
THE TURNING WORKSTATION IN THE AMRF
NBSfR 88-3749

NIST

PUBLICATIONS

By:

A. Donrnez
R. Gavin
L. Greenspan

E. Reisenauer

C. Shoemaker

i—mmmm

wm$mm
I§ii§li!§|g8gj^sa^§a§§jg^g^gigaj?jgy.fegsi

wSMm$m

SSsssx.a

HhNHHhHI
pillM•a2R«fioft>xo:o>:&:c;jMPiilPig

:o!oxo:<»x^

«eS8jBMi

XOXOtf^OKi
c«^xJx8S*Hj.
?i5!oxb:oKCSOr

Bureau# .Standarets-jBB8l ‘ Gaittiarsburg ; Maryland

NATIONAL INSTITUTE OF STANDARDS &
TECHNOLOGY

Research Information Center
Gaithersburg, MD 20899

THE TURNING WORKSTATION
IN THE AMRF

Alkan M. Donmez
Robert J . Gavin
Lew Greenspan
Kang B. Lee

Vincent J . Lee
James P. Peris

Eric J. Reisenauer
Charles 0. Shoemaker

Charles W. Yang

This publication was prepared by United States Government
employees as part of their official duties and is, therefore, a

work of the United States Government and not subject to
copyright

.

Certain commercial equipment is identified in this paper to
adequately describe the system under development. Such
identification does not imply recommendation or endorsement by
the National Bureau of Standards, nor does it imply that the
equipment is necessarily the best available for the purpose.

TABLE OF CONTENTS Page

I. INTRODUCTION 1

1. WHAT IS THE TWS? 1

2. ABOUT THIS MANUAL 1

2.1 How This Manual Is Organized 1

3. WHO SHOULD USE THIS MANUAL 2

II. AN OVERVIEW OF THE TURNING WORKSTATION 3

1. DESIGN GOALS FOR THE TURNING WORKSTATION 3

1.1 Flexibility 3

1.2 Integrabilitv 4

1 . 3 Quality 4

1.4 Cost- Effectiveness 5

2. WORKSTATION HARDWARE CONFIGURATION 5

3. WORKSTATION CONTROLLER . 5

4. HIGH-LEVEL MACHINE TOOL CONTROLLER 11

5. MICROMANIPULATOR 13

6. ROBOT GRIPPER 13

7. TURNTABLE 16

8. COLLET CHANGER 16

9. PROGRAMMABLE STOP 18

10.. MALFUNCTION DETECTOR 18

11. NETWORK COMMUNICATIONS 20

12. SUMMARY 20

III. THE TURNING WORKSTATION CONTROLLER . 21

1. DESIGN PHILOSOPHY 21

1.1 Flexible and Generic High-Level Manufacturing Process 21

1.2 Integration 22

1.3 Real-Time Multitasking Control 22

2. CONTROLLER HARDWARE DESCRIPTION 22

3. CONTROLLER DESIGN . 23

3.1 Manufacturing Process Data 23

3.2 Controller Architecture 25

3.3 Common Memory 31

3.4 Database 31

4. PROCESS PLAN DECOMPOSITION 33

4.1 Process Plan Flat File 33

4.2 Task Level Work Element Sheet 40
4.3 Device Level Work Element Sheets 40
4 . 4 Decomposition of Process Plan Flat Files Into Task Level And

Device Level Work Element Sheets 46

5. REMOTE COMMUNICATION 46

5 . 1 Cell to Turning Workstation Communication 46

l

The TWS

5 . 2 Database Communication Module 49

5.3 The AMPLE Communication Module 57

6. TWS CONTROLLER/DEVICE CONTROLLER COMMUNICATION PROTOCOL 59

7. OPERATION SCENARIO 61

7.1 Stand-alone Mode 61

7.2 Integrated Mode 61

8. FUTURE DEVELOPMENT 63

IV. HIGH-LEVEL MACHINE TOOL CONTROLLER 64

1. DESIGN OF THE HIGH-LEVEL MACHINE TOOL CONTROLLER ... 64

1.1 Overview 64

1 . 2 Control Architecture 64

1.3 Hardware Components 65

1 . 4 Software Components 66

2. OPERATION OF THE HIGH-LEVEL MACHINE TOOL CONTROLLER 70

2.1 Local Operation Mode . 70

2.2 Remote Operation Mode 71

3. SUGGESTIONS FOR FUTURE DEVELOPMENT . 71

V. ROBOT CONTROLLER INTERFACE 72

1. INTERFACE DESIGN 72

1 . 1 Overview 72

1.2 Control Architecture . . ! 72

1.3 Electronic Components . * 74 ,

1.4 Software ' 76

2. OPERATION 77

2 . 1 Local Operation 77

2.2 Remote Operation 79

2.3. Transparent Mode Operation
*. 81

3. SUGGESTIONS FOR FUTURE DEVELOPMENT 81

VI. ROBOT GRIPPER 83

1. DESIGN OF THE ROBOT GRIPPER 83

1.1 Overview 83

1.2 Control Architecture 84

1 3 Mechanical Components 84

1.4 Electronic Components 86

1.5 Software Components 88

2. OPERATION OF THE DEVICE 88

2.1 Setup Requirements 88

2 2 Operation Mode 88

3. SUGGESTIONS FOR FUTURE DEVELOPMENT 90

VII. PROGRAMMABLE STOP 91

1. PROGRAMMABLE STOP DESIGN 91

1.1 Overview 91

ii

i
The TWS

1.2 Control Architecture 92

1.3 Mechanical Components 92

1.4 Electronic Components 94

1.5 Software Components 96

2. OPERATION OF THE PROGRAMMABLE STOP 97

2 . 1 Local Operation 97

2.2 Remote Operation 99

3. SUGGESTIONS FOR FUTURE DEVELOPMENT 100

VIII. TOOL SETTING STATION 101

1. DESIGN OF THE TOOL SETTING STATION 101

1.1 Overview 101

1.2 Control Architecture 101

1.3 Mechanical Components 102

1.4 Electrical Components 108

1.5 Software Components 113

2. OPERATION OF THE TOOL SETTING STATION . 114

2.1 Setup Requirements 114
2.2 Commands and Responses 114

3. SUGGESTIONS FOR FUTURE DEVELOPMENT 120

IX. MI CROMANIPULATOR 121
1. DESIGN OF THE MICROMANIPULATOR 121
1.1 Overview 121

1.2 Control Architecture 121
1.3 Mechanical Components 121
1.4 Electronic Components 128

1.5 Software Components 128

2. OPERATION OF THE MICROMANI PULATOR 131
2.1 Local Mode 132

2.2 Remote Mode 136

3. SUGGESTIONS FOR FUTURE DEVELOPMENT 140

X. MALFUNCTION DETECTOR 142

1. DESIGN OF THE MALFUNCTION DETECTOR 142

1.1 Overview 142

1.2 Control Architecture 142

1.3 Mechanical Components 143

1.4 Electronic Components 143

1.5 Software Components 147

2. OPERATION OF THE MALFUNCTION DETECTOR 149

2 . 1 Local Mode 149

2.2 Remote Mode 153

3. SUGGESTIONS FOR FUTURE DEVELOPMENT 154

XI. COLLET CHANGER 155

iii

The TWS

1. DESIGN OF THE COLLET CHANGER 155
1.1 Overview 155
1.2 Control Architecture 155
1.3 Mechanical Components 157

1.4 Electronic Components 157

1.5 Software Components 157

2. OPERATION OF THE DEVICE 157

3. SUGGESTIONS FOR FUTURE DEVELOPMENT 161

XII. TURNTABLE 162

1. TURNTABLE DESIGN 162

1.1 Overview 162

1.2 Control Architecture 163

1.3 Mechanical Components 164

1.4 Electronic Components 168

1.5 Software Components 172

2. OPERATION OF THE TURNTABLE 175

2.1 Local Operation 175

2.2 Remote Operation ’177

3. SUGGESTIONS FOR FUTURE DEVELOPMENT 178

APPENDIX A 179

COMMUNICATION PROTOCOL BETWEEN THE TWS CONTROLLER AND THE DEVICES WITHIN THE
TURNING WORKSTATION . 179

A . 1 MACHINE TOOL CONTROLLER 179

A. 2 ROBOT CONTROLLER 180

A. 3 GRIPPER CONTROLLER 181

A. 4 MALFUNCTION DETECTOR 182

A. 5 MICROMANIPULATOR 183

A. 6 PROGRAMMABLE STOP 184

A. 7 TURNTABLE 186

REFERENCES 188

GLOSSARY 190

INDEX 193

IV

The TWS

LIST OF FIGURES

Page

Figure II. 1 The Overview of the Turning Workstation ...6

Figure II. 2 The Turning Workstation (TWS) System
Block Diagram .7

Figure II. 3 Listing of Tasks That Comprise the

Workstation Controller 9

Figure II. 4 A List of Typical Job Elements 10

Figure II. 5 A Typical Operation Sheet for the Workstation
Controller .10

Figure II. 6 The Robot Grippers and the Micromanipulator 14

Figure II. 7 Gripper Holding Part Prior to Insertion
into the Collet 15

Figure II. 8 Gripper Fingers Changing Operation 17

Figure II. 9 Collet Changing Operation by Robot 19

Figure III.l Turning Workstation Control Hierarchy 24
Figure III. 2 Turning Workstation Controller Architecture 26

Figure III. 3 Task State Transition Diagram 28

Figure III. 4 Listing of Tasks That Comprise the Turning
Workstation Controller 32

Figure III. 5 Task Decomposition Diagram 34

Figure III. 6 Process Plan Flat File Example 35-39
Figure III. 7 Task Level Work Element Format 41
Figure III. 8 An Example of a Task Level Work Element Sheet..... 41
Figure III. 9 Execution of Task Level Work Elements 42
Figure III. 10 Device Level Work Element Format 44
Figure III. 11 Example of a Device Level Work Element Sheet 44
Figure III. 12 Execution of Device Level Work Elements 45
Figure III. 13 Procedure Section Parameters 47
Figure III. 14 Cell to TWS Command Mailgram Protocol 50
Figure III. 15 TWS to Cell Status Mailgram Protocol .51

Figure III. 16 Database Command Format 54
Figure III. 17 Database Status Report Format..... 55

Figure III. 18 TWS/AMPLE Protocol. 60
Figure III. 19 Task Synchronization Between Job Level Controller/

Task Manager, Task Level Controller, and Device
Level Controller 62

Figure V.l Block Diagram of the Robot/Tray Controller
Interface Configuration 73

Figure VI . 1 Gripper Construction 85

Figure VI .

2

Schematic Diagram of the Gripper Controller 87

Figure VII. 1 Programmable Stop - Mechanical Components 93

v

The TWS

Page
Figure VII. 2 Function Block Diagram of the Programmable Stop

Controller 95

Figure VIII. 1 Cross Section of Gage Head 103

Figure VIII. 2 Operating Mode of Gage Head, 104

Figure VIII. 3 Isometric View of Tool Setting System 106

Figure VIII. 4 Positioning Mechanism in Idle & Gaging Positions .. 107

Figure VIII. 5 Functional Block Diagram for the Tool
Setting Station 109

Figure VIII. 6 Schematic Diagram for the NBS -Designed
Microcomputer Ill

Figure IX. 1 Micromanipulator Structure 123

Figure IX. 2 Top View of Micromanipulator 124
Figure IX. 3 Section AA of Micromanipulator. 125

Figure IX. 4 Section BB of Micromanipulator........ 126

Figure IX. 5 Section CC of Micromanipulator ..127

Figure X.l Malfunction and Tool Condition Detector 144

Figure X.2 Schematic Diagram for the NBS -Designed
Microcomputer 145

Figure XI . 1 Functional Block Diagram of the

Collet Changer Controller 156

Figure XI . 2 Isometric View of Spindle, Collet Changer,
and Robot Arm 158

Figure XI . 3 Cross Section of Clutch Mechanism 159

Figure XII. 1 Isometric View of the Turntable Machine Frame 165

Figure XII. 2 A Typical Application of the Turntable..... 167

Figure XII. 3 Function Block Diagram of
the Turntable Controller169

vi

The TWS

I. INTRODUCTION

This chapter gives a brief description of the Turning Workstation (TWS)

developed at the National Bureau of Standards (NBS) and describes how this

manual is organized. Finally, the chapter describes who should read this

manual

.

1. WHAT IS THE TWS?

The Turning Workstation is an automated turning center tended by an industrial
robot for flexible manufacturing. The TWS was developed in the Automated
Manufacturing Research Facility (AMRF) at the National Bureau of Standards
(NBS) for the study of interface standards and to demonstrate the feasibility
of the untended production of metal parts.

The TWS consists of a workstation controller, a high-level machine tool
controller, a precision computerized numeric control (CNC) turning center
served by a six-axis robot, a buffer turntable for local storage of tools,
collets and robot gripper fingers, a tool-setting station, and a tray
loading/unloading station for part blanks and finished parts

.

In order to perform high-precision turning, collets are used for holding
workpieces in the turning center. Part of the uniqueness of the TWS is that it

facilitates standard- collet loading, collet changing, tool changing, and robot
gripper- fingers changing. A five-axis micromanipulator, mounted on the wrist
of the robot, is used to enhance the capability of the robot for loading the
workpiece into the collet.

The TWS is designed to run in either stand-alone mode or integrated mode. In
the stand-alone mode, part order information is entered into the console
terminal. In the integrated mode, the workstation controller communicates with
the higher level cell controller and accesses data information from the
database through the AMRF network.

2. ABOUT THIS MANUAL

This section introduces the organization of the manual and the chapters
contained therein.

2 . 1 How This Manual Is Organized

This manual is organized into twelve chapters, one appendix, a glossary, an
index, and a list of references. This chapter, "Introduction", introduces the
TWS and explains how to use this manual.

1

The TWS

Chapter II, "Overview of the TWS", provides a brief description of the
architecture of the TWS and how all the special systems of the TWS are designed
to interact with one another.

Chapter III, "TWS Controller", is a detailed examination of the controller of
the TWS, which orchestrates all activity within the TWS as well as between the
TWS and higher levels of control.

Chapters IV and V, "High-Level Machine Tool Controller" and "Robot Controller
Interface", respectively, provide information on the systems within the TWS
that provide specific control for specific functions.

Chapters VI thru XII comprise the- special systems of the TWS. As such, they
provide more specialized information on innovations achieved in the AMRF at the

National Bureau of Standards. These chapters are entitled "Robot Gripper",
"Programmable Stop", "Micromanipulator", "Malfunction Detector", "Tool Setting
Station", "Collet Changer", and "Turntable".

Appendix A contains the specific protocol for communication between the TWS
controller and the specific devices within the TWS, while a glossary and index
are provided for ease of reference.

3. WHO SHOULD USE THIS MANUAL

This document is intended for NBS personnel as well as government, industry,
and university researchers interested in automated turning workstations as

implemented in the AMRF. The manual assumes the reader is conducting research
and developing applications for real-time control of robots in conjunction with
turning workstations.

2

The TWS

II . AN OVERVIEW OF THE TURNING WORKSTATION

The Automated Manufacturing Research Facility (AMRF) is situated at the

National Bureau of Standards (NBS) [1,2,3]. It is an ongoing research effort
in factory automation standards at NBS, in collaboration with the Manufacturing
Technology Program of the U.S. Navy, industry, the academic community, and the

Center for Manufacturing Engineering of NBS. The AMRF consists of six
workstations: a Turning Workstation (TWS), a Horizontal Workstation, a Vertical
Workstation, a Cleaning and Deburring Workstation, an Inspection Workstation,
and a Material Handling Workstation. These workstations are integrated into a

manufacturing cell and the workstation activities are scheduled and coordinated
by a cell controller. The two higher- level controls, the facility and the shop
controls, provide process planning, CAD design and engineering services, and
offline programming of machine tools and robots. Data, commands, and status
information are transmitted over a network communication system using a

distributed data administration system.

The Turning Workstation is one of the more technologically advanced and
flexible manufacturing workstations in the AMRF. As such, it addresses some of

the problems associated with untended turning operations. These include
automatic tool changing and workpiece loading. Some research has been done in

automatic tool changing using the block tool system [4]

.

Other work has been
accomplished in workpiece loading into a chuck using an adaptive force sensing
technique [5]. Both of these systems use a specially designed and dedicated
robot arm and gripper to perform the operations. The TWS takes another
approach: it uses a general purpose commercial robot to perform robotic collet
loading, robotic collet changing, and robotic tool changing in an automated
environment. Tool changing is accomplished using a ball-lock tooling system
[6]. Tool setting is performed by a touch calibration at the NBS -built tool
setting station [7] when a tool is changed.

1. DESIGN GOALS FOR THE TURNING WORKSTATION

The Turning Workstation was developed with several design goals in mind. The
goals are to develop a flexible and generic workstation that can be integrated
into an automated factory, to improve the quality of parts produced, and to

demonstrate the cost effectiveness of small batch manufacturing workstations.

1 . 1 Flexibility

Small batch factories characteristically produce a wide variety of parts in low
volume. Most automated manufacturing workstations in existence today are not
well suited for this type of environment. Many of them are programmed to

execute a sequence of steps repeatedly, and any modification in the sequence
needed in order to machine different parts requires extensive reprogramming.
This is undesirable, because it reduces production time. Clearly, in order for

3

> The TWS

an automated workstation to operate effectively in this environment, it must be
designed with a great deal of flexibility. The workstation must be able to

machine a variety of parts without requiring major modification. The Turning
Workstation was designed with this flexibility in mind. Flexible features
include the ability to machine a variety of parts without any changes to the
workstation hardware or software. In order to achieve this, a myriad of
engineering problems had to be investigated and solved. The following are
some of the problems and their solutions:

1. Since different parts require different tools to

machine them, tool changing must be automated in
order to machine a variety of different parts
without human intervention. The Turning
Workstation robot is programmed to achieve this.

2. Different parts require different fixtures to hold
them in the spindle of the turning center.
Therefore, collet (the fixture used to hold the
part) changing must be automated. Again, the
Turning Workstation robot is programmed to achieve
this .

3. The turning lathe requires different Numeric Control (NC)

programs to machine different parts. The Turning Workstation
Machine Tool Controller is designed with the ability of
downloading various NC programs to the turning lathe

.

1 . 2 Integrabilitv

In order to demonstrate the feasibility of completely automating a small batch
.factory, it is essential for the TWS to perform as an integral part of this
factory. The TWS is designed to operate in either integrated mode or stand-
alone mode. In integrated mode, the TWS obtains batch orders and process
information from the AMRF cell controller and the AMRF database. In stand-
alone mode, the TWS obtains batch orders from a local operator, and process
information from a local database.

1 . 3 Quality

As with any manufacturing operation, the quality of the product was a major
concern in the development of the Turning Workstation. Several steps were

taken to improve the quality of the parts made. One of these was to use

collets to hold a part in place during machining. A collet fits very closely
around the part it holds, thus allowing a higher degree of machining accuracy
than that of conventional chucks. Another quality improvement feature was the

addition of a high-level machine tool controller developed by NBS capable of

real-time compensation of machine errors, including geometric and thermal

errors

.

4

The TWS

1 . 4 Cost-Effectiveness

Several steps were taken to demonstrate the cost effectiveness of developing
small batch manufacturing workstations. Most major components within the

Turning Workstation are off-the-shelf items. For instance, the lathe is a

Hardinge Brothers product and the robot used is a Bendix product. The use of a

single robot manipulator in conjunction with a number of interchangeable
gripper fingers also increased the flexibility of the robot without incurring a

high cost.

2. WORKSTATION HARDWARE CONFIGURATION

The major components of the TWS include a turning lathe that machines parts, a

robot that loads the lathe with parts, a buffer tray that stores the parts, and
a buffer turntable that stores the tools and the fixtures needed by the lathe
to machine parts. The workstation also contains other sophisticated devices
and sensors that facilitate automated manufacture. Sensory information
processed by the device controllers includes positional, thermal, force and
torque, and vibrational data. For instance, the Machine Tool Controller
obtains thermal and positional information from thermal couples and laser
interferometers to perform error correction. Sensors used in the TWS include
LVDT's (Linear Variable Differential Transducer), positional encoders,
inductive proximity sensors, accelerometers, thermocouples, and laser
interferometers

.

A more detailed overview of the Turning Workstation is shown in Figure II. 1.

The TWS consists of a six degree-of -freedom, electrically-driven robot mounted
on a gantry, a high-precision turning center with 0 . 25 -micrometer (10-

microinch) resolution, a microcomputer-based workstation controller, a high-
level machine tool controller, and an array of sophisticated devices and
sensors. These devices include a micromanipulator that acts as a "smart" wrist
for the robot, a robot gripper system with two back-to-back grippers having
interchangeable fingers, a collet-changing device, an "intelligent" servo-
controlled local buffer turntable, a programmable stop for part length
referencing, a programmable malfunction detector for monitoring the machining
operation of the turning center, a tray station controller for coordinating
tray- loading and tray-unloading operations with the Material Handling Station.
The TWS system block diagram is shown in Figure II. 2.

3. WORKSTATION CONTROLLER

The Turning Workstation controller is based on a Multibus computer, Intel
System 310/286 ,

which uses an 80286 16-bit microprocessor as the CPU. The
computer has 1 Mbyte of RAM, a floppy disk drive, a 40 Mbyte hard disk drive,
and ten RS232C serial ports. The primary function of the TWS controller is to

coordinate the device executions within the workstation, and it does this by
communicating with the device controllers through the RS232C serial links. The
TWS controller is data driven, and it obtains manufacturing data from either

5

r\‘

6

FIGURE

II.l.

THE

OVERVIEW

OF

THE

TURNING

WORKSTATION

Cell Controller

2
<
O
<
5
*
u
o
mi
CQ

sw
H
C/5

>-
CD

C/5

2
O
P
<
H
</>

O
£
u
2
2
D
H
tu

X
H
CN

tu

D
U
X

7

The TWS

the AMRF database or a local database. The TWS controller software is an
application using the iRMX 86. The iRMX 86 Operating System is used because it

supports real-time applications and provides multitasking, which significantly
aids the system design process. Also, multitasking simplifies the process of
building an application system that processes real-time events. Thus the
system code is less complex and easier to maintain.

The ability to react to asynchronous external events as they occur (in real-
time) is an important characteristic of the TWS controller. A real-time
algorithm is essential for effectively controlling the devices within a

manufacturing workstation. This is because the status feedbacks from the
devices occur asynchronously. To illustrate the need for a real-time
algorithm, suppose a sequential algorithm is used to control the workstation.
A situation where many devices contend for the attention of the controller can
easily arise. If the controller is waiting on a transaction with a particular
device while other devices are trying to update the controller with more vital
information, the other devices would be ignored by the controller until the

device in question has completed its transaction. Clearly, this is not
acceptable A real-time algorithm would be able to react to these external
events and process all the information at the right time.

The multitasking capability is another important characteristic that allows the

TWS controller to perform effectively. The TWS controller employs one task per
device; this establishes a one-to-one relationship between device and task
which simplifies application coding. This implementation avoids using a single
program to process multiple, asynchronous status feedback from many devices.
The different tasks that make up the workstation controller are listed in

Figure II. 3.

The function to be performed by the TWS is thought of as a hierarchy composed
of three levels. At the highest level, the TWS is told to perform a "job".
MACHINE_LOT, for example, is the job of machining a batch of parts (see Figure
II. 4). At the next level, a job is broken down into "task level" work
elements, which are subtasks that must be performed in order to do the job.

GET_BLANK, for example, is a task level work element executed by TWS to fetch a

part from the buffer tray (see Figure II. 5). At the last level, each task
level work element is broken down into "device level" work elements, which
contain the actual machine commands sent to the devices inside the workstation.

The structure of the TWS controller follows the hierarchical nature of the

function performed by the TWS. The job level controller resides at the highest
level and controls the execution of jobs. The task level controller resides at

the next highest level and controls the execution of task level work elements.

The device level controller resides at the lowest level and controls the

execution of device level work elements. The job level controller obtains

status feedback from the task level controller. The task level controller

8

TASK MODULE FUNCTION

CM_TASK
LOC_SC_TASK
DVT_TASK
DVT_STA

CO_MANAGER.P8
LOC_MON.P86
DVT_M0D.P86
DVT_STA.P86

DSP_TASK
SHELL_MOD
L1_TASK
L2_TASk

STA_CHG_TASK

SET_DISP.P86
SHELLMODP86
TASK1.P86

TASK2B.P86
INIT_TASKB.P86

STACHG.086

MM_TASK MM.P86

MCJASK MC.P86

PS_TASK PS.P86

TT_TASK
RTTASK
GR_TASK

TT.P86

RT.P86

GR.P86

DS_TASK DS.P86

TR TASK TR.P86

Console manager

Local monitor manager

Device test manager

Allows device testing to be

interrupted

Sets up various screen displays

Dummy task used for debugging

Manages work element execution

Manages equipment element execution

Creates the tasks

View or modify various device

mailboxes

Processes status from

micromanipulator

Processes status from machine tool

controller

Processes status from programmable

stop

Processes status from turntable

Processes status from robot

Processes status from gripper

controller

Processes status from malfunction

sensor

Processes status from tray controller

FIGURE II.3. LISTING OF TASKS THAT COMPRISE THE
WORKSTATION CONTROLLER

9

SETUP_AREA

RECEIVE_TRAY

MACHINE_LOT

SHIP_TRAY

TAKEDOWN_AREA

FIGURE II.4. A LIST OF TYPICAL JOB ELEMENTS

//OPSHEET

0100 GET_BLANK

0201 LOAD_BLANK

0302 MACHINE1

0403 ROTATE_LD

0504 MACHINE2

0605 REMOVE

0706 UNLOAD_PT

//END OPSHEET

FIGURE II.5. A TYPICAL OPERATION SHEET
FOR THE WORKSTATION CONTROLLER

10

The TWS

obtains status feedback from the device level controller and the device level

controller receives status feedback from the devices.

The data used to drive the TWS controller is organized in a hierarchical
manner, much like the controller architecture. Job data is used by the job

level controller, task level work element data is used by the task level

controller, and device level work element data is used by the device level

controller. Job data contains information about the location of the task level

work element data, and task level work element data contains information about
the location of the device level work element data. Job data include
parameters such as part- ID, number of parts to be made, and keys needed to find

the process plan flat file that is associated with the job. The process plan
flat file contains information such as tools and fixtures needed to machine the

part, and the sequence of task level work elements that is to be executed to

produce the part. This sequence is decomposed by the TWS controller into a

task level work element sheet that is used by the task level controller. Each
task level work element points to a device level work element sheet, which is

executed by the device level controller. The sequence in which the task and
device level work elements' instructions are executed is determined by its

assigned step numbers and precedence steps. A work element cannot be executed
until its precedence step requirement is fulfilled. In this manner, multiple
work elements and equipment instructions can be carried out concurrently. Thus
the workstation controller can run the workstation by following the operation
sheet and executing equipment instructions step by step.

The workstation controller can operate in either stand-alone mode or integrated
mode. In the stand-alone mode the workstation controller accepts part order
information from a console terminal. It accesses data, such as process plans,
work elements, equipment instructions, tool table, or tray configuration, etc.

from the local data stored in the hard disk. Then it executes the process plan
to accomplish the goal. In the integrated mode the workstation controller
receives job commands from the cell controller through the AMRF network. It
then communicates with the database manager via the network service to retrieve
the proper process plan and data for the job. It can execute multiple jobs, or
multiple work elements, or multiple equipment instructions concurrently if
there is no interference between the different devices.

The workstation controller software is written in Programming Language for
Microcomputers (PLM)

,
a high-level structured language. The controller

software developed is modular and designed for the ease of expandability. This
allows the addition of other devices or low-level controllers to the
workstation.

4. HIGH-LEVEL MACHINE TOOL CONTROLLER

The high-level machine tool controller is one level below the workstation
controller in the Turning Workstation control hierarchy. It receives commands
from the workstation controller and decomposes the tasks assigned by the
workstation controller into several subtasks. By sending appropriate commands

11

The TWS

corresponding to these subtasks to low-level controllers, the high-level
machine tool controller coordinates the operations of the turning center and
its auxiliary equipment such as the tool-setting station, the temperature
measurement system, and the automatic collet changer. At the end of each task,

it sends status information to the workstation controller. In order to

accomplish the actual part-cutting operation, the high-level machine tool
controller accesses the AMRF database. When needed, it downloads necessary NC
part programs from the database to the computerized numerical control (CNC)

controller of the turning center, and activates the NC program to make a part
on the turning center. It also has the capability of uploading any NC program
from the CNC controller to the database.

Another function of the machine tool controller is the enhancement of the

turning center accuracy by real-time software error compensation for geometric
and thermally induced machine errors [9,10,11]. The errors are predicted as a

function of nominal machine axis position, direction of motion, and a machine
tool temperature profile based on previous calibration measurements. During
machining, these errors are converted to machine servo counts and injected into

the following error registers of the CNC controller. In the error compensation
mode, the high-level machine tool controller runs in synchronization with the

CNC controller. Thus position information is updated and error correction is

injected every servo control cycle of 20 milliseconds. With the error
compensation system implemented, the overall machine accuracy is improved by a

factor of 10 to 20.

The high-level machine tool controller is a Multibus single -board microcomputer
with a 128 KByte RAM memory. It has a 16-bit 8086 microprocessor as CPU, and a

8087A numeric coprocessor for floating point arithmetic operations. In order
to meet the high servo bandwidth requirement of performing error compensation
during contouring cuts, the single-board microcomputer is run at an 8-MHz clock
rate. The high-level machine tool controller uses two multibus serial
input/output (I/O) boards and three multibus parallel I/O boards for
interfacing to other devices. It communicates with the turning center CNC
controller through parallel ports for error compensation purposes and uses a

serial port for NC part program uploading and downloading. The communications
with the database and the workstation controller are done through the AMRF
network. However, the machine tool controller can operate in a stand-alone
mode by communicating with the workstation controller through an RS232C serial
interface. The communications between the machine tool controller and other
lower level controllers are done via serial interfaces.

The software for the high-level machine tool controller is written in PLM. The

software is written in a modular fashion for easy maintainability. In addition
to integrated and stand-alone operating modes, four different modes are coded

in the software for debugging purposes. These modes are: 1) communication
test mode between machine controller and the workstation controller only, 2)

communication test mode between machine controller, workstation controller,

database, and turning center CNC, 3) local (serial) communication test mode

between machine controller and the workstation controller, and 4) manual test

mode to check the operations of the auxiliary equipment. In the manual test

12

The TWS

mode, commands to the high-level machine tool controller are entered through a

CRT terminal. In all other modes, the machine tool controller functions as a

slave of the workstation controller.

5 . MICROMANIPULATOR

High precision machining is studied in the Turning Workstation. Hence, instead

of the conventional, less accurate chucking device, a collet is chosen as the

workpiece holding device. Due to a lack of clearance between the part and the

collet, a mere 125 micrometers (0.005 inch), a robot with high positioning
accuracy is required for collet loading operations. The positioning
repeatability of the TWS robot is approximately 0.5 millimeter (0.020 inch) in

steady- state conditions, and thermal drift during the warm-up period degrades
this even further. In order to bring the robot from cold start to normal
operating temperature, two to three hours of continuous exercise are required.
During this robot warm-up period, valuable machining time is wasted. To
eliminate the wasteful warm-up time and to make collet loading possible, a

micromanipulator was designed at NBS [12] to assist the robot in performing
collet loading, collet changing and tool changing operations.

The micromanipulator is a hydraulically driven, "intelligent", fine positioning
device mounted between the wrist of the robot and the grippers. A picture of
the micromanipulator and the robot grippers is shown in Figure II. 6. The
micromanipulator has five degrees of freedom, two rotational and three
translational. All axes in the micrpmanipulator are servo controlled with a

control cycle of 20 milliseconds to provide compliance. The micromanipulator
has only position sensors, but disturbance of the servo control on a rotational
axis provides an indirect touch sensation. In operation, the micromanipulator
performs search and insertion routines to place a part into the collet. The
search routine involves only translational movements, while the insertion •

routine needs all degrees of freedom in order to provide compliance for
insertion. With inductive proximity probes providing position feedback, the

positioning repeatability of the micromanipulator is better than 25 micrometers
(0.001 inch). A picture of the gripper holding a part blank prior to insertion
into the collet is shown in Figure II. 7.

The micromanipulator is 6.35 centimeters (2.5 inches) thick and 12.7
centimeters (5 inches) square and weighs only 11 kilograms (5 lb). The
micromanipulator controller is based on a single-board microcomputer, which has
an 8086 microprocessor as CPU and an 8087A as arithmetic coprocessor for
floating point calculations. It is interfaced to the workstation controller
through an RS232C serial link operating at 9600 baud.

6 . ROBOT GRIPPER

To efficiently handle multiple parts, cutting tools and collets, an
"intelligent" robot gripper system with multiple and changeable fingers is

needed. Because no existing commercial robot gripper met the functional

13

14

FIGURE

II.6.

THE

ROBOT

GRIPPERS

AND

THE

MICROMANIPULATOR

FIGURE II.7. GRIPPER HOLDING PART PRIOR
TO INSERTION INTO THE COLLET

15

The TWS

requirements, a gripper system was designed at NBS to provide the necessary
performance characteristics. This system has two grippers back-to-back with
changeable fingers, which are held and aligned to the grippers by dovetail
slots. Both grippers can be controlled independently and have the capability
of closing the fingers to a specified position, ranging from 150 millimeters
(5.9 inches) to within 2 millimeters (0.08 inch). In addition, each gripper is

designed to have maximum strength and minimum weight. It has a maximum
gripping force of 4,500 newtons (approx. 1000 lbf) and the entire end-effector
weights only 9 kilograms (20 lb) . The grippers are driven by air motors and
are controlled by a single chip 8751 microcomputer. The gripper controller
communicates to the host robot controller through an RS232C serial link
operating at 1200 baud.

7 . TURNTABLE

An "intelligent" local buffer storage unit is needed to store cutting tools,
gripper fingers, collets, and parts in order to provide fast and efficient
operation at the workstation. The turntable was designed at NBS to store up to

sixty-six different items. It is 91.4 centimeters (36 inches) in diameter and
has a capacity for 90.7 kilograms (200 lb) of tooling and fixtures. The sixty-
six different store positions are arranged in three concentric rings. Three
linear guides, one for each ring, are mounted beneath the table. Toolings and
fixtures are individually seated in the holders. The holders are placed at

each store position and are held straight up on the table by two guide pins.
When the turntable indexes to a commanded position, a linear guide is actuated
and extended through a hole on the table under the holder to push the holder
up. Then the robot picks up the item presented and the linear guide retracts.
These sequences of operations are coordinated by the workstation controller. A
view of the gripper fingers changing operation is presented in Figure II. 8.

The turntable is servo-controlled by a motor controller using pulse-width
modulation (PWM) . The turntable controller is based on a 8751 single chip
microcomputer which has 128 bytes of RAM and 4 Kbytes of ROM. It communicates
with the workstation controller via RS232C protocols at 1200 baud.

8. COLLET CHANGER

In order for the robot to change collets, a microcomputer-controlled collet
changing mechanism was developed and installed on the turning center. This is

the first known use of a robotic system to change and to load standard collets

on a turning center. The basic function of the changer is to loosen or to

tighten the collet at the spindle and properly engage and disengage the clutch

assembly so that the robot can change the collet. The controller designed for

this device is highly sensor interactive. The changer is driven by a dc

servomotor using PWM. The motor current is monitored by the controller to

sense the right amount of torque applied on the drawbar in order to seat the

collet in the spindle properly. The position of the drawbar, sensed by an

inductive proximity sensor, is used as feedback for the servo controller to

align the drawbar to the spindle. A photograph of the robot changing the

16

FIGURE II.8. GRIPPER FINGERS CHANGING
OPERATION

17

The TWS

collet is shown in Figure II. 9. The collet changer controller, a single chip
8751 microcomputer -based system with 4 Kbytes of read only memory (ROM), is

interfaced to the high-level machine tool controller via RS232C link operating
at 1200 baud.

9 . PROGRAMMABLE STOP

In order to use standard collets in the turning center, a part stop must be
provided inside the collet. Designed at NBS

,
the programmable stop is a motor-

driven leadscrew mechanism inside the spindle of the turning center. It is an
accurate positioning device that can provide a variable reference length stop
for the part in the collet. Driven by a servomotor and with a 11-bit absolute
encoder as position feedback, the programmable stop produces a positioning
repeatability of better than 2.5 micrometers (100 microinches) over a 17-

centimeter (7 -inch) travel. The stop mechanism and the controller were
designed, built, and adapted to the lathe with a minimum of mechanical
modification to the lathe. The 8751 microcomputer-based controller, which is

similar to the turntable controller in design, communicates with the
workstation controller through an RS232C interface at 1200 baud.

10. MALFUNCTION DETECTOR

One of the objectives of the TWS research is to study control and sensor
interaction and problems associated with sustained workstation operation such
as a 24-hour continuous operation. In order to do this, some kinds of sensors
are required to detect abnormal operating conditions in the turning center. A
malfunction detector, which monitors machining vibration, was developed at NBS
for this purpose. The malfunction detector uses two accelerometers mounted on
the two lathe tool turrets to measure vibration induced by machining. The
accelerometer signals are summed and then root mean square (RMS)- detected with
a 20-millisecond time constant. This conditioned signal is compared in real-
time with previous calibration data. If the signal is smaller or greater than
the stored data, the malfunction detector sends an appropriate warning signal
and data to the workstation controller. The workstation controller analyzes
the data and takes appropriate actions, such as to direct the robot to pick up

a new blank if a part is dropped from the collet, or to halt the workstation
operation if a tool is broken. Based on the signature of the vibration signal,

the malfunction detector can detect the absence of a part to be machined,
excessively dull tools, broken tools, an improper sequence of operations, and
excessive time for any operation or between operations. The malfunction
detector communicates with the workstation controller through an RS232C link at

9600 baud. With the malfunction detector, the TWS was able to perform a

continuous untended operation for 25 hours producing more than 150 standard
reference material (SRM) containers. In other untended test runs, more than

1,000 pieces of SRM containers were made in the TWS over a two-week period.

