NBSIR 74-483 (R) Progress Report on the Corrosion and Stress Corrosion Behavior of Selected Stainless Steels in Soil Environments Part I. General Corrosion Behavior

W. F. Gerhold, W. P. Iverson, E. Escalante, B. T. Sanderson

Corrosion and Electrodeposition Section Metallurgy Division Institute for Materials Research National Bureau of Standards Washington, D. C. 20234

May 1974

Ŀ

Progress Report

Prepared for

Committee of Stainless Steel Producers American Iron and Steel Institute 150 East 42nd Street New York, New York 10017

NBSIR 74-483

PROGRESS REPORT ON THE CORROSION AND STRESS CORROSION BEHAVIOR OF SELECTED STAINLESS STEELS IN SOIL ENVIRONMENTS PART I. GENERAL CORROSION BEHAVIOR

W. F. Gerhold, W. P. Iverson, E. Escalante, B. T. Sanderson

Corrosion and Electrodeposition Section Metallurgy Division Institute for Materials Research National Bureau of Standards Washington, D. C. 20234

May 1974

Progress Report

Prepared for Committee of Stainless Steel Producers American Iron and Steel Institute 150 East 42nd Street New York, New York 10017

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Progress Report on The Corrosion and Stress Corrosion Behavior of Selected Stainless Steel Alloys in Soil Environments

> Part I General Corrosion Behavior

> > by

W. F. Gerhold, W. P. Iverson, E. Escalante, and B. T. Sanderson

A. Introduction

Stainless steels have, within the past several years, successfully been used in increasing amounts for pipe clamps for joining and repairing cast iron sewer lines. Other applications in use or under test include ground rods, transformer cases, submerged switches, underground residential distribution equipment (connector sheaths, housings, clamps, and bails), gas lines (1,2), water lines, buried caskets, culverts, residential sewage disposal, etc.

Corrosion data available pertaining to the suitability of stainless steels for underground uses are reported in NBS Circular 579 (3) and the reports by Branch (1) and Steinmetz and Hoxie (2). The NBS tests, conducted for 14 years in various soils of the United States showed that Type 304 and Type 316 were highly resistant to both pitting and general attack. In certain highly aggressive soils Type 304 showed some scattered pitting. Type 316 with its almost negligible pitting attack was found to be the best alloy tested. Type 302 was tested in only a few soils. Types 410 (12% chromium) and 430 (17% chromium) were found to be fully resistant to attack in only 1/3 of those NBS tests sites where exposed. The stainless steel specimens used in these tests were flat, annealed, unstressed coupons.

In a two-year exposure to various soils in and around Baltimore, Maryland, Type 304 service gas lines (50 for a total length of 1 mile) were reported to have suffered no corrosion effects (2).

Stress corrosion cracking also has not been reported to be a problem with Types 304 or 316 in actual underground applications (1).

In order to more fully evaluate the corrosion and stress corrosion behavior of some of the alloys proposed for soil environments, NBS in cooperation with the American Iron and Steel Institute initiated in 1970 a soil burial program in representative corrosive soils utilizing nine stainless steel alloys in both the annealed and cold worked conditions with various treatments. These treatments incorporated welds, crevices, galvanic couples, stresses, and/or sensitization by heat treatment to induce carbide precipitation. In 1971 and in 1972 the program was expanded to include other stainless steels. This report is based upon the one-and two-year burial results of the 1970 and 1971 program and the one-year burial results of the 1972 program. Results on the stressed stainless steel specimens are given in Part II.

B. Experimental Procedure

1. <u>Soils at NBS Test Sites</u>. Following are detailed descriptions of the soils at these test sites, which have been selected by NBS as the most representative of 128 test sites previously used:

<u>Sagemoor sandy loam (Site A</u>) is a well-drained alkaline soil, typical of that found in vast areas of eastern Washington and Oregon. The site is located on the Yakima Indian Reservation near Toppenish, Washington. The soil is consistent in composition to a depth of at least 7 feet and supports abundant growth of sagebrush.

<u>Hagerstown loam (Site B)</u> is a well-drained soil representative of the majority of well-developed soils found in the eastern part of the United States. The site is located at the Loch Raven Reservoir of the Baltimore Water Department. The soil consists of a brown loam about 1 foot deep, underlain by a reddish-brown clay that extends 5 feet or more to underlying rock. Practically all the materials that have been investigated in the extensive NBS soil corrosion tests since 1922 have been exposed at this site, which, therefore, serves as a reference site in the correlation of data obtained for specimens in the present program with data obtained from the earlier tests.

<u>Clay soil (Site C)</u> is located in a large clay pit on level land at Cape May, New Jersey, which floods during heavy rains. The soil consists of a plastic gray clay to a depth of 6 inches underlain by gray clay mixed with patches of brown clay to a depth of 12 inches. This is underlain by a poorly drained very heavy plastic clay.

Lakewood sand (Site D) is a white, loose sand with some black streaks occurring in places which supports the growth of beach grasses abundantly. The site is located in a well-drained rolling area at Wildwood, New Jersey, which is not subject to overflow from the ocean except under unusualy flood conditions.

<u>Coastal sand (Site E)</u> is a typical white, coastal beach sand, with a high content of black sand that occurs in streaks. This sand is similar to Lakewood sand except that at this site, which is located on Two-Mile Beach at Wildwood, New Jersey, the sand is constantly damp and occasionally flooded with seawater. <u>Tidal marsh (Site G)</u> is a soil charged with hydrogen sulfide typical of the poorly drained marsh soils that are found along the Atlantic and Gulf coasts. The site is located along a creek (Pine Hill Run) that empties into the Chesapeake Bay at Lexington Park, Maryland.

Some of the properties of the soils at these sites are given in Table I. The corrosivity of these soils on plain carbon steels is shown in Figure 1.

2. Materials, Treatment, and Preparation

In order to simulate some of the conditions that may occur on components fabricated from stainless steel alloys, materials for these soil corrosion studies included unstressed flat sheet specimens with and without welds, welded tubing specimens and coated specimens.

Descriptions of the alloy systems buried at each test site and the alloy treatments and preparation are presented in Table II. Only Systems 1-19 and 50-66 are covered in this report; Systems Nos. 20-42 and 67-92 are covered in Part II. The chemical analyses and mechanical properties of each alloy used in Systems Nos. 1-19 and 50-66 are presented in Tables III and IV respectively.

Upon receipt of the specimens from the stainless steel companies the specimens were first stamped with identification numbers using chromium plated steel dies.

All flat sheet materials (approximately 0.06" thick) were supplied with sheared edges which had been deburred. In some instances further deburring was necessary. Following the passivation procedure (described in Table II), all specimens were scrubbed with a fiber brush, thoroughly rinsed with water, and air dried.

Half of the coated (coal tar epoxy, 16 mils per side) specimens (System No. 61) were scored diagonally from the corners, twice on one surface, by cutting through the coating to the base material with a sharp pointed instrument. The other half of the specimens were exposed in the "as-coated" condition.

Type 304 tubing was prepared according to ASTM Specification A-249. Type 409 tubing was tested in the "as-welded" condition. All proprietary alloys were tested as supplied by the producers, except for cleaning and passivating.

The ends of the tube (welded) specimens were plugged with rubber stoppers and plastic or rubber caps were placed on each end. All of the specimens with the exception of the coated specimens were weighed prior to exposure for weight loss determinations.

3. Exposure

At each test site the specimens were buried in trenches approximately 2-1/2 feet deep and 2 feet wide. The specimens were placed about one foot apart. The 8"x12" sheets were placed in a vertical position (along the long dimension). Sufficient specimens were buried at each of the six test sites to permit recovery of a complete set at specified intervals (1, 2, 4, and 8 years) and the final set to be removed at a date to be determined. For the 8"x12" flat sheet specimens and for the welded tube specimens each set consisted of four specimens.

The burial order for each test site is shown in Figure 2a, b, and c. There are 1,054 specimens buried at each test site for a total of 6,324 specimens at the six test sites. This report covers 36 of the 73 systems described in Table II.

4. Examination of Specimens After Exposure

Upon removal, all of the specimens were rinsed thoroughly in tap water to remove the adhering soil. All the specimens, except the coated ones (System No. 61) and the composites (Systems Nos. 14, 15, and 16), were cleaned ultrasonically for 20-30 minutes using a 10% nitric acid solution at 120° to 130°F. Specimens from System Nos. 14 and 16 were ultrasonically cleaned using an aqueous 10% ammonium citrate solution heated to 175° to 185°F. The time for cleaning these specimens varied and was dependent upon the tenacity of the corrosion scale. The specimens from System No. 15 were ultrasonically cleaned for approximately 30 minutes using an aqueous 10% ammonium chloride solution at 175° to 185°F. After cleaning, the specimens were rinsed in distilled water and then air dried. The sheet specimens (8"x12") were then weighed twice and the weightloss was determined. The average loss in weight of similar unexposed (control) specimens given the identical cleaning processes was subtracted from the weight loss of the exposed specimens.

Pit depth measurements and visual observations were made on all the specimens.

C. Results

All specimens were examined visually in order to determine the nature and extent of the degradation after exposure up to two years in the various soil environments. Table V summarizes the results obtained from visual examination of the non-welded, coated and uncoated 8"x12" sheet specimens. The results obtained from visual examination of the weldments (8"x12" sheet and tubing specimens) are summarized in Table VI. Results obtained from pit-depth and loss in weight determinations are given in Table VII.

- 4 -

The data given for each ally system is a compilation of the results obtained from four specimens. Therefore, the weight loss for a given alloy system exposed in the soil environment may appear to be extremely small in comparison to the observed corrosion. This occurs because the corrosion of stainless steels in this type of environment can often be localized and confined to a very small area. Similarly, one specimen may have only one corrosion pit which caused perforation of the specimen, while there was little or no corrosion observed on the other three specimens exposed in the same environment.

Corrosion of stainless steel alloys is generally attributed to a breakdown of the passive film on the surface of the alloy at localized or selective areas. If corrosion occurs, it may often be influenced by one or more of the following:

1. Inhomogeneities at the surface of the metal.

2. Concentration cell effects due to adhering soil particles or crevices where stagnant conditions may exist.

3. Presence of chlorides in the soil.

4. Sulfate reducing bacteria.

5. Abrasion of the metal surface by soil particles or foreign debris.

A break in the passive film at the localized area results in a small anodic site. The larger surrounding area is the cathode. The electrolytic cell formed could result in localized pitting corrosion, which can rapidly penetrate the thickness of the alloy. Similarily, concentration cells formed at stagnant areas beneath soil deposits or at crevices can also result in localized corrosion with subsequent perforation of the alloy. Tunneling is an unusual form of pitting corrosion normally associated with edges, which can be increased by gravity flow of corrosion products. All flat specimens were buried vertically, thus increasing the propensity for tunneling.

AISI 200 Series

There was little or no apparent corrosion on the austenitic Type 201 and 202 (annealed) stainless steel specimens buried in the soils for two years at Sites A, B, and D. Some rust staining was observed on two of the four Type 202 specimens exposed at Site B. Pitting corrosion was noted at the edge on one of the Type 201 specimens exposed at Site D. Pitting and tunneling corrosion occurred generally in areas at or adjacent to the edges of both Types 201 and 202 specimens exposed at Site C. The Type 202 specimens were perforated by corrosion at these areas. There were pin-point perforations of specimens of both stainless steels exposed at Site E as a result of pitting and tunneling corrosion at face and edge areas of the specimens. One of the Type 201 specimens exposed at Site G was severely attacked by corrosion at the edge. On this and other specimens of both alloys, pitting corrosion was also observed.

AISI 300 Series

In general the corrosion behavior of the austenitic 300 series alloys exposed for two years at Sites A, B, and D was similar to that noted for the 200 series alloys. With a few exceptions, corrosion, where observed on specimens exposed at these sites, was generally superficial. Small "blister-like" eruptions on the surface were noted on one of each of the Type 301 (sensitized) and Type 304 (sensitized) specimens. These appeared to be very small corrosion pits. Tunneling corrosion was also observed at the edge on the Type 304 (sensitized) specimen.

