyz.seg	I-Beam-B	а	-2.765	4.436	-1.214	-2.493	4.083	-1.701
A90-20gon-3_xyz.seg	I-Beam-B	b	-2.912	4.341	-1.213	-2.710	3.951	-1.709
A90-20gon-3_xyz.seg	I-Beam-B	c	-4.373	7.025	-1.206	-3.606	5.895	-1.524
A90-20gon-3_xyz.seg	I-Beam-B	d	-4.524	6.932	-1.202	-3.823	5.763	-1.533
A90-8gon-1_xyz.seg	I-Beam-B	а	-2.765	4.436	-1.214	-4.512	7.689	-2.159
A90-8gon-1_xyz.seg	I-Beam-B	b	-2.912	4.341	-1.213	-4.462	7.443	-2.120
A90-8gon-1_xyz.seg	I-Beam-B	c	-4.373	7.025	-1.206	-4.568	8.013	-0.051
A90-8gon-1_xyz.seg	I-Beam-B	d	-4.524	6.932	-1.202	-4.518	7.767	-0.012
A90-8gon-2_xyz.seg	I-Beam-B	а	-2.765	4.436	-1.214	-4.543	8.003	-0.081
A90-8gon-2_xyz.seg	I-Beam-B	b	-2.912	4.341	-1.213	-4.490	7.757	-0.048
A90-8gon-2_xyz.seg	I-Beam-B	c	-4.373	7.025	-1.206	-4.547	7.715	-2.195
A90-8gon-2_xyz.seg	I-Beam-B	d	-4.524	6.932	-1.202	-4.494	7.469	-2.162
A90-8gon-3_xyz.seg	I-Beam-B	а	-2.765	4.436	-1.214	-1.147	7.210	-1.149
A90-8gon-3_xyz.seg	I-Beam-B	b	-2.912	4.341	-1.213	-0.911	7.186	-1.241
A90-8gon-3_xyz.seg	I-Beam-B	c	-4.373	7.025	-1.206	-1.227	5.107	-0.797
A90-8gon-3_xyz.seg	I-Beam-B	d	-4.524	6.932	-1.202	-0.991	5.083	-0.888
B0-12gon-1_xyz.seg	I-Beam-B	а	-4.480	5.163	-1.257	-4.595	5.351	-1.284
B0-12gon-1_xyz.seg	I-Beam-B	b	-4.612	5.374	-1.253	-4.460	5.139	-1.249
B0-12gon-1_xyz.seg	I-Beam-B	c	-2.666	6.289	-1.278	-2.791	6.491	-1.295
B0-12gon-1_xyz.seg	I-Beam-B	d	-2.800	6.501	-1.275	-2.656	6.278	-1.261
B0-12gon-2_xyz.seg	I-Beam-B	а	-4.480	5.163	-1.257	-4.602	5.347	-1.285
B0-12gon-2_xyz.seg	I-Beam-B	b	-4.612	5.374	-1.253	-4.467	5.134	-1.251
B0-12gon-2_xyz.seg	I-Beam-B	c	-2.666	6.289	-1.278	-2.798	6.487	-1.298
B0-12gon-2_xyz.seg	I-Beam-B	d	-2.800	6.501	-1.275	-2.664	6.274	-1.263

Table A.5. Continued.

Ette Nome	I-Beam	Site	SMS (Coordinat	es (m)	Bounding Box Coordinates (m)		
Flie Name	Selected	Point	X	У	Z	X	У	Z
B0-12gon-3_xyz.seg	I-Beam-B	а	-4.480	5.163	-1.257	-4.599	5.358	-1.288
B0-12gon-3_xyz.seg	I-Beam-B	b	-4.612	5.374	-1.253	-4.466	5.146	-1.246
B0-12gon-3_xyz.seg	I-Beam-B	c	-2.666	6.289	-1.278	-2.792	6.492	-1.303
B0-12gon-3_xyz.seg	I-Beam-B	d	-2.800	6.501	-1.275	-2.659	6.280	-1.261
B0-20gon-1_xyz.seg	I-Beam-B	а	-4.480	5.163	-1.257	-4.592	5.360	-1.296
B0-20gon-1_xyz.seg	I-Beam-B	b	-4.612	5.374	-1.253	-4.458	5.149	-1.253
B0-20gon-1_xyz.seg	I-Beam-B	c	-2.666	6.289	-1.278	-2.791	6.504	-1.300
B0-20gon-1_xyz.seg	I-Beam-B	d	-2.800	6.501	-1.275	-2.657	6.293	-1.257
B0-20gon-2_xyz.seg	I-Beam-B	а	-4.480	5.163	-1.257	-4.600	5.348	-1.291
B0-20gon-2_xyz.seg	I-Beam-B	b	-4.612	5.374	-1.253	-4.465	5.136	-1.256
B0-20gon-2_xyz.seg	I-Beam-B	c	-2.666	6.289	-1.278	-2.797	6.490	-1.301
B0-20gon-2_xyz.seg	I-Beam-B	d	-2.800	6.501	-1.275	-2.663	6.278	-1.266
B0-20gon-3_xyz.seg	I-Beam-B	а	-4.480	5.163	-1.257	-4.590	5.358	-1.296
B0-20gon-3_xyz.seg	I-Beam-B	b	-4.612	5.374	-1.253	-4.456	5.147	-1.253
B0-20gon-3_xyz.seg	I-Beam-B	c	-2.666	6.289	-1.278	-2.790	6.504	-1.302
B0-20gon-3_xyz.seg	I-Beam-B	d	-2.800	6.501	-1.275	-2.656	6.293	-1.259
B0-8gon-1_xyz.seg	I-Beam-B	а	-4.480	5.163	-1.257	-4.597	5.360	-1.291
B0-8gon-1_xyz.seg	I-Beam-B	b	-4.612	5.374	-1.253	-4.464	5.149	-1.242
B0-8gon-1_xyz.seg	I-Beam-B	c	-2.666	6.289	-1.278	-2.791	6.495	-1.307
B0-8gon-1_xyz.seg	I-Beam-B	d	-2.800	6.501	-1.275	-2.658	6.285	-1.257
B0-8gon-2_xyz.seg	I-Beam-B	а	-4.480	5.163	-1.257	-4.595	5.350	-1.287
B0-8gon-2_xyz.seg	I-Beam-B	b	-4.612	5.374	-1.253	-4.461	5.139	-1.246
B0-8gon-2_xyz.seg	I-Beam-B	c	-2.666	6.289	-1.278	-2.793	6.492	-1.299
B0-8gon-2_xyz.seg	I-Beam-B	d	-2.800	6.501	-1.275	-2.658	6.280	-1.258
B0-8gon-3_xyz.seg	I-Beam-B	а	-4.480	5.163	-1.257	-4.597	5.355	-1.288
B0-8gon-3_xyz.seg	I-Beam-B	b	-4.612	5.374	-1.253	-4.464	5.143	-1.246
B0-8gon-3_xyz.seg	I-Beam-B	c	-2.666	6.289	-1.278	-2.790	6.490	-1.299
B0-8gon-3_xyz.seg	I-Beam-B	d	-2.800	6.501	-1.275	-2.657	6.278	-1.257
B30-12gon-1_xyz.seg	I-Beam-B	а	-4.060	4.789	-1.261	-4.094	4.692	-1.255
B30-12gon-1_xyz.seg	I-Beam-B	b	-4.282	4.903	-1.252	-4.317	4.810	-1.285
B30-12gon-1_xyz.seg	I-Beam-B	c	-3.071	6.678	-1.277	-3.098	6.579	-1.264
B30-12gon-1_xyz.seg	I-Beam-B	d	-3.294	6.792	-1.269	-3.321	6.697	-1.293

Table A.5. Continued.