During this period, several tool breakages due to machine tool failure were

detected by the malfunction detector.

18

FIGURE IX.9. COLLET CHANGING
OPERATION BY ROBOT

19

The TWS

11. NETWORK COMMUNICATIONS

The AMRF networking service provides communication connections between the
different levels of controllers. It transfers control and data information on
separate network paths via common memory mailboxes. Command and status
information flow down and up the hierarchical control structure between
supervisors and subordinates through mailboxes, while manufacturing data can be
accessed in the database through other sets of mailboxes. There is no
communication between controllers of the same control level. For instance,
control command from one workstation controller to another workstation
controller is prohibited. The AMRF network is a broadband token bus, using
interfaces, gateways, and high-level protocols compatible with the General
Motors Manufacturing Automation Protocols (MAP) and Technical Office Protocols
(TOPS) .

12. SUMMARY

An Automated Turning Workstation with the capabilities to perform robotic
collet loading, collet changing, tool changing, and tool setting for untended
high precision machining operations was developed in the AMRF at the NBS . The
workstation can operate in either an integrated mode or a stand-alone mode. In

the integrated mode, the workstation controller can communicate with the higher
level cell controller and access manufacturing data such as process plans, NC
program files, robot program files, etc., from the database through an
integrated network. In stand-alone mode, the workstation controller can
operate untended by following the process plans and accessing the manufacturing
data in the local database. As configured, this workstation has achieved many
hours of untended operation in making parts.

20

The TWS

III . THE TURNING WORKSTATION CONTROLLER

The Turning Workstation Controller (TWSC) is a software application based on a

Multibus computer. Its main function is to orchestrate the individual device
executions within the workstation for the purpose of manufacturing parts.
Another function of the controller is to act as a subordinate to the factory
planning controller. This allows the Turning Workstation to be an integral
part of the automated factory.

In order for the workstation controller to achieve its purpose, it must perform
a variety of functions. One of them is information exchange. For instance, in

order for the workstation controller to coordinate the devices within the

workstation, manufacturing process information must be retrieved by the

workstation controller (from either a remote factory database or a local
workstation database) in order for it to control the sequence of operations
within the workstation. Another function is device control, which involves
communication with the devices and device status processing. A third function
of the workstation controller is to provide a user interface so that an
operator can control the workstation and determine the state of the operation.
The user interface includes status displays, as well as diagnostic functions
such as the individual testing of the devices in the workstation.

The workstation controller was developed on the Intel System 310/286 computer,
which uses the 80286 16 -bit microprocessor as CPU. The computer has 1 Mbyte of
RAM, a floppy disk drive, a 40 Mbyte hard disk drive, and ten RS232C serial
ports. The station controller software, written in the PLM 86 programming
language, is an application using iRMX 86; a real-time, multitasking,
interrupt -driven operating system. The operating system allows the station
controller to process commands and status feedbacks from a number of other
controllers asynchronously and in real-time: that is, as events occur. It
also allows the station controller to keep track of a number of processes
concurrently. The station controller can operate in either integrated or
stand-alone mode. In integrated mode, it operates as a subordinate to the AMRF
cell controller and accesses manufacturing data from the AMRF database. In
stand-alone mode, it receives commands from an operator via a local terminal
and accesses manufacturing data which reside in a local database.

1. DESIGN PHILOSOPHY

The design philosophy behind TWSC can be divided into three areas: flexible and
generic manufacturing process, integrability

,
and real-time control.

1 . 1 Flexible and Generic High-Level Manufacturing Process

A major goal in the development .of the workstation controller is to design
completely flexible software that facilitates the manufacture of a variety of

21

The TWS

parts within the geometrical limits of the turning machine. Each individual
part has a unique process associated with it due to its unique geometry.
Therefore, the controller should be able to download various processes on-line.
In other words

,
manufacturing different parts which requires different

processes should not involve software changes in the workstation controller: a

data change would be needed instead.

Another objective is to provide a high-level, generic format for the
manufacturing process data so that the user can easily create these data
sheets. A manufacturing process is the sequence of steps taken by the devices
of the workstation in order to manufacture a part. The process is broken up
into interchangeable generic tasks or "work elements" (such as GET_BLANK,
LOAD_BLANK, etc.) with specific parameters that are geometry dependent. These
high level work elements are then decomposed by the controller into device
level commands which are then sent to the devices.

1 . 2 Integration

Another objective in the design of the controller is to enable the workstation
to operate as a subordinate to higher level controllers as well as a stand-
alone station which receives commands from an operator. This is necessary in
order for the workstation to perform as an integral part of an automated
factory. In order to achieve this, the workstation controller must be able to

access global information needed for manufacture as well.

1 . 3 Real-Time Multitasking Control

In order for a workstation controller to be effective, it must be able to

execute manufacturing commands and process status information from both lower
level device controllers and a higher level controller in real-time: that is,

process commands and react to status input from other controllers as events
occur. The approach taken in the development of the workstation controller is

to use a multitasking interrupt -driven operating system. In this way,

individual tasks can be assigned to monitor other controllers and command and
status processing can be done on an interrupt basis. The operating system also
allows the processing of data from the cell or the database, and diagnostic
testing by the operator concurrently with the execution of the manufacturing
process

.

2. CONTROLLER HARDWARE DESCRIPTION

The computer on which the workstation controller is developed is the INTEL
SYSTEM 310. The Central Processing Unit (CPU) for the computer is the INTEL
80286 16 -bit microprocessor. The SYSTEM 310 has 1 megabyte of Random Access
Memory (RAM)

,
as well as a 40 megabyte Quantum Winchester hard disk, a 5 1/4

inch 315 Kbyte floppy drive, and a network common memory board. The Winchester

hard disk is used for the local database, and communication with the AMRF cell

controller and the AMRF database is achieved through the network common memory

board. For serial input/output (I/O), the SYSTEM 310 is configured with a iSBC

22

The TWS

8274 mother board with two RS232C serial ports, and an iSBC 188/48 serial
communication board with eight RS232C ports. The two serial ports of the iSBC

8274 board are connected to a workstation controller monitor (operator's

console) and a system console. The serial ports on the iSBC 188/48 are

connected to device controllers within the workstation and operate at various
baud rates.

3. CONTROLLER DESIGN

The workstation controller is a software application developed on the iRMX86
Operating System. The controller is composed of a collection of tasks
(programs that perform specific functions) whose order of execution is

determined by a process plan with predefined priorities and precedences. The
tasks are arranged in a hierarchical fashion to facilitate manufacturing
operation using predefined process plans. Process plans and other data can be

accessed locally from the Winchester hard disk, as well as the AMRF database.
Remote communication, such as communication with the cell controller or the

AMRF database, is done through the use of network common memory boards. Local
communication to devices within the workstation is achieved through serial
links. Figure III.l illustrates the control hierarchy of the workstation.

3 . 1 Manufacturing Process Data

Manufacturing process data is used by the workstation controller to determine
the sequence and content of operation for the devices within the workstation in
order to make parts. The data used by the station controller is hierarchical
in character. The process is decomposed into three levels: job level work
elements, task level work elements, and device or equipment level work
elements. The job work element is the highest level and the most generic:
MACHINE_LOT and SETUP_AREA are typical job level work elements. A job is

decomposed into a sequence of lower level, less generic tasks. For instance,
in order to machine a part, the workstation must get the blank, load the blank
into the lathe, machine it, and unload it. These tasks are the task level work
elements: GET_BLANK, LOAD_BLANK are examples. Finally, each task is further
decomposed by the station controller into a sequence of device work elements.
A task may require a sequence of device commands. For instance, in order to

get a blank (execute the GET_BLANK work element)
, a command must be sent to the

robot controller to move to a buffer storage area, and upon arrival, the

gripper must grip the part, etc. These device commands are the device level
work elements.

The sequence of work elements is stored in work element sheets. For instance,
a sequence of task level work elements is stored in a task level work element
sheet, and a sequence of device level work elements is stored in a device level
work element sheet. The work element sheets contain the actual steps to be
executed, as well as sequence and precedence information to enable the

workstation to do the right thing in the right moment.

23

AMRF

Cell

Controller

24

FIGURE

III.l.

TURNING

WORKSTATION

CONTROL

HIERARCHY

The TWS

3 . 2 Controller Architecture

The station controller architecture is hierarchical (See Figure III. 2). The

manufacturing process control can be divided into three levels: task
manager/job level , task level, and device level. The job level of the

controller monitors the execution of jobs. Task execution is controlled and
monitored at the task level while device operations are controlled at the

device level. Below the device level are device monitors which communicate
with device controllers and provide status feedback to be processed at the

device level. The device level provides status feedback (the state of

execution of a device) to the task level controller. Similarly, the task level

provides the state of execution of a task level work element for the job level
controller to process.

In addition to process control, various diagnostics tasks such as individual
device tests or manufacturing process monitor display are controlled by the

task manager.

The memory environment for the station controller is as follows:

Network common memory is used for communication and data transfer
between the station controller and the cell controller and the AMRF
database. Communication with the cell and the database is achieved by
using fixed -memory locations, or "mailboxes".

- iRMX 86 Operating System provides system calls which enable
applications to allocate memory dynamically. This allows the station
controller to allocate temporary memory segments for storing data that
are needed temporarily. The operating system also provides inter- task
communication and data transfer through system mailboxes.

- Local common memory mailboxes (fixed locations) are also used for
inter- level data transfer.

3.2.1 Multitasking/Task Synchronization

A brief description of the features of the iRMX86 Operating System used to

develop the workstation controller will be helpful in describing how it works.
One feature that is used extensively is multitasking. An operating system task
(not to be confused with a manufacturing task) is a "program" which performs a

specific function. What makes these tasks different from ordinary programs is

that they can be invoked by external events in an asynchronous fashion. In
fact, these tasks are similar to interrupt handlers except at a higher level.
Task level controller and device level controller are examples of operating
system tasks. The station controller is basically a collection of these tasks
synchronized in a manner that enables it to perform properly. The following
are some task characteristics which are defined by the iRMX Operating System:

25

DEVICE MONITORS

FIGURE III.2. TURNING WORKSTATION
CONTROLLER ARCHITECTURE

The TWS

a) A task has five states (as illustrated in Figure III. 3):

i) Running: the task is executing,
ii) Ready: the task is ready to execute,

iii) Asleep: the task is asleep and enters the ready state upon
waking.

iv) Suspended: the task must be resumed by another task before
it can enter the asleep or running state,

v) Asleep-suspended: the task is asleep as well as suspended.

b) Each task has an assigned priority: a higher priority task may
preempt a lower priority task, causing the task to exit the running
state while it enters the running state.

c) Tasks can communicate with one another by using operating system
mailboxes and semaphores. In addition to communication, mailboxes and
semaphores are also used for task synchronization. A task is asleep
while waiting for information at a mailbox or a semaphore. When the

task receives the data that it's waiting for it starts to execute.
Therefore the task execution can be synchronized by sending data at

proper times.

d) A task may wake up and become ready to run in a variety of ways:

i) Upon receipt of data from mailboxes or semaphores,
ii) Upon expiration of time from a self- induced sleep through

system call.

e) A task enters the running state when it is the highest priority task
in the ready state.

3.2.2 TWS Controller Implementation

The portion of the station's controller which controls the manufacturing
process is composed of several tasks arranged in a hierarchy. They are the

task manager/job level controller, the task level controller, the device level
controller, and the device status modules. The task manager/job level
controller is at the top of the hierarchy, the task level controller resides in
the second level, the device level controller resides in the third level, and
the device monitoring tasks reside in the fourth level.

3.2.2.

1

Task manager/job level controller

The task manager/job level controller resides in the highest level of
workstation controller hierarchy. It performs several functions.

a) Task management - the task manager activates and synchronizes the

execution of the tasks.

27

Non-existent

I

Non-existent

FIGURE III.3. TASK STATE TRANSITION DIAGRAM

28

The TWS

b) Manufacturing task decomposition - the task manager decomposes the

manufacturing process plan into task level and device level work element
sheets and stores them in the local database.

c) User interface - the task manager allows the operator to interact
with the workstation controller by activating various user interface
routines

.

The above functions are performed when the workstation controller is running in

either integrated or stand-alone mode (In integrated mode, the workstation
functions as a lower level controller to the cell controller. In stand-alone
mode, the workstation responds to a local operator command). The task manager
also performs the following functions when the workstation is operating in

remote mode:

a) Remote command/status interface - the task manager initiates tasks
that read command mailgrams from the cell controller via mailboxes and
interpret the commands. The task manager also initiates tasks that
update the cell controller on the status of manufacturing process
execution at appropriate times.

b) Remote data retrieval/update - the task manager initiates tasks that
retrieve process plans and other data from the AMRF database. It also
initiate's tasks that update the AMRF database on the location of
resources within the workstation.

3. 2. 2.

2

Task level controller

The task level controller resides in the second level of workstation controller
hierarchy. Its main function is to execute the task level work elements
(GET_BLANK, LOAD_BLANK, etc.) The following is a summary of functions
performed:

a) Task level work element execution - the task level controller scans
the task level work element sheet to execute the task level work element
in the proper sequence

.

b) Activation of the device element level controller - since each work
element is broken down into a series of device commands (a device level
work element sheet)

,
the device level controller must be activated at

appropriate times by the task level controller.

c) Provide update for the task manager - the task level controller
updates the task manager on the state of execution of task level work
elements. It also updates the cell controller with similar information.

3. 2. 2.

3

Device level controller

The device level controller resides in the third level of workstation
controller hierarchy. Its main function is to control the relative sequence in

29

The TWS

which to send device commands (device elements) out to the device controllers.
The following is a summary of functions performed:

a) Control of execution of device elements - by using the device level
work element sheets, the device level controller determines the relative
sequence in which device commands should be executed and sends out the
commands to the device controllers through serial links.

b) Device status processing - the device level controller interprets
status feedback from device controllers and determines whether or not
the next device command should be sent. The device level controller
obtains the status feedback from the devices through device monitoring
tasks

.

c) Provision of status update for the task level controller - the device
level controller updates the task level controller on the state of
execution of task level work elements.

3. 2. 2.

4

Device monitoring tasks

The device monitoring tasks reside at the lowest level of the workstation
controller hierarchy. Their main function is to communicate with device
controllers through the serial links. Each device monitoring task monitors one
device. The following is a summary of functions performed:

a) Communication with device controllers in real-time - each device
monitoring task waits at a serial port for data from a device
controller. When data is received, a device monitoring task interrupts
other executing tasks and handles the data received.

b) Status provision for device level controller - each device
monitoring task updates the device level controller on the state of

execution of the device it is monitoring. Updates are achieved by
interrupting the execution of the device level controller and inserting
the device status into the status field of the proper device element on
the device element sheet.

3. 2. 2.

5

Other tasks

Aside from the main hierarchy of the workstation controller, there are several
other tasks that perform functions needed for the workstation to operate. The

following is a brief description:

a) Cell communication task - this task handles the protocol involved in

communicating with the AMRF cell controller. It also receives command
mailgrams from the cell controller and interprets the command. It is

used to send status to the cell as well.

30

The TWS

b) Database communication task - this task handles the protocol involved
in communicating with the AMRF database. It is used to exchange data
with the AMRF database.

c) Device test task - this task allows a local operator to test the

devices within the workstation individually.

d) Local operation display - this task displays the command and status
transfer between the workstation controller and the devices within the

workstation. It also displays the job and work elements that the

workstation is executing.

e) Local mailbox display task - this task displays the current data
being transferred between the devices and the workstation controller.

f) Remote mailbox display task - this task displays the mailgrams
exchanged between the workstation controller and the cell controller, as

well as the information exchanged between the workstation controller and
the AMRF database.

A list of all the tasks is shown in Figure III. 4.

3 . 3 Common Memory

Communication with the cell controller and the AMRF database is achieved via a

common memory board that allows remote controllers to grab the system bus and
read and write from/to predetermined memory locations. These fixed, predefined
locations are termed as "mailboxes". Information exchange is synchronized
through read and write locks

,
and the actual exchange is achieved by reading

and writing from/to the mailboxes.

3 .*4 Database

Two databases are available to the workstation controller: the AMRF database
and the local database. The AMRF database is used when the workstation is

operating in remote mode, and the local database is used when the workstation
is operating in the stand-alone mode. Information exchange with the AMRF
database is achieved through the common memory mailboxes. Locally, information
exchange with the local database is achieved through operating system calls,
since the local database is simply a 40 megabyte Winchester hard disk.
Information such as process plan flat files, task level work element sheets,
and device level work element sheets are stored in files in the hard disk.

31

TASK MODULE FUNCTION

CM_TASK CO_MGR.P86 Task manager /job level controller

L1_TASK TASK1.P86 Task level work element controller

L2_TASK TASK2.P86 Device level work element controller

CELL_TASK CELL_MOD.P86 Communication with the AMRF Cell

DB_TASK DB_MOD.P86 Communication with the AMRF Database

AMPLE_TASK AMPLE_MOD.P86 Communication with the AMPLE system

DVT_TASK DVT_MOD.P86 Device test manager

DVT_STA DVT_STA.P86 Allows device testing to be interrupted

STA_CHG_TASK STACHG.P86 View or modify various device mailboxes

DSP_TASK SET_DISP.P86 Sets up various screen displays

LOC_SC_TASK LOC_MON.P86 Local operation monitor manager

DEVICE MONITORING TASKS:

MM_TASK MM.P86 Processes status from the Micromanipulator

MC„TASK MC.P86 Processes status from the Machine Tool Controller

PS_TASK PS.P86 Processes status from the Programmable Stop

TTTASK TT.P86 Processes status from the Turntable

RT_TASK RT.P86 Processes status from the Robot

GR_TASK GR.P86 Processes status from the Gripper Controller

MS_TASK MS.P86 Processes status from the Malfunction Sensor

TRJTASK TR.P86 Processes status from the Tray Controller

FIGURE III.4. LISTING OF TASKS THAT COMPRISE THE TURNING

WORKSTATION CONTROLLER

32

The TWS

4. PROCESS PLAN DECOMPOSITION

In order to produce a part, the device operations within the workstation must
be coordinated by the workstation controller. A rather inflexible way of

achieving this synchronization is to hard code the workstation controller to

execute a specific sequence of operations. This method would require extensive
software modification if the workstation is to machine different parts
requiring different sequences of device operation. The method used in the

workstation controller of the Turning Center is to download a set of
manufacturing process data from either the AMRF database or the local database
for each part that is to be machined. Using this method, producing different
types of parts simply requires a data change. This manufacturing information
is stored in "process plan flat files". Prior to the actual production of a

part, the workstation retrieves the appropriate process plan flat file and
decomposes it into task level and device level work element sheets. After this

is done, production can begin. Task decomposition is shown in Figure III. 5.

4 . 1 Process Plan Flat File

Process plan flat files are data used to coordinate the activities within the
workstation in order to produce parts. Each part to be made has a process plan
flat file associated with it. When the workstation is operating in stand-alone
mode, the flat files are retrieved from the local database. When the
workstation is in the integrated mode, the flat files are retrieved from the
AMRF database. An example of a process plan flat file is shown in Figure
III. 6.

The process plan flat file is composed of four sections: the header section,
the parameters section, the requirements section, and the procedure section.
The parameter section is not used by the Turning Workstation.

4.1.1 The Header Section

The header section contains elements that identify the process plan. These
elements are the Plan Identifier, the Plan Version, the Plan Type, and the Plan
Name

.

4.1.2 The Resource Section

The resource section of the flat file contains information pertaining to the
resources needed by the workstation in order to produce the part in question.
These resources include tools, fixtures, fingers, and part blanks.

4.1.3 The Procedure Section

The procedure section of the flat file contains the task level steps that must
be taken by the workstation in order to produce the part. This section is

composed of a sequence of task level work elements and various parameters.
Each task level work element has a set of parameters from which the actual
commands of the device level work elements associated with the task level work

33

1. The Job Element

is decomposed
into the Process Plan.

2. The Process Plan

is decomposed
into the Work Element

Sheet.

3. Each Work Element is

decomposed into a

Device Element Sheet.

WORK ELEMENT
SHEET

Work Element 1

Work Element 2

Work Element n

FIGURE III.5. TASK DECOMPOSITION DIAGRAM

DEVICE ELEMENT
SHEET

Device Element 1

Device Element 2

Device Element 3

Device Element n

JOB ELEMENT

PROCESS PLAN

Resource Section

Procedure Section

Work Element 1

Parameter 1

Parameter 2

Work Element 2

Work Element n

34

- PROCESS PLAN -

- HEADER_SECTION -

PLANJD
PLAN_VERSION
PLAN_TYPE
PLAN NAME

= PP_TWS_5;
= i;

= OPERATION_SHEET;
= "BRGSLV";

- END HEADER SECTION -

-PARAMETER SECTION

-

$$FINGER_ID001

$$FINGER_ID002

$$FINGER_ID003
$$FINGER_ID004

$$COLLET_ID001

$$COLLETJD002

: COLJHNGER;
: COL_FINGER;

: PART_FINGER;
: PARTJRNGER;
: COLLET;

: COLLET;

- END PARAMETER SECTION -

- REQUIREMENTS_SECTION -

«1» COL_FINGER
(FINGERJD => $$FINGER_ID001);

«2» COL_FINGER
(FINGERJD => $$FINGERJD002);

«3» PART_FINGER
(FINGERJD => $$FINGERJD003);

FIGURE III.6. PROCESS PLAN FLAT FILE EXAMPLE

35

«4» PART_FINGER
(FINGERJD

«5» COLLET

(FINGERJD

«6» COLLET
(FINGERJD

=> $$FINGERJD004);

=> $$COLLETJD001);

=> $$COLLETJ D00 1)

;

- END REQUIREMENTS SECTION -

- PROCEDURE_SECTION -

«1» SFE1__SFE2

(PREC_STEPS =>());

«2» SFE2_SFE3
(PREC_STEPS =>(1));

«3»

«4»

«5»

GET_BLANK
(RT_PROGRAM => /RT101.2/,

RT_PROGRAM =>/RT103,4/,

TRAY_COMPARTMENT => 1

,

PREC_STEPS ->(2));

SFE3_SFE2
(PREC__STEPS => 0));

SFE2_SFE1
(PREC_STEPS => (4));

FIGURE III.6. PROCESS PLAN FLAT FILE EXAMPLE(CONT'D.)

36

«6» LOAD_BLANK
(RT_PROGRAM
PS_PROGRAM
PREC_STEPS

=> /RT 1 1 0,3/,

=> /glxxx.l/,

-> (5));

«7» MACHINE
(PART„PROGRAM
PUSH_PROGRAM
MS_CMD
PS_PROGRAM
PREC_STEPS

=> /BRGSLV1 ,6/,

=> /PBRGSLV1 ,2J,

=> s,

-> /gl175,7/,

=> (6));

«8» SFE1_SFE2
(PREC_STEPS => (6));

«9» GETJ3LANK
(RT_PROGRAM
Rt„program
TRAY_COM PARTMENT
PREC_STEPS

-> /RT 1 01 ,2/,

=>/RT1 04,4/,

-> 2,

=>(8));

«10» SFE3_SFE2
(PREC_STEPS => (9));

«11» SFE2__SFE1

(PREC_STEPS -> (10));

«12» REM_FIN_PT
(RT__PROGRAM

PREC_STEPS
-> /RT400.2/,

=> (ii7));

FIGURE III.6. PROCESS PLAN FLAT FILE EXAMPLE(CONT'D.)

37

«13» MACHINE
(PART_PROGRAM
PUSH_PROGRAM
MS_CMD
PS_PROGRAM
PREC_STEPS

=> /BRGSLV1 ,6/,

=> /PBRGSLV1 ,2/,

=> s,

=> /gll 75,7/,

=> (12));

«14» SFE1_SFE2
(PREC_STEPS =>(12));

«15» SFE2_SFE3
(PREC_STEPS =>(13));

«16» DRP_OFF_PT
(RT_PROGRAM
RT_PROGRAM
PREC_STEPS

=> /RT201 ,2/,

=> /RT103.4/,

-> (15));

«17» SFE3_SFE2
(PREC_STEPS => (16));

«18» SFE2_SFE1

(PREC_STEPS => (17));

«19» REM_F1N_PT
(RT_PROGRAM
PREC_STEPS

=> /RT400,2/,

=>(18,13));

«20» SFE1_SFE2
(PREC_STEPS =>(12));

FIGURE III. 6. PROCESS PLAN FLAT FILE EXAMPLE(CONT’D.)

38

=>(13));

«21» SFE2_SFE3
(PREC_STEPS

«22» DRP_OFF_PT
(RT_PROGRAM
RT_PROGRAM
PREC STEPS

-> /RT202,2/,

-> /RT104.4/,

-> (
15));

- END_PROCEDURE_SECTION -

-END PROCESS PLAN

-

FIGURE III.6. PROCESS PLAN FLAT FILE EXAMPLE(CONT'D.)

The TWS

element can be derived, thus allowing the task level work elements to be
generic. In actual operation, the content of the procedure section is further
translated into a format that is computer legible: the procedure section is

decomposed into the task level and device level work element sheets.

4 . 2 Task Level Work Element Sheet

The task level work element sheet is decomposed from the procedure section of
the process plan flat file. It contains a series of task level elements. Each
task element contains information needed by the workstation controller in order
to execute the manufacturing process.

4.2.1 Format for The Task Elements

Each task element has the following fields:

a) Step number: indicates the relative sequence of execution of the task
element

b) Precedence numbers: step number of task elements that must by
completed prior to the task element's execution

c) Task element name: GET_BLANK, LOAD_BLANK are examples. These names
are used to load the proper device element sheets.

d) Status field: execution status of the work element

Format for the task elements and an example task element sheet are shown in

Figure III. 7 and Figure III. 8, respectively.

4.2.2 Execution of The Task Elements
«

The task elements are executed by the task level controller of the workstation
controller. The task level controller looks at each element of the task
element sheet to see if it is ready to begin execution. A task element can
begin execution only if all of its precedent steps have completed their
execution. The state of a task element's execution is indicated at the status
field of the task element. The status can take on three values: NULL, which
indicates that the task element has not been executed yet, BUSY, which
indicates - that the task element is currently executing, and DONE, which
indicates that the task element has completed its operation. The status is

provided by the device level controller. With these parameters, the task level

controller can determine which task elements can begin execution and which ones

cannot. This process is shown on Figure III. 9.

4 . 3 Device Level Work Element Sheets

The device level element sheets contain a series of device elements. Each

device element contains information needed for the device level controller of

the workstation controller to execute device operations.

40

precedence step numbers parameter field

(reserved for future use)

08 06 07 GET_BLANK d

T
step number

J
status ('d' = done)

task level work element name

Format:

step number (2 ASCII digits: 2 bytes)

precedence step numbers (8 ASCII digits: 4 numbers, 8 bytes)

work element name (ASCII string up to 13 characters)

parameter field (13 bytes: reserved for future use)

status field(4 bytes: ASCII characters)

FIGURE III.7. TASK LEVEL WORK ELEMENT FORMAT

0100 GETJ3LANK
0201 LOAD^BLANK
0302 MACHINE
0402 GETJ3LANK
050304 REMOVEJ.OAD
0605 MACHINE
0705 UNLOADERART
080607 REMOVE
0908 UNLOADJ’ART

FIGURE III.8. AN EXAMPLE OF A TASK LEVEL
WORK ELEMENT SHEET

41

0100 GET_BLANK done
0201 LOAD_BLANK done

0302 MACHINE busy

0402 GET_BLANK done

050304 REMOVE LOAD null

0605 MACHINE null

0705 UNLOAD PART null

080607 REMOVE null

0908 UNLOAD_PART null

The task level controller scans the above task level work element sheet to

see which task elements can be executed. Suppose the task level controller

is examining the 5th task element (REMOVE__LOAD) to see whether or not

it should be executed. The task element’s precedent steps, step3 (MACHINE)
and step 4 (GET_BLANK) are examined. GET_BLANK has been completed,

but MACHINE has not. Therefore REMOVE_LOAD cannot begin execution yet.

FIGURE III.9. EXECUTION OF TASK LEVEL
WORK ELEMENTS

42

The TWS

4.3.1 Format/Fields for Each Equipment Element

Each device element has the following fields:

a) Step number: indicates the relative sequence of execution of the

device element

b) Precedence numbers: step numbers of device elements that must be

completed prior to the device element's execution

c) Device name: indicates which device is to receive the command. Each

name has two characters. "RT" for robot and "GR" for gripper are

examples.

d) Command: actual command sent to the device. The command is usually a

string of characters.

e) Status: execution status of the device command

The format for the device level work sheet and an example device element sheet
are illustrated in Figure III. 10 and Figure III. 11, respectively.

4.3.2 Execution of the Device Elements

The device elements are executed by the device level controller of the
workstation controller. The manner of execution is similar to that of the task
elements. The device level controller looks at each element of the device
element sheet to determine if it is ready to commence execution. A device
element can begin execution only if all of its preceding steps have completed
their execution. The state of a device element's execution is indicated at the
status field of the device element. The status can take on three different
values: NULL, which indicates that the device element has not begun execution
yet, BUSY, which indicates that the device element is currently executing, and
DONE, which indicates that the device element has completed its operation. The
status for each device is provided by the device monitoring tasks. With these
parameters, the device level controller can determine which device elements can
begin execution and which ones cannot. Device element execution is illustrated
in Figure III. 12.

The workstation is capable of executing up to five task level work elements at
the same time. This means that the device level controller must be able to

execute device elements from up to five device element sheets at the same time.
What actually occurs is that the device level controller scans through each of
the device element sheets and stores the commands to be sent to the devices in
a command buffer. From there the commands are sent to the devices after all
the device element sheets have been scanned.

When a task level work element is to execute, the corresponding device level
work element sheet is loaded from the local database into random access memory.

43

Precedence numbers

n t

device command

08 06 07 RT 100 d

istep numberi device name
(RT=Robot)

J
status

('d' = done)

Format:

step number (2 ASCII digits: 2 bytes)

precedence numbers (8 ASCII digits: 4 numbers, 8 bytes)

device name (2 ASCII characters)

device command (lObytes: ASCII string)

status field(4 bytes: ASCII characters)

Device names:

MM = Micromanipulator ' MC = Machine Tool Controller

PS = Programmable Stop TT = Turntable Controller

RT = Robot Controller GR = Gripper Controller

MS = Malfunction Sensor TR = Tray Controller

FIGURE III.10. DEVICE LEVEL WORK ELEMENT FORMAT

0100 RT100

0201 MMj

0302 GRc2
0402 MMh
050304 RT 1 02

FIGURE III.IL AN EXAMPLE OF A DEVICE LEVEL
WORK ELEMENT SHEET

44

0100 RT001 done

0201 MMj busy

0302 GRcl null

0403 RT002 null

The device level controller scans the above device level work element

sheet to determine which device elements can be executed. The algorithm

to do this is completely analogous to that of the task level controller.

Suppose the device level controller is examining the 3rd device element

(close gripper 1) to see if the command can be sent to the gripper. Its

precedent step (step 2 - slide the micromanipulator) has not finished yet

(note the busy status). Therefore step 3 cannot be executed at this time.

FIGURE III.12. EXECUTION OF DEVICE LEVEL
WORK ELEMENTS

45

The TWS

The execution of the task element then is simply the execution of the device
level work element sheet. The task level work element name is actually used as

the filename of the corresponding device level work element sheet.

4 . 4 Decomposition of Process Plan Flat Files Into Task Level And
Device Level Work Element Sheets

Each step, or task level work element, of the procedure section contains a set
of parameters. These parameters are used to determine the precedence of the
task element, as well as the exact device commands that are associated with the

task element. The use of parameters allows the task level work elements to be
more generic. The following example illustrates this: suppose the workstation
is to execute a GET_BLANK task level work element. The robot is to pick up a

part blank at the buffer tray, but the blanks are stored in different
compartments of the tray. This means that on different occasions, different
robot programs need to be executed in order to pick up blanks at different tray
compartments. Instead of using different GET_BLANK tasks, parameters that
specify which tray compartment the robot is to go to are used. This way the

same task element can be executed, even though the actual robot commands are
different

.

A general device level work element sheet is associated with each task level
work element. Steps within the device level work sheet are changed in

accordance with the parameters associated with the task level work element. A
parameter is composed of a parameter name and the actual parameter. Parameters
that affect the device elements are composed of the actual device command and
the step number of the device element. The step number allows the workstation
controller to easily insert the proper device command into the proper location
of the device element sheet. This is illustrated in Figure III. 13.

5. REMOTE COMMUNICATION

The Turning Workstation communicates with the rest of the AMRF in a variety of

ways. Communication with the AMRF cell controller and database is achieved
through the AMRF Network and the common memory board installed within the TWSC.

Communication with the Automated Manufacturing Programming Language Environment
(AMPLE) system is achieved through an RS232 serial interface and the AMRF
Network (see section 5.3).

5 .

1

Cell to Turning Workstation Communication

When TWS is operating in integrated mode, it receives manufacturing commands
from the AMRF cell controller instead of a local operator. Communication is

achieved through the common memory and the AMRF network. Command mailgrams are

sent by the cell and status mailgrams are returned to the cell by TWSC.

46

«3» GET_BLANK

(
RT_PROGRAM
RT_PROGRAM
TRAY_COMPARTMENT
PREC STEPS

=> /RT101.2/, -
=> /RT 1 03,4/,

=> 1
,

=> (2));

Device Level Work
Element Sheet

0100

0201

MMj
RT101

0302 GRc2
0403 RT103

Device command RT101

is inserted into step 2 of the

device level work element

sheet that is associated with

the GET_BLANK task

level work element.

Device command RT103
is inserted into step 4 of

the device level work

element sheet

Figure III.13. PROCEDURE SECTION PARAMETERS

47

The TWS

5.1.1 Cell to TWS Communication Protocol

Communication between the AMRF cell controller and the Turning Workstation is

achieved through the use of mailboxes in common network memory. A mailbox is

dedicated to the command mailgrams sent by the cell, and another mailbox is

used to transfer status mailgrams to the cell. Software read and write locks
and sequence variables are used to synchronize and identify the data that is

transferred. The following is a more specific description:

READ LOCK: A 2 -byte variable used to determine whether or not data can
be read from the mailbox. If it is set, then neither the cell nor the
Turning Workstation can read the data. If it is not set, then data
reads can commence. Typically, it is set by either controller when it

is about to write data into the mailbox and reset when data writing is

done .

WRITE LOCK: A 2 -byte variable used to determine whether or not data can
be written into the mailbox. If it is set, then neither the cell nor
the Turning Workstation can write data into the mailbox. If it is not
set, then data writing can commence. Typically, it is set by either
controller when it is about to read data from the mailbox and reset when
data read is done.

SEQUENCE NUMBER: A 2 -byte variable used to indicate the sequence of the

data transfer in question. It is initialized when the workstation
becomes ready to accept commands from the cell and updated each time a

data transfer occurs.

LENGTH: A 2 -byte variable used to indicate the byte length of a data
mailgram.

5.1.2 Cell to Turning Workstation Command/Status Mailgram Formats

The communication between the AMRF cell controller and the Turning Workstation
is achieved by passing command and status mailgrams through the network. The

following is a description of the protocol for the mailgrams.

5. 1.2.1 Command Mailgram

When the cell is to activate the Turning Workstation, it sends a command

mailgram to the workstation through a common memory mailbox. The mailgram is

composed of the header section, the transition command section, and the order

action record section. The header section contains identifying elements for

the mailgram such as the header and the command number. The transition command

section is used by the cell to control the state of the workstation. Typical

commands are WARM_STARTUP and COLD_SHUTDOWN . The order action record contains

the manufacturing action that is to be taken by the workstation. Typical order

actions are RECEIVE_TRAY and MACHINE_LOT. In addition to the manufacturing

action, the order action record also contains parameters such as the process

48

The TWS

plan id of the process plan that is to be executed by the workstation. Figure

III. 14 shows the composition of a typical command mailgram in more detail.

5. 1.2. 2 Status Mailgram

The status mailgram (see Figure III. 15) is used by the Turning Workstation to

update the AMRF cell controller on the status of execution of the corresponding
command. The mailgram is composed of the header section, the length indicator
section, the echo section, the transition status section, and the order action
status section. The header section contains identifying elements for the

mailgram such as the header and status number. The length indicator section
indicates the length of various fields within the status mailgram. The echo
section simply echoes the text of the command that is being executed. The
transition status section indicates the status of execution of a transition
command. The order action status section contains the status of execution of
the order that is being filled by the workstation. It may contain parameters
such as error conditions or number of parts machined.

5 . 2 Database Communication Module

Communication with the AMRF database is done by the Turning Workstation (TWS)

in order to retrieve process plans and reports needed for a cell-specified
operation and to update the status of the workstation's operation for the cell.
The data received from the AMRF database includes the process plan (in flat
file form), the Lot Status report, the Tray Definition report, and the Tray
Contents report. The reports that are updated to the AMRF database are the
Workstation Item Action report and the Equipment Item Action report.

Information that is obtained from the selected reports includes, for each part,
the item number, the item name, the sector number, the origin of sectors in a

tray, the input tray, the in-tray workstation, the output tray, the out-tray
workstation, and the kit order identification. Of these items, the item name
and item number are used in the update reports.

The Equipment Item Action and the Workstation Item Action reports are used to

update the name and location of a part as each stage of its machining is

completed. For example, a part that is made by TWS is the nipple connector.
It is received in a tray with the name "NIPPLERAD_BT” . After its first stage
of machining is completed, it is called "NIPPLERAD_IT" . When the part is

finished, it is then called "NIPPLERAD_FT" and the Equipment Item Action report
is updated a third and final time for its name and location. After the
finished part is placed in the tray, ready to be shipped, the Workstation Item
Action report is updated for the location of the finished part. This report
specifies the item number and its location (e.g. "T_TABLES" is used).