Of the specimens exposed at Site C, corrosion of Type 316 (annealed) was superficial. Pitting corrosion with subsequent perforation of the specimens was noted in areas at or adjacent to the edges of the Type 301 (annealed), Type 304 (annealed), and Type 304 (sensitized) specimens. Tunneling corrosion was found at the edge on one of the Type 316 (sensitized) specimens. Pitting corrosion was noted in areas at and adjacent to the weld seam, and in areas adjacent to and under the caps of Type 304 tubing specimens. Similarly, pitting corrosion was observed at areas adjacent to the weld bead on the cross-bead welded Type 301 alloy specimens.

At Site E, annealed Types 301, 304, and 316, sensitized Type 304, and the cross-bead welded Type 301 specimens exhibited pitting and tunneling corrosion and subsequent perforation of the specimen. Pitting corrosion and severe etching or attack due to corrosion was observed on sensitized Types 301 and 316 and on the heliarc welded Type 304 specimens.

Corrosion of Types 301 and 304 exposed at Site G generally involved severe etching accompanied by pitting corrosion. In addition, the sensitized Types 301 and 304 and annealed Type 304 specimens were perforated by corrosion at scattered localized areas. Tunneling corrosion was also found on one of the annealed Type 301 specimens. Superficial pitting corrosion was observed on the annealed and sensitized Type 316 specimens exposed at this site.

AISI 400 Series

Stainless steels in this series include the martensitic Type 410 and the ferritic Types 409, 430, and 434.

With a few exceptions, there was little or no apparent corrosion on any of the 400 series specimens buried in the soils for two years at Sites A and B. Pitting and/or tunneling corrosion was found on the Type 410 specimens exposed at Site A. Non-welded specimens exposed at Sites C, E, and G were perforated by corrosion. Localized corrosion wasnoted on Type 430 and Type 434 specimens exposed at Site D. Type 410 specimens at this site were perforated by corrosion at localized areas.

There were a few scattered corrosion pits on the heliarc welded Type 409 specimens exposed at Site D, although no corrosion pits were observed at or adjacent to the weld areas on these specimens. The high frequency welded Typed 409 specimens exposed at this site were perforated by corrosion at weld areas. Of the welded Type 409 specimens exposed at Sites C, E, and G, all were perforated by corrosion at localized areas. However, of the weldments exposed at these sites, only the high frequency welded Type 409 specimens exposed at Site E were perforated by corrosion at weld areas.

The coated (coal-tar epoxy) Type 409 specimens were unaffected by corrosion in any of the soil environments. However, on the coated specimens that were scored prior to exposure in the soils, there was some superficial rust staining at the scored areas of those exposed at Sites B, C, and D. Corrosion pits were noted at the scored areas on specimens buried for two years in the soils at Sites E and G, and the paint coating was blistered and brittle at the scored areas.

Specialty and Developmental Alloys

Stainless steels in this classification include proprietary and composite materials. The proprietary stainless steels may be grouped as follows according to major alloying constituents:

1. Cr Stainless Steels

26 Cr-1 Mo 18 Cr-2 Mo 18 Cr-2 Mo (Nb) 18 Cr (Ti)

2. Cr-Ni Stainless Steels

26 Cr-6.5 Ni 20 Cr-24 Ni-6.5 Mo 18 Cr-8 Ni (N)

The results obtained from visual examination of these specimens exposed for one and two years are summarized in Table V.

Cr Stainless Steels

Alloy 26 Cr-1 Mo (System No. 1) specimens were relatively unaffected by corrosion after burial in the soil environments for up to two years. There was little or no apparent corrosion of the Alloy 18 Cr-2 Mo (System No. 6) specimens buried at Sites A, B, C, and D for two years. Similar specimens exhibited scattered pitting corrosion with perforation of the specimen after exposure for two years at Sites E and G.

Of the Alloy 18 Cr-2 Mo (Nb) (Systems Nos. 7, 11, and 12) specimens buried for one year, those in the annealed condition (System No. 7) were also relatively unaffected by corrosion. There was little or no apparent corrosion on specimens with the cross-bead weld (System No. 11) or heliarc weld (System No. 12) specimens in five of the six soils. Pitting corrosion at and adjacent to the weld was observed on specimens of System No. 11 exposed at Site E. One specimen was perforated by corrosion at the weld area. Crevice corrosion with perforation of the specimen was noted at localized areas under the cap on the heliarc welded specimens.

The annealed (System No. 2), cross-bead welded (System No. 3) and heliarc welded (System No. 18) Alloy 18 Cr (Ti) specimens were similarly, relatively unaffected by corrosion after burial in the soils for two years at Sites A, B, C, and D. Tunneling corrosion at edge areas was observed on the annealed and cross-bead welded specimens exposed at Site E. Localized corrosion was noted at crevice areas under the cap on two of the heliarc welded specimens exposed at this site. There was no apparent corrosion on the other two specimens. The annealed Alloy 18 Cr (Ti) specimens buried for two years at Site G were perforated by pitting corrosion. Pitting and tunneling corrosion was observed at nonweld metal areas on the cross-bead welded specimens of this alloy buried for two years at Site G. The heliarc welded specimens buried at this site were perforated by pitting corrosion observed at non-weld metal areas.

Pitting and tunneling corrosion, particularly in areas at and adjacent to the edge of the specimens, was observed on the Alloy 26 Cr-6.5 Ni (System No. 10) specimens buried at Sites C, E, and G for two years. Similar specimens of this alloy exposed at Sites A, B, and D were relatively unaffected by corrosion.

Cr-Ni Stainless Steels

The annealed (System No. 8) and cross-bead welded (System No. 9) Alloy 18 Cr-8 Ni (Ti) specimens buried for two years at Sites A, B, C, and D exhibited little or no corrosion. Pitting corrosion was noted at the edge on two of the four annealed specimens exposed at Site E. Tunneling corrosion with subsequent perforation was observed on one of the annealed specimens exposed at Site G. Other specimens of System No. 8 exposed at these sites were relatively unaffected by corrosion. Pitting and tunneling corrosion was found at and/or adjacent to the weld on the cross-bead welded specimens (System No. 9) exposed at Site E. For similar specimens exposed at Site G, pitting corrosion was noted at weld areas. There was little or no apparent corrosion noted on the annealed (System No. 4), sensitized (System No. 5), or heliarc-welded (System No. 19) Alloy 20 Cr-24 Ni-6.5 Mo specimens buried in the six soil environments. Where corrosion was observed, it was superficial.

Composite Materials

The composite systems are essentially sandwich materials wherein the outer layers of carbon steel are metallurgically bonded to a thin core of stainless steel (total thickness approximately 0.120"). Composites A and B (Systems Nos. 14 and 15) were fabricated with a Type 430 stainless steel, while Composite C (System 16) utilizes a Type 304 stainless steel as the core material. In addition, Composite B specimens were hot-dip zinc coated (galvanized, 4.5 to 5 oz/ft² Zn). This was a thicker coating than would normally be used on carbon steel products.

In general there was very little difference in the corrosion behavior of Systems Nos. 14 and 16 buried in the same soil environment for two years. The carbon steel outer layers were severely attacked by corrosion at Site A. Pitting corrosion of the carbon steel was noted on specimens buried at Site B. Corrosion of the carbon steel on specimens buried at Sites C, D, and E appeared to be relatively uniform. However, the carbon steel appeared to be blistered (raised) at one area on one of each of the System Nos. 14 and 16 specimens buried at Site C. Examination of sections machined from these areas did not reveal any corrosion. The blisters appeared to be due to a metallurgical defect in the carbon steel outer layer. Severe corrosion attack was observed on the specimens of both systems exposed at Site G, particularly at the edges where the attack was sufficient to expose the core material. The carbon steel layers were completely corroded away at large areas adjacent to the edge on one of each of the Systems Nos. 14 and 16 specimens exposing the stainless steel core. There did not appear to be any significant corrosion other than discoloration of the stainless steel alloy core on any of the specimens.

The hot-dip zinc coating on the specimens of System No. 15 provided protection to the underlying carbon steel and the stainless steel core in all of the soil environments. While the percent dissipation of the zinc varied in the various environments, there was some zinc remaining on all of the specimens after exposure for two years in the six soil environments.

D. Summary

1. AISI 200 and 300 Series

Of the austenitic stainless steel (200 and 300 series) alloys included in this soil corrosion program, all exhibited good corrosion resistance after exposure for two years in the alkaline soil (Site A), Hagerstown loam (Site B), and Lakewood sand (Site D). In general, these alloys were susceptible to corrosion in the acid clay (Site C), costal sand (Site E), and tidal marsh (Site G). Type 316 appeared to be the least susceptible to corrosion in the six soils investigated. Corrosion of the 200 and 300 series stainless steels was generally characterized as pitting and/or tunneling corrosion with subsequent perforation of the specimen at scattered localized areas. For similar specimens of these alloys exposed at Site G, corrosion occurred at large areas and was characterized as severe etching or general corrosion of the metal surfaces. Sensitization, by heat treatment, of Types 301, 304, and 316 generally resulted in increased susceptibility to corrosion in all of the soil environments. Similarly, areas at or adjacent to weld beads on sheet specimens or weld seams on the heliarc welded Type 304 tubing specimens were more susceptible to corrosion attack on specimens exposed at Sites C, E, and G. Type 304 exposed at these sites was also susceptible to crevice corrosion.

2. AISI 400 Series

The martensitic Type 410 and the ferritic Types 409, 430, and 434 stainless steels included in this investigation were in general susceptible to pitting and/or tunneling corrosion at Sites C, D, and E, and to severe etching or general corrosion attack at Site G. Except for Types 430 and 434 exposed at Site D, all 400 series stainless steels exposed at these sites were perforated. Similar specimens buried in the soils at Sites A and B for up to two years were relatively unaffected by corrosion. Areas at or adjacent to the weld seams on the heliarc welded Type 409 tubing specimens did not appear to be susceptible to corrosion at Sites A, B, and D. Similar specimens buried at Site G for two years were perforated by corrosion. The high-frequency welded Type 409 tubing specimens exposed at Sites C, D, E, and G were perforated by corrosion in areas at or adjacent to the weld seam. Similar specimens exposed at Sites A and B were relatively unaffected by corrosion at these areas. Type 409 was susceptible to crevice corrosion at Sites C, E, and G. The coal-tar epoxy coating applied to the Type 409 specimens appeared to be effective in providing protection from corrosion at all of the test sites. However, on specimens where the paint coating had been scored to bare metal, the specimens at these bare (uncoated) areas were susceptible to pitting corrosion at Sites E and G.

3. Proprietary Stainless Steels

All of the proprietary materials were relatively unaffected by corrosion after exposure up to two years in the soils at Sites A and B. With a few exceptions, particularly at weld or crevice areas of specimens buried at Sites C, E, and G, the Alloy 18 Cr-2 Mo (Nb) (buried for one year), the Alloys 26 Cr-1 Mo and 20 Cr-24 Ni-6.5 Mo (buried for two years) appeared to be the most corrosion resistant in all of the soil environments. Alloys 18 Cr (Ti), 18 Cr-2 Mo, and the 26 Cr-6.5 Ni were found to be the more susceptible to corrosion at Sites E and G after two years. Degradation of the alloys at these sites was generally due to pitting and tunneling corrosion at localized areas with subsequent perforation of the specimen.

4. Stainless Steel Core Composites

There was no apparent corrosion of Type 304 or Type 430 stainless steel core alloy on any of the composite materials buried for two years in the soil environments. There was little difference in the corrosion behavior of the carbon steel alloy layers of Composite A and C when buried in the same soil environments. The zinc coating on the Composite B specimens provided protection to the carbon steel base metal in all of the soil environments.

۴,

References

- 1. Branch, H. C., Corrosion Resistant Materials for URD Equipment, Materials Protection and Performance, 12. (3), 9-14 (1973).
- Steinmetz, G. F. and Hoxie, E. C., A Field Test of Type 304 Stainless Steel for Gas Service, <u>Materials Protection and</u> <u>Performance</u>, <u>12</u>, (9) 41-44 (1973).
- 3. Romanoff, M., Underground Corrosion (NBS Circular 579), U.S. Dept. of Commerce Clearinghouse, PB 168 350 (1957) April.