File	I-Beam	Site	SMS	Coordinat	es (m)	Bounding	Box Coord	linates (m)
Name	Selected	Point	X	У	Z	X	У	Z
B30-12gon-2_xyz.seg	I-Beam-B	а	-4.060	4.789	-1.261	-4.310	4.801	-1.285
B30-12gon-2_xyz.seg	I-Beam-B	b	-4.282	4.903	-1.252	-4.086	4.685	-1.261
B30-12gon-2_xyz.seg	I-Beam-B	c	-3.071	6.678	-1.277	-3.326	6.695	-1.286
B30-12gon-2_xyz.seg	I-Beam-B	d	-3.294	6.792	-1.269	-3.102	6.578	-1.261
B30-12gon-3_xyz.seg	I-Beam-B	а	-4.060	4.789	-1.261	-4.092	4.694	-1.249
B30-12gon-3_xyz.seg	I-Beam-B	b	-4.282	4.903	-1.252	-4.316	4.812	-1.275
B30-12gon-3_xyz.seg	I-Beam-B	c	-3.071	6.678	-1.277	-3.096	6.581	-1.267
B30-12gon-3_xyz.seg	I-Beam-B	d	-3.294	6.792	-1.269	-3.319	6.698	-1.293
B30-20gon-1_xyz.seg	I-Beam-B	а	-4.060	4.789	-1.261	-4.086	4.697	-1.253
B30-20gon-1_xyz.seg	I-Beam-B	b	-4.282	4.903	-1.252	-4.310	4.814	-1.280
B30-20gon-1_xyz.seg	I-Beam-B	c	-3.071	6.678	-1.277	-3.099	6.589	-1.270
B30-20gon-1_xyz.seg	I-Beam-B	d	-3.294	6.792	-1.269	-3.323	6.705	-1.298
B30-20gon-2_xyz.seg	I-Beam-B	а	-4.060	4.789	-1.261	-4.090	4.681	-1.259
B30-20gon-2_xyz.seg	I-Beam-B	b	-4.282	4.903	-1.252	-4.314	4.797	-1.287
B30-20gon-2_xyz.seg	I-Beam-B	c	-3.071	6.678	-1.277	-3.106	6.574	-1.265
B30-20gon-2_xyz.seg	I-Beam-B	d	-3.294	6.792	-1.269	-3.330	6.690	-1.293
B30-20gon-3_xyz.seg	I-Beam-B	а	-4.060	4.789	-1.261	-4.088	4.690	-1.260
B30-20gon-3_xyz.seg	I-Beam-B	b	-4.282	4.903	-1.252	-4.312	4.807	-1.288
B30-20gon-3_xyz.seg	I-Beam-B	c	-3.071	6.678	-1.277	-3.102	6.582	-1.266
B30-20gon-3_xyz.seg	I-Beam-B	d	-3.294	6.792	-1.269	-3.325	6.698	-1.295
B30-8gon-1_xyz.seg	I-Beam-B	а	-4.060	4.789	-1.261	-4.089	4.695	-1.253
B30-8gon-1_xyz.seg	I-Beam-B	b	-4.282	4.903	-1.252	-4.313	4.813	-1.279
B30-8gon-1_xyz.seg	I-Beam-B	с	-3.071	6.678	-1.277	-3.094	6.582	-1.262
B30-8gon-1_xyz.seg	I-Beam-B	d	-3.294	6.792	-1.269	-3.317	6.700	-1.288
B30-8gon-2_xyz.seg	I-Beam-B	а	-4.060	4.789	-1.261	-4.094	4.687	-1.252
B30-8gon-2_xyz.seg	I-Beam-B	b	-4.282	4.903	-1.252	-4.317	4.803	-1.285
B30-8gon-2_xyz.seg	I-Beam-B	с	-3.071	6.678	-1.277	-3.107	6.579	-1.258
B30-8gon-2_xyz.seg	I-Beam-B	d	-3.294	6.792	-1.269	-3.331	6.695	-1.292
B30-8gon-3_xyz.seg	I-Beam-B	а	-4.060	4.789	-1.261	-4.094	4.698	-1.252
B30-8gon-3_xyz.seg	I-Beam-B	b	-4.282	4.903	-1.252	-4.316	4.815	-1.285
B30-8gon-3_xyz.seg	I-Beam-B	c	-3.071	6.678	-1.277	-3.097	6.584	-1.262
B30-8gon-3_xyz.seg	I-Beam-B	d	-3.294	6.792	-1.269	-3.320	6.701	-1.295

Table A.5. Continued.

File	I-Beam	Site	SMS	Coordinat	es (m)	Bounding	Box Coord	inates (m)
Name	Selected	Point	X	У	Z	X	У	Z
B45-12gon-1_xyz.seg	I-Beam-B	а	-3.792	4.682	-1.263	-3.809	4.531	-1.261
B45-12gon-1_xyz.seg	I-Beam-B	b	-4.038	4.731	-1.254	-4.057	4.585	-1.281
B45-12gon-1_xyz.seg	I-Beam-B	c	-3.345	6.767	-1.275	-3.348	6.614	-1.268
B45-12gon-1_xyz.seg	I-Beam-B	d	-3.591	6.817	-1.266	-3.596	6.669	-1.288
B45-12gon-2_xyz.seg	I-Beam-B	а	-3.792	4.682	-1.263	-3.808	4.527	-1.261
B45-12gon-2_xyz.seg	I-Beam-B	b	-4.038	4.731	-1.254	-4.055	4.581	-1.284
B45-12gon-2_xyz.seg	I-Beam-B	c	-3.345	6.767	-1.275	-3.354	6.612	-1.266
B45-12gon-2_xyz.seg	I-Beam-B	d	-3.591	6.817	-1.266	-3.601	6.666	-1.289
B45-12gon-3_xyz.seg	I-Beam-B	а	-3.792	4.682	-1.263	-4.057	4.580	-1.287
B45-12gon-3_xyz.seg	I-Beam-B	b	-4.038	4.731	-1.254	-3.810	4.526	-1.266
B45-12gon-3_xyz.seg	I-Beam-B	c	-3.345	6.767	-1.275	-3.599	6.664	-1.286
B45-12gon-3_xyz.seg	I-Beam-B	d	-3.591	6.817	-1.266	-3.352	6.610	-1.265
B45-20gon-1_xyz.seg	I-Beam-B	а	-3.792	4.682	-1.263	-4.052	4.567	-1.291
B45-20gon-1_xyz.seg	I-Beam-B	b	-4.038	4.731	-1.254	-3.805	4.513	-1.274
B45-20gon-1_xyz.seg	I-Beam-B	c	-3.345	6.767	-1.275	-3.600	6.652	-1.289
B45-20gon-1_xyz.seg	I-Beam-B	d	-3.591	6.817	-1.266	-3.353	6.598	-1.273
B45-20gon-2_xyz.seg	I-Beam-B	а	-3.792	4.682	-1.263	-3.810	4.519	-1.262
B45-20gon-2_xyz.seg	I-Beam-B	b	-4.038	4.731	-1.254	-4.057	4.574	-1.276
B45-20gon-2_xyz.seg	I-Beam-B	c	-3.345	6.767	-1.275	-3.349	6.603	-1.273
B45-20gon-2_xyz.seg	I-Beam-B	d	-3.591	6.817	-1.266	-3.596	6.657	-1.287
B45-20gon-3_xyz.seg	I-Beam-B	а	-3.792	4.682	-1.263	-4.067	4.567	-1.293
B45-20gon-3_xyz.seg	I-Beam-B	b	-4.038	4.731	-1.254	-3.820	4.511	-1.273
B45-20gon-3_xyz.seg	I-Beam-B	c	-3.345	6.767	-1.275	-3.595	6.648	-1.288
B45-20gon-3_xyz.seg	I-Beam-B	d	-3.591	6.817	-1.266	-3.348	6.592	-1.268
B45-8gon-1_xyz.seg	I-Beam-B	а	-3.792	4.682	-1.263	-3.816	4.531	-1.254
B45-8gon-1_xyz.seg	I-Beam-B	b	-4.038	4.731	-1.254	-4.062	4.586	-1.283
B45-8gon-1_xyz.seg	I-Beam-B	c	-3.345	6.767	-1.275	-3.350	6.613	-1.268
B45-8gon-1_xyz.seg	I-Beam-B	d	-3.591	6.817	-1.266	-3.596	6.668	-1.296
B45-8gon-2_xyz.seg	I-Beam-B	а	-3.792	4.682	-1.263	-3.810	4.529	-1.257
B45-8gon-2_xyz.seg	I-Beam-B	b	-4.038	4.731	-1.254	-4.057	4.583	-1.281
B45-8gon-2_xyz.seg	I-Beam-B	c	-3.345	6.767	-1.275	-3.352	6.613	-1.264
B45-8gon-2_xyz.seg	I-Beam-B	d	-3.591	6.817	-1.266	-3.598	6.667	-1.289

Table A.5. Continued.