In addition to selecting process plans from the AMRF database, process plans
can be inserted into the database. Although a separate communication module is

used for this operation (for communication testing), it follows the same
command and status formats of the main AMRF database communication module.

49

Field Length Entry or

(bytes) Possible Value

command message identifier 4 'CMDF
command length 2 72

command number 2 nn

command time stamp 22 'YYYY.DDD.HH.MMiss^DDb'

transition action length 2 36

order action length 2 00

resource allocation length 2 00

transition action update 2 nn

transition action keyword 1 6 'SYNC' or 'WARM_STARTUP'
transition parameter count 2 01

transition parameters 1 6 transition parameters

number of order actions 02 01

order action record

order id 1 6

update number 1 6

action 1 6 'EXECUTE
job level work element 1 6 SHIP_TRAY
number of parameters 1 6 3

The length of the remaining parameter fields is

based upon the number of parameters specified

parameter 1 name 1 6 'WSJD'
parameter 1 value 1 6 'TWS'

parameter 2 name
1 6 TRAY ID’

parameter 2 value
1 6 tray id string

parameter 3 name
1 6 TRAY TYPE

parameter 3 value
1 6 e.g. '3_SECTOR_TRAY

FIGURE III.14. CELL TO TWS COMMAND MAILGRAM PROTOCOL

50

Field
Length
(bytes)

Entry or

Possible Value

status message identifier 4 ’FDBF'

status length 2 276

status number 2 nn

status time stamp 22 'YYYY,DDD,HH:MM:SS:mmmb'

echo command length 2 24

transition status length 2 36

order status length 2 1 76
resource requests length 2 00

echo command number 2 nn

echo command time

echo command segment

22 'YYYY,DDD,HH:MM:SS:mmmb'

transition status version 2 nn

transition status keyword 1 6 'SHUTDOWN', 'READY1

transition status parameter count 2 01

transition status parameter 1 6 blank

number of order status records 2 01

order status record

order id 1 6 order id string

update number 1 6 ASCII digits

status 1 6 status strings

echo work element 1 6 job level work element string

number of parameter pairs 1 6 ASCII digits

The number of remaining parameter fields depends
on the number of parameter pairs specified.

parameter 1 name 1 6 e.g. 'ERR0R_C0NDIT10N'
parameter 1 value 1 6 e.g. ASCII string

parameter 2 name
1 6 e.g. 'COMPLETED'

parameter 2 value
1 6 e.g. ASCII digits

parameter 3 name
1 6 e.g. 'SCRAPPED'

parameter 3 value
1 6 e.g. ASCII digits

FIGURE III.15. TWS TO CELL STATUS MAILGRAM PROTOCOL

51

The TWS

The aforementioned reports are obtained from the database using DML (Data
Manipulation Language) transactions. Protocol for DML transactions and AMRF
database/TWS communications is discussed in the following section.

5.2.1 AMRF Database/TWS Communication Protocol

As with any handshaking protocol, AMRF database/TWS communications require a

command and a status. Here, the Turning Workstation gives commands and the
database returns statuses.

Before any requests for data are made of the database, communication is begun
by using the reconfiguration commands "ABORT", "INITIATE", and "START-UP", in

this order. After these commands are successfully executed DML transactions
can be done. When TWS wishes to end communication with the database, the
reconfiguration commands "SHUTDOWN" and "TERMINATE" are sent to the database.

In order for the commands to be recognized as new commands by the database,
each command has a command number and sequence number that are incremented each
time a new command is sent. The initial command/sequence number that TWS
starts with is "1" with the "AJBORT" command.

A status message from the database accompanies each TWS command. In order for
TWS to know that it is the correct status for a certain command, it must check
the command number and compare it to the command number of the latest command,
as well as making sure that it is a status report from the database. Checking
for the Data Server status indicator accomplishes this. The appropriate
status for a particular command is then checked. For the reconfiguration
commands, the database status is repeatedly checked until the correct status is

found. When it is found, the next command is issued to the database. In the

case of DML requests, if an error is found, the request will be made again for
up to two times if needed.

The types of status that are expected from the database for a successful
transaction vary for each different command. For the "ABORT" command a "D"

(for "down") is expected. An "S" (for "sync") must be seen for the "INITIATE"
or "SHUTDOWN" reconfiguration commands. Before the database can process
requests an "R" (for "ready") must be received for the "STARTUP" command.
After the "STARTUP" has been successfully executed, the following DML
transactions are looked statuses at the summary- status field of the status
report. Possible statuses are a "B" (operation still pending), a "D"

(operation completely successful), or a "C" (successful initiation of

operation) . This is unlike the reconfiguration commands whose statuses appear
in the server status field. The status report format will be discussed below.

All communication is done using common memory locations that are previously
assigned for each workstation. There are three mailboxes for AMRF database/TWS

communication. The commands to the database are entered into the mailbox named

DS_TWS_CMD which has address 0DD200H and a size of 256 bytes. The statuses

from the database are received from the mailbox named DS_TWS_STS at location

0DD400H. It has a maximum length of 256 bytes. Any data that is requested

52

The TWS

from or is sent to the database is put into the mailbox DS_TWS_D1 with a

maximum length of 8 kilobytes and a starting address of 0DD600H. Whenever a

mailbox is specified in a DML transaction, the name of the mailbox is used.

5.2.2 AMRF Database Command And Status R.eport Formats

All the AMRF database commands follow the same basic format. The first
fourteen bytes of any command, reconfiguration, DML, or CANCEL commands are

fixed, comprising the "fixed segment". The following bytes, making up the

transaction string (the "variable segment"), however, will be in one of two

forms, depending on its length. The first form, form "A", is for a transaction
string of length less than 128 bytes long. Reconfiguration commands and DML
requests with DML strings less than 118 bytes long use this form. Commands
with DML strings 118 bytes long or longer use form "B".

The fixed segment of a command includes information such as the user
identification, command number, the fixed segment length, and the fixed segment
prefix. Also included are the length of the entire command, minus the first
two header bytes, and an indicator that confirms that the command string is a

database command.

The variable segment, the transaction string, which is formatted in one of the

two forms, indicates the type of command that is to be executed. Other
information that is included are the application type, transaction identifier,
and optional arguments such as the DML strings. Accompanying these items are
their lengths and, of course, the length of the transaction string (less the

header bytes). The command format is shown graphically in Figure III. 16.

Unlike the command formats, the status reports have one form composed of a

fixed segment and a variable segment. It is within the fixed segment that the
statuses for reconfiguration commands are looked for. Other information
included here are the identifications of the user and the database; the report
time and number; the last command number; and the status of the server, user-
link, and master- link. It is in the server- status field that the
reconfiguration command status is found. Ending the fixed segment is a pad-
byte composed of a null (i.e. 00H)

.

The variable segment consists of a twelve byte fixed structure followed by a

variable six byte segment and optional fields. Items that comprise the first
twelve bytes are the header byte

,
• transaction status indicator; the transaction

status length, less the header bytes; the transadtion identification and its
length; an echo of the user transaction identification and commands type; and a

status -element type indicator accompanied by its length. The bytes that follow
include the summary - s tatus

,
a pad-byte, the detail-status, and an optional

field. A status resulting from a DML transaction would be found in the
summary- status field and an error message may be found in the optional field
that describes the error. A graphic representation of the database status
report format is shown in Figure III. 17.

53

Byte Number Value Comments

i 4CH DataServer Command Indicator

2 * Command Length Indicator

3 80H Fixed Segment Prefix

4 OAH Fixed Segment Length

5 Command Number, MSB first

6 TWSC User ID in ASCII, Left Justified

Form MA M
:

1 5 30H Universal type 16, structured

1 6
*

Length of String in Bytes,

8H for reconfiguration commands
1 7 Transaction Type, possible values

are: 81 H = Initiate,

82H = Startup,

83H = Shutdown,

84H = Terminate,

85H = Abort,

86H = DML,
87H = Cancel

Length of Transaction Type

18 00H Application type 16 (transaction ID)

19 50H Length of Transaction ID

20 04H Transaction Identification,

21-24 *
values are:

INIT for Initiate command,
STUP for Startup command,
SHDN for Shutdown command,
TERM for Terminate command,
ABRT for Abort command,

DML for DML command.
25-...

•
Optional arguments, e.g. DML strings,

including length and data
Form "B":

1 5 30H
1 6 82H Indicates string length in 2 bytes

17-18 *
Length of string, 2 byte integer

1 9
*

Transaction type, same as above

20 00H Length of transaction type

2 1 50H Application type 16

22 04H Length of transaction ID

23-26 Transaction identifier, as above

27-...
#

Optional arguments, as above

NOTE: Values indicated by an asterisk are dependent

on the particular command.

FIGURE III.16. DATABASE COMMAND FORMAT

54

Byte Number Value Comments

i 0A1H DataServer Status Indicator

2
*

Length of status report

3 80H Context type 0 (fixed segment)

4 20H Length of Fixed Segment
5-1 2 TWSC User ID

1 3-20 *
Server ID

21 -28 *
Report Time

29-30 *
Report Number

31-32 *
Last Command Number

33 *
Server-status

34 ft

User-link-status

35 * Master-link-status

36 00H Pad-byte

37 0A1H Context type 1

38 *
Length

Transaction Status Report:

39 0A0H Transaction Status Indicator

40 ft Transaction Status Length
4 1 81 H Transaction ID
42 ft Transaction ID Length
43-46 ft User Transaction ID Echo
47 ft Command Type Echo
48 00H Command Length
49 82H Status-elements Type Indicator

50 06H Status-elements Length

I

5

1

* Summary-status
5 2 00H Pad-byte
5 3-56 ft Detail-status

Ootional fields:

57 Field type, 83H - error message,
84H = data reference,

85H = byte count,

86H = row count,

87H = source station.

58 *
Length

59 ft

Value

NOTE: Values indicated by an asterisk are dependent on the particular

command. The length bytes used here follow the convention for the

short form. Other length encodings are described in the text.

FIGURE III.17. DATABASE STATUS REPORT FORMAT

55

The TWS

As a last note on the command and status formats, the length of each and their
fixed and variable segments are entered in a different manner depending on
their lengths.. If the length of a segment is less than 127 bytes long (7FH)

,

then the length field will only require one byte and is directly recorded in
that byte. If the length is greater than 127 bytes then more than one byte
will be needed for the length field. In this case the first byte in the field
will indicate that the bytes that follow will be the length bytes. This byte
is represented by "8xH" where "x" is a "1", or a "2", etc., which indicates the
number of bytes that follow are used for the length. So then an " 82H" as a

first byte in the length field means that the following two bytes contain the

length of the corresponding segment, command or status and that the total
number of bytes that comprise the length field is three.

As an alternative to the above encodings, a "mark byte" may be used to mark
the beginning and the end of the data in the segment without regard to the

length of the data in the segment. In the place of the length field, an "80H"

is entered. The data in the segment then follows and is terminated by two

"end-of -data" bytes which are both nulls.

The convention used at TWS for database commands is to explicitly encode the

length of the segment in the length fields, using the short and long forms as

needed. In the section that follows, the convention using the "mark-bytes" is

not illustrated.

5.2.3 DML Strings Used by TWS

AMRF database accesses are accomplished by using DML strings in commands to

specify what is needed. The DML strings that are used to request reports from

the database are as follows (where items in lower case are to be entered as

needed)

:

for the Process Plan:

SELECT PLAN_TEXT FROM PROCESS_PLAN WHERE
EXEC_SYSTEM - 'TWS' AND PLAN_ID - ' process_plan_id '

AND PLAN_VERS ION - plan_version USE MEMORY 'DS_TWS_D1'
FORMAT 'G{ A) '

;

for the Lot Status report:

SELECT * FROM LOT_STATUS WHERE LOT_ID - lot_id
USE MEMORY 'DS_TWS_D1';

for the Tray Definition report:

SELECT * FROM TRAY_DEFINITION WHERE ITEM_NAME_T -

' item name ' USE MEMORY 'DS TWS Dl'

;

56

The TWS

for the Tray Contents report:

SELECT * FROM TRAY_CONTENTS WHERE CONTAINER_NR =

' container_number ' USE MEMORY 'DS_TWS_D1';

for the Equipment Item Action report:

UPDATE EQUIP_ITEM_ACTION SET * - USE MEMORY 'DS_TWS_D1'
WHERE ITEM_NR =» ' item_number '

;

and, finally, for the Workstation Item Action report:

UPDATE WS_ITEM_ACTION SET * = USE MEMORY 'DS_TWS_D1'
WHERE ITEM_NR = ' item_number '

.

In order to insert a process plan to the database, TWS uses this DML string:

INSERT INTO PROCESS_PLAN (EXEC_SYSTEM , PLAN_ID

,

PLAN_VERS ION , PLAN_TEXT) VALUES ('TWS',' process_
plan_id '

,

'
process_plan_version ' ,USE MEMORY

' DS_TWS_D1 ' FORMAT ' G{ A}
'

;

The " item_number"
,
”item_name", "process_plan_id"

,
"container_number" (also

called the " tray_serial_number") are ASCII character strings with a maximum
length of 16 bytes. The "process_plan_version" and the "lot_id" are integer
values written in ASCII in the DML string and are of a maximum length of four
numerical characters. An asterisk,

,
within a string has the meaning of

"all" which follows the DML conventions.

5 . 3 The AMPLE Communication Module

The Automated Manufacturing Programming Language Environment (AMPLE) system is

used to verify the validity of a process plan^- and to animate workstation
operations at the Turning Workstation (TWS) as well as at other workstations
[13,14], By using the TWS/AMPLE communication module, the TWS can send process
plans, accompanying equipment instruction lists, and cutter location files to

the AMPLE system. The AMPLE system will, in turn, check and return status
messages on the state of the data sent by TWS.

5.3.1 Function of AMPLE Within The Turning Workstation

Two functions that AMPLE executes for the Turning Workstation are to check
numerical control (NC) programs, and to check robot programs. In order to

check NC programs, AMPLE uses the cutter location files sent by TWS. To check
robot programs, AMPLE uses the equipment instructions received from TWS and

^-A process plan is valid if it conforms with the AMRF flat file form, if

the work elements listed in the procedure section are performable by TWS, and
if all work elements needed to make a part are in the correct sequence.

57

The TWS

compares the robot programs in the instructions to those that were provided
ahead of time from the programmer of the robot programs. The equipment
instructions are a translated version of the process plan in flat file form.
The process plan is created either by the Process Planning subsystem, and
entered into the AMRF database, or by the Turning Workstation operator, and
uploaded into the AMRF database.

Another function that AMPLE performs is to animate overall workstation
operations. It does this through animation on a CRT, via Silicon Graphics, of
the work elements in the translated process plan provided by TWS. This allows
for a visual checking of workstation operations.

Before creating an animation of the TWS operation, information must be provided
to AMPLE ahead of time. Some of this information includes dimensional data.
The dimensional data describes the volume in which a component exists. The
volume describes the general shape of the component and includes any critical
parts that may conflict with another component. This data is then used to

determine a graphic representation of each component which is used in the

animation. Components include the robot, the gantry, the turntable, and the

turning machine

.

In order to animate the components, software subroutines are written for each
component. The software describes the movement of each component in a correct
operation. In addition to the software, the Cartesian coordinate position of
the tool tip and the gripper position vector for all robot moves are
calculated. After all the information that is needed is transferred to AMPLE,
.communication between the two systems is done as described in the next section.

5.3.2 Communication Protocol

5. 3. 2.1 Commands And Status

The TWS/AMPLE protocol consists of an ASCII string command from TWS (or AMPLE)
and a status of "READY" from AMPLE (or TWS) . The "READY" string is used to

acknowledge some of the commands sent. Not all of the commands are
acknowledged by a "READY". The commands are used to signal the beginning of a

session, to indicate the type of data that will be transmitted, and to mark the

end of a transmission of data.

5. 3. 2.

2

Data Transfer Between TWS and AMPLE

Sets of data transmitted between the TWS and AMPLE systems include the process
plan, its corresponding equipment instructions, the cutter location file, and

status messages. The first three sets are sent by TWS and the status messages

are sent by AMPLE.

Items that comprise a set of data from TWS are the process plan text (or

equipment instructions or cutter location file) ,
the number of bytes

transmitted, and the checksum. The process plan is the original version

retrieved from the database and the equipment instructions list is the TWS-

58

The TWS

translated version. The translation is done separately by the Turning
Workstation Controller. Both the process plan and the equipment instructions
are stored in a file in the local database beforehand. The number of bytes is

the byte count of the text sent and the checksum is the sum of the ASCII values

of all the bytes within the text and is of word length.

To begin a session with AMPLE, the TWS would send a "START" command to AMPLE.

This is then acknowledged with a status of "READY" from AMPLE as discussed
above. Next, the three sets of data will be sent, using the same format for

each, in the order of process plan text, equipment instructions, and then
cutter location file.

The format for the three sets of TWS data is as follows. A three byte string
consisting of two uppercase letters and a colon is sent first depending on the

text. The string would be "PP:","EI:", or "CL:" standing for process plan,

equipment instruction, and cutter location, respectively. Next, the part name
will be sent and then an acknowledgement of "READY" is expected from AMPLE.
The text is then transferred followed by the number of bytes sent and then the

checksum. After the checksum, the string "END_PP", "END_EI", OR "END_CL" is

sent. To mark the end of a set of data, TWS sends an- end-of- transmission
character, i.e. 04H, to AMPLE. The "eot" character is acknowledged by a

"READY". Finally, to end the entire transmission of data, TWS sends the

command "COMPLETED" to AMPLE followed by a linefeed, i.e. OAH.

After checking the data sent by TWS, the AMPLE system will send status messages
on these data. It begins transmission with the commands "CHECKING" and
"START". The "START" is acknowledged by "READY" and line feed character. If
the data sent by TWS is correct, AMPLE will indicate this by sending a string
"XX_CHECKOUT" where "XX" is replaced by "PP", "El", or "CL". If there are
errors in the data, AMPLE will send "XX_ERROR:" followed by the error
description data. After receiving the error message, TWS stores it for later
retrieval on the Winchester disc. To mark the end of the message, an
"END_XX_STATUS" is sent and the next status message is expected. The string
"COMPLETED" ends the session with TWS. Figure III. 18 shows in graphic form the
TWS/AMPLE communication protocol.

6. TWS CONTROLLER/DEVICE CONTROLLER COMMUNICATION PROTOCOL

The TWSC communicates with the device controllers through RS232C serial links.
The communication is generally communicated in command/status pairs: the
workstation controller sends a command to the device controller, and the device
controller returns a status on the execution of the command. The commands sent
to the device controllers are ASCII strings, with the content and the length of
the strings differing from device to device. The status returned by the
devices are ASCII strings as well. There are three different types of status:
READY, BUSY, and ERROR. The actual characters sent by the device controllers
are "r" for READY, "b" for BUSY, and "e" for ERROR. The error status usually
contains an error code following the "e" to indicate what kind of error has
occurred.

59

TWS AMPLE
START.

PP: __
part name

process plan text

no. bytes sent_
checksum ______

END_PP_
eot _________

READY

—
.READY

El:_
part name

READY——-

equipment instructions

no. bytes sent

checksum

END_EI
eot

READY

CL
part name

READY

.READY
cutter location file

no. bytes sent

checksum

END_CI

eot

READY
COMPLETED
linefeed

READY .

linefeed

.CHECKING

.START
—

PP_CHECKOUT or PP_ERROR: <errors>

_ END PP STATUS
CHECKOUT or EI_ERROR: <errors>

END El STATUS
CL_CHECKOUT or CL__ERROR: <errors>

______ END_CL_STATUS
___COMPLETED

NOTE: Uppercase items are the actual strings sent. Lowercase

items are the names of the items sent.

FIGURE III.18 TWS/AMPLE PROTOCOL

60

The TWS

7. OPERATION SCENARIO

The following is a description of task execution during typical operation.

7 . 1 Stand-alone Mode

In the example below, the workstation is running in stand-alone mode. An
operator keys in the type and the batch size of the part that is to be

machined

.

a) The operator orders a batch of parts through the user interface.

b) The task manager retrieves the proper process plan from the local
database and decomposes it into a task level work element sheet and
several device level work element sheets. The data sheets are written
out to the local database.

c) The task manager invokes the task level controller. The task level
controller is waiting at a semaphore for a data unit. When the task
manager sends the data unit, the task level controller is ready to

execute. However, it must wait until the task manager goes to sleep due

to the task manager's higher priority.

d) The task level controller reads the work element sheet and device
element sheets from the local database into RAM. It then executes the
work elements by invoking the device level controller. After invoking
the device level controller it goes to sleep.

e) The device level controller executes the device elements. It then
invokes the task level controller and goes to sleep.

f) While the task and device level controllers are monitoring the

manufacturing process, the task manager is idling and waiting for
operator inputs. Once the operator enters a request at the keyboard,
the task manager interrupts the task level and device level controllers
and services the operator's request.

The above operation is illustrated in Figure III. 19.

7 . 2 Integrated Mode

In the following example, the workstation is running in integrated mode. The
AMRF cell controller sends batch information through the AMRF Network, and data
exchange with AMRF database is made.

a) The task manager idles while waiting for command mailgrams from the

cell controller. Meanwhile, the cell communication task scans the

remote command mailbox once every 100 milliseconds for remote input.

61

FIGURE IXI.19. TASK SYNCHRONIZATION BETWEEN JOB LEVEL

CONTROLLER/TASK MANAGER, TASK LEVEL CONTROLLER,
AND DEVICE LEVEL CONTROLLER

62

The TWS

b) The cell controller sends the raailgrara. The cell communication task
deciphers the command and sends it to the task manager and wakes it up.

c) The task manager invokes the database communication task. The task
manager passes the process plan id, which is found in the command
mailgram from the cell controller, to the database communication task.

After the communication task is invoked, the task manager goes to sleep
to relinquish the CPU to the communication task.

d) The database communication task retrieves the process plan from the

AMRF database. When this is completed, the task wakes up the task
manager again and goes to sleep itself.

e) The task manager decomposes the process plan into task level and
device level work element sheets.

The rest of the operation is the same as it is in stand-alone mode. The only
difference is that the task manager updates the cell controller on the status
of the batch.

8. FUTURE DEVELOPMENT

Future development for the TWS controller will include the development of a

logging system that will record all the events that occur during operation to

facilitate system trouble shooting. TWSC could also keep a tool wear profile
for each tool used in the workstation so that an operator can replace a tool
before it wears out. Another issue that may be addressed includes automating
the generation of the workstation process needed to machine a particular part
This generation is currently accomplished by system programmers. Automating
error recovery is another possible development.

63

The TWS

IV. HIGH-LEVEL MACHINE TOOL CONTROLLER

The high-level machine tool controller is one level below the workstation
controller in the Turning Workstation hierarchy. Its main function is to

establish the necessary communication and control link between the workstation
controller and the Computer Numerical Control (CNC) turning center and its

auxiliary devices such as the interface module for the CNC keyboard, the collet
changer controller, the tool-setting station controller, and the multichannel
digital temperature measurement system. Another function of the high-level
machine tool controller is the enhancement of the turning center accuracy by
real-time error compensation for geometric and thermally induced machine tool
errors. The details of the design and the operation of this controller are
given in the following sections of this document.

1. DESIGN OF THE HIGH-LEVEL MACHINE TOOL CONTROLLER

1 . 1 Overview

The high-level machine tool controller is designed using off-the-shelf
electronic components, such as a single-board microcomputer and communication
boards. All the components are selected to be Multibus -compatible to create a

modular system, Due to its modularity, this design allows the system builder
to add additional boards, such as communication and/or data acquisition boards
as the need arises.

The system software is written in a high-level language, PL/M. No operating
system is used for the microcomputer. The software is designed to be
structured and modular so that it can be maintained easily and modified for

future needs

.

1 . 2 Control Architecture

The high-level machine tool controller is a task-driven system. It receives
tasks from the workstation controller, and decomposes these tasks into several
subtasks for the lower- level controllers, such as the keyboard interface
module, the collet changer, and the turning center CNC. By sending appropriate
commands corresponding to these subtasks to the controllers of the auxiliary
devices, the high-level machine tool controller coordinates the operations of

these devices. After sending the commands to the lower- level controllers, it

waits for the task completion status from the corresponding lower- level

controller. When all the subtasks are completed, the high-level machine tool

controller sends the "Ready" status signal to the workstation controller. When

there is no new command from the workstation controller, the high-level machine

tool controller goes into the idle state and waits for a new command. In order

to carry out the cutting operation based on the NC part programs, the high-

level machine tool controller accesses the AMRF database. When needed, it

downloads necessary NC part programs from the database to the CNC controller of

64

The TWS

the turning center to activate them for cutting operation. It also has the

capability of uploading any NC part programs from the CNC controller of the

turning center to the database

.

The communications between the high-level machine tool controller and all the

other lower level controllers are through serial RS232 ports. On the other
hand, communications between the high-level machine tool controller and the

workstation controller are either through a serial RS232 interface or through
the AMRF network. The protocols for these two modes of communications are

totally different. Strings of ASCII characters are used for command and status
information in the network communication mode. In the serial communication
mode, a single ASCII character is used for each command and status between the

high-level machine tool controller and the workstation controller.

In the error compensation mode, the geometric and thermally induced machine
tool errors are predicted as a function of machine axis position, direction of

motion, and the machine tool temperature profile based on the previous
calibration measurements. During machining, these errors are calculated,
converted into servo counts and injected into the "following error" registers
of the CNC controller in real-time. In this mode, the high-level machine tool
controller runs in synchronization with the CNC controller. Thus, position
information is updated and error correction is injected every servo control
cycle of 20 milliseconds. The whole error compensation operation-is
transparent to the user of the system.

1 . 3 Hardware Components

The high-level machine tool controller is a multibus single-board microcomputer
(Intel iSBC 86/30) with 128k RAM and 64k EPROM memory. This microcomputer
board contains a 16-bit 8086 microprocessor as the CPU, and a high-speed
version 8087A numeric coprocessor for floating point arithmetic operations.
The architecture of this board is designed for high-speed floating point
numeric computations which are necessary for the real-time error compensation
function of the high-level machine tool controller. The combination of 8086
and 8087A makes it possible to run the computer at an 8 -MHz clock rate to meet
the requirement of high servo bandwidth for error compensation during
contouring cuts. This microcomputer uses two Multibus serial I/O boards, with
four RS232 serial I/O ports on each, to communicate with the controllers of the
auxiliary devices mentioned before. The communications between the CNC
controller of the turning center and the high-level machine tool controller are
done through three multibus parallel I/O boards.

In addition to the main microcomputer unit, the high-level machine tool
controller uses two other auxiliary modules to carry out its function. One of
these two modules is the CNC keyboard interface module. The keyboard interface
module is designed and built in house, and based on an 8048 single component
microcomputer. The function of this module is to translate commands from the
high-level machine tool controller and enter them into the CNC controller of
the turning center by emulating the keyboard operation of the turning center
CNC. This module is necessary for the high-level machine tool controller to be

65

The TWS

able to send MDI (manual data input) commands to the CNC for upload/download NC
part programs, activate them, and execute single-block axis motions.

The other auxiliary module is the digital temperature measurement system which
is used to monitor the temperatures around the machine structure. This
temperature information is used in the error compensation scheme employed by
the high-level machine tool controller. The temperature measurement system
consists of signal conditioning and digitizing electronics, and a 10-channel
scanner. It communicates with the high-level machine tool controller through
an RS232 interface. Upon receiving a command from the high-level machine tool
controller, the temperature measurement system digitizes the appropriate
channels and returns the temperature information.

1 . 4 Software Components

The high-level machine tool controller software is written in a high-level
language, PL/M. The main criteria in designing the system software are
flexibility, modularity, and easy maintainability. Selection of a high-level
language helps to meet these criteria. The system software consists of four
modules: the main module, a module for database operations, a module for error
compensation, and a module for parallel communications between the high-level
machine tool controller and the turning center CNC. Each module has a series
of procedures which are called from the main program in the main module. Brief
descriptions of these procedures are given below.

1.4.1 Main Module

This module includes the main program of the high-level machine tool

controller. In addition, it has the following procedures:

« KB_CMD: This procedure is used to communicate with the keyboard
interface module.

AB_CMD: This procedure is used to send commands to the CNC through its

parallel port.

UPLOAD_NC_PRG : This procedure is used to upload the NC part programs
from CNC to the local memory.

UPLOAD_LCL: This procedure is used to upload the NC part program from

the local memory to the local database.

DOWNLQAD_NC_PRG : This procedure is used to download the NC part program

from the local memory to the turning center CNC.

READ_CMD_LCL: This procedure is used to receive the commands from the

workstation controller in the local mode.

66

©

The TWS

ACTV_PRG: This procedure is used to activate the NC part program in the

CNC, after it is downloaded to the CNC
,

in preparation for running the

NC program.

PRG_CANCL: This procedure is used to cancel the NC part program in the

CNC memory to eliminate error conditions when it is downloaded the next
time

.

COMP_STR_LCL: This procedure is used to interpret the workstation
commands received locally.

SIMULATE_EXEC : This procedure is used to simulate the execution of the

tasks which are assigned by the workstation controller. This is

necessary for the test mode of the operations.

EXEC_COMMAND : This procedure is used to actually execute the tasks
assigned by the workstation controller.

ERR_REC: This procedure is used for the limited recovery of error
conditions, e.g., missing database or lower-level controller statuses.

1.4.2 DBASE Module

This module consists of procedures, which are used in the remote operation, for
accessing the AMRF database or communicating with the workstation controller
using the AMRF network. Brief descriptions of these procedures are given in
the following.

INIT_DB: This procedure is used to initialize the database connection.

INTTOSTR: This procedure is used to convert an integer variable into a

string variable to be able to display it to the screen.

START_DB: This procedure is used to start the database to prepare for
operations

.

SHUT_DB: This procedure sends the necessary command string to the
database to terminate the operations.

SET_CMD_DB: This procedure prepares the command string to be sent to the
database

.

WRIT_CMD_DB: This procedure is used to write the command string created
with the previous procedure into the AMRF network mailbox to be
transmitted to the database.

DISP_CMD_DB: This procedure displays the command sent to the database on
the CRT screen.

67

The TWS

READ_STA_DB: This procedure reads the database status mailbox via the
AMRF network and stores it into the local memory.

DISP_STA_DB: This procedure displays the recently read database status.

CHECK_STA_DB : This procedure is used to interpret the database status
string, which is copied from the network mailbox to the local memory.

READ_DAT_DB: This procedure is used to read the data mailbox to receive
the data sent by the database. Once the data is read, it is stored in
the local memory.

DISP_DAT_DB: This procedure is used to display the data received from
the database on the CRT screen.

WRIT_DAT_DB: This procedure is used to send the data to the database
when uploading NC part programs. It writes the data to the data mailbox
of the AMRF network.

UPLOAD_DB: This procedure is used to upload the NC part program to the
database. After preparing the NC program for uploading, it calls the

WRIT_DAT_DB procedure to copy it into the data mailbox.

. DOWNLOAD_PRG_DB : This procedure is used to download the NC part program
from the database to the local memory.

MC_STATUS: This procedure creates the high-level machine tool controller
status string to be sent to the workstation controller.

DISP_STA: This procedure is used to display the machine tool
controller's status, which is created by the previous procedure.

e

WRIT_STA: This procedure is used to copy the previously created machine
tool controller's status to the status mailbox of the high-level machine
tool controller.

READ_CMD: This procedure checks if there is a command in the workstation
command mailbox; if there is, it copies it into the local memory.

DISP_CMD: This procedure is used to display the recently received
workstation controller command on the CRT screen.

COMP_STR: This procedure is used to interpret the command received from

the workstation controller.

1.4.3 ERROR Module

This module consists of the procedures which calculate the error components of

the overall geometric and thermally induced errors, with the total resultant

68

The TWS

error components in x and z directions to be injected into the turning center
servo loop. Brief descriptions of these procedures are given below.

HDNG$SAFE
,
HDNG$SAFE2

,
HDNG$MOVE$GAGE

,
and HDNG$MOVE$ INC procedures are

used to move the turning center cutting tool to prepare for the tool

setting operation.

ARM_DOWN : This procedure is used to bring the tool setting station arm

down for a tool setting operation.

TSS_READ: This procedure is used to communicate with the tool setting
station controller to read the displacement readings of the LVDT of the

tool setting station.

ARM_UP: This procedure is used to bring the tool setting station arm up

upon completion of the tool setting operation.

MC_OFFSETS: This procedure is used to calculate the machine reference
position drift using the tool setting station data.

TEMP_SCAN and TEMP_READ: These procedures are used to scan and read the

various temperatures around the machine structure.

SPYAW, ORTHOG, ZYAWT
,
DSPX, EPSX, XDISP, DSPZ, EPSZ, ZDISP, XYAW, ZYAW,

ZSTRX, AND XSTRZ procedures are used to calculate the individual
error components as functions of temperature and position.

ERR_CALC: This procedure is used to combine the error components to

calculate the resultant error in x and z directions.

ERROR_CORRECT : This procedure converts the calculated resultant error
components into machine tool servo counts and calls the procedure to

inject into the machine servo loop.

XNIT_ERR: This procedure initializes the coefficients used in other
procedures

.

1.4.4 PALCOM Module

This module consists of procedures, which are used for communication between
the high-level machine tool controller and the CNC of the turning center.
These communications are through parallel I/O ports and transfer position and
correction information back and forth.

READ_POS : This procedure is used to read the position of the axes of the

turning center.

OUT_CORR: This procedure is used to output the correction values to the

CNC

.

69

The TWS

0UT_C0RR_X14 : This procedure is used to send a special code to the CNC
indicating the high-level machine tool controller's desire to initiate
the error correction scheme.

OUT_CORR_0 : This procedure is used to send a special code to the CNC to

stop the communications for error correction.

2. OPERATION OF THE HIGH-LEVEL MACHINE TOOL CONTROLLER

Currently, there are six operation modes of the high-level machine tool
controller. Three of these modes are used mainly for communication debugging
purposes. These are: 1) a communication test between the workstation
controller and the high-level machine tool controller; 2) a communication test
between the workstation controller, the machine tool controller, the AMRF
database, and the CNC; and 3) a test of local communication between the

workstation controller and the high-level machine tool controller. In test
modes there is no real execution of these tasks. All the commands received are

interpreted but not executed. Status information is returned after the

interpretations are displayed on the CRT screen. The other two modes are local
and remote operation modes. Upon power up, the system goes through its own
initializations and then comes up with the operation menu. After the selection
is made, all the operator has to do is answer some preparatory questions.
Then, the system runs on its own without any intervention. Since in the

communication test modes no operator intervention is required, only the last
two modes are described below.

2 . 1 Local Operation Mode

In local mode, the high-level machine tool controller communicates with the

workstation controller through a serial I/O port. In this mode the database
for the NC part programs and tool offset data tables is the local database
residing in the workstation controller system. The command and status
information between the workstation controller and the high-level machine tool

controller is passed from one to the other as single ASCII characters. The

following list is a sample group of commands from the workstation controller:

g: loosen collet
h: tighten collet
f: send w axis to home position
k: send x and z axes to home position
1: run the NC part program to make the part

After receiving each command from the workstation controller, the high-level
machine tool controller compares it with the set of acceptable commands stored

in the memory, if the command is acceptable then it starts executing

accordingly and sends a "Busy" status back to the workstation controller. When

the task is completed, it sends a "Ready" status to the workstation controller

and starts waiting for a new command.

70

The TWS

2 . 2 Remote Operation Mode

In the remote operation mode, the communications between the high-level machine
tool controller and the workstation controller are through the AMRF network.

The AMRF database is used in this mode instead of the local database. These
communications use protocols similar to those employed in the other stations of

the AMRF. Different command and status mailboxes, which are allocated in the

common memory, are used in these transactions. Based on the sequence numbers,
these mailboxes are transferred by the network server. In this mode, instead
of single characters, complete texts are used for each command. Some examples
are given in the following:

In this mode, upon power up, the operator has to answer some additional
questions such as if he wants to select NC program list from the database, or

upload/download NC program to/from the database, or reset the mailbox sequence
numbers to zero. After the operator goes through this self-explanatory
question- answer period, the real operation of the high-level machine tool
controller does not differ from the local operation mode. During the
operation, an "R" from the keyboard will reset the controller, and a "Q" will
show the status information from the current operation. During this inquiry,
it is possible to change the status of some of the devices listed on the screen
to prevent the controller from getting caught up in an indefinite status
request mode while the controller on the other end can not respond due to a

malfunction situation.

In order to decrease the number of controllers in the system, some of the lower
level controllers such as the tool setting station controller, or the keyboard
interface controller can be incorporated into the high-level machine tool
controller. The high-level machine tool controller computer has enough
capability to carry out the functions of these controllers especially if the
operations of these controllers are done sequentially rather than parallel to
the functions of the high-level machine tool controller. The trade-off of this
situation is that the software for such a combined controller would be more
complex and difficult to debug and maintain.

COLLET LOOSEN
COLLET TIGHTEN
W HOME
XZ HOME
MAKE PART

: loosen the collet
: tighten the collet
: send w axis to home position
: send x and z axes to home position
: run the NC part program to make the part

3 . SUGGESTIONS FOR FUTURE DEVELOPMENT

71

The TWS

V. ROBOT CONTROLLER INTERFACE

The Robot Controller Interface (RCI) is a microprocessor-controlled device
which allows the workstation controller to communicate with both the robot
controller and the tray station controller by means of a serial communication
line. The robot controller, a Bendix Dynapath System 5A CNC (Computer
Numerical Control)

,
was designed primarily for manual operation. Provisions

were added for external control, but without an interface, the Turning
Workstation controller would need to control and monitor many separate lines in
order to control the robot. The RCI provides the communication between the
Turning Workstation controller and the tray station controller by "passing"
commands from the workstation controller to the tray station controller, and
acknowledgement from the tray station controller to the workstation controller.