Table I. Properties of Soils at Test Sites.

7

Site	Soil	Location	Internal Draínage	Resistivity(a)				Con	lposition (Parts	of Wat per Mi	er Extra 11ion)	lct		
Ice			Site	(Orum - cmu)	Hd	(d) TDS	Ca	Mg	Na + K as Na	с0 ₃	HC0 ₃	So4	СJ	80N
A	Sagemoor sandy loam	Toppenish, Wash.	Good	400	8.8	7,080	108	23	1,960	0.0	5,002	216	330	9
B.	Hagerstown loam	Loch Raven, Md.	Good	34 ,760	5.3	(c)	I	ı	ı	ī	ı	ı	ī	ı
ပ	Clay	Cape May, N.J.	Poor	770	4.3	14,640	540	754	2,242	0.0	0.0	6,768	3,529	118
Ω	Lakewood sand	Wildwood, N.J.	Good	45,700	5.7	(c)	ī	ı	ī	-	ı	ı	ī	ı
ш	Coastal sand	Wildwood, N.J.	Poor	27,200	۲.۱	11,020	302	329	3,230	0.0	55	1,133	5,765	31
G	Tidal marsh	Patuxent, Md.	Poor	5,300	6.0	11,580	140	165	2,392	0.0	0.0	1,709	3,259	37
						(Millígr	am equi	valents	per 100	grams	of soil)			
A		ı	I	ı	,	ı	0.54	0.19	8.50	0.0	8.20	0.45	0.93	0.01
8	ı	ı	ı	I	ī	(c)	ī	ī	ı	ī	ı		ı	,
C	I	ı	ı	I	51	ī	2.70	6.18	9.51	0.0	0.0	14.0	9.94	0.19
0	I	I	ı	I	ī	(c)	ı	ı	ı		ı	ľ	ı	ı
ш	I	I	ı	I	ī	ı	1.51	2.70	13.9	0.0	0.09	2.36	16.2	0.05
G	ı	ı	ı	ı	ı.	ı	0.70	1.35	10.2	0.0	0.0	3.56	9.18	0.06
e e	Resistivity determinatic	ons made at the tes	t site by We	enner's 4-pin meth	nod exc	ent for S	ite A w	here St	enard's (ane wa	s used.			

(b) TDS, total dissolved solids - residue dried at 105°C.

(c) Analysis not made for soils at Sites B and D because of the very low concentration of soluble salts in these soils.

Table II. Stainless Steel Systems in Underground Corrosion Tests^(a)

System	Burial Year	Stainless Steel	Spec. Config. & Size*	Treatment ⁺	Passivation° Procedure	Stressed	Spec. Coupled To
1	1971	26 Cr-1 Mo	Sheet (8"x12")		I		
2	"	18 Cr (Ti)			I		
3		20 Cm-24 Ni-6 5 Mo	u 0	XBM	I T		
4	н	20 01-24 11-0.5 10	II II	S	Î		
6	в	18 Cr-2 Mo			Ţ		
7	1972	18 Cr-2 Mo (Nb)	41 H		I T		
9	1971		n n	XBW	Î		
10	"	26 Cr-6.5 Ni		YRW	I		
12	1972	18 Cr-2 MO (ND)	Tube (2" OD×12")	HW	I		
14	1971	Composite A	Sheet (8"x12")				
15	11	Composite B	н н н н				
10	н	26 Cr-1 Mo	Tube (2" ODx12")	HW	I		
18	н	18 Cr (Ti)	(1 1/8" ODx12")	HW	I		
19 20		20 Cr-24 N1-6.5 M0 26 Cr-1 Mo	(7/8" ODx12") Sheet (1"x12")	HW 	I	(UU)	
21	н	20 07 1 110			Ī) U	
22	л Ш	20 Cr-24 Ni-6.5 Mo	N 11		I	(00)	
23		н	и и	S	I	ບບັ	
25	н	18Cr-2Mo	u u		I	(UU)	
26		10 C 0 NA(N)			I	(111)	
27	н	18 Cr-8 N1(N)	и и		Î	Ű	
30		26 Cr-6.5 Ni	11 II 11 II		I	U	 7n
33 34		26 Cr-1 Mo	u u		I	U	Mg
35	н	11	и и		Î	Ŭ	Fe
36		26 Cr-6.5 Ni			I	U	Zn Ma
37		· · ·	и и и и		I	U	Fe
42		Ш	11 0		Ī		Cu
50	1970	201	Sheet (8"x12")		I		
51		301	H II		I		·
53	н		II II	S	I(g)		
54	11	201		XBW	I T		
56			н н	S	Î(g)		
57		"	Tube (2" ODx12")	Н₩(Ь)	I		
58 59		310	Sneet (8"X12")	 S	I		
60	11	409	H H		III		
61	11		Tubo (1 1/0" (Dy12")	C HNJ			
63	н	н	Tube $(7/8" \text{ ODx12"})$	HFW	III		
64		410	Sheet (8"x12")		III		
65 66		430 434	11 11		II I		
67	11	301	Sheet (1"x12")	нн	Î	U	
68				НН	I I (a)	(UU)	
70	н	н	H H	FH	I I I	Ŭ	
71		11	H H	FH	I	(00)	
72		304	N 11		I I	U (IIII)	
74	0	н	н н	нн	Î	Ű	
75	"	1		нн	I	(UU)	
/6 77		316		5	1(g) 1	U U	
78	н	"	н н		Ī	(ŲŪ)	
79		124		S	I(g)	UU	
81		434	0 U		I	(UU)	
82		301	H H	HH	I	U	Zn
83 84		11	11 11	нн	I	U	Mg Fe
85			u u	FH	Î	Ŭ	Zn
86		18	11 11 11 11	FH	I	U	Mg
88	н	304		FH 	I	U	Zn
89	н	"	11 U		Î	Ŭ	Mg
90	11		11 H		I	U	Fe
92	н	409	и и		III		Cu

* All sheet and tube specimens 0.064" thick.
+ All specimens in the annealed condition unless noted otherwise.
(a) Systems 1-19, 50-66, covered in this report.

(b) Welded with a full finish per ASTM Specification A249.

Table II. (Cont'd)

- S Sensitized (by heating at 1200°F for 2 hours, followed by air cooling and descaling in sodium hydroxide);
 Cross bead weld (specified to be done in accordance with Welding Research Council recommendations. On half of these specimens, the welds were cleaned prior to exposure. The other half of the specimens were to be exposed "as welded." Key: S - Heliarc weld, HW
 - HFW HFW High frequency weld;

 - C Coated; HH Half hard; FH Full hard.
- °Key: = Unstressed; --

 - U = Single U-bend specimen; UU = Double U-bend specimen, no spot weld; (UU) = Double U-bend specimen joined by spot weld.

°Passivation procedure:

- I. 20 to 40% by volume of 67% nitric acid at 120-160°F for 20-30 minutes.
 II. 20% by volume of 67% nitric acid plus 2-6% sodium dichromate at 110-140°F for 20-30 minutes.
 III. 20 to 40% by volume of 67% nitric acid at 110-140°F for 20-30 minutes.
 (g) Minimum specified concentration of acid, temperature and time for sensitized materials.

OTHERS	Co-0.09	A1<0.01,V-0.026	A1-0.13	Al-0.046,V-0.025		Nb-0.07,Pb-0.002		Al<0.01,V-0.054 Nb-0.47,Al-0.01 Pb-0.003		A1-0.048	
비			0.60 0.65 0.55		0.55						
Cu	0.12	$0.19 \\ 0.25 \\ 0.11 \\ 0.11$	0.37	0.05		0.08	0.18	0.08		0.017	
zi	0.078 0.15	0.042 0.16		0.046	0.010	0.023	0.25	0.021			
Wo	0.15 0.22	0.17 0.40 0.15	2.28 0.12	0.76	0.94	6.50 2.15	0.26	0.04 1.97			
Ni	5.10 5.13 7.1 7.14	9.11 9.80 9.81	13,53 0.61 0.34 0.34	0.32	0.10 0.49	23.61 0.15	8.15	6. 2 0.28		0.28 0.28 10.2	
ال	16.76 17.50 16.1 17.43	18.2 18.45 17.6	17.48 10.75 11.22 11.20 11.20	18.2	26.18 18.22	20.41 18.90	19.29	26.5 18.54		16.86 16.86 17.3	
۵.	0.034 0.003 0.015 0.030	0.030 0.024 0.022	0.020 0.014 0.024 0.016	0.017	0.010 0.023	0.013 0.023	0.029	0.022 0.02		0.015 0.015 0.02 0.007	
ŝ	0.009 0.004 0.016	0.015 0.015 0.009	0.009 0.013 0.018 0.018	0.011	0.011	0.004	0.012	0.020 0.016		0.008 0.008 0.018 0.012	
Si	0.47 0.41 0.34 0.34	0.50 0.68 0.64	0.53 0.57 0.44 0.14	0. 00 0. 43	0.21 0.40	0.81 0.10	0.36	0.40 0.78		0.31 0.31 0.48 0.009	
Mn	6.90 8.05 1.1 1.02	0.82 1.0 1.0	1.62 0.47 0.51 0.55	0.42	0.01 0.32	1.73 0.91	1.64	0.49 0.91		0.16 0.16 1.26 0.32	
IC	0.066 0.10 0.10 0.10	1 0.048 0.06 0.051	0.049 0.058 0.05 0.14	0.076	0.002 0.046	0.038 0.013	0.035	0.015 0.03		0.06 0.06 0.02 0.042	
SYSTEMS	50 51 52,53,54 61,68,69,82,83,84	74,75 74,75 74,75	58,59,77,78,79 60,61,92 63 64	66,80,81	1,17,20,21,33,34,35 2,3,18	4,5,19,22,23,24 6,25,26	8,9,27,28	10,30,36,37,38,42 7,11,12	(a);	14 15 14,15,16	
Stainless <u>Steel</u>	Type 201 Type 202 Type 301 Type 301	Type 301 Type 304 Type 304 Type 304	Type 316 Type 409 Type 409 Type 409	Type 430	26Cr~1Mo 18Cr(Ti)	20Cr-24Ni-6.5Mo 18Cr-2Mc	ldCr-dNi (N)	26Cr-6.5Ni 18Cr-2Mo (Nb)	Composite Alloys	A Type 430 B Type 430 C Type 304 Carbon steel	

Table III. Chemical analyses of stainless steels buried at various MBS underground test sites.

t

(a) A. Carbon Steel/430/Carbon Steel
 B. Galv. Steel/430/Galv. Steel
 C. Carbon Steel/304/Carbon Steel

Table IV. Mechanical Properties^(a) of Stainless Steels Studfed in This Investigation

Hardness	Rp 92.5		KB 90.5	R _B 85	R _D 87	Rr 34	R ^۲ 28	R _C 44	•	R _B 85	R _B 81.5	R _C 33	R _B 72	$R_{\rm B}$ 91	RB 81		R _B 77	R _B 79	R _B 68	R _B 84	R _B 81	R_{R} 86	R _B 88.5	R _B 78	R _R 79	R _R 80	R _B 78.5	RČ 31		R _B 86
Percent, Elongation in 2-in	52.5		0.20	64.0	46.0	25.0	26.0	0.0		52.0	53.0	14.0	75.7	45.0	42.0		31.0	40.0	37.0	29.5	30.5	26.0	26.0	31.0	26.5	28.5	47.0	13.5	26.6	36.0
Yield Strength, Ksi	53.0		52.0	42.1	33.1	116.0	97.5	174.7	01 (annealed)	46.4	41.3	129.3	44.9	60.0	43.4		46.6	59.1	64.7	52.8	45.6	56.3	54.0	48.1	48.6	46.4	45.0	120.6	60.8	61.8
Tensile Strength, Ksi	103.5		100.6	120.1	107.9	162.0	147.0	203.0	See Type 3	86.9	85.3	144.7	81.8	103.0	91.6		70.6	70.7	69.8	74.5	71.0	79.8	71.5	79.5	67.0	74.2	92.0	131.8	83.8	81.0
System	U۲		<u>ا</u> م	52	53	67.68.82.83.84	69	70,71,85,86,87	54	55,72,73,88,89,90,91	56,76	74,75	57	8,9,27,28	58,77,78	59,79	60,92	62	63	64	65	66,80,81	-	17	20,21,33,34,35	2,3,18	4,15,19,22,23,24	10,30,36,37,38,42	6,25,26	7,11,12
Treatment(b)		1		:	Sensitized	Half-hard	Half-hard + sensitized	Full-hard	Welded cross bead	:	Sensitized	Half-hard	Heliarc weld	-	:	Sensitized	8	Heliarc weld	Hi-Freq. weld		1		:	1	1	:	Mo	:	:	+
Alloy Designation	TVD0 201	ibhe to i	Type 202	Tvpe 301	Tvpe 301	Tvne 301	Tvpe 301	Type 301	Type 301	Type 304	Type 304	Type 304	Type 304	l'scr-8Ni(N)	Type 316	Type 316	Type 409	Type 409	Type 409	Type 410	Type 430	Type 434	26 Cr-1 Mo	26 Cr-1 Mo	26 Cr-1 Mo	18 Cr(Ti)	20 Cr-24 Ni-6.5	26 Cr-6.5 Ni	18 Cr-2 Mo	18 Cr-2 Mo (Nb)

(a) Properties are as furnished by supplier(b) All materials were in the annealed condition unless otherwise noted.(c) Welded with a full finish per ASTM Specification A249.