Eile Nome	I-Beam	Site	SMS	Coordinat	es (m)	Bounding Box Coordinates (m)		
riie Maille	Selected	Point	Х	У	Z	Х	У	Z
B45-8gon-3_xyz.seg	I-Beam-B	а	-3.792	4.682	-1.263	-3.814	4.525	-1.255
B45-8gon-3_xyz.seg	I-Beam-B	b	-4.038	4.731	-1.254	-4.061	4.580	-1.280
B45-8gon-3_xyz.seg	I-Beam-B	c	-3.345	6.767	-1.275	-3.349	6.607	-1.266
B45-8gon-3_xyz.seg	I-Beam-B	d	-3.591	6.817	-1.266	-3.596	6.662	-1.291
B60-12gon-1_xyz.seg	I-Beam-B	а	-3.520	4.655	-1.269	-3.505	4.452	-1.269
B60-12gon-1_xyz.seg	I-Beam-B	b	-3.772	4.642	-1.259	-3.759	4.447	-1.282
B60-12gon-1_xyz.seg	I-Beam-B	c	-3.600	6.787	-1.272	-3.552	6.586	-1.274
B60-12gon-1_xyz.seg	I-Beam-B	d	-3.851	6.775	-1.261	-3.805	6.580	-1.288
B60-12gon-2_xyz.seg	I-Beam-B	а	-3.520	4.655	-1.269	-3.753	4.443	-1.290
B60-12gon-2_xyz.seg	I-Beam-B	b	-3.772	4.642	-1.259	-3.499	4.450	-1.274
B60-12gon-2_xyz.seg	I-Beam-B	c	-3.600	6.787	-1.272	-3.810	6.576	-1.285
B60-12gon-2_xyz.seg	I-Beam-B	d	-3.851	6.775	-1.261	-3.556	6.583	-1.270
B60-12gon-3_xyz.seg	I-Beam-B	а	-3.520	4.655	-1.269	-3.753	4.439	-1.290
B60-12gon-3_xyz.seg	I-Beam-B	b	-3.772	4.642	-1.259	-3.499	4.446	-1.276
B60-12gon-3_xyz.seg	I-Beam-B	c	-3.600	6.787	-1.272	-3.810	6.572	-1.283
B60-12gon-3_xyz.seg	I-Beam-B	d	-3.851	6.775	-1.261	-3.556	6.579	-1.269
B60-20gon-1_xyz.seg	I-Beam-B	а	-3.520	4.655	-1.269	-3.758	4.427	-1.302
B60-20gon-1_xyz.seg	I-Beam-B	b	-3.772	4.642	-1.259	-3.505	4.434	-1.279
B60-20gon-1_xyz.seg	I-Beam-B	c	-3.600	6.787	-1.272	-3.818	6.559	-1.283
B60-20gon-1_xyz.seg	I-Beam-B	d	-3.851	6.775	-1.261	-3.565	6.566	-1.261
B60-20gon-2_xyz.seg	I-Beam-B	а	-3.520	4.655	-1.269	-3.511	4.458	-1.264
B60-20gon-2_xyz.seg	I-Beam-B	b	-3.772	4.642	-1.259	-3.764	4.453	-1.288
B60-20gon-2_xyz.seg	I-Beam-B	c	-3.600	6.787	-1.272	-3.555	6.591	-1.275
B60-20gon-2_xyz.seg	I-Beam-B	d	-3.851	6.775	-1.261	-3.808	6.586	-1.299
B60-20gon-3_xyz.seg	I-Beam-B	а	-3.520	4.655	-1.269	-3.758	4.448	-1.298
B60-20gon-3_xyz.seg	I-Beam-B	b	-3.772	4.642	-1.259	-3.505	4.455	-1.275
B60-20gon-3_xyz.seg	I-Beam-B	c	-3.600	6.787	-1.272	-3.814	6.581	-1.293
B60-20gon-3_xyz.seg	I-Beam-B	d	-3.851	6.775	-1.261	-3.561	6.588	-1.270
B60-8gon-1_xyz.seg	I-Beam-A	а	-3.520	4.655	-1.269	-3.710	3.985	-1.262
B60-8gon-1_xyz.seg	I-Beam-A	b	-3.772	4.642	-1.259	-3.531	3.989	-1.248
B60-8gon-1_xyz.seg	I-Beam-A	c	-3.600	6.787	-1.272	-3.785	7.034	-1.258
B60-8gon-1_xyz.seg	I-Beam-A	d	-3.851	6.775	-1.261	-3.606	7.038	-1.243

Table A.5. Continued.

	I-Beam	Site	SMS Coordinates (m)			Bounding Box Coordinates (m)		
File Name	Selected	Point	X	у	Z	x	у	Z
B60-8gon-2_xyz.seg	I-Beam-B	а	-3.520	4.655	-1.269	-3.508	4.449	-1.267
B60-8gon-2 xyz.seg	I-Beam-B	b	-3.772	4.642	-1.259	-3.761	4.444	-1.287
B60-8gon-2 xyz.seg	I-Beam-B	с	-3.600	6.787	-1.272	-3.556	6.582	-1.267
B60-8gon-2_xyz.seg	I-Beam-B	d	-3.851	6.775	-1.261	-3.809	6.577	-1.288
B60-8gon-3_xyz.seg	I-Beam-A	а	-3.520	4.655	-1.269	-3.708	3.985	-1.263
B60-8gon-3_xyz.seg	I-Beam-A	b	-3.772	4.642	-1.259	-3.529	3.990	-1.252
B60-8gon-3_xyz.seg	I-Beam-A	с	-3.600	6.787	-1.272	-3.785	7.034	-1.253
B60-8gon-3_xyz.seg	I-Beam-A	d	-3.851	6.775	-1.261	-3.606	7.039	-1.242
B90-12gon-1_xyz.seg	I-Beam-B	а	-2.986	4.823	-1.273	-2.711	4.362	-1.687
B90-12gon-1_xyz.seg	I-Beam-B	b	-3.198	4.689	-1.264	-2.929	4.232	-1.691
B90-12gon-1_xyz.seg	I-Beam-B	c	-4.102	6.640	-1.266	-3.807	6.191	-1.593
B90-12gon-1_xyz.seg	I-Beam-B	d	-4.315	6.505	-1.257	-4.024	6.060	-1.597
B90-12gon-2_xyz.seg	I-Beam-B	а	-2.986	4.823	-1.273	-2.716	4.368	-1.678
B90-12gon-2_xyz.seg	I-Beam-B	b	-3.198	4.689	-1.264	-2.935	4.240	-1.687
B90-12gon-2_xyz.seg	I-Beam-B	c	-4.102	6.640	-1.266	-3.795	6.207	-1.605
B90-12gon-2_xyz.seg	I-Beam-B	d	-4.315	6.505	-1.257	-4.014	6.079	-1.613
B90-12gon-3_xyz.seg	I-Beam-B	а	-2.986	4.823	-1.273	-2.712	4.356	-1.682
B90-12gon-3_xyz.seg	I-Beam-B	b	-3.198	4.689	-1.264	-2.931	4.227	-1.688
B90-12gon-3_xyz.seg	I-Beam-B	c	-4.102	6.640	-1.266	-3.796	6.191	-1.593
B90-12gon-3_xyz.seg	I-Beam-B	d	-4.315	6.505	-1.257	-4.015	6.062	-1.599
B90-20gon-1_xyz.seg	I-Beam-B	а	-2.986	4.823	-1.273	-2.677	4.341	-1.716
B90-20gon-1_xyz.seg	I-Beam-B	b	-3.198	4.689	-1.264	-2.893	4.209	-1.729
B90-20gon-1_xyz.seg	I-Beam-B	c	-4.102	6.640	-1.266	-3.793	6.154	-1.573
B90-20gon-1_xyz.seg	I-Beam-B	d	-4.315	6.505	-1.257	-4.010	6.021	-1.585
B90-20gon-2_xyz.seg	I-Beam-B	а	-2.986	4.823	-1.273	-2.724	4.404	-1.691
B90-20gon-2_xyz.seg	I-Beam-B	b	-3.198	4.689	-1.264	-2.942	4.273	-1.702
B90-20gon-2_xyz.seg	I-Beam-B	c	-4.102	6.640	-1.266	-3.826	6.228	-1.581
B90-20gon-2_xyz.seg	I-Beam-B	d	-4.315	6.505	-1.257	-4.043	6.097	-1.592
B90-20gon-3_xyz.seg	I-Beam-B	а	-2.986	4.823	-1.273	-4.589	3.322	-0.283
B90-20gon-3_xyz.seg	I-Beam-B	b	-3.198	4.689	-1.264	-4.737	3.116	-0.281
B90-20gon-3_xyz.seg	I-Beam-B	c	-4.102	6.640	-1.266	-5.147	3.697	-2.308
B90-20gon-3 xyz.seg	I-Beam-B	d	-4.315	6.505	-1.257	-5.295	3.491	-2.306