1. INTERFACE DESIGN

1 . 1 Overview

The RCI was designed to simplify communication between the workstation
controller and the robot controller. Previously, to control the execution of
individual robot programs, the workstation controller needed to control or
monitor more than a dozen signal lines. This job is now done by the RCI, which
communicates with the workstation controller via a serial (RS232) communication
line (see Figure V.l). When the workstation controller calls for a particular
robot program, the interface takes care of actually calling it up from the

robot controller, freeing the workstation controller of this low-level task.

After the robot program has completed execution, the interface notifies the

workstation controller and waits for the next command.

The RCI performs three main functions. The first is to emulate the keyboard
and switches on the front panel of the robot controller. These are normally
used by an operator to call and execute robot programs. The second is to

monitor the status of the end-of-program line from the robot controller, in

order to know when a program has completed execution. The third function is to

provide an interface between the workstation controller and the tray station
controller. Before a batch of parts is started, the workstation controller
commands a tray to be held in place, and releases it to the robot cart when the

batch is completed.

1 . 2 Control Architecture

The control consists of initiating the robot tasks called for by the

workstation controller and periodically (every 50 milliseconds) reading control

lines from the robot controller and several front panel switches. The RCI

detects completion of a robot task and notifies the workstation controller that

the robot is ready for its next task.

72

73

FIGURE

V.l.

BLOCK

DIAGRAM

OF

THE

ROBOT/TRAY

CONTROLLER

INTERFACE

CONFIGURATION

The TWS

A robot task is initiated by calling the appropriate robot program. The RCI
does this by emulating the robot controller keyboard, using reed relays in
place of the robot controller's pushbuttons. To detect completion of a robot
task, the RCI monitors the appropriate robot controller status signal line.

There is a difference between total robot control and control of the execution
of robot programs. The RCI does not control the movement of the robot or cause
the robot controller to move it in any way other than under control of a

previously entered robot program. Other than that, the only influence the RCI
has over the movement of the robot is to inhibit all motion by activating the

robot controller's Interpolator Enable line.

1 . 3 Electronic Components

The electronic components in the RCI consist of an 8-bit microprocessor (Intel

8031) ,
an Erasable Programmable Read Only Memory (EPROM) with 64K bytes of

memory storage, a number of 8 -bit latches, reed relays and opto- isolators

,

along with various other support components. The 8031 microprocessor has an 8-

bit data line, bidirectional ports, timer/counters, and external interrupt
lines. There are also 128 bytes of volatile memory located on-chip.

Some considerations which went into the choice of a microprocessor for this job
are :

The availability of development tools to debug the initial
prototype

.

Is the microprocessor supported by a high-level language? This

is not necessary, but it does make the writing, debugging, and
documentation of the software easier.

Are the I/O (Input/Output) ports easy to control and manipulate?

What kind of communication is intended between the microprocessor
and (in this case) the workstation controller? Can the

microprocessor accomplish this kind of communication?

Are there enough I/O lines, counter/timers, and interrupts to do

the job?

The Intel 8051 family of microprocessors is supported by PLM-51, which is a

high-level language, as well as development tools for developing, testing, and

debugging the design.

The I/O lines have byte or bit control capability, making them easy to use for

this design. A serial communication port is included in the microprocessor

making serial (RS232) communication with the workstation controller an easy

task. No external interrupt lines were needed, but two timers were necessary -

one to set the serial communication baud rate, and the other to set the cycle

time for the updating and sampling routine.

74

The TWS

There were not enough I/O lines to handle the large number of input and control

signals, so 8-bit latches (74LS373) were used and multiplexed onto the 8-bit

data bus of the microprocessor.

The RCI program is contained in approximately 3 kilobytes of memory and is

stored in the 64K EPROM. The 8-bit latches (74LS373) are used to latch
incoming information for the microprocessor to read and to latch outgoing
information from the microprocessor to the robot controller. The reed relays
are used to simulate the pushbuttons, rotary switches, and toggle switches on

the robot controller. Electrically, the relays are in parallel with the robot
controller switch contacts. The opto- isolators are used to translate the

voltage levels between the RCI (5-volt logic) and robot controller (24-volt
logic)

,
as well as for protection against damaging voltage spikes on either

side

.

The implementation of the RCI to the robot controller is conceptually
straightforward. The switches on the robot controller, including the keyboard,
toggle, rotary and other pushbutton switches, are grouped together with eight
or less to a group. Each group is sampled by the robot controller in turn -

that is, each group has its own time slot within which it is monitored for any
change in switch status. The total sample time is approximately 50

milliseconds

.

When a switch is manually activated, the robot controller infers which group
the switch belongs to by knowing the time slot that the active signal occurred
in. The particular switch is then known as a specific one of eight within that
group

.

Ideally, an interface device would monitor the robot controller as closely as

possible to its (the robot controller's) microprocessor. If it was possible to

"tap in" to the robot controller's data and control bus, control could be done
entirely electronically. Another benefit would have been very reliable
checking, due to feedback on the data and control lines, of the currently
requested robot programs. Unfortunately, this approach did not prove feasible
due to a lack of robot controller software documentation.

The alternative decided upon was an electromechanical (reed relay) interface
which mimics the robot controller switches. This method is implemented by
severing the appropriate switch sampling lines. The relays are inserted in a

fashion which provides two main modes of operation. The default is the
transparent mode. The reed relays are configured such that in their normal
state the robot controller operates in its usual, manual mode. The RCI is

transparent - it does not affect the operation of the robot controller. In the
second mode, the robot controller switches are disabled, and the RCI reed
relays emulate the appropriate switches and controls, thus controlling the

signals which the robot controller receives internally.

75

I

The TWS

1 . 4 Software

Software for the RCI is written in PLM-51, a high-level language for the Intel
8051 family of microprocessors. The program is linked with the PLM-51 library,
compiled and stored in an EPROM, occupying approximately 3000 bytes of code.

PLM is a structured language, and the program is written mainly as a series of
procedures. These procedures define the commands, relay combinations, time
lengths for contact closure, status and error messages and the serial
communication scheme. The main program loop ties everything together by
checking flags and calling the appropriate procedures. The software also keeps
track of the mode of operation, selected by switches on the front panel of the
RCI. Whenever the RCI is in control of the robot, the robot is disabled,
unless explicitly enabled by a move command from the workstation controller.
This is designed to prevent the robot from moving unexpectedly for any reason.

There are two interrupt procedures. Both are called by internally generated
interrupts. One interrupt is generated when a data flow is detected into or

out of the microprocessor's serial port register. This occurs when the RCI is

either sending or receiving serial communication. The other interrupt is

generated when a timer (within the microprocessor) overflows. This timer is

preloaded with a value which causes it to overflow every 5 milliseconds. When
this overflow interrupt occurs, it causes program execution to exit the main
loop and begin the timer interrupt procedure. This procedure directs the

nicroprocessor to take readings of the various inputs to the RCI, and update
he output relays and program variables. At the end of the interrupt
•ocedure, program execution jumps back to the main loop and continues where it

left off, but with updated information.

Generally, the process begins at power-up (or reset) with a setup procedure
which disables robot motion, initializes all registers and control variables,
and configures all of the relays and output lines so that the RCI seems
transparent to the robot controller. This includes loading the internal baud
rate timer and the 5 millisecond timer (above) with the proper values, setting
the interrupt priorities in case they both occur at the same time, configuring
the serial communication register, and finally, starting the timer and enabling
the interrupts.

When the setup routine is completed, the program begins executing the

repetitious main loop, jumping out temporarily because of a timer overflow
interrupt (every 5 milliseconds) or a serial communication interrupt.

Whenever the workstation controller sends a command to the RCI, the characters

of the command are stored, character by character as they are received, in a

buffer area of memory. Each time a character (i.e., a letter or a control

character) is received by the microprocessor's serial communication register,

an interrupt ("serial interrupt") is generated. When this happens, execution

temporarily jumps from the main loop to the serial interrupt procedure. Here,

they are placed, as they are received, into a buffer area until the complete

command is assembled. Since the characters are being transmitted at a rate of

76

The TWS

1200 baud, there is plenty of time for the microprocessor to return execution
to the main loop until the next character is received and generates another
interrupt. The incoming command is complete when a carriage - return character
("CR") has been received. The interrupt procedure places the complete command
in a command buffer and sets a "command pending" flag, to be read in the main
loop. After execution jumps back to the main loop and this flag is found to be

set, a procedure is called to determine which command it is and how to respond
to it. If it is an unrecognized command, an error message is generated, and

sent to the workstation controller. This command-handling procedure also
determines what numeric parameter, if any, was sent with the command.

Each command has its own sub -procedure . The current command (including numeric
parameters, if present) is matched with the correct sub -procedure

,
or command

procedure. These command procedures first call another procedure to send an
acknowledgement character back to the workstation controller. This
acknowledges that the command has been received. Another character will be
sent (later) upon completion of the action called for by the workstation
controller. The procedure then checks for out of limit numeric parameters, and
sends an error message if necessary. If there are no error conditions, the
command procedure then calls other procedures to complete the action, then
jumps back to the main loop.

2 . OPERATION

There are three modes of operation, as described below. The local mode is used
primarily for test and diagnostic purposes. A terminal, instead of the
workstation controller, is used to enter commands which change parameters and
monitor status, as well as control robot program execution. The remote mode is

used during automated operation with the workstation controller. In this mode
there are normally only a few different commands sent from the workstation
controller to the RCI. When either the remote or local mode is selected, robot
motion is automatically inhibited unless explicitly commanded otherwise. The
transparent mode is used when the robot controller is being operated manually,
as when "teaching" new positions to the robot. In this mode, the RCI is

completely transparent to the robot controller, and robot motion is not
inhibited.

2 . 1 Local Operation

2.1.1 Setup Requirements

An RS232 terminal is used for local control and operation of the RCI. Incoming
data is received by the RCI on line 2, and data is sent to the terminal over
line 3. Line 7 is used as the signal ground, as is standard. The terminal
should be set to full duplex mode, no parity checking, and with a baud rate of
1200. In local mode, the characters are echoed back to the terminal, and a

carriage return/line feed response is included.

77

The TWS

2.1.2 Commands and Responses

The RCI commands are listed below. The ENTER (or carriage return) key must be
pressed to complete each command, as the software looks at it before setting
the "command pending" flag in the program loop. If the command includes
numeric parameters, they are indicated within < >. The standard response to

any command from the workstation is a "b" (for "busy") upon receipt of the
command, and an "r" (for "ready") after completion of the command. For the two

tray station controller commands, however, the responses are "bt" and "rt"

,

respectively. This is to distinguish the tray station status from the robot
status. In local mode these character responses are each followed by a line
feed (LF) and a carriage return (CR)

.

In the following discussion, the quote marks shown are not included with the

command, nor are the blank spaces. For example, "b LF CR" is actually sent
bLFCR, and "td CR" is entered tdCR.

cr CR Control Reset

This command activates the Control Reset switch on the robot controller.
Control Reset clears the robot controller of the current robot program, and is

activated prior to a new program call. The response to this command is a "b LF
CR" upon receipt and a "r LF CR" after completion.

cs CR Cycle Start

This command activates the Cycle Start switch of the robot controller. Cycle
start is used, after a robot program is called to begin execution. It is also
used to resume execution during the program if a Motion Hold has been
activated. The response to this command is a "b LF CR" upon receipt and a "r

LF CR" after completion.

ec <0 or 1> CR Echo

This command sets or resets the ECHO flag. When the ECHO flag is set (1) ,
as

it would be for local operation, the command sent to the programmable stop is

echoed back to the terminal screen, with a LF (line feed) character. When
reset (0)

,

there is no echo or LF. The response to this command is a "b LF CR"

upon receipt and a "r LF CR" after completion.

lm <0 or 1> CR Latch Monitor

This command is used as a diagnostic in the Local Mode to monitor the state of

the input latch lines. When activated (with a "1") a binary string is

displayed on the terminal, indicating the state of each individual input line.

The binary string will change to reflect input line changes. The response to

this command is a "b LF CR" upon receipt and a "r LF CR" after completion.

78

The TWS

mh CR Motion Hold

This command activates the Motion Hold switch of the robot controller. Motion
Hold is a temporary halt of robot motion and program execution. Both are

resumed with the activation of Cycle Start. The response to this command is a

"b LF CR" upon receipt and a "r LF CR" after completion.

rt <1 through 999> CR Robot Program Call

When this command is received, a series of actions is performed, resulting in a

robot program being called and its execution begun. A robot controller "end of

program" signal is monitored by the RCI. When this signal is detected, robot
motion is inhibited. The response to this command is a "b LF CR" upon receipt
and a "r LF CR" after completion.

sg <0 through 35> CR Signal lines

This command is used as a diagnostic in the Local Mode to test the individual
output lines. The specified output signal is pulsed. The response to this
command is a "b LF CR" upon receipt and a "r LF CR" after completion.

st CR Start

This command is a software reset and is used to initialize all registers and
inhibit robot movement. The response to this command is a "r LF CR" after
completion.

tr <1 or 2> CR Tray Request

This command activates the Request line for Tray 1 or Tray 2. This is done
prior to starting a batch of parts in the turning center. The robot cart is

thus prevented from changing or moving the tray, as the robot will be picking
up blanks and dropping off finished parts to it. The response to this command
is a "b LF CR" upon receipt and a "r LF CR" after completion.

td CR Tray Deactivate

This command frees the tray from control of the turning center, and allows
access to it by the robot cart. The command is typically sent after the

turning center has completed a trayful of parts. This command is not specific
to the tray number, though it can be made so. As is, it deactivates all trays.
The response to this command is a "b LF CR" upon receipt and a "r LF CR" after
completion.

2 . 2 Remote Operation

2.2.1 Setup Requirements

Remote operation entails communication with, and control by, the workstation
controller. The setup requirements are similar to those for local operation

79

The TWS

(above). The baud rate is set at 1200, and a standard 25-pin D- subminiature
(RS232) connector is used. Data to the workstation controller is transmitted
on line 3, data is received on line 2 and line 7 is signal ground. Remote
operation differs from local operation in that there is no character echo back
to the workstation controller, and the LF character is not included in the
responses

.

2.2.2 Commands and Responses

The RCI commands used in remote operation, listed below, are a subset of the

commands available for use in local mode. Again, the CR character must follow
the command, and the spaces and quotes are not included. The responses, "b"

and "r"

,

are the same also, except the LF character is not included. For the
two tray station controller commands, however, the responses are "bt" and "rt",

respectively. This is to distinguish the tray station status from the robot
status

.

cr CR Control Reset

This command activates the Control Reset switch on the robot controller.
Control Reset clears the robot controller of the current robot program, and is

activated prior to a new program call. The response to this command is a "b

CR" upon receipt and a "r CR" after completion.

cs CR Cycle Start

This command activates the Cycle Start switch of the robot contro-ller. Cycle
start is used, after a robot program is called to begin execution. It is also
used to resume execution during the program if a Motion Hold has been
activated. The response to this command is a "b CR" upon receipt and a "r CR"

after completion.

mh CR Motion Hold

This command activates the Motion Hold switch of the robot controller. Motion
Hold is a temporary halt of robot motion and program execution. Both are

resumed with the activation of Cycle Start. The response to this command is a

"b CR" upon receipt and a "r CR" after completion.

rt <1 through 999> CR Robot Program Call

When this command is received, a series of actions is performed, resulting in a

robot program being called and its execution begun. A robot controller "end of

program" signal is monitored by the RCI. When this signal is detected, robot

motion is inhibited. The response to this command is a "b CR" upon receipt and

a "r CR" after completion.

80

The TWS

st CR Start

This command is a software reset and is used to initialize all registers and

inhibit robot movement. The response to this command is a "b CR" upon
receipt and a "r CR" after completion.

td CR Tray Deactivate

This command frees the tray from control of the turning center, and allows

access to it by the robot cart. The command is typically sent after the

turning center has completed a trayful of parts. This command is not specific

to the tray number, though it can be made so. As is, it deactivates all trays.

The response to this command is a "bt CR" upon receipt and a "rt CR’' after
completion.

tr <1 or 2> CR Tray Request

This command activates the Request line for Tray 1 or Tray 2. This is done
prior to starting a batch of parts in the turning center. The robot cart is

thus prevented from changing or moving the tray, as the robot will be picking
up blanks and dropping off finished parts to it. The response to this command
is a "bt CR" upon receipt and a "rt CR" after completion.

2 . 3 Transparent Mode Operation

2.3.1 Setup Requirements

When the RCI is in transparent mode it has no effect on the operation of the
robot controller. A switch on the front panel of the RCI selects this mode of
operation. When selected, commands sent to the RCI either locally (a terminal)
or via the workstation controller are recognized. This mode does not
automatically inhibit the motion of the robot, as do the local and remote
modes

,
above

.

3. SUGGESTIONS FOR FUTURE DEVELOPMENT

One drawback of the switch emulation approach to control is the lack of
feedback. When the RCI receives a command from the workstation controller to

begin execution of a certain robot program, the correct switches are activated
via relays! Aside from visual confirmation (the robot controller CRT screen),
there is no way of knowing in advance which program the robot is going to

execute

.

In order to know this, the robot controller's data and control lines would have
to be monitored. Any accessible feedback would, at best, confirm that the
robot controller received the intended signals, but not if the robot was about
to execute the correct program.

81

The ,TWS

The idea devised to work around this problem was to prefix each robot program
with a unique binary number. When program execution began, the number would be

decoded and the execution halted if it was not correct. This was not
implemented, however, due to time constraints.

Another improvement to the RCI could be a real-time clock connected to the data
bus. This would enable the RCI to list or keep track of many possible events.

Failures, down time, or even a simple log of all transactions for a certain
period of time would be a valuable diagnostic tool.

82

The TWS

VI. ROBOT GRIPPER

In general, end effectors are designed with a specific task in mind and are
consequently inflexible in use. To compensate for this, mechanisms have been
designed to allow the robot to exchange one end effector for another. However,

a large inventory of specialized end effectors can become quite expensive. At
the Turning Workstation a single end effector, or gripper, was developed to

handle a variety of tasks. This flexibility is achieved by changing individual
gripping components, or fingers, rather than the entire gripper, which results
in a much simpler and cost-effective operation. The gripper also utilizes two

jaws instead of one, in order to minimize the transferring time. Other
features of the design include a high grip-force-to-weight ratio and a high
structural rigidity. The purpose of the gripper is to hold tools, collets, and
workpieces while the robot transfers them to and from the machine tool.

1. DESIGN OF THE ROBOT GRIPPER

1 . 1 Overview

The gripper was designed to satisfy several requirements without exceeding
certain physical constraints. The main constraint is due to the robot
specifications on payload. The maximum payload allowable by the robot is 50

pounds and yet the gripper is required to hold objects up to 30 pounds.
Therefore, the gripper was designed with high power- to-weight ratio air motors
and light-weight aluminum structural components. One of the major requirements
is for the gripper to handle workpieces in a variety of shapes and sizes. To
achieve this flexibility each gripping finger can be easily removed and
exchanged for a finger of different shape and capacity. In addition, the

gripper is required to hold up to two workpieces at once, and be able to remove
a workpiece from the collet and insert the opposite end without any
refixturing. These latter two requirements are designed to minimize transfer
time and maximize machine utilization. Because the workpieces that are removed
and reinserted may extend from the collet by as little as 0.5 inch, it is

necessary for the gripper to have a very narrow profile.

During tool changing, the gripper cannot be fully opened because of the space
constraint at the tool turret. Therefore, the position of each finger must be
controllable throughout the entire range of travel, which was accomplished
through the use of encoder feedback. Also, due to very small clearances
between the workpiece and the collet, it is necessary for the center of the
gripping action to be repeatable to within 0.002 inch.

The gripper controller is a microcomputer-based system designed to control the
operation of each jaw independently. The 8751 microcomputer has built-in
random- access memory (RAM) for temporary data manipulation and erasable
elec'trically-programmable memory (EPROM) for system program storage. The 8751
was chosen because it is best suited for development application requiring

83

The TWS

field updates. The microcomputer actuates the pneumatic motor to control the
opening and closing of the gripper, while it closes the servo loop by reading
the encoder for position feedback. The power supply and circuit board,
containing the microcomputer and associated electronics, are contained in a

chassis installed in the main control rack. The gripper controller
communicates with the workstation controller or a higher- level controller
through an RS232C serial port.

Since the controller was designed for the sole purpose of controlling the
gripper, a massive operating system was deemed unnecessary. The software for
the controller was written in PL/M, a highly structured programming language
for microcomputers. The software is written in a modular fashion for ease of
expansion.

1 . 2 Control Architecture

The gripper control is operated in a real-time mode; that is, the gripper
controller responds to commands in the form of interrupts. When the controller
receives a command through the serial or parallel interface, it executes a

particular software procedure to accomplish the task. Once the task is

completed, a status (ready) signal is returned to the higher level controller.
An error signal and an error code are returned if a faulty condition exists.
Commands from the higher- level controller are interpreted and executed one at a

time. While one command is processed, additional commands are stored in a

queue. These queued commands are served on a first- in- first-out (FIFO) basis.
The gripper jaw can be opened completely, closed completely, or positioned to a

certain commanded position. The 'maximum opening of the jaw is determined by
proximity sensors and the jaw position feedback is determined by counting
encoder pulses.

1 . 3 Mechanical Components

The robot gripper consists of three principal aluminum structural components:
the frame, the hands, and the fingers. The frame consists of two tubes

connected longitudinally with a center web as shown in Figure VI . 1 . Each hand
is made to straddle a tube and uses the outer surface of the tube as a rail to

slide on. A sleeve bearing is mounted between the hand and tube to prevent
scoring of the tube surface and to reduce friction. Four hands are used
altogether and are paired to form a single jaw for each tube. The fingers are

attached to the hands and are the only components that actually come into

contact with the workpiece. The term "workpiece" here refers to blank or

machined parts, turret tools, or spindle tools.

Since two sets of fingers alone would not be able to handle such a large

variety of workpieces, it was necessary to develop a method for the automatic

exchange of fingers. Each finger mates with a hand via a dovetail slide. The

female section of the dovetail is machined into the hand parallel to the tube

axis. This type of configuration is important for two reasons. First, the

wedge shape of the dovetail forces a pair of fingers to remain co-planar as a

load is applied. Thus, the plane of the gripping action remains constant while

84

Mnger

n

o d)

c
<D

Ul

O

85

FIGURE

VI.l.

GRIPPER

CONSTRUCTION

The TWS

the center point of the gripping action changes due to the finger deflection by
only a cosine error. Second, the dovetail arrangement allows the robot to

easily exchange two fingers at one time with the help of a special fixture.
The fixture is a rectangular plate with four aligned pegs extending from one
face of the plate. Two pegs engage and hold one finger in place while the hand
moves to detach itself from the finger. The basic finger changing operation
consists of first positioning the gripper near the fixture with the jaw
completely closed. Then the pins engage the fingers and hold them in position
while the jaw opens leaving the fingers behind. The operation is then reversed
to insert a new set of fingers.

The jaws are actuated via a ball screw and air-motor drive system. The ball
screws are precision ground with a lead of 0.1 inch. Two separate helixes on
either end of the ball screw are opposite in direction so that, as the ball
screw turns, the jaws either open or close. One air motor is mounted inside
each tube and is connected to the ball screw through a gear linkage. The air
to the motor is controlled by a solenoid-powered direction control valve
mounted separately from the gripper. A flexible bellows covering is used to

protect each ball screw from contamination. This drive system is capable of
exerting a closing force of 1000 lbf at an air pressure of 100 psi.

The position sensing system that determines the size of the jaw opening
consists of three proximity sensors and an eight-pinned gear for each jaw. The
gear mounted on the air motor has eight pins evenly spaced around the gear at a

fixed radius. Two sensors are mounted so that as one pin crosses their path,

one sensor sends a pulse back to the controller which is 180 degrees out of

phase with the second pulse. The controller keeps track of the number of
pulses being received and derives the jaw opening based on a "home'' position.
The home position is determined by opening the jaw until a third proximity
sensor, mounted on the gripper end plate, is triggered. This configuration
allows for a resolution of 0.0125 inch over the full 5.9 inches of travel range
of each jaw.

1 . 4 Electronic Components

The heart of the electronic hardware is an 8 -bit 8751 single -component
microcontroller. The 8751 is a control-oriented computer that has an on-chip
128 bytes of data memory and 4K bytes of program memory. The control program
is stored in UV- light erasable electrically programmable ROM. The

microcontroller has four 8-bit parallel ports for I/O operations. Each bit in

the ports is also individually addressable. In addition, the 8751 contains two

16 -bit counters for measuring time intervals, measuring pulse widths, counting
events and generating precise, periodic interrupt requests. It also has a

serial I/O port configured in full-duplex mode to facilitate communications
with a standard CRT terminal or other controllers. As well as communicating to

other devices through the serial RS232C link, it can also communicate through

single-bit parallel lines. A schematic diagram of the gripper controller is

shown in Figure VI . 2

.

86

jHHDhrlhL

g
c

o

LU
X
o

LU
o<
U_x

i||M 2 2
>
IT)

+

LU
CO o
LU CM <X CO Li-

Lg CM ce
LU

_l CO

CO
X

1
—
X

t i k M I k

1
ffl

,

i a. 1

Lis l(f

5
co

ffl

CL

?

syosNas Nansod

87

FIGURE

VI.2.

SCHEMATIC

DIAGRAM

OF

THE

GRIPPER

CONTROLLER

The TWS

1 . 5 Software Components

The software program is written in a high-level language, PLM, which allows for
modularity, flexibility, and maintainability. The system program is composed
of six main modules: initialization, command handler, interrupt handler, output
and status handler, command driver, and the main control loop. Each main
module contains a number of procedures to perform smaller functions.

The initialization module contains procedures to set up all the parameters for
interrupt, serial port, parallel ports, defaulted force value, etc. The
command handler decodes ASCII commands and interprets the command for proper
procedure execution. The interrupt handler module sets different levels of
interrupt to take care of the serial I/O, the position feedback pulse counters,
and the control cycle. The output and status handler module consists of
procedures that buffer characters for outputting, output ASCII characters, and
output the status of the gripper. The command driver module activates the

motor to stop and start, to position the gripper finger opening, and to reset
the gripper. The main control loop module checks various limit switches, time
out conditions, and position counter readings for controlling the overall
operation of the gripper.

2. OPERATION OF THE DEVICE

2 . 1 Setup Requirements

setup requirements for the gripper controller are quite simple,
mnication is carried out through a 1200 baud serial link. On power up, the

gripper automatically opens both jaws until the proximity sensor is triggered.
At this location the encoder counters are set to zero and the gripper
controller is ready to accept commands.

2 . 2 Operation Mode

The gripper can be operated in either remote or local mode, with remote mode as

the default on power up. In remote mode, the gripper controller is connected
to a workstation controller via an RS232C link. In the local mode, the

operator communicates with the gripper controller via a CRT terminal. To view
comments sent to the gripper controller on the CRT terminal, an echo mode
command must be sent to the controller.

Both remote and local modes operate under similar conditions and sets of

commands, and all of the responses are the same. Three basic commands are used

to control jaw positioning. One command closes a jaw until the motor stalls,

another opens a jaw until the limit switch is triggered, and the third is used

to position the jaw at a prescribed opening. In addition, other commands are

used to request status, perform a software reset, and echo commands back to the

workstation controller or operator terminal.

88

The TWS

The commands and their respective formats are:

0 <n> CR

open gripper #n, where n is an ASCII character 1 or 2, and CR means

carriage return;

C <n> CR

close gripper #n, where n is an ASCII character 1 or 2 ,
and CR means

carriage return;

P <n> XX CR
position gripper finger #n to an opening of XX millimeters, where XX are

ASCII characters;

S <n> CR

request status of gripper #n;

E <1> CR

put gripper controller serial link in echo mode;

E <0> CR

put gripper controller serial link in nonecho mode;

R <n> CR

software reset gripper #n.

The responses to these commands include ready and busy signals when the

controller is ready to receive a command or is busy executing one. An error
condition response informs either the workstation controller or operator
terminal which jaw the error has occurred on and what type of error has
occurred.

The responses and their respective formats are:

R <n> CR

gripper #n is in the ready mode, and CR means carriage return;

B <n> CR

gripper #n is in the busy mode;

89

The TWS

E <n> X CR

gripper #n is in the error mode, where X is the error code in ASCII
characters as follows:

X=*0
,
illegal command;

X-l, part dropped from gripper;
X=2

,
bad encoder counts

;

X=3
,
gripper is opened wider than commanded;

X-4, tried to open, but won't move;
X-5

,
bad limit switch;

X=»6
,
gripper is stuck;

X-7
,
tried to close, but won't move.

3. SUGGESTIONS FOR FUTURE DEVELOPMENT

Originally, force control of the gripper was thought possible by varying the

air pressure to a pneumatic motor. However, due to the varying starting- torque
characteristic of turbine- type pneumatic motors, predictably accurate force
control could not be obtained. Pneumatic motors posed another problem: if not
maintained properly by adding oil to the air supply line for lubrication, the

motor eventually jams up. A good alternative would be high- torque DC brushless
motors which require no maintenance. Although expensive, this type of motor
can be easily designed into a closed-loop control configuration and thus
provide accurate force control. With closed- loop sensing of the current
through the DC motor, force control of the gripper fingers can be implemented
without extra sensors like strain gages or pressure-sensitive sensors on the

gripper fingers. Additionally, a position device is needed in a closed-loop
control system to close the position loop. Proximity sensors are currently
used for position feedback, and could be eliminated because the Hall effect
sensors used in the DC brushless motors to supply commutation for the motor
controller can also be used for encoder- type position feedback.

90

The TWS

VII. PROGRAMMABLE STOP

The programmable stop is a microprocessor-controlled device used to provide a

reference stop point for parts in the turning center and to push collets out

of the spindle for removal by the robot. It is mounted behind the spindle in

the turning center and uses a motor to drive a ballscrew into and out of the

spindle

.

1. PROGRAMMABLE STOP DESIGN

1 . 1 Overview

The implementation of a reference stop as a microprocessor-controlled, motor-

driven leadscrew device allows for a compact, simple design which performs two

functions. The first function is that of an adjustable, or programmable,
reference stop for parts being machined in the turning center. Before the part
blank is inserted into the collet, the programmable stop is sent out to a

location specific to that part and operation. After the part blank is inserted
by the robot

,
it is pushed to its final position against the end of the

programmable stop. The collet is then closed, clamping the part in its correct
position, and the programmable stop is backed away so it does not come into

contact with the part (the part spins at high speed - the end of the

programmable stop does not) . The programmable stop is likely to be needed
again to set the location of the part when the other side is machined.

The second function of the programmable stop is to push out loosened collets
for pickup by the robot. Even after a collet has been loosened, there is

enough friction to make it difficult for the robot to withdraw it smoothly. To-

alleviate this, the programmable stop is used to push the collet partly out of
the spindle, past the point of binding, for the robot to remove. This also
guarantees the robot a repeatable pick-up point for the collet.

Mechanically, the programmable stop consists of a ballscrew inside the spindle
of the turning center, and is belt-driven by a servo motor. The end of the
ballscrew closest to the face of the spindle is designed to be used as a

reference stop for parts, and to push out collets and finished parts for robot
pick-up. It has a linear travel of approximately seven inches. An incremental
encoder linked to the ballscrew provides position information. .

In addition to the microprocessor and support circuitry, the programmable
stop's controller system consists of an incremental encoder for position
feedback and a motor driven by a commercially obtained motor controller. The
controller software is stored in EPROM and is written in PLM-51, a high-level
language written for the 8051 family of Intel microprocessors. The software is

composed of different routines used for position control, error checking, and
communication with the workstation controller.

91

The TWS

1 . 2 Control Architecture

The programmable stop is operated by using a basic servo-control algorithm.
Upon receiving a position command from the workstation controller, the
ballscrew is driven by the servo-motor in the appropriate direction. The
incremental encoder is read and the counts are added or subtracted from the
current position count until the correct position is reached. The motor is

then stopped and the position is held.

The implementation of the programmable stop servo-control algorithm is

accomplished by two feedback loops. An inner feedback loop consists of the
motor, tachometer, and motor controller. An outer loop consists of the motor
controller, an incremental position encoder, a D/A (digital- to-analog)
converter, and a microprocessor.

The inner loop controls the speed and direction of the motor based on the

command and tachometer signals to the motor controller. The motor controller
(which was commercially obtained) outputs a high-voltage PWM (pulse-width
modulated) signal to the motor. Based on the feedback from the tachometer
(which is attached to the motor) and the command signal input, the motor
controller varies the speed and direction of the motor.

The incremental encoder in the outer loop is directly linked to the motor, and
is used to precisely count the number of motor revolutions, and thus the linear
travel of the programmable stop. The encoder has a resolution of 2048 parts
per revolution, and there is a 7:1 turns ratio between the motor/encoder and
the ballscrew. Further, one revolution of the ballscrew translates into 0.1
inch of linear travel for the programmable stop. Thus, one revolution of the

motor translates into approximately 0.014 inch of travel of the programmable
stop, with a theoretical resolution of less than ten microinches.

The microprocessor keeps track of the number of counts from the encoder and
compares this number to the destination number. When the destination is

reached, the microprocessor sends a value to the D/A converter which
corresponds to a voltage of zero. This zero voltage (at the output of the D/A)

is the command signal, which is sent to the motor controller and stops the

motor. To move the ballscrew forward or back, a non-zero voltage of the

correct polarity (determined by the microprocessor) is sent from the D/A
converter to the motor controller.

The number of encoder counts is relative to a "home" position, which is

determined by a limit switch. Home position is determined automatically
whenever the power to the microprocessor circuitry is turned on; it can be

reset at any other time.

1 . 3 Mechanical Components

An illustration of the mechanical components is shown in Figure VII. 1. The

mechanical components of the programmable stop are a 0.1 inch pitch ball screw

(1) which is driven by a DC servomotor (2) through a 7.2:1 timing pulley drive.

92

93

The TWS

The ball screw drive actuates a shaft (4) which is housed in a nonrotating,
linear bearing (5). The shaft has a total travel of about 7 inches. The tip of
the shaft is loaded with a stiff spring (not shown) to give it the compliance
needed when the drawbar is closed. An 11-bit encoder (6) is coupled directly
to the DC motor to avoid any backlash problems.

1 . 4 Electronic Components

The electronic components in the programmable stop controller (illustrated in

Figure VII. 2) consist of the microprocessor and its peripherals, an
incremental -position encoder, the motor/tachometer unit, and the commercially
obtained motor controller. There are also various switches and relays.

An Intel 8031 microprocessor is used for control. It has an 8 -bit data bus,
bidirectional ports, a serial communication port, timer/counters and external
interrupt lines. There are 128 bytes of volatile memory on the 8031 for
temporary storage, and program memory is stored in an EPROM (Erasable
Programmable Read Only Memory). A 12-bit D/A converter, the AD567, converts
the digital command from the microprocessor to a voltage command signal which
is sent to the motor controller. A low offset operational amplifier (AD544) is

used to buffer the output of the D/A converter.

The encoder used is an 11-bit absolute encoder. To simplify the design, and
because of alias problems, the encoder is used as an incremental encoder by
looking only at the least significant bit (LSB) line.

The motor employed is a permanent -magnet DC servo motor supplied with a

tachometer. It will maintain a continuous torque of 35 ounce -in and a peak
torque of 260 ounce- in.

The motor controller is a linear servo controller and is capable of supplying
+/- 5 amperes of continuous output current to the motor. It accepts feedback
from the motor tachometer and a control voltage from an external source; in

this case the microprocessor control circuit. The motor controller also has an
externally controlled motor shutdown line. This line is controlled by the

microprocessor and is independent of the command voltage. The controller also

has adjustments for gain, current-limiting, and balance. One micro-switch is

used for setting home position, another is used as an end-of- travel limit
switch (the motor is turned off when the switch is activated), and a relay is

used by the microprocessor to activate the remote shutdown line on the motor

controller

.

Microprocessor control is implemented using the 8031 microprocessor with an

8192 (8K) byte EPROM for program storage. The incremental encoder information,

the D/A input, and the assorted status and control lines are all multiplexed
onto the 8 -bit data bus of the 8031. The voltage output of the D/A converter

controls the direction and speed of the ballscrew motor through the commercial

motor controller.

94

95

FIGURE

VII.2.

FUNCTION

BLOCK

DIAGRAM

OF

THE

PROGRAMMABLE

STOP

CONTROLLER

The TWS

When the power to the programmable stop controller is applied, the
microprocessor sends the stop to its home position. This is done by causing
the ballscrew to rotate in the direction which moves the stop away from the
machining area. In the following discussions, "forward" will refer to the
programmable stop moving toward the cutting tool in the machining area; "back",
"reverse" or "toward home position" will refer to the stop moving away from the
machining area.

The home position is determined by a limit switch. When the stop is fully
retracted, the switch is contacted. During the travel toward home position,
the encoder is ignored. Instead, the microprocessor uses one of its external
interrupt lines to detect the closing of the home limit switch. As soon as

this is detected, the microprocessor directs the motor to stop. After a brief
pause, the motor is directed to turn the ballscrew a fixed number of
revolutions to move the stop forward. This moves the stop off the limit switch
and it is from this point that the encoder counts are referenced. This process
can also be initiated manually by a reset button or by a software command.