Stainless Results of Visual Examination System Specimen Type Test Steel and Treatment Site of Specimens (b) (c) (d) Years Exposed 1 2 Exposed in 1970 50 Type 201 Sheet, annealed Α Ν Ν RS P(F,E),T,IP B C Ν T,P,H IP D E P,IP H,T,P,IP,Et(sli) H(E),P,A(sev),IP H,P,T G A,P,IP,Et(sli) А 51 IP Type 202 Sheet, annealed Ν В Ν RS T,P,H H,P(F,E),T,IP С D ΙÝ DŚ H,P,T,IP,IF P,IP Ē H,T(E),P,IP P,IP G А 52 Type 301 Sheet, annealed Ν IΡ В IP RS P(F,E),IP c T,P,IP IP DE ΤP H,P,T,IP н G P,T(E),IPT,P,A and Et(sev),IP E(E),P,IP P(sli),IP Et(sev),P(F,E),IP IP,Et IP(E) Sheet, sensitized А 53 Type 301 В C D P,Et IP(E) P,B1,IP A(È),P(E,AE),IP,Et Et(sev), B1, A(E), P, IP Ε H,A and Et(sev),P,IP G Et(mod and sev), P, IP 55 Type 304 Sheet А Ν IΡ RS T,P,IP B C N H,T,IP IF D Ν H,P,IP H(E),P,IP,Et(sev) Ε H,T,P,IP G A(sev), P, IP A P(sli), IP 56 Type 304 Sheet, sensitized Et[E(s]i)],IP В Et(sli), IP Ν C D H,P(E,AE),T,A(E),IP T,P(AE,E),IP,B1 H,T,P,IP H,T(E),P IF E G H,P,IP H(E),P,IP H,A,P,IP,Et(sev) 58 Type 316 Sheet, annealed A B Ν IΡ Ν Ν C D Et,IP IΡ Ν Ν H,T,P,IP E G A and T(E), P(F,E)P(F,AE),IP IΡ 59 Type 316 Sheet, sensitized А IP(E) P(sli),IP В DŚ Ν P(E,F),H(E)A and P(E), T, Et(sli) C D IP N P,A(E),Et(sli) P(E) E G P(E) P,IP,Et(sli) 60 Type 409 Sheet, annealed A B IΡ N P(sli) Ν C D E P,H(E),Et(sev) H,P,Et(sev),T,IP IF,RS H,T(E,F),P Ρ,Τ H,T(AE,F),P,IP,Et(s1i) G H,Et(sev),P,IP H,P,A(sev),Et,IP A B Ν 61 Type 409 Sheet, painted Ν N N N N C D E Ν Ν N Ν G Ν Ń RS(s) 61 Type 409 Sheet, painted Ν A B RS(s) RS[s(s1i)],U RS[s(s1i)] RS(s) and scored С RS(s,c) c,RS(s) c,RS(s) D P and RS(s),U,B1 P and RS(s),U,B1 E

RS(s)

G

Table V. Summary of results $^{(a)}$ obtained from visual examination of stainless steel sheet specimens buried in the soils at the NBS soil corrosion test sites. Specimens of System No. 7 were buried for approximately two years.

System Stainless Specimen Type Test Steel and Treatment Site (b) (c)		Results of V of S	isual Examination pecimens (d)		
				Year 1	s Exposed 2
Exposed ·	in 1970 (cont'd)				
64	Type 410	Sheet, annealed	A B C D E G	P and IP(E,F) IP H,P,IP H,P,T,IP H(E),T Et(sev),H,P,IP	T,P,A(E) N H,P,Et(sev),A,IP H,T,P,A(E),Et(sev),IP H,T,P,IP H,A and Et(sev),P,IP
65	Туре 430	Sheet, annealed	A B C D E G	Et(sli),IP N H(E) IF H,T,IP H,Et(sev),P,IP	IP N H,P,T,Et T(F) H,T,P,IP H,P,A and Et(sev),IP
66	Type 434	Sheet, annealed	A B C D E G	N IP H(E) N H,P,IP H(E),P,IP	IP N H,P,T,IP P(F),IP(E) H,T,P,IP H,P,A and Et(sev),IP
Expose	<u>d in 1971</u>				
1	26Cr-1Mo	Sheet, annealed	A B C D E G	P(sli)IP N P(AE),T,IP(E) IP P(E,AE),IP P(E,F),Et,IP	N RS IP,RS Et(sli) N N
2	18Cr(Ti)	Sheet, annealed	A B C D E G	P(sli),IP N H,P,Et,IP P(AE),T,IP H,P,T H,P,A and Et(sev),IP	N Et(s1i),RS Et,P(E,F),IP,RS N H,P(E,AE,F),T H,P(E,AE,F),Et,IP
4	20Cr-24Ni- 6.5Mo	Sheet, annealed	A B C D E G	IP N IP(E) N N N	N Et(sli),RS N Et(sli),RS N N
5	20Cr-24Ni- 6.5Mo	Sheet, sensitized	A B C D E G	IP N IP IP A(E) P(E),Et(s1i),IP	N N Et(sli),IP,RS Et(sli) Et(sli) Et(sli)
6	18Cr-2Mo	Sheet, annealed	A B C D E G	P(s1i),IP IP T,P(E,F),IP P(F) H,P,IP H,T,A,P,IP	N RS Et(sli) H,P(AE,E,F),RS H,P(AE,E,F)Et
8	18Cr-3Hi(N)	Sheet, annealed	A B C D E G	IP N IP P(E) P(E,F),IP	N RS P,IP,RS Et(sli) P(E) H,P,T(E,AE),Et,IP
10	26Cr-6.5Ni	Sheet, annealed	A B C D E G	P(sli),IP N H,T,P,IP N H,P,IP H,P,A and Et(sev),IP	P(sli AE) RS H,T(E),P,IP IP H,P,T(AE,E,F)IP H,P,T(E,AE),IP

Table V . (cont'd)

System	Stainless Steel	Specimen Type and Treatment (b)	Test Site (c)	Results of of	f Visual Examination f Specimens (d)
				Ye	ears Exposed
				1	2
Exposed i	n 1971 (cont'd)				
14	Composite A	Sheet, hot rolled and pickled	A B C D E G	Et(sev),P Et(sev),P,IP Et(sev),P Et(sev),P Et[F,E(sev)] Et(sev),B1,P(AE)	P,Et[(sev)F,AE] P,Et[(sev)F,AE],A(E) P,Et(F,AE),A(E) P,Et(F,AE) P,Et(F,AE) P,Et(F,AE) P,Et(F,AE),A(E)
15	Composite B	Sheet, hot-dip zinc coated (4.5 oz/sq ft- Zn)	A B C D E G	N N N A[F(s1i)] P(F),F1(AE,E)	N,c N N N P[s1i(F)]
16	Composite C	Sheet, hot-rolled and pickled	A B C D E G	Et(sev),P(F,AE) Et(sev),P Et(sev),P Et(sev),P Et(sev),P Et(sev),P Et(sev),P	P,Et(F,AE) P,Et(F,AE),A(E) P,Et(F,AE) P,Et(F,AE) P,Et(F,AE) P,Et(F,AE),A(E)
Exposed i	n 1972				
7	18Cr-2Mo(Nb)	Sheet, annealed	A B C D E G	N N N P,IP N	

(a) Results given for each system exposed at each of the six soil test sites are a summary tabulation for four individual specimens.

(b) Specimen dimensions and treatment for each system are given in Table II.

(c) $\ensuremath{\mathsf{Properties}}$ of the soils for each of the test sites are given in Table I.

(d) Abbreviations used:

A - BI - BS - C - DS - Et - FI - H -	metal attack adjacent to edge blisters coating chipped dark stain edge etched face coating flaked perforation	IF IP mod N P RS s s s s v s li T U		irridescent film incipient pitting moderate no apparent attack pitting rust stain scored area severe slight tunneling undercutting
---	--	---	--	--

Table V . (cont'd)

Table VI. Summary of results^(a) obtained from visual examination of welded stainless steel sheet and tube specimens burled in the soils at six NBS soil corrosion test sites. Specimens of System No.'s 11 and 12 were burled for approximately one year while all of the other specimens were buried approximately two years.

System	Stainless	Materia]	Test		Expos	sed 1 Ye	ar			Expose	d 2 Years		
	Steel	and Treatment (b)	Site (c)	Body or Face	Cap	End or Edge	Weld	Adjacent to Weld	8ody or Face	Cap	End or Edge	Weld	Adjacent to Weld
Exposed	in 1970												
54	Type 301	Sheet with cross-bead weld	A 8 D E G	N N IP H P	N/A N/A N/A N/A N/A	N P N P	N N N P	N P N N P	IP IP P N H,T,P,IP P,Et(sev),IP	N/A N/A N/A N/A N/A	P(AE) N P N P P	N RS P N N P,A(sev)	P RS P P P,A(sev)
57	Туре 304	Tube with heliarc welded seam (2-in 00)	A C O E G	Et(sli) Et(sli) Et(sli) Et(sli) Et(mod to sev) Et(mod),P,IP	N N N N	N N N N	N N N N N	N N N N N	Et Et(sli) P Et(sli) Et(sev),P,IP P,Et(sli),IP	N Et(UC) P(UC,AC),A(UC) N P(AC,UC) P(AC,UC)	N N N N	N P N P	N P N N
62	Type 409	Tube with heliarc welded seam (1-1/8 in OD)	A 8 C E G	P,IP N H H,P H,Et&A(sev),P,IP	P&IP(UC) N N N N N	N N N N	P,IP N N N N N	N N N N N	Et(sli),IP P,IP H,P,Et,IP P,ET(sli),IP H,P,Et(sli),IP H,P,A(sev),Et,IP	N N H&P(AC,UC) N H&P(AC,UC) H&P(AC,UC)	N N N N	N P N P H,P	IP N N N H,P
63	⊺ype 4D9	Tube with high-frequency welded seam (7/8-in OD)	A B C O E G	Et,P N P H,P,IP H,A(sev),P,IP,Et	IP(AC) N N N P(AC)	N N N N	IP N N H N N	N N H,P N N	IP P,IP H,P,Et,IP H,P,Et(S1i),IP H,T,P,IP H,P,A(sev),Et,IP	N N H(AC) N H&P(AC,UC) H&P(AC)	P N N N	N IP H,P H,P H,P	1P 1P H,P H,P H,P
Exposed	in 1971												
3	18Cr-0.5Ni(Ti)	Sheet with cross-bead weld	A B C D E G	IP,Et N P,T,IP P H,P,IP H,P,IP	N/A N/A N/A N/A N/A	N P,T N H,P H,P	N P P P	N P P P P	P N P,Et(s]i),IP N H,P,Et,IP P,Et,T	N/A N/A N/A N/A N/A	N P N P(AE,E) P(AE,E)	N P N P	N N N N
9	18Cr-84i(ฟ)	Sheet with cross-bead 、 weld	A 8 0 E G	IP RS A,P N P,T,Et P,Et,IP	N/A N/A N/A N/A N/A	N N N P	Et Et,P Et P P,Et	IP N IP H,P IP	N RS Et,IP Et(sli) Et(sli) P	N/A N/A N/A N/A N/A N/A	N Et(AE) N N P(AE,E)	N RS P N P Et,P	N N P,Et(sev) N P Et,P
17	26Cr-1Mo	Tube with heliarc welded seam (2-in OD)	A B C D E G	N N N P	N N N P(UC) RS(AC)	N N N N	N N N N N	N N N N	N N N P	N P(AC,UC),RS(UC) N P&Et(UC) P(UC)	N N N N	N N N N	N 14 15 16 16 16
18	18Cr(Ti)	Tube with reliarc welded seam(1-1/8 in OD)	A B C O E G	N P,IP,Et N P,IP H,P,Et,IP	N NAP(AC) N(AC) H(AC) N	N N N N	N P N N H,P	N P N N H,P	N P N N H.P.Et	N N H&P(AC) N P(UC) H,P&Et(AC)	N N N N	N P N N	N P N N
19	20Cr-24Ni-6.5Mo	Tube with heliarc welded seam (7/8-inDD)	A B C D E G	N RS RS N N	N N H 14 N	N N N N	N N N N N	N N N N N	N RS RS N N N	N N N RS(AC)	N N N N	N N N N	N N N N N
Exposed	in 1972												
11	18Cr-2Mo(Nb)	Sheet with cross-bead weld	A B C D E G	N Et(sli) P N	N/A N/A N/A N/A N/A	N N N N	N P,Et(sli),IP P N	N Et(sli),IP P N					
12	18Cr-2Mo(ab)	Tube with heliarc welded seam (2-in 00)	A B C E G	N N H N	N N N P(UC) N	N N N N N	N N N N N	N N N N N					