Table A.5. Continued.

File Nome	I-Beam	Site	SMS	Coordinat	es (m)	Bounding Box Coordinates (m)		
r ne maine	Selected	Point	Х	У	Z	х	У	Z
B90-8gon-1_xyz.seg	I-Beam-B	а	-2.986	4.823	-1.273	-2.729	4.411	-1.679
B90-8gon-1_xyz.seg	I-Beam-B	b	-3.198	4.689	-1.264	-2.942	4.274	-1.664
B90-8gon-1_xyz.seg	I-Beam-B	c	-4.102	6.640	-1.266	-3.881	6.206	-1.632
B90-8gon-1_xyz.seg	I-Beam-B	d	-4.315	6.505	-1.257	-4.094	6.069	-1.617
B90-8gon-2_xyz.seg	I-Beam-B	а	-2.986	4.823	-1.273	-2.731	4.378	-1.697
B90-8gon-2_xyz.seg	I-Beam-B	b	-3.198	4.689	-1.264	-2.949	4.247	-1.690
B90-8gon-2_xyz.seg	I-Beam-B	c	-4.102	6.640	-1.266	-3.829	6.205	-1.605
B90-8gon-2_xyz.seg	I-Beam-B	d	-4.315	6.505	-1.257	-4.046	6.074	-1.597
B90-8gon-3_xyz.seg	I-Beam-B	а	-2.986	4.823	-1.273	-2.725	4.387	-1.672
B90-8gon-3_xyz.seg	I-Beam-B	b	-3.198	4.689	-1.264	-2.943	4.256	-1.675
B90-8gon-3_xyz.seg	I-Beam-B	с	-4.102	6.640	-1.266	-3.819	6.217	-1.622
B90-8gon-3_xyz.seg	I-Beam-B	d	-4.315	6.505	-1.257	-4.037	6.087	-1.625

Table A.5. Continued.

File	I-Beam	Site		Error (m)	
Name	Selected	Point	dx	dy	dz
A0-12gon-1_xyz.seg	I-Beam-A	а	-0.031	0.033	0.005
A0-12gon-1_xyz.seg	I-Beam-A	b	-0.031	0.028	0.011
A0-12gon-1_xyz.seg	I-Beam-A	с	-0.026	0.026	-0.011
A0-12gon-1_xyz.seg	I-Beam-A	d	-0.026	0.025	-0.003
A0-12gon-2_xyz.seg	I-Beam-A	а	-0.035	0.032	0.008
A0-12gon-2_xyz.seg	I-Beam-A	b	-0.035	0.027	0.013
A0-12gon-2_xyz.seg	I-Beam-A	с	-0.029	0.023	-0.012
A0-12gon-2_xyz.seg	I-Beam-A	d	-0.029	0.022	-0.005
A0-12gon-3_xyz.seg	I-Beam-A	а	-0.027	0.036	0.005
A0-12gon-3_xyz.seg	I-Beam-A	b	-0.027	0.032	0.010
A0-12gon-3_xyz.seg	I-Beam-A	с	-0.022	0.029	-0.010
A0-12gon-3_xyz.seg	I-Beam-A	d	-0.021	0.027	-0.003
A0-20gon-1_xyz.seg	I-Beam-A	а	-0.016	0.040	0.010
A0-20gon-1_xyz.seg	I-Beam-A	b	-0.017	0.036	0.012
A0-20gon-1_xyz.seg	I-Beam-A	с	-0.016	0.040	-0.008
A0-20gon-1_xyz.seg	I-Beam-A	d	-0.016	0.039	-0.004
A0-20gon-2_xyz.seg	I-Beam-A	а	-0.030	0.031	0.011
A0-20gon-2_xyz.seg	I-Beam-A	b	-0.030	0.026	0.015
A0-20gon-2_xyz.seg	I-Beam-A	с	-0.027	0.027	-0.009
A0-20gon-2_xyz.seg	I-Beam-A	d	-0.026	0.025	-0.003
A0-20gon-3_xyz.seg	I-Beam-A	а	-0.016	0.037	0.009
A0-20gon-3_xyz.seg	I-Beam-A	b	-0.016	0.032	0.011
A0-20gon-3_xyz.seg	I-Beam-A	с	-0.017	0.040	-0.006
A0-20gon-3_xyz.seg	I-Beam-A	d	-0.017	0.038	-0.001
A0-8gon-1_xyz.seg	I-Beam-A	а	-0.024	0.038	0.006
A0-8gon-1_xyz.seg	I-Beam-A	b	-0.024	0.034	0.014
A0-8gon-1_xyz.seg	I-Beam-A	с	-0.020	0.032	-0.015
A0-8gon-1 xyz.seg	I-Beam-A	d	-0.019	0.030	-0.004

 Table A.6. Errors between SMS coordinates of four flange points and the computed coordinates using the TIN segmentation process.

Eile Nome	I-Beam	Site		Error (m)	
r ne maine	Selected	Point	dx	dy	dz
A0-8gon-2_xyz.seg	I-Beam-A	а	-0.024	0.036	0.007
A0-8gon-2_xyz.seg	I-Beam-A	b	-0.024	0.032	0.016
A0-8gon-2_xyz.seg	I-Beam-A	с	-0.018	0.027	-0.015
A0-8gon-2_xyz.seg	I-Beam-A	d	-0.018	0.026	-0.004
A0-8gon-3_xyz.seg	I-Beam-A	а	-0.022	0.035	0.008
A0-8gon-3_xyz.seg	I-Beam-A	b	-0.022	0.031	0.015
A0-8gon-3_xyz.seg	I-Beam-A	с	-0.016	0.027	-0.016
A0-8gon-3_xyz.seg	I-Beam-A	d	-0.016	0.026	-0.007
A30-12gon-1_xyz.seg	I-Beam-A	а	0.058	0.176	0.005
A30-12gon-1_xyz.seg	I-Beam-A	b	0.061	0.175	0.013
A30-12gon-1_xyz.seg	I-Beam-A	c	0.063	0.174	-0.009
A30-12gon-1_xyz.seg	I-Beam-A	d	0.065	0.172	0.001
A30-12gon-2_xyz.seg	I-Beam-A	а	0.060	0.180	0.005
A30-12gon-2_xyz.seg	I-Beam-A	b	0.063	0.178	0.013
A30-12gon-2_xyz.seg	I-Beam-A	с	0.065	0.178	-0.010
A30-12gon-2_xyz.seg	I-Beam-A	d	0.067	0.175	0.000
A30-12gon-3_xyz.seg	I-Beam-A	а	0.058	0.174	0.003
A30-12gon-3_xyz.seg	I-Beam-A	b	0.061	0.173	0.011
A30-12gon-3_xyz.seg	I-Beam-A	с	0.061	0.173	-0.006
A30-12gon-3_xyz.seg	I-Beam-A	d	0.063	0.170	0.004
A30-20gon-1_xyz.seg	I-Beam-A	а	0.054	0.172	0.002
A30-20gon-1_xyz.seg	I-Beam-A	b	0.057	0.170	0.006
A30-20gon-1_xyz.seg	I-Beam-A	с	0.058	0.170	-0.005
A30-20gon-1_xyz.seg	I-Beam-A	d	0.060	0.167	0.001
A30-20gon-2_xyz.seg	I-Beam-A	а	0.062	0.190	0.009
A30-20gon-2 xyz.seg	I-Beam-A	b	0.065	0.189	0.018
A30-20gon-2 xyz.seg	I-Beam-A	с	0.072	0.186	-0.005
A30-20gon-2_xyz.seg	I-Beam-A	d	0.074	0.184	0.005
A30-20gon-3 xyz.seg	I-Beam-A	а	0.060	0.179	0.010
A30-20gon-3 xyz.seg	I-Beam-A	b	0.063	0.178	0.020
A30-20gon-3 xyz.seg	I-Beam-A	с	0.068	0.175	-0.007
A30-20gon-3_xyz.seg	I-Beam-A	d	0.070	0.173	0.004