The microprocessor communicates with the workstation controller over a serial
(RS232) link. When the programmable stop controller receives a command from
the workstation controller to move the stop to a certain position, the number
of encoder counts necessary to move from the present position is calculated.
The motor is moved in the proper direction (the present position may not be
home) and the encoder is monitored. When the programmable stop is within one
ballscrew revolution of the destination, the motor is slowed, then stopped at
the destination. The remote shutdown is activated, disabling the motor. The
remote shutdown circuitry is designed so that the normal state is for the motor
to be disabled. The remote shutdown relay in its normal state (i.e., inactive)
will disable the motor drive. In order to enable the motor drive, the remote
shutdown relay must be activated. This was done as a precaution against an
unforeseen runaway situation with the motor.

If, through error or other circumstance, the stop continues too far forward,
then it will contact an overtravel limit switch. This switch is connected
through a relay with the remote shutdown input of the motor controller, and the

motor will stop.

1 . 5 Software Components

PLM-51, a high-level language for the Intel 8031 microprocessor, was used in

writing the programmable stop controller software. The program is linked with
the PLM-51 library, compiled and stored in EPROM, occupying approximately 3000

bytes of code.

PLM is a structured language, and this program is written mainly as a series of

procedures. Each procedure defines a particular command, sequence of actions,

or interrupt routine. The main program loop ties everything together by

checking flags and calling the appropriate procedures.

96

The TWS

The control software has a real-time control structure. The status of the

programmable stop is checked continuously and a routine is used to implement
serial communication. Within the program there are three interrupt procedures.
One of the microprocessor's external interrupts is used to detect the closing
of the "home" switch. Another interrupt is activated when the encoder pulse
counter overflows. The third interrupt detects data flow into and out of the

microprocessor's serial port register. When any of these interrupts are

activated, the program control immediately jumps to the appropriate procedure
for that interrupt. Among the necessary actions taken within the procedure is

the setting of certain flags. When the interrupt procedure is completed,
program control jumps back to the main program loop to continue where it left
off. The flag or flags that were changed during the interrupt procedure are
checked during the completion of that loop or the next one, and appropriate
action is taken.

An example of an interrupt procedure is illustrated in the following. If a

command was sent by the workstation controller to the programmable stop
controller, a serial I/O (input/output) interrupt would be generated. Among
other things, the serial interrupt procedure would set a "command pending"
flag, which, when read during the main program loop, would initiate a routine
to identify which command was sent, and how to respond to it.

The control program, in general, begins at power up with a setup procedure
which disables the motor and initializes all variables and control registers.
Next, flags are set, which, when checked in the main loop, will direct the stop
to be brought back to the home limit switch in order to set the home position.
The home set routine occurs only once at each power up, and the remainder of
the program is a repetitive loop.

Flags are checked to determine if a character in the output buffer is waiting
to be sent (a response to the workstation controller, for example) or if there
is a command pending. The proper motor speed and direction are determined, and
the encoder counter status is checked to see if the stop is getting close to

its destination. Finally, the D/A converter is updated, and the proper
polarity and magnitude control signal is sent to the motor controller.

2. OPERATION OF THE PROGRAMMABLE STOP

2 . 1 Local Operation

2.1.1 Setup Requirements

An RS232 terminal is used for local control and operation of the programmable
stop. Incoming data is received on line 2, and data is sent to the terminal
over line 3. Line 7 is used as the signal ground, as is standard. The
terminal should be set to full duplex mode, no parity checking, and with a baud
rate of 1200. In local mode, the characters are echoed back to the terminal,
and a carriage return/line feed response is included.

97

The TWS

2.1.2 Commands and Responses

The programmable stop commands are listed below. The ENTER (or carriage
return) key must be appended to complete each command, because the software
looks for it before setting the "command pending" flag in the program loop. If
the command includes numeric parameters, they are indicated within < >. The
standard response to any command from the workstation is a "b" (for "busy")
upon receipt of the command, and an "r" (for "ready") after completion of the
command. In local mode, these character responses are each followed by a line
feed (LF) and a carriage return (CR)

.

In the following discussion, the quotation marks shown are not included with
the command, nor are the blank spaces. For example, "b LF CR" is actually
sent bLFCR

,
and gh CR is entered ghCR.

ec <0 or 1> CR Echo

This command sets or resets the ECHO flag. When the ECHO flag is set (1)

,

which it would be for local operation, the command sent to the programmable
stop is echoed back to the terminal screen, with a LF (line feed) character.
When reset (0)

,

there is no echo or LF. The response to this command is a "b

CR LF" upon receipt and a "r CR LF" after completion.

gh CR Go Home

This command sets a flag which causes the stop to move back to the home limit
switch and initialize home position. The response to this command is a "b CR

LF" upon receipt and a "r CR LF" after completion.

gl <0 to 535> CR Go to Location < >

This command moves the stop to the absolute position specified by the number.
The positions are referenced to home position, which is 0. The stop can travel
either forward or back to reach the position. A unit length of travel is

approximately 0.014 inch. The response to this command is a "b CR LF" upon
receipt and a "r CR LF" after completion.

sd <0 or 1> CR Shutdown the Motor

If a 1 is entered, this command sets a flag which deactivates the output stage

of the motor driver, disabling the motor. If a zero is entered, the motor is

enabled. The response to this command is a "b CR LF" upon receipt and a "r CR

LF" after completion.

As for the programmable stop responses, there are four error messages that can

be sent back to the workstation controller. The messages have the format "e

<number> LF CR"
,
where <number> is the error type. Again, the quotation marks

and spaces are not included.

98

The TWS

One error condition is an unrecognizable command. This usually occurs when the

command is misspelled. Another is when an illegal numeric parameter is used,

for example, a number greater than 535 with the "gl" (Go to Location) command.

A third error condition is if the home limit switch is activated without the

command to do so having been given. The fourth condition is if the overtravel
limit switch is ever activated.

2 . 2 Remote Operation

2.2.1 Setup Requirements

Remote operation entails communication with, and control by, the workstation
controller. The setup requirements are similar to those for local operation,
and the same RS232 connector is used. Data to the workstation controller is

transmitted on line 3, data is received on line 2 and line 7 is signal ground.
The difference is that there is no echo back to the workstation controller and
the LF character is not included in the responses.

2.2.2 Commands and Responses

The commands are the same in remote mode as in local mode. Again, the CR
character must follow the command, and the spaces and quotation marks are not
included. The responses, "b" and "r"

,

are the same also, except the LF
character is not included.

ec <0 or 1> CR Echo

This command sets or resets the ECHO flag. When the ECHO flag is set (1)

,

which it would be for local operation, the command sent to the programmable
stop is echoed back to the terminal screen, with a LF (line feed) character.
When reset (0), there is no echo or LF. This is the normal power up state, and
the workstation controller does not normally need to use this command. The
response to this command is a "b CR" upon receipt and a "r CR" after
completion.

gh CR Go Home

This command sets a flag which causes the stop to move back to the home limit
switch and initialize home position. The response to this command is a "b CR"
upon receipt and a "r CR" after completion.

gl <0 to 535> CR Go to Location < >

This command moves the stop to the absolute position specified by the number.
The positions are referenced to home position, which is 0. The stop can travel
either forward or back to reach the position. A unit length of travel is

approximately 0.014 inch. The response to this command is a "b CR" upon
receipt and a "r CR" after completion.

99

The TWS

sd <0 or 1> CR Shutdown the Motor

If a 1 is entered, this command sets a flag which de-activates the output stage
of the motor driver, disabling the motor. If a zero is entered, the motor is

enabled. The response to this command is a "b CR" upon receipt and a "r CR"
after completion.

st CR Start

This command is used as a software reset. It reinitializes all the variables
and registers, and sends the stop back to reset the home position. The
response to this command is a "r CR"

.

The same error messages are used in remote mode as are used in local mode.
The messages have the format "e <number> CR"

,
where <number> is the error

type. Again, the quotation marks and spaces are not included. See the error
description in the local operation section, above, for a list of errors.

3. SUGGESTIONS FOR FUTURE DEVELOPMENT

As mentioned previously, the theoretical resolution of the programmable stop is

quite good. The encoder resolution is 2048 pulses per revolution, and there is

a 7.2:1 ratio between encoder and ballscrew revolutions (the encoder is

directly coupled to the shaft of the motor) . Since one revolution of the
ballscrew translates into 0.1 inch linear travel for the stop, the final
resolution (ideally) is about 7 micro inches. One of the largest limiting
factors is the repeatability of the home limit switch - probably the weakest
link in the system. Since the home (reference) position is directly linked to

this switch, the stop position repeatability from one home reset to the next is

limited by the switch. The actual repeatability is closer to 0.001 inch. A
better switch or other sensing device would improve the overall repeatability
of the stop.

100

The TWS

VIII. TOOL SETTING STATION

For automatic tool setting and tool-wear monitoring of cutting tools on the CNC

turning center, a Linear Variable Differential Transformer (LVDT) -based sensor

system is used. This sensor system provides information on the location of the

cutting edge of a tool with respect to the machine reference. In order to do

this, the cutting edge of a tool depresses one of three plungers. The LVDT
provides feedback corresponding to the displacement of each plunger. The

feedback information is then used to determine the location of the cutting
edge. This operation is performed several times throughout the working life of

a tool, the first of which is the original adjustment when the tool is

initially placed in the machine. Checks are made periodically to compensate
for tool wear and to detect when excessive wear has been reached.

1. DESIGN OF THE TOOL SETTING STATION

1 . 1 Overview

The mechanical system of the tool setting station consists of an LVDT-based
gage head and a hydraulically actuated, precision four-bar mechanism for
positioning the gage head. The system was designed to satisfy many
requirements, but the main goal was to achieve a repeatability of at least 50

microinches. This was accomplished by proposing a design and performing an
error budget analysis on the design to predict the repeatability of the system
and to modify design parameters if necessary. Results from tests on the system
show that the repeatability requirement was achieved.

The controller hardware consists of two printed-circuit boards designed in
house. One board provides reference signals needed by the LVDT, signal
conditioning, and analog- to-digital (A/D) conversion. The other board is an
Intel 8088-based computer with an Intel 8087 math coprocesser. Interfaced to

the computer are the valves and sensors needed to control the four-bar
mechanism, cover, and air.

All of the software for the controller consists of one module written in PL/M
and some general I/O routines which are linked to the module with no operating
system. Because the device performs only one main function, no operating
system was needed. Separate procedures are written for each operation and
error checks are included where appropriate. The latching and inputting of the
A/D data is initiated by an interrupt produced by the A/D chip. A routine is

included to convert the digital data from the A/D converter to geometric units
using the calibration coefficients.

1 . 2 Control Architecture

The basic control algorithm consists of performing an operation upon receiving
a command from the machine controller. Once the command is completed, the tool

101

The TWS

setting station controller sends a "ready to receive" command back to the
machine controller. Examples of the types of operations are the actuation of
the four-bar mechanism and sending out the linearized LVDT data.

1 . 3 Mechanical Components

The design of the tool setting system is based on two mechanical subsystems.
The first is a gage head for providing the actual measurement, and the second
is a mechanism to position the gage head in the working volume of the machine.
The gage head is a unique precision design using a state-of-the-art
displacement transducer as the reference. A Linear Variable Differential
Transformer (LVDT) was chosen as the sensor. An LVDT has several attributes
which make it ideal for a tool setting application. Its characteristics
include high resolution, large gaging range, and microinch repeatability. In
addition, the rugged construction of an LVDT permits it to function even after
exposure to the substantial shock loads and high vibration levels often
encountered during machine tool operation. The particular LVDT used has a

repeatability of 4 microinches, a gaging range of +/- 0.06 inches, and can
operate in temperatures ranging from -40 to 212 degrees F. The shaft of the
LVDT is coupled to a non-rotating probe shaft. The probe shaft rides in a

linear ball bearing assembly to minimize friction and eliminate the effects of
radial play. The LVDT also incorporates a helical spring for extending the
probe shaft and a dust cover to prevent foreign materials from entering the

bearing assembly.

One disadvantage of using an LVDT in this type of application is that it only
supplies a one degree-of-freedoro measurement. However, it is necessary to gage
tools approaching from any one of three directions: +X, -X, and -Z direction.
If a separate LVDT were used for each direction, the resulting gage head would
be expensive and rather bulky. Instead, a compact gage head was designed to

provide displacement measurement in all three directions with a single LVDT.

The gage head (as shown in Figure VIII. 1) consists of a square cam mounted on a

shaft which is free to rotate about the y-axis. The probe shaft of the LVDT
acts as a cam follower so that any rotation of the cam is detected by the LVDT.

The cam is driven by depressing any one of three, cylindrical, nonrotating
plungers (see Figure VIII. 2), which are oriented so that tools approaching from

any of the three measuring directions can be set. Each plunger rides in a

bushing which is honed to tight tolerances to allow for a precision sliding fit

between bushing and plunger. The shaft is mounted on ultra-precision, ABEC-9,

preloaded ball bearings. Such high-precision bearings are used to minimize
errors that result from radial and axial play.

The position of the gage head with respect to the machine tool reference will

vary due to thermal gradients along the machine. The magnitude of this

variation can be significant depending on the placement of the gage head. For

example, tests conducted on the turning center at the AMRF show that continuous

operation of the spindle and slides over a 500 minute period produced a

temperature rise of 8 to 12 degrees C. (15-20 degrees F.). This temperature

rise caused errors of the order of 2 micrometer/deg C. (40 microinch/deg F.) in

102 .

FIGURE VIII.l. CROSS SECTION OF GAGE HEAD

103

LVDT

Housing

Set Screws

X

Bushing

Pin

Too

Square Cam

Shaft

FIGURE VIII.2 OPERATING MODE OF GAGE HEAD

104

The TWS

the radial direction and 20 raicrometers/deg C. (400 microinch/deg F.) in the

axial direction. One possible way of compensating for these errors is to

measure the distance between the gage head and the machine tool reference
surface before each setting operation. This measurement could be made using a

second gage head mounted in a tool position on the turret. This method,
however, adds expense, increases the setting cycle time, and reduces the

flexibility of the machine tool.

The tool setting system design attempts to minimize the thermally induced
errors by reducing the thermal loop between the gage head and the machine tool

reference. To accomplish this, a four-bar mechanism, mounted on the spindle
cartridge, is used to accurately position the gage head near the reference axes

and within the working volume of the machine. In this way, the four-bar
mechanism and gage head should closely follow the thermal growth of the

spindle, both radially and axially. A second function of this mechanism is to

ensure that the gage head does not interfere with the normal operations of the

machine while not in use.

The four-bar mechanism, as shown in Figure VIII. 3, is driven by a hydraulic
actuator mounted on the head stock of the machine. The follower of the four
bar is an arm which is attached to the gage head at one end. The other end of
the arm is mounted on a shaft between two ultra-precision, ABEC-9, preloaded,
ball bearings. The bearing assembly is housed in a base structure which is

fixed to the spindle cartridge. In this configuration, the gage head can be
rotated into an idle position when not in use, and into a gaging position for
performing tool setting, as shown in Figures VIII. 4a and VIII. 4b, respectively.
The arm is sufficiently long so that, in the gaging position, there is a

considerable gap between the gage head and the spindle face. This gap allows
many types of spindle tooling, such as collets and some step chucks, to remain
in the spindle while tool setting.

To ensure the repeatability of the gaging position, many aspects of the four-
bar mechanism design must be considered. For instance, the errors associated
with the rotating elements are minimized by using ultra-precision ball
bearings. Thermally induced errors are reduced by mounting the system as close
to the machine reference as possible. If necessary, the thermal growth of the
system can be compensated for by monitoring the temperature at a representative
point on the device and predicting the amount of movement of the gaging
position with respect to the machine reference. The prediction can be based on
either experimental data or a finite element analysis of the system.

One other major design criterion affecting the accuracy of the system deals
with the method of stopping and locating the arm in the gaging position.
Rather than rely on the repeatability of the stop in the hydraulic cylinder,
the four-bar is stopped by metal- to-metal contact between the arm and spindle
cartridge. The first concern with this stop is placement. If any runout in
the bearings exists, depending on the placement of the stop, these errors could
be amplified at the end of the gage head. By placing the stop as far from the
rotational axis of the arm as possible the runout errors are minimized. A
second design consideration is to ensure that the stop does not overconstrain

105

Hydraulic Cylinder

Spindle Cartridge

Spindle

FIGURE VIIL3 ISOMETRIC VIEW OFTOOL SETTING SYSTEM

106

Spindle

Centerline

o
03
CDX

107

FIGURE

VIII.4

POSITIONING

MECHANISM

IN

IDLE

AND

GAGING

POSITIONS

The -TWS

the system. The arm is already constrained in five kinematic degrees of
freedom, and the only remaining constraint is the rotation about the y-axis.
For this reason a sphere and flat plate configuration is used. An added
advantage of this configuration is due to the resulting small contact area
between the stops. Since the stops are subjected to coolant and oil, it is

necessary to clean them periodically. The smaller the contact area, the easier
it is to clean the surface effectively. However, if too small a contact area
is used, the contact stresses that develop may exceed the elastic limit of the
material. By choosing the appropriate spherical radius, material and material
hardness, acceptable levels of contact area and contact stress can be obtained.

The rate at which the arm is lowered into the gaging position is also an
important consideration for two reasons. The first is the repeatability errors
that would result if the arm were to rotate too fast and come to an abrupt
stop. These errors may stem from a plastic deformation of the stops or from
vibrations due to the impact loading conditions. The second reason is the
amount of time it takes for the arm to rotate from the idle to gaging
positions. If the arm were to rotate slowly so that there would be no impact
loading problem, then the setting operation would require too much time. The
solution is to use a hydraulic cylinder equipped with a cushion at either end
of the cylinder. The cushion acts to gradually decelerate the piston during
its final one inch of stroke, and does not effect the piston's speed at any
other time. In addition, a flow control valve is used to adjust the flow of
fluid to the cylinder. Thus, the combination of cushioned cylinder and
properly adjusted flow will minimize the stop impact without a drastic increase
in gaging cycle time. Also used to control the direction of fluid flow is a

direction control valve. All of 'the hydraulic components operate at a pressure
of 500 psi.

Maintaining a clean stop surface is critical for ensuring the repeatability of
the system. To clean these surfaces a blast of high-pressure, thoroughly
filtered, and dry air is directed across the contact area. The four-bar
mechanism is completely enclosed and protected from contamination while in the

idle position. Before the gage head can be lowered into the gaging position a

door to the enclosure is opened with an air cylinder. Two proximity sensors
are utilized to determine whether or not the arm is in the idle or gaging
position.

1 . 4 Electrical Components

The tool setting station controller consists mainly of an analog circuit board
and a microprocessor-based computer board. The primary function of the analog
circuit board is to convert the signal from a displacement transducer, into a

12-bit binary number. A block diagram of the circuit is in Figure VIII. 5. In

order to simplify the circuit description, it will be divided into three

sections. The subjects, in the order they are described, are reference

circuits, signal conditioning, and analog- to-digital conversion.

In this circuit there are two reference signals needed, one DC and one AC. To

get the two reference signals, a 3 MHz crystal-controlled oscillator sends a

108

Oscilliscope

3

MHz

V)

109

FIGURE

VIII.

5.

FUNCTIONAL

BLOCK

DIAGRAM

FOR

THE

TOOL

SETTING

STATION

The _TWS

signal to a Schmidt trigger circuit. The signal out of the Schmidt trigger is

now shaped more like a square wave. This signal is divided by 128 and sent to

a flip-flop. The flip-flop ensures that the signal will be symmetrical and
also divides the frequency by two. Coming from the flip-flop is a 11.7 kHz
square wave. This square wave from the flip-flop is filtered and amplified,
resulting in a sinewave output that is a constant 11.7 KHz. The 11.7 kHz
sinewave is used as the reference signal on the primary windings of the Linear
Variable Differential Transformer (LVDT) displacement transducer. It is also
half-wave rectified and converted to a DC signal for use as the reference for
the LVDT A/D converter.

There are two sinewaves coming in from the LVDT. When the LVDT is in its zero
position, both signals are identical. Each of these inputs are half-wave
rectified and converted into a DC signal. The two resulting DC signals are
sent to a differential amplifier. Any movement of the LVDT from its zero
position will be seen by the LVDT A/D converter as a + or - DC voltage
depending on the direction of movement.

The A/D converter runs continuously. At the end of each conversion cycle it

sends out a signal called "status". The status line tells the microcomputer
when the data is valid. The A/D converter is made to interface with an 8 -bit
bus with the converter's output tri-state buffered so the converter and bus can
be tied together. It is a two step ‘operation to read the data from the
converter. When a low signal is sent into Low Byte Enable (LBEN) the output of
the converter equals the low 8 bits of data. A low signal into High Byte
Enable (HBEN) causes the output to be the next 4 higher bits of data, plus Over
Range (OR) and Polarity (POL). The output enable commands can only be used one

at a time.

The computer board has a large number of capabilities, the foremost of these
being fast floating-point arithmetic that can handle 80-bit numbers. There are

34K bytes of memory available on this board, of which some can be nonvolatile
memory. To communicate to external devices there are two input ports, two

output ports, and a serial port. To help in real-time operation, there are six
external interrupts. Figure VIII. 6 is a block diagram of the microcomputer
circuit board. As an aid in the understanding of the overall concept of the

microcomputer circuit board, the following discussion is divided into four
sections, each one containing a number of circuit descriptions. The subjects,

in the order described, are microprocessor, control, memory, and Input/Output
(I/O).

Two microprocessors are employed on this board. An 8088 in the maximum mode is

used as the primary Central Processing Unit (CPU)
,
and an 8087 Numeric Data

Processor (NDP) is used as a coprocessor. In the maximum mode, the 8088 can

address 1 megabyte of memory. When an 8087 is used in this manner, the

programmer generally does not see it as a separate device; rather, the

computational capability of the 8088 appears greatly expanded. The 8087 adds a

fast floating-point arithmetic capability to the circuit. An increase in speed

of 50 to 100, depending on the type of function, can be expected. Data as

110

Ill

FIGURE

VIII.

6.

SCHEMATIC

DIAGRAM

FOR

THE

NBS-DESIGNED

MICROCOMPUTER

The TWS

large as 80 bits, providing 19 digit mantissas and exponents up to 999, are
valid values for the 8087 NDP.

Several integrated circuits comprise the control circuit. Two crystal-
controlled circuits are used to generate the clocks needed by the
microprocessors and the serial I/O circuit. The status of the microprocessor
is monitored by a bus controller. Using this information, it generates the
needed memory and I/O control command signals. Three latches use the address
latch enable signal (ALE), supplied by the bus controller chip, to create the
address bus. Programmable read-only memory (PROM) chips and a NAND gate decode
the address bus then enable the proper memory or I/O chips. Because the CPU
uses a multiplexed bus, a transceiver is needed to isolate the address/data bus
from the data bus. An interrupt controller circuit is used to establish
interrupt priorities when both an 8087 and interrupts are to be used by the
CPU. In this design, there are six interrupts available; two of these are also
external input commands that latch the input data bus.

There are three different types of memories used, random-access memory (RAM)

,

erasable programmable read-only memory (EPROM)
,
and electronically erasable

programmable read-only memory (EEPROM) . 2K bytes of RAM memory is available
for use. The amount of EPROM memory available is determined by the type used.
If 2732* s are used, without using an EEPROM, there will be 16K bytes of EPROM,
when using 2764' s there are 32K bytes of EPROM. The advantage of EEPROM memory
is that it can be addressed in a similar manner as RAM, but unlike RAM memory
it will retain its data when power to the chip is removed. The disadvantages
are slow writing speeds and low chip byte densities. A 2816 EEPROM was used
because of its almost pin-for-pin compatibility with the 2732' s and 2764' s. If
a 2816 EEPROM is used, the total amount of EPROM is reduced by 4K when using
2732' s, and 8K when using 2764' s. The reason for the EPROM size change is that
the EEPROM uses one of the sockets normally used by an EPROM chip. The 2816
EEPROM will hold IK bytes of data. In the latest version of the device,
battery backed-up RAM was substituted for the EEPROM. This replaced the EEPROM
memory on a chip- for-chip basis and offered the advantage that no special
procedures were required to write to this RAM, which, in operation, is

indistinguishable from the other RAM.

There are two types of I/Os used on the CPU board: serial and parallel. The
serial input/output is accomplished by using a programmable Universal
Synchronous/Asynchronous Receiver/Transmitter (USART) . This circuit converts
8-bit parallel data to 8-bit serial data for transmission. It will also
convert received serial data to parallel data. There are two baud (bytes per
second) rates available: 1 . 2K or 4.8K. Interfacing to a terminal, using
buffers to change the logic levels, is the function of this serial I/O circuit.

Four 8 -bit parallel ports make up the parallel I/O circuit, two input and two

output. The two input ports data can be latched internally or externally, then

read by the CPU at its convenience. The two output ports are bit-addressable
by the CPU.

Interfacing to the sensors and the control circuits is done through the

parallel I/O ports of the computer board. The output control lines go through

112

The TWS

current amplifiers to relays, which are used to switch servo-valve control
voltages on and off. The four-bar mechanism, cover and air blast functions are

controlled this way. Inductive position sensors are used to sense when the

four-bar mechanism is up or down, and when the cover is open or closed.

1 . 5 Software Components

The controller software consists of one main program with two modes of

operation, local and remote. Remote mode is obtained by sending a "#" on power

up after which the device waits to respond to commands which consist of one

character sent over the serial port. Local mode is obtained by sending the

device a control -A on power up after which the device will proceed through a

series of questions or statements requiring responses through the serial port.

Local mode provides the means by which the linearization coefficients and range
limits may be entered or modified. A list of all of the procedures in the

operating program along with a short description of the function of each
procedure follows:

AUTO: If a character is waiting at the serial port, input the

character. If the character is an illegal command, set a flag
and send a binary 0 to the serial port.

BASE: Send to the serial port the value of the A/D input in either
binary or hexadecimal base. If a flag is set, the base is

binary, otherwise it is hexadecimal.

COEF: Display the twelve coefficients, for each of three directions,
used to linearize the LVDT and allow for the changing of any of
the coefficients. Display and allow for the changing of the
range limits which determine which set of four coefficients are
used in any specific linearization.

DROP: Lower the contact arm if it is not presently making contact.

HELP: Provides a list of the acceptable commands.

IDLE: Check serial port for input. If there is no input, then return.
If there is a legal command input, then service the command.

INTERP: Convert a register reading into an appropriate integer.

INTER_U: An interrupt procedure that inputs the LVDT reading.

LOC: Set the reference to the coefficients for the current
direction.

NEW: Wait a preset length of time while checking the serial port
for an input. Then take a new LVDT reading and process the
reading.

113

The TWS

RAISE: Raise the contact arm if it is not presently making contact.

READ: Enable a new LVDT reading to be taken. Wait for the reading to

be taken. Disable further readings and convert the present
reading to an appropriate integer.

READ_ARM: Determine whether the arm is up or down.

TRANS_LVDT: Convert the integer obtained from the reading of the LVDT
and its interpretation into a floating-point number
representing a distance based on the appropriate lineariza-
tion coefficients.

YES_OR_NO: Repeatedly send a message to the serial port until a

response of "Y" or "N" is received. If the response is a

legal command, the command is processed prior to the
repetition of the initial message.

2. OPERATION OF THE TOOL SETTING STATION

2 . 1 Setup Requirements

Setup requirements are basically the same for both remote and local mode. The
one major difference is that all the calibration information must be entered in
local mode and then stored to make it available for use in remote mode.
Communication in each mode is through a 25 -pin serial line at either 1200 or
2400 baud.

2 . 2 Commands and Responses

2.2.1 Local Mode

In local mode, communication between the dumb terminal and the microprocessor
is carried on in English, primarily with the microprocessor asking questions in

English and the operator at the terminal responding with "Y" or "N" . In
addition, the microprocessor can occasionally request the input of parameter
values, in which case an ASCII representation of the number is accepted by the

microprocessor. In this mode, everything that the operator types at the

terminal is echoed to the screen in order to facilitate human communication.

Local mode is obtained by sending a control-A to the serial port of the device

after power up. The following pseudocode displays the operation under local

mode. All messages sent by the detector are enclosed in single quotation marks

and station responses in double quotation marks with items within square

brackets
[]

being optional. Items between which choices must be made are

separated by the vertical bar
|

while dummy values are shown as < > and non

operable comments will be shown within braces {) . Numbers followed by a colon

,

" :

"

,

are labels

.

114

The TWS

0: 'LOAD A CALIBRATION?'
"Y"

|

"N"

if "Y"

'LOAD THE PREVIOUS CALIBRATION?'
"Y"

|

"N"

if "N"

'LOAD THE BACK UP CALIBRATION?'
..yii

|

nj^tt

1: 'DIRECTION X_T ?'

"Y"
|

"N"

if "N"

'DIRECTION X_B ?'

»Y"
|

”N"

IF "N"

'DIRECTION Z ?'

"Y"
|

"N"

if "N”

goto 1

'HELP?'
i»Y”

|
"N"

{ The following outputs to the serial port will proceed unless interrupted by
an input to the serial port. An input of E will terminate the help procedure.

}

if "Y"

'A

'B

'C

'D

'E

'F
• 'H
'0

'R

'S

'T

'U

'W

A/D HEX'
A/D BIN'

COEF'
ARM DOWN'

EXIT'

A/D DEC'

HELP'
OVERRIDE'
RESET'
STOP'
TIME'
ARM UP'

WHICH DIRECTION?'

2: 'READY'
|

'OVER'
|

(<Displacement>
|
nothing)

{ The option between Displacement or nothing defaults to nothing until the base
of the display is designated by sending an 'A', 'B' or 'F'. }

if 'READY'
goto 2

115

The TWS

3: 'OVER'
|

(<Displacement>
|

nothing)
if 'OVER'

goto 3

4: <Displacement>
|

nothing
goto 4

{ The above procedures can be interrupted at any time by a serial input, which
when a legal command, will cause the command to be executed and then returned
to the procedure in operation. The exception is when an 'R' is sent to the
device over the serial line. Receipt of 'R' causes a goto 0. The following
pseudocode describes the actions when specific commands are sent to the device
over the serial line while the above procedure is being executed. }

if "A"

{ Displacement will be sent as ASCII characters representing the

hexadecimal value.)

if "B"

{ Displacement will be sent as ASCII characters representing the
binary value.)

if "F"

{ Displacement will be sent as ASCII characters representing the

decimal value. }

if "0"

{ Take displacement readings when appropriate, even if the arm is

not in the proper position.)

if "W"

' X_T
' |

' X_B
' |

'Z'

if "S”

'STOP'

{ Operation remains in suspension until a character other than S

is sent to the device)

if "H"

{ Print out the entire help directory as given above)

if "C"

'HIGH' '1'

'<coefficient>'
"Ccarriage return>"

|
"<capital letter>"

|

"<number>"

if "<number>"

{ replace coefficient with number }

if "<capital letter>"

{ Exit this entire procedure)

116

The TWS

'HIGH' '2'

' Ccoefficient>'
"<carriage return>"

|
"Ccapital letter>"

|

if "<number>"

{ replace coefficient with number }

if "Ccapital letter>"

{ Exit this entire procedure }

'HIGH' '3'

' Ccoefficient>'
"Ccarriage re turn>"

|
"Ccapital letter>"

|

if "Cnumber>"

(replace coefficient with number }

if "Ccapital letter>"

{ Exit this entire procedure)

'HIGH' '4'

'Ccoefficient>'
"Ccarriage return>"

|
"Ccapital letter>"

|

if "Cnumber>"

{ replace coefficient with number }

if "Ccapital letter>"

{ Exit this entire procedure }

'MID' '1'

'Ccoefficient>'
"Ccarriage return>"

|

"Ccapital letter>"
if "Cnumber>"

{ replace coefficient with number }

if "Ccapital letter>"

{ Exit this entire procedure }

'MID' '2'

'Ccoefficient>'
"Ccarriage return>"

j
"Ccapital letter>"

if "Cnumber>"

{ replace coefficient with number }

if "Ccapital letter>"

{ Exit this entire procedure }

'MID' '3'

'Ccoefficient>'
"Ccarriage return>"

|

"Ccapital letter>"
if "Cnumber>"

{ replace coefficient with number }

if "Ccapital letter>"

{ Exit this entire procedure }

'MID' '4'

'Ccoefficient>'

117

"Cnumber>"

"Cnumber>"

"Cnumber>"

|
"Cnumber>"

j

"Cnumber>"

|

"Cnumber>"

The TWS

"<carriage return>"
|
"Ccapital letter>"

|

if "Cnumber>"

{ replace coefficient with number }

if ''Ccapital letter>"

{ Exit this entire procedure }

' LOW '1'

'Ccoefficient>'
"Ccarriage return>"

|
"Ccapital letter>"

|

if "Cnumber>"

{ replace coefficient with number }

if "Ccapital letter>"

{ Exit this entire procedure }

' LOW' '2'

' Ccoefficient>'
"Ccarriage return>"

|

"Ccapital letter>"
|

if "Cnumber>"

{ replace coefficient with number }

if "Ccapital letter>"

(Exit this entire procedure }

'LOW' '3'

' Ccoefficient>'
"Ccarriage return>"

|

"Ccapital letter>"
if "Cnumber>"

{ replace coefficient with number }

if "Ccapital letter>"

{ Exit this entire procedure }

'LOW' '4'

' Ccoefficient>'
"Ccarriage return>"

|

"Ccapital letter>"
if "Cnumber>"

{ replace coefficient with number }

if "Ccapital letter>"

{ Exit this entire procedure }

'HIGH RANGE'
'Crange limit>'
"Ccarriage return>"

|

"Ccapital letter>"
if "Cnumber>"

{ replace range limit with number }

if "Ccapital letter>"

{ Exit this entire procedure)

'LOW RANGE'
'crange limit>'
"Ccarriage return>"

|

"Ccapital letter>"

if "Cnumber>"

"Cnumber>"

"Cnumber>"

"Cnumber>"

"Cnumber>"

|

"Cnumber>"

|

"Cnumber>"

j

"Cnumber>"

118

The TWS

{ replace range limit with number }

if "<capital letter>"

{ Exit this entire procedure }

' SAVE?

'

"Y"
|

"N"

if "Y"

{ The entire set of constants replaces the original set }

if "T"

' DELAY .1 SEC

'

"<number>

if "U"

{ The arm is raised }

'RAISED'

if "D"

{ The arm is dropped }

2.2.2 Remote Mode

Remote mode is achieved by the transmission of a "#" character to the device
over the serial input at the time of power up or reset. In remote mode, all
instructions to the device consist of one binary character, which is not
echoed. The device sends two status commands at appropriate times, namely 0

binary, which indicates an error and 10 binary, which indicates that the device
is waiting for a command. The following is a concise listing of the
communications in remote mode, all characters given as binary values.

TO FROM

0 Error
1 Arm is down
2 Arm is up
3 Arm is between its extreme positions
4 X_T calibration in use
5 X_B calibration in use
6 Z calibration in use
7 Overrange in the negative direction
8 Overrange in the positive direction
9 Within range
10 Waiting for a command
11 Linearized displacement value (decimal number)

Request for arm position
Request for designation of active calibration
Request for status of LVDT
Request for displacement value
Use X_T calibration
Use X B calibration

12

13

14

15

16

17

119

The TWS

18 Use Z calibration
19 Raise arm
20 Lower arm
21 Start over remote

Command binary 12 causes READ_ARM to be called and the binary value of 1, 2 or
3 to be returned. Command binary 13 returns a binary 4, 5 or 6 as appropriate.
Command binary 14 returns a binary 7, 8, or 9 as appropriate. Command binary
15 causes three procedures to be called in sequence: READ_ARM, READ AND
TRANS_LVDT. The value received from the TRANS_LVDT call is then sent out the
serial port in ASCII characters of a decimal number. Commands binary 16, 17 or

18 cause the device to use the corresponding calibration coefficients. Command
binary 19 calls RAISE while command binary 20 calls DROP. Command binary 21
causes a looping to the beginning of the remote section and the output of a

binary 10 to the serial port. This can be a useful technique for testing
whether or not the device is operational.

3. SUGGESTIONS FOR FUTURE DEVELOPMENT

As designed, the repeatability of the combined gage head and four-bar mechanism
system is around 200 microinches. If the effects of thermal gradients are
compensated then the repeatability could be reduced to at least 50 microinches
in each direction. In order to compensate for these effects, a thorough study
should be conducted to determine the relationship between temperature and
thermal growth. Then, by monitoring the temperature at a respective position
on the device, a prediction can be made of the change in location of the gage
head. In this way the growth of the device with respect to the arm can be
virtually eliminated. Another way of reducing the effects of thermal gradients
would be to change the mechanical design. For instance, a shorter arm or an
arm made out of a material with a coefficient cff thermal expansion near zero,
such as invar, could be used.

A thorough study should also be conducted on the effectiveness of using this
tool setting system to monitor tool wear. So many factors enter into the

determination of tool wear that the process is not as straightforward as it

would appear. For instance, this system will only supply information on the

amount of flank wear of a tool, yet under certain cutting conditions a tool

will fail due to excessive crater wear. In addition, under certain conditions,
a tool develops a built-up edge on its cutting surface called bue . The

presence of bue will yield erroneous results when using this method of tool

setting. An extensive study of tool wear, however, should lead to results such

as a relationship between crater wear and flank wear for different cutting
conditions

.

Since the machine tool controller contains the necessary microprocessor, there

could easily be an integration of machine tool and tool setting station

controllers. However, some additional hardware components will be necessary

for such integration.

120

The TWS

IX. MI CROMANI PULATOR

The micromanipulator, located between the gripper and wrist of the robot,

assists in the placing of parts into the collet of the lathe by touch

sensation. Placement of a part into a collet consists of search and insertion
routines which take advantage of the micromanipulator's five degrees of

freedom.

1. DESIGN OF THE MICROMANIPULATOR

1 . 1 Overview

The micromanipulator is a light-weight, compact, hydraulically driven, fine

positioning device with five degrees of freedom. Its motions consist of two

mutually orthogonal rotational degrees of freedom and three mutually orthogonal
translational degrees of freedom. This design was selected to allow the end
effector to insert parts in a collet, considering the poor position
repeatability of the robot and the small clearances between part and collet.