(a) Results given for each system exposed at the six soil test sites are a summary tabulation for four individual

(b) (c) (d)

Pesults given for each system exposed at the six soil test sites are a summa specimens. Specimen dimensions and treatment for each system are given in Table II. Properties of the soils and treatment for each system are given in Table II. Abbreviations used: A - metal attack N - no apparent attack AC - adjacent to cap N/A - not applicable AE - adjacent to cdge P - pitting C - edge RS - rust stain Et - etched sev - severe H - perforation sli - slight IP - incipient pitting T - tunneling mod - moderate UC - under cap

	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	International (1) International (1) <thinternationesthetee< th=""> Internateshetee</thinternationesthetee<>	System	Alloy Designation	Treatment (a)	Years Exposed	Topper. Weight Loss	Site A Dish, Washir Pit Depth	ngton h. Mils (b)	Loch R Weight Loss	Site B aven, Maryle Pit Oepth,	(d) slim	Cape Weight Loss	Site C May, New Ju Pit Oept	ersey th. Hils (b)	Wildw Weight Loss	Site 0 ood, New Jer. Pit Oepth	sey Mils (b)	Wildwo	Site E od, New Jers Pit Oepth.	ey Mils (b)	Patu Weight Loss	Site G xant, Maryle Pit Oepi	ind h. Mil
Image: 1	Image: 1	Image: 1			È		oz/ft ² (b)	Max.	Average of 5 Ocepest (c)	oz/ft ² (b)	Max.	Average of 5 Deeprst (c)	oz/ft2 (b)	Max.	Average of 5 Deepest (c)	oz/ft ² (b.)	Max.	Average of 6 Oeepest (c)	oz/ft ² (b)	Max. A	verage of Deepest (c)	02/ft ²	Max.	5 06
	0 0	0 0	Exposed in	n 1970									-							ł				
0 0	0 0	0 0	50	Type 201	,	- 0	ı	1		,		à	0.02	H(E)		10	1P	,	0.03	H	(*)	9.10	45	
0 0	0 0	0 0	19	Type 202	,	v = r	, ,	5		۰ı			0.01	H(E,T) H(E,T)	:	- 10.01	4U(L)		0.02	H AE	H	0.0 ³	∓9:	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	0 0	52	Type 301	,	V - C		÷	6 1			• •	0.04	11(At) 20	Ξ.):		- d :	. ,	0.03	H(AE) H(AE)	H(T)	<0.0}	40	~ '
	0 0	0 0	53	Type 301	S	v — c	10.0	°. ⊐.		<0.01	IP		0.09	H(AE) 48(E)	15 4	<0°01	Et(e)	1.3	0.04	H(F _E) <5		0.03	82	Ξ'
	0 0	0 0	54	Type 301	XBN		<0.01 -	ô i i		1.1			0.33	19 63(E)	14	0.02	Et -		0.03	∞ ± .		0.34 <0.01	н 13(АЕ)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 0	0 0	55	Type 304	,	v - c		ç +					0.01	16(AW) H	9 -		44		0.04	H(F,E) H		0.04	62 (AE) H(E)	
0 0	0 0	0 0	56	Type 304	S	v — c	- 0.0	. ä.		0.02	Et	. ,	0.04	H(E) H(E)		0,00	Et		0.08	H(AE) H(T)	:	0.02	36	= .
0 0	0 0	0 0	57	Type 304	H	u — c	- -	, i ů			1.11.1+2		60 ° 0	11/MEJ		- n	H(AE)	. ,	0.05	(F,AE,E) 38 36	± •	0.16 -	H H	
0 0	0 0	0 0	50	Type 316	,	1-0								2 4		10			0.0	H(E)		, ,	10(AL)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	0 0	59	Type 316	S	- 0	÷0.01	d1 50		-	, ,		0.02	H(E)		0.0	÷.		0.03	63(E) .			¢-6.4	
0 0	0 0	0 0	60	Type 409		- ~	- 0.01	29(E)		,0.01	, ,	, ,	0.16	H(E)		8	-		0.09	H H U(E AF)	H(f)	0.82	; -	
0 0	0 0	0 0	62	Type 409	MH	- 0	0.02	Et IP.Et			- dI		0.11	H(R AC)	- (b)H		1.12		0.10	H H H H H	:	1,10.	H H	
1 1 0	10 10<		63	Type 409	HFW	- 0		d y			۰ 1		0.18	15			H(AM)	,	0,10	H H	: ¥ :	0.76	H	. +
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 0	0 0	64	Type 410	ı	- 0	0.0	48(E) 20	- 2	0.04	d .		0,18	30 H(F.AF)	20(d)	0.0	H(F F)		0.10	п(лс,т) Н н(F ΔF)	H H(f)	0.83	Сан н н	
	0 Total - <td>10 <th< td=""><td>65</td><td>Type 430</td><td></td><td>1-0</td><td></td><td>Et</td><td></td><td>10</td><td></td><td></td><td>0.12</td><td>H(E)</td><td> :</td><td>c0 .0</td><td>11(F ±C/</td><td>• •</td><td>0.04</td><td>H H</td><td>H (*)</td><td>1.15</td><td> :</td><td></td></th<></td>	10 10 <th< td=""><td>65</td><td>Type 430</td><td></td><td>1-0</td><td></td><td>Et</td><td></td><td>10</td><td></td><td></td><td>0.12</td><td>H(E)</td><td> :</td><td>c0 .0</td><td>11(F ±C/</td><td>• •</td><td>0.04</td><td>H H</td><td>H (*)</td><td>1.15</td><td> :</td><td></td></th<>	65	Type 430		1-0		Et		10			0.12	H(E)	:	c0 .0	11(F ±C/	• •	0.04	H H	H (*)	1.15	:	
Total state Total state <thtotal state<="" th=""> <thtotal state<="" th=""></thtotal></thtotal>	Constraint Constra	Control Control <t< td=""><td>99</td><td>Type 434</td><td>1</td><td>- C</td><td>10 0</td><td>L , C</td><td></td><td>5</td><td>- di -</td><td></td><td>0.013</td><td>H(AE) H(E) H(E)</td><td>н (f)</td><td>10.0</td><td>5 - 2</td><td></td><td>0.04</td><td>H(F,AE) H u/C_AC)</td><td>H(f).</td><td>- 11.2</td><td>н(Е) Н</td><td></td></t<>	99	Type 434	1	- C	10 0	L , C		5	- di -		0.013	H(AE) H(E) H(E)	н (f)	10.0	5 - 2		0.04	H(F,AE) H u/C_AC)	H(f).	- 11.2	н(Е) Н	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Inclusion Bio-like Inclusion Inclusion <th< td=""><td>m m</td><td>Exposed in</td><td>n 1971</td><td></td><td>,</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td>70*0</td><td>1 (26)</td><td></td><td>10*02</td><td>0</td><td>,</td><td>00</td><td>n\r "Hc./</td><td></td><td>0.13</td><td>r</td><td></td></th<>	m m	Exposed in	n 1971		,	2						70*0	1 (26)		10*02	0	,	00	n\r "Hc./		0.13	r	
1 10^{-1} 10	1 1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	26Cr-1Mo		-	,	1P		,			- 10 0/	q			91		10 07	ID			:	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- ~	18Cr/141		- 01 -	- 0-0			10.02			- 10.05	41			4 . 6		10.0		 - (f)	0.0	≙.:	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		lacr(Ti)	XBU	- 67	-0.01	÷ • •					0.02	42 42 4/AC		. 10 0	5.7	5	10.0	n(r,×c) H u(Ac)	E F	0.87	H H H	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	20Cr-2411-6.5Mo	,	оч —	<0.01	e di					0.0	24 24 10		10 10	2 1 1	<u>,</u> , ,	0.02	с Н	• - -	0.02	711 , ME)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 5	20Cr-24:11-6.5Mo	ŝ	~~~	<0°01	dI		<0°0'			10 0	: . 8		0.0	. 1		0.01			9 • • •		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1RCr_2Mn		0 -		. 4			- 4	, ,	10.0	± ≙ .,	•		÷ ,		0.01	- 		- 0.01	1r 1r	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $) (C	ldCr-sHi(H)	,	- 67 -	<0.01						0.01	, P		<0.01			0.0	H H	• =	0.02	HLF, AC/ C	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccc} 10 & 26r-6.5(n) & 2 \\ 11 & constrate A(3) & - & 2 & - & 2 & - & - & 0 & 01 & 0(0) & - & - & - & 0 & 01 & 0(0) & - & - & - & 0 & 01 & 0(0) & - & - & - & 0 & 01 & 0(0) & - & - & - & 0 & 01 & 0 & 0 \\ 12 & constrate A(3) & - & 1 & 2 & 1 & 0 & - & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	$ \begin{bmatrix} 0 & 367-6.5 M & -1 & 2 & -1 & 0 & 0 & 0 \\ 1 & 6 constrate A(3) & -1 & 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & constrate A(3) & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & constrate A(3) & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & constrate C(3) & M & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & constrate C(3) & M & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & constrate C(3) & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	6	loCr-did1(id)	XBiz	2 -		- 41	, ,			, ,	10.0	<5 141(W)			- di	, ,	<0.01 0.02	24(E) H(F.AW)	, ,	0.00	(#)ULL	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	26Cr-6.5Ni	,	5		1.0		• •		• •	0.01	10 H(AE)			. ti		0.0	H(W) H(F.E)		0.09	=*	
15 Composite $B(1)$ $D(2)$ $\frac{2}{28}$ $\frac{1}{20}$ $\frac{2}{28}$ $\frac{1}{20}$ $\frac{2}{28}$ $\frac{1}{20}$ $\frac{2}{23}$ $\frac{2}{23}$ $\frac{2}{23}$	$ \begin{bmatrix} 5 & Composite B(3) & D2 & 2 & 0.8 & WA & 2 & 0.3 & WA & 0 & 0 & 0 & WA & 0 & 0 & 0 & WA & 0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 0	Composite A(9)	,	~ -	2.1	<5 R/A		1.7	N/A		1.0°	H N/A	Ξ.	- 0.7	IP N/A		0.03	H N/A	Ξ I	<0.01 2.9	H N	
$ \begin{bmatrix} 6 & composite (3) & 1 & 2.2 & WA & 2.3 & WA & 0.3 $	$ \begin{bmatrix} 6 & composite (6) & 1 & 2 & 2 & WA & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & $	$ \begin{bmatrix} 6 & comparte (^{(0)} & \cdot & \cdot & 1 & 2.2 & 0.05 & \cdot & 2.3 & 0.06 & \cdot & 1.5 & 0.07 & \cdot & 0.1 & 0.0$	15 C	Composite B ^(g)	ZOH		0.2	N/A N/A		0.3	N/A		9°[N/A N/A		0.8	N/A N/A		0.7	N/A N/A	• •	9.8 1.5	N/A N/A	
$ \begin{array}{cccccc} 17 & 26c-116 & Hi & 1 & c.9 & 0.0 & -1.9 & 0.0 & -1.9 & 0.0 & -1.9 & 0.0 & -1.9 & 0.0 & -0.0 &$	$ \begin{array}{cccccc} 17 & 56c-116 & Hi & 1 & 23 & 40 & - & 1.5 & 40 & - & 1.5 & 40 & - & 0.5 & 1/4 & - & 6.6 & 40 \\ 18 & 18c-(11) & Hi & 1 & - & - & 0.1 & 510 & - & 0.01 & 510 & - & 0.01 & 510 & - & 0.01 & 510 & - & 0.01 & 510 & - & 0.01 & 510 & - & 0.01 & 510 & - & 0.01 & 100 \\ 18 & 20c-24Hi - 5.5h & Hi & 1 & - & - & - & - & - & - & - & - & -$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16 0	Composite C ^(g)	1	2 - 0	2.2	N/A N/A		2.0	N/A N/A		s	N/A N/A		0.7	N/A N/A		<0.1 0.5	N/A N/A		1.7 2.7	N/A N/A	•••