Table A.6. Continued.

Eile Nome	I-Beam	Site		Error (m)			
r ne maine	Selected	Point	dx	dy	dz		
A30-8gon-1_xyz.seg	I-Beam-A	а	0.065	0.184	0.005		
A30-8gon-1_xyz.seg	I-Beam-A	b	0.067	0.183	0.014		
A30-8gon-1_xyz.seg	I-Beam-A	c	0.068	0.183	-0.013		
A30-8gon-1_xyz.seg	I-Beam-A	d	0.070	0.180	-0.002		
A30-8gon-2_xyz.seg	I-Beam-A	а	0.061	0.177	0.002		
A30-8gon-2_xyz.seg	I-Beam-A	b	0.064	0.176	0.012		
A30-8gon-2_xyz.seg	I-Beam-A	с	0.064	0.176	-0.010		
A30-8gon-2_xyz.seg	I-Beam-A	d	0.066	0.173	0.002		
A30-8gon-3_xyz.seg	I-Beam-A	а	0.061	0.175	0.003		
A30-8gon-3_xyz.seg	I-Beam-A	b	0.064	0.173	0.012		
A30-8gon-3_xyz.seg	I-Beam-A	с	0.063	0.174	-0.012		
A30-8gon-3_xyz.seg	I-Beam-A	d	0.064	0.172	-0.002		
A45-12gon-1_xyz.seg	I-Beam-A	а	0.039	0.275	0.008		
A45-12gon-1 xyz.seg	I-Beam-A	b	0.040	0.273	0.017		
A45-12gon-1 xyz.seg	I-Beam-A	с	0.033	0.275	-0.009		
A45-12gon-1_xyz.seg	I-Beam-A	d	0.035	0.274	0.001		
A45-12gon-2 xyz.seg	I-Beam-A	а	0.212	0.243	0.018		
A45-12gon-2 xyz.seg	I-Beam-A	b	-0.137	0.317	0.012		
A45-12gon-2 xyz.seg	I-Beam-A	с	0.212	0.242	-0.004		
A45-12gon-2_xyz.seg	I-Beam-A	d	-0.136	0.318	-0.009		
A45-12gon-3 xyz.seg	I-Beam-A	а	0.038	0.273	0.007		
A45-12gon-3 xyz.seg	I-Beam-A	b	0.038	0.270	0.015		
A45-12gon-3_xyz.seg	I-Beam-A	с	0.033	0.272	-0.011		
A45-12gon-3_xyz.seg	I-Beam-A	d	0.036	0.271	-0.001		
A45-20gon-1 xyz.seg	I-Beam-A	а	0.038	0.256	0.002		
A45-20gon-1 xyz.seg	I-Beam-A	b	0.038	0.254	0.010		
A45-20gon-1 xyz.seg	I-Beam-A	с	0.028	0.257	-0.003		
A45-20gon-1_xyz.seg	I-Beam-A	d	0.030	0.256	0.006		
A45-20gon-2 xvz.seg	I-Beam-A	а	0.212	0.245	0.020		
A45-20gon-2 xvz.seg	I-Beam-A	b	-0.138	0.320	0.014		
A45-20gon-2 xvz.seg	I-Beam-A	с	0.215	0.244	0.000		
A45-20gon-2_xyz.seg	I-Beam-A	d	-0.133	0.319	-0.005		

Table A.6. Continued.

File Nome	I-Beam	Site		Error (m)	
r ne manie	Selected	Point	dx	dy	dz
A45-20gon-3_xyz.seg	I-Beam-A	а	0.046	0.281	0.008
A45-20gon-3_xyz.seg	I-Beam-A	b	0.046	0.278	0.021
A45-20gon-3_xyz.seg	I-Beam-A	с	0.037	0.282	-0.004
A45-20gon-3_xyz.seg	I-Beam-A	d	0.039	0.280	0.010
A45-8gon-1_xyz.seg	I-Beam-A	а	0.040	0.273	0.005
A45-8gon-1_xyz.seg	I-Beam-A	b	0.040	0.271	0.015
A45-8gon-1_xyz.seg	I-Beam-A	с	0.033	0.274	-0.012
A45-8gon-1_xyz.seg	I-Beam-A	d	0.035	0.273	-0.001
A45-8gon-2_xyz.seg	I-Beam-A	а	0.215	0.238	0.015
A45-8gon-2_xyz.seg	I-Beam-A	b	-0.135	0.313	0.008
A45-8gon-2_xyz.seg	I-Beam-A	с	0.208	0.238	-0.005
A45-8gon-2_xyz.seg	I-Beam-A	d	-0.140	0.314	-0.011
A45-8gon-3_xyz.seg	I-Beam-A	а	0.040	0.272	0.004
A45-8gon-3_xyz.seg	I-Beam-A	b	0.040	0.269	0.014
A45-8gon-3_xyz.seg	I-Beam-A	с	0.032	0.273	-0.011
A45-8gon-3_xyz.seg	I-Beam-A	d	0.034	0.271	-0.001
A60-12gon-1_xyz.seg	I-Beam-A	а	0.148	0.346	0.014
A60-12gon-1_xyz.seg	I-Beam-A	b	-0.207	0.332	0.009
A60-12gon-1_xyz.seg	I-Beam-A	с	0.135	0.345	0.003
A60-12gon-1_xyz.seg	I-Beam-A	d	-0.221	0.332	0.001
A60-12gon-2_xyz.seg	I-Beam-A	а	0.148	0.351	0.015
A60-12gon-2_xyz.seg	I-Beam-A	b	-0.207	0.337	0.011
A60-12gon-2_xyz.seg	I-Beam-A	с	0.133	0.350	0.005
A60-12gon-2_xyz.seg	I-Beam-A	d	-0.223	0.337	0.004
A60-12gon-3_xyz.seg	I-Beam-A	а	0.149	0.345	0.015
A60-12gon-3_xyz.seg	I-Beam-A	b	-0.207	0.331	0.009
A60-12gon-3_xyz.seg	I-Beam-A	с	0.137	0.344	0.005
A60-12gon-3_xyz.seg	I-Beam-A	d	-0.219	0.331	0.001
A60-20gon-1_xyz.seg	I-Beam-A	а	0.145	0.367	0.019
A60-20gon-1_xyz.seg	I-Beam-A	b	-0.211	0.352	0.013
A60-20gon-1_xyz.seg	I-Beam-A	с	0.140	0.366	0.006
A60-20gon-1_xyz.seg	I-Beam-A	d	-0.216	0.353	0.003

Table A.6. Continued.