The hardware consists of an Intel 86/30 single board computer with an 8087 math
coprocessor on board. In addition, there are five A/D (analog- tc-digital)
ports and six D/A ports along with an RS232 serial port for communication.
This is a versatile microprocessor board which interfaces well with many
electronic devices.

Two programs, written in PL/M, comprise the software. Since this controller
was to perform one function (control of the micromanipulator)

,
no operating

system was deemed necessary. This high-level language was chosen because it

can descend to the individual bit level when necessary and has all of the
advantages of a structured high-level language.

1 . 2 Control Architecture

The control consists of a software servo-loop operating at 50 hertz which
constantly attempts to position the micromanipulator at a desired location and
orientation in space. The position of each of its degrees of freedom relative
to its base is known from the readings of five position sensors which are read
during each cycle of the servo-loop. With this system, the device will respond
within 20 milliseconds to any force causing a change of position of any of the

degrees of freedom or to a change in the desired location of any of these
degrees of freedom. All of the various move and search routines involve
modifications of the parameters in this servo- loop.

1 . 3 Mechanical Components

The micromanipulator's mechanical system consists of four principle parts: 1) a

base structure which attaches to the robot, 2) a midstructure which moves in

121

The TVS

two degrees of freedom with respect to the base structure, 3) an end structure
which moves with respect to the midstructure in two degrees of freedom, 4) and
a gripper mounting plate having one large translational degree of freedom with
respect to the end structure. Each structure is comprised mainly of aluminum
and in some cases is made up of several components. An isometric view and a

top view of the micromanipulator system is shown in Figures IX. 1 and IX. 2,

respectively. The large translational degree of freedom will be referred to as

the slider and the other four as the first four degrees of freedom.

The base and midstructure assembly form the vertical and yaw motions. Two

opposing pistons on the midstructure are able to slide in the vertical, or z-

axis direction within cylinders in the base structure. These opposing pistons
also form the yaw axle about which the midstructure rotates as shown in Figure
IX. 3. The yaw motion is driven by two opposing pistons that slide in cylinders
machined integral with the midstructure as shown in Figures IX. 4 and IX. 5. The

cylinders are lined with hardened steel sleeves which prevent the steel pistons
from scoring the softer aluminum cylinder walls. To prevent sliding between
the piston and base structure during a vertical motion, a special ball and
trough interface was developed. The steel ball is sandwiched between the

trough shape of the piston end and the trough shape of the base structure.
This configuration generates rolling contact even if two degrees of freedom are

actuated at one time. The radii of the ball and troughs, along with the

material and its hardness were chosen so that the maximum contact stress did
not exceed 75% of the yield strength of the material.

The midstructure is also assembled with the end structure and together they
form the forward and roll motions of the micromanipulator. A large piston
attached to the end structure extends into a bore in the midstructure providing
the forward, or x-axis motion. The piston is supported at either end by low

friction sleeve bearings. This piston also serves as the roll axle as shown
in Figures IX. 3 and IX. 4. The rolling action is driven by the same type of

piston/ball/trough configuration as used for the yaw motion. These pistons are

located in bores in the midstructure.

The remaining degree of freedom, or the slider, provides linear motion along

the y-axis. The slider is driven by a linear motion piston and cylinder
assembly which is attached to the end structure and the gripper mounting plate.

Two sets of crossed roller bearings allow the gripper plate to slide relative

to the end structure.

The micromanipulator design results in a device that weighs about five pounds

and is 2.5 inches thick by 5 inches square. The motion consists of two

translational axes with +/- 0.125 inch of travel, two rotational axes with +/-

4 degrees of rotation, and one large translational degree of freedom with +/-

1.0 inch of travel.

Position feedback of the first four degrees of freedom is obtained from

inductive proximity sensors as shown in Figures IX. 2 through IX. 5. The sensors

detect displacements along the axis of the probe and are not affected by motion

perpendicular to this axis. Rotational motion is sensed as small linear

122

Vertical

Hydraulic

Gripper

Piston

Port

Mounting

Anchor

/

Plate

©
3

to O
3

$ £5

o ©
©

O 03

DC OQ

123

FIGURE

IX.l.

MICROMANIPULATOR

STRUCTURE

Roll

Activator

x
i

N

CD

0>

E
o
4-»

v~ c
CD CD

cn
»— c
CD U3
a c
a 3
”C o jO

O S a

CD

124

FIGURE

IX.2.

TOP

VIEW

OF

MICROMANIPULATOR

Sensor

FIGURE IX.3. SECTION AA OF MICROMANIPULATOR

125

r—

Vertical

Motion/

Roll

Piston

—
v

/
Yaw

Axle

Piston

©

<T3

x

126

FIGURE

IX.4.

SECTION

BB

OF

MICROMANIPULATOR

Hard Steel Sleeve

Roll Piston

Vertical Piston Anchor

Base Structure

Roll Trough

Mid Structure

Yaw Trough

Yaw Ball

Gripper
Mounting
Plate

Roll Ball

Yaw Piston

Forward
Motion
Sensor

Roll Sensor

FIGURE IX.5. SECTION CC OF MICROMANIPULATOR

127

The TWS

translations at a known distance from the axis of rotation. The slider
position is determined through the use of a linear potentiometer. Each
actuator in the system is driven by hydraulic fluid. The flow of hydraulic
fluid is controlled by a separate servo-valve for each degree of freedom. Each
valve can operate at a maximum pressure of 3000 psi. and can produce a

differential pressure output of up to +/- 80% of supply pressure. The valves
are mounted on manifolds on the robot wrist so that the length of hose between
the valves and the micromanipulator is kept to a minimum. In addition to these
valves, a hydraulic control valve is used to turn off the pressure to the first
four degrees of freedom. This provides a means for "relaxing" the
micromanipulator

.

1 . 4 Electronic Components

The electronic hardware components for the micromanipulator consist of a 16 -bit
8086 microprocessor working in conjunction with an 80-bit floating-point math
coprocessor. The program is contained on electrically programmable read-only-
memory capable of containing 64 Kbytes of program. There is also 128 Kbytes of
random- access -memory available.

There are five analog- to -digital input ports which convert the 0 to 10 volt
signals, put out by the sensors, into digital values which are read by the
microprocessor as position feedback of the manipulator axes. .There are six
digital- to-analog (D/A) output ports, five of which are. used to convert digital
signals from the microprocessor into control voltages for each of the
proportional valves, in order to control motion in the five directions. The
sixth D/A port is for sending the signal to the on/off hydraulic valve in order
to relax four of the degrees-of -freedom.

An RS232C serial I/O port is used to communicate with the outer world. This
port is operated at 9600 baud, and communicates either with another computer,
during automated operation of the system, or to a dumb terminal, when testing
the micromanipulator.

1 . 5 Software Components

The software for the micromanipulator consists of two programs, written in PL/M
and linked together to form one module. One of the programs consists of the

initialization parameters for the software, such as the calibration factors on

each of the position sensors, the servo constants, etc. These parameters exist

in a separate program, in order to perform quick changes to a short program,

which can be compiled rapidly and linked with the other much larger program.

The larger of the two programs consists of thirty-two procedures, a number of

which can be called by a single ASCII character sent to the microprocessor by

means of the serial port. During any operation, a hardware clock interrupts

the program at a fixed frequency, the frequency currently being 50 hertz. This

interrupt causes the servo- loop to update the values of the sensor readings and

to send to the hydraulic valves newly computed values, based on these new

readings and any new commands that may have come in by means of the serial

128

The TWS

port. Among the procedures available in automated mode are procedures to move
all five pistons to particular positions, to relax four of the five pistons, to

move one of the pistons to a particular position, to move in any direction with
a predetermined amount of force, and to perform combinations of these
operations, such as conducting a search routine in order to locate a collet
hole or to withdraw a part from a collet.

Local mode includes an exercise routine as well as test and diagnostic
routines. A larger version of the program contained test routines for

obtaining optimum servo constants. Once obtained, these constants became part
of the initialization routine and the smaller version is used, in order to

facilitate software maintenance. A list of all of the procedures in the

operating program along with a short description of the function of each
procedure follows:

ALEX_ALGO

:

Sets up three constants for the servo-loop for a particular
degree of freedom. This procedure must be run five times to

set up all of the servo- loop constants.

ALLIGN: Alter the two rotations while testing for maximum travel of
the slider to improve the alignment of the slider. Retain,
for future use, the rotational positions that were present
when maximum slider motion was achieved.

AT_EAS E

:

Call PRESSURE (off)

.

ATTENTION: Call PRESSURE(on)

.

CENTER: Position any of the first four degrees of freedom to its
center position and hold until further instructions.

CENTER_ALL: Position all of the first four degrees of freedoms to their
center position and hold the positions until further
instructions

.

COMPLETION: Wait for two cycles of the servo -loop.

CORRECTION: Move the device through a pattern of up to 121 locations.
At each position call ED. If successful in ED or stuck in
ED terminate the operation and report the results.

DISTANCE: Move any of the first four degrees of freedom between
its extreme positions while trying to make a small
move with the slider.

DONE: This is an interrupt procedure that is activated by a

hardware clock (presently every 20 milliseconds) . Done
calls a procedure EXECUTION.

129

The TWS

ED: Try to move the slider a designated distance in a designated
direction. If successful, report the success. If
unsuccessful, try to determine if the slider is stuck in its
present position and report that condition if it exists.

EXECUTION: Obtains the current position for all active degrees of
freedom. This involves getting the A/D readings and
converting these readings into positions in accordance with
linearization equations. Based on these positions and the

desired positions and the previous conditions, it calculates
the new values necessary for the D/A converters and puts
them out to the converters in order to position the device.

GET_A_D

:

Obtain the position of any degree of freedom.

HOLD: Set the force for the first four degrees of freedom to zero
and wait the number of seconds given in the transfer
variable

.

INIT_PIC

:

Initialize the programmable interrupt controller.

LOCK: Set the new position for all five degrees of freedom to the

corresponding present position. Call ATTENTION.

MOVE: Move any of the degrees of freedom in either direction with
a designated force.

M0VE_WITH

:

Move the first two degrees of freedom between their extreme
positions (chatter) while trying to make a small move with
the slider.

NEW_SET: Set the driving force on the first four degrees of freedom
to zero. Call AT EASE and call RESET.

PRESSURE: Controls the pressure to the first four degrees of freedom
valves

.

PROGRAM_ALT: Position the slider to a position 5% of the way to its

negative limit.

PROGRAM_ALTERNATE : Position the first four degrees of freedom to

their center position and the slider to a position
5% of the way from its negative limit less any

designated offset.

PROGRAM_POS: Position the slider to a position 5% of the way to its

positive limit.

130

The TWS

PROGRAM_POSITION : Position the first four degrees of freedom to

their center position and the slider to a position 5% of the

way to its positive limit less any designated offset.

RESET: Record the present position of the first four degrees of

freedom.

REPORT: Send the error result of a procedure to the serial port.

SO: Local mode operation (using a dumb crt)

.

SEARCH: Completely untested procedure. Repeatedly calls CORRECTION
while slightly modifying the translational degrees of
freedom of the first four in order to find an optimum offset
in the base position from which to operate the future
CORRECTION procedures.

SHOVE: Do a STOP_PT_GRAD on the slider with 5% of its maximum
force

.

STATUS: Send a carriage return and a line feed followed by the five

degrees of freedom drive force values and current positions
to the serial port. Follow that with the two preferred
angle positions as determined by ALLIGN.

STOP_PT: Move any degree of freedom with any prescribed force and
obtain the end position of the move.

STOP_PT_GRAD : Move any degree of freedom with any prescribed force
until the first degree of freedom (horizontal rotation)
meets a preset resistance to maintenance of its position.
Obtain the end position of the move.

TIMER: Load the hardware clock. This determines the period between
updates of the servo- loop.

2. OPERATION OF THE MICROMANIPULATOR

Upon powering up the micromanipulator, the program causes a reading to be taken
of the current position of all degrees of freedom and then inserts these values
into the servo- loop in such a way as to lock these positions until receiving a

command to do otherwise. A character is then sent out of the serial port and
the microprocessor waits for one of two characters to be sent to it over the
serial port. One of the characters causes remote mode to be activated, while
the other causes local mode to be activated.

131

The TWS

2 . 1 Local Mode

In local mode, communication between the dumb terminal and the microprocessor
is carried on in English, primarily with the microprocessor asking questions in

English and the operator at the terminal responding with "y" or "n" . In
addition, the microprocessor can occasionally request the input of parameter
values, in which case an ASCII representation of the number is accepted by the
microprocessor. In this mode, everything that the operator types at the

terminal is echoed to the screen in order to facilitate human communication.
Remote mode can also be simulated in local mode when needed for diagnosis, but,

in general, the operator can accomplish any thing desired in the more user-
friendly local mode.

The following pseudocode displays the operation under local mode. All messages
sent by the detector are enclosed in single quotes and responses in double
quotes with items within square brackets, "[]", being optional. Items between
which choices must be made are separated by the vertical bar, "|", while dummy
values are shown as "< >"

,
and non-operable comments are shown within brackets,

"(Numbers followed by a are labels.

1: 'u'

{ Any of the following unsolicited commands can now be given. Discussion of

each will follow the list. }

"#" Obtain option to relinquish control.

"a" Align axes using positive direction.

"d" Activate first four degrees of freedom (fifth degree is always
active) •.

"e" Exercise desired degrees of freedom at desired force. 0 force

turns off that degree's exercise.

"1" Hold the raicromanipulator at its current position.

"h" Delay following a zero pressure set

"p" Check push force. Alter if desired.

"r" Alter remember function. Defaults to on when powered up.

"s" Obtain status printout.

" t" Check touch force. Alter if desired.

"o" Check if dropped part function is on. Alter if desired.

132

The TWS

SPACE Initiate positioning queries.

{
pseudocode continues with commands given in the order that they occur in the

program but which could be given in any order }

if "e"

'Exercise motors?'
if "Y"

'Period between moves in seconds'
"< >"

2: 'Key force # 1'

"< >"

if "< > greater than max force for # 1

'Too High ! ! ! Higher than <max force # 1>'

goto 2

3: 'Key force # 2'

"< >"

if "< > greater than max force for # 2

'Too High ! ! ! Higher than <max force # 2>'

goto 3

4: 'Key force # 3'

"< >"

if "< > greater than max force for # 3

'Too High ! ! ! Higher than <max force # 3>'

goto 4

5 : 'Key force # 4'

"< >"

if "< > greater than max force for # 4

'Too High ! ! ! Higher than <max force # 4>'

goto 5

{ The device now proceeds to move each degree of freedom for which a force
greater than 0 was entered. Degrees of freedom for which a 0 force was
entered, are maintained at their present location. It applies the specified
force (1 to 2000) to the appropriate degree of freedom for the designated
period. At the end of the period, the device sends to the CRT the following: }

'Climit 1> Climit 2> Climit 3> Climit 4> <limit 5>'

'<read 1>[**] Cread 2 >[**] Cread 3 >[**] <read 4 >[**] <read 5 >[**]'

(The limit value is a position value that the degree of freedom should be able
to reach when the device is well exercised and operating properly. The '**'

appear appropriately whenever the read position has not attained the

corresponding limit position. The limits and readings are only printed for the

degrees of freedom where the input force value was greater than 0. After each
period, the force value is reversed and each degree of freedom moves in the

reverse direction and the reverse limits and readings are given. The reverse
limits may or may not be the same magnitude but are of opposite sign. The

appropriate limit values for both directions have been obtained experimentally.

133

The TWS

The exercising continues until a key is pressed on the CRT at which time the
driving force for all degrees of freedom is set to 0 and position holding of
all degrees of freedom is activated. }

if "1”

{ call LOCK }

if "r"

' Remember?

'

"Y"
|

"N"

{ A "Y" turns on the function that causes the device to use as the first
position of its search routine, the position last obtained in a successful
search in the same direction. }

if "s"

'<Drv l>,<Drv 2>,<Drv 3>,<Drv 4>,<Drv 5> Drive value'
'<Pos 1>,<Pos 2>,<Pos 3>,<Pos 4>,<Pos 5> Position'
'<Dsr l>,<Dsr 2> Desired positions'

{ Drv is the servo driving force value. If the position is stable at the
desired location, the Drv value would be 0. Pos is the current position of the
particular degree of freedom and Dsr is the value of the two angular degrees of
freedom which will be served during a search routine.}

if "a”

{ call ALLIGN in the positive direction }

if "t"
'< touch force >'

'Set touch force?'
"Y"

|
"N"

if "Y"

'Key in force (decimal)'
"< force >"

'u'

{ When the slider pushes against an external object, a force tending to rotate

the first degree of freedom accompanies the slider push against the object.

Whenever this first degree of freedom force exceeds the touch force during
motion of the slider, it is taken as the signal that the slider has touched an

external object. }

if "o"

'Dropped part function is on'
|

'Dropped part function is NOT on'

'Change function?'
"Y"

|

"N"

'u'

134

The TWS

{ The dropped part function attempts to indicate that a part has been dropped.
In a search routine, if the slider is able to move beyond a certain
point, it is taken as a successful search. If the dropped part function
is on, then if the slider has moved further than a preset limit, it is

not taken as a successful search but an indication that there was no
part that prevented the motion. }

if "p"

'< push force >'

'Set push force?'
”Y"

|

"N"

if "Y"

'Key in force (integer)'
"< force >"

'u'

{ The push force is the force applied to the slider when it is desired to move
the slider until it touches an external object.)

if "h"

'Set delay time?'
"Y"

|
"N"

if "Y"

'Key in delay (integer in 0.1 seconds)'
"< delay >"

{ Delay is the time interval that is waited after the force of the first four
degrees of freedom are set to 0 in the HOLD procedure.)

if "d"

{ call ATTENTION }

'b'

'b'
' r

'

6: if "space” { the character, not the word }

'Programming position?'
IIY f

*
|

HJJH

if "Y"

'b'
' r

'

if "N"

'Alternate programming position?'
"Y"

|
"N"

if "Y"

'b'

' r'

if "N"

'Aligned programming position?'

135

The TWS

"Y"
|

"N"

if "Y"

'b'

'r'

{ The programming position with the two rotations set to the values obtained
from align. }

if "N"

'Aligned alternate programming position?'
"Y"

|
"N"

if "Y"

'b'
' r

'

{ The alternate programming position with the two rotations set to the values
obtained from align. }

'Repeat positioning?'
"Y"

|

"N"

if Y **

goto 6

if "#"

'Maintain CRT control?'
if "Y"

goto 1

if "N"

goto remote mode

goto 1
«

2 . 2 Remote Mode

In remote mode, all instructions to the microprocessor consist of one ASCII
character, which is not echoed by the microprocessor. The microprocessor sends
status characters to the automated operator such as "r" or "b ,e

,
indicating

ready or busy, respectively. When the microprocessor receives an illegal or
inappropriate command, it responds with the character "n" and awaits the

resubmission of the command. Whenever a problem occurs, such as the inability
of the microprocessor to perform the task commanded, the microprocessor issues
an "e" to the serial port and, when it receives an "i" at the serial port, it

issues a coded character that indicates the type of error encountered. The
following table is a concise listing of the communications in remote mode:

TO BOTH FROM

'u' Waiting for initial command
CTR A Start in local mode

'??' Start in remote mode

136

tt

X)

(n

box

K

'n
1
-,

X
h4

0

CX

Pm

CT

O'

U

Oi

V)

U

3

>
X)

>
5
X

>>?>-!

The TWS

'c'

'b'

t

t

'n'

t

'r'

'u'

Acknowledge message
Busy
Clear
Restart in remote mode
Lock micro where it is

Error [followed by error code (ASCII 0-9)]
Move to aligned home position
Move slide - till touch
Move to home position
Move to home position - instructed amount
Inquiry
Move to alternate home position
Move to alternate home position + instructed amount
Move slide + till touch
Move to aligned alternate home position
Search for hole [followed by strategy (ASCII 0-9)]
Not understood
Push part in collet - direction
Push part in collet - direction with extra testing
Push part in collet + direction
Push part in collet + direction with extra testing
Ready
Relax manipulator
Set zero force on first 4 degrees of freedom
Status request
Relax and record for next position
Push hard in - direction
Waiting for command
Push hard in + direction
Push hard in - direction with* Jitter
Push hard in + direction with Jitter
Move slide to home position
Move slide to alternate home position
Align angles for insertion in positive direction
Align angles for insertion in negative direction
Emergency stop (Lock micro where it is)

Errors will be ASCII digits 0 to 9

1 Micro didn't move on push (into collet)
7 No part (micro couldn't) touch off

A short elaboration of commands will now be given:

The first 'u' is a character sent on power up or reset to indicate that
the system is working. There are only two acceptable responses to this
'u'

,

a control-A or a '#'

.

The control-A causes the device to go into
local mode while the '#' causes the device to go into remote mode. Upon

137

The TWS

receiving a '#'

,

then device sends an 'r', indicating a readiness to
receive a command.

If a '

c' is sent, the device responds with a 'b' then resets and sends a

'u' .

If the device receives a 'd', it responds with a 'b', calls LOCK and
when finished, it sends an 'r'.

When an 'F' is received, it responds with a 'b'

,

sets a flag instructing
the use of the alignment positions for the first two degrees of freedom,
calls PROGRAM_POSITION with no offset, then calls COMPLETION and sends
an r.

Upon receiving a 'g', STOP_PT_GRAD is called with the move in a negative
direction. If a touch is achieved, the process ends with the sending of
an 'r'. If a touch is not achieved, the process is repeated up to four
additional times. If a touch is achieved at any try, the process is

stopped and an 'r' is sent. If no touch is achieved, REPORT is called
with an error signal of '1'. The error signal can be modified to

accommodate the station controller.

An 'h' causes a 'b' to be sent and PROGRAM_POSITION to be called
followed by COMPLETION and an 'r'.

When the device receives an 'H' it sends an ' i' and waits to receive a

number in integer, decimal, or exponential form,- each, character of the

number being in ASCII form. The number must be terminated with a

carriage return. Upon receiving this number, the device sends a 'b' and
PROGRAM_POSITION is called with an offset corresponding to the number
received. This is followed by COMPLETION and the sending of an

If an 'i' is received at this time an 'r' is sent and nothing happens
until a character other than 'i' is sent. The usage of 'i' is

restricted to the time when an error signal is sent and the error
designation is requested.

A ' j
' causes a 'b' to be sent and PROGRAM_ALTERNATE to be called

followed by COMPLETION and an 'r'.

When the device receives a 'J' it sends an 'i' and waits to receive a

number in integer, decimal, or exponential form; each character of the

number being in ASCII form. The number must be terminated with a

carriage return. Upon receiving this number, the device sends a f b' and

PRQGRAM_ALTERNATE is called with an offset corresponding to the number

received. This is followed by COMPLETION and the sending of an 'r'.

Upon receiving a 'k'

,

STOP_PT_GRAD is called with the move in a positive

direction. If a touch is achieved, the process ends with the sending of

an 'r'

.

If a touch is not achieved, the process is repeated up to four

138

The TWS

additional times. If a touch is achieved at any try, the processes is

stopped and an 'r' is sent. If no touch is achieved, REPORT is called
with an error signal of '1'. The error signal can be modified to

accommodate the station controller.

When an 'L' is received, it responds with a 'b', sets a flag instructing
the use of the alignment positions for the first two degrees of freedom,

calls PROGRAM_ALTERNATE with no offset, then calls COMPLETION and sends

an r

.

An 'm' starts a search after offsetting the rotational axis specified
amounts. There are ten possible preset offsets (0 to 9). Upon
receiving the 'm'

,

the device sends an 'i' and waits for a digit in

ASCII of 0 to 9. Receipt of anything but the permitted digit causes the

device to send an 'n' and wait for the proper digit. Upon receiving an
improper response for ten times, the device sends an ' r' to indicate
that it is now looking for a new command. Upon receiving the acceptable
digit, the device presets the rotational degrees of freedom by the

amount specified in the called for case and proceeds to call CORRECTION
and do the search in the normal method. The amount of motion that the

slider is able to perform is used as a measure of whether the search has
been successful. If unsuccessful, the error signal is given, otherwise
an 'r' is returned.

A 'p' causes the device to send a 'b' and start a search in the negative
direction by calling CORRECTION as in the 'm' routine. The only
difference is that the rotational degrees of freedom are not preset to a

different position.

The 'P' routine operates exactly as 'p' with one additional test. If it

is determined that the slider has not moved sufficiently to indicate
that the search was successful, an additional test is performed in order
to determine whether or not all motion of the slider is impeded,
indicating that the part is stuck. In this case, it is considered a

success

.

Receipt of a 'q' causes the exact same actions as 'p', except that the
motions of the slider are in the reverse direction.

The receipt of a 'Q' causes the same actions as 'P', with the difference
that the slider motions are in a reverse direction.

When an 'r' is received, a 'b' is sent followed by the setting of a zero
driving force on the first four degrees of freedom. AT_EASE is then
called which sends another 'b'

,

cuts off the hydraulic pressure to the

first four degrees of freedom, then waits two seconds before returning
an '

r
' .

The receipt of an 'R' causes a 'b' to be sent followed by a call to HOLD
which sets the driving force on the first four degrees of freedom to

139

The TVS

zero and waits one tenth of a second before returning an 'r'.

The receipt of 's' causes STATUS to be called which is then followed by
the sending of an 'r'.

NEW_SET is called upon the receipt of a 't'. This is followed by the
sending of an 'r'.

The receipt of a 'u' causes the slider to be moved in the negative
direction with a force equal to the previously established maximum force
for this degree of freedom. This is followed by the sending of an 'r'.

A 'v' causes the same actions as a 'u' , but the motion is in the
positive direction.

The receipt of a 'U' causes MOVE_WITH to be called in the negative
direction. This results in the same action as a 'u' with the rotational
degrees of freedom swinging between their extremes in order to prevent
sticking of a part.

The receipt of a 'V' causes the exact same action as the 'U' but the

•

slider moves in the positive direction.

A 'w' causes PROGRAM_POS to be called, followed by the calling of
COMPLETION after which an 'r' is sent.

The receipt of an 'x' causes PROGRAM_ALT to be called, followed by the
calling of COMPLETION after which an 'r' is sent.

When a 'y' is received, the device calls ALLIGN with the slider motion
being in a positive direction. If during this procedure the slider is

unable to move a prescribed minimum amount in that direction, an error
signal is given. If the motion is achieved, an 'r' is sent. This
procedure is valuable following a successful search, in order to align
the rotational degrees of freedom more closely with the desired
direction of slider travel.

The receipt of a 'Y' causes the identical operation as a 'y' with the

exception that the slider motion is in a negative direction.

The receipt of an 'x' causes the present five degrees of freedom to be

servod at their present position and insures that the pressure is on to

all of the degrees of freedom. This is accomplished by calling LOCK.

3. SUGGESTIONS FOR FUTURE DEVELOPMENT

The micromanipulator, as presently designed and built, has no method of

measuring the force with which it is attempting to move any of its degrees of

freedom. This forces it to try to get a handle on the force by a roundabout

method, which is only moderately successful. If force sensors existed, many of

140

The TWS

the procedures which are now performed either with difficulty or with an
unacceptable rate of failure, could be performed easily with practically a zero

failure rate.

It is highly likely that position sensors which could be more easily adjusted
to measure the entire motion of each of the degrees of freedom and would
maintain this adjustment could be found. Calibrating the position sensor
output against positions of the micromanipulator is a difficult and time-
consuming task and it would be advantageous to require that this only be

necessary once.

It might be advantageous to have a learn mode in the microprocessor. Although
certain positions resulting from particular operations can be saved and used in

the next execution of the same operation, it might be useful for the
microprocessor to have the ability to retain a complete series of successful
moves in which a desired result was obtained. In order to accomplish this
learning task, it would be desirable to have some nonvolatile random-access
memory in order to be able to retain that which was learned.

141

The TWS

X. MALFUNCTION DETECTOR

Automated untended operation of equipment, especially equipment with a

potential safety hazard, requires some form of automated monitoring of the
equipment to insure that malfunctions will not result in expensive or dangerous
consequences. The malfunction detector is an instrument designed to detect
most occurrences of improper operation at an automated workstation. This is

accomplished by monitoring the vibration caused by machine operations and
comparing the vibration level with predetermined upper and lower limits of
acceptable vibration. Obtaining a vibration level outside of the allowable
limit, a signal is given, received by another computer and, upon inquiry from
the controlling computer, a code is given to designate which malfunction
occurred. This provides a means of stopping an operation in the event of tool
breakage caused b y premature tool failure, unproper tool loading, execution of
the wrong NC program, etc.

1. DESIGN OF THE MALFUNCTION DETECTOR

1 . 1 Overview

The malfunction detector uses two accelerometers mounted on the tool holding
turret assemblies of the turning center. The mounting orientation chosen is

optimal for the smallest signal level differences of the various cutting
operations

.

The electronics hardware consists of two in-house printed-circuit boards. One
board provides signal conditioning, RMS, Log, and analog- to-digital (A/D)

conversion; the other is a computer that utilizes a math coprocessor and
battery-backed read-only memory for storing operational tolerances.

The software consists of one program, written in PL/M, with no operating
system. Since this controller was to perform one task, no operating system was

deemed necessary. The PL/M language was chosen because it can address the

individual bit- level when necessary and has all of the advantages of a

structured high-level language. This language was designed to be used
primarily with Intel microprocessors, the type of microprocessors used with
this device.

1 . 2 Control Architecture

The controller of the malfunction detector consists of a system that receives

signals from the machine tool each time another process is begun and ended. By

keeping track of these signals, the microprocessor can know the characteristics

of the process in operation at any particular time. The microprocessor

compares the expected characteristics of the current process with the signals

received from the accelerometers. A decision as to whether the signal levels

142

The TWS

are within the tolerance set for that process determines whether or not a

malfunction signal is to be given.

1 . 3 Mechanical Components

The mechanical components of the malfunction detector include two

accelerometers mounted on the tool holding turret assemblies of the turning
center. The accelerometers are Endevco Model 7701.50. These are used with
Endevco's Model 2775A signal conditioner. The signal conditioner is a charge
converter with sensitivity, gain, and test function controls.

1 . 4 Electronic Components

A block diagram of the analog circuit is in Figure X.l. Due to a positive DC

voltage offset, the signal conditioner is AC-coupled to the analog circuit
board; the two inputs are then summed into the input amplifier. From the

summing amplifier, the signal goes to a true RMS-to-DC converter. To increase
the dynamic range, the converter's logarithmic or decibel output option is

used. Next, a 10-bit analog- to -digital converter is used as the interface to

the computer board. Three-state buffers are needed to move the 10 bits of data
onto the computers 8 -bit bus. The machining operation signal used by the

counter is controlled by the NC machine program and sent through an optical

-

isolator. The counter output goes to a display on the faceplate and to the

computer boards parallel input port. Reset control of the counter is from the

computer's output port.

The computer board has a large number of capabilities; the foremost of these is

fast floating-point arithmetic that can handle 80-bit numbers. There are 34K
bytes of memory available on this board, of which 2K can be nonvolatile memory.
To communicate to external devices there are two input ports

,
two output ports

,

and a serial port. To help in real-time operation, there are six external
interrupts. A block diagram of the microcomputer circuit board is in Figure
X.2. As an aid in the understanding of the overall concept of the
microcomputer circuit board, the following discussion is divided into four
sections, each one containing a number of circuit descriptions. The subjects,
in the order they will be described, are microprocessors, control, memory, and
I/O.

1.4.1 Microprocessors

Two microprocessors are implemented on this board. An 8088 in the maximum
mode is used as the primary Central Processing Unit (CPU)

,
and an 8087

Numeric Data Processor (NDP) is used as a coprocessor. In the maximum mode the
8088 can address 1 megabyte of memory. When an 8087 is used in this manner,
the programmer generally does not see it as a separate device; instead, the
computational capability of the 8088 appears greatly expanded. The 8087 adds a

fast floating point arithmetic capability to the circuit. An increase in speed
of 50 to 100, depending on. the type of function, can be expected. Data as

large as 80 bits, approximate decimal range 0.3 4x10-4932 < x < 1.1x10 4932,
are valid values for the 8087 NDP.

143

144

FIGURE

X.l.

MALFUNCTION

AND

TOOL

CONDITION

DETECTOR

145

FIGURE

X.2.

SCHEMATIC

DIAGRAM

FOR

THE

NBS-DESIGNED

MICROCOMPUTER

The TWS

1.4.2 Control

The control circuit is composed of several integrated circuits. Two crystal
controlled circuits are used to generate the clocks needed by the
microprocessors and the serial I/O circuit. The status of the microprocessor
is monitored by a bus controller; using this information, it generates the
needed memory and I/O control command signals. Three latches use the address
latch enable signal (ALE), supplied by the bus controller chip, to create the
address bus. Programmable read-only memory chips and an NAND gate decode the
address bus, then enable the proper memory or I/O chips. Because the CPU uses
a multiplexed bus, a transceiver is needed to isolate the address -data bus from
the data bus. An interrupt controller circuit is used to establish interrupt
priorities when both an 8087 and interrupts are to be used by the CPU. In this
design there are six interrupts available, two of which are also external input
commands that latch the input data bus

.

1.4.3 Memory

There are three different types of memories that are used, random- access memory
(RAM)

,
erasable programmable read-only memory (EPROM)

,
and electronically

erasable programmable read-only memory (EEPROM) . 2K bytes of RAM memory is

available for use. The amount of EPROM memory available is determined by the

type used. If 2732 's are used, without using an EEPROM, there will be 16K
bytes of EPROM, when using 2764' s there are 32K bytes of EPROM. The advantage
of EEPROM memory is it can he addressed in a similar manner as RAM, but unlike
RAM memory it will retain its data when power to the chip is removed. The
disadvantages are slow writing speeds and low chip byte densities. A 2816
EEPROM was used because it is almost pin-for-pin compatible with the 2732 's and
2764' s. If a 2816 EEPROM is used, the total amount of EPROM is reduced by 4K
when using 2732' s, and 8K when using 2764' s. The reason for the EPROM size
change is the EEPROM uses one of the sockets normally used by an EPROM chip.

The 2816 EEPROM will hold IK bytes of data. In the latest version of the

device, battery backed-up RAM was substituted for the EEPROM. This replaced
the EEPROM memory on a chip-for-chip basis and offered the advantage that no

special procedures were required to write to this RAM, which in operation is

indistinguishable from the other RAM.

1.4.4 Input/Output

•There are two types of I/O's used on the CPU board: serial and parallel. The

serial input-output is accomplished using a programmable Universal
Synchronous/Asynchronous Receiver/Transmitter (USART) . This circuit converts

8-bit parallel data to 8-bit serial data for transmission at the same time it

also converts received serial data to parallel data. There are two baud (bits

per second) rates available, 1 . 2K or 4.8K. Interfacing to a terminal, using

buffers to change the logic levels, is the function of this serial I/O circuit.

Four 8 -bit parallel ports make up the parallel I/O circuit, two input and two

output. The two input ports data can be latched internally or externally, then

read by the CPU at its convenience. The two output ports are bit addressable

by the CPU.

146

The TWS

1 . 5 Software Components

The software consists of a program, written in PL/M and linked to library I/O

routines to form one module. The program consists of two modes of operation, a

local mode and a remote mode. The local mode is used for testing and diagnosis
as well as the introduction of the tolerance parameters into the memory. It is

in this mode that the characteristics of each process are stored. The remote

mode operates when signals from the machine tool accelerometers and the machine
tool controller are sent to the microprocessor for analysis and malfunction
detection.

The essence of malfunction detection consists of comparisons of vibrations, as

measured by the accelerometers at any instant in time, with upper and lower

limits of vibration for that particular machine operation. These upper and
lower limits must be stored and, for convenience, are stored in nonvolatile
random-access memory. The stored limits, along with a significance factor,

are grouped with each group representing one machine tool program. They are

stored in the order of the machine tool operations that will occur during the

particular program. The present software provides for up to fourteen different
machine tool programs, but this is a current limit due only to memory
constraints. The locations of the beginning and final limits for any
particular program are stored in yet another table in the nonvolatile RAM
memory, along with three timing limits.

In normal operation, a controlling computer sends a character, "s" to "x" or

"S" to "Y" to the detector, thereby designating which program the machine tool
is to start running. Upon receiving the program designation, the detector
returns a "b" to the controlling computer indicating that it is busy. The
detector uses the program designation to locate the table of parameters to be
used as limits and starts a timing loop while waiting for a signal from the
machine tool, indicating that it has started to perform a particular operation.
If the timing loop is traversed more than a limit, called the dormant limit,
before the signal from the machine tool is obtained, an error signal is sent to

the controlling computer.

Upon receiving the signal from the machine tool that it has started the
operation, the count of the timing loop traverse is restarted and the loop is

again traversed while the accelerometer output is monitored. The highest level
of accelerometer output is maintained as well as the last 200 readings. If at
any time the accelerometer output exceeds the maximum value associated with
this particular step in this particular program, an error message is

immediately transmitted to the controlling computer. If the maximum value is

not exceeded, but the count on the traversing of the timing loop exceeds a

limit called active, an error signal is sent to the controlling computer. If
neither the maximum limit is exceeded nor the active timing limit exceeded,
upon receipt of a signal from the machine tool that the particular operation
has finished, the maximum accelerometer reading obtained is compared with the

minimum limit for the corresponding operation in the particular program. If
the maximum accelerometer reading is below the minimum limit, an error signal

147

The TWS

is sent to the controlling computer. When the signal indicating the finish of
the particular operation is received from the machine tool, the count of the
timing loop traverse is again restarted and the count maintained until
receiving the signal of the start of the next step. If at any time the count
exceeds a limit called quiescent, an error signal is sent to the controlling
computer. These operations continue until all of the steps of the machine tool
program have been performed, when an "r" is sent to the controlling computer.