$ \begin{bmatrix} 1 & $	$ \begin{bmatrix} 1 & 18cr(11) & M_{1} & \frac{1}{2} $	$ \begin{bmatrix} 8 \text{ (cr(1))} & \text{ wn} & \frac{1}{2} & \frac{1}{2$	17	26Cr-1140	ΗW	u — c	6.7	-56		0.3	4.1		<u>.</u>	NVA		C * 1	N/A -		9*0	N/A 13		9.6	N/A Et	•••
$ \begin{bmatrix} 13 & 20cr-24Ni+6.5N_0 & M_1 & 1 & & & & & & & & & & & & & & & & &$	$ \begin{bmatrix} 3 & 20cr-2dhi 6.5h0 & W & 1 & 2 & 0.01 & H & 1 & 2 & 0.01 & H & H & 2 & 0.01 & H & H & 2 & 0.01 & - & 0.02 & - & 0.01 & - & 0.01 & - & 0.01 & - & 0.01 & - & 0.01 & - & 0.01 & - & 0.01 & - & 0.01 & - & 0.01 & - & 0.01 & - & - & - & - & - & - & - & - & - & $	$ \begin{bmatrix} 3 & 200^{-2} 2 M_1 - 6 J_0 & M_1 & 1 & 2 & 0 & 0 \\ \hline 3 & 200^{-2} 2 M_1 & 1 & 2 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1$	18	18Cr(T1)	Ħ	u c								H(AC,AW)	:				10.0>	() H(AC)		<0.01	4(UC) H	•••
<pre>posed in 192 7 867-200(N) XN 1 2 5 5 62 and 51 were take specimens fabricated from sheet material, welled at the search from take in the search search search from take in the search search search search from take in the search search</pre>	17 1307-200(N) XN 1 - <	1 1367-200(k) 1 - <td< td=""><td>19</td><td>20Cr+24Ni-6,5Mo</td><td>HN</td><td>v – «</td><td></td><td></td><td></td><td>, ,</td><td></td><td></td><td>10.0</td><td>2.1</td><td>= I I</td><td></td><td></td><td>, , ,</td><td></td><td>6(UC)</td><td></td><td>3.22</td><td>Ξ •</td><td>~ .</td></td<>	19	20Cr+24Ni-6,5Mo	HN	v – «				, ,			10.0	2.1	= I I			, , ,		6(UC)		3.22	Ξ •	~ .
 7 18cr-200(Nb) Xbit 1	 13. 1367-276 (M) XH 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 180-200(M) Multiplication 1	xposed in	1972									10.02	,				,	,	,	,	,	,	
 11 1867-200(bb) NM 1 - 0.01 M(M, M) -	 11 100-200 (NU) XMI 1	 11 10.100 Xm 12.100 Xm 13.100 Xm 14.100 Xm 14.100 Xm 15.100 Xm 15.100 Xm 16.100 Xm 1	-	12(-								L						ų				
 System 12, 17, 18, 19, 57, 62, and 63 were take specimens fabricated from sheet material, wolded at the seams, and supped and capped at each end to minimize futurents corression. Specimens of all tother materials were fabricated seams frame. The specimens of the futurent second seam of the correst seam of the futurent second seam of all tother materials were (a) its crease base frame condition unless moted otherwise. Abserviations used : 5 - secritizad: 4. Society 2014 - crease base frame, and the futurent second seam of all tother materials were (b) Revealed for futurent second secon	 Systems 12, 17, 18, 19, 57, 62, and 63 were tube specimens fabricated from sheet material, welded at the seams, tabrither plugged and capped at each end to minimize futurents corroston. Specimens of all other materials were fully encoded at the seams, tabrither specimens. The there according to the specimens of all other materials were all at encoded at the materials were all encoded at the specimens. The specimens of all other materials were all at encoded at the specimens of the specimens. (a) Mill encoded at the specimens are constrained otherwise. Abbreviations used: 5 - sensitized: 45 - solved at the request proceeding were accorded (galvanized - sensitized). (b) Arenage for for any sense rector formation. Mill requestly into a proceeding fully and a sense to the request proceeding and sense rectorements where a sense is a sense of a sense and the restorement and the request proceeding at a sense. The request proceeding at a sense rectorement and the restorement at the request proceeding at the request proceeding at a sense restorement at the request proceeding at a sense restorement at the request proceeding at a sense restorement at the request proceeding at a set of the reduc	 Systems 12, 17, 18, 19, 57, 62, and 63 were the specimens fabricated from specimes of all other plugged and capped at each end to minimize internal corrosion. Specimens of all other materials were and there plugged and capped at each end to minimize internal corrosion. Specimens of all other materials were (all netrols she specimens of all other materials were as a set in the american set option unless noted otherwise. Abbreviations used. S - sensitized: (a) Nature specimens unless noted otherwise. Abbreviations used. S - sensitized: (b) Neurose for four specimens unless noted otherwise. Abbreviations used. S - sensitized: (b) Neurose for four specimens unless noted otherwise. (b) Neurose for four specimens unless noted otherwise. (b) Neurose for four specimens onless to obtain the interview of all otherwise interview used. S - sensitized: (b) Neurose for four specimens unless noted otherwise. (c) Neurose for four specimens onless to obtain the interview of a set interview of a set of the net otherwise. (c) Neurose for four specimens onless to obtain the interview of a set of the net otherwise. (c) Neurose for four specimens onless to obtain the interview of a set of the net otherwise. (c) Neurose for four specimens onless to obtain the interview of a set of the net otherwise. (c) Neurose for four specimens on the obtain to obtain the interview of a set of the net otherwise. 	12	18Cr-2Mo (Nb) 18Cr-2Mo (Nb) 18Cr-2Mo (Nb)	AH4								- 	<5 		-0.01		111	0.01	<5 (W, W) H(UC)	- H(UC)			•••
 a) the start if if	 a) the first of 1 (2) sty 2, and 2 were take perclament fabricated from sheet material, welded at the seams, and then plugged and saped at each end to minitar function. Speciments of all other materials were all the restrict the amendation of the restrict materials were all the restrict materials and condition unless noted determines the restrict materials were all as a second and condition unless noted determines (b) were all the restrict materials are all other materials were all the restrict materials are all other and the restrict materials are all the restrict materials are all the restrict materials are also and the restrict material are also ar	and then plugged and poped at each of work put expansion. Specimens fabricated from sheet and then plugged as the end to minimate future for a shericated as flat processing and then plugged as the specimens fabricated from sheet and and then plugged as the fract matter and and the plugged as the specimens fabricated from sheet and and the plugged as the fract matter and and the plugged condition matter and and the matter and and the matter and and the plugged condition matter and and the matter and the matter and the matter and and the m				:																		•
 (a) All metrix funct sectors. (b) All constraints unit for the metrix order order	 (a) All weaks are interesting and there spectramed condition unless noted otherwise. Abbreviations used in the intervention on less noted otherwise. Abbreviations used : 5 - sensitized: 4.5 or 1.5 or 2.5 or	 (a) All verterials are intereres Spectrame for outform unless noted otherwise. Abbreviations used with the first structures are constrained on the net of the first structure of the structure of the first structure of		and then pl	ugged and c	apped at ea	nd 63 were tu ch end to min	ube specimer vimize inter	ns fabricated i rnal corrosion.	rom sheet mat Specimens o	erial, welde	ed at the seam												
4.5 outper 2.1). And the maximum must recommend when a more than the control of since control of the	4.5 opt.27). The second s	 4.5 optimes manual requerts wells and the control galvanized - (b) Netregate for four sections used: R - adjacent to cole R - adjacent to cole R - adjacent to cole IP - incipent pitting 		 (a) All materia XBW ~ cross 	as riat she ils were in bead weld:	et spectmen the anneale HV - helia	d condition u	Inless noted	d otherwise. A	bbreviations	used. 5 - 5	ensitized;	27											
	Abbrevlations used: AC = adjacent to op	Abbreviations used: AC adjacet to comenter to ender Re adjacet to ede IP - troplent pitting AV adjacet to ede IP - troplent pitting		4.5 oz/ft ² (b) Average for	Zn). four specin	and miles	modeo beton		Diak Anuaria	AUZ - NOT-dip	zinc coated	d (galvanized												

Table VII. Average weight loss (u_2/t_1^{ℓ}) and pit depths (mils) weterinfination. For stantless sceled log sneed and uning paterbarks have on various soil environments. Systems , 101, and 12 were exposed for association 1 were

 $\label{eq:constraints} \begin{array}{c} \widehat{u}_{1} & \widehat{c}_{1} & \widehat{c$

SEEE

Figure 1. Relative Corrosion Effects of the Soils at the Six NBS Test Sites on Ferrous Hetals.