File Name	I-Beam	Site	Error (m)			
File Name	Selected	Point	dx	dy	dz	
A60-20gon-2_xyz.seg	I-Beam-A	а	0.143	0.360	0.017	
A60-20gon-2_xyz.seg	I-Beam-A	b	-0.213	0.346	0.014	
A60-20gon-2_xyz.seg	I-Beam-A	с	0.137	0.360	0.004	
A60-20gon-2_xyz.seg	I-Beam-A	d	-0.219	0.346	0.003	
A60-20gon-3_xyz.seg	I-Beam-A	а	0.145	0.368	0.020	
A60-20gon-3_xyz.seg	I-Beam-A	b	-0.210	0.354	0.014	
A60-20gon-3_xyz.seg	I-Beam-A	с	0.140	0.368	0.004	
A60-20gon-3_xyz.seg	I-Beam-A	d	-0.216	0.354	0.000	
A60-8gon-1_xyz.seg	I-Beam-A	а	0.147	0.364	0.018	
A60-8gon-1_xyz.seg	I-Beam-A	b	-0.209	0.349	0.011	
A60-8gon-1_xyz.seg	I-Beam-A	c	0.138	0.363	0.002	
A60-8gon-1_xyz.seg	I-Beam-A	d	-0.218	0.350	-0.002	
A60-8gon-2_xyz.seg	I-Beam-A	а	0.146	0.359	0.015	
A60-8gon-2_xyz.seg	I-Beam-A	b	-0.210	0.345	0.009	
A60-8gon-2_xyz.seg	I-Beam-A	с	0.137	0.359	-0.001	
A60-8gon-2_xyz.seg	I-Beam-A	d	-0.219	0.346	-0.004	
A60-8gon-3_xyz.seg	I-Beam-A	а	0.146	0.367	0.016	
A60-8gon-3_xyz.seg	I-Beam-A	b	-0.210	0.353	0.011	
A60-8gon-3_xyz.seg	I-Beam-A	с	0.137	0.366	-0.002	
A60-8gon-3_xyz.seg	I-Beam-A	d	-0.219	0.353	-0.005	
A90-12gon-1_xyz.seg	I-Beam-B	а	-0.297	0.536	0.549	
A90-12gon-1_xyz.seg	I-Beam-B	b	-0.224	0.566	0.541	
A90-12gon-1_xyz.seg	I-Beam-B	с	-0.872	1.272	0.341	
A90-12gon-1_xyz.seg	I-Beam-B	d	-0.802	1.303	0.336	
A90-12gon-2 xyz.seg	I-Beam-B	а	-1.861	-2.670	0.145	
A90-12gon-2 xyz.seg	I-Beam-B	b	-1.773	-2.801	0.059	
A90-12gon-2 xyz.seg	I-Beam-B	с	-3.377	1.966	-0.445	
A90-12gon-2_xyz.seg	I-Beam-B	d	-3.292	1.836	-0.529	
A90-12gon-3 xyz.seg	I-Beam-B	а	-0.333	0.446	0.504	
A90-12gon-3 xvz.seg	I-Beam-B	b	-0.264	0.484	0.512	
A90-12gon-3 xvz.seg	I-Beam-B	c	-0.823	1.226	0.344	
A90-12gon-3_xyz.seg	I-Beam-B	d	-0.757	1.266	0.353	

Table A.6. Continued.

Table A.6. Continued.

Filo Nomo	I-Beam	Site	Error (m)			
r ne maine	Selected	Point	dx	dy	dz	
A90-20gon-1_xyz.seg	I-Beam-B	а	-0.266	0.408	0.473	
A90-20gon-1_xyz.seg	I-Beam-B	b	-0.194	0.440	0.479	
A90-20gon-1_xyz.seg	I-Beam-B	с	-0.812	1.151	0.372	
A90-20gon-1_xyz.seg	I-Beam-B	d	-0.742	1.184	0.379	
A90-20gon-2_xyz.seg	I-Beam-A	а	-0.420	0.711	0.508	
A90-20gon-2_xyz.seg	I-Beam-A	b	-0.413	0.707	0.514	
A90-20gon-2_xyz.seg	I-Beam-A	с	-0.484	0.674	0.378	
A90-20gon-2_xyz.seg	I-Beam-A	d	-0.480	0.672	0.387	
A90-20gon-3_xyz.seg	I-Beam-B	а	-0.271	0.353	0.487	
A90-20gon-3_xyz.seg	I-Beam-B	b	-0.202	0.391	0.497	
A90-20gon-3_xyz.seg	I-Beam-B	с	-0.768	1.131	0.318	
A90-20gon-3_xyz.seg	I-Beam-B	d	-0.702	1.169	0.331	
A90-8gon-1_xyz.seg	I-Beam-B	а	1.748	-3.253	0.945	
A90-8gon-1_xyz.seg	I-Beam-B	b	1.550	-3.101	0.907	
A90-8gon-1_xyz.seg	I-Beam-B	с	0.195	-0.988	-1.154	
A90-8gon-1_xyz.seg	I-Beam-B	d	-0.006	-0.835	-1.190	
A90-8gon-2_xyz.seg	I-Beam-B	а	1.778	-3.567	-1.133	
A90-8gon-2_xyz.seg	I-Beam-B	b	1.578	-3.416	-1.165	
A90-8gon-2_xyz.seg	I-Beam-B	с	0.174	-0.690	0.990	
A90-8gon-2_xyz.seg	I-Beam-B	d	-0.030	-0.537	0.960	
A90-8gon-3_xyz.seg	I-Beam-B	а	-1.618	-2.774	-0.065	
A90-8gon-3_xyz.seg	I-Beam-B	b	-2.002	-2.844	0.028	
A90-8gon-3_xyz.seg	I-Beam-B	с	-3.146	1.918	-0.409	
A90-8gon-3_xyz.seg	I-Beam-B	d	-3.533	1.849	-0.314	
B0-12gon-1_xyz.seg	I-Beam-B	а	0.115	-0.188	0.027	
B0-12gon-1_xyz.seg	I-Beam-B	b	-0.152	0.235	-0.003	
B0-12gon-1_xyz.seg	I-Beam-B	с	0.125	-0.202	0.017	
B0-12gon-1_xyz.seg	I-Beam-B	d	-0.144	0.223	-0.014	
B0-12gon-2_xyz.seg	I-Beam-B	а	0.122	-0.183	0.028	
B0-12gon-2_xyz.seg	I-Beam-B	b	-0.145	0.240	-0.002	
B0-12gon-2_xyz.seg	I-Beam-B	с	0.132	-0.198	0.019	
B0-12gon-2_xyz.seg	I-Beam-B	d	-0.136	0.227	-0.012	

Table A.6. Continued.