The error signal sent to the controlling computer consists of ten ASCII
characters, the first character being an "e". The second character is a digit
1 to 6 ,

indicating the following error designation:

1 The highest accelerometer reading was below the minimum limit
established for that particular operation in that particular
machine program.

2 The highest accelerometer reading exceeded the maximum limit
established for that particular operation in that particular
machine program.

3 The allotted time was exceeded.

4 Errors 1 and 3

.

5 Errors 2 and 3

.

6 The highest accelerometer reading was below the minimum limit
established for an operation that would indicate that a part had
most likely been dropped.

The added information provided by error 6 as compared with error 1 is provided
by the significance factor which is stored along with the minimum and maximum
limits. The next three characters are a number, indicating which operation was
on at the time of the error. The final five characters consist of a number
that is the value of the last accelerometer reading obtained. Whenever the

controlling computer does not comprehend the transmission sent by the detector,
it can send an "n" ,

which would cause the detector to repeat the previous
character. Whenever the detector receives a transmission that it finds illegal

or inappropriate for the present circumstance, it issues an "n"

.

Two variations to the normal operational mode exist. The first variation is

used when brand new parameter limits for the current operation are to be

obtained automatically. In this mode, the maximum accelerometer readings for

any operation in any machine tool program are stored for the first five times

that the operation is performed. After the fifth run, the parameter limits are

calculated and used for malfunction detection. Until this mode is changed,

which requires a shutdown of the detector, each operation causes an update of

the corresponding limits. The second variation is used when it is desired to

continually update the existing detection limits based on current operating

measurements

.

148

The TWS

Malfunction detection is based on the maximum vibration reading for each

turning cut or pass. These maximum vibration readings are defined as values

V]_ V i ,
Vn . The method of calculating the new limits under the first

variation, consists of summing these values and the squares of these values for

each cut. Let N be the number of values summed. The running average and

running upper and lower limits for any particular cut are then determind as

follows

:

Value N is the number of maximum reading values.

SUM is the sum of the N values

.

MEAN - SUM/N.

D is the sum for the squares of the last N values of V^_.

SIGMA - square root [(D- (squares(SUM)/N)/(N-l)]

.

Lower limit - MEAN - 3 * SIGMA.

Upper limit - MEAN + 3 * SIGMA.

With the use of these calculations, the malfunction limits can gradually change

as a result of gradual shifts in the machining operation, such as tool wear.

Despite the fact that these limits are continually changing, sudden shifts in

the vibrations of the machining operation will be interpreted as a malfunction.
This is based on the premise that real malfunctions cause sudden shifts in the

-vibration level.

2. OPERATION OF THE MALFUNCTION DETECTOR

After the powering up of the malfunction detector, the control program waits
for a character, which will inform the microprocessor whether to go into local
or one of three remote modes. Control-A (binary 1) causes the detector to go

into local mode. Characters "U"
,

or "$" cause the detector to go into
remote mbde . "U" causes the detector to use previously stored limiting
parameters (parameters keyed in while in local mode) . The character "#" causes
the detector to use previously learned limiting parameters and to modify these
parameters in accordance with the running mean and running standard deviation
method. The character "$" causes the detector to start fresh with no limiting
parameters and to then produce these parameters and modify them as described
above. Modes of operation can only be changed by restarting the detector.

2 . 1 Local Mode

In local mode, communication between a dumb terminal and the microprocessor is

carried on in English, primarily with the microprocessor asking questions in
English and the operator at the terminal responding with "y" or "n" . In
addition, the microprocessor can request the input of parameter values, in
which case an ASCII representation of the number is accepted by the

microprocessor. In this mode, everything that the operator types at the

terminal is echoed to the screen to facilitate human communication. Remote
mode can also be simulated in local mode when needed for diagnosis, but, in

149

The TWS

general, the operator can accomplish anything desired in the more user friendly
local mode.

The following pseudocode displays the operation under local mode. All messages
sent by the detector are enclosed in single quotes and responses in double
quotes with items within square brackets, "[]", being optional. Items between
which choices must be made are separated by the vertical bar, "|", while dummy
values are shown as "< >" and nonoperable comments will be shown within braces,
"{ Numbers followed by a colon, are labels.

"Control A"
1: 'YOUR AVERAGING VALUE IS < >'

'CHANGE AVERAGING VALUE?'
if "y"

'IF THE COUNT IS CHANGED, YOU MUST START THE LEARNING PROCESS ALL
OVER'
'CHANGE AVERAGING VALUE?'

if "y"

'KEY AVERAGING COUNT VALUE'
"< >"

'DISPLAY LAST 200 CAPTURES?'
if "y"

2 : '<><> ..<>'

'DISPLAY SUB PROGRAM START & STOPS'
if "y"

'<>’<> <>'
'CHANGE ANY VALUES?'

if "y"

3: 'WHICH SUB PROGRAM?
"< >"

' START?

'

"< >"

' END?

'

!0< ^, 1 !

t

'CHANGE ANY VALUES?'
if "y" goto 3

'DISPLAY SUB PROGRAM STARTS AND ENDS AGAIN?'

if "y" goto 2

'GET RMS VALUES?'

{ This routine obtains readings as though the detector were operating in remote

mode and summarizes the collected data displaying the summary on the terminal.

}

if "y"

150

i The TVS

{ The detector now proceeds to collect data until either sixty-four separate
machine tool operations have been performed, or until a key is struck on the

terminal. The information is then sent to the terminal in groups of ten. }

4: { loop }

5: ' MCODE - < > COUNT =- < > MINIMUM - < > MEAN - < > MAXIMUM = < >'

'HIT A C/R TO RESUME'
" Carriage return " goto 5

{ MCODE is the number of the machine tool procedure and COUNT is the
number of readings that were taken to produce the summary. }

'REPEAT PRINT -OUT?'
If "y" goto 4

6: 'DISPLAY AND/OR CHANGE LIMITS?'
if "y"

'LEARNED LIMITS?'
"y or n"

'WHICH PROCESS?'
"< >"

'LOW LIMIT IS < > HIGH LIMIT IS < >[Involved in dropped part
detection]

'

'SET NEW LIMITS?'
if "y

"

'LOWER LIMIT?'
"< >"

'UPPER LIMIT?'
"< >"

'CHANGE DROPPED PART ACTIVITY?'

{ This refers to whether or not a too low signal at this program step will
suggest the existence of a dropped part. }

if "y"

'MAKE ACTIVE?
»y»

|

»n »

goto 6

'DISPLAY TIMES?'
if ”y”

'DORMANT = < > QUIESCENT = < > ACTIVE - < >'

'TIME SETTING?'
if "y"

'BY TIMING?'
if "y"

'HIT A KEY TO START AND THE SPACE BAR TO STOP'

151

The TWS

"any key then space"
'< > DONE'

if "n"

'BY KEYING IN?'

if "y"

'MINUTES?'
"< >"

'SECONDS?'
"< >"

'< >'

if "y"
{ for timing or keying in}

'STORE IN DORMANT?'
"y or n"

'STORE IN QUIESCENT?'
"y or n"

'STORE IN ACTIVE?'
"y or n"

'DISPLAY TIMES?'
if »y"

'DORMANT - < > QUIESCENT - < > ACTIVE - < >'

'TAKE READINGS'
if "y"

'HIT A KEY TO START AND THE SPACE BAR TO STOP f DOUBLES SPEED OF
OPERATION'

{ When any key is hit, the detector will start taking accelerometer readings at

5 second intervals except if the key was an f, in which case the interval will
be 2 and 1/2 seconds and then prints each value to the terminal. The operation
is not under any machine tool control and is used mainly for testing or
diagnosis of problems. Keying the space bar halts the process. }

'CHECK/CHANGE ERROR PRINT TYPE?'
if "y"

'Errors are in ASCII'
'Change to BINARY?'
"y

|

n"

I

'Errors are in BINARY'
'Change to ASCII?'
"y

|

n"

{ One of the above two options will occur but not both. }

goto 1

152

The TWS

2 . 2 Remote Mode

In remote mode, all communication with the microprocessor consists of one ASCII

character, not echoed by the microprocessor, with the exception of the error

signal, which consists of a string of ten ASCII characters. The remote mode

follows the following communications protocol:

'b' Busy
'c' Clear
' e

'

Error
' i' Inquiry
' n' Not understood
' r

'

Ready
'z' Understood

's' Start program #1
' t' Start program #2
'u' Start program #3
'v' Start program #4
'w' Start program #5

'x' Start program #6
’y' Start program #7

'S' Start program #8
t 9 Start program #9

'U' Start program #10
'V' Start program #11
'W' Start program #12
'X' Start program #13
'Y' Start program #14

The following pseudocode displays the operation under remote mode:

"U"
|

"#"

1: 'r'

"s" I "t"

I

"$”

|

l»^IH
j

ft-y.18

j j j

»»y»f
|

»« g *1

j j

9f
XJ

|

,,V M
j

tBW K

{ The device performs malfunction detection of the relevant program (1 to 14)

under one of the three modes until the machine program is finished. }

{ if no malfunction detection)

goto 1

{ if malfunction)

'e <><><><><><><><><>'
goto 1

This constitutes the entire communication during remote mode. If the first
character sent to the device is "U" ,

then the malfunction detection is

performed using the relevant predetermined parameters. If the first character

153

The TWS

sent is a "#"
,
then the malfunction detection is performed, using the relevant

previously learned parameters, which will continue to be updated. If the first
character sent to the device is a the device will immediately try to learn
new relevant limiting parameters with no malfunction detection being performed
during the first five operations of any program step. Subsequent to the fifth
operation, the device will perform in a mode identical to the mode started by
"#"

.

3. SUGGESTIONS FOR FUTURE DEVELOPMENT

A possible future development would entail using the malfunction detector to

indicate tool wear along with the malfunction detection. The malfunction
detection is based on a sudden change in the accelerometer signal level. It is

highly likely that there is a slight continuous change in the accelerometer
signal level for a particular process due to tool wear. If this were the case,

statistics on this tool wear could be obtained using the malfunction detector.
Parameters could be established based on these statistics, thus permitting
timely warnings relevant to tool wear.

154

The TWS

XI. COLLET CHANGER

Tooling and tool management represent one of the key issues when designing and

operating a flexible machine center. To allow untended operation for a turning

center, a system for changing collets has been implemented on the turning
center at the AMRF. This is the first known use of a robotic system to change

a standard collet on a turning center. Collets are needed for precision
machining to tolerances of 100 microinches.

1. DESIGN OF THE COLLET CHANGER

1 . 1 Overview

In order for the robot to change a collet, a specifically designed computer-
controlled collet-changing device is installed on the NC turning center. The
controller designed for this device is highly sensory interactive. Its basic
function is to loosen or tighten the collet and properly engage or disengage
the clutch assembly.

1 . 2 Control Architecture

The controller block diagram is given in Figure XI . 1 . At the heart of the

controller is an 8-bit 8751 microcontroller. A software program in the

microcontroller handles the job of generating the pulse width modulation (PWM)

timing cycles necessary to drive the motor, monitor torque, activate the clutch
mechanism, and read sensor input.

Two types of input are available on the collet changer, an RS232 serial link *

and manually activated switches located on the lathe. The primary input is the
RS232 link to the workstation controller (WSC) . The WSC can then command the
collet changer to change collets. In return, the collet changer provides
status and error information.

The controller status may take on one of the three values: ready, busy, and
error. While the status is ready, the controller will accept commands from the
RS232 link. During the busy state only one command is accepted. This is the
reinitialize command. When the controller receives the initialize command, it

aborts its current operation and resets all internal variables.

If an error occurs during operation, the collet changer will broadcast an error
status and stop whatever operation it was performing. When this status is

acknowledged, the controller ceases to transmit status information and outputs
the most recent error code. At this point, the controller will remain inactive
until it is commanded to either re- initialize or to continue with its current
operation.

155

(A o
3 eg

eg
o

cn o
c

156

FIGURE

XI.l.

FUNCTIONAL

BLOCK

DIAGRAM

OF

THE

COLLET

CHANGER

CONTROLLER

The TWS

1 . 3 Mechanical Components

The collet changer is described below using the following diagrams. Figure

XI . 2 is an isometric view of the spindle, collet changer, and robot arm
grasping a collet. Figure XI . 3 is a cross-section of the collet changer
mechanism.

The collet changer consists of a clutch which is actuated by an air piston (3).

The clutch mechanism is then driven by a D.C. motor (11) through a gear train

(4)

.

Induction sensors (7) are used to count and align the clutch mechanism to

the spindle. A further discussion of the mechanical components will be given
in the section on the operation of the device.

1 . 4 Electronic Components

The heart of the collet changer controller is the 8-bit 8751 microcontroller
which has 128 bytes of RAM for data memory and 4K bytes of EPROM for program
memory. The microcontroller sends out PWM pulses to drive the servomotor and
actuates a relay to change motor direction. The motor's torque is monitored by
the microcontroller sampling the current passing through the motor. An A/D
converter is used to sample the motor current and to convert the analog value
to 8 -bit data. This data is read by the microcontroller.

1 . 5 Software Components

The software routines consist of an algorithm to tighten or loosen any type of
collet. It is a "smart" system which can correct itself under certain
difficult conditions.

There are five errors which may occur. These errors are communication, time
out, binding, alignment failure, and clutch failure. A communication error
occurs if the collet changer receives an erroneous command. A time out error
occurs if the changer fails to receive feedback after a specified time. A
binding error occurs if the drawbar becomes difficult to turn at a point in the
operation where this should not occur. This may be due to either mechanical
binding or cross threading of the collet. An alignment error will occur if the
changer is unable to align the clutch properly. Finally, a clutch error will
be generated if the clutch fails to return to its proper location after being
activated. One can get a feel for what the software is doing by reading the
section on the operation of the device.

2. OPERATION OF THE DEVICE

The automated collet changer utilizes a typical collet changing operation. In
order to loosen a collet (9, Figure XI. 2), a pivoting fork (2) is actuated by
an air piston (3, Figure XI. 2). This will disengage the locking pins (13,

Figure XI. 3) to free the spindle from the drawbar (1, Figure XI. 3) and also
engage the pinion (6) to the drive gear (5) of the clutch mechanism. The
pinion is driven through a gear train (4) attached to a DC servomotor (11). A

157

©

158

FIGURE

XI.2.

ISOMETRIC

VIEW

FIGURE XI.3. CROSS SECTION OF CLUTCH MECHANISM

159

The TWS

nonrotating linear move of the clutch is made possible by four equally spaced
guide pins (15, Figure XI. 3), and a close tolerance sliding sleeve (16A and
16B, Figure XI. 3). While the clutch is being engaged, the motor controller
pulses the servometer in order to properly mesh the gears. Eight equally
spaced steel locating pins (7) are placed on a diameter around the driven gear.
An induction sensor (8) is used to count and read the position of each of these
steel pins. The induction sensor is not affected by cutting oil and coolant
that have been known to migrate up the spindle and disperse around the
headstock. Likewise, a labyrinth bearing seal (14A and 14B) was designed to

safeguard against any contamination of the bearings.

With the motor engaged, the induction sensor is used to count the appropriate
number of turns of the drawbar to loosen the collet. When the collet is

disengaged from the drawbar, the robot (12, Figure XI. 2), can remove the collet
and insert a new one. The shaft of the collet aligns the collet with the

spindle throat so the drawbar will not crossthread. While pushing on the
collet with the compliant device (attached to a programmable tailstock, not
shown) the drawbar is turned by the DC servomotor. The controller, using PWM
drive at low speed, counts 32 pulses of the induction sensor to rotate the
drawbar four full turns. After the four turns, the collet will be initially
threaded to the drawbar. By monitoring the motor current, using an analog-to-
digital converter, the motor controller can sense the proper torque on the
drawbar in order to seat the collet in the spindle properly. Once the collet
is snugged up to the spindle, it has to be backed off one-half of a turn. This
will give the collet proper clearance to load a workpiece and actuate the
drawbar. Having the collet too tight can cause damage by exceeding its elastic
limit. Likewise, a loose collet would not be able to hold a workpiece securely
against the large forces placed on it during turning operations. To back the
collet off one-half of a turn, the motor is reversed and the motor controller
counts back three counts.

The above scenario is similar to the way a machinist would install a collet for

safe use. Since the spindle locking pins (13, Figure XI. 3), are lined up with
the locating pins, the clutch is now ready to be actuated to lock the drawbar
to the spindle. If in any case, the spindle locking pins are not engaged, a

limit switch (17, Figure XI. 2) will signal the controller to search again. If

the spindle cannot be locked after three trials, an error message is sent to

the workstation controller to allow for the manual intervention. Such a scheme

makes this system smart enough to prevent turning operations, if the spindle is

not locked. The collet is now in position to be loaded with a workpiece.

(Robot loading of a workpiece in a collet is made possible by a

micromanipulator developed at NBS)

.

After the workpiece has been inserted by a

robot gripper, the drawbar is actuated to clamp the workpiece in the collet.

Actuation of the drawbar moves the clutch assembly 0.1 to 0.25 inch closer to

the pinion; however, this amount of travel is not enough to engage the clutch.

Spindle speeds of up to 4000 rpm can be expected, so one has to be confident

that the pinion will never be engaged during turning operations. The clutch

assembly can compensate for the drawbar travel by the compression of air in the

air piston.

160

The TWS

This design permits the changing of any type of collet, either dead length or

regular. There was minimum modification to the turning station. It is

compatible with bar feeding operations, or any other operations where the

spindle must remain clear. It is in this manner that a computer controlled
adjustable stop could be installed on a turning center at NBS . This system has
been found to be a great asset in manual machine operations, making it quicker
and easier for a machinist to change a collet. Communications to the

controller can be made via the workstation controller, or through manual
overrides located on the lathe.

3. SUGGESTIONS FOR FUTURE DEVELOPMENT

Since the collet changer is a prototype, some components can be improved to get
better performance and a longer service life. Using a spline bushing instead
of the sleeve bearing would provide a better way of transmitting torque in the

mechanism. Chrome plating could also be used on moving parts to reduce wear
and corrosion. Status lights or information provided to the CRT on the CNC
lathe would help for manual operation of the collet changer. As it stands now,

that information is only given to the workstation controller.

161

The TWS

XII. TURNTABLE

As a buffer storage device for the TWS, the turntable gives the workstation
robot unimpeded access to items that are used in workstation operations. Up to

sixty- six tools, collets, and gripper fingers total can be stored on holding
fixtures on the turntable. These storage locations are arranged in three
concentric circles from which a needed item is elevated by one of three
pneumatically actuated shafts. The elevation of the part by the shaft allows
the robot gripper an unobstructed path to the item, as well as repeatable pick-
up and drop-off points.

1. TURNTABLE DESIGN

1 . 1 Overview

The turntable consists of a 36- inch diameter platter that is horizontally
mounted on a frame approximately 3-feet high. The platter, with room for up to

sixty-six holding fixtures, is belt-driven by a servo-motor. The platter is

rotated to the correct position upon receipt of a command from the workstation
controller. Pneumatically activated shafts are used to lift the holding
fixtures up off the platter allowing free access to the robot gripper. The
system is microprocessor-controlled and uses an absolute-position encoder for
feedback of the platter's position. In the following discussion, the word
"turntable 1

' will generally refer to the whole system - mechanical and
electromechanical - whereas "platter" will refer to the actual 36- inch diameter
turning platter.

Implementing the buffer storage device as a servo-controlled turntable allows
for a compact, simple design which performs two functions. The first function
is that of a buffer storage unit for the turning center and for the robot. In
the course of machining a part in the turning center, differeiit collets may be
used. Ordinarily, these collets would be retrieved, changed, and stored
manually. However, when using a robot to change collets, there must be a

storage area where an unneeded collet can be dropped off and a required one

picked up. Other items which would be put in buffer storage are extra tooling
for the turning center and the various gripper fingers used by the robot for

picking up different parts. Each of these types of implements would have its

own type of holder, but all holders would fit on the platter in the same way -

that is, any holder could be installed on any of the sixty-six positions of the

platter

.

The second function of the turntable is to provide unobstructed, repeatable

pick-up and drop-off points for the robot. The shafts used by the turntable to

lift the holding fixtures above the platter provide height repeatability as

well as a clear path to and from the fixture for the robot. The standardized

holders (for each type of tool or implement) provide position and orientation

repeatability for the tooling. Repeatability is especially important for the

162

The TWS

pick-up operation. If the orientation or pick-up point of a collet, for

example, is slightly off, then it may not be possible to insert it into the

spindle of the turning center.

In addition to the microprocessor and support circuitry, the system consists of

an absolute encoder for position feedback and a DC servo motor driven by a

commercially obtained motor controller. The controller software is stored in

EPROM and is written in PLM-51, a high-level language written for the 8051

family of Intel microprocessors. The software consists of different routines
used for servo-control, error checking, and communication with the workstation
controller

.

1 . 2 Control Architecture

The turntable is operated using a basic servo-control algorithm. The principal
requirement that this algorithm fulfills is that of accurate rotation of the

platter to the required locations for the raising and lowering of the desired
holding fixture. While rotating the platter, its current position is checked
periodically and compared with the desired destination. When these two

positions coincide, the turntable controller waits for a command from the
workstation controller to raise (or lower) the appropriate shaft, in order to

raise (or lower) the required tool holder.

In order to satisfy the requirement of accurate platter positioning, the

combination of DC servo motor, motor controller, and absolute encoder was
chosen. This combination allows the platter to reach the needed destination as

quickly as possible and it has the advantage of the encoder's constant absolute
position output.

Control of the turntable platter is accomplished by using two nested feedback
loops. The inner feedback loop consists of the motor, tachometer, and a

commercially obtained motor controller. The microprocessor-controlled outer
loop consists of an absolute-position encoder, a D/A (digital- to-analog)
converter, and the commercial motor controller.

The inner loop controls the speed and direction of the motor based on the
command and tachometer signals to the motor controller. The motor controller
(which was commercially obtained) outputs a high-voltage PWM (pulse -width
modulated) signal to the motor. On the basis of feedback from the tachometer
(which is attached to the motor) and the command signal input, the motor
controller varies the speed and direction of the motor, accordingly.

In the outer loop, the absolute encoder is used to position the platter, and is

connected directly to the platter shaft. This eliminates the effects of
backlash between the shaft and the drive belt, because the encoder is intended
to indicate the actual position of the platter, not the position of the motor
shaft. The resolution of the encoder is 2048 counts per revolution, which
translates to a resolution of about 0.055 inches at the outer edge of the 36-

inch diameter platter. During a move from one position to another, the

163

The TWS

microprocessor reads the encoder and constantly updates the platter position
information.

In controlling the turntable, the microprocessor sends values to the D/A
converter which are converted (at the output of the D/A) to voltage levels of
the proper polarity. This voltage output is the command signal, which is sent
to the motor controller to control the speed and direction of the motor driving
the platter. As the platter is rotated near the desired position
(destination), the microprocessor reduces the command signal, causing the
platter to decelerate. When the destination is reached, the command signal is

reduced to zero, and the platter stops. If an overshoot occurs, the

microprocessor directs the D/A to produce a small command signal of the

opposite polarity to return to the destination position.

Once the platter is in position, it can be "locked" at that position by servo
control or the motor can be de-energized, leaving the platter in position, but
free to move. In either case, the turntable controller microprocessor waits
for the command from the workstation controller to raise the proper shaft.
While the shaft is being raised (or lowered) the position of the platter is

checked and corrected, if necessary. The shaft remains in the raised position
until the workstation controller commands the turntable controller to lower it.

1 . 3 Mechanical Components

The turntable is described below using the following diagrams. Figure XII. 1 is

an isometric view of the machine frame and working parts. Figure XII. 2 is an
illustration of a typical application.

Referring to Figure XII. 1, the mechanism consists of a 36- inch diameter
turntable (1) which pivots .on two centering bearings (2A and 2B)'. The machine
frame (7) is made from 6- inch, steel channel welded as shown. This design was

chosen to achieve maximum compactness, rigidity, and ease of service. Three
adjusting bolts (7A) are provided, one on each leg, to easily level the

turntable relative to the shop floor. Sixty-six stations are available with a

capacity of 200 pounds for tooling and fixtures. The table is driven by a

totally enclosed DC servo motor (3A) and motor controller (3B). All electrical
and pneumatic components fit into a service area inside the frame. Position
feedback is accomplished through an 11-bit absolute encoder (4)

.

To avoid any

backlash problems the encoder is coupled directly to the driven shaft (6).

This gives a theoretical resolution of 0.003 in/in radius of the turntable.

The DC motor and controller gives the advantage of having an infinite selection

of stop locations throughout the axis range.

Tools are placed on three different radii on top of the turntable. There are

three linear guides underneath the table. These consist of linear bearings

(5A) and nonrotating shafts (18A) which raise the tool off the turntable. The

turntable rotates to a desired tool where it will then be in position for

actuation of the appropriate linear guide. The linear guides are actuated by

pneumatic pistons (8), placed parallel to the shaft of the linear guides. The

164

©

FIGURE XII.l. ISOMETRIC VIEW OF THE
TURNTABLE MACHINE FRAME

165

The TWS

stroke on each shaft can be easily adjusted by a squeeze collar (9), to be used
as a mechanical stop.

Referring to Figure XII. 2, when the linear guide is going up, the male machine
tape (10A) engages the female taper (10B) of the tooling fixture, which is

mounted on top of the turntable. A keyway cut into the male taper is also
engaged by a pin in the female taper. In this manner, the proper orientation
of a tool would automatically be accomplished as it is being raised and finally
the proper position will be set when the linear guide hits the mechanical stop
(squeeze collar) to end its travel. Speed control of the linear guides is

adjusted by standard muffler- speed controls which are attached to a common
manifold for easy access.

To illustrate a typical tool changing operation, again refer to Figure XII. 2.

The robot (12) needs only one teach point to access any tool on a radius. When
replacing and retrieving a collet (14), for instance, the gripper will go to

that teach point with the old tool in its fingers. The empty tool fixture is

indexed to the correct position to be picked up by the linear guide. (To save
time, this move can be done anytime before the gripper comes over.) The linear
guide is actuated and the tool is guided into the fixture. Tapered fixtures
(15) are used to help center the placement of the tool in the fixture. A
passive compliance system (16) is also used between the tapered base and the
tool fixture. This compliance will allow proper transfer of tools even when
small forces are applied to the fixture due to misalignment.

After the linear guide reaches the end of its travel, a limit switch (17) is

actuated, signalling to the controller that the guide is up. In this way the

machine is made "smart enough" to prevent the turntable from rotating when a

guide is in the raised position. This signal is also used as feedback to the

robot controller to tell it that the tool fixture is in the correct position
for the transfer of a tool.

Now, the robot gripper releases the old tool and the linear guide is retracted.
Tapered pins (19A) will line up with locating holes (19B) to hold the fixture
on the turntable. Limit switches are used to indicate when a linear guide is

in the down position, allowing the table to index to its next position. The

turntable rotates to the new tool, the linear guide is actuated, the gripper
fingers are closed, and the linear guide retracts. The robot now has the new
tool and the old tool is catalogued on the turntable for future use.

Using the turntable and linear guide to index and pick up tools the following
can be accomplished: (1) a linear move by the robot is eliminated; (2)

excellent repeatability is attained through the use of mechanical stops and the

mating of a machine taper; (3) a compact design is feasible (large number of

tools per area)
; (4) there is ample clearance for the robot gripper to work

during tool transfer, despite high tool storage density; and (5) the use of

robot memory is kept at a minimum since only three teach points must be stored,

one for each radius.

166

FIGURE XIL2. A TYPICAL APPLICATION OF TILE TURNTABLE

167

The TWS

1 . 4 Electronic Components

The electronic components of the turntable controller (illustrated in Figure
XII. 3) consist of the microprocessor and its peripherals, an absolute-position
encoder, the motor/tachometer unit, and the commercially obtained motor
controller. There are also various switches, relays and solenoid valves.

An Intel 8751 microprocessor was chosen for use in the controller. It is the
EPROM (Erasable Programmable Read Only Memory) version of the 8051 family of
microprocessors which is supported by PLM 51, a high-level language, and has
development tools for testing, developing, and debugging the design. The 8751
has an 8 -bit data line, bi-directional ports, timer/counters, and external
interrupt lines. There are 128 bytes of volatile memory and 4K (4096) bytes of
program memory located on-chip.

Some considerations which went into the choice of a microprocessor for this job
are :

- the availability of development tools to debug the initial prototype;

- whether or not the microprocessor is supported by a high-level
language (this is not necessary, but it does make the writing, de-

bugging and documentation of the software easier)

;

- whether or not the I/O (Input/Output) ports are easy to control and
manipulate

;

- the kind of communication that is intended between the microprocessor
and the workstation controller and whether or not the microprocessor can
accomplish this kind of communication;

- whether a sufficient number of I/O lines, counter/timers, and
interrupts are present.

The I/O lines of the microprocessor have byte or bit control capability, which
makes them easy to use for this design. A serial communication port is

included in the microprocessor, which makes serial (RS232) communication with
the workstation controller an easy task. Although no external interrupt lines

were needed, two timers were necessary - one to set the serial communication
baud rate, and the other to set the cycle time for the servo routine.

Since there are not enough I/O lines to handle the large number of input and

control signals, a port expander chip is used in conjunction with the

microprocessor. This chip, the Intel 8155, contains two full I/O ports (16

bits total) plus part of another. The extra ports are used mainly for the 11-

bit encoder, and the chip is controlled by the microprocessor.

168

169

FIGURE

XII.3.

FUNCTION

BLOCK

DIAGRAM

OF

THE

TURNTABLE

CONTROLLER

The TWS

The 12-bit D/A converter, the AD567 (Analog Devices), converts the digital
command from the microprocessor to a voltage command signal which is sent to

the motor controller. A low offset operational amplifier (AD544, Analog
Devices), is used to buffer the output of the D/A converter.

The absolute-position encoder is an 11-bit absolute encoder (M25 series, BEI

,

Inc.). The required resolution of the encoder was decided based on the worst-
case acceptable positioning resolution of the platter. It was determined that
the position error at the edge of the platter (worst case) could not exceed 0.1
inch, so for a 36-inch diameter platter, an 11-bit (or 2048 count) encoder was
chosen. This works out to 0.055 inch per count at the edge of the platter.

The absolute encoder was chosen for two reasons. First, the position
information is always available to the microprocessor - it doesn't get reset or
wiped out when the power goes off, or when the system is reset. This means the

microprocessor will never lose track of where the platter is, and will not have
to find a "home" position whenever the power is cycled. The incremental
encoder, by comparison, does not provide absolute information. It would be
necessary for the microprocessor to add and subtract pulses to determine the
platter position. The position information would be lost when the power is

cycled. The second reason is that the software appeared simpler for the

absolute encoder than for the incremental encoder. Using absolute numbers to

compare the current position with the destination seemed easier than keeping
track of the number of pulses and the phase relationship of the two signal
lines (three, including the index pulse) of an incremental encoder.

The motor is a permanent magnet DC servo motor which is supplied with a

tachometer. It maintains a continuous (stall) torque of 960 ounce-in, and a

peak torque of 4500 ounce- in.

The motor controller is a PWM servo controller which is capable of +/- 15 amps

continuous output current to the motor. It accepts feedback from the motor
tachometer and a control voltage from an external source; in this case the

microprocessor control circuit. The motor controller also has an externally
controlled motor shutdown line. This line is controlled by the microprocessor
and is independent of the command voltage. The controller also has adjustments
for gain, current-limiting, and balance.

The weight of the platter and its contents dictate the size considerations of

“the motor, and thus the motor controller. Fully loaded with tool holders and

tools, -the platter would weigh about 200 pounds, and a large motor was

employed. A smaller one may have worked as well, however, especially if the

platter speed were kept low and adequate ramping were used.

The three pneumatically operated pistons are operated using air solenoids (+12

VDC) . Piston positions are detected by microswitches, a pair to each piston.

One of the pair detects when the piston is fully raised, the other detects when

the piston is fully lowered. The six microswitch signals are monitored by the

microprocessor at all times. Also used for piston operation, as well as for

the motor shutdown function, are reed relays (located on the circuit board with

170

the microprocessor) and larger, enclosed relays located at the turntable
fixture

.

The TWS

The turntable controller is implemented using an 8751 8-bit microprocessor,
which contains 4K bytes of erasable memory for program storage. Because of the

large number of input and output signals, a port expander chip is used. This

increases the number of ports the microprocessor has for I/O use. The 11-bit
encoder information, the input to the D/A converter, and the shaft status
information are multiplexed onto the 8-bit data bus of the 8751. The control
lines (i.e., the shaft control lines and the motor shutdown lines) originate
from the microprocessor. The output of the D/A converter controls the

direction and speed of the platter motor through the commercial motor
controller.

When power is applied to the turntable controller (the motor controller has its

own power switch)
,

the microprocessor ensures that all pistons are down and the

motor is deactivated. This condition is designed to be the normal state.
Whether or not the microprocessor circuitry is powered, the motor drive is de-

activated, as are the piston solenoids. This prevents the pistons from
inadvertently raising, or the platter turning, if there is an interruption or

glitch in the power. It also acts as a safeguard against unforeseen software
malfunctions. There is much less chance of the platter "running away" or the

pistons raising if the normal condition for these operations is deactivation.

The microprocessor begins monitoring the position of the platter and the status
of the piston micro-switches. Because there were not enough I/O lines to use
one for each of the six status switches, the six lines were coded into three
lines. A PROM (Programmable Read Only Memory) decoder chip, the 741S188, and
an OR-gate were used to represent the pistons' five states as a 3 -bit binary
code. The five states are:

1. piston no. 1 up, •

2. piston no. 2 up

,

3. piston no. 3 up

,

4. all pistons down,
5. anything else is an error, i.e., more than one piston up at a time..

These three lines, as well as the eleven lines from the absolute encoder, are
connected to the 8155 port expansion chip, which is connected to the
microprocessor's 8-bit bidirectional data bus. In this way, the microprocessor
is constantly monitoring the shaft status and encoder information.

The D/A converter is also connected to the microprocessor's data bus. The D/A,
in its turn, is constantly being updated by the microprocessor . Between
platter moves, and at power up, the microprocessor sends a value to the D/A
which corresponds to a voltage of zero. This voltage (at the output of the
D/A) is the command signal, which is sent to the motor controller. A voltage
of zero prevents the motor from turning. Note that this is a redundant safety
measure, because the motor shutdown is also in effect at this time, as

previously mentioned.

171

The TWS

The microprocessor communicates with the workstation controller over a serial
(RS232) link. When the turntable controller receives a command from the
workstation controller to move the platter to a certain location, the
appropriate direction (CW or CCW) is calculated, the motor driver is activated
and the microprocessor sends a value to the D/A converter corresponding to a

voltage with the correct magnitude and polarity to move the platter. As the
platter moves, approaching its destination, the encoder is read every 30 ms.

The platter speed is reduced in proportion to the distance remaining. When the
destination is reached, the D/A output (command signal) to the motor controller
is, again, zero volts, which stops the motor. The microprocessor then disables
the motor drive (the "shutdown” condition).

Normally the workstation controller would then send the command to raise a

shaft. The microprocessor will first confirm that the platter is still in the

proper position, then it will cause the proper piston to be raised. The piston
status switches are monitored to determine when the shaft is completely raised.
The sequence is repeated when the workstation controller commands the shaft to

be lowered.

To operate (raise or lower) a piston, the microprocessor activates (or

deactivates) a small reed relay. This reed relay, which is located on the
circuit board with the microprocessor, in turn activates a larger relay located
at the turntable. This relay actuates the* air solenoid which causes the shaft
to be raised or lowered. This configuration buffers the circuit board from the

(noisier) turntable environment.

A relay is also used in the motor shutdown circuit. When the relay, which is

located at the turntable, is deactivated (its normal state), it grounds the

shutdown control line of the motor controller, disabling the motor. To
activate the motor drive, the relay is actuated, allowing the SHUTDOWN control
line to remain open.

1 . 5 Software Components

Software for the turntable is written in PLM-5X, a high-level language for the

Intel 8051 family of microprocessors. The program is linked with the PLM-51
library, compiled and stored in the on-chip program memory of the 8751,

occupying approximately 3800 bytes of code.

The software is implemented using, a real-time control structure. The position

and status of the platter are checked periodically (every 30 ms). A routine is

used to slow the platter as the destination is approached, and hold it in

position (or disable the motor) when reached. Error conditions are constantly

checked for and a routine is used for implementation of serial communication.

There are two interrupt procedures. Both are called by internally generated

interrupts. One interrupt is generated when a data flow is detected into or

out of the microprocessor's serial port register. The other interrupt is

generated when a timer (within the microprocessor) overflows. This timer is

172

The TWS

pre-loaded with a value which causes it to overflow every 30 ms. When this

overflow interrupt occurs, it causes program execution to exit the main loop

and begin the timer interrupt procedure. This procedure directs the

microprocessor to take periodic readings of the encoder and shaft status lines,

calculate the distance from the current platter position to the destination,

and update the D/A converter.

Flags and variables are also updated. At the end of the interrupt procedure,
program execution jumps back to the main loop and continues where it left off,

but with updated information.

The process begins at power-up (or reset) with a setup procedure which disables
the motor, makes sure all shafts are down and initializes all registers and
control variables. This includes loading the internal baud rate timer and the

30 ms timer (above) with the proper values, setting the interrupt priorities in

case they both occur at the same time, configuring the serial communication
register, and finally, starting the timer and enabling the interrupts.

When the setup routine is completed, the program begins executing the

repetitious main loop, jumping out temporarily because of a timer overflow
interrupt (every 30 ms) or a serial communication interrupt.