First	Removal Yr)	Second (2	Removal Yr)	Third (4	Removal Yr)	Fourth (8	Removal Yr)	Fifth	Removal Yr)
50x01	50x03	50x05	50x07	50x09	50x11	50x13	50x15	50x17	50x19
51	51	51	51	51	51	51	51	51	51
52	52	52	52	52	52	52	52	52	52
53	53	53	53	53	53	53	53	53	53
54	54	54	54	54	54	54	54	54	54
55	55	55	55	55	55	55	55	55	55
57	57	57	57	57	50	20	57	57	20
58	58	58	58	58	58	58	58	58	58
59	59	59	59	59	59	59	59	59	59
60	60	60	60	60	60	60	60	60	60
61	61	61	61	61	61	61	61	61	61
62	62	62	62	62	62	62	62	62	62
63	63	63	63	63	63	63	63	63	63
64	64	64	64	64	64	64	64	64	64
65	65	65	65	65	65	65	65	65	65
66x01	66x03	66x05	66x07	66x09	66x11	66x13	66x15	66x17	66x19
50x02	50x04	50x06	50x08	50x10	50x12	50x14	50x16	50x18	50x20
51	51	51	51	51	51	51	51	51	51
52	⊃∠ 53	52	53	52	52	52	52	52	52
54	54	54	54	54	54	54	54	54	54
55	55	55	55	55	55	55	55	55	55
56	56	56	56	56	56	56	56	56	56
57	57	57	57	57	57	57	57	57	57
58	58	58	58	58	58	58	58	58	58
59	59	59	59	59	59	59	59	59	59
60	60	60	60	60	60	60	60	60	60
61	61	61	61	61	61	61	61	61	61
62	62	62	62	62	62	62	62	62	62
63	63	63	63	63	63	63	63	63	63
64	64	64	64	64	64	64	64	64	64
65	65	65	65	65	65	65	65	65	65
00XU2	66XU4	66X06	66X08	66X10	66X12	66X14	00X10	66X18	66x20
67x02	67 x04	67x06	67x08	68x10	68x12	67x14	67x16	68x18	68x20
68	68	68	68	69	69	68	68	69	69
69	69	69	69	71	71	69	69	71	71
70	70	70	70	73	73	70	70	73	73
71	71	71	71	74	74	71	71	74	74
72	72	72	72	75	75	72	72	75	75
73	73	73	73	76	76	73	73	76	76
74	/4	74	74	78	78	74	74	78	/8
/) 76	75	75	75	/9	/9	75	75	/9	/9
70	70	70	70	61x10	01X12	70	70	01X10	61×20
78	78	78	78	70x10	70x12	78	78	70x18	70 x 20
79	79	79	79	70,10	10112	79	79	10110	10,20
80	80	80	80	1 1	*	80	80	+	+
81	81	81	81	┝╼╆║┽┑	╘╼╾ <u></u> ┫╺╾╌┓	81	81	╘╼┋╼┓	┝╾∎⋖┑
82	82	82	82		t l	91	91	+ 1	+ 1
83	83	83	83			92x14	92x16		
84	84	84	84	72x10	72x12	_	_	72x18	72×20
85	85	85	85	77x10	77x12			77x18-	77x20-
86	86	86	86	C 80x10	-80x12			-80x18	-80x20
87	87	87	87	82x10	82x12			91x18	91x20
88	88	88	88	i ti	1 11			1 11	.¦ ↓l
89	89	89	89	+				L.⇒ģ	
90	90	90	90		A f				Å1
91	91	91	91					fi	11
92802	92,04	92200	92,00	83+10	83 1 2			02118	92220
				84×10	84v12			92,110	92820
				-85x10	=85x12				
				86x10	86x12				
				II II	1				
				line in and					
					A II				
				ŢI []	TI				
				87x10	87x12				
				88x10-	88x12				
				89x10	100 12				
				90x10	90x12				
				1	} <u>+</u> '				
			16	┶╾╴┫╺╾न	┟╼╴Ш╺╾╴				
				<u>†</u> 1	<u>† i</u>				
				91x10	91x12				
				92x10	92x12				
	4"x4" Po	st							

Wire terminal to post for electrical measurements

Wire terminals (galvanic couple) to post for electrical measurements.

First R (1	emoval yr)	Second 1 (2	Removal yr)	Third R (4	emoval yr)	Fourth (8	Removal yr)	Fifth R (X	emoval yr)
1x01	1x03	1x05	1x07	1x09	1x11	1x13	1x15	1x17	1x19
2x	2x	2x	2x	2x	2x	2x	2x	2x	2x
3x	3x	3x	3x	3x	3x	3x	3x	3x	3x
4 x	4x	4x	4x	4x	4x	4x	4x	4x	4x
5X 6X	5X 6X	5X 6X	5X 6X	5X 6X	5x 6x	эх бх	эх бх	5X 6X	5X 6X
8x	8x	8x	8x	8x	8x	8x	8x	8x	8x
9x	9x	9x	9x	9x	9x	9x	9x	9x	9x
10x	10x	10x -	10x	10x	10x	10x	10x	10x	10x
14x	14x	14x	14X 15v	14x	14x	14x	14x	14x	14X
15x 16x	15x 16x	15x 16x	16x	15X 16X	16x	15X 16x	15X 16x	15X 16x	15x 16x
17x	17x	17x	17x	17x	17x	17x	17x	17x	17x
18x	18x	18x	18x	18x	18x	18x	18x	18x	18x
19x01	19x03	19x05	19x07	19x09	19x11	19x13	19x15	19x17	19x19
1x02	1x04	1x06	1x08	1x10	1×12	1x14	1x16	1x18	1x20
2 X 3 Y	2X	2.X 3.Y	2x 3x	2X 3X	3x	3x	3x	2 X 3 X	3x
4x	4x	4x	4x	4x	4x	4x	4x	4x	4x
5x	5x	5 x	5x	5x	5x	5x	5x	5x	5x
бx	6x	6x	6x	6x	6x	бx	6x	6x	6x
8x	8x	8x	8x	8x Gv	8x	8x	8x	8x	8x
9X 10x	9X 10x	9X 10x	9X 10x	9x 10x	9X 10x	9x 10x	9X 10x	9X 10x	9X 10x
14x	14x	14x	14x	14x	14x	14x	14x	10x 14x	14x
15x	15x	15x	15x	15x	15x	15x	15x	15x	15x
16x	16x	16x	16x	16x	16x	16 x	16x	16x	16x
17x	17x	17×	17x	17x	17x	17x	17x	17x	17x
18x	18x	18x	18X	18x	18x 10v12	18x	18x	18x	18x
19202	19204	19206	19x08	19210	19212	19214	19216	19218	19220
20,.02	20-04	20,406	2009	20110	20,412	2014	20,41 C	20,.10	2020
20x02	20x04 21x	20x08 21x	20x08 21x	20210	20112	20214	20010	20210	20x20 . 22x
22x	22x	22x	22x	24x	24x	22x	22x	24x	24x
23x	23x	23x	23x	25 x	25x	23x	23x	25 x	25x
24x	24x	24x	24x	27x	27 x	24 x	24x	27x	27x
25X 26×	25X 26x	25x	25X	E 23×10	[23v12	25x	25X	[23v19	$\begin{bmatrix} 21 \\ 23 \\ 23 \end{bmatrix} = 20$
27x	20x	20x 27x	20x 27x	23,10	23X12	27x	20x 27x	23210	23,20
28x	28x	28x	28x		Y I	28x	28x	¥	¥ ·
30x	30x	30x	30x			30x	30 x		
33x	33x	33x	33x	26.10	26.12	42x	42x	26.19	2620
34X 35x	34X 35x	24X 35v	34X 35y	26X10	26X12	43x 44 v	43X 44 v	26×18	26x20 28x
36x	36x	36 x	36x	- 30x	- 30x	45x14	45x16	-30x	-30x
37x	37 x	37 x	37 x	33x10	33x12			42x18	42x20
38x	38x	38 x	38x	1 II	1 1			1	LI LI
42x	42x	42x	42x	╘╾╝╾	L→ 📺 → ¬			L, 🖕	L Ö
				<u>II ≜I</u>	TA II	_	_	_	_
			_	34x10	34x12				
				35x —	35x —				
				II 36x	136x				
				3/X *I	3/X ♥				
				به 🛄 حا	╘╾Ш⋖┐				
				11	l∱				
				38×10	38x12				
				42x	42x				

Figure 2b. ORDER OF BURIAL OF SPECIMENS AT TEST SITES (1971)

4"x4" post

→ ■ Wire terminal to post for electrical measurements

Wire terminals (galvanic couple) to post for electrical measurements.

First Removal	Second Remova	al Third Removal	Fourth Removal	Fifth Removal
(l Yr)	(2 Yr)	(4 Yr)	(8 Yr)	(X Yr)
7x01 7x03 11 11 12 12 7x02 7x04 11 11 12 12	7x05 7x07 11 11 12 12 7x06 7x08 11 11 12 12	7x09 7x11 11 11 12 12 7x10 7x12 11 11 12 12	7x13 7x15 11 11 12 12 7x14 7x16 11 11 12 12	7x17 7x19 11 11 12 12 7x18 7x20 11 11 12 12

Figure 2c. Order of Burial of Specimens at Test Sites (1972).