File Nome	I-Beam	Site	Error (m)			
r ne maine	Selected	Point	dx	dy	dz	
B0-12gon-3_xyz.seg	I-Beam-B	а	0.120	-0.194	0.031	
B0-12gon-3_xyz.seg	I-Beam-B	b	-0.146	0.228	-0.007	
B0-12gon-3_xyz.seg	I-Beam-B	с	0.126	-0.203	0.025	
B0-12gon-3_xyz.seg	I-Beam-B	d	-0.141	0.220	-0.014	
B0-20gon-1_xyz.seg	I-Beam-B	a	0.112	-0.196	0.039	
B0-20gon-1_xyz.seg	I-Beam-B	b	-0.154	0.225	0.000	
B0-20gon-1_xyz.seg	I-Beam-B	c	0.125	-0.215	0.022	
B0-20gon-1_xyz.seg	I-Beam-B	d	-0.143	0.208	-0.018	
B0-20gon-2 xyz.seg	I-Beam-B	а	0.120	-0.185	0.034	
B0-20gon-2 xyz.seg	I-Beam-B	b	-0.147	0.238	0.003	
B0-20gon-2 xyz.seg	I-Beam-B	с	0.131	-0.201	0.023	
B0-20gon-2_xyz.seg	I-Beam-B	d	-0.137	0.223	-0.009	
B0-20gon-3_xyz.seg	I-Beam-B	а	0.110	-0.195	0.039	
B0-20gon-3_xyz.seg	I-Beam-B	b	-0.157	0.227	0.000	
B0-20gon-3_xyz.seg	I-Beam-B	с	0.124	-0.215	0.024	
B0-20gon-3_xyz.seg	I-Beam-B	d	-0.144	0.208	-0.016	
			0.117	0.107	0.024	
B0-8gon-1_xyz.seg	I-Beam-B	a	0.117	-0.196	0.034	
B0-8gon-1_xyz.seg	I-Beam-B	b	-0.148	0.225	-0.011	
B0-8gon-1_xyz.seg	I-Beam-B	c	0.125	-0.206	0.028	
B0-8gon-1_xyz.seg	I-Beam-B	d	-0.142	0.216	-0.018	
B0-8gon-2 xyz.seg	I-Beam-B	а	0.115	-0.187	0.030	
B0-8gon-2 xyz.seg	I-Beam-B	b	-0.152	0.235	-0.006	
B0-8gon-2 xyz.seg	I-Beam-B	с	0.126	-0.203	0.020	
B0-8gon-2_xyz.seg	I-Beam-B	d	-0.142	0.220	-0.017	
B0-8gon-3_xyz.seg	I-Beam-B	а	0.117	-0.192	0.031	
B0-8gon-3_xyz.seg	I-Beam-B	b	-0.149	0.230	-0.006	
B0-8gon-3_xyz.seg	I-Beam-B	c	0.124	-0.201	0.021	
B0-8gon-3_xyz.seg	I-Beam-B	d	-0.143	0.223	-0.018	
B30-12gon-1 xvz seg	I-Beam-B	а	0.034	0.096	-0.006	
$B30-12gon 1_xyz.seg$	I-Beam-R	u h	0.035	0.093	0.033	
$B_{30-12}g_{on-1}$ vvz seg	I_Beam_R	C	0.035	0.099	-0.014	
B30-12gon-1_xyz.seg	I-Beam-B	d	0.028	0.095	0.024	

Filo Nomo	I-Beam	Site	Error (m)		
File Maine	Selected	Point	dx	dy	dz
B30-12gon-2_xyz.seg	I-Beam-B	а	0.250	-0.013	0.024
B30-12gon-2_xyz.seg	I-Beam-B	b	-0.197	0.218	0.008
B30-12gon-2_xyz.seg	I-Beam-B	с	0.256	-0.017	0.008
B30-12gon-2_xyz.seg	I-Beam-B	d	-0.192	0.214	-0.008
B30-12gon-3_xyz.seg	I-Beam-B	а	0.032	0.095	-0.012
B30-12gon-3_xyz.seg	I-Beam-B	b	0.033	0.091	0.023
B30-12gon-3_xyz.seg	I-Beam-B	с	0.025	0.097	-0.011
B30-12gon-3_xyz.seg	I-Beam-B	d	0.026	0.094	0.024
B30-20gon-1_xyz.seg	I-Beam-B	а	0.027	0.091	-0.009
B30-20gon-1_xyz.seg	I-Beam-B	b	0.028	0.089	0.027
B30-20gon-1_xyz.seg	I-Beam-B	с	0.029	0.089	-0.007
B30-20gon-1_xyz.seg	I-Beam-B	d	0.030	0.087	0.029
B30-20gon-2_xyz.seg	I-Beam-B	а	0.030	0.108	-0.002
B30-20gon-2_xyz.seg	I-Beam-B	b	0.032	0.106	0.035
B30-20gon-2_xyz.seg	I-Beam-B	с	0.036	0.104	-0.012
B30-20gon-2_xyz.seg	I-Beam-B	d	0.037	0.102	0.024
B30-20gon-3_xyz.seg	I-Beam-B	а	0.029	0.099	-0.001
B30-20gon-3_xyz.seg	I-Beam-B	b	0.030	0.096	0.036
B30-20gon-3_xyz.seg	I-Beam-B	с	0.031	0.096	-0.011
B30-20gon-3_xyz.seg	I-Beam-B	d	0.032	0.094	0.026
B30-8gon-1_xyz.seg	I-Beam-B	а	0.030	0.094	-0.008
B30-8gon-1_xyz.seg	I-Beam-B	b	0.030	0.090	0.027
B30-8gon-1_xyz.seg	I-Beam-B	с	0.023	0.096	-0.016
B30-8gon-1_xyz.seg	I-Beam-B	d	0.024	0.092	0.019
B30-8gon-2_xyz.seg	I-Beam-B	а	0.034	0.102	-0.009
B30-8gon-2_xyz.seg	I-Beam-B	b	0.035	0.099	0.033
B30-8gon-2_xyz.seg	I-Beam-B	с	0.037	0.099	-0.019
B30-8gon-2_xyz.seg	I-Beam-B	d	0.037	0.097	0.023
B30-8gon-3_xyz.seg	I-Beam-B	а	0.034	0.091	-0.009
B30-8gon-3_xyz.seg	I-Beam-B	b	0.034	0.088	0.033
B30-8gon-3_xyz.seg	I-Beam-B	с	0.026	0.094	-0.015
B30-8gon-3_xyz.seg	I-Beam-B	d	0.026	0.091	0.026

Table A.6. Continued.

File Nome	I-Beam	Site	Error (m)		
FILV IVALLE	Selected	Point	dx	dy	dz
B45-12gon-1_xyz.seg	I-Beam-B	а	0.018	0.151	-0.002
B45-12gon-1_xyz.seg	I-Beam-B	b	0.019	0.145	0.027
B45-12gon-1_xyz.seg	I-Beam-B	с	0.003	0.153	-0.007
B45-12gon-1_xyz.seg	I-Beam-B	d	0.004	0.148	0.022
B45-12gon-2_xyz.seg	I-Beam-B	а	0.016	0.155	-0.003
B45-12gon-2_xyz.seg	I-Beam-B	b	0.018	0.150	0.029
B45-12gon-2_xyz.seg	I-Beam-B	с	0.009	0.155	-0.009
B45-12gon-2_xyz.seg	I-Beam-B	d	0.010	0.151	0.023
B45-12gon-3_xyz.seg	I-Beam-B	а	0.266	0.102	0.024
B45-12gon-3_xyz.seg	I-Beam-B	b	-0.227	0.205	0.012
B45-12gon-3_xyz.seg	I-Beam-B	c	0.254	0.103	0.011
B45-12gon-3_xyz.seg	I-Beam-B	d	-0.239	0.208	-0.002
B45-20gon-1_xyz.seg	I-Beam-B	а	0.261	0.115	0.027
B45-20gon-1_xyz.seg	I-Beam-B	b	-0.233	0.218	0.020
B45-20gon-1_xyz.seg	I-Beam-B	с	0.255	0.115	0.014
B45-20gon-1_xyz.seg	I-Beam-B	d	-0.238	0.219	0.007
B45-20gon-2_xyz.seg	I-Beam-B	а	0.018	0.162	-0.001
B45-20gon-2_xyz.seg	I-Beam-B	b	0.020	0.156	0.022
B45-20gon-2_xyz.seg	I-Beam-B	с	0.004	0.164	-0.002
B45-20gon-2_xyz.seg	I-Beam-B	d	0.005	0.160	0.021
B45-20gon-3_xyz.seg	I-Beam-B	а	0.276	0.115	0.030
B45-20gon-3_xyz.seg	I-Beam-B	b	-0.217	0.220	0.019
B45-20gon-3_xyz.seg	I-Beam-B	c	0.250	0.119	0.013
B45-20gon-3_xyz.seg	I-Beam-B	d	-0.243	0.225	0.002
B45-8gon-1_xyz.seg	I-Beam-B	а	0.024	0.151	-0.010
B45-8gon-1_xyz.seg	I-Beam-B	b	0.025	0.145	0.028
B45-8gon-1_xyz.seg	I-Beam-B	c	0.005	0.154	-0.008
B45-8gon-1_xyz.seg	I-Beam-B	d	0.005	0.149	0.030
B45-8gon-2_xyz.seg	I-Beam-B	а	0.019	0.153	-0.007
B45-8gon-2_xyz.seg	I-Beam-B	b	0.020	0.147	0.027
B45-8gon-2_xyz.seg	I-Beam-B	с	0.006	0.154	-0.011
B45-8gon-2_xyz.seg	I-Beam-B	d	0.007	0.150	0.022