Whenever the workstation controller sends a command to the machine tool
controller, the characters of the command are stored, character by character as

they are received, in a buffer area of memory. Each time a character (i.e., a

letter or a control character) is received by the microprocessor's serial
communication register, an interrupt ("serial interrupt") is generated. When
this happens, execution temporarily jumps from the main loop to the serial
interrupt procedure. Here, they are placed as they are received, into a buffer
area until the complete command is assembled. Since the characters are being
transmitted at a rate of 1200 baud, there is plenty of time for the
microprocessor to return execution to the main loop until the next character is

received and generates another interrupt. The incoming command is complete
when a carriage- return character has been received. The interrupt procedure
places this command in a command buffer and sets a "command pending" flag, to

be read in the main loop. After execution jumps back to the main loop and this
flag is found to be set, a procedure is called to determine which flag it is

and how to respond to it. If it is an unrecognized command, an error message
is generated, and sent to the workstation controller. This command-handling
procedure also determines what numeric parameter, if any, was sent with the
command.

Each command has its own subprocedure. The current command (including numeric
parameter, if present) is matched with the correct sub -procedure

,
or command

procedure. These command procedures first call another procedure to send an
acknowledgement character back to the workstation controller. This
acknowledges that the command has been received. Another character will be
sent (later) upon completion of the action called for by the workstation
controller. The procedure then checks for out of limit numeric parameters, and
sends an error message, if necessary. If the command is a request for

173

The TWS

information ("What's the current position?") the procedure will send out the

-

correct response and jump back to the main loop. If the command is a call for
an action ("Move the platter to location 54.") the procedure will set flags and
update variables to be read later in the main loop, then initiate the action,
and jump back to the main loop.

The main commands sent by the workstation controller to the turntable are:

1. move the platter to another position,
2. raise the shaft,
3. lower the shaft.

As mentioned previously, the platter has sixty-six storage locations, arranged
in three concentric circles. Each storage location is defined by two pieces of
information: the encoder value when that location is lined up over the proper
shaft, and the number of the proper shaft. This information was determined (by
hand) for each of the sixty-six locations, and stored in a look-up table.
(Note that if the encoder is removed or slips relative to the platter, this
look-up table will have to be altered.)

Suppose, for instance, the turntable is commanded to move the platter to

position 37 (the workstation controller keeps track of the contents of each
location). The program looks up the thirty- seventh item on the list of sixty-
six platter locations and finds the proper shaft to activate (later) and the

encoder reading for that location. This encoder reading now becomes the

DESTINATION variable, and the current encoder reading is compared to

DESTINATION to determine how far and in which direction to turn the platter.
The command procedure for this command would give the proper values to the
DESTINATION and SHAFT_NUMBER variables, set a flag to indicate that the platter
is on its way to a new location, activate the motor drive and return back to

the main loop. Every 30 milliseconds the main loop is interrupted by the

routine that reads the encoder, calculates the distance remaining, and updates
the D/A converter. The command signal sent to the D/A converter decreases as

the distance to go decreases, until the platter stops. If the platter
overshoots, or creeps past the destination, the polarity of the command signal
is reversed, and the platter returns.

When the turntable receives the "raise shaft" command from the workstation
controller, it looks at the current value of the SHAFT_NUMBER variable, and
activates that shaft. When the command to lower the shaft is received, that

shaft is lowered. As before, when each command is received* program execution
jumps to the proper command procedure, where an acknowledgement is sent and the

action is initialized. In the case of the shaft command, flags are set, to be

looked at in the main loop, that indicate that a shaft is on its way up (or

down) . The status switches for that shaft will be monitored to confirm that

it's all the way up (or down) before sending an "action completed" message to

the workstation controller. Also, the position of the platter is checked

whenever a command to raise or lower the shaft is received. If the platter is

not at the correct position (it may have been moved) it is adjusted before the

shaft is allowed to move up or down.

174

The TWS

2. OPERATION OF THE TURNTABLE

2 . 1 Local Operation

2.1.1 Setup Requirements

An RS232 terminal is used for local control and operation of the turntable.

Incoming data is received on line 2, and data is sent to the terminal over line

3. Line 7 is used as the signal ground, as is standard. The terminal should
be set to full duplex mode, no parity checking, and with a baud rate of 1200.

In local mode, the characters are echoed back to the terminal, and a carriage
return/line feed response is included.

2.1.2 Commands and Responses

The turntable commands are listed below. The ENTER (or carriage return) key
must be pressed to complete each command, because the software looks for it

before setting the "command pending" flag in the program loop. If the command
includes numeric parameters, they are indicated within < >. The standard
response to any command from the workstation is a "b".(for "busy") upon receipt
of the command, and an "r" (for "ready") after completion of the command. In
local mode these character responses are each followed by a line feed (LF) and
a carriage return (CR).

In the following discussion, the quote marks shown are not included with the

command, nor are the blank spaces. For example, "b LF CR" is actually sent
bLFCR , and gh CR is entered ghCR.

ec <0 or 1> CR Echo

This command sets or resets the ECHO flag. When the ECHO flag is set (1)

,

which it would be for local operation, the command sent to the programmable
stop is echoed back to the terminal screen, with a LF (line feed) character.
When reset (0)

,

there is no echo or LF. The response to this command is a "b

CR LF" upon receipt and a "r CR LF" after completion.

gl <1 through 66> CR Go to Location < >

This command moves the platter to the location specified by the number. The
proper shaft for this location is automatically determined. This command is to

be used with the "xp" and "lp" commands for raising and lowering the shafts.
The response to this command is a "b CR LF" upon receipt and a "r CR LF" after
completion.

xp CR Extend Shaft

This command is used only in conjunction with the "gl< >" command. It causes
the shaft which was defined by the latest use of the "gl< >" command to be
raised. The response to this command is a "b CR LF" upon receipt and a "r CR
LF" after completion.

175

The TWS

Lower Shaft

This command is usecconj unction with the "gl< >" command. It causes
the shaft which was y the latest use of the "gl< >" command to be
lowered. The respors command is a "b CR LF" upon receipt and a "r CR
LF" after completior

i or 1> CR Shutdown the motor < >

If a 1 is entered, tmd sets a flag which de-activates the output stage
of the motor driver,lg the motor. If a zero is entered the motor is
enabled. The resporis command is a "b CR LF" upon receipt and a "r CR
LF" after completior

R Display current Position and Destination

This command displa}rrent encoder reading and the current value for the
variable DESTINATIOturrent encoder reading is prefixed by a "p" and is
a number from 0 to 2e current destination is prefixed by a "d" and is
also a number from C. There is no response to this command.

) or 1x0 or 1> Slide <slide#Xup or down>

Ihis is a manual con: raising or lowering a particular slide. For
example, "sll CR" wie shaft one, and M s20 CR" will lower shaft two.
There is no response command.

<0 through 2047> Move to location < >

This is a manual conr moving the platter to a specific encoder position,
as opposed to one of defined locations. This command would be used to
help define a locatie response to this command is a "b CR LF" upon
receipt and a "r CR :er completion.

There are four possi'or messages that can be sent back to the workstation
controller. The mesiave the format "e <number> LF CR"

,
where <number>

is the error type. the quotes and spaces are not included.

One error condition .unrecognizable command. This usually occurs when the
command is misspelleother occurs when an illegal numerical parameter is
used; for example, wnumber greater than sixty-six is used with the "gl"
(Go to Location) com A third condition is when the platter is commanded
to move with a shaft raised, and a fourth is when a raise shaft command
is given when the plis still in motion.

176

The TWS

2 . 2 Remote Operation

2.2.1 Setup Requirements

Remote operation entails communication with, and control by, the workstation
controller. The setup requirements are similar to those for local operation,

and the same RS232 link is used. Data to the workstation controller is

transmitted on line 3, data is received on line 2 and line 7 is signal ground.

The difference is that there is no echo back to the workstation controller and

the LF character is not included in the responses.

2 . 2.2 Commands and Responses

The commands are similar in remote mode and local mode. Again, the CR
character must follow the command, and the spaces and quotes are not included.
The responses, "b" and "r", are the same also, except that the LF character is

not included.

ec <0 or 1> CR Echo

This command sets or resets the ECHO flag. When the ECHO flag is set (1)

,

which it would be for local operation, the command sent to the programmable
stop is echoed back to the terminal screen, with a LF (line feed) character.
When reset (0)

,

there is no echo or LF. This is the normal power up state and
the workstation controller does not normally need to use this command. The
response to this command is a "b CR" upon receipt and a "r CR" after
completion.

gl <0 through 2047> CR Go to Location < >

This command moves the platter to the location specified by the number. The
proper shaft for this location is automatically determined. This command is to

be used with the "xp" and "lp" commands for raising and lowering the shafts.
The response to this command is a "b CR" upon receipt and a "r CR" after
completion.

xp CR Extend Shaft

This command is used only in conjunction with the "gl< >" command. It causes
the shaft which was defined by the latest use of the "gl< >" command to be
raised. The response to this command is a "b CR" upon receipt and a "r CR"
after completion.

lp CR Lower Shaft

This command is used only in conjunction with the "gl< >" command. It causes
the shaft which was defined by the latest use of the "gl< >" command to be
lowered. The response to this command is a "b CR" upon receipt and a "r CR"

after completion.

177

The TWS

sd <0 or 1> CR Shutdown the motor

If a 1 is entered, this command sets a flag which de-activates the output stage
of the motor driver, disabling the motor. If a zero is entered, the motor is

enabled. The response to this command is a "b CR" upon receipt and a "r CR"
after completion.

st CR Start

This command is used as a software reset. It re - initializes all the variables
and registers, and disables the motor drive. The response to this command is a

"r CR".

The same error messages are used in remote mode as are used in local mode.
The messages have the format "e <number> CR"

,
where <number> is the error

type. Again, the quotes and spaces are not included. See the error
description in the local operation section, above, for a list of errors.

3. SUGGESTIONS FOR FUTURE DEVELOPMENT

One problem the turntable has is that the platter "hunts" when serving (or

holding) a position. This hunting appears as a rapid shaking of the platter
once it is in position - a back and forth movement of about 0.1 inch at the
edge of the platter. The problem was dealt with by disabling the motor drive
after the platter reached its position, but this solution doesn't afford
"holding" the platter in position. Instead, the position is checked and
adjusted if necessary before a shaft is raised or lowered. Another solution
would have been to mechanically brake the platter after the motor was
deactivated.

The hunting problem may have occurred because of noise on the command signal
(D/A output) line, insufficient encoder resolution, or a combination of both.

Regarding the encoder, an incremental encoder would be seriously considered for

a future design. It would be less expensive, which means the same or greater
resolution could be obtained for lower cost. If an encoder with a resolution
of 4096 counts was used, the hunting would be considerably reduced. Another
possibility would be to use a resolver. The circuitry would be more complex
than for a digital encoder) but the servo performance would be better.

Regarding noise on the command signal line, this prototype design could be

improved in the area of grounding, shielding, etc. Better results may be

obtained by relocating the D/A converter from the microprocessor circuit board

to the turntable itself, near the motor controller. Low-level noise on the

digital lines between the microprocessor and the D/A converter would be less of

a problem than the same noise on the analog output line from the D/A converter

to the motor controller.

178

The TWS

APPENDIX A

COMMUNICATION PROTOCOL BETWEEN THE TWS CONTROLLER AND THE DEVICES WITHIN THE

TURNING WORKSTATION

A . 1 MACHINE TOOL CONTROLLER

In local mode, the high-level machine tool controller communicates with the

workstation controller through a serial I/O port. In this mode the database

for the NC part programs and tool offset data tables is the local database
residing in the workstation controller system. The command and status
information between the workstation controller and the high-level machine tool

controller is passed from one to the other as single ASCII characters. The

following list is a sample group of commands from the workstation controller:

g: loosen collet
h: tighten collet
f: send w axis to home position
k: send x and z axes to home position
1: run the NC part program to make the part

After receiving each command from the workstation controller, the high-level
machine tool controller compares it with the set of acceptable commands stored
in the memory. If the command is acceptable, it starts executing accordingly
and sends a "Busy” status back to the workstation controller. When the task is

completed, it sends a "Ready" status to the workstation controller and waits
for a new command.

In the remote operation mode, the communications between the high-level machine
tool controller and the workstation controller are through the AMRF network.
The AMRF database is used in this mode instead of the local database. These
communication protocols are similar to those employed in the other stations of
the AMRF. Different command and status mailboxes, which are allocated in the
common memory, are used in these transactions. Based on the sequence numbers,
these mailboxes are transferred by the network server. In this mode, instead
of single characters, complete texts are used for each command. Some examples
are given in the following:

In this mode, upon power up the operator has to answer some additional
questions such as whether he wants to select an NC program list from the
database, or up load/download an NC program to/from the database, or reset the

COLLET LOOSEN
COLLET TIGHTEN
W HOME
XZ HOME
MAKE PART

loosen the collet
tighten the collet
send w axis to home position
send x and z axes to home position
run the NC part program to make the part

179

The TWS

mailbox sequence nujnbers to zero. After the operator goes through this self-
explanatory question-answer period, the real operation of the high-level
machine tool controller does not differ from the local operation mode. During
the operation, an "R" from the keyboard will reset the controller, and a "Q"

will show the status information from the current operation. During this
inquiry, it is possible to change the status of some of the devices listed on
the screen to prevent the controller from getting caught up in an indefinite
status request mode while the controller on the other end can not respond due
to a malfunction situation.

A . 2 ROBOT CONTROLLER

Remote operation entails communication with, and control by, the workstation
controller. The RCI commands listed below, used in remote operation, are a

subset of the commands available for use in local mode. The CR character must
follow the command, and the spaces and quotes are not included. The responses
- "b" and "r" - correspond to BUSY and READY, respectively . For the two tray
station controller commands, however, the responses are "bt" and "rt",

respectively. This is to distinguish the tray station status from the robot
status

.

cr CR Control Reset

This command activates the Control Reset switch on the robot controller.
Control Reset clears the robot controller of the current robot program, and is

activated prior to a new program call. The response to this command is a "b

CR" upon receipt and a "r CR" after completion.

cs CR Cycle Start

This command activates the cycle start switch of the robot controller. After a

robot program is called, cycle start is used to begin execution. It is also
used to resume execution during the program if a Motion Hold has been
activated. The response to this command is a "b CR" upon receipt and a "r CR"

after completion.

mh CR Motion Hold

This command activates the Motion Hold switch of the robot controller. Motion
Hold is a temporary halt of robot motion and program execution. Both are

resumed with the activation of Cycle Start. The response to this command is a

"b CR" upon receipt and a "r CR" after completion.

180

The TWS

rt <1 through 999> CR Robot Program Call

When this command is received, a series of actions is performed which result in

a robot program being called and its execution begun. A robot controller "end

of program" signal is monitored by the RCI . When this signal is detected,
robot motion is inhibited. The response to this command is a "b CR" upon
receipt and a "r CR" after completion.

st CR Start

This command is a software reset and is used to initialize all registers and
inhibit robot movement. The response to this command is a "b CR" upon
receipt and a "r CR" after completion.

td CR Tray Deactivate

This command frees the tray from control of the turning center, and allows
access to it by the robot cart. The command is typically sent after the

turning center has completed a tray full of parts. This command is not
specific to the tray number, though it can be made so. As is, it deactivates
all trays. The response to this command is a "bt CR" upon receipt and a "rt

CR" after completion.

tr <1 or 2> CR Tray Request

This command activates the Request line for Tray 1 or Tray 2. This is done
prior to starting a batch of parts in the turning center. The robot cart is

thus prevented from changing or moving the tray, as the robot will be picking
up blanks and dropping off finished parts to it. The response to this command
is a "bt CR" upon receipt and a "rt CR" after completion.

«

A. 3 GRIPPER CONTROLLER

The commands and their respective formats are:

ONCR open gripper #n, where n is an ASCII character 1 or 2, CR means
carriage return.

CNCR close gripper #n.

PN XXCR position gripper finger #n to an opening of xx millimeters,
where xx are ASCII characters.

SNCR request status of gripper #n.

ELCR put gripper controller serial link in echo mode.
EOCR put gripper controller serial link in non-echo mode.
RNCR software reset gripper #n.

The responses to these commands include ready and busy signals when the

controller is ready to receive a command or is busy executing one. An error
condition response informs the host which jaw the error has occurred on and
what type of error has occurred.

181

The TWS

The responses and their respective formats are:

RNCR gripper #n is in the ready mode, CR means carriage return.
BNCR gripper #n is in the busy mode.
EN XCR gripper #n is in the error mode, where "x" is the error code in

ASCII characters:

X-0
,
illegal command.

X-l, part dropped from gripper.
X-2

,
bad encoder counts

.

X—3 ,
gripper is opened wider than commanded.

X-4, tried to open, but won't move.
X-5

,
bad limit switch.

X-6
,
gripper is stuck.

X-7
,
tried to close, but won't move.

A. 4 MALFUNCTION DETECTOR

All communication with the TWS controller consists of one ASCII character not
echoed by the malfunction detector's microprocessor, with the exception of the

error signal, which consists of a string of ten ASCII characters. The
following communication protocol is used:

'b' Busy
'c' Clear
'e' Error
' i' Inquiry
'n' Not understood
' r

'

Ready
'z' Understood

's' Start program #1
' t' Start program #2
’ u' Start program #3
1 <y / Start program #4
'w' Start program #5

'x' Start program #6

y
1 Start program #7

'S' Start program #8

'T' Start program #9

»u» Start program #10
' V' Start program #11
'W' Start program #12

'X' Start program #13
'Y' Start program #14

182

The TWS

The following pseudocode displays the operation under remote mode:

I

|

"u"
|

"v"
|

"w"
|

"x"
|

"y"
|

"S"
|

"T"
|

"U"
|

"V"
|

"W"
|

{ The device performs malfunction detection of the relevant program (1 to 14)

under one of the three modes until the machine program is finished. }

1:

"U"
' r

'

" s "
|

" t
m
x**

|

»»Y”

'b'

IV 4- It

{ if no malfunction detection)

goto 1

{ if malfunction)

'e <><><><><><><><><>'
goto 1

This constitutes the entire communication during remote mode. If the first
character sent to the device is "U"

,
the malfunction detection is performed

using the relevant predetermined ’parameters . If the first character sent is a
"#"

,
the malfunction detection is performed, using the relevant previously

learned parameters, which continue to be updated. If the first character sent
to the device is a "$", the device will immediately try to learn new relevant
limiting parameters with no malfunction detection being performed during the

first five operations of any program step. Subsequent to the fifth operation,
the device will perform in a mode identical to the mode started by .

A. 5 MICROMANIPULATOR

When communicating with the TWS controller, all instructions to the
micromanipulator controller consist of one ASCII character, which is not echoed
by the micromanipulator controller. The micromanipulator controller sends
status characters to the TWS controller such as "r" or "b" which indicate ready
or busy, respectively. When the micromanipulator controller receives an
illegal or inappropriate command, it responds with the character "n" and awaits
the resubmission of the command. Whenever a problem occurs, such as the
inability of the micromanipulator controller to perform the task commanded, it
issues an "e” to the serial port. When it receives an "i" at the serial port,
it issues a coded character that indicates the type of error encountered. The
following table is a concise listing of the commands and status:

TO BOTH FROM

'u' Waiting for initial command
Start in local mode
Start in remote mode

CTR A

a'

'b'

Acknowledge message
Busy

183

The TWS

'c'
'#'

'd'

' F'

'S'
'h'

H

'j'

'J'

'k'
' L'

'm'

'P'
'P'
'q'

Q

c ^ f

'R'

's'
' t'

'u'

'v'

'U'
' V'
' w'

'X'

'y'

' Y

'

' z

'

'e'

' i'

'n'

' r

'

'u /

Clear
Restart in remote mode
Lock micro where it is

Error [followed by error code (ASCII 0-9)]
Move to aligned home position
Move slide - till touch
Move to home position
Move to home position - instructed amount
Inquiry
Move to alternate home position
Move to alternate home position + instructed amount
Move slide + till touch
Move to aligned alternate home position
Search for hole [followed by strategy (ASCII 0-9)]
Not understood
Push part in collet - direction
Push part in collet - direction with extra testing
Push part in collet + direction
Push part in collet + direction with extra testing
Ready
Relax manipulator
Set zero force on first 4 degrees of freedom
Status request
Relax and record for next position
Push hard in -• direction
Waiting for command
Push hard in + direction
Push hard in - direction with Jitter
Push hard in + direction with Jitter
Move slide to home position
Move slide to alternate home position
Align angles for insertion in positive direction
Align angles for insertion in negative direction
Emergency stop (Lock micro where it is)

Errors will be ASCII digits 0 to 9

1 Micro didn't move on push (into collet)
7 No part (micro couldn't) touch off

A. 6 PROGRAMMABLE STOP

All commands and status exchanged between the TWS controller and the

Programmable Stop controller are delimited by a carriage return (CR) . The

responses "b" and "r" indicate that the programmable stop is busy executing and

finished, respectively. The following is a list of commands and status:

184

The TWS

ec <0 or 1> CR Echo

This command sees or resets the ECHO flag. When the ECHO flag is set (1),

which it would be for local operation, the command sent to the programmable

stop is echoed back to the terminal screen, with a LF (line feed) character.

When reset (0), there is no echo or LF. This is the normal power up state, and

the workstation controller does not normally need to use this command. The

response to this command is a "b CR" upon receipt and a "r CR" after

completion.

gh CR Go Home

This command sets a flag which causes the stop to move back to the home limit

switch and initialize home position. The response to this command is a "b CR"

upon receipt and a "r CR" after completion.

gl <0 to 535> CR Go to Location < >

This command moves the stop to the absolute position specified by the number.
The positions are referenced to home position which is 0. The stop can travel
either forward or back to reach the position. A unit length of travel is

approximately 0.014 inches. The response to this command is a "b CR" upon
receipt and a "r CR" after completion.

sd <0 or 1> CR Shutdown the Motor

If a 1 is entered, this command sets a flag which deactivates the output stage
of the motor driver, disabling the motor. If a zero is entered, the motor is

enabled. The response to this command is a "b CR" upon receipt and a "r CR"

after completion.

st CR Start

This command is used as a software reset. It reinitializes all the variables
and registers, and sends the stop back to reset the home position. The
response to this command is a "r CR"

.

In terms of programmable stop responses, there are four error messages that can
be sent back to the workstation controller. The messages have the format "e

<number> CR"
,
where <number> is the error type. The quotation marks and

spaces are not included.

One error condition is an unrecognizable command. This usually occurs when the
command is misspelled. Another occurs when an illegal numeric parameter is

used, for example, a number greater than 535 with the "gl" (Go to Location)
command. A third error condition occurs if the home limit switch is activated
without the command to do so having been given. The fourth condition is if the
overtravel limit switch is ever activated.

185

The TWS

A . 7 TURNTABLE

All commands and status exchanged between the TVS controller and the turntable
controller are delimited by a carriage return (CR) . The responses "b" and "r"

indicate that the Turntable is busy executing and finished, respectively. The
following is a list of commands and status:

ec <0 or 1> CR Echo

This command sets or resets the ECHO flag. When the ECHO flag is set (1)

,

which it would be for local operation, the command sent to the Turntable is

echoed back to the terminal screen with a LF (line feed) character. When reset

(0)

,

there is no echo or LF. This is the normal power up state, and the

workstation controller does not normally need to use this command. The
response to this command is a "b CR" upon receipt and a "r CR" after
completion.

gl <0 through 2047> CR Go to Location < >

This command moves the platter to the location specified by the number. The
proper piston for this location is automatically determined. This command is

to be used with the "xp" and "lp" commands for raising and lowering the
pistons. The response to this command is a "b CR" upon receipt and a "r CR'r

after completion.

xp CR Extend Shaft

This command is used only in conjunction with the "gl< >" command. It causes
the shaft which was defined by the latest use of the "gl< >" command to be

raised. The response to this command is a "b CR" upon receipt and a "r CR"

after completion.

lp CR Lower Shaft

This command is used only in conjunction with the "gl< >" command. It causes

the shaft which was defined by the latest use of the "gl< >" command to be

lowered. The response to this command is a "b CR" upon receipt and a "r CR"

after completion.

sd <0 or 1> CR Shutdown the Motor

If a 1 is entered, this command sets a flag which deactivates the output stage

of the motor driver, disabling the motor. If a zero is entered, the motor is

enabled. The response to this command is a "b CR" upon receipt and a "r CR"

after completion.

186

The TWS

st CR Start

This command is used as a software reset. It reinitializes all the variables
and registers and disables the motor drive. The response to this command is a

"r CR".

There are four possible error messages that can be sent back to the workstation
controller. The messages have the format "e <number> CR"

,
where <number> is

the error type. The quotes and spaces are not included.

One error condition is an unrecognizable command. This usually occurs when the

command is misspelled.

Another occurs when an illegal numeric parameter is used, for example, a number
greater than 66 with the "gl" (Go to Location) command. A third error
condition is when the platter is commanded to move with a piston still raised,
and a fourth occurs when a raise piston command is given when the platter is

still in motion.

187

The TWS

REFERENCES

Simpson, J.A., Hocken, R.J., Albus
,
J.S., "The Automated Manufacturing

Research Facility of the National Bureau of Standards" Journal of
Manufacturing Systems . Society of Manufacturing Engineers. 1982, Volume
1, pp. 17-32.

Hocken, R.
,
Nanzetta, P. , "Research in Automated Manufacturing at NBS",

Manufacturing Engineering . October 1983, Volume 91, No. 4, pp . 68-69.

Nanzetta, P., "Update: NBS Research Facility Addresses Problems in
Setups for Small Batch Manufacturing", Industrial Engineering . June
1984, pp. 68-73.

Wolf, W.
,
Magadanz

, P., "Block Tool System Fulfills the Tooling
Requirement for Unattended Turning", Carbide and Tool Journal .. May-June
1984, Volume 16, No. 3, pp. 11-17.

McNally, Paul F. , "Motion Control in Loading Task", Robotics World .

March 1985.

Lyle, Charles S., "A Complete Tooling System for the Multifunction
Flexible Turning Machine", Advanced Manufacturing Technology for Cells
and FMS . February 25-27 1986, MR86-127, pp . 1-12.

Albus, J.S., Barbara, A.J., Nagel, R.N.
,
"Theory and Practice of

Hierarchical Control", Proceedings of 23rd IEEE Computer Society
International Conference . September 1981, pp . 18-39.

Donmez, M. Alkan, Lee, Kang B., Liu, Richard C., Barash, Moshe M.
,

"A

Real-time Error Compensation System for a Computerized Numerical Control
Turning Center"

,
Proceedings of 1986 IEEE International Conference on

Robotics and Automation . April 1986, Volume 1, pp . 172-176.

Donmez, M. Alkan, Blomquist, D.S„, Hocken, R.J., Liu, Richard C.,

Barash, Moshe M.
,

"A General Methodology for Machine Tool Accuracy
Enhancement by Error Compensation", Precision Engineering . October 1986,

Volume 8, Number 4.

Donmez, M. Alkan, Liu, Richard C., Barash, Moshe M.
,

"A Generalized
Mathematical Model for Machine Tool Errors", paper presented at the 1986

ASME Winter Annual Meeting, PED-Volume 23, 1986, Symposium on Sensors
and Controls for Manufacturing.

Slocum, Alexander H,, "Mechanical Design of a Five Axis Robotic Fine

Positioning Device", paper presented at the 1986 ASME Winter Annual

Meeting, Symposium on Integrated Intelligent Manufacturing Design.

188

The TWS

12. Bandy, H. T., Carew, V. E.
,
Boudreaux, J. C., "An AMPLE Version 0.1

Prototype: The HWS Implementation", to be published as an NBSIR.

13. Boudreaux, J. C., "The AMPLE Project", NBSIR 86-3496, March 1987.

14. Peris, James P., "Development of an Automatic Tool Setting System for NC

Turning Centers", the paper is being prepared for publication.

189

The TWS

GLOSSARY

A

AMPLE: Automated Manufacturing Programming Language Environment

AMRF: Automated Manufacturing Research Facility

C

checksum: The sum of the ASCII hexadecimal values in a block of text used
to confirm the validity of the text transmitted.

command mailgram: The command block given by the cell controller.

common memory: A communication system which emphasizes the independence of
its readers and writers. Memory locations are accessible to

workstations, the cell controller, and the database.

D

device level: The lowest level in the TWS controller hierarchy; the level where
equipment operates.

DML: A data manipulation language for declaring the executable
statements on the application database.

DML request: A DML command used to obtain required AMRF database reports as

needed by the workstation containing a DML string.

DML string: A variable length string written in DML which directs a database
operation to be performed.

E

end- effector : The work performing device at the end of the robot arm.

equipment instruction list: The list of instructions for the workstation
devices derived from a process plan.

Equipment Item Action report: A report used to change the location of an

inventory item at the equipment level. In

the TWS, this report is also used to update

the current name of the part as it is being

made to the cell controller; spelled as

EQUIP_ ITEM_ACTION in AMRF database

transactions

.

190

The TWS

G

gripper: The robot end-effector.

I

integrated mode: Automatic operation of the workstation in conjunction with
the AMRF cell controller and database.

J

Job level: The highest level in the TWS controller hierarchy. The level of

the workstation controller which manages tasks, decomposes
process plans, and acts as the interface between the workstation
operator and the workstation controller.

L

local mode: The control of a device from a dumb terminal.

Lot Status report: This report describes the parts of the lot (by serial
number) and the identifiers that constitute a lot as

specified in the cell commands; spelled as LOT_STATUS in

AMRF database transactions.

LVDT: Linear Variable Differential Transformer, a linear position measuring
device

.

M

mailbox: The network view of the common memory locations used for the

access of commands, statuses, and data.

MAP: Manufacturing Automation Protocol.

N

Network common memory: The AMRF common memory.

P

PL/M or PLM: Programming Language for Microprocessors.

procedure: In PLM, a set of statements which define an algorithm.

R

RCI : a microprocessor-based robot controller interface; it enables the
workstation controller to remotely control the robot.

191

The TWS

remote mode: Control of a device from the workstation controller.

S

stand-alone mode: Automatic operation of the workstation independent of the
AMRF cell controller and the database; batch commands are
entered by the workstation operator.

status mailgram: The status block returned to the cell controller.

T

task level: The second highest level in the TWS controller hierarchy; the

level where work elements are executed, e.g. GET_BLANK,
LOAD_BLj\NK, etc.

TOP: Technical Office Protocols.

Tray Contents report: A report from the AMRF database that specifies the item
serial number for the parts located in a section of a

tray specified in a cell command; spelled as

TRAY_CONTENTS in AMRF database transactions.

Tray Definition report: A report from the AMRF database that describes the tray
layout of the tray type specified in the cell command;
spelled as TRAY_DEFINITION in AMRF database
transactions

.

TWS: Turning Workstation.

TWSC: Turning Workstation Controller.

W

Work element: A list of device commands that comprise a task.

Workstation: The assemblage of machine tools, robots, buffering systems, and

computers used to produce parts.

Workstation Item Action report: This report is used to indicate that a part's

location has changed and may be taken over by

another equipment level component (e.g., the

robot cart)

;

spelled as WS_ITEM_ACTION in

AMRF database transactions

.

192

The TWS

INDEX

AMPLE
animation (58)
functions (57)
TWS, and (57)

AMRF
Cleaning and Deburring Workstation (3)

Horizontal Workstation (3)

Inspection Workstation (3)

Material Handling Workstation (3)

Turning Workstation (TWS) (3)

Vertical Workstation (3)

Collet Changer
electronic components (157)
error (155)
function (155)
mechanical components (157)
micromanipulator, and (160)
operation (157)
robot loading of a workpiece, and (160)
robot, and (160)
software (157)

Commands, see Protocol

(1)

Common Memory (31)
cell controller (46)
database (25), (52)
mailbox (48)

,

(71)
mailboxes (20) , (25)

Control Architecture
collet changer (155)
high-level machine tool controller (64)
malfunction detector (142)
micromanipulator (121)
programmable stop (92)

robot controller interface (72)

robot gripper (84)

tool setting station (101)
turntable (163)
TWS controller (8), (11), (25)

Data Transfer
AMPLE and TWS (58)

Database

AMRF (4), (8), (21), (25), (29), (31), (46), (64), (70), (71),

(179)
local (4), (8), (21), (29), (43), (66), (70), (179)
use of (11), (12), (20), (22), (31), (33), (49), (52), (67), (68)

193

The TUS

Database communications with
high-level machine tool controller (67),
TWS (49), (52), (56)
TWSC (71)

DESIGN GOALS FOR THE TURNING WORKSTATION (3)

Cost-Effectiveness (5)

Flexibility (3)

Integrability (4)

Quality (4)

DHL strings (53)
DML requests (53)
used by TWS (56)

Electronic Components
collet changer (157)
high-level machine tool controller (65)
malfunction detector (143)
raicromanipulator (128)
programmable stop (94)

robot controller interface (74)
robot gripper (86)
tool setting station (108)
turntable (168)
TWS controller (22), (23)

Error compensation
error module (66)
geometric and thermally induced (65)
high-level machine tool controller (65),

Format

Formats
task level work element (40)

(70)

(66)

device level work element sheet (43)
device level work sheet (43)
process plan flat file (33)
status mailgram (48)

task level work element sheet (40)
High-Level Machine Tool Controller

AMRF database (64)

AMRF network, and (65)
CNC keyboard (64), (65)
commands (64)
communications (65)
digital temperature measurement system (66)

error compensation (65)

errors (65)
function (64)
Hardware (65)
operating system (64)

operation modes (70)

software (64) , (66)

status (64)

194

The TWS

task (64)

workstation controller, and (64)

Integrated mode (1) , (4) , (11) , (20)

Malfunction Detector
communication (149) , (153)
electronic components (143)
mechanical components (143)
operation (147-149)
software (147)

Mechanical components
collet changer (157)
malfunction detector (143)
micromanipulator (121)
programmable stop (92)

robot gripper (84)

tool setting system (102)
turntable (164)

Micromanipulator
commands (137)
communication (132) , (136)
electronic components (128)
mechanical components (121)
operation (131) , (132)
software (128)

Programmable Stop
commands (98), (99)

electronic components (94)

functions (91)
implementation (92)
mechanical components (92)

resolution (92)
responses (98)
software (96)

Protocol
AMPLE and TWS (58) , (59)

communication between TWS controller and devices (59), (179)
Database and TWS (52)
Manufacturing Automation Protocols (MAP) (20)

Technical Office Protocols (TOPS) (20)
Robot Controller Interface

commands (76), (78), (80)

communication (76)
electronic components (74)
functions (72)
motion, inhibition of robot's, and (74), (77), (79-81)
operation (77)

responses (78), (80)

robot controller, and (72), (81)
software (76)

tray station controller, and (72)

195

The TVS

workstation controller, and (72), (79)
Robot Gripper

closing force (86)
commands (89)
communication (88)
electronic components (86)
features (83)
finger changing (86)
mechanical components (84)
payload (83)
position sensing (86)
purpose (83)
resolution (86)

responses (89)
software (88)

tool changing (83)
Software Components

collet changer (157)
high-level machine tool controller (66)
malfunction detection (147)
malfunction detector (147)
micromanipulator (128)
programmable stop (96)
robot controller interface (113)
robot gripper (88)
tool setting station (113)
turntable (172)

Stand-alone mode (1) , (4)

,

(11) , (12) , (20)

Task
manufacturing (25), (29)
synchronization (25), (27)

system (25) *

Tool Setting Station
LVDT (101)
operation (114)
repeatability (101) , (120)

Tool Setting System
commands (114)
electrical components (108)
four-bar mechanism (105)
gage head (102)
LVDT (102)
mechanical components (102)

range (102)
repeatability (102), (108)
responses (114)
software (113)

Turntable
commands (174), (175), (177)

electronic components (168)

196

The TWS

function (162)
mechanical components (164)
operation (175)
responses (175), (177)
robot (162)
Software (172)

TWSC
AMPLE (57)

AMRF Cell Controller, and (22)

AMRF database (21), (23), (31), (33), (49), (63)

AMRF database, and (22)

Cell Controller (31), (46), (61)

Cell Controller and (21)
design philosophy (21)
device controllers (30) , (59)

hardware (22)
hierarchy (27)
local database (31)
mailboxes (31)
multitasking (25)
operating system (21-23), (25)
process plan decomposition (33)
purpose (21)
Real-Time Multitasking Control (22)
task (27), (29), (30)

197

N BS-1 1 4A (REV. 2-80

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 88-3749

2. Performing Organ. Report No. 3. Publication Date

APRIL 1988

4. TITLE AND SUBTITLE

The Turning Workstation in the AMRF

5. author(S) Alkan Donmez, Robert Gavin, Lew Greenspan, Kang Lee

Eric Reisenauer, James Peris, Charles Shoemaker, Charles Yang.
, Vincent Lee,

6. PERFORMING ORGANIZATION (If joint or other than NBS. see in struction s)

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

8. Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City. State, ZIP)

Navy Manufacturing Technology Program.

10. supplementary notes

| |

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most Significant information. If document includes a significant

bi bl iography or literature survey, mention it here)

The Turning Workstation is a flexible manufacturing workstation developed in the

Automated Manufacturing Research Facility (A.M.R.F.) at the National Bureau of

Standards. The development of the workstation addressed some of the problems

associated with an unattended turning operation which include tool changing., collet

loading, collet changing, flexible robot end-effectors, and machine malfunction
detection. This document describes the components of the Turning Workstation and its

relationship to the A.M.R.F.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Automation, Collet Changing, Collet Loading, Flexible Manufacturing, Gripper,

Integration, Malfunction Detection, Process Plan, Robotic, Turning, Workstation,

Workstation Control.
13. AVAILABILITY 14. NO. OF

PRINTED PAGES
pO Unlimited

| |

For Official Distribution. Do Not Release to NTIS 206

[
I Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402. 15. Price

(

"x| Order From National Technical Information Service (NTIS), Springfield, VA. 22161 $24.95

		Superintendent of Documents
	2022-04-13T06:09:49-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