📕 - 4"x4" post

U.S. D. PT OF COM BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OF REPORT NO. NBSIR 74-483	2. Gov't Accession No.	3. Recipient's Acce	ssion No.
4. 11 (1.1. AND SUB [111.1.3			5. Publication Date	
The Courseion of	- A Studen Coursedor Delieutou	f C. J. at a d	11 2074	
The corrosion and stress corrosion behavior of selected		of Selected	May, 1974	
Stainless Steels in Soil Environments. Part I. General		6. Performing Organ	ization Code	
Corrosion Behav	ior.			
7. 41-111(08:5)			8 Purforming Drava	Ruport No.
U.E. Combold U.I	D Turanzan E Essalante en		NDCID 74	400
W. F. Gernord, W. I	P. Iverson, E. Escalance, an	B. I. Sanderso	In <u>IBSIR 74-</u>	-83
7. PLINE ORBING CROANIZAT	TO V NAME AND ADDIVESS		10. Project Task w.	ark Chit No.
NATIONAL	BUREAU OF STANDARDS		3120362	
DEPARTMENT OF COMMERCE			11. Contract Grant N	so.
WASHINGTO	N. D.C. 20234			
	,			
12 Sourcesting Oceanity to a Na	mu uni Campiata Aileana (Streat City S	ata ZIP)	113 Tupp of Bupyer	
ra oponsoring organization of	ine and Complete Address (Street, City, S	ale, ZIF)	Covered Tun.	-Year :
Committee of Sta	inless Steel Producers		Due gue ge De	
American Iron and	d Steel Institute		Progress Re	port
150 East 42nd Sty	PAT		14. Sponsoring Agen	ey Code H
How York New Yor	-k 10017			-
15 SUDDIENUS PARY SOLLS	K 10017			
	•			
16. ABSTRACT (A 200-word or	less factual summary of most subnific. nt	information If documen	t includes a significa	
bibliography or literature si	tives mention it here)	antoimation. It document	n menades a significa	1
Corresion data is p	presented for selected stain	less steels expo	sed for up to	two years
the second case in a set 7	deservation . Test weterdale .	ألأحشمم الماسية مسا		
I in various soil env	/irongents, lest materials	Included coaled	and uncoated s	NPPT .
specimens in the ar	anoaled and consitized condi-	fictuded coated	and uncoated sind wolded tubing	neet
specimens in the ar	nnealed and sensitized condi-	tion and uncoate	d welded tubin	g
specimens. Systems	nealed and sensitized condi- studied were standard aust	tion and uncoated initic (200 and	d welded tubing 300 series) al	loys,
specimens in the ar specimens. Systems ferritic and marter	nealed and sensitized condi- studied were standard aust- nsitic (400 series alloys, pr	tion and uncoated initic (200 and roprietary alloy	d welded tubing 300 series) al s (Cr and Cr-N	g loys, i)
specimens in the ar specimens. Systems ferritic and marter and composite (sand	inealed and sensitized condi- studied were standard aust- sitic (400 series alloys, pr wich materials with outer la	tion and uncoated initic (200 and coprietary alloy	d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
specimens in the ar specimens. Systems ferritic and marter and composite (sand	studied were standard australis studied were standard australis studied were standard australis stitic (400 series alloys, pr dwich materials with outer la	tion and uncoated initic (200 and coprietary alloy ayers of carbon	d welded tubin 300 series) al s (Cr and Cr-N steel metallur	g loys, i) gically
specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	studied were standard australs studied were standard australities studied were studied were standard australities studied were standard australities studied were studied were studied were standard australities studied were studied were studie	tion and uncoated initic (200 and coprietary alloy ayers of carbon Type 430).	d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	studied were standard australis studied were standard australis studied were standard australis stitic (400 series alloys, pr dwich materials with outer la ess steel core (Type 304 or 1	included Coaled tion and uncoate initic (200 and roprietary alloy ayers of carbon Type 430).	d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	studied and sensitized condi- studied were standard aust- sitic (400 series alloys, pr dwich materials with outer la ess steel core (Type 304 or 1	included coaled tion and uncoate initic (200 and roprietary alloy ayers of carbon Type 430).	d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	studied and sensitized condi- studied were standard aust- sitic (400 series alloys, p dwich materials with outer la ess steel core (Type 304 or 1	included coaled tion and uncoate initic (200 and roprietary alloy ayers of carbon Type 430).	and uncoated si d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	studied and sensitized condi- studied were standard aust- sitic (400 series alloys, pr wich materials with outer la ss steel core (Type 304 or 1	included coaled tion and uncoate initic (200 and coprietary alloy ayers of carbon Type 430).	d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	studied and sensitized condi- studied were standard aust- sitic (400 series alloys, pr wich materials with outer la ss steel core (Type 304 or 1	included coaled tion and uncoale initic (200 and coprietary alloy ayers of carbon Type 430).	and uncoated sind d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	inealed and sensitized condi- s studied were standard aust- nsitic (400 series alloys, pr wich materials with outer la ss steel core (Type 304 or 1	included coaled tion and uncoale initic (200 and coprietary alloy ayers of carbon Type 430).	and uncoated sind d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	studied and sensitized condi- studied were standard aust- sitic (400 series alloys, pr wich materials with outer la ss steel core (Type 304 or 1	included coaled tion and uncoale initic (200 and coprietary alloy ayers of carbon ype 430).	and uncoated si d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	inealed and sensitized condi- studied were standard aust- sitic (400 series alloys, pr wich materials with outer la ess steel core (Type 304 or 1	included coaled tion and uncoale initic (200 and roprietary alloy ayers of carbon Type 430).	and uncoated si d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	inealed and sensitized condi- studied were standard aust- sitic (400 series alloys, pr wich materials with outer la ess steel core (Type 304 or 1	included Coaled tion and uncoale initic (200 and roprietary alloy ayers of carbon Type 430).	and uncoated si d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	inealed and sensitized condi- studied were standard aust- sitic (400 series alloys, pr wich materials with outer la ess steel core (Type 304 or 1	included Coaled tion and uncoale initic (200 and roprietary alloy ayers of carbon Type 430).	and uncoated sind welded tubing 300 series) all s (Cr and Cr-N steel metallurg	g loys, i) gically
in various soll env specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	inealed and sensitized condi- studied were standard aust- sitic (400 series alloys, pr wich materials with outer la ess steel core (Type 304 or 1	included Coaled tion and uncoale initic (200 and roprietary alloy ayers of carbon Type 430).	and uncoated sind welded tubing 300 series) all s (Cr and Cr-N steel metallurg	g loys, i) gically
in various soll env specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	inealed and sensitized condi- studied were standard aust- sitic (400 series alloys, pr wich materials with outer la ess steel core (Type 304 or 1	included Coaled tion and uncoale initic (200 and roprietary alloy ayers of carbon Type 430).	and uncoated sind welded tubing 300 series) all s (Cr and Cr-N steel metallurg	g loys, i) gically
in various soll env specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	inealed and sensitized condi- studied were standard aust- sitic (400 series alloys, pr wich materials with outer la ess steel core (Type 304 or 1	included Coaled tion and uncoale initic (200 and roprietary alloy ayers of carbon ype 430).	and uncoated si d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
in various soll env specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	inealed and sensitized condi- studied were standard aust- sitic (400 series alloys, pr wich materials with outer la ess steel core (Type 304 or 1	included Coaled tion and uncoale initic (200 and roprietary alloy ayers of carbon ype 430).	and uncoated si d welded tubing 300 series) al s (Cr and Cr-N steel metallurg	g loys, i) gically
in various soll env specimens in the ar specimens. Systems ferritic and marter and composite (sand bonded to a stainle	Aronments. Test materials inealed and sensitized condi- s studied were standard aust- nsitic (400 series alloys, pr wich materials with outer la ess steel core (Type 304 or 1	included coaled tion and uncoale initic (200 and coprietary alloy ayers of carbon Type 430).	and uncoated sind welded tubing 300 series) all s (Cr and Cr-N steel metallurg	g loys, i) gically
In Various soll environments of the arspecimens in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle	entries; alphabetical order; capitalize onl	y the first letter of the	and uncoated si d welded tubin 300 series) al s (Cr and Cr-N steel metallur	g loys, i) gically
 In various soll environments of the arspecimens in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle bonded to a stainle 17. KEY RORDS (six to the live name; separated by semicol 	entries; alphabetical order; capitalize onlines	y the first letter of the f	And Uncoated si d welded tubin 300 series) al s (Cr and Cr-N steel metallur	g loys, i) gically
 In various soll environments of the arspecimens in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle bonded to a stainle 17. KEY NORDS (six to twelve name; separated by semicol Stainless stainles	entries; alphabetical order; capitalize onlines;	y the first letter of the f	and uncoated si d welded tubin 300 series) al s (Cr and Cr-N steel metallur	g loys, i) gically a proper
 In various soll environments of the arspecimens in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle 17. KEY NORDS (six to twelve name; separated by semicol Stainless steels; 	entries; alphabetical order; capitalize onl corrosion behavior; soil en	<pre>included coaled tion and uncoale initic (200 and coprietary alloy ayers of carbon ype 430).</pre>	and uncoated si d welded tubin 300 series) al s (Cr and Cr-N steel metallur	neet g loys, i) gically ^a proper ngs.
 In various soll environments of the arspecimens in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle 17. KEY NORDS (six to twelve name; separated by semicol Stainless steels; 	entries; alphabetical order; capitalize onl corrosion behavior; soil en	<pre>included coaled tion and uncoale initic (200 and coprietary alloy ayers of carbon ype 430). y the first letter of the f vironments; fiel</pre>	and uncoated si d welded tubin 300 series) al s (Cr and Cr-N steel metallur	nget g loys, i) gically ^a proper ngs.
 In various soll environments of the arspecimens in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle 17. KEY NORDS (six to twelve nume: separated by semicol Stainless steels; 	entries: alphabetical order; capitalize onlines corrosion behavior; soil en	<pre>included coaled tion and uncoale initic (200 and coprietary alloy ayers of carbon ype 430). y the first letter of the f vironments; fiel</pre>	and uncoated si d welded tubin 300 series) al s (Cr and Cr-N steel metallury first key word unless ld tests; coati	neet g loys, i) gically a proper ngs.
 In Various Soll environments of the arspecimens in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle 17. KEY NORDS (six to twelve nume; separated by semicol Stainless steels; 18. AVAILABILITY 	entries; alphabetical order; capitalize onlo corrosion behavior; soil en	y the first letter of the first security field	and uncoated sid d welded tubing 300 series) all s (Cr and Cr-N steel metallurg first key word unless ld tests; coati	neet g loys, i) gically a proper ngs. D. OF PAGES
 In various soll environments of the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle 17. KEY RORDS (six to the live nume; separated by semicol Stainless steels; 18. AVAILABILITY: 	entries; alphabetical order; capitalize onl corrosion behavior; soil en Unlimited	<pre>included coaled tion and uncoale initic (200 and coprietary alloy ayers of carbon ype 430). y the first letter of the f vironments; fiel 19. SECURIT (THIS RE</pre>	and uncoated side welded tubing 300 series) all s (Cr and Cr-N steel metallurg first key word unless Id tests; coati Y CLASS PORT) 21. NO	neet g loys, i) gically ^a proper ngs. D. OF PAGES
 In Various soll environments of the arspecimens in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle bonded to a stainle 17. KEY RORDS (six to twelve nume; separated by semicol Stainless steels; 18. AVAILABILITY: YY For Original Distribution 	entries; alphabetical order; capitalize onl corrosion behavior; soil en	<pre>included coaled tion and uncoale initic (200 and coprietary alloy ayers of carbon ype 430). y the first letter of the f vironments; fiel 19. SECURIT (THIS RE</pre>	and uncoated sid d welded tubing 300 series) all s (Cr and Cr-N steel metallurg	a proper ngs. 20. OF PAGES 32
 In Various Soll environments of the arspecimens in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle bonded to a stainle 17. KEY RORDS (six to twelve nume; separated by semicol Stainless steels; 18. AVAILABILITY: XX_ For Official Distributio 	entries; alphabetical order; capitalize onl corrosion behavior; soil en Unlimited n. Do Not Release to NTIS	y the first letter of the f 19. SECURIT (THIS RE UNCL ASS	and uncoated sid d welded tubing 300 series) all s (Cr and Cr-N steel metallurg	a proper ngs. 32
 In various soll environments of the arspecimens in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle bonded to a stainle 17. KEY RORDS (six to twelve nume; separated by semicol Stainless steels; 18. AVAILABILITY: XX_ For Official Distributio 	entries; alphabetical order; capitalize onl corrosion behavior; soil en Unlimited n. Do Not Release to NTIS	y the first letter of the f 19. SECURIT (THIS RE UNCL ASS	and uncoated si d welded tubin 300 series) al s (Cr and Cr-N steel metallur (irst key word unless ld tests; coati Y CLASS PORT) SIFIED	a proper ngs. 20. OF PAGES 32
 In various soll environments in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle bonded to a stainle 17. KEY WORDS (six to twelve nume; separated by semicol Stainless steels; 18. AVAILABILITY: XX For Official Distributio Corder From Sup. of Doc 	entries; alphabetical order; capitalize onlo corrosion behavior; soil en Unlimited n. Do Not Release to NTIS . U.S. Government Printing Office	y the first letter of the f vironments; fiel 19. SECURIT (THIS RE UNCL ASS 20. SECURIT	and uncoated sid d welded tubing 300 series) all s (Cr and Cr-N steel metallurg	a proper ngs. 2005 PAGES 32
 In Various soll environments of the arspecimens in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle bonded to a stainle 17. KEY RORDS (six to twelve name; separated by semicol Stainless steels; 18. AVAILABILITY XX_ For Official Distributio Corder From Sup. of Doc Washington, D.C. 20 io 	entries; alphabetical order; capitalize onl cons) Corrosion behavior; soil en Unlimited n. Do Not Release to NTIS . U.S. Government Printing Office 2, SD Cat. No. C13	y the first letter of the f vironments; fiel 19. SECURIT (THIS RE UNCL ASS 20. SECURIT (THIS PA	and Uncoated Si d welded tubin 300 series) al s (Cr and Cr-N steel metallur steel metallur first key word unless ld tests; coati Y CLASS PORT) SIFIED Y CLASS GE) 22. Pr	neet g loys, i) gically ^g proper ngs. D. OF PAGES 32
 In Various soll environments of the arspecimens in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle bonded to a stainle 17. KEY WORDS (six to twelve name; separated by semicol Stainless steels; 18. AVAILABILITY: XX_ For Official Distributio Colder From Sup. of Doe Washington, D.C. 20 io. Colder From National Trees 	entries: alphabetical order; capitalize onl corrosion behavior; soil en Unlimited n. Do Not Release to NTIS . U.S. Government Printing Office 2, SD Car. No. C13 rehnical Information Service (NTIS)	y the first letter of the f vironments; fiel 19. SECURIT (THIS PA	and Uncoated Si d welded tubin 300 series) al s (Cr and Cr-N steel metallur steel metallur	a proper ings. 0. OF PAGES 32
 In various soll environments in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle bonded to a stainle 17. KEY NORDS (six to twelve nume; separated by semicol Stainless steels; 18. AVALLABILITY: XX. For Official Distributio Order From Sup. of Doe Washington, D.C. 20 i0 Order From National Tecopring tield, Virginia 22 	entries: alphabetical order; capitalize onl corrosion behavior; soil en Unlimited n. Do Not Release to NTIS . U.S. Government Printing Office 2, SD Car. No. C13 rehnical Information Service (NTIS) 151	y the first letter of the l vironments; fiel 19. SECURIT (THIS PA UNCL ASS 20. SECURIT (THIS PA UNCL ASS 20. SECURIT	and uncoated sid d welded tubing 300 series) all s (Cr and Cr-N steel metallurg	neet g loys, i) gically a proper ngs. D. OF PAGES 32
 In Various soll environments in the arspecimens. Systems ferritic and marter and composite (sand bonded to a stainle bonded to a stainle bonded to a stainle 17. KEY NORDS (six to twelve nume; separated by semicol Stainless steels; 18. AVALLABILITY: XX. For Official Distributio Colder From Sup. of Doe Washington, D.C. 2010 Colder From National Techniques Springfield, Virenta 22 	entries: alphabetical order; capitalize onl corrosion behavior; soil en Unlimited n. Do Not Release to NTIS . U.S. Government Printing Office 2, SD Car. No. C13 rehnical Information Service (NTIS) 151	<pre>included coaled tion and uncoale initic (200 and coprietary alloy ayers of carbon ype 430).</pre>	and uncoated sid d welded tubing 300 series) all s (Cr and Cr-N steel metallurg dirst key word unless ld tests; coati Y CLASS PORT) SIFIED Y CLASS I C 22. Pr SIFIED Y CLASS C 22. Pr	a proper ngs. 20. OF PAGES 32