File Name	I-Beam	Site	Error (m)		
	Selected	Point	dx	dy	dz
B45-8gon-3_xyz.seg	I-Beam-B	а	0.023	0.157	-0.008
B45-8gon-3_xyz.seg	I-Beam-B	b	0.024	0.150	0.026
B45-8gon-3_xyz.seg	I-Beam-B	с	0.004	0.159	-0.009
B45-8gon-3_xyz.seg	I-Beam-B	d	0.005	0.155	0.025
B60-12gon-1_xyz.seg	I-Beam-B	а	-0.014	0.203	-0.001
B60-12gon-1_xyz.seg	I-Beam-B	b	-0.013	0.195	0.023
B60-12gon-1_xyz.seg	I-Beam-B	с	-0.048	0.201	0.002
B60-12gon-1_xyz.seg	I-Beam-B	d	-0.046	0.195	0.026
B60-12gon-2_xyz.seg	I-Beam-B	а	0.233	0.212	0.021
B60-12gon-2_xyz.seg	I-Beam-B	b	-0.273	0.192	0.015
B60-12gon-2_xyz.seg	I-Beam-B	с	0.210	0.211	0.013
B60-12gon-2_xyz.seg	I-Beam-B	d	-0.295	0.192	0.009
B60-12gon-3_xyz.seg	I-Beam-B	а	0.233	0.216	0.021
B60-12gon-3_xyz.seg	I-Beam-B	b	-0.273	0.196	0.017
B60-12gon-3_xyz.seg	I-Beam-B	с	0.210	0.214	0.011
B60-12gon-3_xyz.seg	I-Beam-B	d	-0.295	0.196	0.008
B60-20gon-1_xyz.seg	I-Beam-B	а	0.239	0.229	0.032
B60-20gon-1_xyz.seg	I-Beam-B	b	-0.267	0.208	0.020
B60-20gon-1_xyz.seg	I-Beam-B	с	0.218	0.227	0.012
B60-20gon-1_xyz.seg	I-Beam-B	d	-0.286	0.209	-0.001
B60-20gon-2_xyz.seg	I-Beam-B	а	-0.009	0.197	-0.005
B60-20gon-2_xyz.seg	I-Beam-B	b	-0.008	0.189	0.028
B60-20gon-2_xyz.seg	I-Beam-B	с	-0.045	0.195	0.004
B60-20gon-2_xyz.seg	I-Beam-B	d	-0.043	0.189	0.038
B60-20gon-3_xyz.seg	I-Beam-B	а	0.238	0.207	0.029
B60-20gon-3_xyz.seg	I-Beam-B	b	-0.267	0.187	0.016
B60-20gon-3_xyz.seg	I-Beam-B	с	0.214	0.206	0.021
B60-20gon-3_xyz.seg	I-Beam-B	d	-0.290	0.188	0.009
B60-8gon-1_xyz.seg	I-Beam-A	а	0.190	0.670	-0.007
B60-8gon-1_xyz.seg	I-Beam-A	b	-0.241	0.653	-0.011
B60-8gon-1_xyz.seg	I-Beam-A	с	0.185	-0.247	-0.014
B60-8gon-1_xyz.seg	I-Beam-A	d	-0.245	-0.263	-0.018

File	I-Beam	Site		Error (m)	
Name	Selected	Point	dx	dy	dz
B60-8gon-2_xyz.seg	I-Beam-B	а	-0.012	0.206	-0.002
B60-8gon-2_xyz.seg	I-Beam-B	b	-0.011	0.198	0.028
B60-8gon-2_xyz.seg	I-Beam-B	с	-0.044	0.204	-0.004
B60-8gon-2_xyz.seg	I-Beam-B	d	-0.042	0.198	0.027
B60-8gon-3_xyz.seg	I-Beam-A	а	0.189	0.670	-0.006
B60-8gon-3_xyz.seg	I-Beam-A	b	-0.243	0.652	-0.007
B60-8gon-3_xyz.seg	I-Beam-A	с	0.185	-0.247	-0.018
B60-8gon-3_xyz.seg	I-Beam-A	d	-0.245	-0.263	-0.019
B90-12gon-1_xyz.seg	I-Beam-B	а	-0.274	0.461	0.414
B90-12gon-1_xyz.seg	I-Beam-B	b	-0.269	0.457	0.427
B90-12gon-1_xyz.seg	I-Beam-B	с	-0.295	0.449	0.327
B90-12gon-1_xyz.seg	I-Beam-B	d	-0.291	0.445	0.340
B90-12gon-2_xyz.seg	I-Beam-B	а	-0.270	0.455	0.405
B90-12gon-2_xyz.seg	I-Beam-B	b	-0.263	0.449	0.423
B90-12gon-2_xyz.seg	I-Beam-B	с	-0.307	0.433	0.338
B90-12gon-2_xyz.seg	I-Beam-B	d	-0.301	0.426	0.357
B90-12gon-3_xyz.seg	I-Beam-B	а	-0.274	0.468	0.409
B90-12gon-3_xyz.seg	I-Beam-B	b	-0.267	0.463	0.424
B90-12gon-3_xyz.seg	I-Beam-B	с	-0.306	0.449	0.327
B90-12gon-3_xyz.seg	I-Beam-B	d	-0.300	0.443	0.342
B90-20gon-1_xyz.seg	I-Beam-B	а	-0.309	0.482	0.443
B90-20gon-1_xyz.seg	I-Beam-B	b	-0.305	0.480	0.465
B90-20gon-1_xyz.seg	I-Beam-B	с	-0.309	0.486	0.306
B90-20gon-1_xyz.seg	I-Beam-B	d	-0.305	0.484	0.329
B90-20gon-2_xyz.seg	I-Beam-B	а	-0.261	0.419	0.418
B90-20gon-2_xyz.seg	I-Beam-B	b	-0.256	0.416	0.438
B90-20gon-2_xyz.seg	I-Beam-B	с	-0.276	0.412	0.315
B90-20gon-2_xyz.seg	I-Beam-B	d	-0.272	0.408	0.335
B90-20gon-3_xyz.seg	I-Beam-B	а	1.603	1.501	-0.990
B90-20gon-3_xyz.seg	I-Beam-B	b	1.539	1.573	-0.983
B90-20gon-3_xyz.seg	I-Beam-B	с	1.045	2.943	1.042
B90-20gon-3_xyz.seg	I-Beam-B	d	0.980	3.015	1.049

Eile Nome	I-Beam	Site	Error (m)		
r ne Ivanie	Selected	Point	dx dy	dy	dz
B90-8gon-1_xyz.seg	I-Beam-B	а	-0.257	0.412	0.406
B90-8gon-1_xyz.seg	I-Beam-B	b	-0.255	0.416	0.401
B90-8gon-1_xyz.seg	I-Beam-B	с	-0.221	0.434	0.365
B90-8gon-1_xyz.seg	I-Beam-B	d	-0.221	0.437	0.360
B90-8gon-2_xyz.seg	I-Beam-B	а	-0.254	0.445	0.424
B90-8gon-2_xyz.seg	I-Beam-B	b	-0.249	0.442	0.426
B90-8gon-2_xyz.seg	I-Beam-B	с	-0.273	0.435	0.338
B90-8gon-2_xyz.seg	I-Beam-B	d	-0.269	0.431	0.341
B90-8gon-3_xyz.seg	I-Beam-B	а	-0.261	0.437	0.399
B90-8gon-3_xyz.seg	I-Beam-B	b	-0.255	0.433	0.411
B90-8gon-3_xyz.seg	I-Beam-B	с	-0.283	0.423	0.355
B90-8gon-3_xyz.seg	I-Beam-B	d	-0.278	0.418	0.368

Table A.6. Continued.